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Ganesh J Prabu, MS, Decem ber 2000, Com puter Science

Genetic Ensemble Feature Selection 

Director: David Opitz, Ph.D.

Feature selection is the process of picking the relevant features of a task so as to 
maximize the accuracy of an inductive learning algorithm when applied to that task. 
Irrelevant features confuse a learning algorithm and thus decrease accuracy. At the same 
time there is a potentially opposing need to include a sufficient set of relevant features to 
achieve acceptably high performance. This has led to the development of a variety of 
search techniques for finding an “optimal” set of features to apply the learning task, but 
most of these techniques focus on finding the feature set for one learned model. 
Ensembles are a set of learned models that act cooperatively in their predictions. 
Ensembles have been shown (Breiman 1996; Hansen and Salamon 1990) to be more 
accurate on average than learning a single model. Given the success of ensembles. Opitz 
(AAAI, 1999) presented a GEFS (Genetic Ensemble Feature Selection) algorithm that 
uses a “genetic algorithm” to search the feature selection for ensembles. GEFS has been 
shown to generalize better than existing ensemble approaches using backpropagation as 
its component learning algorithm.

In this thesis we extend the GEFS algorithm to include the inductive learning 
algorithms of naive Bayesian, K-nearest neighbor and probabilistic neural networks. Our 
experiments demonstrate the quality of this approach for each of these learning 
algorithms across a wide variety of problem domains. For each inductive learner, GEFS 
generalizes better than the single component learning algorithm.
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1 Introduction

In feature subset selection, a learning algorithm is faced with the problem of 

selecting a relevant subset of features upon which to focus its attention, while ignoring 

the rest. Previous work on feature selection has focused on finding the appropriate subset 

of relevant features for one learned model. However, recent work on ensembles has 

shown that combining the output of a set of models that are generated from separately 

trained inductive learning algorithms can greatly improve generalization accuracy 

(Breiman, 1996; Maclin and Opitz 1997;Shapire et al. 1997). Opitz (AAAI, 99) presented 

an approach to feature selection for ensembles called GEFS (Genetic Ensemble Feature 

Selection). Opitz showed GEFS generalizes better than existing ensemble approaches 

using backpropagation as its component learning algorithm. This thesis extends GEFS to 

include the inductive learning algorithms o f the naive Bayesian classifier, K-nearest 

neighbor and probabilistic neural networks (PNN) and apply these algorithms to a wide 

variety o f  problem domains.

The objective of the feature selection is to reduce the number of features used to

characterize a dataset so as to improve an algorithm’s performance on a given task. In

machine learning, finding a minimal set of relevant features increases the generalization

accuracy and to a lesser extent the speed. This has led to the development of a variety of

search techniques for finding an “optimal” subset of features from a larger set of possible

features. Exhaustively trying to find all the subsets is computationally prohibitive when

there are a large numbers of features. There are two main approaches for avoiding this

1
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combinatorial explosion. The first involves developing problem specific strategies 

(heuristics), which use domain knowledge to prune the feature space to a manageable size 

(Dorn, B., Niblack, W., and Sheinvald, J. 1989). The second approach is to use generic 

search strategies (primarily hill climbing algorithms) when domain knowledge is costly 

to exploit or unavailable (Kittler, J. 1978). This thesis concentrates on the problems 

where there is no domain-specific knowledge available.

In this thesis, we focus on a genetic algorithm (GA) approach to search for the 

best feature subsets. We use GAs because they have demonstrated substantial 

improvement over a variety of random and local search methods (De Jong, K, 1975) on 

large search spaces, such as the feature subset selection problem. Many researchers have 

used GAs to do the feature selection (J. Yang and V. Honavar, 1997; Leardi, R, 1994; 

Rainer Stotzka et al. 2000), but they all focus on finding the feature selection for one 

learned model.

Opitz (AAAI, 1999) presents the GEFS algorithm that does feature selection for 

ensembles. GEFS accomplishes this by creating an initial population of classifiers where 

each classifier is generated randomly. It then continually produces new candidates by 

using the generic genetic operators like crossover and mutation. The fitness of the 

classifier is a combination of accuracy and diversity. The fit individuals make up the 

population. Opitz used backpropagation as its inductive learner.

In this thesis, we have extended the GEFS algorithm using the inductive learning 

algorithms of naive Bayesian, K-nearest neighbor and PNNs. In this thesis we have also 

extended GEFS for problems requiring regression analysis (i.e., problems where the 

targets are real values); whereas, Opitz (1999) only concentrates on classification tasks.
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Our results show that GEFS applied to these learning algorithms increases the 

generalization accuracy over the single component learning algorithms on a wide variety 

of domains. For the most part, GEFS produces a good initial population is both fast and 

accurate. The accuracy of the system increases as the system continues to run.



2 Related Work

Machine Learning is a field in Computer Science that aims to make computers 

learn from experience. The necessary step in any machine learning application is to know 

the available learning algorithms and their characteristics. This helps to identify the 

learning algorithm that is most suitable for the task. This chapter gives an introduction to 

inductive learning algorithms and an overview of the methods that are used in this thesis.

2.1 Learning Algorithms

An inductive learner is a system that learns from a set of examples. The set of 

examples that is given to a learning algorithm is known as a training set. Each example 

will have a set of inputs (independent variables) and a set of outputs (dependent 

variables). The learning algorithm will learn from this training set and come up with a 

hypothesis that will be able to predict the output for any unseen example. There are many 

different types of inductive learners; each having their own bias for a particular type of 

problem. One has to choose the learning algorithm that is best suited for his/her 

assignment based on the property of the learning task and the dataset characteristics. A 

properly chosen learning algorithm should achieve high generalization accuracy, which is 

the accuracy that a learner encompasses with the examples beyond the training data. We 

next provide an overview of the inductive learning algorithms used in this thesis: 

backpropagation, K-nearest neighbor, naive Bayesian classifier, and probabilistic neural 

networks.

4



2.1.1 Backpropagation

Backpropagation is the most common training technique for artificial neural 

networks (ANN) with hidden layers (intermediate layers). ANNs are weighted 

inconnections of nodes that are loosely based on the replicated structure of the human 

brain cells called neurons. ANNs work by propagating inputs forward through the 

network to the outputs. The output of each neuron in an ANN is calculated by first 

summing the values of each incoming link (input multiplied by connection weight), then 

converting it, in a nonlinear fashion, into a number that the program can use (a real 

number between 0 and 1, for example). The connection weights and topology of the 

ANN determine the knowledge function. Figure 1 shows a typical ANN.

Input Neuron 3

Input Neuron 2

Input Neuron 1

Output Neuron 2
Hidden Neuron 2

Hidden Neuron 1 Output Neuron I

Connection Weight

Figure I Layout o f  ANN
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Training an ANN requires the modification of weights in the neural network using 

a learning algorithm, for example backpropagation. Backpropagation begins by 

constructing a network with the desired number of input, hidden and output units and 

initializing all network weights to small random values. Given this fixed network 

structure, the main loop of the algorithm then repeatedly iterates over the training 

examples. For each training example, it applies the network to the example, calculates the 

error of the network output for this example, computes the gradient with respect to the 

error on this example, and then updates all weights in the network. This gradient descent 

step is iterated until the network performs acceptably well. For more details on 

backpropagation, please refer to McClelland and Rumelhart (1986).

Like any learning algorithm, Backpropagation has some disadvantages. It has an 

extremely long training time, an offline-encoding requirement, and the hypotheses 

generated are hard to understand. Despite these deficiencies, Backpropagation have 

numerous advantages. It has the ability to acquire arbitrarily complex nonlinear 

mappings, it provides locally optimal predictions, it classifies future training examples 

fairly quickly, and, most importantly, it generalizes well for many types of domains. 

Because of its effective generalization ability, Opitz (1999) selected backpropagation for 

GEFS’ component learning algorithm. Thus, we also include backpropagation in our 

study.

2.1.2 NaYve Bayesian

Naive Bayesian reasoning provides a probabilistic approach to learning. The 

naive Bayesian classification is based on Bayes’s theorem. It is done by calculating,

• the probability of each class,
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• the probability of each class occurring in combination with the training data, 

and

• the probability of that data, independent of the class.

A Bayesian classifier estimates probabilities based on the measured frequency of 

similar instances in the training example set. Bayesian learning has its limitations, 

however. The limitations arise because classification must often be made for examples 

comprised of more than just a few attributes and some combinations of attributes may be 

exceedingly rare, and the training set of examples is typically not adequately populated to 

provide a good estimate of the probability of each new instance. For example, if a 

particular combination of attributes never occurs in the training set, then a Bayesian 

classifier will return an estimated probability of zero for that instance.

The naive Bayesian classifier is based on the simplifying assumption that the 

attribute values are conditionally independent given the target value. This means that 

each attribute can be multiplied together to calculate the probability. The inductive 

learner will take the most probable outcome. Regardless of this assumption the naive 

Bayesian classifier generalizes well in many circumstances. The approach used by the 

naive Bayesian classifier is,

vNB = arg max P{v . )F [  P(a, | vy)
, j Z V  ,

where, (fva denotes the target value by the naive Bayesian classifier, Vj is the target value, 

a.j is the input, P(vj) is the probability of each class, P(a/vj) is the probability of each class 

occurring in combination with the training data. In this thesis, we developed the naive 

Bayesian classifier code found in Mitchell (1996); Chapter 6.9.
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The main disadvantage of the naive Bayesian classifier is, since the attributes are 

treated as though they were completely independent, the addition of redundant ones 

skews the learning process; however, naive Bayesian has numerous advantages: a) it is 

simple; b) it has clear semantics for representing, using and learning probabilistic 

knowledge; c) it is fast to train and classify; and d) in many cases it outperforms more 

sophisticated learning methods. Given these advantages, we investigate in this thesis the 

utility of using naive Bayesian as a learning algorithm for GEFS.

2.1.3 K-nearest neighbor

Nearest neighbor is an instance based learning method, where the training is 

simply storing the examples; generalizing beyond these training examples is postponed 

until a new instance has to be classified. With every new instance, the relationship to the 

previously stored training example is scrutinized to assign a target function value to the 

new instance. Instance based learning are sometimes referred to as a “lazy learner” 

because they delay generalizing until a new instance is given.

Nearest neighbor often uses the standard Euclidean distance (i.e., the straight-line 

distance between two points) to find the neighbors of an instance. The target function 

value for a new query is estimated from the known values of k nearest training examples. 

For example, Figure 2, shows the classification of the point “q” with five nearest 

neighbors. The point “q” will be classified as since three out of five neighbors are 

One refinement to the nearest neighbor algorithm is to weight the contribution of each of 

the neighbors according to their distance from the point, giving greater weight to the 

closer neighbors. For example, in Figure 2 point “q” may be classified as because the



9

two “+” points are physically closer to it than the three L‘-“ points. We use the K-nearest 

neighbor algorithm given in Mitchell (1996), Chapter 8.2.

Figure 2 K-Nearest Neighbor, k =  5

One disadvantage of distance-weighted K-nearest neighbor is that it is slow to 

classify new instances since it has to calculate the distance between the query point and 

all examples; however, K-nearest neighbor algorithms generalizes well on many types of 

domains and are thus a logical choice upon which to include as a learning algorithm for 

GEFS (Dudani, S.A., 1976). One practical issue in applying the K-nearest neighbor 

algorithm is that the distance between instances is calculated based on all attributes of the 

instance (i.e., on all axes in the Euclidean space containing the instances). This lies in 

contrast to methods such as decision tree learning systems that select only a subset of the 

instance attributes when forming the hypothesis. By combining K-nearest neighbor with



feature selection, distance is measured only between estimated relevant attributes, thus 

helping to overcome this drawback.

2.1.4 Probabilistic Neural Networks

PNNs are kernel-based approaches to probability density function (PDF) 

approximation. Estimating a PDF from data has a long statistical history (Parzen. 1962). 

and in this context fits into the area of Bayesian statistics. Conventional statistics can, 

given a known model, inform us of the chances of certain outcomes (e.g. we know that a 

unbiased die has a I/6th chance of coming up with a six on any roll). Bayesian statistics 

turn this situation on its head, by estimating the validity of a model given certain data. 

More generally, Bayesian statistics can estimate the probability density of model 

parameters given the available data. To minimize error, we select the model whose 

parameters maximize this PDF.

In the context of a classification problem, if we can construct estimates of the 

classes PDF, we can compare the probabilities of the various classes, and select the most 

probable one. This is essentially what a neural network does during training - learn an 

approximation to the PDF. A more traditional approach is to construct an estimate of the 

PDF from the data. This is done by assuming a certain form for the PDF and then 

estimating the model parameters. A typical PDF assumption is normality where analytic 

techniques estimate the model parameters of the normal distribution (mean and standard 

deviation); however, the assumption of normality if often not justified.

An alternative approach to PDF estimation is kernel-based approximation 

(Parzen. 1962; Speckt, 1990; Speckt, 1991; Bishop, 1995; Patterson, 1996). We can 

reason loosely that the presence of particular cases indicate some probability density at
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that point: a cluster of cases close together indicates an area of high probability density. 

Close to a case, we can have high level of confidence in the probability density, with a 

lesser and diminishing level as we move away. In kernel-based estimation, simple 

functions are located at each available case, and added together to estimate the overall 

PDF. Typically, the kernel functions are each Gaussians (bell-shapes). If sufficient 

training points are available, this will indeed yield an arbitrarily good approximation to 

the true PDF.

In the PNN, there are at least three layers: input, radial, and output layers. The 

radial units are copied directly from the training data, one per case. Each models a 

Gaussian function centered at a training case. There is one output unit per class. Each is 

connected to all the radial units belonging to its class, with zero connections from all 

other radial units. Hence, the output units simply add up the responses of the units 

belonging to their own class. The outputs are each proportional to the kernel-based 

estimates o f the PDF of the various classes, and by normalizing these to sum to 1.0 

estimates of class probability are produced. The only control factor that needs to be 

selected for PNN training is the window size (i.e. the radial deviation of the Gaussian 

functions). Refer to Ronald, Susan, and Andrew (1998) for more details on the PNN 

code.

Some drawbacks of the PNNs are that its training vectors must be stored and used 

to classify new vectors, requiring a lot of memory; and its computation time for a 

classification is proportional to the size of the training set. On the other hand, a PNN is 

a) fast to train, easy and typically requires only a few passes; b) it is resistant to noise; 

and c) its decision surfaces are guaranteed to approach the Bayesian optimal boundaries
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as the number of training vectors grows. Given its computationally intense classification 

time, we use PNNs only on the smaller classification tasks.

2.2 Ensembles

Most modern machine learning research uses a single model or learning algorithm 

at a time, or at most selects one model from a set of candidate models. Recently however, 

there has been considerable interest in techniques (called ensembles) that integrate the 

collective predictions of a set of hypotheses in some principled fashion. Figure 3 shows 

the framework of predictor ensembles; each learning algorithm in the ensembles is 

trained using the training examples. Then for each example the prediction is the 

combination of all the individual predictions in the ensembles.

O
/ \  Ensemble Output

Z \

Combine Predictor Outputs

7 7
o 2

77
o , On

Predictor 1 Predictor 2 •  •  • Predictor n

Figure 3 Ensembles Frame W ork
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Many researchers (Breiman 1996; Hansen and Salamon 1990; Opitz and Shavlik 

1997) have demonstrated the effectiveness of combining schemes that are simply the 

weighted average of the predictions; this is the type of ensembles on which this thesis 

concentrates. Combining the output of several hypotheses is useful only if there is 

disagreement on some inputs. Obviously combining the same hypotheses is not useful.

An ideal ensemble consists of highly correct hypotheses that disagree on their 

predictions. Numerous authors have empirically verified that such ensembles generalize 

well (e.g., Opitz and Shavlik 1996; Breiman 1996a; Freund 1996). Hence methods for 

creating effective ensembles center around producing hypotheses that disagree on their 

predictions. For example, creating neural networks trained with differing topologies often 

results in hypotheses that disagree. In this thesis, hypotheses that disagree on their 

predictions are created using genetic algorithms to vary the inputs given to the learners 

thus creating a diverse population.

2.3 Feature Selection

The aim of feature selection is to choose a subset of features that improve 

generalization accuracy. Attempting to select the minimally sized subset of features such 

that the classification accuracy does not significantly decrease often does this.

Algorithms that perform feature selection as a pre-processing step, prior to learning, can 

generally be placed into one of two broad categories. One approach, referred to as the 

“filter’ approach (John, Kohavi, and Pfleger, 1994) operates independently of any 

learning algorithm. Undesirable features are filtered out of the data before induction 

commences. Another approach referred to as the “wrapper” approach (John, Kohavi and
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Pfleger, 1994) employs as a subroutine, a statistical re-sampling technique (such as cross 

validation) using the actual target-learning algorithm to estimate the accuracy of feature 

subsets. Kohavi and John (1997) showed that the efficacy of a set of features depends on 

the algorithm itself and thus the ideal feature subset for one algorithm often differs from 

the ideal feature subset of another algorithm. This approach has proven more accurate 

(Liu, H., and Setiono, R., 1996), and is thus the method of choice for this thesis. Figure 4 

illustrates the wrapper approach,

Training set

Training set

Feature set

EstimatedTest set
Accuracy

Feature selection search

Induction Algorithm

Feature evaluation

Induction
Algorithm

Induction
Algorithm

Feature set

Feature set

Performance

Hypothesis

Figure 4 W rapper Approach to find featured set

If there are “n” possible features initially, then there are "n2” possible subsets. 

Ideally, feature selection methods search through the subsets of features, and try to find
■j

the best one among the competing “i f ” candidate subsets. The only way to find the best 

subset, would be to try them all -  this is clearly prohibitive for all but a small number of



initial features. Many researchers apply heuristic search strategies such as hill climbing 

and best first search (Rich, Knight, 1991) to search the feature subset space. The best first 

search algorithm starts with an empty set of features and generates all possible single 

feature expansions. The disadvantage of the best first search is that it takes a long time to 

find the best subset.

Another approach is to use generic heuristics (primarily hill climbing algorithm) 

when domain knowledge is costly to exploit or unavailable (Kittler, J. 1978). In this 

thesis, we present a GA approach to do the generic heuristics search.

2.4 Genetic Algorithms

GAs are optimization and search procedures inspired by genetics and the process 

of natural selection. The search for the best hypothesis starts with a population (i.e., a 

collection of initial hypotheses). The initial hypotheses then gives rise to new hypothesis 

by means of genetic operations like mutation and crossover on the better of the currently 

known hypotheses. The motivations behind GAs are:

• evolution is known for its success,

• they can do effective global search optimization (Holland 1975; Mitchell 1996), 

and

• they are easily parallelized and can take advantage of powerful computer 

hardware.

The generation of successors in GAs is determined by the set of operators that 

recombine and mutate selected members of the current population. The fitness function 

defines the criteria for ranking the hypotheses and selecting, them for inclusion into a
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steady-state (fixed size) population. The fitness function determines which of the 

population member’s genetic material is to be passed onto descendants.

The GA offers an attractive approach to solving the feature subset selection 

problem in inductive learning (J. Yang and V. Honavar, 1997, H.Vafaie and K.Jong, 

1997). Many researchers have used GAs to do the feature selection (J. Yang and V. 

Honavar. 1997; Leardi, R, 1994; Rainer Stotzka et al. 2000) but not for ensembles. The 

task of ensemble feature selection has an additional goal of finding a set of feature 

subsets that will promote disagreement among the component members of the ensemble. 

This search space is enormous for any non-trival problem. In the thesis, the GAs are used 

as search mechanism for the problem of feature selection for ensembles. GAs are logical 

choice since they have shown to be effective global optimization techniques (Holland 

1975; Mitchell 1996).



3 Genetic Ensemble Feature Selection

The GEFS algorithm (Opitz, 1999) uses the advantages of both feature selection 

and ensembles to create an effective set of classier neural networks trained by 

backpropagation. The objective of this thesis is to extend the GEFS algorithm to 

additional learning algorithms and apply it to the regression problems as well. Ensemble 

performance is based on producing a set of predictors that disagree on their predictions. 

In feature selection, the objective is to select an effective subset features upon which to 

learn. By having an ensemble of feature subsets, we can have predictors that disagree 

amongst themselves. If these predictors have different parameters then each will have 

their own set of feature sets leading us to have a diverse set of predictors. We use GAs to 

search the universal space of feature subsets.

3.1 The GEFS Algorithm

The GEFS algorithm (Table l) uses a GAs to generate a set of predictors that are 

accurate and diverse in their predictions. GEFS starts by creating and training an initial 

population of predictors. The representation of each individual is simply a dynamic 

length string of integers that maps to a feature. GEFS creates the initial population by 

randomly varying the input features and training the algorithm using these features.

GEFS creates other predictors by using the genetic operators of crossover and mutation.

GEFS trains each of these predictors with the training examples and calculates 

their fitness with respect to their prediction accuracy and diversity. GEFS defines fitness 

of each predictor as:

Fitness = Accuracy + A. Diversity

17



where, X defines the tradeoff between the accuracy and diversity. We define accuracy as 

1.0 minus the absolute value of the difference between the target and the predicted 

output. We define diversity to be the average squared difference between the prediction 

of a component classifier and the prediction of the ensemble.

GEFS (Population_size)

Population_size: number of predictors in each population.

• Initialize Population'. Generate Population_size predictors at random using 

varying inputs and train these predictors

• Until stopping criteria is reached

o Use one of the genetic operators to create a new predictor,

o Measure the diversity of the predictor with respect to the current

population.

o Normalize the accuracy scores and the diversity scores of the

predictor.

o Calculate the fitness of each predictor in the population,

o Prune the population to the Population_size fittest predictors,

o Adjust X.

o The current population composes the ensemble.

Table 1 G enetic Ensemble Feature Selection
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Finally, GEFS deletes the predictor with the worst fitness in the population to the 

N most-fit members, then repeats this process until a stopping criterion is met, thus 

maintaining a steady state population. At any point in time the ensemble output is the 

mean average output of each member of the current population. As the population 

evolves so does the ensemble. We define accuracy to be predictors i’s accuracy. We 

define diversity to be the average difference between the prediction of a component 

classifier and the ensemble. Normalizing both the diversity and accuracy, each between 

0.0 and 1.0, allows X having the same meaning across domains. The value of X is 

adjusted based on the discrete derivatives of the ensemble error E , the average population 

error E , and the average diversity D within the ensemble. First, we never change X if E 

is decreasing; otherwise-we (a) increase A. if £  is decreasing and the population diversity 

D is decreasing; or we (b) decrease X, if E is increasing and D is not decreasing. X 

starts at 1.0 and changes 10% of its current value. We create the initial population by 

randomly choosing the number of features to include in each feature subset. For classifier 

/', the size of each feature subset (N,) is uniformly chosen randomly between 1 and twice 

the size of original feature set. From the original feature subset, each feature is randomly 

selected with replacement. Thus some features can be selected more than once whereas 

others may not be selected. Replication of a feature is useful in two cases, (a) it allow's 

the predictor more chance to utilize that feature, and (b) it increases the probability of that 

feature’s existence in future generations.
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3.2 Genetic Operators

The two genetic operations that generate new populations are crossover and 

mutation. In this thesis we use a dynamic length uniform crossover. We place each 

feature in the parents in one of the two children. By doing this, both resulting children 

may be shorter than the shortest parent or longer than the longest parent. Only one of the 

two children will be considered for inclusion into the population. The mutation operator 

works much like the traditional mutation operator; we randomly replace a small 

percentage of the features with some other feature. This allows features that were not 

selected during the initialization phase to occur in the later populations. Either crossover 

or mutation is done at each step, but not both as is typical for many GAs. If the newly 

created predictor has higher fitness than the predictor with least fitness, it will replace 

that one. With both operators, the network is trained from scratch using the new feature 

subset.

3.3 Extensions to GEFS

The original GEFS algorithm (Opitz 1999) was implemented for classification 

problem using backpropagation. The objective of this thesis is to extend GEFS to use the 

inductive learning algorithms of naive Bayesian classifier, K-nearest neighbor and PNNs 

and apply these algorithms to a wide variety of problem domains. Opitz (1999) used 

roulette wheel fitness proportional reproduction; we modify GEFS to use random 

selection. However, selection based on fitness is done in the step of the algorithm where 

the least fit individual is removed from the population when keeping a steady state in 

population size.



4 Methodology

To evaluate the performance of the GEFS, we obtained a number of datasets from 

the University of Wisconsin Machine Learning repository, the University of California, 

Irvine dataset repository, the Naval Research Laboratory and Natural Resources Research 

Institute at the University of Minnesota. These data sets are selected since they a) came 

from real world problems, b) are used by many researchers, and c) have varied 

characteristics. Table 2 provides a summary o f the classification datasets. The last two 

columns give the number of hidden units and epochs used for backpropagation. •

Table 2 Sum m ary o f  the classification datasets

Dataset Cases Classes Inputs Outputs Hidden Epochs
breast 699 2 9 9 5 20
credit-a 690 2 ; 47 1 10 35
credit-g 1000 2 63 1 10 30
diabetes 768 2 8 1 5 30
glass 214 6 9 6 5 80
heart-cleveland 303 2 13 1 5 40
hepatitis 155 2 32 1 10 60
house-votes-84 435 2 16 1 5 40
hypo 3772 5 55 5 15 40
ionosphere 351 2 34 1 10 40
iris 159 3 4 3 5 80
kr-vs-kp 3196 2 74 1 15 20
labor 57 2 29 1 10 80
promoters-936 936 2 228 1 20 30
ribosome-bind 1877 2 196 1 20 35
satellite 6435 6 36 6 15 30
segmentation 2310 7 19 7 15 20
sick 3772 2 55 1 10 40
sonar 208 2 60 1 10 60
soybean 683 19 134 19 25 40
splice 3190 3 240 3 25 60
vehicle 846 4 18 4 10 40
BBR1 87 2 6 1 5 30
BBR2 243 2 7 1 5 30
Buckley 392 2 8 1 5 30
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Table 3 shows the list of the regression datasets used in this thesis. Regression 

datasets are datasets that have real-valued outputs, whereas classification datasets have 

outputs that fall into one of N discrete categories. Opitz (1999) studied only 

classification tasks. The regression datasets are collected from the Natural Resources 

Research Institution, at the University ofMinnesota, Duluth. Quantitative structure- 

activity relationships (QSAR) represent an attempt to correlate structural or property 

descriptors of compounds with activities. These datasets are QSAR theoretical 

descriptors for finding the toxicity of various chemicals. Table 4 gives the parameters 

associated with each of these datasets.

T able 3 Regression Datasets 

Lr25 is the hierarchical QSAR approach for estimating toxicity of 54 phenols.

Lr47 is the hierarchical QSAR study of fish bio-concentration factors (BCF’s) of 87

organic pollutants from the molecular connectivity model.

Lr50 is the hierarchical QSAR study of estimating toxicity of 34 benzonitriles to the 

ciliate tetrahvmena pyriformis.

Lr76 is the hierarchical QSAR study of estimating toxicity of 91 benzothiazolium salts 

against euglena gracilis using the Free-Wilson approach

Lr78 is the hierarchical QSAR approach for response-surface analyses for toxicity to 

tetrahymena pyriformis on 56 reactive carbonyl-containing aliphatic chemicals.

Hall is the hierarchical QSAR study of the toxicity of 69 benzine derivatives.

Each dataset listed in Table 3 has four different level of complexity. Each 

complexity represents different indices describing the activity of a chemical. QSARs



have come into widespread use for the prediction of various molecular properties, as well 

as biological, physiochemical, pharmacological, and toxicological responses. In this 

thesis we have focused on the role of four distinct sets of theoretical descriptors 

topostructural, topochemical, geometric and quantum chemical indices.

The topostructural (TSI) and topochemical (TCI) indices fall into the category 

normally considered topological indices. TSIs are topological indices that only encode 

information about the adjacency and distance of atoms (vertices) in molecular structures 

(graphs), irrespective of the chemical nature of the atoms involved in bonding or factors 

such as hybridization. TCIs are parameters that quantify information regarding the 

topology (connectivity o f atoms), as well as specific chemical properties of the atoms 

comprising molecule. These indices are derived from weighted molecular graphs where 

each vertex (atom) or edge (bond) is properly weighted with selected chemical or 

physical property information. The geometrical indices (3D) are three-dimensional 

Weiner numbers for hydrogen filled molecular structure, hydrogen-suppressed molecular 

structure, and van der Waals volume. The quantum chemical indices (QC) are energy of 

the highest occupied molecular orbital, energy of the second highest occupied molecular 

orbital, energy of the lowest unoccupied molecular orbital, energy of the second lowest 

unoccupied molecular orbital, heat of formation, and dipole moment.

Table 4 Four Levels o f  com plexity

Dataset TSI TCI 3D QC Total
Lt-25 37 59 ->J 6 105
Lr47 39 63. -iJ 6 111
Lr50 34 53 3 6 96
Lr76 35 55 ->J 6 99
Lr78 33 51 3 6 93
Hall 35 51 J 6 95
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Table 5 illustrates the property of inputs for each dataset. It lists how many of the 

features are discrete and how many are continuous. This is important for analyzing the 

utility of any approach to feature selection.

Table 5  Properties o f  the Datasets

Dataset Features
Continuous Discrete

credit-a 6 9
credit-g 7 13
diabetes 9 -

glass 9
heart-cleveland 8 5
hepatitis 6 13
house-votes-84 - 16
hypo 7 22
ionosphere 34 -

iris 4 -

kr-vs-kp - 36
labor 8 8
promoters-936 - 57
ribosome-bind - 49
satellite 36 -

segmentation 19 -

sick 7 22 .
sonar 60 -

soybean - 35
vehicle 18 -

BBR1 6 -

BBR2 7 -

Buckley 8 -

Lr25 105 -

Lr47 111 -

Lr50 96 -

Lr76 99 -

Lr78 93 -

Hall 95 -

Cross-validation is a method for estimating generalization error based on "re

sampling" (Weiss and Kulikowski 1991;; Efron and Tibshirani 1993; Hjorth 1994;



Plutowski, Sakata, and White 1994; Shao and Tu 1995). In n-fold cross-validation, we 

divide the data into “n” subsets of (approximately) equal size. We train the learner “n” 

times, each time leaving out one of the subsets from training, but using only the omitted 

subset to compute accuracy. If "n” equals the sample size, this is called "leave-one-out" 

cross-validation.. This thesis uses 10-fold cross-validation to estimate the generalization 

error for the classification datasets, while the regression tasks use leave-one-out.

In this thesis, we use the number of predictors in the population as 20 (for a total 

of 200 predictors for each 10-fold cross validation). The mutation rate for altering a 

feature is 1.5%. The crossover rate is 50% (i.e., half the time we do crossover, half the 

time mutation); the high mutation likelihood is picked to: a) have a diverse and accurate 

population so that the ensemble accuracy will increase, and b) include new features to the 

population. The value of A, is initialized to be 1.0. The maximum number of predictors is 

set to 100 (the stopping criteria for GEFS). The inputs and outputs used for the learning 

algorithms are listed in Table 2. Parameter setting for the neural network include a 

learning rate of 0.15, a momentum of 0.9 and weights are initialized randomly to be 

between -0.5 to 0.5. For the K-nearest neighbor the k value is set as 7. For PNN the 

window size is set as 25.

This thesis uses two metrics to measure the efficacy of GEFS on the regression 

tasks: a) Standard error, which is a measure of the amount of error in the prediction of y 

for an individual x, and b) the Pearson product moment correlation, which reflects the 

extent of a linear relationship between the two data sets. These two metrics estimate how 

far the predicted target value varies from the actual value. The metrics are as follows:
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Standard Error = 1
n (n -  2) nHx2 - ( I > ) 2

and

n(lLxy-C£jx)QLy')
Pearson Product moment (R)

where x, y are the range of dependent and independent data points.



5 Results

The results from the two types of problem domains, classification and regression, 

are discussed in the following two sections.

5.1 Classification Tasks

We trained and tested GEFS using naive Bayesian, K-nearest neighbor, and 

backpropagation classifiers on the classification domains shown in Table 2 in section 4. 

We tested PNNs only for small datasets that have only two classes as its output (due to 

code limitations beyond our control). Each table in this section contains a win-loss-tie 

comparison between the Single learner, GEFS initial population and after generating 100 

hypotheses.

Table 6 thru Table 9 show the test set errors for:

(1) a Single traditional naive Bayesian learner,

(2) a Single traditional K-nearest neighbor learner,

(3) a Single traditional backpropagation learner,

(4) a Single traditional PNN learner,

(5) the ensemble of GEFS initial population (for all four learners), and

(6) GEFS run to consider 100 hypotheses (for all four learners).

From Table 6, we can see that naive Bayesian classifier does poorly when the 

initial population is considered, however, as the search continues GEFS is able to 

increase accuracy. In addition, the accuracy of naive Bayesian classifier is better for 

those datasets having more discrete features than continuous features. GEFS loses to the 

single naive Bayesian classifier in only three of the twenty-five datasets. In addition only

27
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four times does the initial population have better accuracy than after searching 100 

hypotheses.

Table 6 Error Rates for the naive Bayesian

Dataset Single Learner Initial Pop 100 hypotheses
Breast 7.9 22.1 . 3.43
credit-a 14.4 12.6 12.6
credit-g 30.0 24.2 24.3
Glass *> 'IJJ.J 35.0 42.0
heart-cleveland 20.6 15.8 35.8
hepatitis 20.3 17.4 16.1
house-votes-84 6.74 14.0 5.51
hypo 7.41 9.23 7.38
ionosphere 15.3 14.5 14.2
iris 5.23 21.3 4.66
kr-vs-kp 2.0 4.59 4.32
Labor 17.5 21.0 9.82
pima 34.5 39.3 24.7
promoters-936 5.44 5.44 4.48
ribosome-bind 6.53 7.72 5.59
satellite 20.1 18.3 15.5
segmentation 4.3 4.1 3.09
sick 6.12 7.13 5.23
splice 20.4 17.3 16.4
sonar 14.2 15.3 13.7
soybean 12.7 12.6 11.9
Vehicle 25.1 27.4 27.1
BBR1 3.44 8.04 17.2
BBR2 4.90 0.82 1.06
Buckley 0.765 10.2 0.20
Single Learner 14-11-0 3-22-0
Initial Pop 4-20-1

Table 7 shows that K-nearest neighbor reacts similarly to naive Bayesian; 

K-nearest neighbor does poorly when the initial population is considered, however as the 

search continues we are able to get better accuracy. Only for four of the twenty-five 

dataset does GEFS lose to the single K-nearest neighbor classifier, hi addition only once 

is the initial population more accurate than after searching 100 hypotheses.
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Table 7 Error Rates for the K-nearest neighbor

Dataset Single Learner Initial Pop 100 hypotheses
Breast 3.00 3.14 2.71
credit-a 13.3 11.7 11.3
credit-g 26.6 25.9 25.4
Glass J J.O 24.7 19.1
heart-cleveland 19.4 16.5 16.5
Hepatitis 17.4 18.7 18.0
house-votes-84 6.43 8.96 5.05
Hypo 6.73 8.70 5.8
ionosphere 15.6 18.2 13.3
Iris ■ 4.66 21.3 4.66
kr-vs-kp 3.50 6.89 3.12
Labor 19.2 31.5 10.5
Pima 26.0 25.1 24.8
Promoters-936 10.4 5.66 5.44
ribosome-bind 12.5 7.72 7.51
Satellite 9.33 9.40 9.54
segmentation 4.6 4.19 4.02
Sick 3.7 3.65 3.21
Splice 38.6 16.48 15.29
Sonar 16.3 22.5 9.61
Soybean 11.5 i *■> •“»J J.J 12.0
Vehicle 29.9 27.4 22.6
BBR1 9.19 25.2 8.04
BBR2 0.41 23.0 1.64
Buckley 0.255 20.4 0.0
Single Learner 15-10-0 4-20-1
Initial Pop , 1-23-1

Table 8 shows the results for backpropagation. Note that backpropagation creates 

a more accurate initial population than either naive Bayesian and K-nearest neighbor. In 

addition, GEFS is able to further improve accuracy as it continues its search (except in 

four cases). In fact, GEFS is able to improve generalization accuracy in all 25 domains 

over the single ANN.
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Table 8 Error Rates for the backpropagation

Dataset Single Learner Initial Pop 100 hypotheses
Breast 3.6 3.42 3.28
credit-a 14.8 13.6 13.1
credit-g 27.9 25.1 25.1
Glass 48.6 41.8 38.1
heart-cleveland 18.6 15.4 15.1
Hepatitis 20.1 16.6 14.7
house-votes-84 4.9 4.35 3.44
Hypo 7.7 7.4 5.98
Ionosphere 17.1 15.6 15
Iris 16 6 4
kr-vs-kp 2.32 3.84 2.31
Labor 6.1 6.89 3.44
Pima 26.4 22.6 22.7
promoters-936 5.3 5.01 5.22
ribosome-bind 9.3 8.78 8.41
Satellite 18.6 17.2 17
Segmentation 17.7 8.87 7.57
Sick 5.9 6.17 4.24
Splice 4.3 4.04 4.13
Sonar 24 21 18.1
Soybean 9.2 7.3 6.14
Vehicle 38.3 27.3 24
BBR1 17.2 10.2 11.3
BBR2 8.6 1.63 0.0
Buckley 3.6 0.25 0.25
Single Learner 3-22-0 0-25-0
Initial Pop 4-20-1

Table 9 gives the results when using PNN as the component learning algorithm. 

Like K-nearest neighbor and naive Bayesian, PNN does poorly on the initial population 

but as the search continues, GEFS is able to obtain improved accuracy. For only one of 

the thirteen dataset does GEFS lose to the single PNN. In addition only once is the initial 

population more accurate than after searching 100 hypotheses
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Table 9 Error Rates for PNN

Dataset Single Learner Initial Pop 100 Predators
Breast 35.05 37.62 37.91

credit-a 44.49 15.07 14.6
credit-g 30 29.6 22.3
heart-cleveland 55.77 53.79 49.17
hepatitis 34.1 56.77 16.12
house-votes-84 54.7 54.25 54.25
ionosphere 36.18 36.18 36.18
kr-vs-kp 52.3 33.44 22.46
promoters 24.4 10.63 3.19
Sonar 55.2 14.9 14.9
BBR1 55.17 59.77 .58.62
BBR2 21.8 25.9 11.11
Bucklev 31.1 15.3 7.4
Single Learner 4-8-1 2-10-1
Initial Pop. 1-11-1

To better analyze Table 6 to Table 9 results, Figure 5 to Figure 8 plot the percent 

reduction in error GEFS obtains with both the initial population and after generating 100 

hypotheses when compared to their component classifiers. In all figures, the X-axis 

refers to the difference in the percentage reduction in error and the Y-axis refers to the 

classification datasets from Table 2 in Section 4. In each of the figures, the bar extending 

to the positive side of X-axis indicates GEFS has a higher accuracy than the traditional 

component learning algorithm. Conversely, the bar extending to the negative side of X- 

axis shows that the traditional learning algorithm has more accuracy. Examining these 

figures we note that for most cases, GEFS significantly improves the accuracy of the 

component learning algorithm. This appears especially true for both backpropagation 

and PNN s.
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Traditional PNN vs GEFS
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For convenience, Table 10 shows the test error rates for all four learning 

algorithms after running GEFS for 100 hypotheses. From Table 10. we note that K- 

nearest neighbor and backpropagation appear to achieve higher accuracy than naive 

Bayesian and PNNs; however, the proper learning choice is still task dependant.

T able 10 Test Error o f  alt learning algorithm s

Dataset Naive Bayesian K-nearest
neighbor Backpropagation PNN

breast 3.43 2.71 3.28 37.91
credit-a 12.6 11.3 13.1 14.6
credit-g 24.3 25.4 25.1 22.3

glass 42 19.1 38.1
heart-cleveland 15.8 16.5 15.1 49.17

hepatitis 16.1 18; 14.7 16.12
house-votes-84 5.51 5.05 3.44 54.25

hypo 7.38 5.8 5.98
ionosphere 14.2 1 J . J 15 36.18

iris 4.66 4.66 4
kr-vs-kp 4.32 3,12 2.31 22.46

labor 9.82 10.5 3.44
pima 24.7 24.8, 22.7

promoters-936 4.48 5.44 5.22 3.19
ribosome-bind 5.59 7.51 8.41

satellite 15.5 9.54 17
segmentation 3.09 4.02 7.57

sick 5.23 3.21 4.24
splice 16.4 15,29 4.13
sonar 13.7 9.61 18.1 14.9

soybean 11.9 12 6.14
Vehicle 27.1 22.6 24
BBR1 17.2 S. 04 11.3 58.62
BBR2 1.06 1.64 0 11.11

Buckley 0.2 0 0.25 7.4
Naive Bayesian 10-14-1 9-16-0 10-2-1

K-nearest neighbor 14-10-1 13-12-0 10-3-0
Backpropagation 16-9-0 .12-13-0 10-3-0

PNN 2-10-1 3-10-0 3-10-0
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5.2 Regression Tasks

Table 11 shows the correlation coefficient for the backpropagation algorithms on 

all the regression datasets. The correlation coefficients are calculated for (1) a Single 

neural network (Single Learner); (2) the GEFS initial population, and (3) GEFS after 100 

networks. The win-loss-tie results are as before,, the row wins first, the column wins 

second, and ties third. For instance, GEFS considering 100 hypotheses beats the single 

neural network 20 out of 24 times in the aggregated results. From Table 11, we conclude 

the same thing as the classification tasks; the initial population produces good accuracy 

and as we run GEFS longer, this accuracy increases.

Figure 9 shows the comparisons between GEFS and Single Learner. Figure 9 

graphs the difference in correlation coefficient between the Single backpropagation and 

GEFS initial population and after generating 100: hypotheses.

T able 11 Correlation coefficient for backpropagation

Backpropagation
Single LeameF

GEFS
Ini

Popu
tial
ation 100 Networks

R2 Std. Error R2 Std.
Error R2 Std.

Error
Lr25

TSI 0.4732 0.6455 0.4678 0.6451 0.4873 0.6242
TS1+TCI 0.7804 0.4487 0.7830 0.4025 0.7843 0.4025
TSI+TCI+Geometric 0.7633 0.4600 0.7864 0.4057 0.8001 0.3887
TSI+T CI+Geometric+QC 0.7388 0.4813 0.7999 0.3887 0.8126 0.3746

Lr47
TSI 0.6959 0.5399 0.7009 0.5314 0.6911 0.8800
TSI+TCI 0.7653 0.4843 0.7738 0.4613 0.7745 0.4555
TSI+TCI+Geometric 0.7390 0.5040 0.7711 0.4577 0.7833 0.4472
TSI+TCI+Geometric+QC 0.7617 0.4884 0.7511 0.4751 0.7613 0.4706
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Lr50
TSI 0.1928 0.7883 0.0653 0.9391 0.1296 0.8538
TSI+TCI 0.3015 0.7180 0.3868 0.6614 0.3927 0.6661
TSI+TCI+Geometric 0.2928 0.7216 0.5141 0.5921 0.5745 0.5560
TSI+TCI+Geometric+QC 0.2037 0.7979 0.2809 0.7326 0.4270 0.6403

Lr76
TSI 0.0005 0.7530 0.0187 0.7511 0.0493 0.7295
TSI+TCI 0.5354 0.5184 0.8159 0.3156 0.8205 0.3905
TSI+TCI+Geometric 0.4896 0.5409 0.8246 0.3068 0.8118 0.3202
TSI+TCI+Geometric+QC 0.7446 0.3992 0.7613 0.4706 0.7999 0.3289

Lr78
TSI 0.2610 0.7425 0.2735 0.7251 0.3404 0.6991
TSI+TCI 0.5840 0.5546 0.6661 0.4796 0.6712 0.5086
TSI+TCI+Geometric 0.6647 0.5119 0.6517 0.5039 0.6713 0.5078
TSI+TCI+Geometric+QC 0.6235 0.5137 0.6467 0.4955 0.6620 0.5130

Hall
TSI 0.5073 0.5571 0.5956 0.4776 0.5994 0.4790
TSI+TCI 0.6887 0.4568 0.6670 0.4611 0.6953 0.45112
TSI+TCI+Geometric 0.7001 0.4503 0.6578 0.4586 0.6845 0.4344
TSI+TCI+Geometric+QC 0.7564 0.4103 0.6754 0.4400 0.7000 0.4233

S in g le  L ea rn er
TSI 2-4-0 2-4-0
TSI+TCI 1-5-0 0-6-0
TSI+T CI+Geometric 2-4-0 1-5-0
TSI+TCI+Geometric+QC 2-4-0 1-5-0
Aggregated Result 7-17-0 4-20-0

Initial P op u la tion
TSI 1-5-0
TSI+TCI 0-6-0
TSI+TCI+Geometric 1-5-0
TSI+TCI+Geometric+QC 0-6-0
Aggregated Result 2-22-0
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Backpropagation vs GEFS
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Figure 9 Correlation coefficient for backpropagation
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Table 12 shows the correlation coefficient for (1) a Single K-nearest neighbor; (2) 

the GEFS initial population, and (3) GEFS after 100 K-nearest neighbors. Note that K- 

nearest neighbor is accurate with the initial population and as the search continues we are 

able to further increase accuracy. Thus, unlike the classification tasks, the initial 

population of the K-nearest neighbor produces good correlation and accuracy.

Figure 10 shows the comparisons between the single K-nearest neighbors and 

both GEFS initial populations and after generating 100 K-nearest neighbors. This figure 

illustrates the dramatic increases in accuracy that GEFS is able to make over a single K- 

nearest neighbor.

T able 12 Correlation coefficient for K -nearest neighbor

K-Nearest Neighbor 
Method

Single Learner
GEFS

Initial Population 100 Networks

R2 Std. Error R2 Std. Error R2 Std. Error

Lr25
TSI 0.0092 0.8438 0.3401 0.6858 0.4274 0.6404
TSI+TCI 0.2895 0.7645 0.6600 0.5024 0.7104 0.4780
TSI+TCI+Geometric 0.2038 0.7790 0.7228 0.4661 0.7228 0.4661
TSI+TCI +Geometric+QC 0.3641 0.7487 0.6949 0.4759 0.7368 0.4549

Lr47
TSI 0.5155 0.7979 0.7251 0.4889 0.7604 0.4561
TSI+TCI 0.5273 0.8005 0.7520 0.4651 0.7911 0.4258
TSI+TCI+Geometric 0.4606 0.8112 0.7523 0.4648 0.7977 0.4190
TSI+TCI+Geometric+QC 0.6083 0.7935 0.7627 0.4547 0.8133 0.4025

Lr50
TSI 0.0795 0.7700 0.2686 0.6800 0.3841 0.6310
TSI+TCI 0.0587 0.7775 0.1962 0.7155 0.3778 0.6480
TSI+TCI+Geometric 0.0977 0.7662 0.2156 0.7087 0.3883 0.6437
TSI+TCI+Geometric+QC 0.0094 0.7918 0.2252 0.7109 0.4540 ■ 0.6242
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Lr76
TSI 0.0021 0.7431 0.0393 0.7388 0.1126 0.6893
TSI+TCI 0.0080 0.7251 0.2407 0.6320 0.3942 0.5805
TSI+TCI+Geometric 0.0144 0.7206 0.2381 0.6330 0.4161 0.5725
TSI+TCI+Geometric+QC 0.0049 0.7431 0.4507 0.5612 0.5603 0.5228

Lr78
TSI 0.1160 0.7710 0.3612 0.6485 0.4461 0.6038
TSI+TCI 0.0581 0.7878 0.5184 0.5638 0.6065 0.5174
TSI+TCI+Geometric 0.0617 0.7866 0.5231 0.5609 0.5999 0.5223
TSI+TCI+Geometric+QC 0.0889 0.7786 0.5453 0.5494 0.6310 0.5047

Hall
TSI 0.0226 0.7469 0.3831 0.6026 0.5499 0.5345
TSI+TCI 0.2375 0.7040 0.5507 0.5234 0.6681 0.4827
TSI+TCI+Geometric 0.1600 0.7133 0.5620 0.5158 0.7022 0.4622
TSI+TCI+Geometric+QC 0.2448 0.7010 0.5995 0.4983 0.7057 0.4616

Single Learner
TSI 0-6-0 0-6-0
TSI+TCI 0-6-0 0-6-0
TSI+TCI+Geometric 0-6-0 0-6-0
TSI+TCI+Geometric+QC . 0-6-0 0-6-0
Aggregated Result 0-24-0 0-24-0
Initial Population
TSI 0-6-0
TSI+TCI 0-6-0
TSI+TCI+Geometric 0-5-1
TSI+TCI+Geometric+QC 0-6-0
Aggregated Result 0-23-1
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K-Nearest Neighbor vs GEFS

-0.4000 - 0.2000 0.0000 0.2000 0.4000 0.6000

□  Traditional vs Initial Pop. GEFS ■Traditional vs GEFS after 100 networks

Figure 10 C orrelation coefficient for K-nearest neighbor

1991

T



43

Table 13 shows the correlation coefficient R2 of GEFS for both K-nearest 

neighbor and backpropagation after generating 100 hypotheses. The accuracy of both 

learning approaches is similar, with K-nearest neighbor holding a slight advantage.

T able 13 R 2 Error for K-nearest neighbor and Backpropagation

Data Set K-nearest neighbor Backpropagation

Lr25
TSI 0.4873 0.4274
TSI+TCI 0.7843 0.7104
TSI+TCI+Geometric 0.8001 0.7228
TSI+TCI+Geometric+QC 0.8126 0.7368
Lr47
TSI 0.6911 0.7604
TSI+TCI 0.7745 0.7911
TSI+TCI+Geometric 0.7833 0.7977
TSI+TCI+Geometric+QC 0.7613 0.8133
Lr50
TSI 0.1296 0.3841
TSI+TCI 0.3927 0.3778
TSI+TCI+Geometric 0.5745 0.3883
TSI+TCI+Geometric+QC 0.4270 0.4540
Lr76
TSI 0.0493 0.1126
TSI+TCI 0.8205 0.3942
TSI+TCI+Geometric 0.8118 0.4161
TS I+TCI+Geometric+QC 0.7999 0.5603
Lr78
TSI 0.3404 0.4461
TSI+TCI 0.6712 0.6065
TSI+TCI+Geometric 0.6713 0.5999
TSI+TCI+Geometric+QC 0.6620 0.6310
Hall
TSI 0.5994 0.5499
TSI+TCI 0.6953 0.6681
TSI+TCI+Geometric 0.6845 0.7022
TSI+TCI+Geometric+QC 0.7000 0.7057
K- nearest neighbor 14-10-0
Backpropagation 10-14-0



6 Discussion and Future Work

We make two important conclusions regarding the new GEFS algorithm. First, for 

backpropagation and PNNs, GEFS produces a good initial population is both fast and 

simple. While this is not true for the K-nearest neighbor and naive Bayesian learners, 

these learners comprise initial populations that form a good basis for later searching. That 

is, running GEFS further almost always increases accuracy for all learners. This is 

desirable, since accuracy in usually more important than the time it takes to train.

Running AdaBoost and Bagging (other popular ensemble methods) longer does not 

appreciably increase performance since previous results have shown their performance 

nearly fully asymptotes at around 20 networks (Opitz, 1999). On the regression tasks, the 

correlation coefficient between the predicted value from the computational model and the 

target value derived from the toxicity test is an extremely informative metric of accuracy. 

The exact numeric value of most toxicity test is not as important as the relative ordering 

and spread of these values. Thus a perfect correlation (R2 = 1.00) between the 

computation model and the target toxicity shows the computational model is as 

informative as toxicity obtained from a battery of expensive and time consuming tests -  

regardless of the standard error. GEFS obtains impressively high correlations on fairly 

small datasets.

While the results of GEFS are already impressive, this is just the first step toward 

ensemble feature selection. Many improvements are possible and need to be explored. 

Areas of future research are (1) combining GEFS with AdaBoost’s approach of 

emphasizing examples not correctly classified, (2) tuning the parameters such as the
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maximum size of the feature subset in the initial population, (3) conduct the feature 

selection phase using fast learners like naive Bayesian and use those feature subsets to 

create an ensemble neural networks, (4) instead of randomly creating the initial 

population, we can select the features probabilistically, and (5) include a greedy search 

algorithm with the GA.



7 Conclusion

In this thesis, we looked at the effectiveness of GEFS using a variety of machine 

learning techniques on a wide variety of problem domains. For both classification and 

regression problem domains, GEFS produced generalization accuracy that was 

significantly better than that of the traditional single inductive learner.

The ensemble feature selection algorithm is straightforward, simple, generates 

good results, and has the ability to further increase its accuracy if allowed to run longer. 

Thus this thesis shows the utility of feature selection for ensembles and provides an 

important and effective next step in this direction.
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