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  In April of 1994, a leaking 60,480L gasoline underground storage tank was removed 

from George’s Conoco in Ronan, Montana.  Investigations discovered a free product 

plume extending under Highway 93, with dissolved phase contamination (including 

MTBE) extending 460 m west to Spring Creek.   

  Though geochemical sampling has established the general plume extent, the influence of 

aquifer heterogeneities on plume position and transport behavior is poorly described. The 

purpose of this work is to characterize the physical controls on plume migration.  In 

addition to standard well installation and geochemical sampling, geotechnical tools 

including cone penetration testing (CPT) and Membrane Interface Probe (MIP), were 

used to examine subtle changes in sand, silt and clay. These tests were supported by site 

coring, grain size analyses, and lab and field hydraulic conductivity testing.   

  CPT results revealed glacial diamict sediments, dominated by silt and fine sand with 

lenses of clay varying in thickness.  It appears the plume preferentially travels in 

sequences of sand and silt in the water table aquifer between depths of 3 to 10 m, though 

some contamination has been discovered at greater depth and is believed to be passing 

underneath Spring Creek and traveling west, potentially impacting water users in the 

Flathead Valley.  

  Through field and laboratory analysis, the governing hydrogeologic controls on the 

ground water flow system were described.  A model was developed to simulate the 

contaminant transport and compared to observed plume movement, and a heat transport 

model was developed for comparison with both the modeled ground water flow and the 

field-observed ground water flow characteristics.   

  It became evident that under the documented hydraulic conductivities for sediments 

found at this site, the velocity of plume movement was considerably more rapid than 

expected.  This suggests that either an interconnected fracture network is responsible for 

the transport of hydrocarbons throughout the site, or the known date of contaminant 

release from George’s Conoco is unreliable.   
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1.0 Introduction 

Methyl tert-butyl ether (MTBE), an additive included in automotive gasoline since 

the 1980’s, is used to help increase    combustion efficiency and reduce engine knocking 

(Loustaunau 2003, Leal-Bautista 2006). Currently, more than 80% of the reformulated 

gasoline sold in the United States each year contains up to 15% MTBE by volume (Deeb 

2000, Jacobs 2000, Herrick 2000, Schmidt 2003, Rong 2005). Despite regulations on the 

handling and storage of gasoline, leaks and spills associated with underground storage 

tank systems are common, and often impact surface water and ground water (Deeb 2000, 

Herrick 2000, Jacobs, 2000, Bradley 2001, Schmidt 2003, Schmidt 2004). In fact, MTBE 

is the second most common volatile organic compound found in shallow ground water 

(Squillace 1996, Cozzarelli 1999, Jacobs 2000, Hong 2001, Rossell, 2005, Bradley 2006, 

Stocking 1999, Leal-Bautista 2006, Chen 2006). Despite its presence as a major ground 

water contaminant, the behavior of MTBE in ground water is poorly understood (Conant 

2000, Jacobs 2000, Rong 2005). Many states have begun to impose restrictions and even 

phase-out the use of MTBE in an effort to control ground water pollution, however, since 

it’s introduction, MTBE has become a prevalent ground water contaminant that will 

require many years to remediate even after termination of its use (Jacobs 2000, Rong 

2005). 

Tertiary-butyl alcohol (TBA) is an octane booster used in gasoline as well as an 

impurity and degradation product of MTBE (Bay 2005, Rosell 2005, Chen 2006). Under 

aerobic conditions, the MTBE ether bond is cleaved and TBA is formed, which may then 

metabolize to form formaldehyde and acetone under specific conditions (Stocking 1999, 

Deeb 2000, Jacobs 2000, Kolhatkar 2000, Schmidt 2004). TBA acts as the rate limiting 
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step in the degradation of MTBE (Deeb 2000). In conditions where benzene toluene 

ethylbenzene xylenes (BTEX) exists, microorganisms will utilize these compounds for 

carbon and energy, a process that requires oxygen and may create anaerobic conditions 

for MTBE and TBA degradation (Deeb 2000, Jacobs 2000, Schirmer 2003, Chen 2006). 

MTBE and TBA have been shown to biodegrade to CH4 and CO2 in the presence of Fe 

(II,III) and hydrogen sulfide when oxygen is not available (Finneran 2001, Hurt 1999). 

Due to TBA’s recalcitrant nature, slow metabolism, and relative mobility, it is also a 

significant ground water pollutant that is commonly associated with MTBE 

contamination and often used as an indicator of MTBE biodegradation (Anthony 1999, 

Stocking 1999, Chen 2006). TBA is a known animal carcinogen, however, the effects on 

humans are uncertain (Williams 2003). 

The California Environmental Protection Agency (EPA) has shown that 

consumption of trace quantities of MTBE can have negative impacts on human health, 

including nausea, headaches, and affects similar to drunkenness. At high enough levels, 

death can occur. Little is known about the affects of tertiary butyl alcohol (TBA) in 

humans, though in lab animals the central nervous system and the urinary tract are 

impacted (Williams 2003). People exposed to MTBE and TBA complained of sore nose 

and throats, headaches, dizziness, and nausea. In Montana, the ground water standard for 

MTBE is 30 µg/L, falling within the USEPA Drinking Water Health Advisory of 20-40 

µg/L (Jacobs 2000). There is currently no national standard for TBA in water. 

The purpose of this work was to determine hydrogeologic controls on the 

transport and fate of MTBE in a fine grained unconfined aquifer. Efforts emphasized 

describing the character and hydrologic properties of the geologic material and 
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assimilating and analyzing source history and water quality data sets collected over the 

last twelve years.  

Specific objectives included using existing data to: 

1. Refine the site stratigraphy 

2. Refine the ground water flow system by establishing a larger monitoring well 

network  

3. Refine the hydraulic properties of the sediments 

4. Determine key geologic and hydrologic controls on MTBE transport  

5. Refine the vertical extent of the MTBE plume  

6. Evaluate the transport process using ground water modeling 

This work will provide a basis for generalizing conditions that control the fate of 

MTBE in fine grained sediments and provide a foundation for designing future 

monitoring and remediation efforts.  

 

1.1 MTBE Occurrence and Fate 

MTBE contamination in ground water occurs most commonly in urban areas with 

concentrations much higher than those found in agricultural areas (Squillace 1996). The 

United States Geological Survey’s National Ground water Assessment Program 

determined that MTBE tends to occur most often in shallow ground water underlying 

urban areas (Jacobs 2000). This is attributed to two primary sources; the first and most 

common is a point source contamination zone such as a leaking pipeline, a spill, or a 

failed underground storage tank (Squillace 1999, Stocking 1999, Deeb 2000). The second 

most common is non point source, such as atmospheric deposition and stormwater runoff 
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(Squillace 1999). MTBE in surface water has also been attributed to exhaust and fueling 

emissions during recreational activities (Stocking 1999).  

 MTBE can be found in ground water anywhere it is used and is found in the 

environment worldwide (Squillace 1999, Rosell, 2005, Chen 2006). Its chemical structure 

is C5H12O6 as shown in Figure 1 (Jacobs 2000).  MTBE has a low organic carbon 

coefficient which prevents it from adsorbing to the organic matter in the soil (Stocking 

1999, Jacobs 2000), and a low retardation factor (nearing 1) which causes MTBE to 

move at a velocity very close to that of the ground water (Anthony 1999, Jacobs 2000). 

MTBE is expected to partition into water more quickly than other gasoline components 

due to its high water solubility, which has been reported as anywhere from 23,200 – 

54,000 mg/L at 25°C (Squillace 1996, Stocking 1999, Jacobs 2000). MTBE has a 

relatively low vapor pressure, 2.45mmHg at 25°C, which prevents large amounts of 

dissolved phase MTBE being lost to vaporization at the capillary fringe (Jacobs 2000, 

Fetter 1999). In the absence of any physical or biological retardation, MTBE will 

generally dissipate through natural dispersion (Jacobs 2000). In many cases, a small 

amount of MTBE is lost through soil vapor dissipation (Stocking 1999) while the 

remaining MTBE is discharged through ground water to a surface water body where it is 

commonly diluted below the detectable range (Jacobs 2000).  

 Table 1 shows a brief overview of the literature on MTBE spills, their locations, 

and effected sediments. 
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Figure 1. Chemical structure of MTBE and TBA (Jacobs 2000). 
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Location Sediments affected 
Ground 

Water Flow 

Plume 

Length 
Timeframe 

Almena, Kansas 

coarse to fine sands, 

silts, clays, alluvial 

deposits 

N/A N/A N/A 

southern Taiwan silty sand, clayey silt .2-1.4 m/d >500 m >2 years 

Düsseldorf, 

Germany 

fine sand, coarse 

sand, gravel, 

quaternary deposits 

N/A >160 m >2 years 

near Beufort, 

South Carolina 
well sorted sand, clay 

minimum 

33 m/y 

350 m 

(truncated) 
>10 years 

Port Hueneme, 

California 

clayey silt, fine-

medium sand (beach 

type), clay 

90-180 m/y 1300 m 15 years 

Orange County, 

California 

fine to coarse channel 

sands 
27 ft/y N/A 7 years 

Napa Valley, 

California 

silty clay, sandy clay, 

(thin) sand/gravel 
N/A >450 ft 3 years 

Laurens, South 

Carolina 

poorly sorted coarse 

sand 
N/A N/A N/A 

Charleston, South 

Carolina 
fine silt and clay N/A N/A N/A 

Galloway 

Township, New 

Jersey 

clay-sand, medium 

sand 
.04-.36 ft/d >50 m >2 years 

south of Elizabeth 

City, South 

Carolina 

silty clay, sandy clay, 

sand and clay 
N/A 

300 m 

(discharge 

to river) 

N/A 

 

Table 1. Overview of published MTBE sites (Bradley 2006, Chen 2006, Rossell 2005, Landmeyer 2000, 

Salanitro 2001, Sweeney 1999, Bradley 1999, Cozzarelli 1999, Hurt 1999). 
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1.2 Site Description and History 

This research utilized the instrumented and studied Ronan MTBE Research Site 

in Ronan, Montana (Figure 2.)  The site has been monitored and regulated for over 13 

years by the Remediation Division of the Montana Department of Environmental Quality 

(DEQ) (HKM 2003, HKM 2004, HKM 2006). The town of Ronan is situated in the 

Mission Valley of northwest Montana at approximately 3,090 ft above sea level. Average 

daily temperatures range from -2°C in January to 28°C in July (Flathead Valley Visitor 

Information 2007). The area receives approximately 17 inches per year of precipitation 

(Flathead Valley Visitor Information 2007). The site is also wheel line irrigated for 

alfalfa production from late April to late September. The lithology is primarily composed 

of glacial lacustrine sediments, forming an unconfined aquifer of fine silts and sands that 

are bounded above and below by clay (MSE-HKM, 2002). Ground water is reported to 

flow in a west to southwest direction. Loustaunau (2003) suggested the upper 20-22 ft of 

the aquifer system discharged in a number of seeps and eventually flowed to adjacent 

Spring Creek (HKM 2002). Deeper portions of the flow system continue to travel west 

beyond the creek (Loustaunau 2003).  

 In April of 1994, an apparently ruptured underground storage tank (UST) was 

removed from George’s Conoco on Highway 93 in Ronan, Montana (Figure 2). 

Subsequent investigations revealed a gasoline plume containing MTBE estimated at 

11,000 gallons had been released into the underlying sediments (HKM 2003, HKM 2004, 

HKM 2006). The plume passed west under Highway 93 and now extends about 1,500 ft 

west of the source where MTBE, TBA, and BTEX have been observed discharging at 

springs, seeps, and directly into Spring Creek (MSE-HKM 1993). Dilution prevents 
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direct measurement of MTBE concentrations in the creek, though measurable amounts 

appear to be discharging to the channel hyproheic zone (Loustaunau 2003). The Ronan 

MTBE Research Site, which encompasses the area surrounding the release site extending 

to approximately 50 ft beyond Spring Creek, is the largest known MTBE plume in the 

state.  

Thirty-one 2 to 4 inch diameter PVC monitoring wells having screen lengths of 

3.25 to 20 ft were installed by DEQ contractors from 1994 to 2006 (HKM 2004). Three 

Solinst Continuous Multichannel Tubing (CMT) monitoring wells (MP-01, MP-02, and 

MP-03) were installed along the plume’s longitudinal axis to depths of 72, 62, and 57 ft, 

respectively. The wells were completed with sand packs and sealed with bentonite clay 

(MSE-HKM 2003). These 2 inch diameter wells were installed using a 4 inch diameter 

hollow stem auger drill with an eight inch outer diameter. Split spoon sampling 

completed by DEQ contractors and driller’s logs were used to interpret the lithology of 

the site. A cross section suggests four main hydrogeologic units composed of clay, silt, 

and fine sand (HKM 2003) (Figure 3). The water level monitoring and quarterly water 

quality sampling were used to establish a representation of the general direction of 

ground water flow and the position of the two-dimensional plume. 

In 2002 the US EPA conducted an in situ bioremediation study using hydraulic 

fracturing to create 7 BioNets filled with silica or Isolite
® 

in the west areas of the alfalfa 

field. These BioNets were utilized to introduce known MTBE degrading microbes, 

oxygen, and nutrients (Loustaunau 2003).  In addition, further west on the floodplain of 

Spring Creek, a phytoremediation net of cottonwood, bulrush, and willow seedlings was 
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installed by the MT DEQ and the US Geological Survey (USGS) in 2001 (Loustaunau 

2003). 

Electrical resistance heating was performed as a remediation technology beneath 

Highway 93 between July 11 and November 30, 2003 (HKM 2003). The purpose of 

heating the ambient ground water was two-fold; the primary purpose being to elevate 

ground water temperatures to boil off excess hydrocarbons, which vaporize at a lower 

temperature than water, and secondly to increase the ambient ground water temperatures 

to enhance rates of possible natural microbial degradation. A network of temperature 

recording devices installed around the site indicate that the ambient ground water 

temperature is seasonally influenced, although slightly, and it remains between 5° and 

10°C year round. Microbial action is generally believed to be reduced at cooler 

temperatures. Bradley (2006) reported rates of microbial degradation in laboratory 

microcosm studies of MTBE in the Ronan sediments may be reduced by low seasonal 

temperatures by up to 35%.  During remediation the ground water temperature was raised 

to approximately 100°C, which allowed for the evaporation of a large volume of 

contamination (HKM 2004). The actual amount of MTBE vaporized is unknown.   

 Microbial breakdown of MTBE is also largely dependent on the presence of 

oxygen, therefore a soil vapor extraction (SVE) air sparging system was installed and 

operated in conjunction with the heating event (HKM 2003). SVE began in July 2003 and 

ran during the same period as the heating event. The air sparging system included twelve 

electrodes as sparge units. This system was started in August 2003 to allow for heating of 

the ground water (HKM 2003). Both the SVE and air sparging operated on pulse mode.  

In September 2003 an additional SVE/air sparging system was activated including a 
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sparge trench parallel to Highway 93 extending the north-south width of the plume 

(HKM 2003).  This trench was installed as part of the original remediation efforts and 

was in operation prior to the heating event. The air sparging/SVE system is still in 

operation. 

 

2.0 Methods 

Research efforts included applying a variety of methods to enhance analyses of 

the geologic framework and sediment complexity associated with the observed plume 

and overall site. In addition to re-examining historical drilling logs a series of cone 

penetration tests (CPT) were performed. Testing was calibrated by additional site coring 

and development of grain size distributions and estimates of hydraulic properties.  

Hydraulic conductivity characterization was conducted both in the field and lab using 

both traditional techniques and temperature transport evaluations. Additional wells were 

installed to improve interpretations of the overall ground water flow system. Three 

dimensional plume characterization was further defined by collecting membrane interface 

probe (MIP) data during CPT sampling.  These additional data sets were used to refine 

the site conceptual model by developing and calibrating a site ground water model.  The 

modeling effort was also used to further evaluate physical controls on the transport of 

MTBE in fine grained sediments. 

 

2.1 Cone Penetration Testing 

In February of 2005, ConeTec of Baltimore, Maryland was contracted by the 

Montana DEQ to perform twenty-two CPT west of the fence located along Highway 93 
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forming three transects perpendicular to the plume axis. Eight additional sites were 

evaluated in order fill in the data gaps between transects and to determine the lateral 

extent of the geology surrounding the plume (Figure 4). This work was performed in an 

attempt to refine the understanding of the area geology and create a more comprehensive 

stratigraphic profile of the plume sediments. 

 Components of the CPT include the following (Figure 5). 

1. Piezocone, an electronic metal cone that acts as a drill bit driven into the sediment 

and monitoring the cone resistance (qc)  

2. Porous ring, the ring is saturated with silicone oil and it monitors the pore pressue 

(u) as the rod is driven and it sits directly above the piezocone in the u2 position 

3. Geophone, which measures the shear wave velocities (Vs) 

4. Seismometer, which measures the compression wave velocities (Vp) 

5. Friction sleeve with string guage, which measures the friction on the sleeve 

during a push 

6. Ultra-Violet Induced Fluorescence (UVIF) with a sapphire lens, this recognizes 

the presence of hydrocarbons by emitting a high frequency light that excites the 

electrons of a compound and measures the fluorescence when the compound 

returns to a stable state,  generally only effective in the presence of free product 

7. Laser Induced Fluorescence (LIF) also detects free product, although it is not used 

in conjunction with the above method and was not utilized for this project 
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Figure 5. Components of the Cone Penetration Testing rod (adapted from Robertson, 1989) 
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2.2 Lithologic and Hydraulic Properties 

Cone Penetration Testing offers a continuous vertical stratigraphic profile by 

inferring the response of the subsurface strata to penetration resistance. CPT collects pore 

pressure, cone resistance, shear and wave velocities, and friction as a rod equipped with a 

specialized tip is driven into the sediments. During this test, sediment permeability was 

estimated from the dynamic pore pressure (ud) as well as from a dissipation test 

measuring the time it takes for excess pore water pressure to reach equilibrium 

piezometric pressure (T100%) (Robertson, 2004). Cohesive soils such as clay have a 

greater T100% than non-cohesive soils, such as sand. 

In a few locations where more specific data were required, a pore pressure 

dissipation test (PPD) was performed on a static rod (Robertson, 2004). Rather than 

measuring the dynamic pore pressure, the PPD test measured the decay of excess 

pressure in conductive sediments or the time required to recharge the pores with water.  

Testing results are then compared to instrument related soil property 

classifications. One of twelve sediment zones is selected as representative of instrumental 

response data (Soil Behavior Type or SBT).   Specific information used to determine 

SBT is the corrected cone penetration resistance (qt) and the friction ratio, defined as: 

Rf = fs/qt 

where Rf is the friction ratio and fs is the sleeve friction stress (Figure 6). Typically, the 

cone penetration resistance is high in sands and low in clays while the friction ratio is low 

in sands and high in clays (Figure 7).  
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Figure 6. Soil Behavior Type (SBT) diagram showing how sediments are classified  

under SBTs (adapted from Robertson 1986). 

 

 

 



 18 

 
 
Figure 7. Report provided by ConeTec showing the results of CPT at site CPT01. The y axis of the graphs 

shows depth in feet with the first column indicating cone resistance (qt), measured in tones per square foot. 

The second column denotes sleevefriction stress (fs), also in tones per square foot; the third column 

indicates uncorrected pore pressure (u) in feet; and the fourth column shows the UVIF results. This fourth 

column was disregarded for work at this site as the MIP provided a much finer tool for hydrocarbon 

analysis. The final column shows the SBT data, which is interpreted much like a stratigraphic column 

showing grain size analyses. 
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For comparison with the CPT interpreted geologic logs, three 1.5 in diameter 

cores were taken at CPT-18, CPT-28, and CPT-30 using a 5400 Geoprobe. These sites 

were chosen in order to sample each of the major lithological units represented in the 

CPT data (Appendix A). The cores were taken using a Geoprobe 1
1
/2 inch Macro-core 

Soil Sampler at depths of 8, 12, and 16 ft, respectively. These cores were split and logged 

for comparison to SBT data at the corresponding CPT points. Based on visual 

examination representative samples of sediment types were assessed and grain size 

analyses performed. 

 

2.3 Grain Size Analysis 

Grain size distributions were obtained using the Malvern Mastersizer 2000, a low-

angle laser light scattering (LALLS) system, commonly called a laser diffractometer. The 

Mastersizer 2000 was chosen for measuring sediment grain sizes over traditional methods 

(pipette, sieve analysis) because of the more rapid analyses time and the significant 

accuracy (up to a 95% confidence interval) (Sperazza, 2004). It measures particles in the 

.02-2000µm range (Sperazza, 2004). As described by Sperazza (2004) approximately 

0.1g was placed in a 30mL bottle of a 5.5g/L solution of sodium hexametaphosphate, 

(NaPO3)6. The sediment was stored for 24 hours in order to allow for chemical dispersion 

and to prevent grains from aggregating after sonication.  

The entire sample, once prepared, is introduced to the laser diffractometer through 

a dilution of deionized water. This solution was sonicated for 60 seconds, allowing the 

disaggregated particles to achieve maximum dispersion without flocculating the clays or 

breaking down larger grains (Sperazza, 2004). The grain size of each sample was 
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measured by 52 sensors taking 1000 readings per second for twelve seconds. This 

analysis was performed three successive times, with the average result of the three tests 

reported in the statistical analyses (Sperazza, 2004). Data were compiled and reported 

using Malvern’s Mastersizer 2000 software, version 5.  Grain size distributions were 

prepared for each sample using the standard technique (Sperazza 2004). Grain size 

analysis results were plotted on ternary diagrams in order to show the classification by 

grain size and to compare results to the SBT obtained from analyses of the CPT data.  

 

2.4 Ground Water Flow System 

Historical reports of concentration data provided by HKM were compiled and 

analyzed in order to identify trends in plume movement. Graphs were compiled that 

illustrate the concentration of BTEX components, ground water elevation, dissolved 

oxygen (DO) and total petroleum hydrocarbons (TPH). These data were used in concert 

with the probing methods to characterize the three-dimensional distribution of site 

contaminants including MTBE and BTEX.  

 In order to place the established ground water flow regime in the context of the 

larger more regional flow system, seven wells (S#) were installed on the outskirts of the 

alfalfa field (Figure 4). These 1 inch diameter PVC wells were installed using the 

Geoprobe to a depth of 20-25 ft with a five foot screened interval. The wells were 

completed by allowing the formation to collapse around the well screen. The remaining 

well column was filled with coarse sand and a half foot cap of bentonite clay. The wells 

were monitored bi-monthly along with the established well network to determine the flow 
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in the overall system. Data were analyzed by constructing water level hydrographs and 

water table maps (Fetter 2001). 

 

2.5 Hydraulic Conductivity Analyses 

In an attempt to further characterize the hydraulic properties of the site sediment, 

cores were taken at CPT-08, CPT-10, and CPT-12 and falling head permeameter tests 

were performed in the lab on undisturbed segments to determine vertical hydraulic 

conductivities (Fetter, 2001).  The following equation was used: 

Kv=(dt
2
L/dc

2
t)ln(ho/h) 

Where Kv is the vertical conductivity in cm/s, L is the length of the sample, ho is the 

initial head within the falling head tube, h is the final head in the falling head tube, t is the 

time it takes to go from ho to h, dt is the inside diameter of the falling head tube, and dc is 

the inside diameter of the sample core.  Cores were prepared by cutting the core barrel 

into six-inch intervals. Tests were completed on samples that occurred below the water 

table. The polycarbonate 2 inch diameter core tubes containing the undisturbed sediments 

were capped using rubber stoppers to seal the cores at the top. At the base, a plug of 

extra-fine steel wool held the sediments in place and allowed water to drain without 

impacting the flow rate. Samples of each analyzed core were taken from the bottom of 

the six-inch section prior to Kv testing for the purpose of grain size analysis. The average 

of three separate falling head tests is used to represent the core conductivity 

Estimates of the horizontal conductivity were determined by performing slug tests 

on various existing and newly installed wells. Several one inch diameter PVC wells were 

installed at discreet depths in an attempt to isolate the hydraulic characteristics of a 
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particular unit identified by the CPT (CPT-01, CPT-04, CPT-06, CPT-16, CPT-30). The 

well at CPT-01 was installed to 41 ft to isolate the silt unit, the well installed at CPT-04 

was installed to 25 ft to isolate the silty sand/sand unit, the CPT-06 well was installed in 

the sandy silt unit at 19 ft depth, the CPT-16 well was installed to 25 ft within the sand 

unit, and the CPT-30 well was installed to 12 inches order to isolate the ‘sensitive fines 

unit’. With the exception of the well installed near CPT-30, which had a 2 foot screen, 

the wells had a 5 foot screened interval with a 0.60 slot size screen (0.06 inch openings). 

The thickness of the sediments at CPT-30 required a three foot screen to ensure 

completion within the desired unit. All wells were installed within five feet of the CPT 

point.  

Slug tests were performed both with a Geoprobe Pneumatic Slug Test Kit 

(Geoprobe 2002) and, in less conductive sediments requiring long recovery times, by 

using a continuous water level monitoring Solinst DataLogger operated for 

approximately one week (May and October 2006). The Hvorslev (1951) method was 

used to calculate horizontal conductivity: 

Kh=[r
2
ln(Le/R)]/(2Let

37
) 

where Kh is the hydraulic conductivity, r is the radius of the well casing, R is the radius of 

the well screen, Le is the screen length, and t
37

 is the time is takes for the water level to 

rise to 37% of the initial change. 

 

2.6 Temperature Monitoring 

The 2003 remediation heating event created a plume of warm ground water below 

Highway 93 that tracked out across the alfalfa field and began to reach well M12 in 
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October of 2003 peaking at just over 24°C. It was hoped that monitoring of the heat 

plume would contribute to understanding hydraulic conditions at this site (Su 2004). Ten 

temperature buttons (Johnson 2005) were installed below the water surface within well 

M12 at five foot intervals with two buttons at each location. Two one inch wells (T1 and 

T2) were constructed four and eight feet down hydrologic gradient from well M12 with 

two temperature buttons were installed at corresponding elevations to each set of buttons 

installed at well M12 (Figure 4). Both wells were screened the entire length of the 

saturated thickness. A Solinst water level/temperature logger was installed prior to the 

heating event in well M12 in order to monitor ambient ground water temperature 

throughout the entire remediation effort. Data from this logger showed ground water 

temperatures at this well were impacted by the heating event despite its interpreted 

position on the outskirts of the contaminant plume.  

Heat can be used as a tracer to determine the hydraulic transport properties within 

an aquifer (Rath 2006, Anderson 2005, Constantz 2003, Land 2001) using a simple 

model to solve for three-dimensional advective transport.  The three dimensional heat-

transport equation is written as: 

 

where T is temperature, t is time, ρw is the density and cw is the specific heat of water, ρ is 

the density and c is the specific heat of the sediments, q is the discharge, and Ke is a term 

including the effective thermal conductivity of the sediments and the water (Anderson 

2005). 

 The equation is solved by several models, although VS2DH for shallow aquifers 

is the model chosen for this study. Although this model is designed for tracking heat loss 
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and gain in stream channels, the advantage is that the model uses iterative time steps to 

calculate the effect of the temperature on the viscosity of the fluid.  

 

2.7 Delineating the Dissolved Phase Plume  

In an attempt to refine the three dimensional distribution of the dissolved MTBE 

plume (and other site constituents) CPT testing was accompanied with Membrane 

Interface Probe data collection (McInnes, personal communication, 2005). This probe 

was operated with a ultra-violet induced fluorescence meter (UVIF). As this probe is 

advanced though the subsurface it provides a very coarse analysis of the presence or 

absence of hydrocarbons. The advantage of the MIP tool is that it provides a real-time 

quantitative estimate of speciated volatile organic hydrocarbons (VOCs). In particular, 

five VOCs were targeted: benzene, toluene, ethyl benzene, xylenes (BTEX), and methyl 

tert butyl ether (MTBE). For the purposes of this study, and due to operator and DEQ 

time limitations, the MIP was not used to speciate hydrocarbons on-site but rather to 

identify the presence or absence of low concentrations of contaminants.  

The MIP tool was operated by attaching a heating element to the CPT rod above 

the piezocone and using a sampling port to draw gases up through a hose to a portable 

gas chromatograph mounted in the Columbia Technologies truck. By heating the water 

surrounding the sample port to a specified target temperature, the water would boil off 

and the VOCs would be collected and analyzed. Nitrogen and hydrogen were used as 

carrier gases for conveying hydrocarbons from the CPT rod to the three detectors used to 

identify the hydrocarbons. The methodology was described via verbal communication by 
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Doug McInnes of Columbia Technologies (personal communication, Doug McInnes, 

2005). 

In an attempt to collect data at a wide range of points, under the field time 

constraints, the rod was driven at a constant rate and the temperature remained at 

approximately 60°C.  The limitations of operating the tool in this way only caused the 

MIP to indicate areas of high VOC concentrations (where gases were likely to be present 

naturally). In areas identified as ‘hot spots’ the probe was halted and allowed to heat to 

the target temperature of 120°C for a more accurate analysis. Three detectors were 

utilized for this purpose (McInnes, personal communication, 2005), a photo ionization 

detector (PID), an electron capture detector (ECD), and a flame ionization detector (FID). 

The PID was used to identify aromatic hydrocarbons, the ECD for halogenated 

compounds, and the FID was used for identifying organic hydrocarbons. 

A ground water budget was calculated estimated for the selected model area. The 

ground water budget was calculated as:  

GWin = Gwout – Stream loss 

Darcy’s Law was used to calculate the flux of ground water through a cross 

section of the aquifer.  Darcy’s Law states that the discharge, Q, through an aquifer is 

equal to the transmissivity, T, multiplied by the width of the aquifer, w (in this case, the 

width of the modeled section), and the ground water gradient, i.  Transmissivity was 

calculated as the product of the estimated hydraulic conductivity, K, and the thickness of 

the aquifer, b.  Hydraulic gradients were estimated using three wells to the east (M31, 

M11, and M6) and three wells to the west (M14, M13, M32). Recharge was not 
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calculated from precipitation as the area receives only 16.5 inches per year, the majority 

of which never reaches the water table due to uptake by plants and evaporation.   

The analyses completed as part of this work and data from previous works were 

evaluated and a generalized conceptual model of the hydrogeology of the site was 

developed (Anderson 1992).  A key component of the conceptual site model is a steady 

state water balance.  This was formulated as ground water in = ground water out.  

Because this was a steady state model, changes in storage were set equal to zero.  Ground 

water entering the system is introduced through a constant head boundary set east of the 

site, which has been established at 3055 based on projected ground water gradients.  

Water is lost to the system at a constant head boundary to the west of the site, which is 

established at 3025 ft based on ground water gradients.  In addition, ground water is 

allowed to discharge to surface water at Spring Creek. Recharge to the system is 

introduced only in portions of the balance area that extended beyond the alfalfa field area.  

It was assumed evapotranspiration in the alfalfa field prevented precipitation and 

irrigation water from reaching the ground water system in this area. The BioNet 

phreatophyte network installed along the east floodplain of the creek was not included in 

the water budget as a significant portion (<90%) was destroyed by after it’s creation.  

 

2.8 Numerical Modeling Parameters 

 A steady state three-dimensional site ground water flow model was formulated 

and calibrated using Waterloo Hydrologic’s Visual Modflow v. 3.1 on May 3, 2007. The 

model was designed to simulate the steady state flow and to evaluate how physical 

factors likely control the advective transport of MTBE at the Ronan site. The model was 
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comprised of three layers (35, 11 and 20 ft thick) representing the principal sediment 

types identified during this investigation.  It covers an area of 0.16 mi
2
 and extends to a 

depth of approximately 66 ft.  The site was divided into a grid of 8000 cells each with 

dimensions of 18 by 30 ft.  Model formulation considered the work of Loustaunau (2003) 

who constructed and calibrated a profile model representing ground water behavior along 

a flow line representing the centerline of the plume. The three-dimensional model was 

calibrated to reflect the measured values of hydraulic conductivities (field and laboratory 

analysis), the ground water discharge to the stream described by Loustaunau (2003) 

(Spring Creek), the movement and location of the MTBE plume, and the horizontal and 

vertical hydraulic gradients (MP-01, MP-02, and MP-03). The 14 water table elevations 

collected in June 2003 were used to calibrate the water table position.  

 The model boundaries included no-flow zones to the north and south of the site 

where ground water flow is parallel to the boundaries and constant head boundaries to the 

east and west. The east constant head boundary located 800 ft east of spill site allowed 

ground water to flow into the model domain creating the observed east-west flow system 

(HKM 2003, 2004, 2006). The west constant head boundary was positioned 

approximately 400 ft west of the stream (Loustaunau 2003). Figure 8 shows the model 

parameters including the well locations used for calibration and the model boundaries. 

Spring Creek was represented by the river package and creek bed properties were based 

on Loustaunau (2003) estimates.  

 Particle tracking was performed as a calibration technique by comparing particle 

paths and locations to observed plume behavior.  In addition, advective flow of MTBE 

was examined by investigating the predicted location of particles relative to the known 



 28 

source history and  observed plume center of mass as mapped based on mid-May to early 

June 2003 water quality sampling results.  
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3.0 Results  

The main objectives of this research were to gain an understanding of how the site 

lithology and corresponding hydrogeologic properties control the behavior of MTBE in 

fine-grained sediments. The site geology is first placed in the context of the geologic 

setting of the Mission Valley based on the literature and then described in detail relying 

on both historical and project related observations and interpretations.  With this 

framework, the ground water system is assessed and current plume conditions are 

described.  Finally, a conceptual model of the site hydrogeology and the controls on the 

transport and fate of MTBE are developed and tested. 

 

3.1 Regional Geologic Setting  

The Ronan MTBE site lies within the Mission Valley, which has previously been 

described as part of the glacial Lake Missoula depositional environment (Levish 1997). 

The Mission Valley was believed to be the deepest and largest valley inundated by glacial 

Lake Missoula during the late Wisconsin age (Levish 1997). The valley was flooded by 

impounding the Clark Fork River by the Purcell Trench lobe of the Cordilleran ice sheet, 

creating a glacial lacustrine depositional environment in which the Ronan site is located. 

Glacial lacustrine sediments have been described in detail along the Flathead River, 

where erosion by the river has created massive outcrops that can be mapped for several 

miles (Levish 1997, Smith 2004, Hofmann 2005, Edwards 2006).  

 Levish (1997) describes these sediments along Flathead River between Polson, 11 

miles  to the north, and Crow Creek 6.5 mi to the southwest of Ronan as a 492 ft 

outcropping of primarily laminated fines; including sands, silts and clays. Beds of clast-
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supported gravels are also observed in some outcrops. The vertical sequences described 

in Levish’s work ranges from glacial diamict to incalated laminated silt and clay, to 

laminated fines containing no diamict. Laminations are described as anywhere from mm 

size to up to a meter in thickness. Levish further describes the color and bedding of the 

laminations as showing brownish colored clays and nearly white silts, often occurring 

with cross bedded ripples. Dropstones carried by floating ice were frequently recorded on 

a scale from mm to massive boulder sized, deposited within the bedded sediments. It has 

been interpreted that such glacial lacustrine sediments are found at this study site. 

 

3.2. Site Lithology and Physical Framework- Ronan Site 

The sediments types interpreted from the CPT, grain size analyses, and logging of 

Geoprobe coring data suggest sediments are fine grained and generally very similar to 

those described by Levish (1997).  Cores of silts and sands contain distinct sequences of 

fine laminations disrupted by the presence of dropstones in nearly all core sections. While 

most laminations are on the mm scale some vary to as much as 3cm in size.   

Site sediments are composed of brownish colored clays interlayered with lighter 

colored silts and sands. Color descriptions are listed on the lithologic columns for 

Geoprobe cores (Appendixb B). In addition, small scale ripples can be seen in the most 

distinct of the laminated beds within the cores. Dropstones were also observed in cores 

and range in size from 0.1to 1.2 in in diameter. Dropstones did not occur in all sections of 

sediment, and when present the quantity ranged from rare (a single stone) to multiple 

(nearing clast-supported). In one area only were clast-supported bedded gravels found, at 

CPT 30.  
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Grain size analyses typically showed a fairly distinct separation between a near 

surface layer of fine grained sediments and the underlying water-bearing silts and sands. 

The coarser sediments generally consisted of a high sand content, while the silt content 

ranged considerably and clay was consistently below 5%. The surface sediments 

generally showed significant clay content with little sand and high silt content. CPT 30 

was the only location showing clay content greater than 50%, defining it simply as clay. 

This point is outside of the dissolved phase plume and so cannot be considered a 

confining unit preventing contamination from spreading to depth. At CPT 10, however, a 

coarse unit with greater than 90% sand was seen. This point is within the confines of the 

plume and may have influenced MTBE migration at rates larger than those attributed to 

the dominant silty sediments.  

The SBT correlates very closely to corresponding cores with minor grain size 

fraction differences.  The resolution of CPT data was about one foot leaving lesser 

bedding characteristics unidentified. The comparison of CPT 30 with the corresponding 

Geoprobe core shows very good correlation between CPT interpreted lithology and 

observed and lab characterized lithology over the eight feet of recovered core.  

Core samples of the sediments were characterized, laminated bedding and the results of 

the grain size analyses were compared to the SBT and established properties of each unit 

were assigned to corresponding SBT units. CPT can not identify layered units where 

bedding may consist of alternating two inch thick layers. For such layers of alternating 

sand and silt, the entire section may be interpreted as silty sand. It is assumed that SBT 

interpretations are consistent throughout the site, that is to say, a silty sand lying at a 

depth of 35 ft is similar in its hydraulic properties to a silty sand lying at 65 ft.  
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Previous investigations at this site generated an east-west cross geologic section 

based on split spoon sampling performed during installation of the three CMT wells 

(HKM Engineering, 2003) (Figure 9). The interpretation of these data show an upper clay 

unit, ranging from 10-12 ft at land surface. Underlying this upper unit is a 30-40 ft silt 

and sand dominated unit that acts as the primary water-bearing unit. Underlying these 

sediments is a second clay unit of indeterminate thickness (10-25 ft). The contractor 

installed monitoring well network was established with the primary purpose of accessing 

the shallow ground water where contamination was assumed to be present. Most wells 

are completed in the near surface silt and sand dominated unit.  

A Geoprobe was used to take three cores for comparison with the SBT data, 

although the practical depth using this method is much less than that achieved with the 

CPT. Coring depth was limited both by the equipment available and by flowing sands 

encountered below the water table that caused the borehole to fill with sediments between 

core extraction intervals. While the cores taken using this method offered significantly 

more detail than either split spoon cores or SBT, each core was taken a minimum of 5 ft 

from the CPT point. This was done in order to prevent the coring of bentonite backfill 

used to plug CPT boreholes or sediments disrupted by the CPT process. The complexity 

of the sedimentary deposits is such that this distance may result in differences between 

the profiles. Included are two profiles comparing SBT data in the left column and an 

expanded profile aligned with data described from the split Geoprobe cores on the right 

(Figures 10-12). By aligning the identified units and corresponding grain size analyses 

with the SBT data, it was possible to determine the representativeness of the SBT 

profiles. 
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Figure 10. CPT 18 SBT as compared to mapped Geoprobe core and grain size analysis 
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Figure 11. CPT 28 SBT as compared to mapped Geoprobe core and grain size analysis 
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Figure 12. CPT 30 SBT as compared to mapped Geoprobe core and grain size analysis 

 



 38 

Results of CPT logging and interpreted SBT revealed the original auger based 

three unit interpretation is likely over simplified (Figure 9). The interpreted SBT results 

showed that generally lenses of coarse sands are present in the eastern portion of the site 

and finer units composed of sandy silt dominate the western portion. In addition, the 

identified underlying clay unit is considerably thinner to the east than depicted by the  

CMT well logs. In addition it would appear this unit is not primarily comprised of clay, 

but rather a clay-rich silt. A fence diagram constructed down the centerline of the plume 

was prepared using interpreted SBT lithologies (Figure 13). The overall framework 

interpreted from the CPT and Geoprobe coring is similar to the HKM interpreted 

lithology; however, split spoon interpretations apparently missed subtle changes in 

sediment types. Records show that split spoon sampling below the water table 

encountered problems as fine sediments would flow up into the spoon, a condition that 

made the interpretation of lithologic breaks in these samples very hard to describe (HKM 

2003).  

In addition to interpreting an east-west profile, three transects were constructed 

perpendicular to the plume axis (north to south) (Figures 14-16). The east transect clearly 

identifies multiple sand lenses seen in the previously described fence diagram, as well as 

finer lenses of sandy silt. Sediment layers appear to pinch out and are often intersected by 

coarser units. Windows between the upper and lower sandy silt units may be present. 

Sediment types in the area closest to the road show a silt and sand dominated system, 

whereas cross sections farther west indicate fine sediment packages dominate the 

lithology. 
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Figure 14. Transect developed from CPT lithologies showing East Transect perpendicular to the plume 

axis. The transect location is shown on Figure 4. 
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The center and west transects show an equally complex sedimentary relationship 

with the fine grained unit becoming more clay rich and significantly thicker. The center 

transect shows similar heterogeneity; suggesting the coarse grained units may be 

pinching out not only to the north and south but also to the west. Data below this fine 

grained unit are not available. The two upper and lower coarse grained units are 

essentially separated in this area by the clay rich unit; however, the eastern most cross 

section indicates the coarse grained units are connected. 

The west transect is more homogeneous than the center transect, with the lower unit 

dominated almost entirely by clay-rich sediments. Lenses of coarse sediment are virtually 

absent and the water bearing unit shows more fine-grained lenses than in the more 

easterly transects. Beyond this section to the west, the land surface topography drops 

quickly to the first bench along the creek. A seepage face along this break in slope 

limited access to the coring equipment (Loustaunau 2003). To the west of the creek, 

however, the sandy silt dominant upper sediments are found immediately below the 

topsoil, suggesting the upper clay unit has been eroded and the creek bed includes coarse 

grained sediments.  

 

3.3 Ground Water Flow 

 Data compiled by HKM Engineering (2003, 2004, 2006) and Loustaunau (2003) 

provide a consistent description of ground water movement from east to west with a 

slight trend to the south. Ground water is presumably recharged near the Mission 

Mountain range to the east and moves to the west. Shallow ground water at the site is 

discharged to Spring Creek while the deeper ground water is presumed to flow to the 
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west past the creek (Loustaunau 2003). A local topographic high approximately 100 ft 

west of the creek likely sets up the reported and observed shallow ground water system 

that follows west to east discharging to Spring Creek (Loustaunau 2003). 

 Ground water flow in the vicinity of the site travels west of the highway and 

discharges to Spring Creek to the west, this system transports the MTBE and other 

contaminants at the site (Figure17). The water table is found typically 18 ft below land 

surface in the eastern portion of the site and 2-5 ft below land surface in the western area 

(Figure 18).  The water level record of the continuous recording transducer located in 

well M12 shows seasonal variation in the water level tends to vary between 3058 ft and 

3054 ft, being nearest the land surface in the April and at its deepest position in August.  

Though the field is typically irrigated using a side roll sprinkler from May to September 

no clear evidence of water percolating and recharging the underlying ground water 

system is observed (HKM 2004, Loustaunau 2003).  

Seepage is observed on the slope just east of Spring Creek. Local ground water 

discharge occurs in Spring Creek with average seepage flux of 0.05 to 2.34 ft
3
/ft

2
d 

(Loustaunau 2003).  Loustaunau (2003) reported the creek gains approximately 10 cfs 

over a 2,600 ft stream reach as the creek passes through the site.   

Vertical movement of ground water at the site appears to be limited by the 

presence of fine grained sediments below the silty sand/sand unit. Reported vertical 

gradients are typically below 0.01 (HKM 2003, Loustaunau 2003, HKM 2004, HKM 

2006). Vertical gradients are typically upwards where sediments of low permeability 

underlie higher permeability sediments, and gradients are slightly downward within the 

higher permeability units (Figure 2) (Loustaunau 2003, HKM 2006). At the stream 
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interface, the ground water flow from depths up to 25 ft is upward and into the creek. 

Below about 25 ft, ground water generally appears to move horizontally and west beyond 

the site (Loustaunau 2003). 
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Figure 18. Hydrograph showing water levels at M11 and at M19. 
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3.4 Hydraulic Parameter Characterization 

 Laboratory permeability testing of segments of Geoprobe cores yielded a wide 

range of vertical hydraulic conductivity values for site sediments (Table 3).  

Characterization of the fine grained sediments located within 10 ft of the land surface 

indicated very low vertical hydraulic conductivity values. While the coring process tends 

to compact sediments and lowers the hydraulic conductivity, it is unlikely that the 

extremely low conductivities can be entirely attributed to this phenomenon. The lack of 

observable changes in permeameter water levels during testing prevented calculation of 

representative hydraulic conductivity values.  Generally, horizontal hydraulic 

conductivitites are estimated from vertical values by assuming Kh/Kv is equal to 10 

(Anderson and Woessner, 1992) (Table 3). 

 Field based determinations of horizontal hydraulic conductivities yield a wide 

range of values (1.7 ft/d to 1.4x10
-4

 ft/d) (Table 4).  In an attempt to characterize general 

sediment types at the site four geologic units (sand, silty sand, sandy silt, and silty clay) 

were examined. The measured hydraulic conductivities were lumped and averaged for 

each unit to obtain a representative value (Table 5). The vertical hydraulic conductivity 

(Kv) values determined for the silty sand/sand sediments were approximately 3 orders of 

magnitude lower than field determined horizontal values (Kh) while the sandy silt 

sediment Kh and Kv values were separated by 5 orders of magnitude. The hydraulic 

conductivities of the clayey silt unit varied by 4 orders of magnitude. The sand sized 

sediment hydraulic conductivities varied by one order of magnitude difference (between 

Kh and Kv). All averaged vertical hydraulic conductivities were lower than the averaged 

horizontal hydraulic conductivities (Table 5). 
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Sample Name  
Kv ave 

(ft/d) 

Estimated 

Kh ave (ft/d) 

Clay 

% 
Silt % 

Sand 

% 
 

CPT 08 

(102-108") - Average A 1.94E-01 1.94E+00 20.787 72.445 6.766 clayey silt 

(108-114") - Average B 3.20E-01 3.20E+00 1.883 66.991 31.126 sandy silt 

(114-120") - Average C 7.42E-01 7.42E+00 1.728 60.139 38.134 sandy silt 

(120-126") - Average D 1.89E-01 1.89E+00 3.954 73.031 23.015 sandy silt 

(126-132") - Average E 2.98E-01 2.98E+00 2.564 75.949 21.487 sandy silt 

(132-139") - Average F 7.50E-01 7.50E+00 2.994 69.69 27.318 sandy silt 

CPT 10 

(81-87") - Average A 6.21E-02 6.21E-01 4.229 64.832 30.939 sandy silt 

(87-93") - Average B 1.44E-01 1.44E+00 3.447 73.063 23.491 sandy silt 

(93-99") - Average C 1.29E-01 1.29E+00 3.654 71.126 25.22 sandy silt 

(99-105") - Average D 2.01E-01 2.01E+00 2.827 67.835 29.338 sandy silt 

(105-111") - Average E 1.25E-01 1.25E+00 1.098 57.866 41.037 sandy silt 

(111-117") - Average F 9.78E-02 9.78E-01 3.498 73.232 23.271 sandy silt 

(117-125") - Average G 1.11E-01 1.11E+00 3.493 73.765 22.743 sandy silt 

(131-137") - Average H 6.13E-02 6.13E-01 3.489 75.96 20.55 sandy silt 

(137-143") - Average I 8.17E-01 8.17E+00 1.835 41.791 56.375 silty sand 

(143-149") - Average J 3.53E-01 3.53E+00 3.688 73.238 23.073 sandy silt 

(149-155") - Average K 2.43E+01 2.43E+02 0.662 11.434 87.905 sand 

(155-161") - Average L 7.37E+01 7.37E+02 0.282 5.414 94.305 sand 

(161-167") - Average M 8.12E+01 8.12E+02 0.423 7.252 92.324 sand 

CPT 12 

(78-83") - Average A 5.36E-02 5.36E-01 2.158 75.958 21.884 sandy silt 

(83-89") - Average B 1.00E-01 1.00E+00 3.854 74.491 21.656 sandy silt 

(89-95") - Average C 1.38E-01 1.38E+00 3.734 75.144 21.123 sandy silt 

(95-101") - Average D 7.05E-01 7.05E+00 2.889 72.257 24.855 sandy silt 

(101-107") - Average E 1.20E+00 1.20E+01 2.841 67.318 29.841 sandy silt 

(107-113") - Average F 8.17E-01 8.17E+00 2.677 53.554 43.769 sandy silt 

(113-119") - Average G 2.23E-01 2.23E+00 3.724 54.431 41.846 sandy silt 

(119-125") - Average H 1.68E-01 1.68E+00 2.847 79.312 17.84 sandy silt 

 

 
Table 2. Vertical conductivity and grain size analysis for CPT 08, CPT 10, and CPT 12. 
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Well Kh ft/d Unit 

M6* 1.25E-01 silty sand/sand 

M9* 2.01E-03 silty sand/sand 

M10* 3.97E-03 clayey silt 

M11* 4.68E-02 silty sand/sand 

M13* 3.97E-03 clayey silt 

M14* 1.39E-02 silty clay 

M17* 7.09E-02 silt 

M19* 1.50E-02 clayey silt 

M20* 3.12E-03 clayey silt 

M30* 6.80E-02 silty sand/sand 

M31* 4.54E-02 sandy silt 

M32* 7.09E-03 silt 

CPT 01 6.94E-01 silt 

CPT 04 1.39E-01 silty sand/sand 

CPT 06 7.23E-03 sandy silt 

CPT 16 1.69E+00 sand 

CPT 30 1.67E-04 sensitive fines 

M34b 7.40E-05 unknown 

M34c 7.40E-05 unknown 

Average 1.54E-01 N/A 

 
Table 3. Table of horizontal hydraulic conductivities. 

*Taken from Loustaunau, 2002. 
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Sediment 
Kv estimated 

Kh (ft/d) 
Kh ave (ft/d) Kv ave (ft/d) 

clayey silt 1.85E+01 5.71E-03 1.94E-01 

sandy silt 2.63E-02 4.30E+04 3.18E-01 

sand 1.69E+00 3.10E+02 5.97E+01 

silty sand/sand 7.61E-02 3.00E+02 8.17E-01 

 

Table 4. Average vertical hydraulic conductivities (Kv) and horizontal hydraulic conductivities (Kh) for 

sediments described at the Ronan MTBE site. 
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Figure 19. Bar graphs showing vertical hydraulic conductivity. 
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Figure 20. Bar graphs showing horizontal hydraulic conductivity 
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3.5 Temperature Monitoring 

The well network established to assess the transport of heat near Highway 93 

included instrumentation at wells M12 (Solinst water level/temperature logger) wells T1 

and T2 (temperature buttons were installed at five foot intervals), and at well S1 (located 

outside of the heated plume where ambient ground water temperatures could be 

established). Well T2, the well spaced at eight feet from well M12, was destroyed prior to 

the first temperature monitoring.  

The temperature monitoring revealed the temperature peak had already passed the 

instrumented location (Figure 21 amd 22). The records for the Solinst logger that was 

operated during the entire heating test shows the temperature history at well M12 located 

75 ft from the western edge of the remediation project. This temperature record was 

evaluated using the USGS temperature model VS2DH (Healy, 1996).  The model was set 

up as a rectangle starting at the heated area and extending 75 ft.  The arrival of the 

temperature signal was calculated using ground water velocity values.  The temperature 

plume moved at a rate of 0.16 ft/day and a final ground water velocity value of 0.3 ft/d 

was determined.  The horizontal hydraulic conductivity in this portion of the site is 

estimated to be 0.2 ft/day.              
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Figure 22. Graph showing recordings from two temperature buttons located at well T1 and temperature 

data from well M12 during the same time interval (courtesy of HKM Engineering, 2003) 
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3.6 Plume Delineation 

Reports by the DEQ consultants and the work of Loustaunau (2003) recorded the 

horizontal distribution of the MTBE plume over time and the vertical depth to which the 

plume is believed to have migrated (HKM 2003, 2004, 2006). Based on the reported 

source release history (1994), it appears contamination spread quickly across the site in a 

longitudinal direction, with wells near the creek showing minor (≤5µg/L) concentrations 

of MTBE as soon as September of 1998. Appendix C includes a graphical analysis of 

MTBE over time. The highest MTBE concentrations have yet to reach the creek, 

however, the highest concentrations were recorded at the center transect in 2003 at well 

M30. Figure 23 shows the interpreted locations of the bulk MTBE center of mass over 

time (results compiled from HKM 2003, 2204, 2005).  

The vertical extent of the plume was reported by HKM (2003, 2004, 2006) to be 

72 ft in the east and 57 ft in the west based on CMT sampling of the MP wells (Figure 

23).  Loustaunau (2003) was the first to attempt to resolve the mechanisms that accounted 

for the observed concentrations. He hypothesized that the CMT wells may allow 

diffusion of MTBE through the well casing and thus reported concentrations at depth 

were suspect.  Loustaunau (2003) concluded that the polyethylene casing used for the 

CMT wells (MP-01, MP-02, MP-03) was permeable to MTBE.  For this reason, the 

MTBE concentrations found at depth in these wells are questioned.  
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In an attempt to better resolve the vertical distribution of impacted ground water 

the MIP tool was employed.  However, as applied it was only able to indicate areas of 

high concentrations of hydrocarbons.   

Included in Appendix D are copies of the MIP output data. The six graphs show 

electrical conductivity (which was not measured), the speed at which the CPT rod was 

pushed, the PID, FID, and ECD readings, and the temperature of the water surrounding 

the probe. All of the temperature graphs show rhythmic spikes and decays in temperature, 

some more clearly than others. This is attributed to the push delay required as the drill 

clamp is raised to drive each additional section of rod. While the pause was generally 45 

seconds or less, the delay allowed the MIP heating element to significantly increase the 

sampling water temperature. The decay occurs as the additional rod section is driven into 

the ground and the MIP moves beyond the heated water and returns to ambient water 

temperature. This occurred at approximately four foot intervals, the length of each section 

of drill rod added. 

The PID and FID instrument measures hydrocarbons in their gaseous state, 

making the readings more accurate when the temperature is raised and gas is produced. 

Corresponding spikes in the UV wavelength can be noticed on both detectors in 

combination with the increased temperature, and responses to low level concentrations 

are more frequent during temperature spikes. For example, MIP-04 shows two 

temperature spikes between the depths of 16.0 and 21.4 ft. Analogous peaks can be seen 

in the PID and FID graphs, indicating the clear presence of targeted hydrocarbons. MIP-

01 shows analogous FID peaks between 21 and 37 ft, however, the lack of 
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Figure 24.  MIP results from location MIP-04 showing increased concentrations of hydrocarbons on the 

PID, FID, and ECD. 
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verification from the PID does not confirm the presence of hydrocarbons.  The presence 

of hydrocarbons at specific depths was verified only when both detectors showed peaking 

UV wavelengths. 

The locations with a measurable hydrocarbon concentration were recorded at CPT 

04, 07, 08, 10, 11, 14-17, 20, 22, and 25 (Appendix D). All of these locations are found 

surrounding the longitudinal axis of the plume where concentrations have historically 

been highest (Figure 24). In the east transect, apparent contamination extends 90 ft 

laterally, and spreads to 140 ft at the center transect (HKM 2006). Only one point in the 

west transect indicated apparent contamination and therefore the lateral extent could not 

be determined from the MIP data. Concentrations found at depths below 35 ft were 

suggestedfound at four locations in the east transect but in other locations contamination 

was found only at shallower depths (Figure 24.) 
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Figure 26. Diagram of east CPT/MIP transect showing areas of hydrocarbon contamination as evidenced by 

the MIP detectors (PID, FID).  Boxed areas indicate contamination.  Scale is in feet. 
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With very few exceptions, the instrument interpreted contamination appears to be 

confined to the defined shallow aquifer above the lower fine grained sediments. An 

indication of contamination is found closer to the surface in the west transect where the 

topography is lower and the water table is closer to the surface topography. MIP-11 

shows hydrocarbons at an unusually shallow depth, which is a likely product of vapors 

rising into the soil above the water table since the point is not located in a topographic 

low and the two adjacent points do not show contaminants above the water table. In 

contrast, MIP-14 shows contaminants at a depth of approximately 47 ft, well below other 

locations. This anomalous spike is located in a silty sand lens beneath an 8 foot silt unit. 

MIP-16 shows a similar situation, although the hydrocarbons at this point are separated 

from the coarse material by a 2 foot unit of sandy silt and have reached a depth of only 40 

ft (Figure 25).  

 

 

3.7 Pre-model Water Budget 

For comparison with the modeled ground water balance, the pre-model estimated 

ground water budget was computed. The ground water gradient into the study area was 

computed using a three point solution as 0.0045 and it was 0.0087 at the west out flow 

boundary. The cross sectional area for a 1400 foot width of the aquifer was computed to 

be 49000 ft
2
 for the eastern boundary and 35000 ft

2
 ft for the western boundary assuming 

a thickness of 35 ft and 25 ft, respectively.  Based on lithology, the hydraulic 

conductivity was assumed to be 2.5 ft/d along the eastern boundary and 1.48 ft/d along 

the western boundary.  The ground water discharge was estimated as:  

GWin = Tiw = (2.5ft/d x 35ft)(.0045)(1400ft) = 551ft
3
/d +/- 100% 
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GWout = Tiw = (1.48ft/d x 25ft)(.0087)(1400ft) = 450ft
3
/d +/- 100% 

As error in field measurements occur and the site conductivities are observed to be quite 

heterogeneous, uncertainty in estimated ground water discharge calculations may vary 

50-100% 

Stream flow estimated by Loustaunau’s (2003) data suggests a flux into the creek 

between 70ft
3
/d and 3276ft

3
/d.  Using the low flow calculations from Loustaunau’s steam 

flow data, and variation in surface water discharges of +/- 50%, the stream could be 

gaining between 35ft
3
/d and 4914ft

3
/d.  

The ground water discharge simulated by the steady state ground water model 

was lower than the field calculated ground water budget: 

Qin = 352 ft
3
/d 

Qout = 279 ft
3
/d 

Stream gain = 59 ft
3
/d 

The discrepancy between the modeled water in and water out less than 3%. 

Based on study analyses and results, the numerical model was used to generally 

evaluate the conceptual hydrogeologic model and the general transport and fate of 

MTBE.  The physical framework of the site was generalized by simplifying the complex 

stratigraphy in to three layers (Figure 26).  These layers were chosen based on drilling 

and CPT testing and data on site water quality. Constant head boundaries were assigned 

to all three layers at the eastern and western model boundaries.  No flow boundaries are 

assigned to the north and south extent of the model.  The no- flow boundaries were 

placed well away from the plume to avoid any affects on the plume movement.   
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Spring Creek was represented using river cells which allow ground water to 

exchange with the stream. Hydraulic conductivities were assigned to replicate the 

horizontal and vertical conductivities described by Loustaunau (2003).  
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Figure 27. Modeled conductivity zones for layer 1, layer 2, and layer 3 

Modflow calibrated model 



 68 

The model contained three layers representing the three dominant lithologic units 

at the site. The first layer was designed to represent the upper coarse grained saturated 

sediments through which the majority of the contamination is believed to move. This 

layer contained six hydraulic conductivity zones. Water in this layer discharges primarily 

to the stream (Figure 27). Layer two is dominated by silts and was assigned a horizontal 

hydraulic conductivity of 0.0075 ft/day, layer three simulates the underlying low 

permeability sediments characterized by clays and ‘sensitive fines’. This layer was 

assigned a horizontal hydraulic conductivity of 1.46 x 10
-5

 ft/d to the west where it is 

dominated by fine grained sediments and 0.01 ft/d to the east where coarser silty 

sand/sand sediments dominate the unit.  

The modeling effort was developed to represent steady state ground water 

conditions as well hydrographs varied on average by about 1-2 ft annually and ground 

water flow directions and gradients remained relatively constant. The modeling was 

based around head and flux data collect in June 2003.  The model was then calibrated by 

the trial and error method with an absolute mean error of 0.136 ft using 13 wells. Head 

data from one well, WSPN-1 to the west of the creek, did not calibrate as well as other 

locations (residual of 4.1 ft). The values used for calibrating heads were collected by 

Loustaunau (2003) prior to the 2003 monitoring event.  Vertical gradients were calibrated 

based on the June 2003 gradients recorded by HKM (2004) in the CMT wells.  

Initial calibration identified the vertical hydraulic conductivity as one order of 

magnitude lower than that of the horizontal hydraulic conductivity.  As calibration 

proceeded the averaged vertical hydraulic conductivities (lab values) were used for the 

three sediment types. When the calculated anisotropy ratios (10:1) were applied to the  
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modeled hydraulic conductivities, very little change was seen in the calibration of the 

water table elevation; however the vertical movement of water was slightly affected.  The 

greatest distinction noticed was a lower residual error at well MP-03 (two head elevations 

were simulated reflecting the 10 ft and the 57 ft depth). 

 As mentioned previously, the ground water discharge through this aquifer and 

leakage to the river where also used as calibration targets.  Generally, this modeled water 

budget was lowerthan the budget estimated from the field data.  

Once the model was calibrated, particle tracking was applied to grossly evaluate 

ground water directions and velocities. Porosity values of 10-20% were used to represent 

fine grained glacial deposits and 35-50% for silt (Fetter 2001). The results of particle 

tracking showed the modeled ground water flow directions were similar to map 

directions; however, the velocity of particles significantly under predicted the site 

location of the center of mass of the MTBE plume. The velocity computed from the 

calibrated aquifer parameters showed particles moving 100 ft from the source in 10 years, 

a distance that does not correlate with the current plume position. The ground water 

velocity computed for the temperature analysis suggest the calibrated aquifer parameters 

are significantly under estimated, suggesting the heat plume migrated at a rate of 0.16 ft/d 

(assuming ν=0.3ft/day) 

In an attempt to examine the possibility that fracturing or some other mechanism 

affecting the site fine grained sediments would increase transport rates, the porosity was 

lowered incrementally to identify a value that more appropriately represented the 

observed center of mass movement over a ten year period. The effective porosity required 

to match the location of the 2004 center of plume mass in the upper high-permeability 
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sediments (layer 1) was 0.0034.  This would suggest either field and laboratory calculated 

hydraulic properties are higher than measured or estimated (up to 2 orders of magnitude) 

or a process allowing preferential rapid transport of contaminants is operating.  One other 

possible explanation is that the source history is incorrect. 

4.0 Discussion 

4.1 Geologic Controls  

While minor discrepancies between the identified SBT and the measured 

sediment grain size existed, the two generally compared very closely. Dominate 

lithologies of identifiable units were comparable in both interpretations. This indicated 

the CPT appropriately represented geologic conditions. An attempt was made to obtain a 

more complete core from deeper portions of the sediments; however, after repeated 

equipment malfunctions only one four-foot interval core was taken at a depth greater than 

30 ft. The data from this core compared very well to the interpreted SBT.  Hydrogeologic 

properties analyses were not preformed on these samples as the core was disturbed upon 

retrieval. 

Comparison of historical well log data with SBT fence diagrams revealed several 

important aspects that were undetected in the original sampling and interpretations. 

Nearer the source zone just west of the fence line separating Highway 93 from the field, 

lenses of coarse sand are present which may enhance plume transport (Figure 9). In 

addition, below a silt and clay sequence a second sand and silt section is clearly present 

that may have similar properties to the overlying shallow water-bearing unit. Given the 

complex interfingering of sediments with high and low conductivity zones windows in 
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the finer units may exist that would allow vertical movement of contaminated ground 

water under appropriate gradients.  

The presence of fine and course sediments may indicate lacustrine deposits; 

however, the presence of sand and clay lenses may indicate a fluvial depositional 

environment formed the observed sediment.  The lack of exposed outcroppings between 

the study site and the nearby Mission mountains makes it difficult to determine with any 

accuracy the nature of the depositional environment, although the presence of 

asymmetrical ripple marks in the core samples suggests shallow, possibly flowing water.  

The sediments may have been deposited by a post Lake Missoula tributary to the Lower 

Flathead River (Edwards, 2006, Hofmann, 2005). 

If the contamination is indeed passing though the shallow clay underlying the near 

surface coarse grained unit, the second coarse grained unit may also have become 

impacted by the dissolved phase contamination possibly allowing contamination to enter 

deeper parts of the local ground water system. The east-west profile indicates a fairly 

uniform thickness in the upper coarse grained unit; however, the lower coarse grained 

unit is mapped as only present to the east. The unit appears to pinch out before reaching 

the center transect, although it may occur beneath the lower deposits of clays. If the clay 

is pinching out to the east then it is possible the lower coarser grained sediment package 

is present to the west.  

The question of contamination within or below the lower clay unit has been 

highly debated as water samples from wells MP-01, MP-02, and MP-03 show impacted 

water to a depth of 72, 62, and 57 ft, respectively (HKM 2003, HKM 2004, HKM 2006). 

The three impacted wells are all finished at depths below the silt and sand unit. These 
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three wells are all located along the plume axis and were previously used to quantify the 

depth of contamination. However, these three wells were installed using polyethylene 

casing that was shown by Loustanau (2003) to be permeable to hydrocarbons. The wells 

are designed to sample ground water at multiple depths; constructed of six radial septa 

running longitudinally through the casing. It has been suggested that hydrocarbon 

concentrations found in the deeper sampling ports in these wells are unreliable 

(Loustaunau 2003).  

Given the low permeability of the lower sediments and the small vertical 

hydraulic gradients it seems unlikely that MTBE would be migrating to the depths 

indicated by water quality results. Jacobs (1999) indicates one of the greatest sources for 

deep MTBE contamination in zones of low hydraulic conductivity or beneath confined 

units is a man-made pathway. The permeability of the MP well casing material to 

hydrocarbons may have allowed MTBE from a shallow source to pass into the well 

causing water in the deep sampling ports resulting in a false positive test for MTBE.  

However, this issue remains unresolved. 

 

4.2 Geologic Controls on Plume movement 

Plume migration and movement is controlled by the predominant ground water 

east to west flow. Vertical migration appears to be controlled by the properties and spatial 

distribution of the upper and lower low clay units. Historical data collected by HKM 

since discovery of the plume has shown a predominantly shallow, narrow plume traveling 

at a rate seemingly faster than hydrogeologic conditions would allow.  Wells installed 

outside of the plume area as part of this project and the intense probing of the plume 
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region further support the previously interpreted position of the MTBE plume at the site. 

Initial monitoring of newly established wells showed high concentration of hydrocarbons 

including MTBE. Free product was sampled near the source area and a dissolve plume 

extended towards Spring Creek.   

The results of CPT data and corresponding hydraulic conductivity testing indicate 

contaminate pathways may be greatly influenced by a complex site stratigraphy. The 

aquifer system is considerably more heterogeneous that was previously believed, and 

therefore the controls on water movement appear more complicated. Possibly inter-

connected lenses of high hydraulic conductivity material may allow for the rapid 

migration of MTBE in some portions of the site. 

Hydrocarbon contamination suggested by the MIP was greatest near the source, 

close to Highway 93. It is in this area that the higher conductivity sediments also exist in 

identifiable beds, occasionally as thick as several feet. The vertical conductivity of these 

sediments was measured at 68 ft/day and the horizontal conductivity 1190 ft/day. 

The finer sediments found to be underlying the upper conductive zone showed an 

average vertical conductivity of 0.35 ft/day and a horizontal conductivity of 0.007 ft/day 

in the sandy silt unit. While it is improbable that the vertical conductivity exceeds the 

horizontal conductivity, this number was field measured in the area of interest and 

therefore describes the low conductivity sediments. The silt unit was not sampled and 

therefore no vertical conductivity data are available, however, the horizontal conductivity 

was estimated from field analysis to be about 0.69 ft/day. These values fall nearly within 

the expected range of 8.5-850 ft/d (Fetter, 2001).  
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The presence of hydrocarbons in the lower portion of the site sediments would 

suggest that either the finer sediments are discontinuous above the lower coarse grained 

unit or the clay sediments pinch out to the east nearer the source. Without further 

information regarding the stratigraphy to the east, it cannot be conclusively stated that the 

silt beds pinch out. For that reason it must be concluded that in this area the sediments do 

not confine the entire upper water bearing units, but instead form a unit that allows for 

flow of ground water from the upper unit into the lower units. Sediments farther west, 

described in the center and west transects, indicate a much greater clay content is present 

in this underlying unit. To the west a very clay rich unit defined by the CPT as ‘sensitive 

fines’ is found below the low conductivity unit where the second silty sand ground water 

unit exists to the east. The conductivity of this unit is significantly lower, described as 

0.00017 ft/day. This unit is far more likely to act as a confining unit extending to the 

west. 

Graphical analysis of historical ground water contaminant concentrations indicate 

total purgable hydrocarbon (TPH) concentrations were initially measured in the tens of 

thousands µg/L near the source until levels began decreasing in 2001. It was around this 

same time frame that concentrations began to spike at the tens of thousands µg/L in the 

center transect of the monitoring network (600 ft from the source area). Until this time, 

measurable concentrations at the center transect were in the thousands, suggesting the 

bulk of the dissolved contamination had not reach this point. TPH concentrations are 

indicative of the properties of a gasoline spill and have been used to track the migration 

of a plume (as MTBE concentrations are fewer in number). MTBE concentrations spiked 

on multiple occasions at the center transect beginning in 1996 with the last recorded spike 
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occurring in 2004. On both occasions, MTBE levels exceeded 7,000µg/L. The finely 

bedded highly conductive units and longitudinal dilution are likely to be responsible for 

the lower levels of dissolved phase contamination preceding the arrival of higher MTBE 

center of mass concentrations. Graphs of MTBE, TPH, and BTEX levels over time are 

included in Appendix C. 

The bulk of the contamination reached the center transect monitoring wells 

located 600 ft from the source in 2003. This indicates that the majority of the dissolved 

phase contamination, traveling with the ground water, required approximately nine years 

to travel 600 ft. At this rate, the plume is moving an average of 0.23 ft/day. This rate falls 

within the measured velocity of the upper aquifer, which has been calculated as between 

0.99 ft/day and 0.004 ft/day. These values were calculated using the average horizontal 

hydraulic conductivity values measured in the field, gradient information obtained by 

HKM (2003), and the modeled porosity value of 34%.  This rate is in the same range as 

the heat determined velocity (0.3 ft/d) and estimated hydraulic conductivity. 

 

4.3 Plume Delineation  

The MIP tool proved to be a much coarser tool for the identification of the 

presence of hydrocarbons than was expected. It provided minimal insight into the vertical 

extent of the plume. Locations within the east CPT/MIP transect indicated contamination 

at depths below 35 ft both above and below the low permeability sediments.  If these 

interpretations are accurate, the heterogeneity of these sediments may provide pathways 

for contamination to reach multiple depths. MTBE may pass beneath low permeable 

lenses and enter more conductive silty sand/sand units. Contamination was found at 
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shallower depths within the center transect which agrees with the historic data provided 

by HKM (2003, 2004, 2006). 

The lateral extent of the plume was more clearly defined by the MIP. The lateral 

extent of the plume at the east and center transects suggests the plume may be slightly 

narrower than has been previously represented (HKM 2003, 2004, 2006). The west 

transect indicated contamination in two locations, CPT-25 and CPT-04.  These points lie 

within the main axis of the plume; therefore contamination was expected to be higher 

than anywhere else along the west transect.  It appears the bulk maximum contamination 

has not yet reached this area which may account for the absence of hydrocarbons within 

the MIP measurable range elsewhere along the west transect. 

 

4.4 Modeled Contamination  

Simulation of the flow at the Ronan MTBE site was calibrated to 14 wells and 15 

head elevations (including one nested well). The head at the well location west of the 

creek, WSPN-1, was poorly calibrated suggesting the hydrogeologic framework in the 

vicinity of the creek is more complex than modeled.  The simulated steady state ground 

water flow to the creek was similar to that presented by Loustaunau (2003).  

The calibrated model supported water table elevations and gradients observed at 

the site (HKM 2004). Simulated upward gradients matched those evidenced at the CMT 

wells, and discharge into the river was similar to that found by Loustaunau (2003). 

Comparison to the calculated ground water budget, however, showed the modeled ground 

water flux to be lower than expected. The error in the estimated field determined values 

may account for part of the discrepancy. 
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Qin 

 10% 20% 30% 40% 50% 

Kh + 611 667 723 778 834 

Kh - 500 445 389 333 278 

Qout 

 10% 20% 30% 40% 50% 

Kh + 499 544 589 635 680 

Kh - 408 363 317 272 227 

 

 

 
Table 5. Error in discharge shown by the incremental increase and decrease of hydraulic conductivity by 

10%. 
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Mean Absolute Error 

 
-

50% 

-

40% 

-

30% 

-

20% 

-

10% 

K1 1.5 1.5 1.5 1.2 1.1 

K2 2.0 1.8 1.5 1.3 1.3 

K3 1.6 1.5 1.4 1.2 1.2 

K4 2.3 2.1 1.8 1.5 1.3 

K5 1.3 1.3 1.3 1.2 1.1 

K6 2.2 2.1 1.5 1.4 1.3 

 

 

Table 6. Sensitivity analysis results for hydraulic conductivity.  Hydraulic conductivities were 

incrementally increased and decreased by 10%, chart shows deviation from calibration and table indicates 

calibration results in absolute residual mean. 
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To determine a level of uncertainty in the modeled discharge estimated hydraulic 

conductivity, values were adjusted both positively and negatively by 10% up to a 50%. 

Uncertainty in the estimated hydraulic conductivity could account for ground water 

discharge ranging between 280ft
3
/d and 830ft

3
/d for ground water input.  Ground water 

output could range between 230ft
3
/d to 680ft

3
/d depending on the uncertainty in the 

hydraulic conductivity (Table 5). 

In order to determine the sensitivity of the calibration to model fitted hydraulic 

conductivity values, a sensitivity analysis was performed. Hydraulic conductivity zones 

were incrementally increased by 10% up to 50%, than decreased by 10% to 50%.  The 

head calibration was fairly insensitive to variation in hydraulic conductivity (Table 6).  

The computed model ground water velocity of the ground water, a component 

governed by the hydraulic conductivity, was called into question when particle tracking 

was performed using the calibrated model, resulting particle locations under predicted the 

observed center of mass of the MTBE plume.  To investigate possible controls on the site 

ground water velocities, the hydraulic conductivities were increased to the maximum 

values reported for the site sediments. While the greater horizontal hydraulic 

conductivities resulted in an increase in ground water velocity, the absolute mean head 

error increased to as much as 10 ft.  A further evaluation found that when the values were 

raised so that particles were located in about the correct position (based on the plume 

history) values were several orders of magnitude higher than horizontal hydraulic 

conductivities reported from field investigation. These values fell within the range of 

very coarse sand and gravel rather than silty sand or sand (Fetter 2001), materials not 

present at this site. 
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Particles were also placed in layer two, which simulated the low hydraulic 

conductivity silts. The upward gradients from this unit into the overlying higher 

permeability unit forced the particle track upward and into the overlying unit, suggesting 

that if the gasoline plume was sourced in this area would be transported upward into a 

portion of the aquifer containing the bulk of the contamination. 

Although it is unlikely that MTBE reached a significant depth, particles were also 

placed in the third layer which modeled the silty sand/sand to the east and the clay and 

‘sensitive fines’ dominated sediments to the west.  Particles placed in this layer traveled 

within this unit west until the high conductivity sediments pinched out and became 

dominated by low permeability sediments.  At this point they began to migrate upward to 

the overlying high permeability sediments at very slow rate (Figure 28).  

The calibrated model appeared not to reproduce the ground water velocities 

necessary to explain the observed plume location.  A new conceptual model was 

developed. Possibly the sediments are fractured and the rate of ground water flow is 

controlled by the fracture network.  It has been well documented that fracture networks 

can create elevated ground water velocities (Helmke 2005, Ogili-Eger 2005, Davies 

1991). Helmke (2005) reports effective porosities in a fractured till as low as 3.4%. For 

this reason the modeled porosity was adjusted as the second major control on ground 

water velocity in order to determine if a fracture network could be dominating ground 

water flow. Porosities were incrementally decreased within the first layer to attempt to 

match particle movement with observed plume positions.  The porosity resulted in 

particles reaching the center transect after 3350 days was 0.0034.  This porosity is 

extremely low for the sediments described, suggesting the possibility of fractures through 
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which the contamination may be flowing. Unfortunately the more granular sediments are 

less likely to allow fractures to persist, thus, it is possible no fractures are present.  

Another possible explanation for the miss match of computed site ground water velocities 

and plume locations may be that the 1994 release (HKM 1996) is incorrect. 

Future remediation efforts at this site tentatively include a second heating event 

conducted nearer to the source of the contamination where the highest concentrations of 

MTBE still exist. Should this occur, a comprehensive temperature monitoring network 

extending beneath Highway 93 and into the alfalfa field, monitored over a 2-3 year time 

span, would likely provide additional insight as to field based ground water velocity 

values. 
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5.0 Conclusions 

 The lithology of the Ronan MTBE site is significantly more heterogeneous than 

previously believed, and the mapped plume movement is likely controlled by the site 

lithology. The CPT analysis provided a comprehensive analysis of the sediments to 

depths beyond the reach of traditional coring techniques.  Comparisons of the CPT to 

shallow cored sediments indicated the CPT provided a reasonable analysis of the site 

lithology. The sediments found within the site are very similar to the regional sediments 

described as part of the glacial Lake Missoula depositional environment. The complex 

distribution of coarse and fine grained sediments may reflect a depositional environment 

more fluvially dominated than a lacustrine setting. Ground water flow outside of the 

contaminated zone shows a similar flow pattern governed by the regional hydraulics of 

the Mission Valley ground water flow system.  Field and laboratory observed hydraulic 

conductivities closely matched the simulated ground water movement predicted by the 

temperature model. 

Ground water flow was replicated in a 3-D steady state numerical model using 

field and laboratory hydraulic conductivity results.  However, the modeled movement of 

the plume suggested ground water may be moving at a greater velocity than would be 

projected from average site conditions.  This work suggests either sediment properties are 

significantly impacted by a highly conductive fracture network or the source history is 

poorly understood and MTBE releases occurred much earlier than believed.  Although 

there is no evidence for fractured flow within this aquifer, the computed porosity needed 

to achieve observed plume locations was shown to be below the typical range for these 

sediments. 
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Appendix A 
CPT analysis and SBT 
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Parameters for estimating soil behavior type (SBT): 

 

 The cone penetration test (CPT) identifies properties of the soil as the rod is 

driven into the sediment. The main components are qt, the corrected cone penetration 

resistance, fs, the sleeve friction stress, and u, the equilibrium pore pressure.  These 

components are applied to calculate the SBT using the following equations: 

 

Ic = ((3.47 – logQt)
2
 + (log Fr + 1.22)

2
)
0.5 

 

Where: 

 

Qt = the normalized cone penetration resistance, dimensionless 

     = (qt – σvo)/σ’vo 

 

Fr = the normalized friction ratio, in % 

     = (fs/(qt- σvo)) x 100% 

 

σvo is overburden stress  

σ’vo is effective overburden stress 

 

 The numeric value for Ic falls into one of nine zones, which determines the SBT.  

The figure below shows the values for Ic and the corresponding SBT. 
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The above diagram and data was taken from Cone Penetration Testing Geotechnical 

Applications Guide (Robertson 1998). 

 

 

Site locations are shown in Figure 4. 
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Appendix B 
Described Geoprobe Cores  
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Appendix C 

 
Sampling Data 

Historic Water Levels 

BTEX Components and MTBE over Time 

TPH, BTEX, and MTBE over Time 

BTEX, MTBE, and DO over Time 
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Sampling Data 
 

Data was compiled from HKM 2003, 2005, 2006 and Loustaunau 2003. 
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Well Date WL MTBE BTEX TPH DO B T E X 

12/11/2002 3051.1 20 4281 9070 2.71 1640 1710 131 800 

3/25/2003 3051.85                 

6/18/2003 3051.23 19 4670 8760 2.61 1860 1890 147 773 

7/7/2004 3051.12 98 6952 14300 2.08 2560 2890 232 1270 

M2 

6/16/2005   20 1544 2820   655 570 50 269 

           

Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     7385 11900   2930 3040 125 1290 

8/22/1996   343 8934 14800   3680 3830 104 1320 

12/3/1996   32 1825 3250   973 582 16 254 

2/25/1997   111 6008 10500   3160 1890 55 903 

5/13/1997   159 7618 13500 1.23 3020 3070 118 1410 

9/17/1997 3053.3 26 2653 5250 1.58 1220 950 21 462 

12/18/1997 3052.64 20 1266 3100 2 630 402 26 208 

3/10/1998 3053.06 20 1448 4740 4.61 787 395 21 245 

6/9/1998 3053.22 109 4643 9650 1.91 1730 1800 103 1010 

9/17/1998 3052.65 430 16756 35700 1.57 6690 6040 256 3770 

11/17/1998 3052.06 2 1003 2480 2.62 556 251 16 180 

3/11/1999 3052.69 200 2851 7680 1 1190 904 58 699 

6/20/1999 3051.62 20 544 2170   422 55 5 62 

9/27/1999 3051.24 10 1062 2560 1.4 426 420 29 187 

12/6/1999 3051.19 1 150 364 1.2 61 43 7.1 38.9 

3/15/2000 3052.29 10 558 2110 1.92 328 131 25 74 

6/20/2000 3051.57 1 332.5 2020 0.4 222 51 5.5 54 

9/15/2000 3051.82 1.3 31.1 134   29 0.75 0.5 0.85 

11/9/2000 3051.72 2 100 236 1.2 54 16 5 25 

4/2/2001 3052.88 1 106.6 533 1.95 52 19 6.6 29 

7/10/2001 3052.47 2 50.9 309 3.42 42 3.8 0.5 4.6 

9/26/2001 3051.65 1 33.05 63 1.35 18 8.2 0.95 5.9 

3/6/2002 3050.96 1 4.4 20 2.89 2.9 0.5 0.5 0.5 

5/21/2002 3051.45 1 11.44 55 3.09 10 0.44 0.5 0.5 

12/11/2002 3050.9                 

3/24/2003 3051.6                 

6/17/2003 3051.05                 

7/7/2004 3050.78 1 2.22 20 7.28 0.5 0.72 0.5 0.5 

M3 

6/16/2005   1 31.1 269   2.3 7.7 4.1 17 
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Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     10987     4420 4110 259 2198 

5/30/1996   11 601.5 1850   350 171 5.5 75 

8/22/1996   268 15963 29700   6170 6850 373 2570 

12/3/1996   932 29345 46600   10800 13100 665 4780 

2/25/1997   220 11127 21600 0.6 4600 4290 247 1990 

5/13/1997   406 14024 26100 0.96 5530 5620 414 2460 

9/16/1997 3052.67 864 23010 42000 1.01 9210 9360 620 3820 

12/18/1997 3052.12 2160 33531 54000 1.45 12400 14000 921 6210 

3/10/1998 3052.71 1810 45280 91700 4.61 17200 19400 1080 7600 

6/9/1998 3052.67 1230 22840 40600 0.81 9370 9150 590 3730 

9/17/1998 3052.1 886 17289 31700 1.18 7160 6800 489 2840 

11/17/1998 3051.54 1740 30366 54400 2.41 12600 12100 836 4830 

3/11/1999 3052.36 1640 27662 47800 1.8 12200 10100 792 4570 

6/15/1999 3051.05 1820 26950 59300   10900 10400 1020 4630 

9/27/1999 3050.58 2530 28620 58400 1.2 12100 9770 1110 5640 

12/6/1999 3050.74 2620 33670 53600 0.66 13500 12400 1130 6640 

3/15/2000 3052 2470 20632 44800 1 9320 6940 722 3650 

6/20/2000 3051.04 1920 20404 44600 0.6 10800 5470 654 3480 

9/15/2000 3051.23 2090 19080 54400 1.2 7880 4910 1040 5250 

11/9/2000 3051.28 2690 22994 45700 0.9 11200 6100 944 4750 

4/3/2001 3052.8 1420 7582 19000 2.54 5170 635 297 1480 

7/10/2001 3051.95 685 79.7 627 8.32 26 28 2.7 23 

9/26/2001 3051.01 528 266.5 1130 4.6 99 101 7.5 59 

3/6/2002 3050.59 548 4.1 519 5.92 0.5 0.5 0.5 2.6 

5/22/2002 3051.59 501 78.5 688 12.18 32 32 0.5 14 

12/11/2002 3050.41 428 10.84 536 8.83 0.92 0.92 6.9 2.1 

3/24/2003 3051.31                 

6/17/2003 3050.49 267 7.15 235 10.09 0.5 0.5 5.4 0.75 

7/8/2004 3049.3 42 3.9 57 9.28 0.5 0.5 2.4 0.5 

M4 

6/15/2005   62 3.83 48   1.9 0.5 0.93 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     2.5 20   0.5 0.5 0.5 1 

5/30/1996   2 2.5 20   0.5 0.5 0.5 1 

8/22/1996   2 2.5 20   0.5 0.5 0.5 1 

12/3/1996   2 3.3 20   0.5 0.5 0.5 1.8 

2/25/1997   2 2.5 20 6.06 0.5 0.5 0.5 1 

5/13/1997   2 2.5 20 5.14 0.5 0.5 0.5 1 

9/17/1997 3052.41 2 2.5 20 5.53 0.5 0.5 0.5 1 

12/18/1997 3051.78 2 2.5 20 5.35 0.5 0.5 0.5 1 

3/10/1998 3052.31 2 2.5 20 7.2 0.5 0.5 0.5 1 

6/9/1998 3051.45 2 2.5 20 5.4 0.5 0.5 0.5 1 

9/17/1998 3051.92 2 2.5 20 5.06 0.5 0.5 0.5 1 

11/17/1998 3051.22 2 2.5 20 6.58 0.5 0.5 0.5 1 

3/11/1999 3052.13                 

6/15/1999 3050.29 2 2.5 20 6.8 0.5 0.5 0.5 1 

9/27/1999 3050.29                 

12/6/1999 3050.39 1 2 20 5.4 0.5 0.5 0.5 0.5 

3/14/2000 3051.71                 

6/20/2000 3050.69 1 16.51 31 5.2 3.2 7.7 0.61 5 

9/15/2000 3050.99                 

11/9/2000 3050.98 1 11.69 20 7.8 5.7 3.5 0.59 1.9 

4/2/2001 3052.52                 

7/9/2001 3051.72 1 2 20 5.7 0.5 0.5 0.5 0.5 

3/6/2002 3050.21 1 2 20 5.44 0.5 0.5 0.5 0.5 

5/22/2002 3050.84 1 17 39 7.15 14 1.3 0.5 1.2 

12/10/2002 3050.04                 

3/24/2003 3050.97                 

6/17/2003 3050.13                 

7/7/2004 3049.72 102 2.7 55 6.44 0.5 0.5 0.5 1.2 

M6 

6/15/2005   21 2 20   0.5 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     1.72 20   0.5 0.5 0.5 0.22 

5/30/1996   2 2.5 20   0.5 0.5 0.5 1 

8/22/1996   2 2.5 20   0.5 0.5 0.5 1 

12/3/1996   2 2.5 20   0.5 0.5 0.5 1 

2/25/1997   2 2.5 20 4.87 0.5 0.5 0.5 1 

5/13/1997   2 2.5 20 5.26 0.5 0.5 0.5 1 

9/17/1997 3048.8 2 2.5 20 2.28 0.5 0.5 0.5 1 

12/18/1997 3048.67 2 2.5 20 3.03 0.5 0.5 0.5 1 

3/10/1998 3052.62 2 2.5 20 3.28 0.5 0.5 0.5 1 

6/9/1998 3049.11 2 2.5 20 3.45 0.5 0.5 0.5 1 

9/17/1998 3048.69 2 2.5 20 3.64 0.5 0.5 0.5 1 

11/17/1998 3048.2 2 2.5 20 3.61 0.5 0.5 0.5 1 

3/11/1999 3049.54                 

6/15/1999 3047.25 2 2.5 20 0.45 0.5 0.5 0.5 1 

9/27/1999 3046.9                 

12/6/1999 3047.32 1 2 20 1.48 0.5 0.5 0.5 0.5 

3/14/2000 3049.47                 

6/20/2000 3047.43 1 2 20 1.13 0.5 0.5 0.5 0.5 

11/9/2000 3048.12 1 2 20 1.29 0.5 0.5 0.5 0.5 

4/2/2001 3050.58                 

7/10/2001 3048.71 1 2 20 2.74 0.5 0.5 0.5 0.5 

9/25/2001 3047.14                 

3/6/2002 3047.44 1 2 20 2.51 0.5 0.5 0.5 0.5 

5/22/2002 3047.73 1 2 20 3.27 0.5 0.5 0.5 0.5 

12/11/2002 3047.18                 

3/24/2003 3048.51                 

6/17/2003 3046.66                 

7/8/2004 3046.84 1 2 20 4.37 0.5 0.5 0.5 0.5 

M9 

6/15/2005   1 2 20   0.5 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     99.2 299   86 6.5 0.5 6.2 

5/30/1996   1460 482.5 1570   443 29 0.5 10 

8/22/1996   7340 2204.5 7790   2170 23 0.5 11 

12/3/1996   2900 1551.3 3880   1410 79 9.3 53 

2/25/1997   190 21.35 112 4.07 19 0.85 0.5 1 

5/13/1997   2800 1202.4 3820 3.12 1080 78 1.4 43 

9/17/1997 3048.54 4720 3521 7980 1.85 3010 264 13 234 

12/18/1997 3048.54 4570 3359 8270 2.47 2790 354 10 205 

3/10/1998 3049.61 6210 4399 11900 3.46 3680 435 18 266 

6/9/1998 3049.11 3410 1934 5830 2.84 1740 121 10 63 

9/17/1998 3048.61 1660 729.2 3090 2.24 656 35 1.2 37 

11/17/1998 3048.09 4650 3434 9760 2.84 3110 184 17 123 

3/11/1999 3049.5 120 44.458 129 0.48 42 0.958 0.5 1 

6/15/1999 3047.25 3580 1979 5770 0.43 1780 74 14 111 

9/27/1999 3046.84 1380 5305.8 10900 0.37 4550 438 8.8 309 

12/6/1999   804 333.8 874 0.28 328 2.9 0.5 2.4 

3/15/2000 3049.56 291 301.1 886 3.28 280 15 0.5 5.6 

6/20/2000 3047.39 3220 2775 8190 0.72 1480 819 56 420 

9/15/2000 3047.65 1510 1717 5920 0.36 1440 202 8 67 

11/9/2000 3047.95 2090 1832.9 3910 0.66 1630 121 4.9 77 

4/3/2001 3050.76 461 297.6 949 1.65 264 18 0.6 15 

7/10/2001 3048.17 3370 7236 15300 0.81 6060 745 44 387 

9/26/2001 3047.12 3630 11483 22000 0.56 9020 1170 213 1080 

3/6/2002 3047.44 3290 5646 15300 0.38 5240 262 27 117 

5/22/2002 3047.59 5580 8116 23900 0.53 6810 675 170 461 

12/11/2002 3047.16 2400 6774 14400 0.64 5510 612 184 468 

3/25/2003 3048.51 1480 2933 7050 0.41 2740 109 22 62 

6/18/2003 3046.67 4380 7776 19500 3.02 7220 276 83 197 

7/8/2004 3046.81 4060 8603 19800 2.41 8060 290 127 126 

M10 

6/14/2005   1870 3189 7930   3110 43 9 27 
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Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     1.69 20   0.5 0.5 0.5 0.19 

8/22/1996   2 2.5 20   0.5 0.5 0.5 1 

5/12/1997   2 2.5 20 5.16 0.5 0.5 0.5 1 

9/16/1997 3054.2 2 2.5 20   0.5 0.5 0.5 1 

12/18/1997 3053.61 2 2.5 20 4.96 0.5 0.5 0.5 1 

3/10/1998 3053.82 2 2.5 20 4.7 0.5 0.5 0.5 1 

6/9/1998 3053.91 2 2.5 20 4.99 0.5 0.5 0.5 1 

9/17/1998 3053.44 1 4 20 43.68 1 1 1 1 

11/17/1998 3052.9 2 2.5 20 4.78 0.5 0.5 0.5 1 

3/11/1999 3053.32                 

6/15/1999 3053.32 2 2.5 20 3.6 0.5 0.5 0.5 1 

9/27/1999 3052.11                 

12/6/1999 3052.07 1 2 20 5.6 0.5 0.5 0.5 0.5 

3/14/2000 3052.88                 

6/19/2000 3052.32 1 2 20 4.2 0.5 0.5 0.5 0.5 

11/8/2000 3052.51 1 2 20 5.5 0.5 0.5 0.5 0.5 

4/2/2001 3053.39                 

7/9/2001 3053.28 1.5 2 20 4.5 0.5 0.5 0.5 0.5 

9/25/2001 3052.51                 

3/26/2002 3052.21 1 2 20 6.88 0.5 0.5 0.5 0.5 

5/21/2002 3052.17 1 2 20 7.9 0.5 0.5 0.5 0.5 

12/10/2002 3051.75                 

6/17/2003 3051.89                 

M11 

7/7/2004 3051.82                 
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Well Date WL MTBE BTEX TPH DO B T E X 

3/25/1996     55970 94400   25100 21000 1300 8570 

5/30/1996   19800 57274 101000   25700 22000 854 8720 

12/3/1996   15800 56660 94100   22900 23000 1440 9320 

2/25/1997   11100 59420 87900 0.57 26600 23600 1180 8040 

9/17/1997 3052.07 8860 63600 99300 1.93 28500 25200 1430 8470 

12/18/1997 3051.56 9540 53720 98500 1.46 22800 21100 1580 8240 

3/10/1998 3052.11 8600 66350 120000 3.68 28600 26500 1610 9640 

6/9/1998 3051.26 8060 58720 94000 2.46 23900 24600 1340 8880 

9/17/1998 3051.62 6480 50030 84700 1.91 19100 19800 1540 9590 

11/17/1998 3050.98 4950 41810 68900 2.88 16400 16800 1220 7390 

3/11/1999 3051.96 3500 26850 40700 1.4 10900 9530 880 5540 

6/20/1999   2060 12504 21900   7270 1820 604 2810 

9/27/1999 3050.02 2260 10198 21400 3 5850 2490 400 1458 

12/6/1999 3050.16 1940 17834 27600 1.67 11900 3950 564 1420 

3/15/2000 3051.6 3910 17704 31700 1.2 11500 4340 434 1430 

6/20/2000 3050.46 3870 17349 33900 0.4 11100 4380 409 1460 

9/15/2000 3050.72 5940 20486 60400 0.5 9870 6410 806 3400 

11/9/2000 3050.73 5470 24274 40000 1 15900 6010 584 1780 

4/3/2001 3052.4 2840 10923 21900   7100 2500 73 1250 

7/10/2001 3051.43 4840 21123 45900 3.49 11000 7180 493 2450 

9/26/2001 3050.39 5590 27952 48400 2.2 14000 10400 592 2960 

3/6/2002 3050.04 4110 17789 32600 3.1 9160 5560 359 2710 

5/22/2002 3050.58 6310 15036 31300 2.76 8100 4660 336 1940 

12/11/2002 3049.91 5770 27653 58300 1.38 12000 9290 983 5380 

3/25/2003 3050.86 7170 19879 44200 0.89 9580 5740 719 3840 

6/17/2003 3049.82 8190 15268 32800 2.14 8450 3790 348 2680 

7/8/2004 3049.79 6670 312 4580 2.69 250 14 15 33 

M12 

6/15/2005   2310 8.57 1890   4.1 1.2 0.77 2.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

12/3/1996   221 2.5 100   0.5 0.5 0.5 1 

2/25/1997   271 18 122 3.2 16 0.5 0.5 1 

5/12/1997   197 26 177 3.6 24 0.5 0.5 1 

9/16/1997 3039.07 97 10 68 2.56 8 0.5 0.5 1 

12/18/1997 3039.23 204 47 201 3.64 45 0.5 0.5 1 

3/10/1998 3039.93 193 23 133 4.86 21 0.5 0.5 1 

6/9/1998 3039.42 103 3 66 3.57 1 0.5 0.5 1 

9/17/1998 3039.41 34 4 25 2.45 1 1 1 1 

11/17/1998 3039.22 57 8 51 2.85 6 0.5 0.5 1 

3/11/1999 3039.22                 

6/15/1999 3038.94 72 11 58 0.65 9 0.5 0.5 1 

9/27/1999 3038.23                 

12/6/1999 3038.64 274 48.5 223 1.42 47 0.5 0.5 0.5 

3/14/2000 3040.15                 

6/19/2000 3038.83 1810 287.5 1790 0.86 286 0.5 0.5 0.5 

9/15/2000 3039.28                 

11/9/2000 3039.77 1950 31.5 1120 1.59 30 0.5 0.5 0.5 

4/3/2001 3040.96 1940 501 2850 0.55 498 2 0.5 0.5 

7/10/2001 3039.04 2090 772 3240 3.41 769 2 0.5 0.5 

9/25/2001 3038.79 1520 459.5 1930 0.41 458 0.5 0.5 0.5 

3/5/2002 3039.3 931 122.5 992 0.46 121 0.5 0.5 0.5 

5/21/2002 3039.3 1300 16.5 951 3.88 15 0.5 0.5 0.5 

12/10/2002 3039.01 1330 5.7 967 1.6 4.2 0.5 0.5 0.5 

3/24/2003 3039.86                 

6/17/2003 3038.55 1970 225.5 2010 0.44 224 0.5 0.5 0.5 

7/7/2004 3038.49 1430 10.9 1250 3.1 9.4 0.5 0.5 0.5 

M13 

6/13/2005   1060 2 741   0.5 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

5/12/1997   6.9 2.5 20 4.51 0.5 0.5 0.5 1 

9/16/1997 3035.64 153 2.5 76 1.9 0.5 0.5 0.5 1 

12/18/1997 3035.88 30 2.5 22 4.32 0.5 0.5 0.5 1 

3/10/1998 3036.43 6.8 2.5 20 4.51 0.5 0.5 0.5 1 

6/9/1998 3034.31 4.4 2.5 20 2.17 0.5 0.5 0.5 1 

9/17/1998 3035.92 9.5 2.5 20 3.2 0.5 0.5 0.5 1 

11/17/1998 3036.05 15 2.5 20 5.15 0.5 0.5 0.5 1 

3/11/1999 3035.94                 

6/15/1999 3035.14 4 2.5 20 0.45 0.5 0.5 0.5 1 

9/27/1999 3035.43                 

12/6/1999 3035.85 292 2 191 0.38 0.5 0.5 0.5 0.5 

3/14/2000 3036.32                 

6/19/2000 3035.44 178 3.6 133 0.77 2.1 0.5 0.5 0.5 

9/15/2000 3035.8 208 6.3 189 0.35 4.8 0.5 0.5 0.5 

11/9/2000 3036.11 194 2 126 0.94 0.5 0.5 0.5 0.5 

4/3/2001 3036.52 63 2 55 1.9 0.5 0.5 0.5 0.5 

7/10/2001 3035.27 151 41.5 160 4.26 40 0.5 0.5 0.5 

9/25/2001 3035.62 229 66.5 288 0.39 65 0.5 0.5 0.5 

3/5/2002 3036.51 74 2 59 0.61 0.5 0.5 0.5 0.5 

5/21/2002 3036.5 29 2 22 0.62 0.5 0.5 0.5 0.5 

12/10/2002 3035.92 290 2 194 0.55 0.5 0.5 0.5 0.5 

3/24/2003 3036.27                 

6/17/2003 3034.3 33 2 28 0.28 0.5 0.5 0.5 0.5 

7/7/2004 3035.46 124 7 126 5.75 5.5 0.5 0.5 0.5 

M14 

6/13/2005   57 2 45   0.5 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

5/13/1997   2 2.5 20 4.23 0.5 0.5 0.5 1 

9/17/1997 3052.64 2 2.5 20 4.53 0.5 0.5 0.5 1 

12/18/1997 3051.86 2 2.5 20 2.45 0.5 0.5 0.5 1 

3/10/1998 3052.59 2 2.5 20 6.91 0.5 0.5 0.5 1 

6/9/1998 3052.62 2 2.5 20 3.8 0.5 0.5 0.5 1 

9/17/1998 3052.86 2 2.5 20 3.23 0.5 0.5 0.5 1 

11/17/1998 3051.33 2 2.5 20 4.66 0.5 0.5 0.5 1 

6/15/1999 3050.8 2 2.5 20 3.64 0.5 0.5 0.5 1 

12/6/1999 3050.55 1 2 20 4.26 0.5 0.5 0.5 0.5 

3/14/2000 3051.34                 

6/20/2000 3050.85 1 2 20 4.87 0.5 0.5 0.5 0.5 

9/15/2000 3050.96                 

11/9/2000 3051.08 1 2 20 1.2 0.5 0.5 0.5 0.5 

4/3/2001 3052.94 1 2 20 4.27 0.5 0.5 0.5 0.5 

7/9/2001 3051.65 1 2 20 7.19 0.5 0.5 0.5 0.5 

3/6/2002 3050.35 1 2 20 4.61 0.5 0.5 0.5 0.5 

5/22/2002 3052.02 1 2 20 3.03 0.5 0.5 0.5 0.5 

12/11/2002 3050.19 1 2 20 4.05 0.5 0.5 0.5 0.5 

3/24/2003 3051.18                 

6/18/2003 3050.26 1 2 20 7.96 0.5 0.5 0.5 0.5 

7/8/2004 3049.81 1 2 20 6.88 0.5 0.5 0.5 0.5 

M16 

6/15/2005   1 2 20   0.5 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

5/13/1997   33 2.5 24 1.99 0.5 0.5 0.5 1 

9/17/1997 3048.49 63 2.5 42 1.92 0.5 0.5 0.5 1 

12/18/1997 3048.56 86 2.5 62 2.35 0.5 0.5 0.5 1 

3/10/1998 3049.83 80 2.5 47 5.41 0.5 0.5 0.5 1 

6/9/1998 3049.13 80 17 64 2.2 15 0.5 0.5 1 

9/17/1998 3048.56 156 5.6 86 1.9 3.6 0.5 0.5 1 

11/17/1998 3048.12 210 7.5 165 2.3 5.5 0.5 0.5 1 

3/11/1999 3049.5 123 2.5 61 0.49 0.5 0.5 0.5 1 

6/15/1999 3047.09 268 140.29 406 0.44 138 0.79 0.5 1 

9/27/1999 3046.7 562 422.8 1490 0.31 418 2.6 1.2 1 

12/6/1999 3047.19 625 615.09 1680 0.66 611 2.2 0.69 1.2 

3/14/2000 3049.55 738 895.7 2420 1.58 888 4.6 1.1 2 

6/20/2000 3047.21 799 1328.82 3230 0.75 1320 6.9 0.62 1.3 

9/15/2000 3047.41 1430 1569.5 5620 0.47 1550 8.5 5.2 5.8 

11/9/2000 3047.78 4270 5511.7 1140 0.76 5410 75 3.7 23 

4/3/2001 3050.78 4470 4081.5 11700 0.42 3980 72 0.5 29 

7/10/2001 3048.7 5410 4955.2 12400 0.55 4840 81 5.2 29 

9/26/2001 3046.99 8630 7344.5 19200 0.47 7200 100 0.5 44 

3/6/2002 3047.35 6940 5396.5 18100 0.62 5260 96 0.5 40 

5/22/2002 3047.42 6510 5563.5 16700 0.49 5440 90 3.5 30 

12/11/2002 3047.06 12000 11545 35700 0.82 11100 298 6 141 

3/24/2003 3048.42                 

6/18/2003 3046.71 10700 12193 35900 1.91 11700 265 27 201 

7/8/2004 3046.72 8330 1408 27700 2.09 1080 237 4 87 

M17 

6/14/2005   4110 4765.9 13000   4680 59 3.9 23 

 

          

Well Date WL MTBE BTEX TPH DO B T E X 

9/17/1998 3051.63 739 18719 35300 2.7 3010 8660 799 6250 

11/17/1998 3051.12 1190 14844 28200 2.39 2550 6360 894 5040 

3/11/1999 3052.05 1990 9680 23000 0.8 3840 1320 1020 3500 

6/21/1999 3050.65 2190 10862 23100   5870 1630 832 2530 

9/27/1999 3050.2                 

3/15/2000 3051.68 3540 9218 20200 1.4 6960 1510 231 517 

6/20/2000 3050.63 4310 10259 24000 0.5 9150 429 256 424 

9/15/2000 3050.87 5520 7515 23700   6860 141 175 339 

11/9/2000 3050.84 7190 12170 23500 1.7 11200 526 111 333 

4/3/2001 3052.26 4870 9568 22400   6010 2130 138 1290 

7/10/2001 3051.53 2350 6286 16100 3.52 4580 957 199 550 

5/22/2002 3050.75                 

3/24/2003 3050.97                 

M18 

6/15/2005   297 2.6 214   1.1 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

9/17/1998 3035 159 2.5 80 3.59 0.5 0.5 0.5 1 

11/17/1998 3034.95 278 2.51 213 3.84 0.51 0.5 0.5 1 

3/11/1999 3035.25 101 2.7 48 0.7 0.7 0.5 0.5 1 

6/15/1999 3033.97 139 3.9 101 0.46 1.9 0.5 0.5 1 

9/27/1999 3034.09 148 3 122 0.24 1 0.5 0.5 1 

12/6/1999 3034.81 887 2 559 0.53 0.5 0.5 0.5 0.5 

1/31/2000   1200 4     1 1 1 1 

3/14/2000 3035.64 841 2.8 657 1.15 1.3 0.5 0.5 0.5 

6/19/2000 3035.54 384 8.6 331 0.74 7.1 0.5 0.5 0.5 

9/15/2000 3035.61 247 8.2 230 0.36 6.7 0.5 0.5 0.5 

11/8/2000 3035.7 401 2.8 262 0.83 1.3 0.5 0.5 0.5 

4/3/2001 3035.71 516 11.1 416 1.85 9.6 0.5 0.5 0.5 

7/10/2001 3033.83 547 4.3 348 2.68 2.8 0.5 0.5 0.5 

9/25/2001 3035.31 418 2 350 0.44 0.5 0.5 0.5 0.5 

3/5/2002 3035.58 628 2 509 0.5 0.5 0.5 0.5 0.5 

5/21/2002 3035.66 651 15.5 517 0.64 14 0.5 0.5 0.5 

12/10/2002 3035.58 732 2 486 0.54 0.5 0.5 0.5 0.5 

3/25/2003 3035.54 854 2.8 513 0.38 1.3 0.5 0.5 0.5 

6/17/2003 3035.04 994 2.41 868 0.27 0.91 0.5 0.5 0.5 

7/7/2004 3035.51 1220 2 1120 3 0.5 0.5 0.5 0.5 

M19 

6/13/2005   2390 5.2 1620   3.7 0.5 0.5 0.5 

 

Well Date WL MTBE BTEX TPH DO B T E X 

9/17/1998 3036.29 2.7 2.5 20 3.35 0.5 0.5 0.5 1 

11/17/1998 3036.26 2.5 2.5 20 3.62 0.5 0.5 0.5 1 

3/11/1999 3036.57                 

6/15/1999 3035.73 11 2.5 20   0.5 0.5 0.5 1 

9/27/1999 3035.72                 

12/6/1999 3036.16 9.2 2 20 2.85 0.5 0.5 0.5 0.5 

3/14/2000 3036.99                 

6/19/2000 3036.26 12 2 20 0.81 0.5 0.5 0.5 0.5 

9/15/2000 3036.56 15 2 21 0.42 0.5 0.5 0.5 0.5 

11/8/2000 3036.82 17 2 20 4.26 0.5 0.5 0.5 0.5 

4/3/2001 3037.41 29 2 25 0.47 0.5 0.5 0.5 0.5 

7/10/2001 3036.04 37 2.18 26   0.68 0.5 0.5 0.5 

9/25/2001 3035.95 45 2 48 2.29 0.5 0.5 0.5 0.5 

3/5/2002 3036.67 87 2 68 0.79 0.5 0.5 0.5 0.5 

5/21/2002 3036.82 69 1.91 51 0.56 0.5 0.5 0.41 0.5 

12/10/2002 3036.47 52 2 37 0.78 0.5 0.5 0.5 0.5 

3/24/2003 3036.89                 

6/17/2003 3035.94 91 2.05 72 1.36 0.5 0.5 0.55 0.5 

7/7/2004 3035.72 88 2 84 5.8 0.5 0.5 0.5 0.5 

M20 

6/13/2005   111 2 80   0.5 0.5 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

7/10/2001 3048.47 1100 3557.2 9740 0.32 3530 11 1.2 15 

9/26/2001 3047.31 1270 3225.74 6590 0.43 3200 13 0.74 12 

3/6/2002 3047.67 833 1828.2 4750 0.57 1820 1.6 0.5 6.1 

5/22/2002 3048 844 4445.8 13200 0.45 4370 37 3.8 35 

12/11/2002 3047.36 1150 7924 16400 0.43 7700 167 4 53 

3/25/2003 3048.78 1140 7232 13400 0.43 7040 110 17 65 

6/18/2003 3046.91 940 5111.5 15500 1.33 4960 109 0.5 42 

7/8/2004 3046.99 1230 4548.8 12100 1.34 4500 29 4.8 15 

M30 

6/14/2005   797 3330.23 9310   3310 8.4 0.83 11 

           

Well Date WL MTBE BTEX TPH DO B T E X 

7/9/2001 3052.08 1 2 20 4.24 0.5 0.5 0.5 0.5 

9/25/2001 3051.09                 

3/6/2002 3050.7 1 2 20 2.34 0.5 0.5 0.5 0.5 

5/22/2002 3052.9 1 30.63 48 5.6 14 10 0.83 5.8 

12/11/2002 3050.54 1 10.3 19 3.35 3.9 3.7 0.5 2.2 

3/24/2003 3051.78                 

6/17/2003 3050.91 1 2 20 6.08 0.5 0.5 0.5 0.5 

7/8/2004 3050.34 1 2 20 2.79 0.5 0.5 0.5 0.5 

M31 

6/15/2005   1 2 20   0.5 0.5 0.5 0.5 

           

Well Date WL MTBE BTEX TPH DO B T E X 

7/10/2001 3036.98 1 2 20 4.5 0.5 0.5 0.5 0.5 

9/25/2001 3036.95                 

3/5/2002 3037.34 1 2 20 1.36 0.5 0.5 0.5 0.5 

5/21/2002 3037.29 1 2 20 1.27 0.5 0.5 0.5 0.5 

12/10/2002 3037.07                 

3/24/2003 3037.68                 

6/17/2003 3036.66                 

7/7/2004 3036.52 1 2 20 0.66 0.5 0.5 0.5 0.5 

M32 

6/13/2005   1 2 20   0.5 0.5 0.5 0.5 

           

Well Date WL MTBE BTEX TPH DO B T E X 

12/11/2002 3047.39 1 2 20 6.56 0.5 0.5 0.5 0.5 

3/24/2003 3048.91                 

6/18/2003 3047.06 1 2 20 4.71 0.5 0.5 0.5 0.5 

7/8/2004 3047.26 1 2 20 4.14 0.5 0.5 0.5 0.5 

M33 

6/14/2005   1 2 20   0.5 0.5 0.5 0.5 
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 Well Date WL MTBE BTEX TPH DO B T E X 

9/26/2001 3050.69 32 59.2 528 1.61 32 19 1.1 7.1 

3/26/2002 3050.27 22 164.2 264 2.3 83 66 2.2 13 

5/22/2002 3051.05 13 121.5 254 4.69 65 46 1.4 9.1 

12/11/2002 3050.12 5.8 121.4 171 1.71 51 46 3.4 21 

6/18/2003 3050.12 3.9 123.8 239 1.9 48 44 4.8 27 

7/8/2004 3046.95 459 3264 7160 0.66 2900 175 26 163 

MP01 

25' 

6/14/2005   1 18.3 40   9.2 1.3 1.8 6 

 
          

7/24/2001 3051.5                 

9/26/2001 3050.7 8.9 25.24 96 1.52 11 8.4 0.54 5.3 

3/26/2002 3050.28 115 252.7 646 1.95 100 125 3.7 24 

5/22/2002 3051.05 24 197.7 353 3.31 130 55 1.7 11 

12/11/2002 3050.07 10 145 228 1.02 69 54 3 19 

3/24/2003 3051.12                 

6/18/2003 3050.1 23 234 445 0.48 109 78 7 40 

7/9/2004 3049.63 2 23.3 49   9.3 4.6 1 8.4 

MP01 

35' 

6/14/2005   1 4.83 20   2 0.53 0.5 1.8 

           

7/24/2001 3051.46                 

9/26/2001 3050.59 118 159.4 4820 1.42 86 51 2.4 20 

3/26/2002 3050.18 199 490.5 8870 1.75 274 167 5.5 44 

5/22/2002 3050.92 385 3177 20400 3.35 1600 1220 44 313 

12/11/2002 3050 105 524.5 22500 0.72 294 166 7.5 57 

3/24/2003 3051.04                 

6/18/2003 3050.02 59 198.4 5400 0.31 110 56 4.4 28 

7/9/2004 3049.6 23 17.69 7390   9.4 2.7 0.69 4.9 

MP01 

53' 

6/14/2005   6.8 16.74 9630   11 1.7 0.64 3.4 

           

7/24/2001 3051.15                 

9/26/2001 3050.58 322 188.7 23200 2.3 95 67 2.7 24 

3/26/2002 3050.2 898 2110 20000 2.71 1200 738 18 154 

5/22/2002 3050.79 738 3441 28800 3.34 1760 1320 41 320 

12/11/2002 3050.05 274 999 39200 0.65 615 297 11 76 

3/24/2003 3051.02                 

6/18/2003 3050.08 259 744 33300 0.35 445 215 11 73 

7/7/2004 3049.61 18 24.49 12200   16 4 0.79 3.7 

MP01 

64' 

6/14/2005   14 24.04 15500   15 3.2 0.94 4.9 
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7/24/2001 3051.65                 

9/26/2001 3050.63 431 534.8 1510 3.88 256 205 7.8 66 

3/26/2002 3050.2 562 2013 3020 2.77 1180 653 26 154 

5/22/2002 3050.83 1040 8146 12500   3110 3640 166 1230 

12/11/2002 3050.06 649 6453 12000 1.3 4160 1630 103 560 

3/24/2003 3051.02                 

6/18/2003 3050.03 293 699 2480 0.55 478 166 7 48 

7/7/2004 3049.66 50 27.11 2320   15 5 0.81 6.3 

MP01 

72' 

6/14/2005   36 50.7 622   33 6.5 1.5 9.7 

 

7/10/2001 3048.53 18 18.52 1960 1.66 17 0.52 0.5 0.5 

9/25/2001 3047.28                 

3/6/2002 3047.69 4.3 30.57 417 3.15 29 0.57 0.5 0.5 

5/22/2002 3048.03 1.9 91.81 304 2.39 90 0.81 0.5 0.5 

12/11/2002 3047.35 2.3 42.44 68 0.65 41 0.44 0.5 0.5 

3/24/2003 3048.76                 

6/18/2003 3046.85 1 62.68 121 0.63 61 0.68 0.5 0.5 

7/7/2004 3046.96                 

MP02 

37' 

6/14/2005   1 35.5 54   34 0.5 0.5 0.5 

           

7/10/2001 3048.22 72 21.77 3890 2.06 20 0.55 0.5 0.72 

9/25/2001 3047.6                 

3/6/2002 3047.88 248 192.7 9810 2.82 178 4.7 5 5 

5/22/2002 3048.1 32 302.59 23300 2.49 299 2.7 0.5 0.39 

12/11/2002 3047.57 19 254.1 12600 1.51 250 3.1 0.5 0.5 

3/24/2003 3048.93                 

6/18/2003 3047.21 16 234.3 11800 0.57 232 1.3 0.5 0.5 

7/7/2004 3047.18                 

MP02 

50' 

6/14/2005   16 99.95 1030   98 0.98 0.5 0.47 

           

7/10/2001 3048.63 32 18.58 2010 4.71 17 0.58 0.5 0.5 

9/25/2001 3048.56                 

3/6/2002 3048.4 39 174.3 1150 2.15 170 3.3 0.5 0.5 

5/22/2002 3048.68 10 354.6 18500 2.29 351 2.6 0.5 0.5 

12/11/2002 3048.11 10 52.1 3720 1.51 50 1.1 0.5 0.5 

3/24/2003 3049.4                 

6/18/2003 3047.9 16 301.1 2310 0.4 298 2.1 0.5 0.5 

7/7/2004 3047.82                 

MP02 

62' 

6/14/2005   1.6 32.75 54   31 0.75 0.5 0.5 
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Well Date WL MTBE BTEX TPH DO B T E X 

7/24/2001 3039.54                 

9/25/2001 3038.99 1080 296.54 3790 4.78 294 1.5 0.5 0.54 

3/5/2002 3039.54 1840 562 2000   560 1 0.5 0.5 

5/21/2002 3039.49 1950 547.94 2800   546 0.94 0.5 0.5 

12/10/2002 3039.22 2110 85.5 1480 1.81 84 0.5 0.5 0.5 

3/24/2003 3040.11                 

6/17/2003 3038.72 2770 47.42 2410 1.75 46 0.42 0.5 0.5 

6/2/2004   2420 60 1700   30 10 10 10 

7/7/2004 3038.69                 

MP03 

10' 

6/13/2005   2020 18.46 1380   17 0.46 0.5 0.5 

           

7/24/2001 3039.47                 

9/25/2001 3038.95 249 40.56 2930 1.99 39 0.56 0.5 0.5 

3/5/2002 3039.48 1160 310.5 2820   309 0.5 0.5 0.5 

5/21/2002 3039.45 1200 269.95 3270   268 0.95 0.5 0.5 

12/10/2002 3039.21 4140 1436.4 5730 0.53 1410 19 1 6.4 

3/24/2003 3040.06                 

6/17/2003 3038.68 5650 917.24 4150 1.54 910 5.9 0.5 0.84 

6/7/2004   9790 1890 9810   1810 30 25 25 

7/7/2004 3038.62                 

4/6/2005   7780 1340.39 7290   1310 25 0.49 4.9 

MP03 

22' 

6/13/2005   7390 1577.4 8050   1550 23 0.5 3.9 

           

7/24/2001 3039.47                 

9/25/2001 3038.92 3.5 4.1 57 2.93 2.6 0.5 0.5 0.5 

3/5/2002 3039.46 2.5 6.2 20 1.01 4.7 0.5 0.5 0.5 

5/21/2002 3039.41 7.1 23.5 634   22 0.5 0.5 0.5 

12/10/2002 3039.14 6.2 6.9 20 1.9 5.4 0.5 0.5 0.5 

3/24/2003 3040.03                 

6/17/2003 3038.64 51 74.78 144 1.12 73 0.78 0.5 0.5 

6/7/2004   10 91 222   76 5 5 5 

7/7/2004 3038.58                 

4/6/2005   2.3 9.2 17   7.7 0.5 0.5 0.5 

MP03 

32' 

6/13/2005   1.6 8.7 20   7.2 0.5 0.5 0.5 

           

7/24/2001 3039.49                 

9/25/2001 3039.14 167 14.5 209 4.77 13 0.5 0.5 0.5 

3/5/2002 3039.48 157 19.19 168 2.05 14 4.1 0.5 0.59 

5/21/2002 3039.52 189 22.5 208   21 0.5 0.5 0.5 

12/10/2002 3039.09 2290 153.52 1750 3.24 152 0.52 0.5 0.5 

3/24/2003 3039.79                 

6/17/2003 3039.2 104 307 367 0.55 305 1 0.5 0.5 

7/7/2004 3038.62                 

4/6/2005   89 36.27 118   34 1.2 0.5 0.57 

MP03 

57' 

6/13/2005   231 120.4 343   118 1.4 0.5 0.5 
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Historic Water Levels 
 

 

Data was compiled from HKM 2003, 2005, 2006 and Loustaunau 2003.  Graphical 

analysis represents sampling data presented in this appendix.  
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BTEX Components and MTBE over Time 

 
Data was compiled from HKM 2003, 2005, 2006 and Loustaunau 2003.  Graphical 

analysis represents sampling data presented in this appendix. Error bars reflect 

uncertainty in field and laboratory analysis. 
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TPH, BTEX, and MTBE over Time 
 

Data was compiled from HKM 2003, 2005, 2006 and Loustaunau 2003.  Graphical 

analysis represents sampling data presented in this appendix. Error bars reflect 

uncertainty in field and laboratory analysis. 
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MTBE

TPH
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

4000

8000

12000

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well MP-03 22'

BTEX

MTBE

TPH
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

200

400

600

800

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well MP-03 32'

BTEX

MTBE

TPH
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

500

1000

1500

2000

2500

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well MP-03 57'

BTEX

MTBE

TPH
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BTEX, MTBE, and DO over Time 

 
Data was compiled from HKM 2003, 2005, 2006 and Loustaunau 2003.  Graphical 

analysis represents sampling data presented in this appendix. Error bars reflect 

uncertainty in field and laboratory analysis. 
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

2000

4000

6000

8000

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well M2

BTEX

MTBE

DO

1.6

2

2.4

2.8

3.2

1.8

2.2

2.6

3

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

4000

8000

12000

16000

20000

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well M3
BTEX

MTBE

DO

0

2

4

6

8

10

1

3

5

7

9

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

10000

20000

30000

40000

50000

C
o

n
c
e

n
tr

a
tio

n
 u

/L

Well M4

BTEX

MTBE

DO

0

4

8

12

16

2

6

10

14

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

40

80

120

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well M6
BTEX

MTBE

DO

4

5

6

7

8

9

4.5

5.5

6.5

7.5

8.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

4000

8000

12000

16000

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well M10

BTEX

MTBE

DO

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

1

2

3

4

5

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well M11

BTEX

MTBE

DO

0

10

20

30

40

50

60

5

15

25

35

45

55

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

20000

40000

60000

80000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M12

BTEX

MTBE

DO

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

500

1000

1500

2000

2500

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M13

BTEX

MTBE

DO

0

2

4

6

1

3

5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

100

200

300

400

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M14
BTEX

MTBE

DO

0

2

4

6

8

1

3

5

7

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0.8

1.2

1.6

2

2.4

2.8

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M16

BTEX

MTBE

DO

0

2

4

6

8

10

1

3

5

7

9

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

4000

8000

12000

16000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M17
BTEX

MTBE

DO

0

2

4

6

8

1

3

5

7

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

5000

10000

15000

20000

25000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M18
BTEX

MTBE

DO

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

1000

2000

3000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M19

BTEX

MTBE

DO

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

40

80

120

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M20

BTEX

MTBE

DO

0

2

4

6

8

1

3

5

7

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

2000

4000

6000

8000

10000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M30

BTEX

MTBE

DO

0

0.4

0.8

1.2

1.6

0.2

0.6

1

1.4

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

10

20

30

40

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M31

BTEX

MTBE

DO

0

2

4

6

8

1

3

5

7

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0.8

1.2

1.6

2

2.4

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M32

BTEX

MTBE

DO

0

1

2

3

4

5

6

0.5

1.5

2.5

3.5

4.5

5.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0.8

1.2

1.6

2

2.4

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well M33

BTEX

MTBE

DO

3

4

5

6

7

8

3.5

4.5

5.5

6.5

7.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

1000

2000

3000

4000

C
o

n
c
e

n
tr

a
tio

n
 u

/L
Well MP01 25'

BTEX

MTBE

DO

0

1

2

3

4

5

6

0.5

1.5

2.5

3.5

4.5

5.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

100

200

300

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP01 35'
BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

100

200

300

C
o

n
c
e
n

tr
a

ti
o

n
 u

/L

Well MP01 35'
BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

1000

2000

3000

4000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP01 64'
BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

2000

4000

6000

8000

10000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP01 72'

BTEX

MTBE

DO

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

20

40

60

80

100

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP02 27'

BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

20

40

60

80

100

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP02 37'
BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

100

200

300

400

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP02 50'

BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

100

200

300

400

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP02 62'

BTEX

MTBE

DO

0

2

4

6

1

3

5

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

1000

2000

3000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP03 10'

BTEX

MTBE

DO

1

2

3

4

5

6

1.5

2.5

3.5

4.5

5.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

4000

8000

12000

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP03 22'

BTEX

MTBE

DO

0.4

0.8

1.2

1.6

2

2.4

0.6

1

1.4

1.8

2.2

D
O

 u
g

/L

1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

20

40

60

80

100

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP03 32'
BTEX

MTBE

DO

0

1

2

3

4

0.5

1.5

2.5

3.5

D
O

 u
g

/L
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1/1/96 1/1/97 1/1/98 1/1/99 1/1/00 1/1/01 1/1/02 1/1/03 1/1/04 1/1/05 1/1/06
7/2/96 7/3/97 7/3/98 7/3/99 7/2/00 7/3/01 7/3/02 7/3/03 7/2/04 7/3/05 7/3/06

Date

0

500

1000

1500

2000

2500

C
o

n
ce

n
tr

a
ti
o

n
 u

/L

Well MP03 57'

BTEX

MTBE

DO

0

2

4

6

1

3

5

D
O

 u
g

/L
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Appendix D 
MIP Analyses 
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Components of the Membrane interface probe: 

 

The photo ioniztation detector (PID) is a non-destructive detector used for 

identifying aromatic compounds, and it is accurate to 100’s of ppb’s (compound 

specific).  This detector excites electrons with an UV lamp and monitors adsorbance to 

the lamp signal.  Certain compounds cannot be recognized by this method, for example, 

hexane is too difficult to ionize although it is a common gasoline constituent (McInnes, 

personal communication, 2003). 

The electron capture detector (ECD) is also a non-destructive detector used for 

identifying halogenated compounds such as dry cleaning solvents.  The Ni
63

 source gives 

off beta radiation that creates an electron cloud, which is maintained by a pulse of 

current.  Electrons withdrawing from the compounds deplete the cell, forcing the current 

to pulse faster in order to maintain the number of electrons in the cloud.  By monitoring 

the pulse rate, the energy drawn away from the cell is measured, making this the most 

sensitive of the three detectors. Because the current can only pulse so fast, the detector 

can become saturated at increased concentrations, and the detector is also sensitive to 

noise.  This method does not recognize aromatic hydrocarbons although it can detect 

halogens at the ppb level.  This method is most commonly applied to dry cleaning 

solvents and was not particularly useful at this site (McInnes, personal communication, 

2005). 

The flame ionization detector (FID) is a destructive detector that detects all of the 

organic hydrocarbons.  A hydrogen flame burns the CHO ion in the hydrocarbons, which 

gives off an electrical signal.  The signal is collected by an antenna contained in the 

chamber with the flame.  This detector can recognize aliphatic hydrocarbons that other 

detectors fail to recognize, however, because it is a destructive detector must be the last 

to analyze the sample.  In combination, the PID and FID detectors were able to accurately 

measure the nature and extent of the hydrocarbon plume.  This proved very useful in 

identifying the depth to which the plume extended and in identifying the lateral fringes of 

the plume (McInnes, personal communication, 2005). 

 

The depth of the peizocone is shown on the X axis. 

 

Location of the sites is found in Figure 4. 
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Appendix E 
Grain Size Analyses 
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Figure 17.  Textural classification triangle 
showing the grain size analyses for each 

mapped unit in the Geoprobe core 

corresponding to CPT 08
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Figure 18.  Textural classification triangle 
showing the grain size analyses for each 

mapped unit in the Geoprobe core 

corresponding to CPT 10
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Figure 19.  Textural classification triangle 

showing the grain size analyses for each 

mapped unit in the Geoprobe core 

corresponding to CPT 12
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Figure 20.  Textural classification triangle 

showing the grain s ize analyses for each 
mapped unit in the Geoprobe core 

corresponding to CPT 18
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Figure  21.  Textural classification triangle 

showing the grain size analyses for each 
mapped unit in the Geoprobe core 

corresponding to CPT 28
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Figure 22.  Textural classification triangle 

showing the grain size analyses for each 

mapped unit in the Geoprobe core 

corresponding to CPT 30
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Sample Name   Clay % Silt % Sand % Type 

CPT 18           

(9") - Average A 8.11 66.01 25.89 sandy silt 

(15") - Average B 27.14 60.27 12.59 clay silt 

(21") - Average C 31.96 56.16 11.88 silty clay 

(27") - Average D 19.11 67.94 12.95 sandy silt 

(33") - Average E 20.15 66.43 13.42 clay silt 

(39") - Average F 42.01 50.33 7.67 silty clay 

(45") - Average G 24.93 54.30 20.78 clay silt 

(51") - Average H 7.42 72.09 20.50 sandy silt 

(57") - Average I 3.15 67.90 28.96 sandy silt 

(63") - Average J 3.08 64.31 32.62 sandy silt 

(69") - Average K 2.59 63.29 34.12 sandy silt 

(75") - Average L 2.82 63.55 33.64 sandy silt 

(81") - Average M 2.81 62.27 34.92 sandy silt 

CPT 28           

(9") - Average A 7.61 74.13 18.26 sandy silt 

(15") - Average B 16.94 74.61 8.45 sandy silt 

(21") - Average C 37.18 55.21 7.61 silty clay 

(27") - Average D 33.35 55.15 11.51 silty clay 

(33") - Average E 37.54 55.40 7.06 silty clay 

(39") - Average F 33.24 54.82 11.94 silty clay 

(45") - Average G 34.06 64.36 1.58 silty clay 

(51") - Average H 42.04 56.62 1.34 silty clay 

(61") - Average I 28.84 57.45 13.71 clay-silt 

(69") - Average J 33.56 53.01 13.43 silty clay 

(75") - Average K 34.98 49.12 15.90 silty clay 

(81") - Average L 25.59 59.39 15.02 clay-silt 

(87") - Average M 29.52 56.00 14.49 clay-silt 

(93") - Average N 3.66 51.51 44.83 sandy silt 

(99") - Average O 6.59 57.55 35.86 sandy silt 

(105") - Average P 2.32 50.94 46.74 silty sand 

(111") - Average Q 4.72 49.54 45.75 silty sand 

(117") - Average R 3.12 41.02 55.87 silty sand 

(123") - Average S 1.49 30.56 67.95 silty sand 

(129") - Average T 8.35 76.61 15.04 sandy silt 

 
Grain size analysis for CPT 18 and CPT 28 
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 Grain size analysis for CPT 30 
 

 

 

 

 

 

 

 

 

 

CPT 30

(3") - Average A 9.20 76.89 13.91 sandy silt

(9") - Average B 9.42 76.37 14.22 sandy silt

(15") - Average C 8.07 78.95 12.99 sandy silt

(21") - Average D 7.68 75.93 16.39 sandy silt

(27") - Average E 12.62 74.86 12.52 sandy silt

(33") - Average F 4.37 51.41 44.22 sandy silt

(39") - Average G 4.71 48.94 46.35 silty sand

(45") - Average H 5.19 51.54 43.27 sandy silt

(51") - Average I 4.57 51.40 44.03 sandy silt

(57") - Average J 4.69 54.45 40.87 sandy silt

(63") - Average K 4.73 54.17 41.11 sandy silt

(69") - Average L 3.70 50.83 45.47 silty sand

(75") - Average M 5.28 74.75 19.97 sandy silt

(81") - Average N 41.14 54.76 4.10 silty clay

(87") - Average O 23.72 69.44 6.84 clay silt

(93") - Average P 61.74 38.26 0.00 clay

(99") - Average Q 59.71 40.24 0.06 silty clay

(105") - Average R 45.48 54.52 0.00 silty clay

(111") - Average S 42.59 53.77 3.64 silty clay

(117") - Average T 51.06 48.94 0.00 clay

(123") - Average U 47.65 51.60 0.75 silty clay
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