
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1988

Comparison of the Petri nets model and the Hoare processes Comparison of the Petri nets model and the Hoare processes

model model

Babak Shahpar
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Shahpar, Babak, "Comparison of the Petri nets model and the Hoare processes model" (1988). Graduate
Student Theses, Dissertations, & Professional Papers. 5538.
https://scholarworks.umt.edu/etd/5538

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5538?utm_source=scholarworks.umt.edu%2Fetd%2F5538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976

T h i s i s a n u n p u b l i s h e d m a n u s c r i p t i n w h i c h c o p y r i g h t
s u b s i s t s , An y f u r t h e r r e p r i n t i n g o f i t s c o n t e n t s m u s t b e

AP P R O V E D BY TH E A U T H O R .

M a n s f i e l d L i b r a r y
U n i v e r s i t y o f M o n t a n a
Da t e _ X

A COMPARISON OF THE PETRI NETS MODEL
AND THE HOARE PROCESSES MODEL

By

Babak Shahpar

B. S., Karaj College of Mathematics and
Economical Management, 1976

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

University of Montana

1988

Approved by

Q t t l
chairm an, Board of Examiners

Dean, Graduate School

'TJfyjAsA S', j p s '
Date

UMI Number: EP41002

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependen t upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete m anuscript
and there a re missing pages, th ese will be noted. Also, if material had to be rem oved,

a note will indicate the deletion.

UMI

UMI EP41002

Published by ProQ uest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQ uest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United S ta tes C ode

ProQ uest LLC.
789 E ast E isenhow er Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

Shahpar, Babak, M.S., January 1988 Computer Science

A Comparison of the Petri Nets Model and
the Hoare Processes Model (69 pp.)

Director: Dr. Alden H. Wright

Petri nets and Hoare processes are two models for simulating and
analyzing a system with concurrent and sequential events. The events of a
system are represented as transitions in the Petri nets model and as alphabet
of a process in the Hoare processes model.

In this thesis a trivial proof is presented to show that for every Petri net
there exists a Hoare process which generates the same prefix language as
the corresponding Petri net. This is accomplished by an obvious mapping
from Petri nets to Hoare processes. Thus, the Petri Net Model has power
less than or equal to that of the Hoare Processes Model. In addition,
another systematically defined mapping from Petri nets to Hoare processes
is given and proved to produce for each Petri net a Hoare process whose
language is the prefix language of that net. This mapping has a certain
advantage: it results in a Hoare process defined by an infinite set of
mutually recursive equations. Thus, the (possibly infinite) language of the
process is defined by a finite set of equations in terms of basic operations.
This facilitates analysis of the modeled system in terms of the Hoare
process and remapping the modeled system back in terms of the Petri net.

Finally, an example is given to demonstrate that there exists a Hoare
process which cannot be modeled by any Petri net. Thus, the Hoare
processes model is a more powerful model of computation than the Petri
nets model.

Informal definitions for Petri nets and Hoare processes are presented
first and later both models are defined formally. Also, formal definitions
for languages of these models are defined.

Table of Contents

Abstract... a
Table of Contents...iii
List of Figures.. v
Acknowledgements...vi
1. Introduction...1

1.1. Background ...1
1.2. The Petri Nets M odel.. 1
1.3. The Hoare Processes M odel.. 9

1.3.1. Traces.................. 9
1.3.2. The Prefix Notation ... 9
1.3.3. The Choice Notation...11

1.4. The Proposed Research.. 12
2. Formal Definitions..15

2.1. The Petri Nets M odel.. 15
2.1.1. Definition of a B ag .. 15
2.1.2. Definition of a Petri net... 16
2.1.3. Multiplicity of a P lace...18
2.1.4. Enabled Transitions.. 19
2.1.5. Firing a Transition...20
2.1.6. The Next-State Function... 22
2.1.7. A Petri Net Language.. 22

2.2. The Hoare Processes M odel............... 26
2.2.1. Concatenation of Traces..26
2.2.2. Definition of a Hoare Process...26
2.2.3. The General Choice Notation.. 27
2.2.4. Recursion.................... 28
2.2.5. Guarded Processes... 29
2.2.6. The Mutual Recursion..30
2.2.7. Concurrency.. 31

2.2.7.1. The Concurrency R ules.................................. 33
2.2.12. The General Concurrency............................... 35
2.2.13. Theorem.. 37

3. Main Theorems.. 42
3.1. Theorem... 42
3.2. Basic Definitions... 43
3.3. The function .. 43

3.3.1. Example...45
3.4. Theorem.. 47

3.4.1. (=>).. 47
3.4.2. (<=).. 51

3.5. Theorem... 53
3.6. Theorem... 54
3.7. Definition..55
3.8. Theorem.. 56
3.9. A Hoare Process that Cannot be Modeled by a Petri net ..56

3.9.1. Theorem ...56
3.10. Other Classes of Languages.. 58

3.10.1. Concealment..60
3.11. Modifying the Function T ...61

3.11.1. Lemma.. 62
3.11.2. Lemma...63

3.12. Theorem ... 64
4. Summary and Conclusions... 66

4.1. Summary.. 66
4.2. Conclusions ans Suggestions for Future R esearch................. 67

4.2.1. Petri net Languages and
Other Classes of Languages...67

REFERENCES.. 69

iv

List of Figures

Figure 1.1..2
Figure 1.2..4
Figure 1.3..6
Figure 1.4..7
Figure 1.5.............. 8
Figure 2 .1 .. 18
Figure 2 .2 ..21
Figure 2 .3 ..24

Acknowledgments

This research paper is solely dedicated to Dr. Alden Wright

without whose inspirational and technical support it would not have

been possible. His expertise was the technical backbone of this paper

and his personality the motivating force behind it. I am proud to be his

student.

I would also like to thank Dr. William Ballard and Dr. Ronald

Wilson for their invaluable guidance.

Special thanks are also due to my good friend Mohammad

Paryavi for his inspirational support of my graduate study and for being

so helpful in my "MacTastrophies".

I would also like to thank my good friend and colleague Wanda

Smith for fixing my articles in this paper.

Last, I would like to thank my Creator for giving me a chance to

exist, to think, and to choose.

vi

Chapter One

Introduction

1.1. Background

Theoretical computer science is regarded as the foundation for

computer studies. Analysis of many real problems in computer science

depends on mapping the actual problem into abstractions which are

based on the use of formal models. In order to find an appropriate

model for a given system, a thorough understanding of the behavior

and the power of the model is required. For the study of different

aspects of a given system, different types of models have been

proposed. There are several models for analyzing a system with

concurrent and sequential events. Two of these models are Petri Nets

and Hoare processes. In this chapter informal definitions for both

models are presented.

1.2. The Petri Nets Model

A Petri net can be presented by a graph, where a set of nodes is

associated to places and another set of nodes to transitions. Every

node presents exclusively either a place or a transition. Perhaps an

example would help in understanding the process of modeling a

system using a Petri net. Figure 1.1 presents an example of a Petri net.

1

2

r

Figure 1.1
A marked Petri net.

Each transition represents an event which can occur in the

system and is denoted by a bar. In Figure 1.1, the symbols a, b, and c

are transitions. Places are represented by circles. In the Petri net of

Figure 1.1, the symbols p, q, and r are places.

"Tokens" are used in Petri nets in order to simulate the flow of

information. In the graph of a Petri net a dot in a place represents a

token. A place can hold zero or more tokens. In Figure 1.1, there is

one token in p. A "marking" of a Petri net is an assignment of tokens to

the set of places. A marked Petri net is a Petri net with an initial

marking.

The direction of an arc determines if a place is an input place or

an output place for a given transition. For example, q is an input place

for transition b, and an output place for transition a. The place p is both

an output place and an input place for transition a. There may be more

than one arc between a transition and a place.

"Firing" a transition in the model simulates the occurrence of an

event in the actual system. A transition can fire if every input place to

that transition contains at least one token (if there is only one arc

between each of the places and the given transition). In Figure 1.1, the

transitions a and c are the only ones which can fire in the initial state.

A transition that can fire in a given state is called an e n a b l e d

transition. Among enabled transitions only one can fire at any given

state.

4

r

Figure 1.2

The marking resulting from firing transition a in Figure 1.1.

The simulation of dynamic behavior of the system starts with

firing an enabled transition in a Petri net with an initial marking. Firing

a transition results in a new state of the net which is defined by a new

marking.

The new marking is obtained from the old one by reducing the

number of tokens in each of the input places of the fired transition by

the number of input arcs and increasing the number of tokens in each

of the output places of the fired transition by the number of output arcs.

Figure 1.2 illustrates the new marking for the Petri net of Figure

1.1 after transition "a" has fired.

6

r

Figure 1.3
The marking resulting from firing transition c in Figure 1.1.

7

r

Figure 1.4
The marking resulting from firing transition a in Figure 1.2.

Figure 1.3 shows the marking for the Petri net of Figure 1.1 after

transition c has fired.

If there is no enabled transition in a given state, then execution

of the Petri net is halted. The Petri net of Figure 1.3 is in a halt state

since there is no enabled transition.

Figure 1.4 shows the new marking for the Petri net of Figure 1.1

after two consecutive firings of transition a.

8

r

Figure 1.5

The marking resulting from firing transition c in Figure 1.2.

Figure 1.5 illustrates the marking of the Petri net of Figure 1.1

after transition a, and then transition c have fired.

9

1.3. The Hoare Processes Model

Hoare processes describe the behavior of an object in terms of

a finite set of events called an alphabet. For example, the process of

m aking a single phone call may have the following events in its

alphabet:

1.3.1. Traces

A trace of a process is a finite sequence of events which has

been engaged in, by the process, up to some moment in time. Two

events in a Hoare process cannot occur simultaneously. A trace will

be denoted by the sequence of events, separated by commas, in

angular brackets. An example of a trace is:

Upper-case letters are used to denote arbitrary processes and

low er-case letters to denote events. Words in upper-case letters

denote specific defined processes. The alphabet of a process P is

denoted by aP.

pick-up

insert

picking up the receiver

the insertion of one coin

dial dialing a number

talk conversation on the phone

hang-up hang-up the phone

<pick-up, dial, talk>

1.3.2. The Prefix Notation

1 0

Let P be a process and x be an event. Then:

(x -> P) (read "x then P")

denotes a process which first engages in the event x then behaves as

P. The event x must be in the alphabet of (x -» P). For example, if a

pay phone consumes one coin and then breaks, it cannot engage in any

event of its alphabet, and can be defined as:

(coin -> STOP)

The above process has only two possible traces shown as: < > and

<coin>. Before the event "coin" occurs the trace of the process is < >

and after the process has engaged in the event "coin" the trace of the

process will be <coin>. Therefore,

traces(coin -» STOP) = {< >, <coin>}

The process of making a single phone call can be described by:

PHCALL = (pick-up -> insert -» dial -> talk -> hang-up -> STOP)

The set of all possible traces for PHCALL is:

traces (PHCALL) = { < >,

<pick-up>,

<pick-up, insert>,

<pick-up, insert, dial>,

<pick-up, insert, d ia l, talk>,

<pick-up, insert, d ia l , talk, hang-up>}

The process of a broken pay phone which consumes coins forever can

be described recursively as:

BROKENPHONE = (coin -> BROKENPHONE)

traces(BROKENPHONE) = {< >, <coin>, ccoin, coin>, ...}

11
*

= {coin}

The process of an operator that can make phone calls forever

can be described recursively as:

OPERATOR = (pick-up dial talk hang-up -> OPERATOR)

A possible trace of OPERATOR is:

<pick-up, d ia l, talk, hang-up, pick-up, dial>

1.3.3. The Choice Notation

If x and y are two distinct events, then:

(x -» P I y -> Q)

describes a process which first engages in x or y and then, depending

on that choice, behaves as P or Q respectively.

For example, a broken vending machine which either consumes one

coin and stops or gets a kick from a customer and then stops can be

defined as the process BRVM:

BRVM = (coin -* STOP I kick -> STOP)

traces(BRVM) = {< >, <coin>, <kick>}

As another example, consider a vending machine which works fine

until it gets a kick from a customer:

VM = (coin -> pop -> VM i kick -> STOP)

A possible trace for VM is:

Ccoin, pop, coin, pop, kick>

A lazy operator who sometimes makes a phone call and at other times

just picks up the receiver then hangs up can be described as:

1 2

LAZYOP = (pick-up -> (dial - » talk -» hang-up -» LAZYOP

I hang-up -> LAZYOP))

A possible trace of LAZYOP is:

<pick-up, hang-up, pick-up, dial, talk>

1.4. The Proposed Research

Each model of computation has some power and limitations for

sim ulating a system. M any studies have been done concerning

relationships between models. Milner [1980] proposed a framework for

comparing different models at different levels of abstraction. Peterson

[1974] and Bredt [1974] suggested using the sets of languages of the

models to compare them.

For example, consider finite automata and regular expressions.

For modeling purposes, finite automata can be used as language

generators. Regular expressions are also considered as language

generators, since there exist algorithm s for generating regular

expressions. It has been proven that a language is regular (i.e. is

defined by a regular expression) if and only if it is accepted by a finite

automaton. Therefore, the finite automaton model has the same power

as the regular language model. In this paper Hoare and Petri Nets

Models are viewed as language generators.

The purpose of this paper is to compare the Petri Net Model and

the Hoare Process Model. The chosen method of comparison is that

model A has less than or equal modeling power to model B if, given an

instance a of model A, there is an algorithm to create an instance b of

m odel B such that the language generated by a is equal to the

language generated by b .

H owever, there are several ways of defining a class of

languages for models of computation. Peterson [1974] has listed twelve

different types of languages for Petri Nets.

The specific class of languages (prefix) chosen to represent the

languages generated by Petri nets will be formally defined in Chapter

two. One of the characteristics of this language is that only distinct

transitions in a Petri net are allowed. Another characteristic of the

language is that every possible marking of a Petri net can be assumed

as a final state. Furthermore, other classes of languages for Petri nets

will be considered in Chapter three.

One class of languages (prefix) for the Hoare processes can be

defined as a set of all possible traces of the process. A different class

can be defined as a set of successfully terminated sequences of events.

In this thesis a trivial proof is presented to show that for every

Petri net there exists a Hoare process which generates the same prefix

language as the corresponding Petri net. This is accomplished by an

obvious mapping from Petri nets to Hoare processes. Thus, the Petri

N et M odel has pow er less than or equal to that of the Hoare

Processes Model. In addition, another systematically defined mapping

from Petri nets to Hoare processes is given and proved to produce for

each Petri net a Hoare process whose language is the prefix language

of that net. This mapping has a certain advantage: it results in a Hoare

process defined by a finite set of mutually recursive equations. Thus,

1 4

the (possibly infinite) language of the process is defined by a finite set

of equations in terms of basic operations. This facilitates analysis of the

modeled system in terms of the Hoare process and remapping the

modeled system back in terms of the Petri net.

Furthermore, an example will be presented to show that there

exists a Hoare process which cannot be modeled by any Petri net. It

can, therefore, be concluded that the Hoare Processes M odel is a

strictly more powerful model of com putation than the Petri Nets

Model.

Chapter Two

Formal Definitions

In Chapter one, informal definitions for the two models under

study were presented. In this chapter, formal definitions and related

concepts for the Petri nets and the Hoare processes are presented.

2.1. The Petri Nets Model

Petri net theory was first introduced by Carl Adam Petri [1962a]

in his doctoral dissertation. The work of Petri was extended by several

other researchers. At the present time, some of the definitions in Petri

net theory are different from those introduced by Petri. For example, in

the original Petri net theory, multiple arcs were not allowed. The

definition of Petri nets in this paper has been taken from a book by

Peterson [Peterson 81].

2.1.1. Definition of a Bag

A bag is similar to a set except that multiple occurrences of an

element is permitted. As with set theory, the order of the elements in a

bag is not important. A bag can be defined formally as:

a finite bag B over a set S is a function B: S -> N, such that B(s)

= 0 for all but finitely many s e S.

If B is a finite bag over S and x g S, then:

15

16

#(x, B) = B(x)

If S is a non empty set, S°° denotes the infinite set of bags whose

elements are taken from the set S. The basic concept of set theory is

the membership relation. In bag theory, the basic concept is the

number of occurrences of an element in the bag.

Let B be a bag over S and x an element of S. The notation:

#(x, B)

denotes the number of occurrences of x in B. However, the notation of

membership (e) is used in this paper as follows:

Let B be a bag and x an element of S. Then,

x e B is true if #(x, B) > 1

is false if #(x, B) = 0

Bags are used in Petri nets to allow m ultiple connections

between a place and a transition (multiple occurrences of arcs in a

Petri net graph between a place and a transition).

2.1.2. Definition of a Petri net

A Petri net structure, M, is a quintuple, M = (P, T, I, O, p)

where:

P is a finite set of places

T is a finite set of transitions

I is a function from T to P°°

O is a function from T to P°°

p is a function from P to N

17

The set of places and the set of transitions are disjoint. The

function I is called the input function and the function O is called the

output function. The function ji is called the marking function and is a

mapping from P to N, where N is the set of non-negative integers. For

each place p, p(p) is the number of tokens in p. The marking function

can be determined from the number of tokens in each place in the

graphical representation of a Petri net. This function indicates the state

of execution of a Petri net.

Figure 2.1 illustrates the Petri net M = (P, T, I, O, p)

where:

P = { P i>P2’ P3’ P4.’ P5}

T = {tj, t2> t3 }

%) = { p i} o c tp = {p2, p3 , p4 , p4 , p4 }

I(t2) = (P2’ P4> 0 (t2) = (P2^

I(t3) = {p3,p 4 ,p 4 } 0 (t3) = { p 5 }

P(Pl) = 1
M-(Pj) = 0 for i = 2, 3, 4, 5

1 8

Figure 2.1
A marked Petri net.

A place p is an input place for a transition t if p e I(t); p is an

output place for a transition t if p e O(t). For example, in the marked
Petri net of Figure 2.1, the place P2 is an input place and an output

place of the transition t2 -

2.1.3. Multiplicity of a Place

By the definition of a Petri net, each transition has a bag of inputs

and a bag of outputs. The use of these bags over P allows a place to

be a multiple input or a multiple output of a transition.

The m ultiplicity of an input place p for a transition t is the

number of occurrences of p in the input bag of the transition t. This is

#(P, I(t))

and corresponds to the number of arcs from the input place p to the

transition t in the graph representation of a Petri net. Similarly,

m o (0)

denotes the multiplicity of an output place p for a transition t. This

multiplicity is equal to the number of arcs from the transition t to the

output place p. For example, in the Figure 2.1,
#(p4 , O (tj)) = 3

#(P4 > I(t3)) = 2

#(p5 ,I (t3)) = 0

2.1.4. Enabled Transitions

A transition t e T in a marked Petri net M = (P, T, I, O, p) is

enabled if
p(pj) > #(pj, I(t)) V pj e P

Thus, a transition is enabled if each input place of the transition has at

least as many tokens as the number of arcs from that place to the
transition. For example, in Figure 2.1, the transition t^ is the only

transition that is enabled in the initial state. Transition t3 with I(t3) =

{p3 , p4 , p4) and 0 (t3) = (p3) is enabled if there are at least one token

in the place p3 and two tokens in the place p4 . However,

20
H(p4) = 0 < #(p4 , I(t3)) = 2

Therefore, transition t^ is not an enabled transition with regard to the

initial marking function p.

2.1.5. Firing A Transition

A transition t in a marked Petri net M = (P, T, I, O, g) may fire if

it is enabled. At any given state, only one enabled transition fires. Firing

an enabled transition results in a new marking function p ' which is

defined as:

H'Cpp = pCpj) + XCpj, t) V p i e P

w here
X(pj, t) = #(pj, O(t)) - #(Pi, I(t))

In other words, a transition fires by removing one token from

each of its input places for each arc from the place to the transition

and depositing one token into each of its output places for each arc

from the transition to the place.

21

Figure 2.2

The marking resulting from firing transition t l in Figure 2.1.

For example, firing the transition tj in the Petri net of Figure 2.1

results in a new marking |T which is defined as:

F '(Pl) = 0

f '(p 2) = 1

P'(P3) = 1

P'Cpzj) = 3

p'(p5) = 0

2 2
Figure 2.2 illustrates the Petri net of Figure 2.1 after the transition t^ is

fired.

2.1.6. The Next-State Function

Let M = (P, T, I, O, p) be a marked Petri net and t e T. Then, 8

is the next-state function and is defined only if:
p(pj) > #(pj, I(t)) V pj G P

If 8(p, t) is defined, then:

8(p, t) = p'

Thus, the notation 5(|l l , t) represents the marking of the Petri net M

after the transition t is fired. The marking p' is said to be immediately

reachable from p.

Let t e T and a e T . The notation 8 is also used to denote the

extended next-state function defined for sequences of transitions,

elements of T*> as:

8(p, e) = p

8(p, ta) = 8(8(p, t), a) V a e T*

The main difference in the next-state function and the extended

next-state function is that the latter function accepts a sequence of

transitions (possibly an empty sequence) as its second argument. Since

no confusion need result, in this paper the same notation (8) is used to

represent both functions.

2.1.7. A Petri net Language

As mentioned in Chapter one, Petri nets are to be considered as

23

language generators. Given a marked Petri net M = (P, T, I, O, p°),
firing an enabled transition t results in a new marking p 1 = 6(p°, t) .

Firing an enabled transition, say tk, in marking p.1 results in another
2 1m arking p = 8(p , tk). Two sequences result from the execution of a

Petri net: the sequence of fired transitions,
< t. , t. , t. , ... >

J0 Ji J2

and the sequence of markings,
0 1 2 < p u, p \ p z , ... >

The relationship between these two sequences can be described as:
5(pk, t-) = pk+1 f ork = 0,1, 2,....

Jk

Given a sequence of transitions, a sequence of markings can be

easily derived. However, given a sequence of markings, it is not

always possible to derive the sequence of transitions that actually fired.

Consider the following example:

Let M = (P, T, I, O, p) be a marked Petri net, where:

p ={Pl>P2J T = { t l 5 t2 }

I(tx) = {px } I(t2) = (P i }

O0q) = {p2 } = (P2^

p(Pl) = 1 p(p2) = 0

Figure 2.3 illustrates the Petri net M.

2 4

*2

Figure 2.3
A marked Petri net.

If either the transition t 1 or the transition t2 is fired, the resulting

new marking is p ' given by p'Cpj) = 0 and jj.'(p2) = 1. Thus, from the

sequence:

< P, p' >
it is impossible to determine whether the transition tj or the transition

t2 fired. Therefore, a sequence of fired transitions of a Petri net can

give a better description of the execution of the Petri net than a

sequence of markings.

Each transition in a Petri net corresponds to an event in the

system which is modeled. Firing a transition in the Petri net simulates

25

the occurrence of a corresponding event in the system. Hence, the set

of transitions of a Petri net is to be considered as the alphabet of the

language which is generated by execution of the Petri net. A sequence

of fired transitions is a string and a set of strings constitutes a language

for a Petri net.

Let M = (P, T, I, O, p) be a marked Petri net; then,

L(M) = {a e T*: 8(p, a) is defined}

is called the language generated by the Petri net M. In this paper, the

class of languages generated by all Petri nets is formally defined as:

a language L is in the class of prefix Petri net languages if there

exists a Petri net M = (P, T, I, O, p) such that:

L = {a e T*: 8(p, o) is defined}

For example, the language generated by the Petri net of Figure 2.1 is:

L = {e, t p t | t 2 , t j t 3, h t y z t l t2t3’ t l t2t2t2^

This class of languages is also known as the class of prefix languages

for Petri nets. There are other definitions for Petri net languages. For

example, a language L is in the class of te rm in a tio n Petri net

languages if there exists a Petri net M = (P, T, I, O, p) such that:
L = {a € T*: 8(p, a) is defined but V t • e T S(8(p, a), tj) is

undefined}

The strings in this language are the sequences of transitions which can

be reached from the initial marking such that after the last transition in

the sequence is fired, the execution of the Petri net will halt. For

example, the language of the Petri net of Figure 2.1 with respect to the

latter definition is:

26

l = {t1t3t2 . h h h h)

In this paper the prefix definition of Petri net languages is used

because every occurrence of the events in the system can be

2.2. The Hoare Processes Model

An inform al description of Hoare processes was given in

Chapter one. A formal definition of Hoare processes will be presented

in this section. The formal definition is used to prove the correctness of

some rules which apply to notions such as prefix, choice, and parallel.

Some of the rules which are related to this paper will be mentioned in

the following sections; however, correctness or consistency of these

rules will not be examined in this paper.

2.2.1. Catenation of Traces

The traces of a process were defined in Chapter one. One of the

m ost im portant operations on traces is catenation. This operator

constructs a trace from an ordered pair (s, t) of traces by putting them

together in the given order. The result is denoted by sAt. For example,
< * 2 ’ % » ty> 'A< t i , t ^ > = t y , t j , t ^ >

The most important properties of catenation are that it is associative

and has the empty trace (<>) as its unit.

2.2.2. Definition of a Hoare Process

A process is a pair:

27

(A, S)

where A is any set of symbols and S is any subset of A* which

satisfies the following two conditions:

1) <> 6 S

2) V s, t , SAt e S => S e S

The condition (1) simply means that the empty trace, <>, is a

trace of any process. This corresponds to an intuitive notion that for

any process there is a time at which the process has not engaged in

any events of its alphabet. The condition (2) means that any prefix of a

trace of a process is also a trace of the process.

Consider the following examples. The process which never

engages in any of the events in its alphabet may be defined as:
STOPA = (A, {<>})

A process that can engage in any event of its alphabet at any time can

be described as:

RUNA = (A, A*)

As another example, consider the process BRVM of Section 1.3.3.

which can be defined as:

BRVM = ({coin, kick}, {<>, <coin>, <kick>})

2.2.3. The General Choice Notation

The choice and prefix notations were defined in Chapter one.

The following is a more general notation that includes both the prefix

and the choice.

Let A be an alphabet. Suppose the set B is any set of events

28

from A, and x is a local variable, and P(x) is a function defining a

process for each different x in B. Then,

(x : B -> P(x))

denotes a process over the alphabet A which first offers a choice of

any event y in B and then behaves like P(y). For example, the process

STOPa can be defined as:

(x : {} P(x))

The binary choice operator, I , can also be defined using the

general choice notation:

(a PI b -> Q) = (x : B -> R(x))

w here

B = {a, b}

and R(x) = I f x = a th en P

else Q

Thus, the binary choice, prefix, and STOP notations are defined as

special cases of the general choice notation.

General choice notation can be formally defined as:

(x : B (A, S(x))) = (A, {<>} kJ {<x>As : x e B a s g S(x)})

provided A d B.

2.2.4. Recursion

In order to describe the entire behavior of a process that

eventually stops the prefix notation can be used. If a process is

designed to run forever, then a rigorous description of the entire

29

behavior of the process, using prefix notation, is impossible. Therefore,

a shorter notation for describing repetitive patterns of a process is

preferred. One such notation is recursive equations.

For example, the process BROKENPHONE of Chapter one was

defined recursively as:

BROKENPHONE = (coin -> BROKENPHONE)

This technique of recursive definition of processes will work

correctly only if the right hand side of the equation defining a process

starts with at least one event prefixed to all the other possible events of

the process. Therefore, the equation:

Y = Y

does not successfully define anything since everything can be a

solution to this recursive equation.

2.2.5. Guarded Processes

A process expression which is expressed as a general choice is

called a g u a rd e d expression. If F(X) is a guarded expression

containing the process name X, then the equation:

X = F(X)

has a unique solution with respect to the alphabet of X. This claim

(guarded equations have a unique solution) is the fundamental theorem

of recursion which has been proved by Hoare [Hoare 85].

The above claim can be informally justified by the method of

substitution. Any finite amount of behavior of a process can be

determ ined by repeatedly substituting the right-hand side of the

30

equation for every occurrence of the process name. Furthermore, two

processes which behave the same up to any moment in time describe

the same process.

In this notation X is a local name. Therefore, a solution for X in the

equation X = F(X) is also a solution for Y in the equation Y = F(Y). Let

A be the alphabet of X. It follows from the proof of the fundamental

theorem of recursion that the solution to the equation, X = F(X), is:

(A, u traces(Fn (STOPA)))

n > 0

provided F is a guarded expression.

The following is the definition of a function which takes a

guarded process as its argument and returns a set which is called the

initial menu of the process.

Let P = (x : C -» Q) be a guarded process. Then, the function %

is defined as:

m = c

2.2.6. The Mutual Recursion

The recursive definition of a process permits a single process to

be defined as the solution of a single equation. Similarly, the solution of

sets of simultaneous equations with more than one unknown can be

defined. For this to work properly the following two conditions must

1) all the right-hand sides must be guarded.

2) each unknown process must appear exactly once on the left-

3 1

side of one of the equations.

For example, consider the infinite set of mutually recursive equations:

CTq = (up -» CTj I around -> CTq)

CTn+ l = ÛP CTn+21 down CTn^

where n ranges over the set of N (natural numbers). The process CTq

defines an object that starts on the ground and may move up or

around. If it moves up it can move up or down thereafter, except that

when on the ground it cannot move any further down. As long as it is
on the ground it can move around. The indexed name CTn describes

the behavior of the object when it is n moves off the ground.

2.2.7. Concurrency

When two processes are brought together to run concurrently,

they will interact w ith each other through the events in which

simultaneous participation of both the processes is required. Therefore,

if the alphabets of the two processes that are running concurrently are

different, only the events that are in both their alphabets require the

simultaneous participation of both processes. However, the events that

are in the alphabet of only one of the two processes are of no concern

to the other process and may occur independently.

Let P and Q be two processes. Then,

PI IQ

denotes the process which behaves like P and Q running concurrently

32

as described above.

For example, consider a phone that no one answers. The phone

can either ring and no one will pick it up or be picked up, dialed, and

then hung up. The process of the phone can be described as:

PHONE = (pick-up -> dial -> hang-up -> PHONE

I rings -> PHONE)

w here

aPHONE = {pick-up, dial, hang-up, rings}

The process of a person who does nothing but make phone calls

forever can be described as:

PHONEADDICT

= (pick-up -» dial (busy hang-up PHONEADDICT

I talk hang-up -> PHONEADDICT))

w here

aPHONEADDICT = {pick-up, dial, busy, talk, hang-up}

If there is a busy signal then PHONEADDICT will hang up, otherwise

she w ill hang up after the event talk occurs. The behavior of

PHONEADDICT and PHONE running concurrently can be described

as follows:

PHONEADDICT 11 PHONE =

(pick-up dial -» (busy -» hang-up -> (PHONEADDICT JI PHONE)

I talk -» hang-up - » (PHONEADDICT 11 PHONE))

I rings -» (PHONEADDICT II PHONE))

The concurrency of two processes can formally be defined as:

33

(A, S) II (B, T) = (A U B, {s : s e (A U B)*A (s t A) e S

A (s t B) e T})

where the notation (s t A) denotes a trace which is built from the

trace "s" by removing every event that is not in the set A. The order of

events in (s t A) is the same as in the trace "s". It is interesting to note

a(P 11 Q) = aP LJ aQ

Therefore, the concurrencey operator (I I) takes operands with

different alphabets and generates a result with yet another alphabet.

In a case where the alphabets of operands are the same, the

result also has the same alphabet; therefore, every event needs the

participation of all the processes running in parallel. If the alphabet of

every process is disjoint from the alphabets of the other processes,

then the action of the processes running concurrently is an arbitrary

interleaving of the actions of the component processes.

2.2.7.1. The Concurrency Rules

Let P, Q, and R be three guarded processes. Then, the following

law states that the operator 11 is associative:

LO P II (Q II R) = (P II Q) II R

The following laws elaborate further the way in which the operator 11

performs.

Let

a e (aP - aQ)

b e (aQ - aP)

34

C€ (aP in aQ)

d e (aP in aQ)

Then,

L I (c —> P) II (c Q) == C->(P II Q)

L 2 (c -4 P) II (d —» Q) == STOP

L 3 (a —> P) II (c —> Q) == a -» (P II (c —> Q))

L 4 (c -4 P) II (b Q) == b —> ((c - »P) II Q)

L 5 (a P) II (b —> Q) =

(a -> (P II (b -> Q)) I b -> ((a -> P) II Q))

The above laws can be generalized using the general choice operator.

Let

P = (x : A -> P(x))

Q = (y : B -> Q(y))

Then,

L 6 (P II Q) = (z : C - > F II Q')

w here

C = (A P i B) U (A - aQ) U (B - aP)

and

P ' = P(z) if z e A

P ' = P otherwise

and Q ' = Q(z) if z e B

Q' = Q otherwise

The above laws permit a process which is defined using a concurrency

operator to be redefined without that operator, as the following

example shows.

35

aP = {a, b}

aQ = (b, c}

P = (a - 4 b -4 P)

Q = (b - 4 c '- 4 Q)

Then,

P 11 Q = (a -> b -> P) 11 (b -> c Q)

= a - 4 ((b - * P) 11 (b —> c —» Q))

= a ^ b - > (P 11 (c —> Q))

Let R = (P II (c-> Q)), then

R = (a - 4 b - 4 P) 11 (c -> Q)

= (a -> (b -> P) II (c Q)

l c - 4 (P II Q))

= (a -> c -* (b -» P) 11 Q)

I c -4 (P 11 Q))

= (a 4 C 4 b 4 (P I I (c -4 Q))

I C 4 a 4 b 4 (P 11 (c —4 Q)))

— (a —> c —> b —> R

I c -> a -4 b -4 R)

Therefore,

p 11 Q = (a -4 b - 4 R)

by definition

by L3

by LI

by definition

by L3, L4

by L4

byLl, definition

2.2.7.2. The General Concurrency

The concurrency operator can be defined for more than two

processes as follows:

36

L et
P | = (x : Aj -» P-(x)) for i = 1 , 2 , n

describe n guarded processes.

L et = , n J

Sn is the set of all subsets of {1, 2 , n}.

L et

s = (n - (U aP p for i = 1, 2 ,..., n
i s s i g s

Bn , (} = 0

and

Cn = ^ Bn , s
s s Sjj

Then, the following defines n processes running concurrently:

n n

II Pj = (z : Cn-> II P'j)
i = 1 i = 1

w here
P'l = P-(z) if z e A-

P'i = Pj otherwise

The main difference between the general definition and the
definition for two processes is the way in which the set Cn is defined.

The proof for consistency between the two definition is as follows:

37

2.2.13. Theorem

The general concurrency definition of Section 2.2.1.2. is

consistent with the rule L6 in Section 2.2.7.1. In other words:

n

II P; = ((. . . (P j l l P 2) I I P 3) ... l l P n _ !) II P n

i = 1

where the parallel operation on the left hand side comes from the

definition in Section 2.2.7.2 and the parallel operations on the right hand

side come from definition L6 in Section 2.2.7.1.

Proof

The proof is by induction on "n". The theorem is true for two

processes (n = 2) as shown in the following:

L et

= (X1 • ^ 1 ~> P j (x i))

f*2 = (x2 ’ ^ 2 ^2^x2 ^

Then,

w here

2 2
II P. = (z : C 2 -> II F .)

i = 1 i = l

P '^ P ^ z) i f z s A i

P'i = Pj otherwise

38

S2 = 2 ^ ’ ^ = { (} , { ! } , {2}, {1,2}}

c 2 = U B2?s =
s e S2

B2, {} u B2, {1} ^ B2, {2} u B2, {1,2}

B2, {} = 0
B2, {1} = A 1 "aP2

B2, {2} = A2 " a P l

B2, {1,2} = A i n a 2

Then,

C2 = 0 u A 1 - aP2 u A2 - aP j u (A1 n A2)

Thus, for two processes, the former definition is consistent with the

latter. The induction base is established.

The induction hypothesis is that the two definitions are consistent

for n = k. The induction step will be to show that:

k + 1 k + 1

II Pj = (z : Cj,+ j - > II P'i)
i = 1 i = 1

where and P'- are defined as in Section 2.2.7.2.

Let

q = N p;
i = 1

39

Thus,

((. . . (P i l l P2) II P3>... II Pk) l l Pk+1 - Q l l Pk+1

It remains to show that:
k + 1

Q l l P k + i = II Pi
i = 1

By the induction hypothesis,

k

Q = (b : Ck -> II P'j)
i = 1

w here

c k = U Bk, s
s e S k

Then, by the induction base:

Q II Pk+1 = (z : C ' -> Q' II P'k+1)

Note that:

and

Q' = Q(z) if z e Ck

Q' = Q otherwise

P 'n = P „ (z) i f z . A n

P' = Pfl otherwise

Now, it remains to show that:

C' ~ Ck+1

C ' _ ^ k ’ a ^ k + l ^ ^ ^ k + 1 " a Q ̂ ^ ^ k ^ ^ k + P

40
k

= (u Bkj s - «P k+1) U (A k+1 - (U aP p) U (U B k g n A k+ 1)
S e S k i = 1 S 6 S k

Let s e Sk + j

Case 1: k+1 e s

Then:

Bk+1, s = Bk, s “ aPk + l

Case 2: s = {k+1}

Then:

k

Bk+1, s ^k+1 " ̂ ^ aP P ^
i = 1

Case 3: (k+1 e s) A (s - {k+1} * 0)

Then:

Bk+1, s = Bk, s ^ ^k+1

Thus, for s e Sk + j

Bk+1, s “
k

Bk , s ' aPk + l) u (Ak + l - (U a P .)) u (U ■ Bkf s P>Ak+1)
s €= i — 1 s g

Therefore, C j ^ = C', thus,

4 1

k + 1 k

II ^ = (II ^) ii pk+1
i = 1 i = 1

This completes the proof.

Consider the following example:

Let

P = (a -> b -> STOP) where aP = {a, b}

Q = (b -+ c -+ STOP) where aQ = {b, c}

R = (d - > a - > b - + STOP) where aR = {a, b, d}

Then,

P II Q l |R = (d - + a - > b - + c - > STOP)

The process P is ready to engage in the event "a" which is also

in the alphabet of process R. But process R is not ready to engage in

the event "a". Therefore, the event "a" which needs the participation

of both P and R cannot occur. Furthermore, the process Q is ready to

engage in the event "b" which is also in the alphabet of both P and R.

The event "b" can not occur since P and R are not ready to engage in

"b". Process R is ready to engage in the event "d" which is not in the

alphabet of any other processes. Therefore, the event "d" is the only

event that can occur first when P, Q, and R start running concurrently.

After the event "d" occurs then P and R are both ready to

engage in the event "a” which is not in the alphabet of Q. Therefore

the next possible event to occur is the event "a". After the event "a"

occurred, then all three processes are ready to engage in the event

"b". The last event to occur is the event "c" which is in only the

Chapter Three

Main Theorems

This chapter includes a trivial proof to show that for every Petri

net there exists a Hoare process which generates the same p re fix

language as the corresponding Petri net. This is accomplished by an

obvious mapping from Petri nets to Hoare processes. In addition,

another systematically defined mapping from Petri nets to Hoare

processes is given and proved to produce for each Petri net a Hoare

process whose language is the prefix language of that net.

Furthermore, an example will be presented to show that there

exists a Hoare process which cannot be modeled by any Petri net.

3.1. Theorem

Let M = (P, T, I, O, p) be a marked Petri net, and let L(M) be

the prefix language of M. Then, (T*, L(M)) is the equivalent Hoare

process whose prefix language is L(M).

Proof

The Language L(M) is a subset of T* which satisfies the following two

conditions:

1) <> e L(M)

2) V s, t, sAt e L(M) => s e L(M)

42

43

(by the definition of prefix Petri net languages). Thus, the Hoare

process (T*, L(M)) has the same prefix language as the marked

Petri net M. (This easy argument was suggested by Dr. W illiam R.

3.2. Basic Definitions

Let M = (P, T, I, O, p) be a marked Petri net, and let t e T. Then,

define:

IN(t) = {p e P : p is an input place for t}

OUT(t) = {peP : p is an output place for t}

Thus, IN and OUT are sets (rather than bags) of input places and

output places, respectively, for a given transition. Note that I(t) and

O(t) were defined to be the corresponding bags.

Let

P = { p i , p 2, —, pn > lpl = n

Recall that:
X(p, t) = #(p, O(t)) - #(p, I(t))

Thus, X(p, t) is the change in number of tokens in place p if transition t

fires.

3.3. The Function Y

Define T to be a mapping from the set of all Petri nets into the

set of Hoare processes as follows:

For each i = 1, ..., n and nonnegative integer k define the Hoare
process Qj ^ by:

44

Qi,k - (t :C i ,k Q i.k + xcpj.tp

w here

Ci, k = e T : Pi 6 u ^ A
(k > #(Pi, I(t))) }

(Note that, Qj ^ = STOPp if and only if, Cj ^ = 0 .)

The alphabet of Q- ^ can be defined as:

a Qi, k = ^ 6 T : Pi € U ^ J
Note that the alphabet of Q- ^ does not depend on k.

Define:
n

* < » * > = I I Q u (P i)
i = 1

Note that the set of simultaneous equations for Q- p(p.) has a unique

solution (refer to Section 2.2.6.).

The mapping 'P(M) is defined to take a marked Petri net with n

places as its only argument and to return a Hoare process. The Hoare

process is defined as n guarded processes running in parallel, where

each process simulates a specific place of the Petri net.
The set Cj p(p.) is defined to be the set of all transitions in the

alphabet of the process Qi for which either p- is an output place

for the transition (since the condition (p(p-) > #(p., I (t))) is true for all

output places), or p ̂ is an input place for the transition and the number

45
of tokens in pj is greater than or equal to the number of arcs between

the transition and p-. Having the constraint,

M-Cpp ^ # (Pp 1(0)
(in C-)> guarantees that if p- is an input place for the transition t,

then it can contribute in firing the transition t when p- is needed to

participate in parallel with other processes.

3.3.1 Example

Consider the Petri net of Figure 2.1. Then,

5

*<“) = II V (Pi) =
i = 1

QHpCpj) II Q 2,p(p2) I' ^ 3 , p(p3) II ^ 4 , p(p4) II ^ 5 , p(p5) =

Q l, 1 II Q2, 0 I' Q3, 0 I' Q4, 0 'I Q5, 0

w here

Q l , l = (t : C l, 1 Q l , 1 +X (p1, t))

C u = { t e T : P l 6 (O(t) U KO) A (1 > # (p j, I(t)»)

= {tj}

Therefore,

Qi, i = (‘i -> Q i,o } with “Qi, k = f‘i>

Similarly,

^2, 0 = ^1 ^2, P with a(^2, k = ^ 1’ h)
Q3 ,0 = ^ l Q3, P with aQ 3 , k = ^ l ’ b *

46

^ 4 , 0 = ^1 ^ ^ 4 ,3 ^ with a(^4, k = W ’ l2’ *3^

Q5 ,0 = (t3 "* ^ 5 , P with a(^5, k = ^

Thus, the process 'F(M) can engage only in the event t^.

Firing the transition t j in the Petri net M results in a Petri net M7

with a new marking \i (Figure 2.2.).

n

* (“ > = 11 V (Pi)
i = 1

Q lV C pP 11^2, p'(p2) ^ 3 ,p ' (p 3) ^ 4 , |/(p 4) ̂ Q5,p'(p5)

Ql, 0 11 Q2, 1 11 Q3, 1 11 Q4,3 11 Q5,0

where
Q i, 0 = (t : c i , 0 ■* Q i , 0 + x (p j, t>*

C l , 0 = (t e T : Pj e (O(t) u KO) A (0 > # (P l , I (t)))}

= 0

Therefore,
Qi , o = ST0PPl

Similarly,
Q2 , 1 = (tj : (t i ’ 42 J ^ Q2 , 1 + l (p 2 , tj))

Q3(j = (tj : (t j , t 3) -» Q 3 j 1 + x(p3_ (.))

Q4 , 3 = (t j : (tj , t2 , t3) -> Q4> 3 + x(p4_ t,))

Q5 , 0 " (t3 Q5, P

Thus, the process can engage in either the event t2 or t^.

3.4. Theorem
Let M = (P, T, I, O, (i) be a marked Petri net. Then transition tj

can fire in the Petri net M if and only if the process 'P(M) can engage
in the event tj.

Proof

Let
P = {p1, p 2 »... ,pn } IPI = n
n ^ tj) = (p ^ , pi2 pif}

OUT(tj) - IN(tj) = {pQ , pQ , pQ }
J. jL S

3.4.1. (==>)
Assume the transition tj can fire in M. Then, by the definition of

the function ¥ from Section 3.3.,

n

™ - 11 Qi,P(Pi)
i = 1

w here

% p(pj) = ̂*k : Ci, p(pi) ^ % pCpp + X(pp tjp

Recall that:

48

^ i , n(pp) = Ci, ^(pj)

is the set of choices for the process Qj ^ p .y

In order to show that the process 'P(M) can engage in the event
tj, it is enough to show that

tj e m)

w here

n

« M) = 4(i

i = 1

= u ((n

% p(PjP

Ci, p(pjp ~ a ^ i, p(pj) ^
s e Sn i e s i g s

Therefore, it is enough to show

lj £ ^ Ci, KP;)* ’ (U aQ i, nfp;)^ for som e S e Sn
l e s l g s

Claim 1:

fo rs = {ij, i2, ir } U {oj, o2, ' o s)

lj s (n C i,p (Pi))
1 G S

Proof of Claim 1:

49
First, let i e { ip i2 , ..., ir }. Since the transition tj can fire in the

marked Petri net M, then by the definition of enabled transition in

Section 2.1.3.,

p(Pi) > #(Pi, I(tj)) V Pi € P

Then,

H e n h(Pi)
i e {ip

Now let i e {op 0 2 , o$}, by the definition of Cj then:

lj e n Chh(Pi)
i e {op c>2, of }

Thus,

*j e ^ c i,n (Pi)

i e s

This proves the Claim 1.

Claim 2:

Let

i e { ip i2, ...,ir } U {op o2, o s); then,

lj * aQU (Pi)

Proof of Claim 2:

Suppose:

‘j e aQi,n(Pi)

50

Observe that:

a% n(pj) = {t e T : pi € (0UT(t) ■ IN (t)} or

Pi e IN(t)}

The sets (OUT(t) - IN(t)), and IN(t) are disjoint.

e “ « i , H(P;)) * en’

Case 1:
Pi e (OUT(tj) - IN(tj))

Then,
i e {op o2, os}

which is a contradiction.

Case 2 :
Pi e IN(tj)

Then,
p CpP > #(Pi, I(tj))

and thus,
i e {ip i2 , i r}

which is a contradiction.

Therefore, if

i e {i1? i2, ..., if } u {op o2, ..., os)

then,

‘j 4 “ (Qi, nCPjP

This proves the Claim 2.

Thus, by the definition of the general concurrency in Chapter
tj € $ (T (M))

Therefore, the process 'F(M) can engage in the event tj.

3.4.2. ()

Let M = (P, T, I, O, |i) be a marked Petri net and assume the
process T(M) is able to engage in the event tj. Then, the transition tj is

an enabled transition in the Petri net M.

By the definition of the function T from Section 3.3.,

n

= 11 QU (Pi)
i = 1

w here

% p(pj) = Ci, pCpj) % p(pj) + X(pj, tjp

Since the process ^ M) can engage in the event tj, then:

n

lj e ^ ' ' Qi, pCpjp
i = 1

= u ((n Ci, p(pp^ ‘ (u a(^i, pCpp ̂^
s e Sn i e s i g S

Therefore, for some s e S n

tj e (n Cj.) - (u a Qi, p(pp)

i e s i g s

52
Thus,

* j s c i , K P i) v i £ S

and

£j a a Q u (P i) v i a s

In order to show that the transition tj can fire in the marked Petri

net M, by the definition of enabled transition in Section 2.1.3., it will be

enough to show:

H(pp > #(pi? I(tj)) V p j e P

Claim
The transition tj is an enabled transition in M.

Suppose that:
g(Pj) < #(Pp I(tj)) for some e IN(tj)

Case 1: i e s

Recall that:

Cijk = N T : p. € (O(t) u 1(0) A

(k > #(pj, I(t))) }

Thus,

lj € Ci, p(pj)

which is a contradiction.

Case 2 : i & s

Since:
Pj € IN(tj)

Then, by the definition of alphabet,

which is a contradiction. This ends the proof of the claim. Thus, the
transition tj is an enabled transition in the Petri net M.

This ends the proof of the Theorem 3.4.

3.5. Theorem
Let M = (P, T, I, O, p.) be a marked Petri net and let tj be an

enabled transition. Suppose that firing the transition tj results in the

Petri net Mr, and engaging the process ^ M) in the event tj results in

the process Q. Then:
T (M ') = Q

Proof

If the transition tj fires in the marked Petri net M then, M /= (P,

T, I, O, (/) denotes the Petri net with marking \ i ,

w here

/ (P p = P(Pj) + UPp tj) V pj e P

Then:

54

By the definition of VF, then:

¥ (M ') = Y(M)/tj

= Q

(The notation " PROC/eve " describes the behavior of the process

PROC after it engaged in the event eve.) This ends the proof of the

3.6. Theorem

Let M = (P, T, I, O, p) be a marked Petri net and let a e T*.

Then, the string a is acceptable by M if and only if it is acceptable by

Proof

Let

The proof is by induction on s. The theorem is true for strings of

length one, by the Theorem 3.4.

Assume exactly the same strings of length (s-1) are acceptable

by both models; then the induction step is to prove that exactly the

same strings of length s are also acceptable by both models. If the

string cr is acceptable by the Petri net M, then:

is acceptable by the Petri net M. By induction hypothesis the string a is

acceptable by the process T(M). Similarly, if the string a is acceptable

55

by the process 'f'(M), then the string a is also acceptable by the Petri

net M.

Let the Petri net:

M s~* = (P, T, I, O, ns_1)

describe the state of M after firing (s - 1) transitions:

tf , L , •••> L
h h V I

Furthermore, let process Q describe the behavior of the process T^M)

after the string a occurs. Then, by the Theorem 3.5. and the induction

hypothesis:

¥ (M S_1) = Q

By the Theorem 3.4., the transition tf can fire in the Petri net
s

M s_* if and only if the process XP(M S‘ ^) can engage in the event tf .
s

Therefore, the string a is acceptable by the Petri net M if and only if it

is acceptable by the process 'F(M).

3.7. Definition

Two Petri nets M and M7 are equivalent when a is acceptable

by M if and only if it is acceptable by Mr. The notation " « " is used for

equivalence. The same definition is used for equivalence of two

56

3.8. Theorem

Let M and M ' be two Petri nets. Then:

M ~ M7 if and only if T(M) = T (M 7)

Proof

By the theorem 3.6., the string o is acceptable by T(M) if and

only if it is acceptable by M. Furtherm ore, by the definition of

equivalence, the string a is acceptable by M if and only if it is

acceptable by M7. Then, by the theorem 3.6., the string o is acceptable

by M7 if and only if it is acceptable by VF(M7).

This theorem proves that the function T is a one-to-one function

up to the equivalence relation.

3.9. A Hoare Process that Cannot be Modeled by a Petri net

In this section an example of a Hoare process that cannot be
modeled by any Petri net will be presented. Recall the process CTq

from Section 2.2.6.,

CTq = (up C T j I around CTq)

CTn + l = <UP - CTn + 2 1 down - CTn>

3.9.1. Theorem
There exist no Petri net that can model CTq.

Proof

The proof of the theorem is by contradiction. Let M = (P, T, I, O,
|i) be a marked Petri net that models CTq , where,

T = {up, down, around}

57

Since the transition "around" can fire in CTq and does not fire in CTn

(for all n > 0) then, I(around) must be nonempty.

(Note that if the transition "around" did not have any input place then it

could have fire in any state.) By the definition of enabled transition,

p(pj) > #(p|, I(around)) V p j e P

Let \x be the new marking for the Petri net M after the transition
"up" fires. Then, the process CTq becomes the process C T j. In CTj

the transition "around" cannot fire. Thus, there exists at least one place
pk e I(around) such that:

^(Pk) < #(Pk’ ground))

From the two above inequalities, it can be concluded that:

/ (P k) < P(Pk)

The above inequality shows that when the transition "up" fires, the
number of tokens in the place pk is reduced.

By the definition of function X,
X(pk , up) = #(pk , O(up)) - #(pk , I(up))

but by a remark in Section 3.1.,

X(pk , up) = p '(pk) - p(pk)

Thus, above argument shows that:
X(pk , up) < 0

After firing the transition "up",

58

[H(pk) / X(pk , up) J

times, there would not be enough tokens in the place p to fire the

transition "up". Thus, the Petri net cannot model the process:

CT L 1 ^(Pk» up) J + j

which is a contradiction. Therefore, there exist no Petri net that can
model the process CTq.

3.10. Other Classes of Languages

Petri nets and the Hoare processes have been compared with

regard to prefix languages. In the remaining of this chapter, the two

models will be compared with regard to another class of languages.

If M = (P, T, I, O, (i) is marked Petri net and F is a finite set of

final markings for M then, yet another class of languages called G-type

(Peterson [81]) can be defined as:

L (M, F) = {a e T : there exists p f e F such that 8(p, a) > pf }
©

In other words, a sequence of transitions a is in L (M, F) if, after the
0

transitions of a have fired, the Petri net M has the marking 8(g, a), and

8(p, a) has at least as many tokens in each place as some final marking

in F.
For example, Let F = {p^}

w here

59

(P1 > = 0
| i f (p 2) = 1

Pf(P3) = 0
Pf(P4> = 0

pf(p5) = 1

then, the G-type language of the Petri net relative to F of Figure 2.1 is:

Lg =

The class of prefix languages is a subset of the class of G-type

languages. Every prefix language for a given Petri net is a G-type

language with a final marking of zero in every place (F = { (0, 0 , . .

0) }). Clearly, the union of all G-type languages for a given Petri net is

the prefix language of that Petri net.

It is possible to define a class of languages for Hoare processes

with features analogous to those of the G-type languages for Petri nets.

In particular, a class of languages can be defined to contain an special

symbol for a successful term ination of a Hoare process (thus, a

successful termination will be represented differently from a deadlock
which is presented by the process S T O Pj). Hoare defines the process

S K IP y as a process which does nothing but terminate successfully.

Thus, the traces of the process S K IP j can be defined as:

traces(SKIPT) = {<>, < V > }
The alphabet of the process SKIPT can be defined as:

aSK IPT = T u { V }

(Note that successful term ination is regarded as a special event,

denoted by the symbol V (read "success").)

The following rules are given by Hoare [85]:

((x: B P(x)) 11 SKIPa) = (x: (B - A) -> (P(x) 11 SKIPA))

STOPa 11 SKIPb = SKIPg if V * A and B □ A

The ST -type (successfully terminated) language of a Hoare
process P (denoted by Lst(P)) can be defined as:

L t(P) = { o e (ocP)* : oAW > is in the prefix language of P}

The success event V is recorded in the traces of the language but is

not part of the string (i.e. it works as a termination symbol).

3.10.1. Concealment

The alphabet of a process contains those events which are

considered to be relevant to a given system. However, in describing

the internal behavior of a system, some events represent the internal

transitions w hich may denote the com m unication between the

concurrently acting components of that system. These events can

occur in a system without being observed or recorded. A sequence of

events can be modified by the removal of all such internal events.

If C is a finite set of events to be concealed and a is a string then

o \ C

is the string which all the occurrences of any event in C is removed

61

from it.

If P is a process then

P \ C

is a process which behaves like P, except that each occurrence of any

event in C is concealed.

If L(M) is the language of the Petri net M then

L(M) \ C

is the language which all the occurrences of any event in C is removed

from the strings in L(M).

3.11. Modifying the Function T

If a G-type language is given for a Petri net then a modified

function T may be defined in such a way as with ST-type language

equal to the given G-type language to generate a Hoare process. In

particular, T must be modified so that it can recognize a successful

termination of the process.
Let M = (P, T, I, O, p) be a marked Petri net and let F = {pj ,p2 ,

... pm } be a set of final markings for M. A new Petri net C = (P, T

E, I', O', p) is constructed from M and F as follows. The Petri net C

has the same places as M but it has m added e-labeled transitions (i.e.

elements of E):

E = {ej >e2 ’ *" em ^
For each p. in F the input bag of the corresponding e-labeled transition

can be defined by #(p, 1’̂)) = p^p) (i = 1 ,2 ,.. . , m). The output bags of

all the e-labeled transitions are empty. Furthermore, if t ± eA

62

I’(t) = I(t)

O'(t) = 0 (t)

The Petri net C is constructed such that only one of the e-labeled

transitions can become enabled when the Petri net C is in the

corresponding final state (i.e. final marking).

3.11.1. Lemma

Let M = (P, T, I, O, p) be a marked Petri net, let F be the set of

final markings for M, and let the Petri net C be constmcted from M as
in section 3.11. If o g L„(C> F), then o' = a \ E is in the prefix

©
language of C.

Proof

Assume the string o' is not in the prefix language of C. Let o' = x'
t i where %' is the longest substring of o' such that 8c (p, x!) is defined.

Thus, after firing the sequence of transitions in x' then the transition t is

not an enabled transition.

Then the string o can be decomposed into <r = x t y

where

x \ E = x'

y \ E = y'

Since the string o is in the prefix language of C, then x t, which is a

prefix of o, is also in the prefix language of C. Thus, after firing the

transitions in x the Petri net C is in the marking
Sc (p, x)

and the transition t is an enabled transition.

Every e-labeled transition has a non-empty input bag and an

empty output bag. Thus, firing an e-labeled transition always consumes

some tokens. Therefore,
5c (p, t') > 5c (g, t)

This inequality and the fact that the transition t is enabled in C with the
marking 8c (g, t) indicate that t must be also enabled in the marking

5c (p, t1) which is a contradiction.

This ends the proof of the lemma 3.11.1.

3.11.2. Lemma

Let M = (P, T, I, O, p) be a marked Petri net, let F be the set of

final markings for M, and let the Petri net C be constructed from M as

in section 3.11. The concealed G-type language of the Petri net C with

respect to E is the same as the G-type language of the Petri net M. In

other words,

Lg(C, F) \ E = Lg(M, F)

Proof
Let a e Lg (M, F). Since every transition in M is also a transition

in C with the same input bag and the same output bag then a e L (C,
©

F).
5c (p, a) > pf for some pf e F

Let o ' = a \ E be the sequence of transitions obtained from a by

removing the e-labeled transitions.

Since the string o' is in the prefix language of C (by lemma 3.11.1.) the
m arking 5c (p, o ’) is defined. Firing an e-labeled transition always

consumes some tokens. Therefore,
8c (p, a ’) > 5c (p, a)

so that
5c (p, o') > pf

But since o' does not have any e-labeled transition, then

5c (|i, o') = 6M(p, o')

and

SM ^ ’ a ’) -

Thus,
a ’ e Lg(M, F)

This proves the lemma 3.11.2.

3.12. Theorem

Let M = (P, T, I, O, p) be a marked Petri net, let F be a set of

final markings for M, and let the Petri net C be constructed from M as
in section 3.11. Then, there is a Hoare process T(C) 11 (E -> SKIPrp)

such that

Proof

Lst(T(C) II (x : E -> SKIPT)) \ E = Lg(M, F)

65
a e Lg(M, F)

<=> a e L (C, F) \ E (by lemma 3.11.2.)

Sc ((i, a) > [if for some e F (by definition of Lg)

<=> ^ (C)/a can engage in an event in E (by construction of C)

<=> cW e Lst(Y(C) 11 (x: E -» SKIPt)) \ E (by definition of Lgt)

This ends the proof of 3.12.

Chapter Four

Summary and Conclusions

4.1. Summary

The goal of this thesis has been the comparison of the Petri nets

M odel and the Hoare processes Model. The method of comparison

was to show that for every Petri net there is a Hoare process that can

generate the same prefix language as the Petri net, and there is a

Hoare process which cannot be simulated by any Petri net.

The function T was defined to map a marked Petri net to an

equivalent Hoare process. This function, for each place in a marked

Petri net, defines a corresponding Hoare process as an infinite set of

mutually recursive equations. The processes run in parallel so that, in

any given state, the set of the next possible choices for the Hoare

processes is the same as the set of enabled transitions for the Petri net.

The num ber of tokens in each place is used as the index in the

equations which define the Hoare processes.

The Hoare processes start running in parallel with the indexes

which are the same as the initial marking of the Petri net. Change in

number of tokens in each place, during the execution of a Petri net, will

result in the same change in the index of the corresponding Hoare

process. The parallel operator, together with the function T,

66

67

guarantees that only the enabled transitions of a Petri net, in any given

state, appear as possible next events for the equivalent Hoare process.

In case of a deadlock in the Petri net, the equivalent Hoare

process is the process STOP which cannot engage in any events of its

4.2. Conclusions and Suggestions for Future Research

As it was mentioned early in this chapter, the main goal of this

research was to make a comparison between the Petri nets model and

The Hoare process model. This goal has been achieved to a great

extent. A particular type of language for each model was selected, and

it was proved that Hoare processes are more powerful than Petri nets,

with regard to those languages.

Future research can be done by choosing a different type of

language for each model. For example, the class of L-type languages

can be chosen for the Petri nets model. If the set F is a finite set of

final markings for a Petri net then, yet another class of languages

called L-type can be defined as:

a language L is in the class of L -type Petri net languages if

there exists a marked Petri net M = (P, T, I, O, p), and a finite set of

final markings F such that:

L(M) = (o e f : 8(p, a) e F}

Peterson [81] proves that the class of prefix languages is a subset of

the class of L-type languages.

4.2.1. Petri net languages and Other Classes of Languages

68

Consider the class of L-type languages which does not require

distinct labels for transitions and allows e-labeled transitions, then

Peterson [81] shows that the following statements are true about this

larger class of Petri net languages and other formal languages. Every

regular language is a Petri net language. This can be proved by

showing that every finite state machine can be mapped to a Petri net

which generates the same language as the finite state machine. Some

context-free languages are Petri net languages (e.g. L = {an cbn : n >

1}). However, there exist context-free languages which are not Petri

net languages (e.g. L = (o o R : a e T*}). Furtherm ore, there exist

context-sensitive but not context-free languages which are Petri net

languages (e.g. L = [anbcnden : n > 0}). Finally, it is possible to show

that all Petri net languages are context-sensitive languages.

REFERENCES

69

Azema, P., Diaz, M. M ultilevel Description Using Petri Nets. IEEE,
(September 1975), 188-190.

Dijkstra, E. Cooperating Sequential Processes. Academic Press, New
York, NY, 1968.

Han, Y., Kinney, L. Petri Net Reduction and Verification. Honeywell,
Minneapolis, MN, 1977.

Harrison, A. H. Introduction to Formal Language Theory. Addison-
Wesley Pub. Com., Reading, Mass., 1978.

Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1985.

Hoare, C. A. R. Communicating Sequential Processes. Comm. ACM
21 (8), (1978), 667-677.

Lewis, H. R., Papadim itriou, C. H. Elem ents o f the Theory o f
Computation. Printice-Hall, Inc., Englewood Cliffs, NJ, 1981.

M andrioli, D., Ghezzi, C. Theoretical Foundations o f Com puter
Science. John Wiley & Sons, Inc., New York, NY, 1987.

Peterson, J. L. Petri N et Theory and the M odeling o f Systems.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

Peterson, J. L. Petri Nets. Computing surveys 9, 3 (September 1977),
223-252.

	Comparison of the Petri nets model and the Hoare processes model
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

