
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2002

Investigation of an Oracle application's high-level design Investigation of an Oracle application's high-level design

Scott W. Schield
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Schield, Scott W., "Investigation of an Oracle application's high-level design" (2002). Graduate Student
Theses, Dissertations, & Professional Papers. 5094.
https://scholarworks.umt.edu/etd/5094

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267577409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5094?utm_source=scholarworks.umt.edu%2Fetd%2F5094&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission

No, I do not grant permission

Author’s Signature:

Date:

Any copying for commercial purposes or financial gain may be undertaken only with
the author’s explicit consent.

Investigation of an Oracle Application’s

High-Level Design

by

Scott W. Schield

B.A. Psychology, The University of Montana, 1997

presented in partial fulfillment of requirements

for the degree of

Master of Science

Computer Science Department

The University of Montana

August 2002

A n n r n w ^ r l h \ / -

Dean, Graduate School

Date

UMI Number: EP40558

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dfssertatkwi PyfofislMif

UMI EP40558

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Schield, Scott W. M.S., August 2002 Computer Science

Investigation of an Oracle Application’s High-Level Design

Director: Joel Henry

This project investigates the high-level design of an Oracle application. In order
to complete this task, the high-level design needed to be documented. After the
development of the high-level design, the Fan-In and Fan-Out for each module
was recorded. The Fan-In and Fan-Out is a metric that measures both the
complexity and coupling of a software application. The values obtained from the
Fan-In and Fan-Out were compared against reported defects. It is generally
thought that complexity and coupling of a module is associated with the amount
of defects found in that module (i.e., as complexity and coupling increase then
defects will increase). The results of this project did not identify a clear
association between complexity, coupling and defects. However, other factors
are likely to increase the effort needed to maintain this system. These factors
include duplicate code, database updates across modules, and the absence of
coding standards. These issues were uncovered during code review, but were
not included in this investigation.

Table of Contents

List of Tables... v

List of Illustrations...vi

CHAPTER 1: Introduction... 1

What is Oracle?..1

Background..2

Project Goals.. 3

CHAPTER 2: Approach & Solution.. 4

Project Plan ..4

CHAPTER 3: Development Environment.. 6

CHAPTER 4: Software Development Process..8

Process Overview..8

Specific Process.. 10

CHAPTER 5: Software Design.. 14

Why Software Design?..14

Delivered Design.. 15

Current Design Development...16

CHAPTER 6: Fan-Out & Fan-In...21

Fan-Out.. 21

Fan-In... 22

CHAPTER 7: Defects..25

CHAPTER 8: Results..26

Coupling and Complexity Break-down...26

Why a Correlation?..29

Types of Correlations... 30

Fan-Out Correlation... 32

Fan-In Correlation..34

Interpretation of r ...36

Final Analysis... 38

CHAPTER 9: Summary..40

APPENDIX A: Fan-Out, Fan-In & Defects... 42

IV

List of Tables

Table 1: Module with High Coupling (Fan-Out).. 27

Table 2: Module with High Coupling (Fan-In)... 28

Table 3: Distinct Area Mean... 29

Table 4: Fan-Out, Fan-In & Defects...42-46

v

List of Illustrations

Figure 1: Fan-Out..21

Figure 2: +1.. 31

Figure 3: -1...31

Figure 4: 0.. 32

Figure 5: Scatter Plot..33

Figure 6: Scatter Plot..35

hical User

w ia o ic 10 li ic ic iiyco i vciiu ui ui uctidUddC 11 idi idy tJI I lt?l II £>yt>ltimS. O racle

can be used on both MS Windows and UNIX operating systems. Some of the

benefits of using Oracle are[1]:

1. Large quantities of data can be stored and updated.

2. PL/SQL can be used to retrieve information from tables.

3. Allows access to other software that is written in a different

language (C/C++).

4. Data can be shared with other users.

Besides the database, Oracle also provides a development environment

known as Oracle Designer xi. Oracle Designer xi features a toolset that allows a

developer to model, generate and capture the requirements and design of a

client/server application. Oracle Designer 6i will also allow the developer to

asses the impact of changing the database design or application. The toolset

allows the software development to take place directly inside Designer. Some of

the benefits of using Oracle Designer xi are[2]:

1. Central repository for all developers.

1

2. Accurate analysis of system requirements.

3. Auto-generate databases and module definitions.

4. Design capture and development.

Background

As mentioned before, the Oracle application is a large-scale, commercial,

Graphical User Interface (GUI) based software system. The system is being

used by a Montana State Government Agency. Due to the nature of the

application, both the Montana Government Agency and the software

development company cannot be identified. For the rest of the paper the

Montana Government Agency is referred to as Agency and the software

development company is referred to as Development Company.

Typically, an outside company develops large-scale, commercial

applications. Outside companies that feature large-scale, application

development are IBM and Unisys. A company, like IBM, is contacted by the

Agency and asked to submit a bid for the specified development. The company

that submits the lowest bid for development is usually chosen to carryout the

application development.

Due to the cost of developing software and the funds available to the

Agency, the Agency decided to go with the lowest bid. The contract was

awarded to the Development Company in 1997. The Development Company

delivered the software application to the Agency in December of 1999.

The Development Company met all the requirements, including delivery

time, according to the contract set-forth by the Agency. However, the software

2

application featured a large amount of defects. The contractual requirements

concerning the quality of the software application were vague. As one should

understand, the Agency and the Development Company interpreted the vague

quality requirements differently. The agreement reached between the Agency

and the Development Company consisted of the Development Company

providing more personnel beyond the contractual requirements in order to

stabilize the software system.

The Development Company provided the extra software engineers

through the summer of 2000. Since the summer of 2000, the Agency is still

striving to maintain stability with the software system.

Project Goals

The goal of the project was to analyze the software design and relate the

findings to the current defects within the software system. By performing this

type of analysis, it would help to pinpoint areas of high-risk. These high-risk

areas are parts of the software system that may be prone to higher amounts of

defects and possibly affect the maintenance of the system.

3

CHAPTER 2: Approach & Solution

As described before, the goal of the project was to analyze the software

design and relate the findings to the current defects within the software system.

The design of the project was limited to a high-level system design. This type of

design is acceptable when trying to understand the complexity of the whole

software system without regards to specific functions, data types and data

structures. One important measure that can be obtained from a high-level design

is the amount of coupling between modules and the complexity of modules.

Project Plan

1. Establish a direct connection with the Agency’s server. This would

allow work to be performed from the University of Montana and not on

site in Helena, Montana.

2. Establish privileges that would allow access to the software application

code.

3. Become familiar with Oracle Designer 6i. This was necessary, as the

Agency’s development environment is Oracle Designer 6i.

4. Manually record the ‘call to’ and ‘called by’ for each module. This

would allow the representation of the high-level design to be formed.

5. Develop the high-level design in Microsoft Visio 2000.

6. Apply coupling and complexity metrics to the high-level design. This

would show modules that would be considered to have a high-level of

coupling and complexity.

7. Group and count the defects for each module analyzed.

4

8. Perform analysis on the coupling and complexity measures against the

defect count.

The following chapters will discuss the development environment,

overview of the software development process, how the project was

carried out and results of the project.

5

CHAPTER 3: Development Environment

As discussed earlier, Oracle provides a toolset know as Designer 6i. The

Agency performs all their development inside Designer 6i. The initial design

done for this project was a high-level design of the Oracle Forms based inside

Designer 6i.

“Oracle Forms is a 4GL Rapid Application Development (RAD)

environment. Forms Builder is used to create applications to enter, access,

change, or delete data from an Oracle database[3].” The software engineers

create modules that support the business rules set-forth in the requirements.

The modules allow the end-user to enter, update, and query information in an

Oracle database and communicate with other modules via PL/SQL commands.

Modules feature code that is similar to code found in other programming

languages, such as data validations, calculations, error checking and algorithms

to carry out the business rules.

Oracle Modules inherently, by design, allow for built-in error checking.

Even though the user is working directly with database information, the user’s

workspace is local. No data is written to the Oracle database until the user tells it

to write to the database. This allows the user to make mistakes without

jeopardizing the information in the database. However, it is worth noting that

once the user commits to inserting information into the database there is no way

to go back.

This system under study features business rules that could be grouped

together in very distinct areas. Some of these areas were named: Accounting,

6

Registration and Returns Processing. Each distinct area had Oracle modules

that carried out the business rules. The number of Oracle modules found in each

distinct area varied in size from 1 to 58. There were 19 distinct areas which

accounted for 213 Oracle modules.

7

CHAPTER 4: Software Development Process

The software development process is more than just coding and delivery

of the software. The process is a well thought-out approach that when followed

correctly will lead to a well-developed product. This Chapter will present an

overview of the development process and the specific approach used by the

developing company.

Process Overview

There are many different process models for developing software. A

software process model guides the software engineers through the entire

development of the application. The software process model encompasses

requirement analysis, design, implementation, testing and delivery. Some of the

software process models used in development include: Waterfall Model,

Prototyping Model, and the Spiral Model. These are just a few of many software

process models used to guide software engineers. Each software process model

has positive and negative benefits, but the key is to choose the process model

that best fits the area of development.

At the system level, the developers begin to develop a system view for the

intended application. This is done by establishing requirements for all system

elements and is a critical step since this application was interacting with a

database. At this level, the requirements gathered are at the system level and

some top-level design and analysis is performed.

The analysis of software requirements is one of the most essential parts of

the development procedure. To understand the system, it is up to the software

8

engineer to understand the software domain, the intended function, behavior,

performance and user interface. The requirements gathered for both the system

and software are written into a Requirements Document. Before the actual

coding starts, the software engineers and customer must agree on the content of

the Requirements Document.

Developing the software design is the next stage of the development

process. During the design phase, the software engineers begin to develop and

build a representation of the software based off the requirements. The design is

assessed for quality before the actual coding begins. It is important to note that

the design is maintained throughout the software development process, and

provides the software engineers with a visualization of the software structure.

After the design is completed and is determined to be of good quality the

software engineers begin the coding phase. The code for the software system is

based off the software requirements and design. The software engineers are

now going from the software representation to implementation of the software

design.

Once the coding of the system is completed, the next phase is to test the

software. The different types of software testing that can be performed are a

massive topic and are only touched on briefly in this paper. The overall goal of

testing is to verify that the software is meeting the requirements for the system.

Any errors found during testing are fixed before the system is delivered.

Once the software has been delivered to the customer, the developing

company will provide support for an extended period. Support is given for

9

installation, maintenance and fixing any defects that may arise during that period.

Once the negotiated support time has elapsed, it is up to the customer to provide

or contract future support of the software.

Generally, software development involves the five stages listed above.

Each software development model will approach how the five stages are carried

out in a different manner. For example, the Prototype Model will complete the

initial design, coding and testing very rapidly. The prototype design is then

presented to the customer for feedback. The software engineers then take the

comments and change the software to fit the customer’s needs. The

Development Company that produced this software followed the Waterfall model

of software development.

Specific Process

As stated before this Oracle application was designed by following the

Waterfall model of development. The Waterfall model can be thought of as a

linear and sequential method of software development141. The development

begins at the system level and sequentially moves to analysis, design, coding,

testing and support.

There are many development models that are judged better than the

Waterfall model, but this model is the oldest and mostly widely used software

development model. However, there are a few problems when following this

model of development141.

1. The model implements sequential development. This means

before moving onto a new phase that current phase must be

10

completed. This rarely happens in ‘real-world’ software

development. By its inherent design, any changes during

software development are harder to incorporate.

2. For the Waterfall model to work successfully, all the

requirements must be known before the actual development

takes place. Most customers do not know the entire

requirement for their desired system. Any changes to the

requirements after development has started are hard to

incorporate.

3. The final fallback of using the Waterfall model concerns

prototyping and a pre-beta version of the system. Because the

development phase is linear and sequential, it is not possible to

show the customer a working model of the system. The

customer does not have the ability to see the product until it is

almost delivered. Any mistakes made during the development

concerning requirements and design are difficult to correct.

The Development Company also chose to have another company develop

the majority of the software. This is known as outsourcing in the Software

Industry. Outsourcing, to a third party, allows the development to take place at a

lower cost while usually maintaining integrity within the system. Typically,

outsourcing involves hiring a smaller company to carry out the development.

This smaller company usually has less over-head and this leads to cheaper

development costs. Today, a large majority of the outsourcing is granted to ‘off

11

shore’ developers. A large amount o f ‘off-shore’ developers are based in India.

The price to develop software in India is very low when compared against

outsourcing the development to a stateside company. It is important to note that

‘off-shore’ developers generally meet or exceed standard software development

practices.

Pressman[4] reports that outsourcing is either a strategic or a tactical

decision. The strategic decision involves business managers determining if a

significant or all the development can be performed outside the company. The

tactical decision involves a project manager determining if a reasonable amount

or all the development can be subcontracted. Regardless of the reason,

outsourcing the software development process has both positive and negative

effects.

The most significant positive benefit is a reduction in cost. When the

development process is outsourced, the cost to support the development

(software engineers and facilities) can drastically be reduced. The Development

Company planned to outsource the development from the beginning, and was

able to submit a much lower bid to the Agency. The main deciding factor of the

Agency awarding the bid to the Development Company was their ability to deliver

a product based on the Agency’s requirements for such a lost cost. The majority

of the other software development companies submitting bids to the Agency

were not able to achieve this level of development for the price.

A negative effect with outsourcing is the lack of control over the

development process. Without good, concrete software development methods in

12

place, a company who sub-contracts, is risking its integrity. A few steps can be

taken to avoid the pitfalls associated with outsourcing. It is necessary that the

development company stay in close contact with the outsourcing company. This

can be achieved by having an on-site software manager working closely with the

outsourcing team. If feasible, the customer should also perform these same

actions. This will help ensure that the outsourcing development company is

meeting the requirements of the system and following the best software

engineering practices. The Agency and the Development Company appear to

have struggled to do this on a consistent basis. This resulted in a loss of control

over the development process. The loss of control over the development

process was evident when the application was delivered to the Agency.

13

CHAPTER 5: Software Design

As stated previously, one of the steps in software development involves

developing a design of the system. This chapter will address why software

design is important, what type of design was provided to the Agency, what was

done to develop a current design and what was done with the current design.

Why Software Design?

Software is prevalent in every phase of our life. From our homes to our

offices, we are surrounded with products that are run by software (e.g., cars,

traffic lights, microwaves, etc...). One may ask how so many complex systems

actually work. The products that work usually have been well designed.

Everyday on our way to work we drive on roads, cross bridges, and enter

buildings at our place of employment. It would be unrealistic to think that a civil

engineer just showed up on the site without any design and started building the

bridge. It is natural to think that the finished bridge would be lacking in quality.

Would it be safe to drive over? Highly doubtful even if the civil engineer was to

achieve such a task. Would it be possible for a civil engineer to build a walking

bridge over a small creek without any design? It is realistic to admit that this

would be feasible and should be of high quality when completed. If a team of

software engineers sat down at Microsoft and decided to code the latest version

of Microsoft Office without a design, then would you buy it? If a student decided

to code a program that printed “Hello World” without a design, then what would

the quality be concerning that program? Software engineers are no different

14

from the civil engineers. When the complexity of a system increases the

importance of developing, a design increases.

The Agency’s requested system should have started with the

Development Company engineering a design document. A software design

encompasses four areas of a program[4]. These areas included data structures,

software architecture, interface representations, and procedural/algorithmic

detail.

The software design translates the software requirements into a visual

representation of the software. The design, allows the over-all quality to be

assessed before the actual coding of the application takes place. Changes to the

design can be made to improve quality. The design is carried through the entire

development process and is typically delivered with the final system.

Delivered Design

This Oracle application was delivered to end user with little design

documentation. As discussed earlier, a design document is vital for maintaining

a software application. Being that this was an Oracle application, the Agency

should have received a database design and a design of the PL/SQL application

logic. At the time the project started, there was no evidence that any design

documentation currently existed.

This system delivered in December 1999, has undergone numerous

changes through the summer of 2002. During this time, the Agency’s software

engineers continued to make these changes in the system without fully

15

understanding the impact that those changes would have on other areas of the

system.

Current Design Development

The design of the application was limited to a high-level system design.

This type of design is acceptable when trying to understand the complexity of the

whole software system without regards to specific functions, data types and data

structures. What follows are the steps that were taken to develop the high-level

design.

1) Log into network

The first step was to log onto the Agency’s network. This involved

establishing a connection with the Agency’s server and providing a username,

password and logon domain.

2) Log into local desktop environment

Novell software controls the login for the local desktop environment. It

was necessary to provide a username, password, and working server name to

access the local desktop environment. The desktop environment is identical to

the desktop found if a software engineer was working directly from inside the

Agency’s offices. The password was changed every three weeks.

3) Log into Oracle Designer 6i

Oracle Designer 6i holds all the source code for this Oracle based

application. Again, to obtain access it is necessary to provide a valid username

and password combination. Along with the username and password, it is also

16

necessary to enter a valid database connection string. The database connection

string is the database related to the Oracle application.

It was necessary to choose a work area when accessing Designer 6i.

Choosing a work area is similar to choosing where a developer wishes to perform

changes. It would be similar to choosing where you want to save a file.

However, not to get confused, this is not saving. For this project, a separate

work area was provided. This allowed a separate working space to perform the

duties of this project. Once the work area is chosen, then the Designer 6i

interface is presented.

4) Access Oracle Designer 6/ Editor

The Designer 6i interface is a standard Windows GUI. The interface

presents a wide range of choices for the user. For this project, the choice was

Oracle Design Editor. The Design Editor allows a user to explore all the code

written for that particular Oracle Application. The interface of the Design Editor is

similar to the Microsoft Windows Explorer window. The folders are presented in

a tree-like structure and can be expanded to show their contents.

When Design Editor appears the software engineers is presented with four

tabs.

1. Server Module

2. Module Applications

3. Database Administration

4. Distribution and Replication

17

For this project, I was interested in the ‘module tab’. This ‘module tab’ provides

all the code for the modules in the application.

5) Obtaining the calls

To represent the high-level design, it was only necessary to obtain the

‘called to’ and ‘called by’ for each module. The easiest way to obtain the ‘called

to’ and ‘called by’ for each module is to perform an individual design of each

module. However, none of the individual designs could be saved. Furthermore,

Designer 6i contains many design tools that aid the software engineer. However,

there were privilege issues involved to use these tools. In order to access some

of these design tools, and save the module diagrams the user must be granted

the privileges to checkout the modules out of the Agency’s source control. Due

to the sensitivity and secrecy of this application, it was not possible to checkout

the pertinent information. It was possible to view the information, but not edit or

save any added information.

The following steps were taken to record the ‘called to’ and ‘called by’ for

each module found in Design Editor:

1. A list of modules was recorded in MS Excel. Consultation was

carried out with an Agency software engineer to ensure only

applicable modules were recorded in the list.

2. A new module diagram can be viewed in the following manner:

a. File -> New -> Module Diagram. A drop-down box

appears

18

b. Select ‘APP_PTDB, form the drop-down box and click

‘OK’. A system folder, Windows-like Explorer box

appears.

c. Inside the Explorer box, expand the ‘APP_PTAP’ folder.

A list of modules appears.

d. Select a module and click ‘OK’. A single module diagram

appears and shows the ‘called to’ and ‘called by’ for each

module.

3. When the diagram was presented the following information was

recorded in an Excel spreadsheet:

a. The module name.

b. Whom the module calls (‘called-to’).

c. Who calls that module (‘called-by’).

The Agency’s application featured many distinct areas of

business rules. The spreadsheet was designed to delineate

the different areas (e.g., Accounting, Registration, etc...) of the

Oracle application. This spreadsheet could then be used to

develop the design on a local computer.

4. The process was then repeated for each of the 213 modules.

This was necessary because Designer 6i does not allow a

software engineer to mass generate each module diagram.

6) Implementing the design

19

After, all the ‘called to’ and the ‘called by’ for each module were recorded

the next phase of the project took place. This phase of the project involved

diagramming the high-level design. The high-level design provides a structural

framework for a more detailed design. In other words, the high-level design is

the foundation for a more detailed design. It is important to note that the goal of

this project was not to develop a detailed design. The detailed design needs to

be completed by software engineers who work with the system on a daily basis.

As with any business application, one of the most important areas of

processing is accounting. For the Agency, the Accounting areas were the most

important and contained very complex business rules. The Accounting area was

the starting point for the high-level design.

The high-level design was developed in Microsoft Visio 2000. Visio 2000

was chosen because the design can easily be modified and can be exported to

HTML pages for easy viewing by all users[5]. The design was carried out for each

of the distinct areas. After the design of a distinct area was completed then the

design was reworked. Reworking a design increases readability and facilitates

understanding of the system when viewed by other software engineers. When all

213 modules were incorporated into the design, the system was reworked three

times to increase readability and understanding.

20

CHAPTER 6: Fan-Out & Fan-In

After the design was completed, it was necessary to interpret the diagram

to gain a better understanding of the design. This was done by measuring the

Fan-Out and Fan-In for each module in the high-level design. Both Fan-In and

Fan-Out measure the complexity and coupling of a system.

Fan-Out

Fan-Out provides a measure of the number of modules that are directly

controlled by another module (Figure 1). Two modules are considered coupled if

methods declared in one module call methods or access attributes defined in

another module. This information was readily available by examining the number

of ‘called to’ for each module.

Module A Module B

Module C

Figure 1: Fan-Out

21

Modules that have a high Fan-Out value (greater than 5) are considered to

be highly coupled (e.g., highly interconnected)161. It is important to note that this

is a very loose implementation of calculating the Fan-Out and all results obtained

from this metric are general in nature. However, the benefit is that it pinpoints

possible modules that may have high coupling. Software Engineers could then

take this information and perform more in-depth design of these areas in order to

formulate results that are more concrete. The Fan-Out results for each module

are presented in Appendix A.

Fan-In

When consulting with Dr. Joel Henry it was decided that, another metric

should be applied to the high-level design. The goal of applying a new metric

was to understand the overall complexity of the system. The new metric

consisted of measuring the Fan-In for each module. The Fan-In measures how

many modules are calling a particular module. For example, if module A was

called by modules B and C. Then module A would have a Fan-In of two. That is

considered a Fan-In depth of one (Fan-In (1)) for module A. It was also taken

into account the Fan-In depth to a level of three for any particular module.

Example

1. Module A called by Module B and Module C.

2. Module B called by Module D.

3. Module C called by Module E.

4. Module D called by Module F.

5. Module E called by nothing.

22

6. Equation

a. Total Fan-In = Fan-In (1) + Fan-ln(2) + Fan-ln(3)

b. A Total Fan-In = A Fan-In (1) + A Fan-ln(2) + A Fan-ln(3)

c. A Total Fan-In = 2 + 2 + 1

d. Module A Total Fan-In = 5

At this point further clarification is need for Fan-In. The easiest way to

conceptualize the idea of Fan-In is to consider a path to that particular module.

Given that Module A had a total Fan-In of 5, then there are five unique paths to

Module A up to a level of three. Consider the following:

1. Module A Fan-ln(1) = 2. Two paths can be taken to reach

Module A directly.

2. Module A Fan-ln(2) = 2. Two paths can be taken to reach

Module A at one level of indirection.

3. Module A Fan-ln(3) = 1. One path can be taken to reach

Module A at two levels of indirection.

Recording the Fan-In for each of the 213 modules was a bit more difficult

then recording the Fan-Out. Calculating the Fan-In for each module was carried

out in the following way:

1. First, evaluate the value of the ‘called by’ for each module.

2. If the value was equal to zero, then zero was recorded for the

Fan-In of that module.

23

3. If the value was greater than zero, then a new Visio 2000

diagram was started for that particular module if it was not easy

to deduce the total Fan-In for that module.

4. The diagram was then expanded up to a depth level of three

and the total Fan-In was recorded.

24

CHAPTER 7: Defects

After the Fan-In and Fan-Out were recorded, the next step involved

analyzing the defects found in the system.

The Agency burned the defects onto a cd and the defects were logged

into an Excel spreadsheet. The defects in the spreadsheet were defects logged

between 10/14/1999 and 09/26/2001. Before defects could be compared against

the Fan-In and Fan-Out results, it was necessary to standardize the recording

process. This required ensuring that all module names were in a consistent

format (e.g., PTAC001F, PTCM001F, etc...). This was done to increase the

readability of the document and to ensure correct filtering of the spreadsheet

when looking for a particular module.

Once the defects were in a standard format, it was then possible to track

the defects for each module. The defects were recorded in the following manner:

1. Filter the defects and obtain a count for each module in the

high-level design.

2. Record the critical defects for each module

There were 1851 defects for the modules in the high-level design. Out of those

1851 defects, there were 610 defects that were categorized as critical defects by

the Agency.

Once the defects were recorded, it was then possible to perform some

statistical analysis on the defect counts versus Fan-In and Fan-Out.

25

CHAPTER 8: Results

The final step in the project was to determine if there was a relationship

between the defects reported by the Agency versus the Fan-In and Fan-Out

results obtained from the high-level design. It was thought that as the coupling

and complexity increased for a module, then the defects would increase for that

particular module. This would be consistent with what is found in a Software

Development process[4]. Typically, a module that is highly coupled would

produce more defects due to the interconnectedness. To obtain the relationship

between defects versus Fan-In and Fan-Out a correlation measure was applied

to the data.

Coupling and Complexity Breakdown

As stated previously, a Fan-Out of five is considered to have high

coupling. Since the Fan-In went to a depth level of three, then any module

having a Fan-In greater or equal to 15 would be considered complex. The

modules meeting these criteria are presented in Table 1 (Fan-Out) and Table 2

(Fan-In). The findings show that the system has few modules that would be

considered to be highly coupled and complex.

26

Module Fan-Out
PTAC002F 7
PTCM021F 8
PTCM022F 10
PTCM025F 7
PTCM029F 8
n T / ^ n i n n o r

PTCM003J 12
PTRG009I 7
PTRP004F 5
CM_MENU 6

Table 1: Modules w itligh Coupling (Fan-Out)

27

Module Fan-In
PTAC026F 15
PTCM067F 16
PTRG015F 16
PTFC101L 19
PTCM007F 21
PTCM002F 23
PTCM004F 23
PTCGLIB1 25
PTCM032F 25
PTER101L 25
PTCM016F 27
PTAC007F 28
PTCM017F 31
PTCM025F 31
PTCM029F 31
PTCM021F 32
PTRG010F 32
PTRG005F 33
PTCM003F 41
PTCM022F 48
PTAC027F 50
PTCM018F 50
PTCM010F 58
PTCM005F 73
PTCM102L 74
PTAC101L 85
PTCM101L 189
PTGN081L 266

Table 2: Modules with High Complexity (Fan-In)

The Fan-Out and Fan-In was then broken down for each distinct area.

The breakdown consisted of summing the total Fan-Out and Fan-In for each

distinct area and dividing it by the total number of modules in that distinct area.

This breakdown would show if modules in a distinct area were highly coupled

28

and complex (Table 3). The results show that very few areas present modules

that were highly coupled and complex.

Module Fan-Out Mean Fan-In Mean
PTAC 1.33 5.89
PTAT 0 0
PTCG 1 25
PTCM 2.9 27.41
PTDI 0 0
PTER 1.28 3.57
PTFC 0.61 0
PTGN 0.2 45.2
PTOG 0 0
PTNP 0 0
PTPA 0 0
PTRG 1.16 7.16
PTRP 1.19 1.81
PTSC 0.67 0
PTSF 0 0
PTSM 0.32 0.05

0.5 0
ACCOUNTING 0 1

CMMENU 6 1

Table 3: Distinct Area Mean

Why a Correlation?

The values for each module can be represented in X and Y pairs. The

defects are always the Y value while Fan-In and Fan-Out are always the

respective X value. The project investigators were interested in knowing whether

defects versus Fan-In and Fan-Out were related, and if so, then in what capacity

or strength of association. One key in choosing a correlation is evaluating if

there are any independent variables in the data. “An independent variable is the

29

variable that is controlled or manipulated by an experimenter so that its effect on

a dependent variable can be determined171.” If this project presented an

independent variable, then the choice would have been a regression measure.

Listed below are three reasons why a correlation measure was chosen[7]:

1. There is no independent variable.

2. The values of X or Y were not pre-selected and thus both X and

Y may vary freely.

3. Interested in assessing the strength association between X and

Y and possibly predicting either variable from a knowledge of

the other.

Types of Correlations

The degree of association between two variables is represented by a

correlation coefficient. The correlation coefficient can range in values between

-1.0 to +1.0. A value of +1.0 denotes a perfect positive relationship between two

variables. This is represented with all the data points falling on a straight line

such that high values of X are paired with high values of Y and low values of X

are paired with low values of Y (Figure 2).

30

Figure 2: +1

A value of -1.0 denotes a perfect negative relationship between two

variables. This is represented with all the data points falling on a straight line

such that low values of X are paired with high values of Y and high values of X

are paired with low values of Y (Figure 3).

Figure 3: -1

31

If the value is zero, then there is no linear association between the

variables. This can be represented with all the data points falling on a horizontal

line or in a circular fashion (Figure 4).

Y 4

Figure 4: 0

The correlation used for this data was the Pearson Product-Moment

Correlation Coefficient. The correlation coefficient produced is appropriate for

describing the linear relationship between two quantitative variables.

Fan-Out Correlation

Appendix A show the module Fan-Out count and the amount of defects

associated with each of those modules. Before finding a correlation coefficient, it

was necessary to produce a scatter plot. The scatter plot would show if some

linear relationship exists between Fan-Out and defects. The scatter plot is

presented below.

32

Defects

160
140
120
100

60
40

Fan-Out

Figure 5: Scatter Plot

From the scatter plot, it seemed that there might be a positive correlation

between Fan-Out and defects. The next step was to find the correlation

coefficient between these two variables.

The formula for the Pearson Product-Moment Correlation Coefficient is

presented below[7]:

^ X iY i-
i=1

X -® X K
V 1=1 1=1

n

x̂
y x 2i - ^ ~ >
i=i n

X^
i= \

/ \ 2 n \

X «
v j=1

n

Equation 1

The values for the formula are listed below.

33

X — Fan - Out
Y = Defects

£ X r = 219

£ 1 7 = 1851

£ A317 = 5412

£ X 21 = 1001

£ r 2/ = 85743

The computation of the correlation coefficient for Fan-Out and defects is

listed below.

(219X1851)
5412-

r = 213

1001
(219)"

213
85743-

(l 851):

213

3508.859
r =

Vl775.83ll69657.549j

r = 0.4773

Fan-In Correlation

Appendix A show the module Fan-In count and the amount of defects

associated with each of those modules. Before finding a correlation coefficient, it

was necessary to produce a scatter plot. The scatter plot would show if some

linear relationship exists between Fan-In and defects. The scatter plot is

presented below.

34

Defects

160
140
120
100

40

100 150 200 250 300
Fan-In

Figure 6: Scatter Plot

From the scatter plot, it appears that there might be a positive correlation

between Fan-Out and defects. The next step was to find the correlation

coefficient between these two variables.

The values for the formula are listed below.

X = Fan - In

Y = Defects

£ J K = 1581

£ r = 1851

£ ASK = 17056

£ x 2i = 150403

£ Y 2i = 85743

The computation of the correlation coefficient for Fan-Out and defects is

listed below.

35

17056-
(l 5 8 l X l 8 5 l)

r = 213

150403
(1581),2

85743-
(l 851)2

213 213

3316.887

r Vl138667-971169657-549J

r = 0.033

Interpretation of r

The correlation coefficient obtained from the Pearson Product-Moment

gives the nature and strength of the linear association between two variables.

However, there are two other statistics, both functions of r, that present a better

intuitive sense for the strength association represented by r. These statistics are

the coefficient of determination (r 2), and the coefficient of nondetermination

The coefficient of determination will give the proportion of variance of one

variable that is explained by the variance of the other variable. The coefficient of

nondetermination will give the proportion of variance that is not explained by the

variance of the other variable. The calculations for the respective statistics are

shown below.

r 1 =(0.4773)2

r 2 = .2278

Fan-Out Coefficient of Determination

36

k2 = 1 - (0.4773)2

k2 = .7722

Fan-Out Coefficient of Nondetermination

r 2 = (0.033)2

r 2 =0.001

Fan-In Coefficient of Determination

k2 = 1 - (0.033)2

jt2 =0.999

Fan-In Coefficient of Nondetermination

1) Fan-Out r

The results obtained from the coefficient of determination and

nondetermination is interpreted in the following manner.

1. 22.78% of the variance of the defect scores can be explained by

the linear relationship between this variable and the

corresponding Fan-Out scores.

2. 77.22% of the variance of the defect scores is not explained by

the linear relationship with the Fan-Out scores.

The linear relationship between Fan-Out and defects does not account for much

of the variance in the defect scores (22.78%), but instead 77.22% of the variance

is not accounted.

1) Fan-In r

37

The results obtained from the coefficient of determination and

nondetermination is interpreted in the following manner.

1. 0.10% of the variance of the defect scores can be explained by

the linear relationship between this variable and the

corresponding Fan-In scores.

2. 99.9% of the variance of the defect scores is not explained by

the linear relationship with the Fan-In scores.

The linear relationship between Fan-In and defects accounts for minimal

variance in the defect scores (0.10%), but instead 99.9% of the variance is not

accounted.

Final Analysis

The correlation coefficient obtained for Fan-Out showed a positive

association (r = 0.4773) with the number of defects per module. Flowever, the

strength of the association should be classified as weak for this particular project.

The correlation coefficient for Fan-In was much worse than Fan-Out. It should be

classified that a minimal association (r = 0.033) can be found between the Fan-In

and defect values for this particular project.

The results were a little unexpected due to the problems that the Agency

has had with this system. The results from the coefficient of determination and

nondetermination show there are other variables that need to be included to

reduce the percentage of unaccounted variance in the defect values. Including

other types of variables may show a strong positive relationship between Fan-In,

Fan-Out and defects.

38

Many different variables could account for the variance of the scores.

Measuring the Source Lines of Code (SLOC) for each module would give a

better understanding concerning module complexity. Typically, a module that

has a higher value of SLOC is more complex when compared to another module

having a lower value of SLOC. Other variables that would account for the

variance of the scores include:

1. Number and type of module data structures.

2. Number of function points for each module.

3. Number and type of database access for each module.

4. Number of global variables used by each module.

The results obtained from the coupling and complexity breakdown are

better understood when it is taken into account that other variables affect the

defects found in the system. When looking at the system average for both Fan-

In and Fan-Out it shows that most modules are not highly coupled or complex.

Three distinct areas were considered highly complex. These areas are PTCG,

PTCM and PTGN. Flowever, both PTCG and PTGN contain less than six

modules in those distinct areas while PTCM contains 29 modules. Looking at the

results in this fashion, one should be able to conclude that PTCM is more

complex than PTCG and PTGN.

39

CHAPTER 9: Summary

This project investigated the high-level design of an Oracle application.

Analysis on the coupling of modules was performed and compared against

defects found in the application. The Oracle application being investigated was a

large-scale, commercial, Graphical User Interface (GUI) based software system.

By looking at the high-level design and the amount of defects within the

system, one can conclude that the system is complex. Increased complexity will

usually lead to an increase in maintenance tasks. The Agency is currently

experiencing this problem in bring the system up to a stable level. However,

parts of the high-level design failed to shown any direct association between

coupling, complexities and defects.

As stated previously, many factors can affect the amount of defects found

in a system. It is apparent that to thoroughly associate the complexity of the

system with defects, then a more detailed design must be completed. This

would allow the items mentioned in the previous Chapter to be measured. More,

importantly it would allow the full nature of the system (database) to be

encompassed in forming associations with the defect count.

The Fan-In and Fan-Out counts discovered a few areas that may be highly

coupled and complex. However, there was no clear association between these

counts and defects. The modules analyzed in this system account for 1,851

defects. A system with this many defects tends to be highly coupled and

complex. A more detailed design at the module level and accounting for other

factors should adequately show that the system is highly coupled and complex.

40

Finally, the importance of development control during the software

process cannot be underestimated. Outsourcing allows some development

control to be given up. Both the Agency and the Development Company, failed

to assert measures that allow for some control and monitoring of the

development process. This lack of control allowed the 3rd party company to

follow unacceptable software development practices. This was evident in the

testing results of the system, lack of any delivered design, Agency code reviews

and finally the amount of defects found in the delivered system.

41

APPENDIX A: Fan-Out, Fan-In & Defects

Table 4: Fan-Out, Fan-In & Defects

Module Fan-In Fan-Out Defects
PTAC001F 0 2 55
PTAC001R 0 0 3
PTAC002F 13 7 60
PTAC003F 7 2 60
PTAC004F 0 2 25
PTAC005F 0 2 52
PTAC005R 0 0 6
PTAC005R SD 0 0 0
PTAC006F 0 2 10
PTAC006R SD 0 0 0
PTAC007F 28 1 13
PTAC008F 0 1 15
PTAC009F 0 1 9
PTAC010F 0 2 31
PTAC011F 0 4 10
PTAC012F 0 2 6
PTAC013F 0 1 6
PTAC014F 0 1 4
PTAC017F 0 1 2
PTAC018F 0 1 8
PTAC019F 0 1 7
PTAC020F 0 1 11
PTAC021F 0 1 22
PTAC022F 0 1 36
PTAC022F NEW 0 0 0
PTAC023F 0 2 15
PTAC024F 12 1 5
PTAC025F 0 1 2
PTAC026F 15 3 9
PTAC027F 50 1 3
PTAC028F 0 1 41
PTAC029F 0 1 18
PTAC031F 6 0 4
PTAC032F 0 1 2
PTAC033F 6 1 0
PTAC034F 6 2 1
PTAC035F 2 1 0
PTAC041R 0 0 3
PTAC101L 85 1 0
PTAT001F 0 0 0
PTAT002F 0 0 1
PTCM001F 2 1 7
PTCM002F 23 7 36
PTCM003F 41 12 69

42

Table 4: Fan-Out, Fan-In & Defects

IV it Defects
PTCM
PTCM
PTCM 17
PTCM 21
PTCM
PTCM
PTCM
PTCM 31
PTCM 18
PTCM 19
PTCM 32
PTCM
PTCM
PTCM 78
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTCM
PTER(
PTER(13
PTER(
PTER(13
PTER(
PTER(11
PTER(
PTER(
PTER(
PTER(10
PTER(
PTER(
PTER(
PTER'
PTFC(
PTFC(
PTFC(
PTFC(

43

^

Table 4: Fan-Out, Fan-In & Defects (continued)

Module Fan-In Fan-Out Defects
PTFC006F 9 1 149
PTFC007F 11 2 29
PTFC008F 0 1 3
PTFC009F 0 0 0
PTFC010F 0 0 0
PTFC011F 0 0 0
PTFC012F 0 0 0
PTFC101L 19 0 0
PTFC102L 0 1 0
PTNP001F 0 0 20
PTOG001F 0 0 6
PTOG002F 0 0 0
PTOG003F 0 0 1
PTOG004F 0 0 1
PTOG005F 0 0 1
PTOG006F 0 0 1
PTOG007F 0 0 3
PTOG008F 0 0 0
PTOG009F 0 0 3
PTOG010F 0 0 0
PTOG011F 0 0 1
PTOG012F 0 0 0
PTOG013F 0 0 0
PTOG014F 0 0 2
PTOG015F 0 0 2
PTOG016F 0 0 0
PTOG017F 0 0 0
PTOG018F 0 0 0
PTOG019F 0 0 1
PTOG020F 0 0 2
PTOG021F 0 0 7
PTOG022F 0 0 2
PTOG023F 0 0 6
PTOG024F 0 0 2
PTOG025F 0 0 3
PTOG026F 0 0 1
PTOG027F 0 0 2
PTOG028F 0 0 1
PTOG029F 0 0 2
PTOG030F 0 0 4
PTOG031F 0 0 4
PTOG032F 0 0 10
PTOG044F 0 0 1
PTOG045F 0 0 1

44

Table 4: Fan-Out, Fan-In & Defects (continued)

Module Fan-In Fan-Out Defects
PTOG046F 0 0 1
PTOG099F 0 0 1
PTOG100F 0 0 1
PTOG138F 0 0 0
PTOG139F 0 0 0
PTOG140F 0 0 2
PTOG500F 0 0 2
PTOG600F 0 0 0
PTRG001F 0 3 35
PTRG001R 0 0 1
PTRG002F 6 10 22
PTRG002R 0 0 4
PTRG003F 5 0 1
PTRG003R 0 0 0
PTRG004F 8 0 4
PTRG004R 0 0 0
PTRG005F 33 0 28
PTRG006F 8 0 18
PTRG008F 9 1 5
PTRG009F 2 7 23
PTRG010B 0 0 3
PTRG010F 32 1 0
PTRG011B 0 0 0
PTRG011F 5 0 0
PTRG012F 12 0 1
PTRG014F 0 0 8
PTRG015F 16 0
PTRP001F 0 2 18
PTRP002F 2 4 123
PTRP003F 6 1 9
PTRP004F 2 5 37
PTRP005F 0 1 25
PTRP006F 0 1 19
PTRP007F 0 0 3
PTRP008F 0 1 5
PTRP009F 5 0 30
PTRP010F 0 4 47
PTRP011F 7 0 18
PTRP012F 7 0 8
PTRP013F 0 0 6
PTRP016F 0 0 0
PTRP021R 0 0 4
PTRP028F 0 0 0
PTSC003F 0 1 2

45

Table 4: Fan-Out, Fan-In & Defects (continued)

Module Fan-In Fan-Out Defects
PTSC004F 0 1 4
PTSC005F 0 0 0
PTSM001F 0 0 2
PTSM002F 0 1 1
PTSM003F 0 1 2
PTSM004F 1 1 0
PTSM005F 0 1 0
PTSM007F 0 1 5
PTSM011F 0 1 0
PTSM012F 0 0 0
PTSM013F 0 0 0
PTSM014F 0 0 1
PTSM016F 0 0 1
PTSM017F 0 0 0
PTSM018F 0 0 1
PTSM019F 0 0 0
PTSM020F 0 0 2
PTSM021F 0 0 8
PTSM023F 0 0 1
PTSM024F 0 0 0
PTSM034F 0 0 1
PTTK001F 0 1 23
PTTK002F 0 0 9
ACCOUNTING 1 0 0
CM MENU 1 6 0
PTCGLIB1 25 1 0
PTDIS01F 0 0 0
PTDIS02F 0 0 0
PTDIS03F 0 0 0
PTDS003F 0 0 0
PTGN001F 0 0 0
PTGN002M 0 1 0
PTGN003F 0 0 0
PTGN004F 0 0 0
PTGN081L 226 0 0
PTPASSWD 0 0 0
PTSF002F 0 0 0

46

BIBLIOGRAPHY

[1] Oracle Database at DESY, http://www.desy.de/asg/oracle/homepage.html

[2] Oracle Corporation, Oracle Designer 6i Overview: An Oracle Technical
White Paper, October 2000

[3] Oracle Corporation, Building Oracle Forms Applications Using Designer
6i: An Oracle Technical White Paper, October 2000

[4] Pressman R, Software Engineering- A Practitioner’s Approach, Fifth
Edition, McGraw-Flill Higher Education, 2001

[5] Microsoft Visio 2000 Help Documentation

[6] McConnell S, Code Complete: A Practical Flandbook of Software
Construction, Microsoft Press, 1993

[7] Kirk R, Statistics: An Introduction, Third Edition, The Dryden Press, 1990

47

http://www.desy.de/asg/oracle/homepage.html

	Investigation of an Oracle application's high-level design
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.KnCXz

