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The efficient method called exon capture provides for sequencing genes genome-wide, 

targeting candidate genes, and sampling specific exons within genes.  Although 

developed for model species with available whole genome sequences, the method can 

capture exons in nonmodel species using the genomic resources of a related model 

species.  How close the relatives must be for effective exon capture is not known.  The 

work herein demonstrates cross-taxa capture in ungulates, using the domestic cow 

genome as a reference.  It also describes a computer program designed for collecting 

exon sequences for exon capture, allowing users to set per-gene and overall base pair (bp) 

limits, and to prefer internal or external exons. Cross-taxa exon capture was tested with 

subject-reference divergence times from 0 to ~60 million years.  Sequencing success 

decreased with increasing subject-reference phylogenetic divergence.  With the domestic 

cow genome as reference, American bison exons, at 1-2 million years (MY) of 

divergence, were captured as successfully as those of a domestic cow.  The cow and 

bison captures each yielded sequence from ~80% of the 3.6 million bp targeted.  Two 

bighorn sheep, 7 mule deer, and 4 pigs at about 20, 30, and 60 MY of divergence from 

the cow, respectively, yielded averages of ~70%, ~60%, and ~55% of the targeted bp.   A 

gene family with many closely related, duplicated loci was expected to show reduced 

success compared to the whole collection.  This prediction was supported, as 63 exons in 

the MHC gene family sequences yielded 62% fully sequenced in the cow, and 32%, 20%, 

and 4% for the bighorn, deer, and pigs, respectively.  A comparison of two sequence  

alignment programs showed that Stampy, designed for high sample-reference divergence, 

was dramatically better than BWA, designed for low divergence, only in the pig capture, 

in which Stampy yielded ~30% more  bp  than did BWA.  A universal ungulate exon 

capture array could be developed using the 8,999 exons that were fully sequenced in all 

species, including the pig at ~60 MY.  As this method helps us understand the genetic 

basis of evolutionary processes, so it can contribute to an informed study and stewardship 

of our ecological endowment.  
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Chapter 1:  Introduction 
 
 

“These advances [in high-throughput DNA sequencing] have at last brought a truly 

genomic perspective to the study of adaptive evolutionary change.”  (Radwan and Babik 

2012) 

 

 With the work described here I hope to contribute to genomics, the study of 

genomes or many genes, by broadening applications of a promising gene sequencing 

method called exon capture.  The method allows for massively parallel, genome-wide 

gene sequencing for species with large (billion+ base-pair) genomes, thus far mostly the 

mammals.  It can also precisely target individual genes and even, within genes, selected 

exonic subsequences.  Its economies of scale enable sequencing many genes and genomic 

regions in many individuals simultaneously (Bansal et al. 2011; Rivas et al. 2011).   

Its use, however, has been largely restricted to species with relatively extensive 

genomic resources.  It typically targets most of the transcribed gene sequences in the 

genome (collectively called the exome).  My collaborators and I used the existing 

genomic resources of a model species (the domestic cow) to sample and sequence 

thousands of genes in evolutionarily divergent species with few genomic resources of 

their own (such as mule deer and bighorn sheep).  We hope that our results will 

encourage geneticists who study genomically obscure (nonmodel) organisms to use exon 

capture to address genetic questions intractable or unimaginable only 5-10 years ago. 

 High-throughput, gene-targeted DNA sequencing is valuable to many fields in 

biology, with applications in human disease, agriculture, wildlife conservation, and 

evolutionary history (O’Roak et al. 2012; Bruford et al. 2003; Allendorf et al. 2010; Fu et 

al. 2012).  This work assesses the success of exon capture when used, atypically, to 

sequence genes in species with few genomic resources, targeting only about 10% of the 

exome, itself only about 1-3% of the genome.  The “capture” in exon capture refers to 

enriching genomic DNA for exons (with some flanking sequence), while discarding 

billions of base pairs of non-exonic genome.    

 The majority of exons are protein coding sequences and adjacent regions that 

regulate their expression (some exons are non-protein coding templates for RNA 

molecules).  For many geneticists exons are the “high value” part of the genome.  These 

sequences can reveal functional variation and help us understand how genes influence 

phenotypes, fitness, and adaptation (Hodges et al. 2007; Bruneaux et al. 2013). 

 The following assessment of exon capture of partial exomes in nonmodel species 

centers on the bioinformatic selection of target exon sequences for capture, and the 

bioinformatic analysis of the short DNA fragments called reads, produced by next-

generation sequencers.  In order to select and compile exon sequences genome wide and 

from candidate genes for the synthesis of exon capture baits I developed a computer 

program (Chapter 2) that collects exon sequences from across a published genome.  It 

employs user-specified parameters to sample exons for the design of exon capture arrays. 

I then test how well the current, freely-available, and widely-used bioinformatics 

tools for read analysis (Li and Durbin 2009; Lunter and Goodson 2011; Li et al. 2009; 

McKenna et al. 2010) perform for exon capture in two empirical studies (Chapters 3 and 
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4).  These studies yielded gene sequences and gene sequence variation in nonmodel 

ungulates, sampling small portions (~10%) of their exomes for discovery of DNA marker 

loci useful in population genomics.  

 

DNA markers for population genetics/genomics 

 

Population geneticists look for genetic markers that are polymorphic, and that 

discriminate between individuals and populations.  Tallied among many individuals, 

markers can provide metrics of genetic diversity within and between individuals, demes, 

and larger populations.   

 Our increasing ability to assay genetic markers in any species continues to 

“change the way we view nature” (Schlotterer 2004), especially when markers include 

both neutral and adaptive gene loci (Hansen et al. 2012).  Markers are used to compute 

heterozygosity, assess allele frequency differences between populations (e.g., via the Fst 

statistic), identify haplotypes, discover non-random marker associations (gametic 

disequilibrium), and to associate these metrics with phenotypes, environmental variables, 

and fitness (Hohenlohe et al. 2010; Yi et al. 2010).  These approaches, requiring many 

markers genome-wide, have been called population genomics (Hohenlohe et al. 2010).   

 In the 1990's nuclear microsatellite DNA loci and mitochondrial DNA sequences 

were the markers most often and widely used to study genetic diversity within and 

between populations (Morin et al. 2004).  With their high mutation rates, microsatellites 

can reveal evolutionarily recent genetic change and divergence among populations.  They 

are, however, susceptible to back mutation and homoplasy (alleles identical by 

convergent mutation rather than inheritance).  They are generally less informative about 

the inherited genetic basis of phenotype than are single nucleotide polymorphisms 

(SNPs).  SNPs are base differences at single nucleotide sites in genomic DNA.  They are 

the most abundant polymorphisms in the genome.  Unlike microsatellites, SNPs routinely 

occur in and near gene coding sequences.  As such, they are more likely than 

microsatellites to be responsible for differences in the proteins translated from genes.  

Population geneticists have increasingly turned to SNPs for many applications, from 

measuring population genetic structure (Liu et al. 2005), to the association of genetic 

variation with adaptive traits (Renaut et al. 2011). 

 To be useful in measuring variation, and to assess structure within and among 

populations, SNP discovery requires sampling enough individuals, as a rule at least 10, to 

minimize ascertainment bias (Clark et al. 2005; Morin et al. 2004).  Although costs have 

declined since the advent of next-generation sequencing, SNP discovery has been 

sufficiently expensive that many studies have suffered from ascertainment bias (Akey et 

al. 2003; R. Nielsen 2004).  The bias can appear when a SNP assay chip (a microarray 

featuring selected SNP locations) contains markers discovered in only a few individuals, 

likely missing many rare alleles and/or alleles in populations not sampled. When these 

assay chips are used on many individuals, SNP data is biased toward those loci and 

genome regions with high heterozygosity (even allele frequencies) in the populations of 

origin of the individuals used in the initial SNP discovery (Morin et al. 2004).  

Fortunately, costs continue to decline for both DNA enrichment and sequencing.  
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Efficiencies in enrichment for exon capture have been gained recently through refined 

techniques for pooling (multiplexing) DNA samples during capture (Bansal  et al. 2011).   

Marker discovery from a genome-wide scan (as well as in selected genes of interest) of 

many individuals is an increasingly attractive method for sampling SNPs in populations.      

 

RADs and transcriptomes 

 

While the research described here is centered on exon capture, there are other massively-

parallel methods that target a subset of the genome for high-throughput sequencing.  

Restriction-site-associated DNA (RAD) sequencing (Rowe, Renaut, and 

Guggisberg 2011) analyzes a reduced representation of the genome sequence through use 

of restriction enzymes that cut the genomic DNA at loci with specific DNA sequence 

(Davey et al. 2011).  Fragments are sequenced adjacent to cut locations.  RAD 

sequencing can affordably discover thousands of SNPs throughout a genome.  It is 

amenable to species without genomic resources, since the alignment of the sequence 

reads de novo can be seeded by grouping identical reads (Catchen et al. 2011).  However, 

SNPs discovered through de novo assembly often lack the gene and coding information 

used to associate genetic variation with functional differences. 

 Transcriptome sequencing by high throughput methods such as RNA-seq (Wang, 

Gerstein, and Snyder 2009) can also provide an exon-rich sample of the genome 

sequence.  RNA-seq reads, representing gene transcripts, can be aligned to a reference 

genome.  In addition to quantifying relative gene expression in different tissues, the 

alignment of the reads can be used for SNP discovery in exon sequences (Cánovas et al. 

2010).    However, RNA is less stable than DNA, and is thus more difficult to sample, 

especially when collecting from wildlife in the field, from many individuals.  Further, 

correct alignment to a reference genome of RNA-seq is complicated by reads that include 

splice junctions (representing neighboring exons separated by introns in the genome, but 

joined in the transcript by splicing), as well as the presence of the poly(A) 

(polyadenylated) tail of the original RNA molecule (Wang, Gerstein, and Snyder 2009).  

   

Exon capture 

 

 Compared to both RAD and RNA-seq, exon capture is more flexible and precise 

in the size and number of genomic regions to be sequenced. Investigators can choose any 

portion of the exome, synthesize oligonucleotide probes (typically between 60-120 base 

pairs) based on the exon sequences of interest.  These molecular probes, called baits, 

“capture” the exon sequences from genomic DNA samples by a hybridization reaction of 

randomly fragmented genomic DNA with the baits (Fig. 1.1).  The reaction takes place 

either on the surface of a microarray (as done in Chapter 3), or in a solution (the method 

used in Chapter 4), with oligonucleotide baits (DNA fragments) attached to magnetized 

beads.  Small DNA sequences of about 6 bases, called bar codes, can be attached to the 

fragments before capture, so that many individuals can be pooled for capture in one 
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hybridization reaction with retention of sample identity.  The baits serve to select DNA 

fragments representing only the targeted region, and the majority of genomic sequence is 

discarded. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Next generation sequencing 

 

After exon capture, the exon-enriched DNA is sequenced on a next-generation 

platform.  Per base-pair cost of DNA sequencing has plummeted with wide adoption of 

next-generation sequencers, from about $1000.00 per million base pairs (Mb) in 2004, to 

as little as $0.09 per Mb in 2012 (reported by the National Human Genome Research 

Institute at http://www.genome.gov/sequencingcosts, using data for sequencing centers 

funded by the Institute).  

The machines in widest use simultaneously sequence fragments of DNA by, first, 

replicating each fragment to create discrete colonies of single-stranded clones.  Clonal 

colonies are then sequenced as complementary strands are built, base by base, from ends 

of clones.  Each colony produces a sequence read.  Currently the most prolific platforms 

(e.g., the Illumina HiSeq), can produce several billion reads in a single sequencer run.  

Read length is controlled by limiting the number of times nucleotides are added to 

colonial complementary strands.  Fragments often exceed read length, so that the end-

sequencing, even from both ends (producing “paired end” reads), results in only partial 

sequencing of the template molecule.  The common method used to read the sequence is 

an optical measurement of photoluminescence induced during base incorporation.   

Compared to single end reads, paired end reads can be aligned to a reference 

Figure 1.1:  Illustration of exon capture technology.  It allows targeted-sequencing 

of 1000s of functional genes. (Illustration after Hodges et.al 2007).  

Exon Capture Basics: 

-Attach sequencing primers (red) to each fragment. 

-Hybridize (capture) targeted DNA fragments 

(exon sequences) to probes (baits). 

 
-Wash off non-target DNA.  Note:  nearly 99% 

of the DNA is non-target (non-exon) sequence 

-Sequence (one or both ends ) of all gene 

fragments ‘captured’ by the baits.  

-Fragment a DNA sample into small pieces. 

http://www.genome.gov/sequencingcosts
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sequence with more confidence.  The pairs represent two ends of the same fragment.  

Fragment lengths have a mean and standard deviation known from the molecular 

preparation of the sample, or inferred from read-mapping to a reference.  Confidence in 

the alignment of a pair increases when individual alignments of read pairs to a reference 

genome together bound a span of reference approaching the mean fragment length.  Less 

certainly, and requiring evidence of similar placements by other reads, a pair spanning a 

length in the tails of the distribution can identify deletions and insertions in the sample 

versus the reference.  Paired-end sequences are used in the experiment described in 

Chapter 4.  

High throughput sequencers are prodigious.  The widely used Illumina HiSeq2000 

instrument can sequence over 50 billion base pairs per day (Caporaso et al. 2012).  If the 

number of base pairs targeted (i.e., the number of genomic positions baited) is limited to 

several million rather than the billions in the typical mammalian whole genome, and, 

further, if pooled samples are used (with attached oligonucleotide indices retaining 

sample identity), a next-generation sequencer can sequence genes in many individuals at 

once.   

 

Genomics technology transferred to nonmodel species 

 

Model species have benefited from intensive genomics and bioinformatic tool 

development.  These are the organisms of high interest in medicine and agriculture, such 

as humans, mice, cows, corn, and those with a central position in the history of genetic 

research, such as Drosophila sp. and Arabidopsis thaliana.   Many have multiple full 

genome sequences and large databases of gene transcripts and genetic markers.  Plentiful 

genomic data serve as reference for alignment and assembly of new sequences, and 

provide accuracy metrics for variant discovery.  The depth of genomic data lowers the 

cost and increases the accuracy of new genomics studies in additional individuals of the 

model species, so that rich genomic resources can self-perpetuate. 

 As next-generation efficiencies have lowered the costs of whole genome 

sequencing, more species' genomes have been sequenced.  However, whole genome 

sequencing project totals for eukaryotic classifications suggest that, to date, there is no 

wholesale, pan-phylogenetic effort to produce complete, large eukaryotic genome 

sequences.  The vast majority of eukaryotic families, genera and species have no 

representative with a genome sequencing project (Table 1.1).  There is a continuing need 

to find affordable gene sequencing methods for species with no reference genome. 

 For vertebrate genomes the Genome 10K project aims to coordinate the 

sequencing of complete genomes for about one species in each vertebrate genus, to 

enable genomics in many species (Genome 10K Community of Scientists 2009).  As of 

this writing the project awaits further reductions in whole-genome sequencing costs 

before getting fully underway (information at http://genome10k.soe.ucsc.edu, accessed 

Aug., 2013).  

 

 

 



6 

 

 

Table 1.1:  Eukaryotes with genome projects.  From the U.S. Dept. of 

Energy, Joint Genome Institute, the Genomes Online Database, 

http://www.genomesonline.org, the number of Eukaryote types with genome 

sequencing projects as a percentage of phylogenetic classification. Accessed Jan., 

2013. 

Subdivision 

Total 

Types 

With genome 

project 

Percentage with 

project 

Phylum 56 35 62.50% 

Class 182 97 53.30% 

Order 1,037 280 27.00% 

Family 6,689 521 7.79% 

Genus 54,319 855 1.57% 

Species 218,222 1,217 0.56% 

 

 

 

To test exon capture in nonmodel species, collaborators and I used the cow genome 

sequence to create baits for exon capture in several ungulate species (see the summary for 

chapters 3 and 4, below).  These are represented by both model species (e.g., the 

domestic cow, sheep, and pig) and nonmodel species (bison, African buffalo, bighorn 

sheep, and mule deer).  Some domesticated ungulates have whole genome sequences 

which can serve as references, the cow (Elsik, Tellam, and Worley 2009), sheep 

(Archibald et al. 2010a), and pig (Archibald et al. 2010b).  The relative abundance of 

genomics data for these species motivated our exon capture study in Chapter 4, in which 

we sampled ungulates with varying degrees of genetic divergence from the cow using 

baits designed from cow exon sequences, and read alignment to the cow genome 

sequence.  We aligned our most divergent species (the domestic pig) to both the taurine 

cow and pig genomes.    

  

Exon target selection for array design 

 

Exon sequences for bait design are usually selected from a reference genome sequence 

with gene annotations.  Conservation of exon sequences in mammals (Modrek and Lee 

2003; Thomas et al. 2003), suggests that exons on the genome sequences of one mammal 

can be used to capture many homologous exon sequences from those of another.   

 There are other sources of sequences for exon bait arrays.  While a nonmodel 

species may have little or no genomic sequence available, many have publicly available 

gene transcript sequences, often in collections of expressed sequence tags (ESTs), whose 

sequences represent the ends of mRNA gene transcripts. Sequence alignment programs 

designed to align transcripts (which may include splice junctions, as noted above) to 

genomic DNA sequences can extract individual exon sequences from ESTs and other 

sources of gene transcripts by aligning them to a genome of a related species. Restricting 

exon selection to those represented only in transcripts, however, may rule out candidate 
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genes of interest, if transcripts are missing from the genes.  Transcripts can bias exon 

selection to genes with high expression in certain tissues.    

Our choice in the studies that follow was to use the relatively complete set of gene 

annotations offered by the cow genome, as the basis for a capture array for use on several 

ungulates. 

  

From reads to genotypes 

 
Next-generation sequencing projects routinely produce hundreds of millions of short 

reads, typically ranging from 75 to 400 base pairs (bp) long.  Each nucleotide in a read is 

known as a base call, apropos of the uncertainty in the sequencing process.  The reads 

represent sequences at the ends of fragments of randomly fragmented genomic template 

DNA, end-sequenced as described above.   Those representing overlapping pieces of the 

same genomic sequence can be stacked to produce aligned columns of bases (Fig. 1.2).  

The alignments reveal the original, targeted sequence by a consensus of bases at the 

aligned positions, subject to errors from the sequencer, and gaps caused by repeat regions 

in the targeted regions that are too long to be disambiguated by the reads.    

 The alignment of reads for consensus genotyping (see section below) is usually 

accomplished by one of two approaches, either de novo assembly (Zerbino and Birney 

2008; Salzberg et al. 2012), in which reads are aligned with each other without recourse 

to sequence data outside the reads, or mapping, whereby reads are individually aligned to 

a pre-existing DNA reference sequence (Fig. 1.2), often a full genome sequence (Trapnell 

and Salzberg 2009).  Some analysis protocols combine these two approaches.  In both 

cases the enormous volume of reads from even a small part of a single next-generation 

sequencer run presents a computational problem so large that exclusive reliance on 

dynamic programming algorithms that guarantee optimal sequence alignments (under a 

given system of scoring for mismatches and gaps) is impractical. 
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In the most recent software, mapping and genotyping programs both use quality 

scores to estimate accuracy.  Also, the sequencers themselves calculate a quality score for 

each base.  Scoring in base-calling, mapping, and genotyping emulates the code devised 

for the Phred base calling program (Ewing and Green 1998), and is sometimes called 

Phred-like when not applied to base calling.  In the Phred encoding a score q encodes the 

probability p that a base is incorrect as q = -10 log10(p) so that, for example, a base call 

with error probability 1/1000 has a Phred-like score of 30.  

Types of read mappers   
 

The need for algorithms that balance accuracy and speed has yielded, in the case of read 

mappers, two strategies in widest use, hash-table based mappers (e.g., Stampy, Lunter 

and Goodson 2011), and those based on suffix arrays (e.g. BWA, Li and Durbin 2009).   

These differ in their methods of indexing sequence information in computer memory.  

Hash tables index positions in either the reference (e.g., Lunter and Goodson 

2011), or the set of reads (e.g., Li, Ruan, and Durbin 2008).  Hash tables allow the 

computer to find positions in the indexed sequences with a few operations, generally 

computing an integer based on the nucleotide sequence which matches that in the 

matched positions of the indexed reference or read set.  Hash-table based mappers have 

Figure 1.2: Excerpted alignment of 100 bp bighorn sheep reads.  Read bases are on 

gray background, aligned to the cow reference genome (top, bases on white).  The non-

gray rectangles at the top show where the sheep consensus differs from the cow 

reference.  Note the one SNP candidate (heterozygous position) indicated by the dual-

colored rectangle, below which bases A and C are aligned to the same position.   Solid 

colored rectangles (top) show where the reads indicate a homozygous difference versus 

the reference base.   This image was generated by the Integrated Genomics Viewer, 

available at http://www.broadinstitute.org/igv. 
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been empirically shown to rate high in accuracy relative to software based on other 

indexing methods (Lunter and Goodson 2011; Pattnaik et al. 2012; Nielsen et al. 2011). 

 For mapping reads with few differences to their reference the suffix array lookup 

methods are much faster than hash-table mappers.  Also, in their most efficient 

implementations, they use appreciably less computer memory (Li and Durbin 2009).  

They gain their speed and memory efficiencies by using text compression.  A compressed 

representation of the reference in memory allows single alignment to reference substrings 

that occur in multiple genomic locations, versus multiple locations in a hash table index.   

One widely used suffix-array mapper, BWA (Li and Durbin 2009), while appreciably 

faster than most hash-table-based mappers at low read-reference divergence (e.g., 2 

mismatches per 100 bases), slows considerably when tuned to allow high read-reference 

divergence (e.g., more than 4 or 5 mismatches per 100 bases).   

 

Quantifying uncertainty in mapping  

 

Having found (heuristically) the best alignment of the read to the reference, many current 

mappers provide a mapping quality, a Phred-like score for the probability that the 

alignment placement is wrong.  For example, for paired-end reads, the Stampy read 

aligner models the alignment error as a likelihood of a read pair (r1,r2) mapping to 

reference genome loci (x0,y0) as, 

 

L(r1,r2,x0y0) = Pr (r1|x0) Pr(r2|y0) Pd(y0-x0) Pu(x0).   

 

 Pr is the likelihood of the alignment, and incorporates probabilities of read errors, 

single nucleotide variations from the reference base, and indels.  To calculate read error 

probabilities, mappers use the Phred-like base quality scores that sequencers provide for 

each base of a read.  Pd  models the insert size.  The insert size is the number of bases 

bounded by the read pair, representing the length of the fragment that was sequenced, in 

this case at both ends.  Stampy approximates the insert size distribution for paired-end 

reads as it aligns the first few hundred pairs.  Pu is the uniform distribution over the 

reference genome.  This likelihood is then used to compute a posterior probability that the 

wrong locus was chosen for alignment of the read.  For concision let Lrxy = L(r1,r2,x,y), 

then, 

 

  1 – P(x0,y0|r1,r2) = 1 –  Lrx0y0    ⁄  ∑(x,y)ϵC Lrxy   X  ∑(x,y)ϵC Lrxy  ⁄  ∑(x,y)ϵΩ Lrxy ,  

 

with C enumerating all candidate positions found by the algorithm, and Ω enumerating all 

pairs of loci on the reference.  The last factor is not feasible to calculate, and is replaced 

by a probability that the correct alignment position was not considered (details are in the 

supplement to Lunter and Goodson 2011). 

 

Consensus genotyping   

 

With aligned reads, it is possible to posit a genotype at each base-pair position covered by 

the alignment.  When using a reference sequence to align reads, genotyping computer 
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programs assign one base, a gap, or an insertion at each reference position to which one 

or more reads are aligned.  The reference position consists of a chromosome name (e.g., 

chromosome 3), and a position, i.e., an integer i  representing the i
th

 base pair on the 

chromosome, position 1 being the first base on the 5´ end of the reference strand. 

 The number of different bases inferred at a nucleotide position (for each study 

individual) is constrained by ploidy.  In the usual case with mammals, an alignment of 

reads for one individual at any one nucleotide position in the genome represents one 

diploid genotype.  The genotyper assigns two bases, identical if the individual is inferred 

to be homozygous at the position, two different bases if the individual is inferred to be 

heterozygous.   

Quantifying uncertainty in genotyping 
 

Roughly, genotypes are assigned according to the commonest base or bases in an aligned 

stack of reads (Fig. 1.2).  As Nielsen et al. 2011 notes, in alignments with deep coverage, 

(and especially in the early days of next-generation read alignment to references), 

genotype calling has been often based on a majority-rule of the count of bases aligned at 

a given site, preceded by discarding all aligned bases whose base-quality scores were 

below a threshold (typically, a Phred score of 20).  In this scheme positions are called 

heterozygous when counts for the two most frequently occurring bases at the aligned 

position are out of balance by no more than a threshold ratio (e.g. 80/20).   

 Because the majority-rule methods require relatively deep coverage (estimated 

generally as coverage over 20X), and do not quantify accuracy using base or mapping 

error probability, most recent mappers use a probabilistic analysis expressing the 

probability of an incorrect genotype inference.  Generally a genotype likelihood is 

computed, p(X|G), with X as the data in the reads at a given genomic site, and G the 

genotype at that position.   With a prior posited p(G), Bayes formula is used to arrive at 

the posterior p(G|X) (Nielsen et al. 2011).  Rescaling the quality scores, and assuming 

their independence, the likelihood p(X|G) can be the product of the individual 

probabilities p(Xi|G), with Xi the data from the i
th

 read. 

 Incorporating reads from multiple samples in a single genotyping likelihood 

calculation can increase accuracy, for example, in the assignment of prior probabilities 

for each possible genotype.  In the case of an individual sample, with no data available 

except that of the reads, the prior is often posited as uniform for all genotypes. With 

multiple samples, the GATK genotyper (UnifiedGenotyper, McKenna et al. 2010), for 

example, uses a Bayesian genotype likelihood model that incorporates data from all 

samples to compute the most likely genotypes for each.  Further information outside the 

individual base calls and their Phred scores, adds to accuracy.  Nielsen et al. (2011) found 

high genotyping accuracy using linkage disequilibrium information.  When genotypes at 

multiple sites are linked, reliable information at some sites can be used to calculate 

genotype likelihoods at linked sites.  The studies that follow did not employ linkage 

disequilibrium information, infeasible in cases in which the genome of the sample species 

is not available.  The study in Chapter 4, however, did use the GATK’s multi-sample 

genotyping feature.  
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Multiple metrics for each genotype call   
 

For each genotype inference, besides a single Phred-like quality score, genotypers such as 

the UnifiedGenotyper, and the genotyper provided in Samtools (Li et al. 2009), generate 

multiple quantities for each position.  Examples include the root mean square of mapping 

qualities of all reads aligned to the site being genotyped, the relative likelihood of 

genotypes alternative to the most likely, and many others.  In the UnifiedGenotyper  and 

the Samtools genotyper, the data are presented in the Variant Calling Format (Danecek et 

al. 2011), a standard data file format for genotyping based on reads mapped to a reference 

genome.   

 False positive and false negative genotypes, generally arising when inferring 

SNPs and indels, but also resulting from de-novo assembly of reads for inferring whole 

genome sequences, continue to challenge analyses of next-generation sequencing.  Work 

is underway to establish protocols for genotyping mapped reads under different 

experimental conditions of sample number, depth of coverage, and available genomic 

data for the species being sequenced (DePristo et al. 2011; Martin et al. 2010; Li 2011).  

The multiplicity of metrics attending genotyping testifies to the lack of a simple, single 

metric of uncertainty that is reliable under all circumstances. 

   

Chapter overviews  

 

Chapter 2  

 
Chapter 2 describes a computer program, ExonSampler, which collects exon sequences 

from a reference genome, genome-wide.  It can choose exons evenly spaced across all 

chromosomes for efficient genome-wide scans.  It also can collect exon sequences based 

on a list of gene abbreviations (e.g., from candidate genes such as the immune system 

genes TLR4, IFNG, etc.).  This software was designed to automate and customize the 

collection of partial exomes for design of exon capture baits.  For example, in the capture 

described in Chapter 3, the program was used to collect ~16,000 exons representing 

~10% of a mammalian exome.  It can set limits on several collection parameters to limit 

the size of the collection (e.g., up to 1 kb per gene) and to prefer some kinds of exons 

over others, for example, in each gene, to collect the 5´ upstream exon near regulatory 

sequences before collecting other exons, to meet specific experimental designs.  

ExonSampler allows researchers to design exon capture to their own specifications 

without the cost and time of software development, especially for those who have no 

ready access to bioinformatics infrastructure. 

Chapter 3  

 

Chapter 3 presents a published proof of concept of exon capture with reduced target size 

and reference-sample divergence, with successful genotyping of one Bos taurus, one Bos 

indicus, and one Bison bison individual using the Bos taurus reference genome, and a 
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target size of about 3 million base pairs (~10% of the exome).  As a proof of concept of 

available genotyping tools to genotype divergent species, our study showed that our 

wildlife species, the bison, as well as the non-taurine cow (B. indicus), could be captured 

using taurine cow baits, the resulting reads aligned and genotyped for SNPs using a 

taurine cow reference.   In bison we report 2,426 putative SNPs genome-wide, with 339 

SNPs in 96 candidate genes.  Results here should encourage researchers in conservation 

and molecular ecology, studying nonmodel subjects, that exon capture can be a viable 

method of targeted genetic marker discovery using a related model species genome. 

 

Chapter 4  
 

Chapter 4 quantifies how the genetic divergence of a sampled genome (e.g., sheep) from 

a domestic cow reference genome affects the success of sequencing, SNP genotyping, 

and SNP discovery following exon capture.  The study evaluated two kinds of mapping 

software, one designed for close sample-reference genome sequence similarity (Li and 

Durbin 2009), the other designed for higher divergence between sample and reference 

genomes (Lunter and Goodson 2011).  This study also targeted a subset of the exome 

(about 3.6 million base pairs), including exons in ~350 candidate genes. The Bos taurus 

reference was again the basis for probe design and mapping.  Six divergent ungulate 

species provided a wide range of genetic divergence from the taurine cow.  Divergence 

ranged from near zero in a taurine cow, to ~1-2 million years (MY), in the Bison bison, 

~1-3 MY in Syncerus caffer (African buffalo), ~20MY in Ovis canadensis (bighorn 

sheep), ~40 MY in Odocoileus hemionus (mule deer), to ~60 million years in Sus scrofa 

(wild boar) and Sus domesticus (domestic pig). 

 Results from this study further clarify the feasibility and limitations of cross-

species exon capture described in Chapter 3.  Promisingly, targeting a reduced exome to 

increase the number of individuals that can be sequenced for a given cost, gives high 

coverage and high quality genotypes in a large proportion of the targeted exons.   This 

applied even to our ungulate species phylogenetically divergent from the cow reference 

by 10s of millions of years.  Success in this study suggests wide possibilities for cross-

species exon capture for marker discovery in species with few gnomic resources, using 

well-tested molecular methods and bioinformatic software. 

 

Supplementary work and appended publications 

 
My work in the analysis of next-generation sequencing owes much to collaboration and 

instruction preceding the exon capture studies, as well supplementary activities during the 

exon capture analyses.  The collaborations noted below provided me with introductions 

to molecular biology, phylogenetics and bioinformatics, with practice in the latter two.  

These were essential activities not only in developing a necessary biological background 

for the work central to this dissertation, but also to understand first-hand the centrality of 

collaboration when integrating computer science with biology in using the new 

sequencing methods. 
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Microbial community DNA analysis 
 

 Collaboration with microbial ecologists at the Holben Lab at the University of 

Montana introduced me to DNA sequence alignment and its importance in ecology.  

Microbial ecologists there were investigating solutions to problems in measuring 

microbial community richness and diversity by PCR amplification of 16s RNA gene 

sequences from composite soil DNA samples.  My contribution to the effort was creating 

two computer programs that implemented the novel analyses of my collaborators, 

contributing to three publications (Morales et al. 2008, 2009, 2010).  These programs are 

publicly available online at http://holben-lab.dbs.umt.edu/links.php. 

 The DAM program (DOTUR ARB Matching) extracts groups of 16s rDNA 

sequences as processed by two programs in wide use among microbial ecologists, (i) 

ARB, which generates distance matrices and constructs phylogenetic trees based on 

sequence similarity to references, and (ii) DOTUR, which bins sequences according to 

distance values given by similarity matrices.  Our DAM program isolates ARB-generated 

sequence groups in the DOTUR bins and produces a new DOTUR-like file of bins 

containing only the ARB-specified sequences.  DOTMAN (DOTUR MANipulation) 

generates sequence files (in the FASTA format) based on a range of sequence similarity 

values, as well as a range of bin sizes, from a DOTUR (or DAM) list of bins. 

 The programs were used to test the feasibility of a “universal” cutoff value of 16s 

rDNA sequence similarity for phylum-level binning (Morales et al. 2009).  Such a value 

had been suggested by former publications.  Tests with DAM and DOTMAN showed 

highly variable sequence similarity cutoffs for phylum level discrimination.  We also 

published a description of the two programs and their functions (Morales et al. 2008). 

 A third study with collaborators at the Holben Lab linked greenhouse gas 

emission in soils with the abundance of selected bacterial genes (Morales, Cosart, and 

Holben 2010).  My contribution in this study was the multivariate analysis of the gas 

emission and gene abundance data in different soil types.  I used principal components 

analysis to visualize the relationship of the gas emissions to soil type, gene abundances to 

soil type, and each gas measurement and gene abundance variable's contribution to the 

variance in the soil type responses.  Co-inertia analysis visualized how similarly the gas 

emission values and abundances, in separate PCA analyses, explained the variances in the 

soil type responses.  

 The three publications described here are appended to this dissertation. 

 

Volunteership at the NIH Rocky Mountain Laboratories 
 

As a trainee in the Montana-Ecology of Infectious Diseases Program (an Integrative 

Graduate Education and Research Traineeship program funded by the National Science 

Foundation), I fulfilled an internship requirement by volunteering at the Rocky Mountain 

Laboratories (RML), a National Institute of Allergies and Infectious Diseases (NIAID) 

laboratory, in the Genomics Unit of the Research Technologies Branch.  The unit 

provides NIAID researchers with microarray and sequencing services, including 

bioinformatic analyses.    
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 At RML I learned from both molecular biologists and bioinformatics staff about 

sequencing using multiple next-generation sequencing platforms, ABI Solid, Illumina, 

and the Roche 454 platform.  Multiple projects on all of the platforms has given RML 

biologists and bioinformatics researchers extensive experience in the problems peculiar to 

each platform.  Weekly reviews of current projects with the sequencing group provided 

invaluable exposure to the collaboration between the molecular biologists and 

bioinformatics staff, as they made decisions about which platform best suited a particular 

sequencing project, confronting both informatics and biological problems offered by a 

given organism and the required amount of sequencing. 

 My direct involvement included quantitative evaluations of a prospective read 

mapping program, its correctness and efficiency relative to mappers in the existing 

bioinformatics pipeline.  Programming required for this analysis seeded my collection of 

python programming and scripting used in the analysis of exon capture, especially in 

processing the high volume of data in the multi-ungulate exon capture (Chapter 4).  

Interactions with the read mapping program's developers acquainted me with problems 

such as the trade-offs between speed and thoroughness when finding alignments of 

millions of reads on a large genome, and helped me understand some current methods of 

meeting the computational challenges. 

 I also participated in the SNP analysis of whole microbial genome sequencing, 

involving SNP discovery in hundreds of genomes.  Through a group analysis of hundreds 

of genome-wide mappings, including participation by a biologist and programmer on 

staff at the company who manufactured the sequencing instrument used in the 

experiment, I was introduced to the problems surrounding variant detection, as the 

bioinformatics group searched for proper SNP filtration criteria in order to achieve a final 

set of high-confidence SNPs on which to base phylogenies.   

 My experience at RML included the multi-ungulate exon capture detailed in 

Chapter 4.  The ungulate DNA was sequenced at the Genomics Unit's sequencing 

facilities, on the Illumina HiSeq platform.  Direct consultation and collaboration with the 

genomics staff provided insight into sequencing run itself, and, especially, help 

interpreting sequencer metrics affecting read qualities. 
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Chapter 2:  A Computer Program for Genome-Wide 

and Candidate Gene Exon Sampling for Targeted 

Next-Generation Sequencing 
   

 This chapter is in preparation for submission for publication with co-authors
1
.   

 

Abstract 

 

The computer program ExonSampler automates the sampling of thousands of exon 

sequences from publicly available reference genome sequences and gene annotation 

databases.  It was designed to provide exons for the promising, next-generation 

sequencing method called exon capture.  The exon sequences can be sampled by using a 

list of gene name abbreviations (e.g., IFNG, TLR1), or by sampling exons from genes 

spaced evenly across chromosomes.  It provides a list of genomic coordinates (a bed file), 

as well as a set of sequences in fasta format.  User-adjustable parameters for sampling 

(collecting) exons include a minimum and maximum acceptable exon length, maximum 

number of exonic base pairs (bps) to sample per gene, and maximum total bp for the 

entire collection.  It allows for partial sampling of very large exons.  It can preferentially 

sample upstream (5´) exons, downstream (3´) exons, both external exons, or all internal 

exons.  It is written in the Python programming language using its free, web-distributed 

libraries.  We describe the use of ExonSampler to collect exon sequences from the 

domestic cow (Bos taurus) genome for the design of an exon capture microarray to 

sequence exons from related species: the domestic cow, Bos indicus, and wild bison 

(Bison bison), which have no genome sequences available. We collected ~10% of the 

exome ( ~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced 

genome-wide.  We prioritized 5´ exons to facilitate discovery and genotyping of SNPs 

near upstream gene regulatory DNA sequences, which control gene expression and are 

often under natural selection.  

 

Collecting exons for capture 

  

ExonSampler automates the collection of exon sequences from nucleotide sequence 

databases.  While useful for any project requiring exon sequences we designed the 

program to provide sequences needed to make oligonucleotide probes for the laboratory 

method called exon capture, which enriches genomic DNA for targeted exon sequences 

                                                 
1
 A. Beja-Pereira, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto,   

and G. Luikart, Flathead Lake Biological Station, Division of Biological Sciences, University of Montana.  

I also wish to acknowledge the help of Jesse Johnson, who commented substantially on the manuscript and 

advised on program design. 
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through probe-hybridization.  The exon-enriched DNA sample is sequenced on a next-

generation sequencing platform.  Exon capture, often targeting all known exons 

(collectively, the exome), is used increasingly as a cost-efficient assay of genetic 

variation, commonly single nucleotide polymorphisms (SNPs), across entire eukaryotic 

genomes (S. B. Ng et al., 2009; Hodges et al., 2007; Cosart et al. 2011; ).  We found no 

existing program that met our goal of sampling only part of an exome, limiting total base 

pairs while automatically sampling sequences from thousands of genes across all 

chromosomes and spaced as evenly as possible, to facilitate genome wide scan 

experiments (Nadeau et al., 2012,   Ng et al., 2010).    

For an exon capture from cows and bison (Chapter 3; Cosart et al., 2011), the 

program collected 15,583 exons, totaling ~2.9 million base pairs (Mb) from the BTau4.0  

Bos taurus genome sequence (Elsik et al., 2009).  Sequences came from  2,522  genes out 

of ~10,000 or so RefGene annotations from RefSeq mRNA’s (Pruitt et al., 2011), aligned 

to the genome by the BLAT program (Kent, 2002) at UCSC’s Genome Browser Database 

(Fujita et al., 2010).  We added 48 candidate gene annotations from NCBI’s Entrez gene 

database (Maglott et al., 2006), fetched over the internet, using code not part of the 

current program.   

Guided by our selection parameters, the ExonSampler provided exons sufficient 

to capture and sequence thousands of putative SNPs, genome wide.  These included 

SNPs in selected candidate genes in all three individuals of our sampled species: taurine 

and zebu cows, and an American bison.  ExonSampler provided a genome-wide target 

area (total exon bps collected) large enough for significant SNP discovery, while small 

enough (about 0.1% of the total genomic bps in the cow, and ~15% of the ~20Mb 

refGene-annotated exome) for cost-effective sequencing in many individuals.  

Sequencing genetic markers in many individuals reduces ascertainment bias in population 

genetic studies (Morin et al., 2004) while revealing rare alleles.   

The program allows users to balance the total exonic base pairs targeted with the 

number of samples to be sequenced by setting a limit on total base pairs for the exon 

collection and/or the number of base pairs per gene (Table 2.1).  Testing and verification 

of the program included using the BLAST alignment program (McGinnis and Madden, 

2004) to verify that sequences produced by the program were at the correct genomic 

coordinates, and use of the UCSC genome browser to verify that coordinates produced by 

the program were correctly associated with exon intervals.  
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Table 2.1:  Exon parameters used by ExonSampler.  The middle column gives the values 

we used in our study (Cosart et al. 2011). Asterisks indicate the use of BLAST to ensure a 

collection of sequences without high similarity to each other.  As used in our study (Cosart et al., 

2011), each exon was blasted to the current collection before being added to the collection, and 

was discarded if too similar (see thresholds in the table).   See “Optional features” below, for the 

current implementation, which uses the whole genome for blast verification of sequence 

uniqueness. 

 

Parameter Our 

chosen 

value 

Note 

Total base pairs (bps) to be 

collected (approximate) 
3,000,000 

 About 10% to 15% of the exome of cattle 

(and many mammals). 

Max. bps per gene 1,500 

We avoided sampling large numbers of bps 

per gene to maximize the number of genes 

and chromosomal locations that could be 

sampled. 

Min. exon length (bps) 40 

This was imposed only on the non-candidate 

genes collected. It is an arbitrary value, to 

avoid baiting for small coding sequences.  

We imposed no minimum exon size for our 

candidate genes. 

Max. exon length (bps) 1,500 

If a gene had no exon under 1,500 bps, 

ExonSampler collected half of the maximum 

exon length (750 bps) at each end of one of 

the large exons, preferring to sample the 

upstream (5ʹ) exon. 

Exon preference Upstream 

The upstream (5ʹ) exon was collected before 

any others.  Other choices are downstream, 

external, internal, or all exons (i.e. no 

preferential collection)
 

Max. BLAST align length 40 
No sequences are rejected on the basis of an 

alignment length under this value.
* 

Max. BLAST percent identity 90 

Exons are discarded if the alignment exceeds 

the maximum alignment length and the 

percent identity exceeds this threshold.
* 

Max. BLAST bit score N/A Not used in Cosart et al.  Exon sequences are 

discarded if they align to different loci than 

their own with length exceeding the value of 

“Max. BLAST align length” and with a bit 

score exceeding this value. 

Min. BLAST e-value N/A Not used in Cosart et al.  Alignments of 2 

different loci below this value, and exceeding 

the other thresholds, are discarded. 
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Input: genome sequences and gene annotations. 

 

The program uses exon annotation information from refGene.txt files, and chromosome 

sequences, both freely downloadable from the annotation directories for various genomes 

at the UCSC Genome Bioinformatics site 

http://hgdownload.cse.ucsc.edu/downloads.html.  Each refGene.txt file is associated with 

one genome sequence build.  ExonSampler uses the chromosome sequences on which the 

annotations are based to provide sequences corresponding to the exon intervals, in fasta 

file format.  The program also requires a genome sequence in the fasta file format, also 

available at the UCSC site.   If named genes are to be collected, the program requires a 

file listing gene name abbreviations (e.g., IFNG, BOLA-DOB, PRNP, etc.), one 

abbreviation to a line.  Input files are described in documentation accompanying the 

program, which describes installing the program, data, and the format of input and output 

files. 

 

Execution: collecting exon sequences and information 

 

A run of the program uses one of two sampling strategies to obtain exons, parameterized 

by the user in a configuration file:  

 

1. List-based Sampling:  Genes are chosen using a list of gene symbols.  For each 

gene symbol in the user-supplied list file, exons are collected for gene annotations 

(one or more) with a perfectly matching symbol.  Any symbols without matches 

in the annotation file are recorded in a log.   

 

2.  Even Sampling:  Genes are chosen by an even sampling over the whole genome.  

On a given chromosome, the genes are collected serially, selecting that gene 

whose midpoint is nearest the midpoint of the largest contiguous stretch of 

unsampled base pairs on the chromosome (Fig. 2.1).  Chromosomes are visited by 

turns and a gene selected on each visit.  They are sampled proportionately to their 

base-pair length.  

  

http://hgdownload.cse.ucsc.edu/downloads.html
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Figure 2.1: Algorithm for gene selection for collecting exons 

evenly across chromosomes.  The program visits chromosomes 

multiple times, proportionally to chromosome length, and selects 

genes nearest to the middle of largest, unsampled spans.  (A) The first 

selection on the hypothetical, unsampled chromosome above is gene 

1 (g1, circled in red), whose midpoint is closest to the chromosome's 

midpoint (s1).  (B) g1’s selection divides the chromosome into two 

spans, s1 and s2, with s1 the longest.  g2 is the gene sampled on the 

second visit, since its midpoint is closest to the midpoint of s1.  (C) 

Of the three spans resulting from selections above, s3 is the longest.  

On the 3rd visit, g3 is selected, since its midpoint is closest to that of 

s3. Gene selection and exon sampling continues on each chromosome 

accordingly until base pair limits are reached or every gene has been 

selected. 

g2 g1 g4 g3 

s1  

g2 g1 g4 g3 

g2 g1 g4 g3 

s2 s3 s1 

s1 s2 

A 

B 

C 



25 

 

 

In any session the user can indicate a preferred exon type, categorized as upstream 

(the gene’s 5ʹ external exon), downstream (3ʹ external exon), external (5ʹ and 3ʹ), internal 

exons, or all (indicating no preference).  Exons of the preferred type are put at the head of 

a list as potential additions to the collection for a particular gene.  Nonpreferred types are 

collected after the maximal number of preferred types is collected, without exceeding any 

exonic or per-gene base pair limit.   Within preferred or nonpreferred groups, exons are 

shuffled to randomize the order in which they are considered for addition to the 

collection.   As each exon is considered, its length (in bps) is added to a running total for 

the gene.  Exons with lengths that are over the user-set maximum exon size, and exons 

that put the total over the per-gene bp limit, are skipped.  In genes with no exon meeting 

exon size limits, if at least one exon exceeds the user-set maximum, the first such exon in 

the randomized exon order is sampled from both ends, taking half of the maximum bps-

per-exon from each end.   Collection completes when either all genes have been sampled, 

or adding a new exon takes the total base pairs collected over the user-set limit.  

   

Output: exon positions and sequences 

 

For each session, ExonSampler generates four files: 

1. A coordinate file in the bed file format, giving each exon’s chromosome, start 

position, stop position, an exon name composed of the gene name, an number n 

indicating that the gene was the n
th

 gene of that name (abbreviation) collected, a 

number indicating the exon’s position in the annotation, numbered from the 

upstream to the downstream end, and the total exons annotated for the gene.  

2. A fasta file, giving the genomic DNA sequence for each exon.  The fasta ID lines 

in this file also contain the genomic coordinates and the exon name. 

3. A log file that lists every exon that was under consideration for addition to the 

collection.  This file also notes each exon’s strand orientation and, if an exon was 

rejected, the reason for rejection (e.g. the exon is below or above the exon length 

limits).   

4. A message file is also provided for each session, listing the type of sampling 

session used, and the parameters set by the user, along with summary numbers 

such as total base pairs collected. 

 

Optional Blast Alignment 

 

The program will optionally perform a BLAST sequence alignment (McGinnis and 

Madden, 2004) of the collected exons to a BLAST database of the genome sequences 

from which the exons were collected.  The program discards collected exons that have at 

least one BLAST hit, other than the self-alignment of the exon to its source location on 

the genome, at or above a minimum sequence percent identity, alignment length, and bit 

score, and below a given e-value.  This is meant to filter out ambiguous or similar 

sequences that produce reads that have 2 or more maximally-scoring alignments on the 



26 

 

 

genome.  This is often the case for reads that represent recent gene duplication.  Exons 

discarded by the BLAST test are recorded in the log file.   

Program results for an example study  

  

In making an exon collection of target sequences for the design of our bovine exon 

capture microarray (Cosart et al., 2011) we used both even sampling across all 

chromosomes and a list of candidate genes of special interest (Fig. 2.2, and listed in Table 

S1 in supplementary material).  For even sampling over the chromosomes we set the 

program’s parameters to prefer the upstream exon (to identify SNPs in/near the upstream 

regulatory region), and to collect no more than 1,500 bps per gene (to distribute 

sequencing across many genes and likely discover SNPs in each gene).  In this selection 

process, if a candidate gene had no exon of an allowed length, but had at least one exon 

over the maximum length, ExonSampler split the exon creating an upstream 750 bp 

sequence and downstream 750 bps.  We collected all exons in the candidate gene list, 

with no restrictions on exon size or type. 
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Figure 2.2: Gene locations for the 15,583 exons collected by ExonSampler.  The 

source genome was the cow, btau 4.0.  Exons were collected with the program 

parameters as described above.  The collection totaled 2,522 genes, of which 155 

are candidate genes (upward-pointing triangles), that is, genes chosen for their 

known or suspected association with adaptive traits (listed in supplementary Table 

S2.1).  The whole collection totals 2,880,061 base pairs.  As detailed in the legend, 

plotted symbols candidate versus non-candidate genes. 
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The resulting collection has exons spread evenly across all the published 

chromosome sequences (Fig. 2.2).   The distribution of the lengths of the sampled exons 

had a similar median length, but a lower mean length, than the entire exome in the 

refGene annotations, likely reflecting the end-sampling of exons in genes with no exons 

under the maximum exon bp limit (Table 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The per-gene bp limit also reduced the mean number of exons-per-gene from 8.3 

for the whole RefGene annotation to 6.2 for the ExonSampler’s collection.  In the even-

sampling session most of the exons of a given gene were collected if the gene had 

between 1 and 10 exons (Fig. 2.3).  For genes with larger numbers of exons, generally 

about 10 exons were collected (Fig. 2.3).  114 exons were discarded (their rejection 

recorded in the programs log file output) for their high BLAST similarity to already-

collected exons, out of 15,697 total exons selected. 

  

 
All refGene 

Exons 

Sampled 

Exons 

Maximum 12,590 4,095 

Third 

Quartile 
189 181.5 

Mean 229.5 183.8 

Median 129 126 

First Quartile 90 89 

Minimum 3 11 

 

Table 2.2:  Distribution of lengths (bp) of exons collected 

by ExonSampler.  These are compared to the exon length 

distribution for all annotated exons in the refGene annotations. All 

numbers are counts of base pairs. 
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Future development 

 

Enhancements planned for the program include adding NCBI seq_gene.md files, 

available at the NCBI Genomes site (http://www.ncbi.nlm.nih.gov/genome) as sources 

for annotations.  Other enhancements planned are to collect flanking (noncoding) 

sequence of a user-specified size to be included upstream and/or downstream of collected 

exon sequences.  Exon capture targeting widened flanks can assay (1) bps flanking genes 

(e.g., to measure linkage disequilibrium due to selective sweeps, or to capture upstream 

regulatory regions) and (2) bps between genes to allow for sampling of neutral DNA or 

development of markers in gene-poor chromosomal regions.     
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Abbreviation Name and/or description 

ALCAM activated leukocyte cell adhesion molecule 

ADRB2 adrenergic_ beta-2-_ receptor_ surface 

B2M beta-2-microglobulin 

BOLA1 bolA homolog 1 (E. coli) 

BOLA3 bolA homolog 3 (E. coli) 

CPE carboxypeptidase E 

CSN1S1 casein alpha s1 

CSN1S2 casein alpha-S2 

CSN2 casein beta 

CSN3 casein kappa 

CASP8 caspase 8_ apoptosis-related cysteine peptidase 

CAMP cathelicidin antimicrobial peptide 

CAV3 caveolin 3 

CEBPA CCAAT/enhancer binding protein (C/EBP)_ alpha 

CD14 CD14 molecule 

CD2 CD2 molecule 

CD40LG CD40 ligand (TNF superfamily_ member 5_ hyper-IgM syndrome) 

CD40 CD40 molecule_ TNF receptor superfamily member 5 

CD69 CD69 molecule 

CCL2 chemokine (C-C motif) ligand 2 

CCR4 chemokine (C-C motif) receptor 4 

CCR5 chemokine (C-C motif) receptor 5 

CCR7 chemokine (C-C motif) receptor 7 

CCR9 chemokine (C-C motif) receptor 9 

CXCR3 chemokine (C-X-C motif) receptor 3 

CXCR4 chemokine (C-X-C motif) receptor 4 

CXCR6 chemokine (C-X-C motif) receptor 6 

CSF1 colony stimulating factor 1 (macrophage) 

CSF1R colony stimulating factor 1 receptor_ formerly McDonough feline sarcoma 

viral (v-fms) oncogene homolog 

Table S2.1:  Candidate gene symbols and brief 

descriptions. The candidate genes whose exons ExonSampler 

collected for our cow and bison exon capture (Cosart et al. 2011). 
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CSF2 colony stimulating factor 2 (granulocyte-macrophage) 

CSF3 colony stimulating factor 3 (granulocyte) 

C6 complement component 6 

CRH corticotropin releasing hormone 

DEFB defensin_ beta 

DGAT1 diacylglycerol O-acyltransferase homolog 1 (mouse) 

DRD1 dopamine receptor D1 

DRD2 dopamine receptor D2 

FAS Fas (TNF receptor superfamily_ member 6) 

FASLG Fas ligand 

FEZF2 FEZ family zinc finger 2 

FLT3LG fms-related tyrosine kinase 3 ligand 

GDF9 growth differentiation factor 9 

GH growth hormone 

GHR growth hormone receptor 

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 

HNRNPU heterogeneous nuclear ribonucleoprotein U (scaffold attachment factor A) 

IGHMBP2 immunoglobulin mu binding protein 2 

IGFBP3 insulin-like growth factor binding protein 3 

IFNAR2 interferon (alpha_ beta and omega) receptor 2 

IFN-tau-c1 interferon tau c1 

IFNAR1 interferon_ alpha; receptor 

IFN1@ interferon_ alpha_ leukocyte 

IFNB1 interferon_ beta 1_ fibroblast 

IFNG interferon_ gamma 

IFNW1 interferon_ omega 1 

IFN-a interferon-alpha 

IL1A interleukin 1_ alpha 

IL1B interleukin 1_ beta 

IL10 interleukin 10 

IL10RB interleukin 10 receptor_ beta 

IL11RA interleukin 11 receptor_ alpha 

IL12RB2 interleukin 12 receptor_ beta 2 

IL12A interleukin 12A (natural killer cell stimulatory factor 1_ cytotoxic 

lymphocyte maturation factor 1_ p35) 

IL12B interleukin 12B (natural killer cell stimulatory factor 2_ cytotoxic 

lymphocyte maturation factor 2_ p40) 

IL13 interleukin 13 

IL15 interleukin 15 

IL17A interleukin 17A 

IL18 interleukin 18 (interferon-gamma-inducing factor) 
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IL2 interleukin 2 

IL2RA interleukin 2 receptor_ alpha 

IL2RG interleukin 2 receptor_ gamma (severe combined immunodeficiency) 

IL21 interleukin 21 

IL27RA interleukin 27 receptor_ alpha 

IL3 interleukin 3 

IL4 interleukin 4 

IL4R interleukin 4 receptor 

IL5 interleukin 5 

IL6 interleukin 6 (interferon_ beta 2) 

IL7 interleukin 7 

IL8 interleukin 8 

IL8RA interleukin 8 receptor_ alpha 

IL8RB interleukin 8 receptor_ beta 

IRAK1 interleukin-1 receptor-associated kinase 1 

KDR kinase insert domain receptor (a type III receptor tyrosine kinase) 

KITLG KIT ligand 

LGB lactoglobulin_ beta 

LTF lactotransferrin 

LEP leptin (obesity homolog_ mouse) 

LEPR leptin receptor 

LIF leukemia inhibitory factor (cholinergic differentiation factor) 

LIPE lipase_ hormone-sensitive 

LTA lymphotoxin alpha (TNF superfamily_ member 1) 

LYSMD1 LysM_ putative peptidoglycan-binding_ domain containing 1 

LYSMD2 LysM_ putative peptidoglycan-binding_ domain containing 2 

BoLA major histocompatibility complex_ class I_ A 

BOLA major histocompatibility complex_ class I_ A 

HLA-A major histocompatibility complex_ class I_ A 

BOLA-DMA major histocompatibility complex_ class II_ DM alpha-chain_ expressed 

BOLA-DMB major histocompatibility complex_ class II_ DM beta-chain_ expressed 

BOLA-DQA5 major histocompatibility complex_ class II_ DQ alpha 5 

BOLA-DQB major histocompatibility complex_ class II_ DQ beta 

BOLA-DRA major histocompatibility complex_ class II_ DR alpha 

BOLA-DYA major histocompatibility complex_ class II_ DY alpha 

MAL mal_ T-cell differentiation protein 

MBL2 mannose-binding lectin (protein C) 2_ soluble (opsonic defect) 

MGP matrix Gla protein 

MC1R melanocortin 1 receptor (alpha melanocyte stimulating hormone receptor) 



34 

 

 

MC4R melanocortin 4 receptor 

MC5R melanocortin 5 receptor 

MET met proto-oncogene (hepatocyte growth factor receptor) 

MEF2A myocyte enhancer factor 2A 

MSTN myostatin 

BOLA-NC1 non-classical MHC class I antigen 

NFKBIL2 nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor-like 2 

NOD2 nucleotide-binding oligomerization domain containing 2 

OSTF1 osteoclast stimulating factor 1 

PGLYRP1 peptidoglycan recognition protein 1 

PIM1 pim-1 oncogene 

POU1F1 POU class 1 homeobox 1 

PRNP prion protein (p27-30) (Creutzfeldt-Jakob disease_ Gerstmann-Strausler-

Scheinker syndrome_ fatal familial insomnia) 

PRL prolactin 

PRLR prolactin receptor 

PRKAA1 protein kinase_ AMP-activated_ alpha 1 catalytic subunit 

PDHB pyruvate dehydrogenase (lipoamide) beta 

SCRG1 scrapie responsive protein 1 

STAT5A signal transducer and activator of transcription 5A 

SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporters)_ 

member 1 

SPA17 sperm autoantigenic protein 17 

SFN stratifin 

SP-A surfactant protein A 

SFTPD surfactant_ pulmonary-associated protein D 

TIRAP toll-interleukin 1 receptor (TIR) domain containing adaptor protein 

TLR1 toll-like receptor 1 

TLR10 Toll-like receptor 10 

TLR2 toll-like receptor 2 

TLR3 toll-like receptor 3 

TLR4 toll-like receptor 4 

TLR5 Toll-like receptor 5 

TLR6 toll-like receptor 6 

TLR7 toll-like receptor 7 

TLR8 toll-like receptor 8 

TLR9 toll-like receptor 9 

TICAM2 toll-like receptor adaptor molecule 2 
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TGFB2 transforming growth factor_ beta 2 

TGFB3 transforming growth factor_ beta 3 

TNF tumor necrosis factor (TNF superfamily_ member 2) 

TNFRSF1A tumor necrosis factor receptor superfamily_ member 1A 

TNFRSF1B tumor necrosis factor receptor superfamily_ member 1B 

ZPBP zona pellucida binding protein 

ZP2 zona pellucida glycoprotein 2 (sperm receptor) 

ZP3 zona pellucida glycoprotein 3 (sperm receptor) 

ZP4 zona pellucida glycoprotein 4 

BOLA-DOB HLA class II histocompatibility antigen, DO beta chain precursor 

BoLA-DRB3 major histocompatibility complex, class II, DRB3 

BSPH1 bovine seminal plasma protein homolog 1-like 
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unrestricted use, distribution, and reproduction in any medium, provided the original 

work is properly cited.  

Abstract 

Background 

Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, 

agriculture, and biodiversity conservation by improving our understanding of genetic 

processes underlying adaptation and speciation. Unfortunately, for eukaryotic species 

with large genomes it remains costly to obtain genome sequences and to develop genome 

resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-

generation sequencing that is flexible enough to include any gene or number of genes, 

unlike transcriptome sequencing. Such a method would allow sequencing of many 

individuals, avoiding ascertainment bias in subsequent population genetic analyses.  

We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, 

gene-targeted marker discovery in species with no genome resources. We use coding 

gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich 

for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison 

bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, 

including 203 candidate genes with known function and of interest for their association 

with disease and other fitness traits.  

Results 

We successfully sequenced and mapped exon sequences from across the 29 autosomes 

and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput 

sequencing identified thousands of putative SNPs spread evenly across all reference 

chromosomes, in all three individuals, including hundreds of SNPs in our targeted 

candidate genes.  
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Conclusions 

This study shows exon capture can be customized for SNP discovery in many individuals 

and for nonmodel species without genomic resources. Our captured exome subset was 

small enough for affordable next-generation sequencing, and successfully captured exons 

from a divergent wild species using the domestic cow genome as reference.  

Background 

Our understanding of the molecular, genetic basis of adaptations and phenotypic 

differentiation among individuals will advance quickly thanks to new molecular 

techniques. This understanding is crucial given that accelerating environmental change 

and human population growth are increasingly threatening natural populations of fish and 

wildlife as well as increasing demands for agricultural production in domesticated 

species. This makes it urgent in many wild and domestic species to investigate the genetic 

basis of fitness, adaptation, and disease resistance [1], and to discover adaptive genes and 

speciation genes, i.e., the "loci of evolution" [2].  

Understanding the genetic basis of phenotypes generally requires genotyping thousands 

of gene-targeted loci, genome-wide. Despite the declining costs of next generation DNA 

sequencing (summarized in [3]), it remains costly enough to prohibit analyzing large 

portions of genomes in numerous individuals as is required for population studies (e.g. 

population genomics, [4]). Fortunately, with coding gene sequences (the exome) 

comprising a mere 2% of the typical eukaryotic genome, and the development of 

techniques for isolating exome DNA, re-sequencing coding portions genome-wide can be 

done at a reasonable per-sample cost, locating thousands of informative gene markers. 

Because exon sequences are relatively conserved we hypothesized that most exons from 

one species (e.g. with a sequenced genome) could be used to capture exons from another 

species for use in next generation sequencing for SNP discovery.  

Exon capture enriches for exon DNA by simultaneous hybridization of fragmented 

genomic DNA from the study individual to many thousands of oligonucleotide probes 

(e.g. refs. [5,6]) that are complementary to gene-coding (exon) sequences. The captured 

http://www.biomedcentral.com/1471-2164/12/347#B1
http://www.biomedcentral.com/1471-2164/12/347#B2
http://www.biomedcentral.com/1471-2164/12/347#B3
http://www.biomedcentral.com/1471-2164/12/347#B4
http://www.biomedcentral.com/1471-2164/12/347#B5
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fragments are then sequenced in parallel on next-generation sequencing platforms. Exon 

capture has been tested almost exclusively in model species (e.g. refs. [7-9]), typically 

baiting either the whole exome or a single chromosomal region. Facilitated by 

availability of genome sequences for the target organism, such studies leave untested the 

potential application of exon capture to a wider variety of organisms. Probe design for 

exome-wide capture requires knowledge of thousands of exon sequences. With few fully 

sequenced eukaryotic genome sequences available (to date, 40 complete, 425 draft whole 

genome sequences are found at NCBI's Entrez gene service), it would appear to be useful 

for only a small proportion of eukaryotic species. Even if 10,000 vertebrate genomes are 

eventually sequenced [10], there would still remain tens of thousands of vertebrate 

species without genome sequences or any genome resources.  

Here we show that the exon capture method has a more general application, reporting 

exon capture in two livestock species, Bos taurus (taurine cattle) and Bos indicus (zebu 

cattle), and one wildlife species, Bison bison (American bison). We conducted all three 

captures through hybridization to sequences from the published Bos taurus genome [11]. 

We baited a small genome-wide fraction of the exome, sampling exons in about 10% of 

the taurine genome's estimated minimum total of 22,000 genes [11]. Our results 

demonstrate that genetic divergence between a reference genome and individuals queried 

does not prohibit exome-wide identification of candidate SNPs and differences (e.g., 

substitutions) in nonmodel species. This suggests the method can be applied to many 

domestic and wildlife species lacking sequenced genomes. Further, we found that baiting 

a small fraction of the exome yielded thousands of candidate heterozygous SNPs.  

Results and discussion 

We sequenced genomic DNA from our three individuals, enriched for 16,131 exons (~ 3 

million base pairs) by hybridization to probes on a microarray. Reference exon sequences 

came from sampling an average of 6 exons from each of 2,367 genes spread evenly 

across the 29 autosomes and the X chromosome. We also chose 203 candidate genes with 

http://www.biomedcentral.com/1471-2164/12/347#B7
http://www.biomedcentral.com/1471-2164/12/347#B9
http://www.biomedcentral.com/1471-2164/12/347#B10
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known associations with disease susceptibility and other important traits. For all 

candidate genes, the entire exon sets were targeted for capture.  

Illumina Genome Analyzer sequencing of the enriched DNA, followed by mapping of the 

36 base-pair, single end sequence reads and consensus genotyping with Maq software 

[12], yielded high-confidence nucleotide base calls (see Methods for our base calling 

criteria) comprising 77% of our targeted exonic positions in the taurine, 80% in the zebu 

and 82% in the bison (Figure 1). The called single-nucleotide genotypes differed from the 

reference across the genome at positions totalling 11,061 in the bison, 5,524 in the zebu, 

and 3,854 in the taurine (Figure 2a).  

 

 

 

Figure 3.1. Proportion of targeted exonic base pairs with a consensus genotype. All have a 

Phred-like quality score of at least 30. Total base pair counts, in millions, are plotted at 

selected minimum depths of coverage. Our estimates of exonic fixed differences and 

SNPs are based on consensus genotypes with coverage of at least 8 ×.  

 

 

 

 

http://www.biomedcentral.com/1471-2164/12/347#B12
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Figure 3.2. Chromosomal positions. a, all consensus base differences from the reference 

taurine genome, and b, heterozygous SNPs only. Both maps show consensus bases with 

at least 8 × coverage and Phred-like quality of at least 30. Numbers in the legends give 

totals for variants for each species.  

As a percentage of total targeted nucleotides with high confidence base calls, 0.5% of the 

bison calls differed from the reference taurine, compared to 0.2% for each of the two Bos 

species. The higher percentage of differences in the bison is expected in light of its one to 

two million years of genetic separation from the taurine cattle (B. taurus) [13]. The 

divergence between the two species in the target region of the exome estimated by our 

results, about 5 differences in every thousand bases, is likely conservative, given the 

limitations of mapping software in accounting for real base differences versus incorrect 

sequencer base calls (discussed in Methods and in [12]).  

In our 203 candidate genes, we identified 339 putative heterozygous SNPs among 96 

genes in the bison, 598 heterozygous SNPs in 123 genes in the zebu, and 372 in 92 genes 

in the taurine. It is encouraging that from only one individual zebu, for example, we find 

high-confidence SNP calls in 60% of our 203 candidate genes of interest for future 

research. For all targeted base pairs, 2,525 heterozygous positions were called in our 

taurine, 3,890 in the zebu, and 2,426 in the bison (Figure 2b, Table 1). Concordance of 

some of our called single-base differences with published SNPs is indicated by the 545 

(about 14%) of our taurine variant calls matching in position and all but one allele among 

1.8 million NCBI dbSNP [14] records positioned on the same reference genome used in 

our study. As expected we found lower dbSNP concordance in our non-taurus 

individuals; about 11% among our zebu's called differences were matched in dbSNP and 

4% of our bison's SNP calls had matches (Table 1).  

Table 3.1. Variant Summary.   
For each individual, total consensus bases different from the reference, for heterozygous SNPs, 

fixed differences, and concordance with 1.8 million entries in NCBI's dbSNP database. Total 

differences from the reference are also given as a percentage of total genotyped bases. dbSNP 

position matches are also given as a percentage of total differences. dbSNP allele mismatches 

give the number of alleles that differed from a dbSNP allele while matching its position; for 

example, in the bison, of the 483 positions matching SNPs in dbSNP, 10 showed alleles different 

than those listed at dbSNP. 

http://www.biomedcentral.com/1471-2164/12/347/figure/F2
http://www.biomedcentral.com/1471-2164/12/347#B13
http://www.biomedcentral.com/1471-2164/12/347#B12
http://www.biomedcentral.com/1471-2164/12/347/figure/F2
http://www.biomedcentral.com/1471-2164/12/347/table/T1
http://www.biomedcentral.com/1471-2164/12/347#B14
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Bison Zebu Taurine 

 

Heterozygous SNPs 2,426 3,890 2,525 
 

Fixed differences 8,635 1,634 1,329 
 

Total differences 11,061 (0.45%) 5,524 (0.23%) 3,854 (0.16%) 
 

Total genotyped bases 2,447,500 2,395,651 2,306,566 
 

dbSNP position matches 483 (4.37%) 594 (10.75%) 545 (14.14%) 
 

dbSNP allele mismatches 10 4 1 
 

Conclusions 

Our results demonstrate two novel strategies for exon capture: (1) Sampling a small but 

genome-wide subset of the exome for discovery of thousands of putative SNPs, and (2) 

successful bait and capture across relatively divergent genomes. Result (1) reduces the 

cost of sequencing the capture products, making genome-wide SNP discovery more 

affordable. Exon capture with a subset of exons can complement large genotyping 

projects (e.g. in [15]) by facilitating discovery of thousands of SNPs based on assaying 

many individuals to avoid ascertainment bias in population genetic inferences [16]. 

Further, it allows genotyping of both candidate genes and genome-wide loci, combining 

the strengths of the candidate gene and genome scan approaches commonly used to 

identify adaptive and economically important loci.  

Result (2) makes feasible these analyses in natural populations of divergent species with 

lesser-known genomes and from diverse environments worldwide, e.g. domestic and wild 

bovids from Siberia to the tropics. The conservation of exon sequences appears sufficient 

for the method to enable genome-wide studies based on probing across taxa as 

phylogenetically divergent as American bison and taurine cattle. Future research should 

test increased divergence between organisms referenced and baited to see how wide a 

taxonomic distance the method can bridge.  

http://www.biomedcentral.com/1471-2164/12/347#B15
http://www.biomedcentral.com/1471-2164/12/347#B16
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With success across many taxa while targeting a high value part of the exome small 

enough for affordable next-generation sequencing of many individuals, exon capture can 

be a powerful application of high-throughput genomics to the genetic analysis of 

populations, even in species with enormous genomes but no whole-genome reference. It 

has exciting potential to reveal in unprecedented detail the genetic basis of evolution, 

including adaptive differentiation and speciation.  

Methods 

Genomic DNA extraction 

Three female individuals, each from Bos taurus (Portugal), Bos indicus (India), and Bison 

bison (USA) were used for this study. We used genomic DNA samples stored for many 

years in our labs (at the University of Porto and the University of Montana). The samples 

from cattle have been used in several published works related to the population genetics 

of cattle. The cattle biological tissue source from which the genomic DNA was isolated 

was ear skin (<2 mm2), extracted by DNeasy Blood & Tissue Kit (Qiagen). The bison 

sample was from lymph node tissue obtained from an abattoir with Tissue Use Approval 

provided by the Institutional Animal Care and Use Committee (identification number 

TU01-11GLDBS-040511) at the University of Montana. The obtaining of genomic data 

for this work did not involve experimental procedures or manipulation of living animals.  

Selecting exon sequence targets 

16,131 exon sequences were selected from the Btau 4.0, Bos taurus genome sequence 

[11], as annotated by the alignment of mRNA's from the NCBI RefSeq database [17] by 

the BLAT program [18], the alignment available at the UCSC genome browser web site 

[19]. Complete exon sets were collected for 203 genes selected by name. Most of these 

were found to be annotated as above, the few remaining annotations found through 

NCBI's Entrez genome site [20]. Other than those collected for the 203 selected genes, 

exon sequences came from an exome-wide sampling by iterating many times over the 

chromosome sequences, choosing one gene annotation on visiting each chromosome. 

http://www.biomedcentral.com/1471-2164/12/347#B11
http://www.biomedcentral.com/1471-2164/12/347#B17
http://www.biomedcentral.com/1471-2164/12/347#B18
http://www.biomedcentral.com/1471-2164/12/347#B19
http://www.biomedcentral.com/1471-2164/12/347#B20


45 

 

 

Longer chromosomes were visited more often proportionally to their total base pair (bp) 

count. As each chromosome was visited in turn, the exon sequences were collected from 

the gene whose midpoint coordinate was closest to the (currently) largest, contiguous 

non-sampled span of the chromosome sequence.  

To meet our goal of sampling about 2,000 genes and keeping the total bases to about 

three million we collected no more than 1,500 exon base pairs per gene, except for the 

203 named genes. To look for sequence variation in regulatory regions of genes, for all 

genes we collected the exon containing the 5' UTR, then chose randomly from among the 

remaining exons until adding an exon brought the total base pair count above 1,500. If a 

gene had only exons longer than 1,500 bps, we sampled 750 from each end of the 5' 

terminal exon. For genes other than those 203 for which all exons were collected, we 

collected no exons with fewer than 40 bps. As exon sequence candidates were chosen, the 

BLAST program [21] was used to remove any exon with at least 40 contiguous base pairs 

showing more than 90% identity with a subsequence in an exon already collected.  

Targeted capture by hybridization 

Hybridization probes for a microarray (Agilent, 244K aCGH format) were designed as 

previously described [5]. A single array was used per individual and hybridization 

performed as previously described.  

Sequencing 

Sequencing of post-enrichment shotgun libraries was carried out on Illumina Genome 

Analyzers (GA) I and II, one lane per individual on each Analyzer, as single-end 36 bp 

reads, following the manufacturer's protocols and using the standard sequencing primer. 

Image analysis and base calling was performed by the Genome Analyzer Pipelines with 

default parameters, but with no pre-filtering of reads by quality. In the reads produced by 

the GAII lanes, quality values were estimated directly by the Illumina software. A 

recalibration of the base qualities from the GAI lanes was performed during mapping as 

http://www.biomedcentral.com/1471-2164/12/347#B21
http://www.biomedcentral.com/1471-2164/12/347#B5
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described below. Sequencing reads are being submitted to the NCBI Short Read Archive 

under accession SRA037397.1.  

Mapping of sequencer reads 

We used Maq software version 0.7.1 [12] to map the reads to the reference Bos taurus 

genome sequence and compute consensus genotypes at all positions covered by a 

uniquely mapped read. We used Maq's "map" command with default parameters, except 

when testing the bison reads using the "map" command's parameter "-m" (detailed below 

in the section, Calling single-base differences to the reference).  

Reads produced by the GAII were mapped twice. Before a final mapping preliminary 

mappings were filtered by in-house programs to create a final collection of reads, under 

the following criteria:  

1. Reads not uniquely mapped were discarded. 

2. Reads that mapped off-target, so that no base in the read was aligned to a targeted exon 

base pair, were discarded.  

3. Reads representing likely polymerase chain reaction (PCR) duplicates were removed 

by discarding, in any group of reads that mapped identically at position and strand, all but 

the read with the highest sum of base qualities.  

The final mapping of the reads produced by the GAI was preceded by two preliminary 

mappings, both of which involved the same steps (1-3 above) performed for the GAII. 

For GAI reads, however, the filtered set of reads produced by the first mapping was used 

solely to recalibrate (with an in-house program) Illumina base quality scores, in order to 

estimate a correction performed by Illumina software supplied with the GAII but missing 

from the GAI. The recalibration treated all mismatches in the (filtered, on-target) initial 

mappings as sequencer error, under the assumption that the great majority of mismatches 

were errors in the reads. An error rate was calculated as the ratio of mismatches to 

http://www.biomedcentral.com/1471-2164/12/347#B12
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matches for all mapped bases with a given sequencer-generated base quality score. The 

sequencer-generated base quality scores were then replaced with the (generally lower) 

quality based on the calculated error rate. This calibration was done separately for our 

taurine and zebu individuals. After finding a severe reduction in quality scores when the 

error rates were calculated based on the bison reads, the final bison quality recalibration 

was based on an average of the error rates found for the two Bos species, under the 

assumption that the relative wealth of mismatches between the bison and the reference 

likely reflected an abundance of real differences, and in total would significantly 

overestimate sequencing error rates. All of the GAI reads, with recalibrated base 

qualities, were then mapped twice using the procedure described above for the GAII 

reads.  

After recalibration and removal of likely PCR duplicates, uniquely mapped reads for the 

bison totalled 11,384,125, for the zebu 11,432,216, and the taurine 7,154,561. Of these, 

bison on-target reads totalled 2,653,386 (23% of uniquely mapped reads), for the zebu, 

2,320,339 on-target (20%), and the taurine, 2,105,157 (29%).  

As a final note on mapping, it was found that duplicate mappings, using the same MAQ 

map command (with default parameters), and the same reads and reference data yielded 

slightly different results. Most of the differences in mappings were a single point 

difference in mapping score for a read on one execution versus the duplicate execution. 

An inquiry to the authors of [12] has been made and a more precise accounting of the 

differences is in progress.  

Calling single-base differences to the reference 

Consensus genotyping by Maq of targeted exon positions covered by the mapped reads 

identified both candidate homozygous differences from the reference sequence and 

heterozygous SNPs. Analyses of differences to the reference were based on consensus 

genotypes with at least 8 × coverage and a Maq Phred-like consensus quality score of 30 

or more. Emulating methods in [5] by removing likely PCR duplicate reads and 

recalibrating base qualities as described above, we then chose our minimum coverage and 

http://www.biomedcentral.com/1471-2164/12/347#B12
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depth values for high-confidence genotype calls based on the findings in [5] that Maq-

based genotype calls with at least these coverage and depth values were in high 

concordance with genotypes inferred by several alternative resequencing methods. We 

also tested variant calls by Sanger resequencing DNA from our three individuals in 

regions in five of our 203 candidate genes in which our exon capture analysis found 

likely variants (Table 2). In these regions Sanger-sequence-based genotypes were in 

concordance with 19 variant calls for the bison, 12 for the zebu, and 4 for the taurine. 

Neither the bison nor zebu showed any false positives for the regions, while our taurine 

individual showed 5 false positives (Table 2). Further indication of lower accuracy in the 

taurine is seen in the deflated transition-to-transversion ratio (2.94) in heterozygous 

positions not found in dbSNP versus the ratio for those found in dbSNP (3.74). For the 

zebu, transition-to-transversion ratios are 3.17 for heterozygous positions not found in 

dbSNP, and 3.03 for heterozygous positions matched in dbSNP. Because our bison 

individual had only 22 matched heterozygous positions in dbSNP, its transition-to-

transversion ratio of 2.14 for positions matched in dbSNP, versus 2.86 for unmatched 

positions, is probably a poor indicator of an error rate in variant calling.  

Table 3.2. Sanger Sequence Calls vs. Maq.  Variant calls in several Sanger sequenced 

fragments in and near exons in the genes indicated, compared with Maq consensus bases. All 

variant calls in the Sanger sequenced regions for the bison and zebu are in agreement with the 

Maq consensus bases. For the taurine five positions (rows in bold) are called as variant by the 

Maq consensus but not by the Sanger sequenced fragments.  

sample chrom sanger start sanger stop position reference sanger maq gene 

bison chr6 88531917 88532399 88532280 A G G CSN3 

bison chr6 88531917 88532399 88532296 T C C CSN3 

zebu chr6 88531917 88532399 88532296 T Y Y CSN3 

zebu chr6 88531917 88532399 88532332 C M M CSN3 

zebu chr6 88531917 88532399 88532339 A R R CSN3 

zebu chr6 88531917 88532399 88532393 G R R CSN3 

taurine chr6 88531917 88532399 88532293 C C Y CSN3 

taurine chr6 88531917 88532399 88532296 T T C CSN3 

taurine chr6 88531917 88532399 88532393 G G A CSN3 

bison chr4 95689756 95690201 95690049 T C C LEPTIN 

http://www.biomedcentral.com/1471-2164/12/347#B5
http://www.biomedcentral.com/1471-2164/12/347/table/T2
http://www.biomedcentral.com/1471-2164/12/347/table/T2
http://www.biomedcentral.com/1471-2164/12/347/table/T2
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zebu chr4 95689756 95690201 95690049 T C C LEPTIN 

taurine chr4 95689756 95690201 95690049 T C C LEPTIN 

bison chr10 3941758 3942115 3941786 T C C TICAM2 

bison chr10 3941758 3942115 3941805 A G G TICAM2 

bison chr10 3941758 3942115 3941921 A G G TICAM2 

bison chr10 3941758 3942115 3941934 G A A TICAM2 

bison chr10 3941758 3942115 3941946 A G G TICAM2 

zebu chr10 3941758 3942115 3941921 A G G TICAM2 

zebu chr10 3941758 3942115 3941946 A R R TICAM2 

zebu chr10 3941758 3942115 3941963 C Y Y TICAM2 

taurine chr10 3941758 3942115 3941921 A R R TICAM2 

bison chr17 4284137 4284804 4284160 T A A TLR2 

bison chr17 4284137 4284804 4284210 A G G TLR2 

bison chr17 4284137 4284804 4284358 C Y Y TLR2 

bison chr17 4284137 4284804 4284655 T C C TLR2 

bison chr17 4284137 4284804 4284747 C T T TLR2 

zebu chr17 4284137 4284804 4284160 T W W TLR2 

zebu chr17 4284137 4284804 4284210 A G G TLR2 

zebu chr17 4284137 4284804 4284652 G K K TLR2 

zebu chr17 4284137 4284804 4284655 T Y Y TLR2 

taurine chr17 4284137 4284804 4284210 A R R TLR2 

taurine chr17 4284137 4284804 4284639 G G R TLR2 

taurine chr17 4284137 4284804 4284652 G K K TLR2 

taurine chr17 4284137 4284804 4284655 T T Y TLR2 

bison chr8 112427182 112427427 112427204 C T T TLR4 

bison chr8 112427182 112427427 112427213 C T T TLR4 

bison chr8 112427182 112427427 112427326 A C C TLR4 

bison chr8 112431812 112432152 112431927 G A A TLR4 

bison chr8 112434757 112435132 112435011 A C C TLR4 

bison chr8 112434757 112435132 112435120 C A A TLR4 
 

 

 

The Maq mapping software uses a base variation (mutation) rate between reference and 

reads (the default is 0.001) in its mapping algorithm. Further, Maq's alignment scores are 
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based on the probability of error in mismatches between read and reference (details are in 

[12]). Therefore, a true per-base variation rate for our bison versus the taurine reference is 

likely higher than that suggested by our percent of total differences given by the 

alignment (0.45%, or about 5 per 1000 bases). The relatively long evolutionary distance 

between the bison's genome and that of the taurine likely increases the chance, compared 

with the reads for the two cows, of the bison reads being incorrectly mapped. To test the 

effect of the base variation rate on Maq analysis of the bison reads, we re-mapped the 

reads after raising the variation rate (using Maq's mapping "-m" parameter) from the 

default 1/1000 (0.001) used in our initial analysis to 0.002, 0.003 ... up to 0.007. While, 

against expectations, increasing the mutation rate was associated with drops in the 

number of total differences called at our depth/quality threshold (for heterozygous 

differences, the largest drop was a loss of 40 calls at mutation rate 0.003, less than those 

called at 0.002), 95% of the 2,426 heterozygous SNPs called at rate 0.001 were shared by 

all 7 mappings, and, including fixed differences, 99% of single-base variants were called 

identically at all mutation rates. The high concordance suggests that, despite a likely bias 

in mapping against divergent exon sequences, there are bison exome sequences genome-

wide among our ~ 16,000 exons sufficiently similar to those in the cow for identification 

of thousands of likely variant bases (Table 1).  

Sanger sequencing for verifying variant calls 

Several exonic fragments from five genes (CSN3, LEP, TICAM2, TLR2, and TLR4) were 

re-sequenced using conventional Sanger sequencing, for verifying Maq-based variant 

calls. The primers were designed for amplifying those exons with >150 base pairs, using 

Primer3 online Web interface (http://frodo.wi.mit.edu/primer3/ webcite). The primer 

sequences are provided in Table 3. PCR reactions were performed in a 20 μl volume 

containing 10× PCR Buffer, 1.5 to 3 mM MgCl2 (upon primers), 0.2 mM dNTPs, 1 μM 

each primer, 0.4 U Platinum
® 

Taq DNA Polymerase (Invitrogen), and approximately 30 

ng genomic DNA. The PCR mixture underwent 15 min at 94°C, 35 cycles of 30 s at 

94°C, 30 s at 58 to 64°C (upon primers), and 35 s at 72°C, and final 10 min at 72°C on 

http://www.biomedcentral.com/1471-2164/12/347#B12
http://www.biomedcentral.com/1471-2164/12/347/table/T1
http://frodo.wi.mit.edu/primer3/
http://www.webcitation.org/query.php?url=http://frodo.wi.mit.edu/primer3/&refdoi=10.1186/1471-2164-12-347
http://www.biomedcentral.com/1471-2164/12/347/table/T3
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GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA,USA). PCR products 

were purified and sequenced for both strands, at High-Throughput Genomics Unit 

(HTGU), Department of Genome Sciences, University of Washington 

(http://www.htseq.org/ webcite). Sequence trace files were checked and aligned using 

software package DNASTAR v7.1 (DNASTAR Inc., Madison, WI, USA).  

Table 3.3. Primers used for PCR amplification and Sanger sequencing.  

 

Gene Forward (5' to 3') Reverse (5' to 3') 
 

CSN3 AGAAATAATACCATTCTGCAT GTTGTCTTCTTTGATGTCTCCTTAGAG 

LEP GATTCCGCCGCACCTCTC CCTGTGCAAGGCTGCACAGCC 

TICAM2 TCCTCTTCTGACTCGGATCTTT CCAAGTTCTGTAAATGCTGTCTGC 

TLR2-f1 TGGGTCTGGGCTGTCATCAT AAGAGATGTTTCCCCAAGTGTTTT 

TLR2-f2 GACCTGCAGAGGTGTGTGAA TGAAAAATGGAAAGTGTGCAA 

TLR4-f1 CGGGGAGAGACGACACTACA TGTTTGCAAATGAACCTAACCA 

TLR4-f2 TCTTTGCTCGTCCCAGTAGC AAGTGAATGAAAAGGAGACCTCA 

TLR4-f3 GGAGACCTAGATGACTGGGTTG GGGGCATTTGATGTAGAACTTT 
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Chapter 4: Next-generation Sequencing of Thousands of 

Genes in Divergent Nonmodel Taxa using Exon 

Capture 
 

Following revisions and consent from co-authors, the following will be submitted for 

publication with my collaborators
2
.  A possible target journal is Genome Research. 

  Abstract  

 

Genome-wide sequencing of numerous functional genes in nonmodel species will allow 

researchers to addresses novel questions in conservation and evolutionary biology.  We 

sequenced 24,525 exons in 18 individuals spanning 6 ungulate species using genomic 

DNA enriched for exons by hybridization to an array of DNA probes designed from the 

domestic cow (Bos taurus) reference genome sequence.  The Illumina sequencer reads 

were aligned to the cow genome, and the aligned bases were genotyped for each 

individual.  The percentage of quality filtered reads whose alignment overlapped at least 

one target base was on average 20% for all mappings for all samples, with both the high 

of 28% and the low of 8% in pig individuals, the species most divergent from the cow.  

Captured cow sequences aligned and completely covered 65% of the 24,525 targeted 

exons, with at least 20X depth of coverage and a high consensus quality score (Phred 50 

or greater).  In the closely related bison, 63% of the exons were completely sequenced to 

the same quality thresholds.  Two African buffalo and two bighorn sheep yielded ~52% 

of exons.  The average yield among 7 deer was 42%, and 38% among the 4 pigs.  The 

total number of putative heterozygous sites discovered in exons per individual ranged 

from a maximum of 4,418 in one deer to a low of 1,112 in a pig.  Among 7 deer 12,645 

putative, exonic SNPs were located in 6,574 targeted exons, from 3,668 genes of the 

5,935 targeted.  In 63 exons targeted in the MHC gene family we found 67 putative 

exonic SNPs in one African buffalo (the best performance) and only 8 in a pig (the lowest 

yield).   Overall, our results indicate that, using available mapping and genotyping tools, 

we can sequence thousands of exons, including those in large gene families such as the 

MHC, in species that diverged tens of millions of years from the genome of a reference 

species. 

 

                                                 
2
 Stephen Amish, Fish and Wildlife Genomics Group, Division of Biological Sciences, University of 

Montana,  Emily Latch, Biological Sciences, University of Wisconsin, Milwaukee, Dan Bruno, Rocky 

Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID),  Stacy Ricklefs, 

Rocky Mountain Laboratories, NIAID, Sarah Anzik, Rocky Mountain  Laboratories, NIAID, Craig 

Martens, Rocky Mountain Laboratories, NIAID, Albano Beja-Pereira, Centro de Investigação em 

Biodiversidade e Recursos Genéticos, Universidade do Porto, Steve Porcella, Rocky Mountain 

Laboratories, NIAID, Gordon Luikart, Fish and Wildlife Genomics Group, Flathead Lake Biological 

Station, Division of Biological Sciences, University of Montana.
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Introduction 

 
Exon capture enriches genomic DNA samples for the protein-coding sequences that 

comprise a high-value genomic target in searches for adaptive or functional genetic 

variation (Vasemägi et al. 2005; Hodges et al. 2007; Nadeau et al. 2012).  The exome 

represents about 1-3% of the ~3 billion base pairs in a typical mammalian genome.  

Reduction of the targeted area to a small part of the vast genome reduces sequencing cost 

per individual and thereby facilitates population-scale genomics studies (Luikart et al. 

2003), including discovery of single nucleotide polymorphisms (SNPs) without 

ascertainment bias (Morin et al. 2004).   

 Generalized as "targeted resequencing," for any chromosomal region(s), exon 

capture can help address a wide range of research questions in evolutionary biology such 

as:  Which genetic variants are associated with complex traits such as disease risk (Price 

et al. 2010)?  Which gene causes a monogenic, Mendelian disorder (Ng et al. 2009a)?  

Which candidate genes are targets of selection and influence fitness and local adaptation 

(Allendorf et al. 2010; Good et al. 2013; Cheviron and Brumfield 2012; Hohenlohe 

2013)? 

 Many of these questions are important in both conservation and evolutionary 

biology, in which species of interest often have few genomic resources compared to the 

fully sequenced, richly annotated genomes of a few organisms of intense genetic 

research, such as the human, mouse, domestic cow, chicken and corn (Lander et al. 2001; 

Chinwalla et al. 2002; Elsik et al. 2009; Hillier et al. 2004; Schnable et al. 2009).   

 Despite plummeting DNA sequencing costs afforded by next-generation 

sequencing, the short sequence fragments produced by high-throughput sequencing 

platforms make assembly of whole mammalian genome sequences problematic (Salzberg 

et al. 2012).  For many wildlife species, saliently mammals, a dearth of genome sequence 

information makes it difficult to address questions about the genetic basis of fitness, 

adaptation, and phenotype variation. 

 Exon capture was developed with and is most often performed on human DNA 

samples and human genome reference sequences (Hodges et al. 2007; Ng et al. 2009b; 

Gnirke et al. 2009; Tennessen et al. 2012; Sanders et al. 2012; Do et al. 2012).  

Conventionally, a full and well-annotated genome sequence provides exon sequences for 

synthesizing the DNA probes, ~60-120 base pairs (bp), to capture exon-containing 

sequences by probe-hybridization to fragmented whole genome samples.  One or both 

ends of the captured exon fragments are sequenced by a next-generation DNA sequencer, 

producing millions of short sequences (reads), of ~75-400 bp.  The annotated genome 

sequence also serves as a reference on which to map the reads. The overlapping 

placement of reads on the reference sequence provides a basis for consensus sequences 

for targeted exons in each individual.   

 

Capture in divergent, nonmodel species 
 

 An alignment of 28 vertebrate genomes has shown that over 90% of human 

coding exons can be aligned to genomes in eight placental mammals and the platypus 
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(Miller et al. 2007b).  Even genomic sequences in five fish species aligned to 60%-70% 

of human coding exons.  Generally, Miller et al. (2007b) found that, across vertebrates, 

coding sequence alignment scores indicated high sequence conservation.  This argues that 

exon capture methods can be applied to many species without a reference genome 

sequence.  Existing genome sequences can provide probes for exon capture in divergent 

species (Nadeau et al. 2012; Burbano et al. 2010; Cosart et al. 2011).   

 The relationship of exon capture success to phylogenetic divergence between the 

subject taxon (e.g., a nonmodel species) and the taxon of the reference genome, however, 

has not been well characterized.  It would help those who would use exon capture in a 

species with no reference sequence, to know whether the phylogenetically nearest 

available genome can serve for both probe design and mapping, and whether the software 

tools used generally in species-species exon capture can serve to map and genotype 

sequence reads from divergent species. 

 Gene families (and duplicated genes) are of special interest for research on fitness 

and adaptation, but also are a special challenge for exon capture.  For example, the major 

histocompatibility complex (MHC) genes influence disease resistance (Spurgin and 

Richardson 2010) and mate choice (Milinski 2006).  Dozens of duplicated MHC genes 

exist (Spurgin and Richardson 2010), and are often the source of novel functions or 

adaptations (Bielawski and Yang 2004).  However, sequence reads from gene families 

with many closely related, duplicated loci can be difficult to map to their correct genome 

position when sequences at one locus are highly similar to those at another (Schaschl et 

al. 2006).  This between-locus mapping difficulty might be exacerbated with cross-

species exon capture as conducted here. 

 Our goal is to quantify the success of exon capture as it relates to increasing levels 

of phylogenetic divergence between the reference and subject (nonmodel species) 

genomes (Table 4.1).   

 

Table 4.1: Ungulate divergence from the reference.  For each sampled species, 

approximate million years (MY) of reproductive isolation from Bos taurus, and total number 

of individuals sampled. The reference column cites literature supporting the approximate 

divergence times.   

Common 

Name  Species  MY  Reference  

Num. 

Samples  

Taurine cow  Bos taurus  0 n.a. 1 

American bison  Bison bison  1-2 Hedrick 2009 1 

African buffalo  Syncerus caffer  1-3 Ritz et al. 2000 2 

Bighorn sheep  Ovis canadensis  20 Randi et al. 1991  2 

Mule deer  Odocoileus hemionus  27-38 Guha et al. 2007 8 

Domestic pig  Sus domesticus  60 Ursing et al. 2000 2 

Wild boar  Sus scrofa  60 Ursing et al. 2000 2 

 

 

We chose artiodactyls because they are a group of high interest for conservation, 

evolution, and agriculture, including bison, elk, mule deer, and wild and domestic cow, 
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sheep and pigs (Bruford et al. 2003; Andersson and Georges 2004).  Artiodactyl full 

genome sequences are available for divergent species (cattle, pigs, and domestic sheep).   

We targeted 24,525 exons (among 5,935 genes), located throughout the genome.  To 

quantify success using a gene family with potentially many alleles, we included 63 exons 

in 14 genes from the MHC. 

 Our three main objectives were to 1) Quantify the number (and proportion) of 

exon targets successfully captured and sequenced in divergent taxa by mapping sequence 

reads to the taurine reference genome, 2) Determine the number (and proportion) of 

heterozygous single nucleotide variants inferred by the capture, sequencing, and mapping 

to the taurine genome, and 3) Measure concordance of read alignments and base calls 

from the divergent species on the taurine genome versus alignments to a phylogenetically 

similar reference genome (e.g., bighorn sheep to a domestic sheep genome, and wild boar 

or pig to the domestic Sus scrofa genome).  We quantified objective (1) using two kinds 

of read-mapping computer programs, (i) BWA (Li and Durbin 2009), a fast aligner 

designed for relatively little divergence between sample and reference, and (ii) Stampy 

(Lunter and Goodson 2011) designed for higher divergence. 

 

 

Results 

Sequence read alignment 

 

The exon sequencing success reported below is informed by the relative numbers of 

sequencing reads, 100-bp, paired-end, obtained for each species, and, of these, how many 

were aligned to targeted exons.  Of trimmed and non-PCR-duplicated reads (see 

Methods), using the Stampy mapper, the percentage that uniquely aligned to the cow 

surpassed 90% in all species except for the pigs, which averaged about 60% (Fig. 4.1).  

The percentage of trimmed, PCR-filtered reads, however, whose alignment overlapped at 

least one target base (on-target reads), was on average 20% for the combined Stampy and 

BWA mappings for all samples, with a high of 28% for a Stampy mapping of pig 3, and a 

low of 8% for the BWA mapping for pig 1.   These percentages are low compared to 

~56% reported in human exome capture using similar technologies (Asan et al., 2011).  

Another study achieved over 90% of read bases, in uniquely mapped reads, mapped on or 

within 250 bp of targeted exons (Blumenstiel et al. 2010).  This measurement in the 

Stampy mappings for our samples averaged 34%, with the high 54% in pig 4, and the low 

27% in sheep 2. 
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Mapper comparisons: BWA versus Stampy 
 

Overall, for the cow, bison, and African buffalo, the two mappers (BWA and Stampy) 

produced about equal numbers of exons sequenced (Fig. 4.2, and see Methods, 

“Measuring sequencing success”).  Stampy yielded more sequenced exons for the 

bighorn, deer and pigs.  We relaxed the BWA parameters to allow for more than the 

default mismatches (substitutions and gaps) between read and reference for the deer and 

pigs (discussed in Methods, in the section “Mapping”).  The difference in number of 

sequenced exons produced by the two mappers is most dramatic in our four pigs, where 

BWA mappings resulted in an average of 5,880 exons fully sequenced (to 20X/Q50), 

while Stampy produced an average of 9,262. 

Figure 4.1: Totals of sequence reads.  Bar heights give totals of sequence reads 

with putative PCR duplicates removed, and with low quality bases and sequencer 

adaptor sequences trimmed (see Methods).   Proportions of reads are indicated as 

noted in the legend.   “Not mapped” are sequences that had no single best placement 

on the reference genome sequence.  Off-target reads are those with a single, best 

alignment outside of targeted exons.   On-target reads are those with a single best 

placement in which at least one base aligns to a targeted exon sequence.  “S” below 

a bar indicates totals for Stampy mappings, “b” indicates BWA. 
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A 

B 

Figure 4.2: Number of exons sequenced.  Success of each mapper for the 24,525 exons 

targeted, with (A) 100%, and (B) at least 60% of bases having at least 20X depth of 

coverage and with a Phred consensus quality score of at least 50, (abbreviated 20X/Q50). 

See Methods for details on the choice of these relatively stringent thresholds. Percentages 

above the Stampy bar give the totals as a percentage of the total for the cow. The white 

bar labeled “stampy and bwa” gives the total exons sequenced to these criteria by both 

mappers.  BWA mismatch allowance parameters were relaxed only for the deer and pigs 

(see Methods). 

 



60 

 

 

 For 63 exons from 14 targeted MHC genes (Table 4.2), BWA produced more  

complete (20X/Q50) exon sequences than did Stampy in the cow, bison, African buffalo 

1, and deer 1 (Fig. 4.3).  Overall, few MHC exons were sequenced completely in pigs.  In 

pig 2 BWA produced only one completely sequenced MHC exon, Stampy none.  Stampy 

produced more complete 20X/Q50 MHC exon sequences in the divergent species.  For 

example, in deer Stampy produced an average of 12.1 exons with complete coverage 

whereas BWA produced on average 10.3. 

Table 4.2: Targeted MHC genes.  Exons were targeted in all annotations of the 

same gene, if they passed the similarity test requirement during target selection (see 

Methods).  

Abbreviation  Name/Description  

Number 

annotated 

BOLA  MHC class I A  2 

BOLA1  BolA homolog 1 (E. coli)  2 

BOLA3  BolA homolog 3 ( E. coli )  2 

BOLA-DMA  MHC class II DM alpha-chain expressed  1 

BOLA-DMB  MHC class II DM beta-chain expressed  1 

BOLA-DOB  MHC class II DO beta  1 

BOLA-DQA2  MHC class II DQ alpha 2  1 

BOLA-DQA5  MHC class II DQ alpha 5  1 

BOLA-DQB  MHC class II DQ beta  1 

BOLA-DRA  MHC class II DR alpha  1 

BOLA-DRB2  MHC class II DR beta 2  1 

BoLA-DRB3  MHC class II DR beta-chain  1 

BOLA-DYA  MHC class II DY alpha  1 

BOLA-NC1  Non-classical MHC class I antigen  1 
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Figure 4.3: MHC exon coverage. Of 63 exons in 14 MHC genes, the number with 

(A) 100%, and (B) at least 60% of bases covered to at least 20X and with a Phred 

consensus score of at least 50. Percentages above the Stampy bars give plotted values 

as a percentage of the total for the cow. Average length for these MHC exons is 212.5 

bp. Base pairs total 13,386. BWA mismatch allowance parameters were relaxed only 

for the deer and pigs (detailed in Methods). 
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Effect of divergence on exome-wide sequencing 
 

The success of exon sequencing declined with divergence from the taurine reference 

genome sequence.  Counting the total number of exon targets with all exon bases 

sequenced, the cow showed the highest total of 15,835 exons (65% of the 24,525 exons 

targeted, Fig. 4.2a).  The bison yielded 15,519 completely sequenced exons (98% of the 

cow’s total).   Averaging for the species with more than one sample, the African buffalo 

produced 12,759 (81% of the cow’s total), bighorn, 12,647 (80%), deer, 10,337 (65%), 

and pigs, 9,261 (58%).  There were 8,999 exons completely sequenced in at least one 

individual for each of the five species sampled.  Among individuals, deer 4 had the 

lowest total at 5,929 exons. 

 The negative effect of divergence was less pronounced in totals for exons with at 

least 60% of all bases sequenced (at 20X/Q50, Fig. 4.2b).  As expected the highest 

success comes from the domestic cow sample, totaling 17,975 exons (73% of the 24,525 

exons targeted).  The bison yielded 17,914 exons (about equal to the cow).   Averaging as 

above, the African buffalo produced 15,667 (87% of the cow’s total), bighorn, 15,997 

(89%), deer, 14,083 (78%), and pigs, 13,219 (74%).  There were 13,131 exons sequenced 

at 60% or more bases (at 20X/Q50) in at least one individual of every species sampled. 

For all 3.6 million base pairs (Mb) targeted by the exon capture array, the cow 

sample had the highest Stampy-aligned total of 2.83 Mb (78 %) that were sequenced (at 

20X/Q50, Fig. 4.4).  The bison produced 2.80 (99% of the cow’s total).  Averaging for the 

multisampled species, African buffalo yielded 2.50 Mb (88% of the cow’s total), bighorn, 

2.55 Mb (90%), deer, 2.27 Mb (80%), and pigs, 2.02 Mb (71%). 

 

 
 

 

 

 

 

 

 Our capture and sequencing also produced data for sites flanking the targeted 

exons.  Of the 11.6 Mb that flank 250 bp either side of each targeted exon, the cow 

Figure 4.4: Sequencing success in total base pairs.  The number of 

nucleotide sites sequenced to 20X/Q50 in the ~3.6 Mb of targeted exons.  

Numbers above the Stampy bar for non-cows give 20X/Q50 bases as a 

percentage of the total for the cow.  BWA mismatch allowance parameters 

were relaxed only for the deer and pigs (see Methods). 
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sample had the highest count for Stampy aligned positions with 4.28 Mb (at 20X/Q50), 

and a deer individual had the low with 1.00 Mb (Supplementary Fig. 4-S1). 

  

Candidate gene sequencing 

 
Among our 24,525 targeted exons are 2,542 exons in 349 candidate genes that we chose 

for their function or association with speciation, reproduction, or role in disease 

susceptibility.   Successful exon sequencing in these was 3.8% lower than success for the 

entire gene collection of 24,525 total exons (Supplementary Fig. 4-S4).  With a mean 

exon length of  220 bp for candidate genes, and 148 bp for the whole 24,525, this result is 

contrary to the finding that longer exons are associated with greater depth of coverage 

(see section below, Coverage relationship to GC content and target length ). 

 For candidate gene exons with 100% bases sequenced (at 20X/Q50), the cow 

yielded 1,532 exons (60% of the 2,542 exons targeted).  The bison yielded 1,485 

candidate gene exons (58% of the 2,542 exons targeted).  Averaging for the species with 

more than one sample, the African buffalo produced 1,258 (50%), bighorn, 1,225 (48%), 

deer, 1,019 (40%), and pigs, 770 (30%).  

 

Gene family sequencing 
 

 Exon capture for our 63 exons from 15 genes in the MHC family (Fig. 4.3) 

yielded 62% of the MHC exons fully sequenced for the cow sample, comparable to the 

64% for all exons for the cow (and higher than the 60% for the candidate genes).  All 

other species showed reduced percentages of fully sequenced (i.e., 20X/Q50) MHC exons 

compared to the full set of 25,424 targeted exons.  Using BWA counts for the bison and 

African buffalo (which showed better performance than did Stampy for the MHC exons), 

the percentage of exons sequenced dropped by 38% in the bison, and, on average, 32% in 

the two African buffalo. Using the higher Stampy-based counts for the bighorn, deer, and 

pigs, the average reductions were 38%, 54%, and 91%, respectively, compared to the 

cow.  There were two MHC exons fully sequenced in at least one individual of every 

species sampled.  If the pigs are excluded, there are 14 MHC exons fully sequenced (at 

20X/Q50) in a least one individual from every species. 

 

Heterozygous calls and SNP discovery 
 

In exons, the number of heterozygous sites per thousand bp (genotyped at 20X/Q50) in 

an individual ranged from 0.52 (pig 4) to 2.26 (deer 4, Fig 4.5a).  In flanking sites 

(adjacent to exons) the range was 0.26 (pig 1) to 2.53 (African buffalo 2, Fig. 4.5b).  

Percentage of exons with at least one heterozygous site ranged from ~3% in pig 1 to 

~11% in buffalo 1 (Fig. 4.6a).  Percentage of flanking regions with at least one 

heterozygous position ranged from under 1% in pig 1 to ~11% in buffalo 2 (Fig. 4.6b). 
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Figure 4.5: Total heterozygous calls.  For the Stampy mapping, total single nucleotide 

heterozygous sites called in (A) the ∼3.6 Mb of targeted exons and (B) ∼11.6 Mb of 

250-bp exon flanks. Numbers above the bars give the heterozygous positions inferred 

per thousand 20X/Q50 sites. Note that the inflation in the rate in flanks versus targets 

for the cow, bison, and buffalo, is replaced by a deflation in the rate for the more 

divergent species (see Discussion). 
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  Figure 4.6: Regions with heterozygous calls.  For Stampy mappings of (A) the 

24,525 total exons targeted, and (B) the 46,538 (unique) flanking regions (of at most 

250 bps), the totals with at least one heterozygous position. See Methods for variant 

filtering criteria. Percentages of total targets and flanking regions with at least one 

heterozygous position are plotted above the bars. 
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 The sample size of seven deer offers an opportunity to assess the usefulness of 

cow-based exon capture for SNP discovery in population samples from a species 

divergent from the taurine reference genome.  We found 14,657 SNPs with at least 4 

individuals genotyped (i.e., genotype calls for at least four individuals passed the 

filtration criteria), and with at least 2 observations of the minor allele (e.g., 2 

heterozygotes or one homozygote).  Of these, 6,800 were exonic SNPs (the others were 

in exon flanks), spread over 4,147 exons in 2,753 genes.  Thirty SNPs were genotyped 

such that 3 alleles were called among the 4 or more individuals. 

 Of the 2,542 exons in our 347 candidate genes, the cow sample yielded at least 

one filtered, heterozygous call in each of 219 exons (8.6%).  In the bison, heterozygous 

calls were made in 194 exons (7.6%), on average, for the two African buffalo, 324.5 

exons (12.7%), for the two bighorn, 117 exons (4.6%), the 7 deer, 251.4 exons (9.89%), 

and the four pigs, 104.3 exons (4.1%).   

 In the 63 MHC exons, the number with at least one heterozygous call (averaged 

for species with multi-individuals) are, for the cow, 20 exons (31.7%), the bison, 11 

exons (17.5%), African buffalo, 21.5 exons (34.1%), bighorn, 11 exons (17.5%), deer, 

12.6 exons (20.1%), and pigs, 6 exons (9.5%, Fig. 4-S3). 

 

False heterozygous calls on the X chromosome in males 
 

Since males inherit a single X chromosome, heterozygous base calls (nucleotide sites) for 

males on the X represent false heterozygotes.  Our cow individual was a male, as were all 

of our deer samples except deer number 2.  Our taurine reference genome had no Y 

chromosome sequence.  Stampy-based mapping of our male cow showed heterozygous 

genotype calls at 107 sites, 0.1% of the 74,130 exonic nucleotide positions covered at 

20X/Q50 on the X chromosome.  In the 7 male deer, total heterozygous genotype calls on 

the X ranged from 95 to 137 for each deer.  The one female deer had 89 heterozygous 

calls.    

  Most of these (false) heterozygous calls were clustered together within relatively 

few genes.  The largest 3 clusters of heterozygous calls within genes on the male cow X 

chromosome (in the Stampy alignment) accounted for 79% of the 107 total heterozygous 

sites.  These included 32 calls in gene UBA1, known to have a paralog, UBE1Y, on the Y 

chromosome in humans (Murtagh et al. 2012).  There were 25 calls in exons in gene 

PDHA1, 17 in gene EIF2S3.  Both PDHA1 and EIF2S3 are known to have been 

retrocopied onto autosomes in humans (McLysaght 2008).  There are 11 calls in ZFX, 

known in bovines to have a paralog, ZFY, on the Y chromosome (Poloumienko 2004).  

Another potential source for false mappings to the ZFY is the ubiquity of the zinc finger 

domain in the genome.  The remaining genes, with the number of associated 

heterozygous calls are CA5B (10 calls), EIF1AX (6), NONO (2), GPM6B (2), and 

MMGT1 (1).  The BWA alignment produced its 25 heterozygous calls in 4 genes, most 

numerously in ZFX, with 9 calls in one exon.  Among genes on the X chromosome with 

BWA-aligned heterozygous calls, only one, NXF3 (1 call), was not represented in the 

Stampy-based genotyping. 

 The Stampy alignment on the X chromosome for our six male deer showed 
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relatively high false heterozygous call counts in these genes as well, with counts for 

individuals ranging from 13-22 calls in EIF2S3, 7-15 calls in ZFX, and 10-34 calls in 

UBA1.  The female showed no heterozygous calls in EIF2S3 and ZFX, and 12 

heterozygous calls in the UBA1 gene.  Not seen in the cow but with high call counts in 

the deer (including the female) is MCTS1, with 8 calls for the female, and 9-16 for the 

males.  MCTS1 is known to be the origin of a retrogene (MCTS2) in mice and humans 

(Cowley and Oakey 2010). 

 Further evidence of mappings onto the X of reads from non-X loci comes from 

the ratio of mean coverage on the X chromosome versus the autosomes.  With their single 

copy of the X, males have half the expected mean coverage on the X versus the 

autosomes.  The male cow’s ratio of coverage on the X to that on the autosomes is 0.70, 

which is higher that the expectation of 0.5.  The ratio ranges from 0.77 to 0.95 in the male 

deer.  These percentages are similar in both mappers.  Further, even the female deer (deer 

2) and female bighorn, (sheep 1) show ratios above the expected 1.00, with ratios of 

~1.34 and ~1.17 for both mappers for deer and bighorn, respectively. 

  

Comparison of mapping to the cow reference versus a less divergent 

reference genome  
 

Since mapping accuracy is more likely when the sample-reference divergence is small, 

some measure of the reliability of our Stampy-based divergent mappings to the cow 

genome can be had by comparing them to mappings under relatively low divergence.  We 

compared the success of mapping of reads (to homologous loci) between the cow and pig 

genome sequences, and between the cow and domestic sheep genome (Harris 2007; 

Fujita et al. 2010).  As detailed in Methods, the Liftover program identified homologous 

exon sequences between the cow and pig, and, also, separately, between the cow and 

sheep genome sequences.   

 First we considered mapping consistency by looking for mapping concordance in 

the homologous sequences.  We considered homologous sequences to show high 

mapping concordance when at least 80% of reads that aligned to either the sequence on 

the cow genome (by Stampy) or the homologous sequence on the less-divergent genome 

(by BWA, pig reads to the pig genome, in one case, bighorn sheep reads to the domestic 

sheep, in the other case) were aligned to both homologous sequences.  Table 4.3 shows 

that 40% of the Liftover-selected exons with cow-pig homology were mapped with high 

concordance.   The same measure for the bighorn mappings showed that the bighorn-cow 

and bighorn-domestic sheep mapping concordance was 56%. 

 In the pig, we also tested consistency in genotyping between the Stampy, cow-

genome alignment and the BWA, pig-genome alignment.  In homologous sequences, 

selecting exons whose most-common base was genotyped identically in both mappings, 

we found 1,342 such sites that were called as having at least two alleles.  Of these 1,054 

sites were found to be heterozygous in both, while 261, ~20%, were called as 

heterozygous only in the Stampy cow-alignment.  Only 27, ~3%, were called as 

heterozygous solely in the BWA pig-genome alignment.  This shows that the cow-based, 

Stampy mapping aligned reads to a given site with a SNP more often (by 20%) than did 
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the pig-based mapping.  Although all sites between the two mappings for this test agreed 

on the most common allele, the test did not determine whether, for sites for which both 

mappings found multiple alleles, the alternate alleles were of the same base. 

 

 

Coverage relationship to GC content and target length   
 

Depth of coverage at a genomic position (i.e., the number of reads at a nucleotide site) 

was associated with exon length and also the proportion of guanine and cytosine bases 

(GC ratio) in exons (Fig. 4.7).  Though we filtered our exon collection so that only 0.2% 

of our ~56,000 baits had GC percentages lower than 25% or over 75% (see Methods), we 

nonetheless saw a relationship between exon coverage and exon GC percentage (content).  

All species showed deepest coverage for exons with GC percentages from approximately 

40% to 50% (Fig. 4.7b), reflecting a bias noted elsewhere as common to several exon 

capture protocols (Asan et al. 2011).  Coverage was highest for exons with length of 

~600-900 bp.  This high coverage peak effect was most pronounced in the least divergent 

species, the cow and bison (Fig. 4.7a).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3: Liftover results.  Genome-genome alignment totals and mapping concordance for pig 

reads mapped in the cow, versus pig reads mapped to the Sus scrofa genome.  Similarly the bighorn 

was mapped to the cow and the domestic sheep (Ovis aries) genomes. Asymmetric liftovers refer to 

those in which the target and its liftover differed in length by more than 20%. 80% concordance refers 

to targets for which at least 80% of all sequence reads that mapped to either or both genomes were 

mapped in both.  A target, either liftover or that of the original cow, is called unmapped if less than 10 

reads were aligned to it. 

 

  

Targets 

lifted 

over  

Asymmetric 

liftovers  

80% 

concordance  

Unmapped, 

liftover  

Unmapped, 

cow  

Unmapped 

in both  

Pigs  20,223 142 8,003 770 255 1,532 

Bighorn 

sheep  16,110 34 8,944 641 46 973 
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Discussion 

 

Success of exon capture declined with increasing divergence between the sampled 

species and the cow reference genome, as expected.  However, even with ~60 million 

years of divergence between pig and cow, over half of our targeted ~3.6 Mb were 

genotyped with high depth and quality scores (Fig. 4.4).   

 Also encouraging are the results with the deer samples, productive despite their 

 
 

A B 

Figure 4.7: Sequence depth vs. GC and target length. For the Stampy mapping, per target 

(exon) coverage depth (number of read bases aligned to a target position) as a function of (A) 

target length (total bps) and (B) GC content (proportion of GC bases per target). GC and target 

length values are binned, and the mean of coverage depth plotted for each bin. Plotted letters are 

for (c)ow, (b)ison bu(f)falo, (s)heep, (d)eer, (p)igs, and (a)ll species (solid line). Sparse bins (less 

than 10 values) omitted include, in (A), 25 exons over 2000 bps in length and, in (B), 5 exons with 

GC proportion ∼ 0.82. Coverage depth is here represented for each target by the mean value for 

each species, and one plot for the mean of all samples. Further, for a given individual, each depth 

of coverage value for each exon target is the mean depth for all of the base pairs in the sequence. 

X-axis numbers give values for bin midpoints, and are paired with parenthesized numbers giving 

the bin size. The increase in coverage depth in (A) for the bin of largest exons is mostly due to 

deep coverage of the single exon, 1,545 bp, of the COX1 gene on the mitochondrial chromosome. 

The coverage for the binned exons centered at 1,500 bp is reduced by an average of 8.7x for each 

species when this gene is excluded. 
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relatively high divergence of ~30 million years from the cow (Guha et al. 2007).  Four of 

the eight samples yielded over 68% of the targeted bp (at 20X/Q50 depth and quality). 

The other four yielded about half the targeted bp (50%). Overall, among seven 

individuals, half to 2/3 of the targeted exon base pairs were sequenced to a depth and 

quality sufficient for variant (SNP) discovery.  Further, they yielded thousands of putative 

heterozygous genotypes (SNPs), despite our use of cow exon sequences for the capture 

probes, selected without regard to relative exon sequence divergence across our species. 

 

Cross-species exon capture and availability of genome sequences  
 

With the decreasing costs of whole genome sequencing using next-generation platforms, 

and efforts such as the 10,000 genomes project (Genome 10K Community of Scientists 

2009), soon many vertebrate genera could have a species with a reference genome 

sequence with thousands of gene annotations.  This would facilitate exon capture using 

the mapping and genotyping tools currently in use for the most common capture and 

alignment applications such those used in human exon capture, with the same species 

providing both sampled and referenced genomes.   

 For sample/reference divergence values of 10+ million years, using standard and 

widely available molecular protocols and bioinformatic tools, we sequenced and 

genotyped 50% to 65% of our targeted exonic bases at 20X/Q50.  This, and high costs of 

whole genome assembly and annotation, suggests that cross-taxa exon capture is (and 

will remain) an attractive solution for genome-wide genetic marker discovery and 

genotyping in taxa with few genomic resources.  For example, the work of Salzberg et al. 

(2012) suggests that assembling whole mammalian genome sequences from next-

generation data alone presents difficulties that may inhibit their rapid proliferation. 

 Our most divergent species, the pigs (with a divergence of ~60 million years), 

yielded the lowest numbers of exon bases sequenced to 20X/Q50, as expected.  However, 

the pigs provided many thousands of complete exon sequences.  On average 9,261 of the 

targeted 24,525 exons were completely sequenced for a pig individual.  They also yielded 

over two million of the 3.6 million targeted, exonic bases.  The effect of the pig's 

relatively high divergence from the cow, computed at an average 8 differences in 100 

bases between one-to-one orthologs genome wide (See Methods, “Read mapping and 

genotyping”), looks to be most telling in the MHC gene family, where each pig individual 

produced at most a handful of the 63 targeted MHC exons. 

 

Which mapper is best, if any? 
 

For the pig in particular, we saw a substantial increase in exon capture and sequencing 

success from using a mapper (Stampy) designed for read-alignment with relatively high 

sample-to-reference divergence (Figs 4.1 and 4.2).  On average, for the pigs, Stampy-

based genotyping showed ~620,000 (~30%) more inferred base calls in exons over the 

BWA-based genotyping, even when BWA was run allowing 10% mismatches between 

read and reference, an allowance larger than that recommended by BWA's creators.   
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 A cost of allowing a high mismatch rate in alignments could be relatively high 

false positive SNP calling, even with high coverage and quality thresholds, as employed 

here.  Our Liftover comparison (see Methods) of a pig-to-pig-genome BWA mapping 

with a pig-to-cow-genome Stampy mapping (see Results) showed that ~20% of sites 

inferred as heterozygous in the cow-based, Stampy alignment, were inferred as 

homozygous in the BWA pig-based mapping.  While these heterozygous calls unique to 

the cow-based alignment in the comparison may represent true heterozygosity simply 

missed in the pig-to-pig alignment, it is prudent to consider these as false inferences, and 

as such to suspect an increased tendency toward false alignments in the Stampy cow 

based mapping, compared to the BWA pig-based mapping. 

 It may be that an alternative method without mapping may be preferable at the 

~60 MY divergence of pig and cow.  As described below, in “Alternative methods of 

genomic DNA enrichment,” reference sequences based on a transcriptome assembly can 

serve as a species to species map for exon capture sequence reads. 

MHC gene gamily sequencing 
 

A smaller percentage of MHC exons were 100% sequenced (at 20X/Q50), compared to 

the total set of 24,525 exons targeted exome-wide, for all species except the cow.  Only 

the pigs showed dramatically reduced success for MHC compared to the exome-wide 

capture when the threshold is lowered to 60% of exon bases aligned at 20X/Q50 (Figs. 

4.1 and 4.3).  For example, deer showed only 16% reduced MHC success (compared to 

the 62% reduced success for pigs).  These reductions suggest genotyping and SNP 

discovery might be of relatively limited usefulness in gene families with many loci and 

high allelic diversity (like MHC) for highly divergent mappings (in this case ~60 million 

years between sampled pigs and the cow reference).   

 Nonetheless our results suggest that in the bovids and cervids at least 35% of the 

exons from this highly variable gene family can be sequenced (Fig. 4.3a).  We have also 

found 13 of the targeted 63 exons in MHC genes that were sequenced to 60% of bases at 

20X/Q50 in at least one individual of each species, including the pig. This is important 

because it suggests that, though success will be reduced, many MHC exons can be 

sequenced from most ungulates, including divergent species. 

 The difficulty of exon capture from the MHC family likely stems from its 

divergent haplotypes (Spurgin and Richardson 2010; Klein and O’hUigin 1993).  This 

could result in reads from a single locus mapping to more than one locus on a given 

genome, as well as the converse case, reads from multiple loci in the sampled genome 

mapping to a single locus in the reference. Other gene families will likely present less of 

a challenge in sequencing exons to a depth and quality needed for genotyping because 

most families have fewer loci (less than the ~170 loci in ungulates), fewer alleles, and 

perhaps fewer highly divergent alleles per locus. 

 

Heterozygous sites and sample/reference divergence 
 

The proportion of heterozygous sites (heterozygosity) per individual did not show an 
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obvious trend related to phylogenetic divergence from the cow reference (Fig. 4.5).  An 

exception, perhaps, is seen in the highly divergent pigs, which, overall, show the smallest 

totals for both total called bases at 20X/Q50 (Fig. 4.4), and total heterozygous calls; the 

average SNP rate for 20X/Q50 exonic bases for the four individuals was 0.0007, Figs. 4.5 

and 4.6).   Observed heterozygosity in European and Asian domestic pig breeds, as well 

as wild boars, has been estimated to range from 0.33 to 0.70 (Zhang and Plastow, 2011).   

 The pigs aside, the proportion of heterozygous sites in an individual (for a given 

species) likely reflects relative levels of inbreeding and effective population sizes for the 

species or population.  Our 2 African buffalo individuals, for example, showed high SNP 

proportions compared to the other species, with a SNP rate for 20X/Q50 exonic bases of 

~0.016 ( Fig. 4.5).  African buffalo populations in three Serengeti regions show high 

genetic variation, with observed heterozygosity at 15 microsatellites averaging 0.70, 0.67, 

and 0.75 (Ernest et al. 2012). 

 A comparatively low proportion of heterozygous sites in the bison (Fig. 4.5), may 

reflect the severe loss of genetic variation during a near extinction event, ca. 1900, due 

mostly to over hunting (Hedrick 2009).  Deer had a relatively high individual 

heterozygosity, which is not surprising because deer populations have very large effective 

population sizes, long distance gene flow, and genome-wide introgression between 

distinct species (Latch et al. 2011).  

 Overall these proportions of heterozygous sites in individuals are likely 

underestimates of true rates for the targeted regions, as the stringency of the filter for 

eliminating false positive SNP calls likely discarded many true SNPs (heterozygous 

sites), especially when they were called near indels (see Methods).   

 The differences in counts of heterozygous sites (per thousand bases) between 

exonic (targeted) positions versus flanking region positions suggest an effect of 

phylogenetic divergence on SNP discovery:  the flanking heterozygosity counts exceed 

those for exonic counts for the cow, bison, and African buffalo (Fig. 4.5), but are lower 

than exonic counts in the more divergent bighorn, deer, and pigs.  As noted in Methods, 

our filter rejected heterozygous base calls near indel calls, which are more numerous in 

the flanking regions versus the exons.  They are especially numerous for bighorn, deer 

and pigs in flanking regions.  For Stampy alignments, on which the heterozygous calls 

are based, the mean number of indel calls per reference site genotyped at 20X/Q50, in 

exons (and flanks), are, for cow, 0.0001 (0.0004), bison 0.0003 (0.0012), African buffalo, 

0.0008 (0.0038), bighorn, 0.0015 (0.0077), deer, 0.0020 (0.0101), and pig, 0.0052 

(0.0367). 

 

A ‘universal’ ungulate array for SNP discovery, genotyping, and population 

genomics 
 

With most ungulates lacking reference genomes, it would be useful for population 

geneticists (and phylogeneticists) to have a set of exons with a high likelihood of capture, 

for SNP discovery and genotyping.  Our results indicate that a “universal ungulate array” 

is possible, with the number of exons varying according to the stringency applied to 

selecting the exons.   A least stringent collection could be based on the 13,131 exons (~2 
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Mb in 4,466 genes) with at least 60% of bases sequenced to 20X/Q50 in at least one 

individual in each of our species sampled.   A smaller (more stringent) collection could be 

limited to the 8,999 exons (~1.1 Mb, in 3,546 genes) that were completely sequenced to 

20X/Q50 in at least one individual in each species.   Of these, an even more conservative 

collection can be assembled, containing only those 5,660 exons (~0.6 Mb in 2,884 genes) 

that meet a ceiling on coverage, rejecting any base calls with coverage that is over twice 

the mean coverage for the individual at the targeted, exon sites (see Methods, on single 

nucleotide variant filtration).  Such a ceiling can obviate false mappings due to gene 

duplicates, e.g., aligning together at one locus reads from paralogs.  

 These collections of exons are distributed widely across all of the cow 

chromosomes. For those covered to at least 60% of their base pairs, in at least one of each 

species we sampled, the per-chromosome exon count shows a minimum of 220 exons 

covered on the cow's chromosome 25 and a maximum of 873 on the chromosome 1 (the 

largest chromosome at ~160 Mb).  For the set of completely covered exons, the minimum 

is 142 exons on the chromosome 25 and the maximum, 645 exons on chromosome 1.  For 

the smallest (conservative) set of 5,660 exons (with the coverage ceiling applied) the 

minimum is 97 on chromosomes 23, 25, and 29, and the maximum is 396 exons on 

chromosome 1.  

 This genome-wide distribution of exons facilitates scanning for markers 

associated with phenotypic traits when no gene is currently a candidate.  Gene 

positioning (synteny) is generally highly conserved among mammals (Rettenberger et al. 

1995), so that their dispersal across the cow genome suggests a similar dispersal in the 

other species. 

 Tables listing gene abbreviations and exon starts on the cow reference genome for 

these exon collections are available in supplementary materials. 

Variability among deer individuals in sequencing success 

 
Our deer samples produced a wide range of difference in mapping and sequencing 

success, showing within-species differences close to that between species (Figs 4.1-4.3).  

We reported on 7 of 8 deer samples, excluding our least successful sample.  The excluded 

sample had a very low sequence success compared to the others, indicating poor sample 

quality.  However, we do report three of the remaining 7 individuals, deer 4, 6, and 7, 

with consistently lower sequencing success rates than those seen in the other deer (Figs 

4.1-4.3).  The reason for this group’s relatively poor performance is unknown.  We note 

that these three individuals were captured in the only 3-plexed hybridization reaction 

(Table 4.5, in Methods).  However, we have no evidence that this was the cause of their 

poor performance.  All other samples, except the cow, were hybridized to the bait 

(capture) array in 2-plexed reactions. The cow individual’s DNA was hybridized without 

other samples in the reaction. 

Picard tools read alignment metric software (Handsaker et al. 2009) showed that 

our least productive deer sample produced fewer total Stampy aligned bases at base 

quality 20 or more than did any other sample (including the four pigs, which are 

phylogenetically more divergent from the cow than are the deer).  Deer 4 produced fewer 

Stampy aligned bases at Q20 or greater than all samples except our excluded deer.  Deer 
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4, 6, and 7, also had the fewest total reads of all the samples, before adapter and base 

quality trimming. 

 

Flanking site sequencing 
  

Flanking base pairs (not in exons) provided more sequence data and SNPs than did exons 

(e.g., Fig 4-S1).  Genotyping 250 bp flanks (11.6 Mb), totals in the cow and bison 

provided 50% more sequence than did exon sites.  At least two individuals of each 

species that was sampled in more than a single individual produced 20X/Q50 genotyped 

sites in exon flanks numbering at least 90% of the total for exon sites. Flanking sites are 

generally less conserved than exons and thus can provide more polymorphic markers (per 

thousand bp of sequence).  Despite likely increased SNP filtering (i.e., rejection) from 

increased indel calling in the flanks, they still provided substantial numbers of 

heterozygous calls and thus putative SNP markers (Fig. 4.5b). 

 

Limitations and future research 
  

An important qualification for mapping and genotyping of divergent species in this study 

is the absence of a more certain test for detecting genotyping errors, especially for calling 

single nucleotide polymorphisms.  As noted above, the Liftover test, using the pooled 

pigs and stringent SNP filtering, revealed that ~20% of  the sites called as heterozygous, 

were called as such only in the Stampy, cow-based mapping  (they were called as 

homozygous in the pig-based mapping), suggesting a high false positive SNP rate in the 

divergent, cow-based mapping.  

 The percentage of inferred false heterozygous calls in the male X chromosomes 

(see Results) likely do not provide a reliable rate for false positive heterozygous calls on 

the autosomes.   Though the distribution of target lengths shows generally that those on 

the X chromosome (median 129 bp, standard deviation, 142 bp) are not dramatically 

larger than those in the autosomes  (median 115.5 bp, standard deviation, 139), for targets 

with at least one SNP the concentration of SNPs is notably higher in the X for the male 

cow, with 4.28 heterozygous calls per exon, and only an average 1.6 for the autosomes.  

In male deer, the rate ranges from 2.39 to 3.08 for the X chromosome, and 1.61 to 1.89 

for rates averaged over the autosomes.  For the female (deer 2), the rate in the X 

chromosome is 1.75, and the average rate over the autosomes is 1.66.  These rates suggest 

that the false heterozygous calls in the males on the X chromosome could be partly 

attributable to peculiarities of the X as the source, for example, of retrocopied genes and 

pseudoautosomal regions, and are unlikely to reflect false positive rates in the autosomes.     

 It is also possible that the build assembly of the X chromosome, could contribute 

to false mappings.  The genome build assembly statistics for btau4.0 (at 

http://www.ncbi.nlm.nih.gov/assembly) show that the chromosome X assembly had the 

lowest scaffold N50, at 1,086,000 bp, compared to the median for the chromosome 

assemblies at 2,251,000 bp.   Further, an assessment of chromosomal positions of SNPs 

based on pair-wise linkage disequilibrium estimation has been used to test the integrity of 

http://www.ncbi.nlm.nih.gov/assembly
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the btau4.0 assembly, finding inconsistencies in SNP positions in the X chromosome 

sequence that suggest a general problem with its assembly, while finding a “high level of 

integrity” for the assembly as a whole (Khatkar et al. 2010). 

 A useful follow up to this work would be to quantify genotyping error rates from 

exon capture by genotyping exon capture-inferred genotypes at SNP loci using 

independent sanger sequencing or SNP genotyping assays (or SNP chips). 

 A further filtering criterion may be needed, limiting insert sizes, that is, the length 

(in bp) of the region bounded by the alignment to the cow genome of paired end reads.  

In the pigs and deer, ~0.5% to about 1.8% were at least 10 thousand base pairs, whereas 

the mean size in the alignments was reported to be about 250 bp.  Though relatively rare 

these suspected false mappings could contributed to false positive SNP calls. 

  

Alternative methods of genomic DNA enrichment 
 

  An alternative to exon capture for genome-wide SNP discovery when the subject 

has no close relative with a genome sequence is restriction-site associated DNA 

sequencing (RAD) (Miller et al. 2007a; Rowe et al. 2011).  This method can be scaled, to 

some extent, as to the number of loci sequenced, by the choice of restriction enzyme (e.g. 

a 6 versus 8 cutter).  However, unlike exon capture, RAD is not gene-targeted and thus is 

less amenable to targeting candidate genes, to test for genetic associations with fitness or 

phenotypes (Bruneaux et al. 2013; Luikart et al. 2003).  Exon capture is also far more 

flexible in the number of loci sequenced, e.g., from 100s to millions  (Cosart et al. 2011; 

Rivas et al. 2011; Gnirke et al. 2009; Hancock-Hanser et al. 2013).  A disadvantage of 

exon capture, compared to RADs, is the cost of an array (e.g., > $100 per array).  

However, the cost of exon capture is declining as the methods for simultaneous 

(multiplex) capture of many individuals in a single reaction are being refined (Bansal et 

al. 2011). 

 Especially for species whose nearest relative with a reference genome sequence is 

at or beyond the ~60 MY represented by our pig-to-cow capture, an exonic reference can 

be constructed from the species own transcriptome. With a nearest reference sequence 

genome (of mice and rats) representing ~70 million years of divergence, Bi et al. (2012) 

developed their own chipmunk exonic reference by sequencing whole transcriptomes.  

One disadvantage of this approach is the need for two rounds of sequencing and read 

assembly or alignment, one for the transcriptome, a second for exon capture, while its 

advantage is its effectiveness in species genetically distant from any species with a 

reference genome. 

 

Conclusions 

 
 Our capture and sequencing produced 8,999 exons (~1.1 Mb) sequenced at high 

depth and quality, in 3,546 genes from at least one individual from each of the five 

divergent ungulate species.  This represents 37% of our targeted exons, and 54% of our 

candidate genes.  This number exceeds 13,000 (54% of targeted exons), if we require 
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only 60% of each exon to be sequenced at 20X/Q50.   These exons are candidate targets 

for development of a universal ungulate array to sequence thousands of genes in all 

ungulate species.  Future whole exome sequencing of a wide range of taxa similar to ours 

could provide an even larger pool of exons for such an array. 

 Our results suggest that cross-species exon capture can sequence, at high depth 

and quality, thousands of exons in species 10s of millions of years divergent from the 

reference genome.   Further, successful SNP discovery is seen in captures among 7 deer, 

yielding 12,645 putative exonic SNPs in 6,574 targeted exons, from 3,668 genes. 

  Exon capture allows precise targeting of a subset of the exome.  This decreases 

the costs of population genomic studies.  Cost and analysis time is also reduced by its 

optimized, well tested, and freely available mapping and genotyping tools.   Exon capture 

has growing potential as a tool for gene-centered marker discovery and genotyping, for 

those addressing to-date intractable questions about the genomic basis of adaptation in 

nonmodel mammals with few genomic resources. 

Methods 

Exon target selection and probe design 
 

We collected 24,525 exon sequences from the btau4.0, Bos taurus, genome sequence 

(Elsik et al. 2009), as annotated by the alignment of mRNAs from the NCBI RefSeq 

database (Pruitt et al. 2011) by the BLAT program (Kent 2002).  The genome sequence, 

alignments, and annotation are available at the UCSC genome browser web site (Fujita et 

al. 2010).  Of the 24,525 exon targets, 2,542 were selected from 349 candidate genes 

associated with speciation, reproduction, and disease resistance.  Annotations for some of 

these came from NCBI's Entrez Genome site (Maglott et al. 2010).  Noncandidate gene 

exons were collected with the aim of sampling from as evenly as possible across the 29 

autosomes and the X chromosome. One mitochondrial gene, COX1 (cytochrome c 

oxidase subunit I), was also targeted.  For sampling of genes evenly across the 

chromosomes, we used the exon selection software described in Cosart et al. (2011).  In 

seeking a balance between the number of genes sampled and the total size of the 

collection, we limited the total base pairs collected per gene to 3,000 bp from candidate 

genes, 1,000 bp from noncandidates.  

 For each gene, the upstream external exon (the 5', with its UTR) was collected 

first, if it was under the base pair length limit. More exons were then added in random 

order.  As exons were collected, any bringing the current total above the per-gene bp limit 

were skipped and another of the remaining tested for inclusion. This was repeated until 

no exon could be added without exceeding the limit.  If all exons for a gene exceeded the 

per-gene bp limit, a single exon, preferably the upstream external exon, was sampled 

from its ends, half the per-gene bp limit from each end.  Of our 24,525 exons, ~130 were 

end-sampled. 

 After an initial collection of exons totaling about 5.5 Mb, probe design included 

partial filtering of exons that had baits with CG content at or below 25%, or at or above 

65%.  Probe filtering left 127 exons at or below 25% and 1,806 at or above 65%.  Probe 

design also resulted in 1X tiling for exons of length 120 bps or less (only one probe for 
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the target, rather than 2 probes for each base pair, the design for exons longer than 

120bp).  For these shorter exons in candidate genes, we used two identical probes instead 

of one.  In order to meet the limit of about 56,000 probes, 1X-tiled exons from 

noncandidate genes were randomly discarded until the probe limit was met. For all exons 

over 120 bp, at least three, 120-bp, overlapping probes targeted the exon.  The 

overlapping scheme allowed for most of the exonic base pairs being represented on two 

different probes. On the ends of exons longer than 120, of length l, there were 120 – [120 

- ( l modulo 120) ]  bases covered by only a single probe.  The resulting set of targets 

totals about 3.6 Mb.  

Sample Information 

 
Sample information is given in Table 4.4.  The degree of multiplexing in the exon capture 

hybridization reactions is given in Table 4.5, which also shows the number of reads 

produced by the sequencer that passed its filter. 

 

Table 4.4: Ungulate species and sample information.  Sex of samples notated with an 

asterisk were inferred by the ratio of mean read coverage on the X chromosome to the mean 

read coverage over all autosomes, computed for both Stampy and BWA mappings.   Samples 

inferred to be males had ratios under 0.70, and samples inferred to be females had ratios within 

0.01 of 1.0.  Note that for samples whose sex was established before sequencing, mean ratios of 

X to autosome coverage was 0.81 for the 7 males, and 0.99 for the 6 females.  Entries notated 

with a dagger symbol are those designated females with ratios below 1.0 (both have ratio 0.61). 

 

Sample Name 

Common  

Name Species Location Sex 

BbSP23 bison Bison bison Montana Male
* 

BtGRA9907 Cow Bos Taurus unknown Male 

OcGT653 sheep 1 Ovis Canadensis Wyoming Female 

OcTAH033 sheep 2 Ovis Canadensis Colorado Male
* 

OhBTD01 deer 1 Odocoileus hemionus columbianus Oregon Male 

OhBTD02 deer 2 Odocoileus hemionus columbianus Oregon Female 

OhBTD03 deer 3  Odocoileus hemionus columbianus Oregon Male 

OhBTD04 deer 4 Odocoileus hemionus columbianus Oregon Male 

OhMD01 deer 5 Odocoileus hemionus hemionus Oregon Male 

OhMD02 deer 6 Odocoileus hemionus hemionus Washington Male 

OhMD03 deer 7 Odocoileus hemionus hemionus Washington Male 

OhMDX deer 8 Odocoileus hemionus hemionus Washington Male 

ScR019 buffalo 1 Syncerus caffer South Africa Female
* 

ScR23 buffalo 2 Syncerus caffer South Africa Female
* 

SdDPIP60382 pig 1 Sus scrofa domesticus Europe Female
† 

SdSUSCN1 pig 2 Sus scrofa domesticus China Female 

SsWBCN2 pig 3 Sus scrofa China Female
†
 

SsWBPIP29c pig 4 Sus scrofa Europe Female 
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Exon capture and sequencing3 

 
SureSelect sequencing libraries were prepared according to the manufacturer's 

instructions (Agilent) with the following modifications. Five µg of genomic DNA in 120 

µl TE-buffer was fragmented to a median size of 200 bp using the Covaris-S2 instrument 

(Covaris) with the following settings: duty cycle 10%, intensity 5, cycles per burst 200, 

and mode frequency sweeping for 180 s at 4°C. The fragmentation efficiency was 

evaluated by capillary electrophoresis on DNA1000 chips (Agilent) and the concentration 

of the DNA was estimated by PicoGreen assay (Invitrogen).  

 Library preparation of 1.5 ug of genomic DNA followed the TruSeq protocol 

(Illumina). The adapter ligated and size selected DNA was amplified by PCR. Twenty-

                                                 
3
 Quantities and supplier names in this description of the library preparation and capture hybridization is 

pending confirmation by one of my collaborators. 

Table 4.5. Exon capture hybridization quantities.  N-plex values for the hybridization 

reaction indicate that the sample was one of n samples in the capture pool.  Values for total 

reads passing the sequencer filter is a count of the reads that the Illumina read filter marked as 

passed. 

 Name 

n-plex 

in 

capture 

DNA concentration in 

library (ng/ul) 

Species in 

capture 

Total reads passing 

sequencer filter 

bison 2 40.7 bison, deer 21,191,017.00 

cow 1 39.3 Cow 27,138,148.00 

sheep 1 2 49.5 Sheep 17,969,594.00 

sheep 2 2 49.1 Sheep 16,791,181.00 

deer 1 2 48.8 Deer 17,993,105.00 

deer 2 2 49.7 Deer 15,048,996.00 

deer 3 2 45.1 Deer 10,857,633.00 

deer 4 2 50.2 bison, deer 16,370,290.00 

deer 5 3 45.4 deer 6,502,041.00 

deer 6 2 41.04 deer 20,056,258.00 

deer 7 3 48 deer 9,443,069.00 

deer 8 3 42.9 deer 8,930,130.00 

buffalo 1 2 40.3 buffalo 13,343,022.00 

buffalo 2 2 41 buffalo 14,935,366.00 

pig 1 2 47.1 pig 16,067,560.00 

pig 2 2 46.9 pig 11,919,777.00 

pig 3 2 46.7 pig 11,979,120.00 

pig 4 2 55.5 pig 12,850,661.00 
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four µl of DNA, 5 µl Illumina primer mix, and 25 µl Phusion master mix (Finnzymes) 

were amplified as follows: 30 s at 98°C, 14 cycles of: 10 s at 98°C, 30 s at 65°C, and 30 s 

at 72°C, then 5 min at 72°C. The reaction product was purified using AmPureXP beads 

and eluted into 30 µl EB. The quality of the PCR products was assessed by capillary 

electrophoresis (Bioanalyzer, Agilent) and the concentration of the DNA was estimated 

by qPCR using PicoGreen assay.  

 SureSelect hyb #1, #2, #3, and #4 reagents (Agilent) were mixed to prepare the 

hybridization buffer. The adapter ligated DNA fragments were concentrated in a DNA120 

SpeedVac concentrator (Thermo Electron) to 500 ng in 3.4 µl. The blocker mix was 

modified for use with the TruSeq library kit. In addition, bovine Cot1DNA was added to 

remove repetitive elements. SureSelect block #1, #2, and #3 reagents (Agilent) were 

added to the 500 ng of DNA. The hybridization buffer and the DNA blocker mix were 

incubated for 5 min at 95°C and then for 10 min at 65°C in a thermal cycler (MJ 

Research). RNase block (Agilent) was added to the SureSelect oligo capture library 

(Agilent). The capture library was incubated for 2 min at 65°C. First the hybridization 

buffer, and then the DNA blocker mix were added to the capture library and the mixture 

was incubated for 24 hours at 65°C in a thermal cycler (MJ Research). Fifty µl of 

streptavidin coated Dynabeads M-280 (Invitrogen) were washed three times with 200 µl 

SureSelect binding buffer (Agilent) and resuspended in 200 µl of the binding buffer. The 

hybridization mixture was added to the bead suspension and incubated for 30 min at RT 

with mixing. The beads were washed with 500 µl SureSelect wash buffer #1 (Agilent) for 

15 min at RT, and three times with 500 µl SureSelect wash buffer #2 (Agilent) for 10 min 

at 65°C. DNA was eluted with 50 µl SureSelect elution buffer (Agilent) for 10 min at RT. 

Fifty µl of SureSelect neutralization buffer (Agilent) was added to the eluted DNA. The 

reaction product was purified with SPRI beads eluting in 45 µl H2O. One PCR reaction 

with 14 µl of the elution product, 1 µl primer 1.1 (Illumina), 1 µl primer 2.1, 10 µl 

Herculase II reaction buffer (Agilent), 0.5ul 25mM dNTP mix, 1 µl Herculase II Fusion 

DNA polymerase (Agilent), and 22.5 µl H2O were performed. The PCR conditions were 

as follows: 2 min at 98°C, 14 cycles of: 20 s at 98°C, 30 s at 60°C, and 30 s at 72°C, then 

5 min at 72°C. The PCR reaction was purified with SPRI beads and eluted into 30 µl 

H2O. The quality of the sequencing libraries was verified by capillary electrophoresis 

(Bioanalyzer, Agilent) and the concentration was estimated by qPCR (KappaBioscience 

assay). 

 Eighteen indexed samples were combined into three unique pools and clustered to 

individual flowcell lanes using TruSeq Paired-End Clustering kit on a cBot at 4 pm 

titration (Illumina).  Sequencing was performed by the manufacturer's recommendation 

on a HiSeq 2000 using 100-cycles of chemistry on each end of the fragments and 7-

cycles to read the barcode. 

Read mapping and genotyping 
 

We trimmed, filtered, and mapped Illumina 100 base pair, paired end reads as follows: 
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Adapter trimming 

 

  Shorter fragments sometimes yield ligated adapter sequence on the 3' end of the read.  

These were trimmed with an in-house script. This script also trimmed from the leftmost 

“N” (undetermined) base pair to the 3' end.  It discarded reads whose length after 

trimming was under 30 base pairs. 

   

Quality filtration and trimming 

 

 The fastx toolkit (The Hannonlab 2010), removed reads whose percentage of phred-

scaled base quality scores at 20 or more comprised less than 85% of the total scores. The 

fastx toolkit also scanned each read from its 3' end, and discarded bases until finding one 

with a score of 20 or more. The trimmer also discarded reads trimmed to a length under 

30 bases, and, combined with adapter trimming and quality filtration, reduced total reads 

in the samples by an average of 21%, the maximum loss at 27%, the minimum at 19%. 

Mapping  

 

Reads were aligned using two mapping programs:  BWA (Li and Durbin 2009), versions 

0.5.9rc1 through 0.6.2-r126 and Stampy (Lunter and Goodson 2011) version v1.0.13.   

 BWA is a fast aligner that uses relatively little memory.  Its creators note it is 

designed for a “low base error rate” of under 3% (see the BWA manual at http://bio-

bwa.sourceforge.net/bwa.shtml#6).  The error rate includes mismatches between read and 

reference caused by phylogenetic divergence between the sampled genome and 

referenced genome.  In addition to a fast lookup strategy to find reference matches to read 

sequences (see details in Li and Durbin 2009), BWA also owes some of its high 

efficiency to a seeding method that uses the leading n bases in its initial search of the 

reference for candidate alignments, with n=32 in the default.  For Illumina reads 

generally, base qualities are higher on the leftmost end of the read.   We employed the 

default seed length for all BWA alignments, and default mismatch allowances, which is a 

maximum of 2 mismatches in the seed, and, for 100-bp reads, a maximum of 5 

mismatches total, including gaps. 

 Stampy is designed to be sensitive to mismatches between the reference and the 

reads. In the version we used, a hybrid mode employs BWA to align reads with few 

mismatches, and then its own (slower) algorithm for the others.  Stampy’s algorithm 

looks for candidate alignments using multiple 15-bp overlapping sequences throughout 

the read, adding sensitivity over the 32-bp seed-enabled BWA, in locating candidate 

alignments on the reference genome sequence. 

 After read trimming and filtration, when both of the paired-end reads from the 

same fragment remained, they were mapped as paired.  Singleton reads (whose mates 

were lost to trimming or filtering) were mapped as single-end reads, and pooled with the 

paired-end reads for genotyping. 

 Initial mappings of all samples with BWA's default parameters were used to 

establish base mismatch rates for each species in the targeted regions (Table 4.6).  These 

http://bio-bwa.sourceforge.net/bwa.shtml#6
http://bio-bwa.sourceforge.net/bwa.shtml#6
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rates were chosen by averaging the mismatch rates in a BWA alignment (with default 

parameters) for all individuals of a given species.  The rates for each individual were 

provided by Picard software summary metrics (Handsaker et al. 2009).   

 It should be noted that, for the pigs, we made a subsequent calculation of the 

difference between homologous gene sequences between the cow, bosTau6, genome 

(Schatz et al. 2009, a later build than the bosTau4 on which from which our exon 

sequences were drawn), and the Sscrofa10.2 pig genome sequence (Groenen et al. 2012).  

The calculation was based on sequences assigned as one-to-one orthologs by the Ensembl 

database (Flicek, et al., 2013), and showed that the average proportion of exon bases 

mismatching between the blast-aligned orthologous sequences was 0.08, so that our 

selection of 0.05 (Table 4.6) was likely an underestimate of the true mismatch rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The initial BWA mapping was also the final BWA mapping for the cow, bison, 

African buffalo, and bighorn, as their estimates of sequence mismatch rate were under 

3% (Table 4.6).  The BWA default maximum mismatch rate in the seed is ~6% (2 bases in 

the first 32) and the default allowance is 5% for total mismatches in 100 bp reads.  

Though these settings seemed sufficient for all species with mismatch rates below 3%, it 

may be that site count comparisons of BWA with Stampy would show African buffalo 

and bighorn counts as more even between the two mappers, if we had relaxed these BWA 

parameters for these two species (Figs 4.1-4.3). 

 For the deer, BWA was used with parameters “-k 3” and “-n 8,” to allow for 3 

mismatches (substitutions or gaps) in the seed, and 8 in the alignment overall.  For the 

pig, BWA was used with parameters, “-k 4” and “-n 10.”  These settings do allow for 

mismatches in alignments with more than these thresholds, but they also mean that 

potential alignments with total mismatches exceeding them may be missed.  It also 

should be noted that the nondefault settings of “-k 4” and “-n 10”, in particular, had 

severe performance costs, and that BWA's documentation recommends avoiding setting 

mismatch parameters that allow for many beyond the default (see the FAQ at http://bio-

bwa.sourceforge.net).   

 In mapping all of the samples, Stampy was used in its hybrid mode, with 

parameters as instructed in the documentation.  For the Stampy alignment proper, we 

used per-species substitution rates as given by the mismatch rates taken from default 

Table 4.6: Substitution rates used in the Stampy mapper. 
Each is based on the mismatch rate of a BWA alignment, using 

default parameters, to the targeted exons. 

Species  Substitution rate 

Bos taurus  0.0055 

Bos bison  0.0100 

Syncerus caffer  0.0220 

Ovis canadensis  0.0250 

Odocoileus hemionus  0.0380 

Sus domesticus  0.0500 

Sus scrofa  0.0500 

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
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BWA mappings (Table 4.6).  These were set using Stampy’s “-r” parameter.   

Post mapping quality control 

 

After mapping, reads inferred to be created from PCR-duplicated fragments were 

removed from the mapping using the Samtools software (Li et al. 2009).   False SNP calls 

can occur around indel mappings from read misalignments. To reduce such calls the local 

realignment tool of the GATK toolkit (McKenna et al. 2010) was used to identify and 

realign reads in suspect regions. 

Genotyping   

 

The GATK toolkit’s UnifiedGenotyper program (version 1.6-7-g2be5704) called 

genotypes at targeted positions and a maximum of 250-bp flanking positions (250 bps 

unless chromosome ends or adjacent exons interfered), using both the SNP and INDEL 

likelihood models to call both types of variants. The output mode was for all sites (not 

just variants). The Phred-scaled threshold for confident variants was set at 50 (the 

“stand_call_conf” parameter).  The documentation for the genotyper and its related 

programs recommends a Phred-scaled consensus quality threshold of 30 for projects with 

average coverage at or over 10X 

(http://www.broadinstitute.org/gatk/guide/topic?name=best-practices).  However, given 

the span of divergence in our individuals, we used the more conservative value of 50.  

The consensus quality score is a log-transformed probability p that the inference of 

variation or reference-match at a site is an error, with Q50 indicating p=0.00001. 

 

Single nucleotide variant (SNV) filters 

 
For variant calling the GATK UnifiedGenotyper was used a second time for species with 

more than one sample (see Table 4.1). This second round used the same thresholds as 

above for genotyping, but was performed on samples combined by species so that, for 

example, the four pig samples are genotyped together, while still retaining individual 

values for genotype and depth and quality (that is, genotype quality, described below).  

Genotyping all individuals of a species together served both to increase the confidence of 

consensus base calls at a given position, when many individuals agreed on alleles, and to 

conveniently count the number of chromosomes with a common variant at a given 

position.   

 For calling both heterozygous positions and homozygous differences from the 

reference, we required a minimum genotype quality (GQ) of 30, the Phred scaled 

probability p that the genotype is wrong, conditioned on the site being variant compared 

to the reference. Q30 encodes that p = 0.001.  Confidence in the site's having a matching 

base or variant(s) to the reference is given by the consensus quality, which we again 

required to be 50 (Q50) or greater.  We required coverage of 20X for individual 

heterozygous calls.  Of the 2 bases in a heterozygous call, the base with least depth of 

coverage was required to have at least 20% of the total depth for the two bases.  Coverage 

http://www.broadinstitute.org/gatk/guide/topic?name=best-practices
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and GQ values are for individual samples, while the consensus quality was calculated on 

the combined alignments of a given species (for example, the combined coverage of 7 

deer, or 4 pigs).  For all SNVs, we accepted calls with no more than twice the average 

individual read depth (averaged across all targeted sites), following recommendations for 

SNP calling in the manual for the Samtools software 

(http://samtools.sourceforge.net/samtools.shtml).  Further, no SNV was accepted if it was 

within 3 base pairs of an insertion or deletion, or a member of a cluster of 5 SNVs within 

any contiguous 10 base positions. 

 

Measuring sequencing success  

 

For each sampled individual, we measured success of exon sequencing by the number of 

taurine reference exons, and individual taurine exon base pairs (bp), to which the 

individual’s sequence reads have been aligned.  For a nucleotide site to be included as 

having been sequenced, we require that a minimum of 20 sequence reads (bases) are 

aligned to the site (20X coverage), and that the genotyper computes a Phred-like 

consensus quality score of at least 50 for the genotype inferred at the site. 20X coverage 

and a consensus quality of 50 are stringent thresholds compared to those that have been 

used to call heterozygous positions in exon capture with less sample reference 

divergence, e.g. 8X and Q30 (Ng et al. 2009b; Cosart et al. 2011).    

 We measure the proportion of an exon that is successfully sequenced for a 

sampled individual as the proportion of the total bases in cow reference (targeted) exon 

that are aligned (at 20X/Q50) with the individual's sequence reads.  If the exon under 

analysis was one of the ~130 end-sampled exons (see section above, “Exon selection and 

probe design,” we counted it as a complete exon if the targeted end was completely 

sequenced to 20X/Q50.  These coverage and quality thresholds are notated throughout as 

“20X/Q50.”   

 We quantified success as both (i) the total number of exons sequenced as well as 

(ii) the total numbers of base pairs sequenced in exons.  To quantify (i), we used two 

criteria:  (1) 100% of bases sequenced in each exon, and (2) at least 60% of bases 

sequenced.  A somewhat arbitrary choice, 60% means a majority of the base pairs in the 

exon are genotyped at our stringent 20X/Q50 standard, sufficient to identify markers 

(SNPs) in many important genes.   

Using Liftover for the concordance tests 

 
We tested accuracy in mapping and SNP calling from a comparison of mappings based on 

the cow genome to mapping of the same reads to a reference phylogenetically closer to 

the sampled individuals.  Although errors in mapping and genotyping are seen in any 

analysis, the phylogenetically closer mapping should be equally or more accurate than 

our divergent mapping, and can serve, at least approximately, as a standard against which 

to compare the more divergent cow-based mapping. 

 Given that two genome sequences have been aligned (Harris 2007; Fujita et al. 

2010), the Liftover computer program (Fujita et al. 2010) provides aligned genomic 
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coordinates (chromosome, start base, end base) between the two. The UCSC genome 

browser (Fujita et al. 2010) has aligned the cow genome, btau4.0 (Roepstorff et al. 2006) 

both to the pig genome, susScr2 (Archibald et al. 2010a), and the domestic sheep 

genome, oviAri1 (Archibald et al. 2010b).   

 We downloaded the Liftover program from the UCSC Genome Browser site at 

http://hgdownload.cse.ucsc.edu/goldenPath/bosTau4/liftOver.  Liftover with default 

parameters gave pig genome and sheep genome coordinates aligned to our cow genome 

exon coordinates.  With default parameters the program produces alignments only when 

at least 95% of bases in an interval in the source genome maps to the target genome.  It 

also stipulates that the source interval does not align to multiple regions. 

 For concordance tests in the pig the four pig individual Stampy mappings to the 

cow were pooled.  BWA mappings, with default parameters, of the pig reads to the pig 

genome, were also pooled.  The same procedure was used for the two bighorn samples 

and the sheep genome.   

 Mapping concordance between the Stampy cow alignment and the Liftover-

aligned homologous exons (pig or sheep) was computed for each pair of aligned exons by 

two counts for each homologous pair of exons.  First we counted (by read ID) the number 

of reads that mapped within the exon intervals (that is, reads that overlapped the interval 

by at least one bp), in at least one of the pair of alignments.  Of these a second count was 

done of those reads that mapped within the intervals of both of the alignments.  This 

second count, as a percentage of the total in the first count, was considered a measure of 

concordance in the mapping.  

 We also tested concordance in positions of heterozygous calls between exons in 

the cow genome and pig genome by making one set of exon consensus sequences from 

pooled pig alignments to the cow genome (the Stampy alignment as described above) and 

another set of consensus sequences from the pig genome (BWA with default parameters).  

Both of these sets were derived from genotype calls in the 20,223 exons that were 

successfully lifted-over from the cow to the pig genome (Table 4.3).  GATK’s Unified 

Genotyper produced genotypes for positions in the cow and lifted-over pig exon 

intervals, for the pooled 4 pig individuals, so that the genotyper treated the pooled reads 

as a single sample.  

 To create consensus sequences, genotyped positions were divided into separate 

sequences when called genotypes were separated by 10 or more positions that could not 

be called.  Genotype gaps smaller than 10 were filled in with N's.  For positions 

genotyped as having more than one allele the base used in the consensus sequence was 

that represented in the largest number of reads.  

 BLAST alignments (McGinnis and Madden 2004) paired the pig-based consensus 

sequences with cow-based consensus sequences.  Though homologous positions were 

likely represented in many of the alignments, the positions most likely to be homologous 

were those in BLAST alignments of matching length and perfect identity (all bases 

matching, so that. in cases of heterozygous genotypes, the base with the highest coverage 

matched that in the other, aligned consensus sequence).   

 Restricting comparisons to positions with 20X/Q50, the alignment of the 2 groups 

of consensus sequences produced 7,770 such pairs.  In these we recorded sites for which 

the genotyper found more than one allele (heterozygous) in the aligned bases of the 
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pooled sequences, including these totals:  sites called heterozygous in homologous 

positions in both sets, sites called as heterozygous only in the cow-based consensus, and 

those found only in the pig-based consensus.  Note that this test did not establish whether, 

for homologous sites called as heterozygous in both mappings, that all bases were in 

agreement, but only that the most common base was the same in both mappings. 
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Figure 4-S1: Sequening in flanks.  Number of nucleoide sites 

sequenced to 20X/Q50 in ~11.6 Mb of flanking nucleotide sites 

250 bp either side of targeted exons.  BWA mismatch allowance 

paramaters were relaxed only for the deer and pig (see Methods). 

 

Figure 4-S2: MHC total heterozygous calls.  For the Stampy 

mapping, for the 63 exons in 14 MHC genes total sites called as 

heterozygous. These were filtered as described in Methods. 

Numbers above the bars give the heterozygous positions inferred 

per thousand 20X/Q50 sites. 
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Figure 4-S3: MHC exons with heterozygous calls.  For the Stampy 

mapping, for 63 exons in 14 MHC genes, total For the Stampy mapping, for 

63 exons in 14 MHC genes, total exons with at least one heterozygous base 

call. These were filltered as described in Methods.  Numbers above the bars 

give the percentage of the MHC exons with at least one heterozygous base 

call. 
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Figure 4-S4: Sequencing success in candidate genes.  Of 2,542 exons in 342 candidate 

genes, the number with (A) 100%, and (B) at least 60% of bases covered to at least 20X and 

with a Phred consensus score of at least 50. BWA mismatch allowance parameters were 

relaxed only for the deer and pigs (see Methods). 
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To thoroughly investigate the bacterial community diversity present in a single composite sample from an
agricultural soil and to examine potential biases resulting from data acquisition and analytical approaches, we
examined the effects of percent G�C DNA fractionation, sequence length, and degree of coverage of bacterial
diversity on several commonly used ecological parameters (species estimation, diversity indices, and evenness).
We also examined variation in phylogenetic placement based on multiple commonly used approaches (ARB
alignments and multiple RDP tools). The results demonstrate that this soil bacterial community is highly
diverse, with 1,714 operational taxonomic units demonstrated and 3,555 estimated (based on the Chao1
richness estimation) at 97% sequence similarity using the 16S rRNA gene. The results also demonstrate a
fundamental lack of dominance (i.e., a high degree of evenness), with 82% of phylotypes being encountered
three times or less. The data also indicate that generally accepted cutoff values for phylum-level taxonomic
classification might not be as applicable or as general as previously assumed and that such values likely vary
between prokaryotic phyla or groups.

Efforts to describe bacterial species richness and diversity
have long been hampered by the inability to cultivate the vast
majority of bacteria from natural environments. New methods
to study bacterial diversity have been developed in the last two
decades (32), many of which rely on PCR-based procedures
and phylogenetic comparison of 16S rRNA gene sequences.
However, PCR using complex mixtures of templates (as in the
case of total microbial community DNA) is presumed to pref-
erentially amplify certain templates in the mixture (23) based
on their primary sequence, percent G�C (hereafter GC) con-
tent, or other factors, resulting in so-called PCR bias. More-
over, the amplification of template sequences depends on their
initial concentration and tends to skew detection toward the
most abundant members of the community (23). To further
complicate matters, subsequent random cloning steps on am-
plicon mixtures are destined to result in the detection of nu-
merically dominant sequences, especially where relative abun-
dance can vary over orders of magnitude. Indeed, any analysis
based on random encounter is destined to primarily detect
numerically dominant populations. This is especially of con-
cern where limited sampling is performed on highly complex
microbial communities exhibiting mostly even distribution of
populations with only a few showing any degree of dominance,

as typically perceived for soils (17). These artifacts and sam-
pling limitations represent major hurdles in bacterial commu-
nity diversity analysis, since the vast majority of bacterial
diversity probably lies in “underrepresented minority” popula-
tions (24, 30). This is important because taxa that are present
only in low abundance may still perform important ecosystem
functions (e.g., ammonia-oxidizing bacteria). Of special con-
cern is that biases in detection might invalidate hypothesis
testing on complex communities where limited sampling is
performed (5).

Recently, there has been a concerted effort toward address-
ing problems impeding comprehensive bacterial diversity stud-
ies (7, 13, 24, 26, 28). In recent years, studies have increased
sequencing efforts, with targeted 16S rRNA gene sequence
libraries approaching 2,000 clones (11) and high-throughput
DNA-sequencing efforts (e.g., via 454 pyrosequencing and
newer-generation high-throughput approaches) of up to
149,000 templates from one or a few samples (25, 30). These
technological advances have come as researchers recognize
that massive sequencing efforts are required to accurately as-
sess the diversity of populations that comprise complex micro-
bial communities (29, 30). Alternatively, where fully aligned
sequence comparisons need to be made, novel experimental
strategies that allow more-comprehensive detection of under-
represented bacterial taxa can be applied. One such approach
involves the application of prefractionation of total bacterial
community genomic DNA based on its GC content (hereafter
GC fractionation) prior to subsequent molecular manipula-
tions of total community DNA (14). This strategy has been
successfully applied in combination with denaturing gradient
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gel electrophoresis (13) and 16S rRNA gene cloning (2, 21) to
study microbial communities. This approach separates com-
munity genomic DNA, prior to any PCR, into fractions of
similar percent GC content, effectively reducing the overall
complexity of the total community DNA mixture by physical
separation into multiple fractions. This facilitates PCR ampli-
fication, cloning, and detection of sequences in fractions with
relatively low abundance in the community, thereby enhancing
the detection of minority populations (13). Collectively, this
strategy reduces the biases introduced by PCR amplification
and random cloning of the extremely complex mixtures of
templates of different GC content, primary sequence, and rel-
ative abundance present in total environmental genomic DNA.

Any large molecular survey that relies on sequencing further
requires the analysis of large amounts of data that must be
catalogued into phylogenetically relevant groups. This is usu-
ally done using high-throughput methods like RDP Classifier
or Sequence Match (6) or a tree-based method like Green-
genes (8) or ARB (18). Two major pitfalls that are encoun-
tered using these former approaches are the presence of huge
numbers of unclassified sequences in databases and the lack of
representative sequences from all phyla. This leads to most
surveys having large portions of their phylotypes designated as
unclassified. The latter tree-based approaches, although better
suited for classification schemes, are also dependent on having
a comprehensive database with well-classified sequences for
reproducible results. This reproducibility becomes especially
important when trying to compare data across different studies,
especially those that utilize different approaches and study
systems.

In the current study, we analyzed an extensive (�5,000
clones) partial 16S rRNA gene library from a single soil sample
that was generated using very general primers and GC-frac-
tionated DNA. Total DNA was extracted from soil at a culti-
vated treatment plot at the National Science Foundation Long
Term Ecological Research (NSF-LTER) site at the Kellogg
Biological Station (KBS) in mid-Michigan (http://www.kbs.msu
.edu/lter). To test the effect of GC fractionation on recovery of
16S rRNA gene sequences, we conducted a direct comparison
with a nonfractionated library generated from the same soil
sample. Using the GC-fractionated library, we also calculated
several measures of bacterial diversity and examined the effects
of sampling size and sequence length on Shannon-Weaver
diversity index, Simpson’s reciprocal index (1/D, where D is the
probability that two randomly selected individuals from a sam-
ple belong to the same species), evenness, and Chao1 richness
estimation. The results show that GC fractionation is a pow-
erful tool to help mitigate limitations of random PCR- and
cloning-based analyses of total microbial community diversity,
resulting in the recovery of underrepresented taxa and, in turn,
reducing the sampling size needed for accurate estimations of
bacterial richness. The results also provided evidence for the
need to expand the typical scale of sequence-based survey
efforts, particularly in environments where evenness abounds
or where minority bacterial populations may have important
effects on community function and processes. We suggest that
there is a need for the establishment of standardized ap-
proaches for the analysis of sequence data from community
diversity studies in order to maximize data comparisons across
independent studies and show examples of software programs

developed to facilitate comparative analysis of large sequence
datasets.

MATERIALS AND METHODS

Study site and sample collection. Samples were collected from the KBS LTER
Row-Crop Agriculture site in mid-Michigan (for an overview of that project see
http://lter.kbs.msu.edu/). The current study examined the bacterial community in
the replicate plots of Treatment 1 at the main experimental site, which is rep-
resentative of canonical agricultural practice in the upper Midwest. The treat-
ment consisted of conventional wheat, corn, and soybean annual rotations re-
ceiving standard levels of chemical inputs, with chisel plowing. Soil was classified
as a fine-loamy, mixed, mesic Typic Hapludalfs. For this bacterial population
survey, five randomly positioned, 0- to 20-cm soil cores were taken from each of
six treatment replicates in July, 2004, at the height of the growing season. Each
replicate treatment sample was sieved through 2-mm mesh and mixed thor-
oughly, providing six replicate samples. All soil samples for this study were stored
on dry ice or at �70°C immediately after soil processing (i.e., sieving and mixing)
prior to bacterial community DNA extraction.

DNA manipulations. Total microbial community DNA was extracted and
purified from the samples by using the large-scale direct lysis method developed
by Holben (12). Equal amounts of DNA (10 �g) from each replicate sample were
pooled to provide a representative sample from this treatment regimen that was
subsequently fractionated based on the percent GC content of the DNA of the
component populations of the community as originally described by Holben and
Harris (14). Following centrifugation, the gradients were fractionated into 15
separate fractions representing percent GC contents ranging from 20 to 80%
(the full range observed in the domain Bacteria) and the amount and percent GC
content of the DNA at each position in the gradient were determined as de-
scribed elsewhere (1). The DNA in individual fractions was desalted by using
PD-10 columns (Amersham Pharmacia Biotech, Piscataway, NJ) with the man-
ufacturer’s recommended protocol. Each individual fraction was then PCR am-
plified independently for creation of the 16S rRNA gene clone library.

PCR conditions employed the primer pair 536f (5�-CAGCMGCCGCGGTA
ATWC-3�) and 907r (5�-CCGTCAATTCMTTTRAGTTT-3�) (13) and used the
optimal reaction and amplification conditions described by Ishii and Fukui (16)
for reducing PCR bias, namely, 50-�l volumes containing 10 pg of template
DNA, 1� Taq buffer, 200 �M of each deoxynucleoside triphosphate, 25 pmol of
each primer, and 1.25 U of Taq polymerase amplified for 21 cycles of 94°C for 1
min, 45°C for 1 min, and 72°C for 2 min. PCR products were cloned by using the
plasmid vector pT7Blue-3 and a Perfectly Blunt cloning kit (Novagen, Inc.,
Madison, WI) according to the manufacturer’s instructions. Plasmid clones were
purified from 2-ml cultures of Escherichia coli incubated overnight at 37°C with
shaking using Qiagen mini-prep kits (Qiagen, Valencia, CA) as recommended by
the manufacturer. Restriction analysis using EcoRI was performed to ensure that
plasmids contained correctly sized inserts. Plasmid DNA was sequenced by using
the universal primer T7 and standard dideoxy sequencing conditions.

Phylogenetic placement and tree creation based on clone libraries. All 16S
rRNA gene sequences were manually trimmed of vector and primer sequence
prior to alignment and analysis. Trimmed sequences were subsequently checked
for chimeric character and other anomalies by using Pintail (3), and suspect
sequences were excluded from further analysis, leaving 4,889 sequences to be
analyzed. Multiple Fasta files were created and independently aligned in ARB
(18). Alignments were performed in ARB using the Fast Aligner and at least
three reference sequences for each clone from the 16S rRNA gene database PT
server containing 51,024 reference sequences (http://www.arb-home.de
/downloads.html). Sequences from the current study were integrated into the
annotated tree based on parsimony.

Assignment to similarity-based OTUs and species richness estimators. Prior
to assignment into operational taxonomic units (OTUs), ARB-generated 16S
sequence alignments were used to create Jukes-Cantor corrected distance ma-
trices and exported. These matrices were used as input for the DOTUR program
(26), which was used to calculate Simpson’s and Shannon-Weaver diversity
indices, Chao1 richness estimates, and OTU bins using default settings.

Comparison of GC-fractionated to nonfractionated data was performed by
creating a master sequence library containing both fractionated and nonfraction-
ated sequence libraries. Approximately 500 (487 and 490, respectively) se-
quences were compared for fractionated and nonfractionated libraries by com-
paring �33 sequences obtained from each of the 15 GC-based fractions of the
total community to a library of 490 sequences randomly cloned from nonfrac-
tionated total community DNA from the same sample. The sequences obtained
were aligned in ARB and then run through the DOTUR program. DOTUR data
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files were then used as input for the SONS program (27), which was used to
compare OTU representation within each library.

Identification of phylum-specific taxonomic bins and OTU composition. To
identify distance score cutoff values for individual phyla, we developed the DAM
(DOTUR-ARB matching) program (19), available at (http://dbs.umt.edu
/research_labs/holbenlab/links.php). This allowed comparison between ARB-
generated group lists and DOTUR list files created from the total data set of
4,889 sequences. The DAM program was employed to match a query list of
sequence identifications (hereafter, IDs) from ARB to OTUs as determined by
the DOTUR program, allowing for a user-specified range of DOTUR distance
values. Querying against a DOTUR list file for each distance value in range, the
program extracted only OTUs that contained one or more of the query IDs.
Results were written to a file formatted as a DOTUR list file, with each line
listing the DOTUR distance value, the number of matched OTUs for the pre-
scribed distance, and a list of each bin’s contents. For this study, DAM results
provided the percent sequence similarity at which an ARB-generated phylum list
was contained in a single DOTUR OTU.

In order to identify sequences belonging to specific OTUs, a new program,
DOTMAN (for “DOTUR manipulation”; available at http://dbs.umt.edu
/research_labs/holbenlab/links.php), was created (19). DOTMAN queries se-
lected OTUs (based on DOTUR bins) against a sequence database, generating
FASTA files from a user-given file. To accomplish this, the program is given a
range of DOTUR distance values, a DOTUR list file, and a file in FASTA format
containing sequences corresponding to the IDs in the list file. For each distance
value d, DOTMAN makes one FASTA file for each of the n largest OTUs. n is
set by the user and is less than or equal to the total number of OTUs for a
distance d.

Sample size simulations. To explore the effects of sampling size on ecological
parameters (Chao1 richness estimation, Shannon-Weaver indices, and domi-
nance), we used EcoSim700 null model software for ecology (version 7.0) to
analyze data created from the first 500, 2,000, 3,390, and 5,000 sequences con-
tained in our library. Input files were created from OTUs that clustered with 97%
similarity and were subsequently used as the data matrix for running the pro-
gram.

Nucleotide sequence accession numbers. All sequences used in this paper have
been deposited in the GenBank database (accession no. EU352912 to
EU357802).

RESULTS

Effect of sample size on observed and estimated richness.
Environmental rRNA gene libraries vary considerably in size
but typically are of 500 sequences or less (4, 20). Although it
has been shown that small sample sizes are useful for providing
a “snapshot” of the predominant species (29) and they have
been employed in theoretical estimates of bacterial species
richness (20), there is little empirically derived data actually
demonstrating the effect of sample size on ecological parame-
ters, such as richness estimation, dominance, diversity indices,
or evenness. To better understand sampling size-induced er-
rors and to better estimate bacterial diversity in soil, we paired
the additional resolving power of GC fractionation with the
general utility of 16S rRNA gene clone libraries in a microbial
community survey of a single soil type.

The effect of sample size was tested by creating datasets
from the first 500, 2,000, 3,390, and 5,000 sequenced clones in
our GC-fractionated library. Subsequent removal of anoma-
lous and nonbacterial sequences produced sets of 487, 1,962,
3,322, and 4,889 sequences, respectively. These datasets were
analyzed based on “bins” created as a function of 16S sequence
similarity. Since 16S sequences are not necessarily linked to a
whole-genome evolutionary or ecological context, the values
chosen for binning are arbitrary and only serve the purpose of
creating objectively derived bins that cluster data into a rea-
sonable number of taxonomically related groups (10, 22). In
order to facilitate comparison to prior bacterial community

diversity studies, the data were grouped at multiple levels of
similarity (Table 1), but discussion in this report is focused
primarily on the widely utilized 97% sequence similarity level.

A 5.1-fold increase in the number of OTUs and a 3.5-fold
increase in the richness estimation were observed (at 97%
sequence similarity) from the smallest to the largest data set
(Table 1). Shannon diversity index values increased approxi-
mately 1.2-fold across this same span, with the Simpson’s re-
ciprocal index (1/D) increasing from 202.19 to 341.67, repre-
senting a 1.7-fold increase. In contrast, evenness estimates
decreased from 0.966 to 0.906 between the smallest and largest
data sets, presumably indicating that sampling was approach-
ing a minimal saturation point where low-abundance se-
quences (unique in the smaller datasets) were being detected
more than once.

The largest library, containing 4,889 sequences, represented
the most complete survey of aligned 16S rRNA gene sequences
from a single composite soil sample and was composed of 1,714
OTUs identified at 97% sequence similarity (Table 1). Projec-
tions based on this large data set predict that 3,555 different
OTUs were actually present in this soil sample (Table 1) and
that a GC-fractionated clone library of well over 10,000 se-
quences would be required to begin bordering an asymptote in
the rarefaction curve.

At 97% sequence similarity, a Shannon-Weaver score of
6.75 was calculated, much greater than the values of 4.35 and
4.68 previously estimated for an Amazon and a Scottish soil,
respectively (26). Further, the vast majority of bacterial taxa in
the soil were present in very low numbers, producing an ex-
tremely high evenness estimate of 0.906, while only a few
OTUs exhibited any numerical predominance (Table 1). Our
data firmly validate the increasingly common perception (as
does a recent report; see reference 29) that numerous taxa
present in comparably low overall abundance comprise the
bulk of the soil bacterial community.

To compare common community diversity measures as a
function of different sample sizes, we used EcoSim700 null
model software to create species richness estimates, Shannon-
Weaver diversity indices, and dominance curves. The results
revealed underestimations in all three parameters when using
the smaller datasets (Fig. 1). All parameters tested followed a
conserved and overlapping general trend with increasing sam-
ple size, but the smaller data sets lacked sufficient sequence
coverage to indicate an asymptote or to reflect end results
comparable to those obtained from the larger data sets.

Community composition. To examine taxonomic represen-
tation within the community, we explored two commonly used
methods of taxonomic placement for 16S rRNA gene sequence
data. Sequences were first analyzed using the Classifier (ver-
sion 1.0; taxonomical hierarchy release 6.0) and the SeqMatch
tools (6) of the RDP. Individual sequences were considered
classified only if both programs showed agreement at the phy-
lum level. Unclassified sequences were assigned a potential
placement based on Classifier. Using this method, 3,233 (66%)
of the sequences were classified (Table 2) into 17 known phyla.
These same sequences were also classified using ARB (18) by
placement into an ARB-generated phylogenetic tree of 51,024
classified sequences. With this approach, a 33% increase in
placement to known phyla was obtained, with 4,854 (99%)
sequences assigned to 25 known phylogenetic groups. It is
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worth noting that the classification of certain groups was com-
parable using both methods (Table 2), but in groups with low
sequence representation within databases (e.g., refer to Chlo-
robi, Acidobacteria, Thermomicrobia, Fibrobacteres, and candi-
date divisions of Table 2), the ARB-based approach allowed
for more-consistent assignment of bacteria at the phylum level.

Since the analysis reported herein was performed, a new
release (34) of the Classifier tool has been made available
(version 2.0; taxonomical hierarchy release 7.8). Reanalysis of
our data set with this new release produced taxonomic place-
ments that were nearly identical to those obtained with ARB
for classified sequences. Despite this, Classifier was still unable
to classify 1,013 (21%) of the sequences in this library.

Using DOTUR, a total of 1,405 OTUs (at 97% sequence
similarity), comprising 82% of all identified OTUs, were rep-
resented three or fewer times in this 4,889-sequence library.
When the data were reanalyzed to include all OTUs repre-
sented 19 or fewer times (half the value of the 10th most
predominant OTU), 99% of all OTUs in the study were in-
cluded in this category. This represents 83% of all sequences in
the full library. In order to provide some phylogenetic context to
the predominant OTU bins generated by DOTUR using the 97%
similarity cutoff, we analyzed the 10 most predominant taxa,
which were represented by only 99 (OTU1; Gammaproteobacte-
ria), 81 (OTU2; Acidobacteria), 81 (OTU3; Gammaproteobacte-
ria), 63 (OTU4; Thermomicrobia), 62 (OTU5; Betaproteobacteria),
61 (OTU6; Acidobacteria), 46 (OTU7; Thermomicrobia), 39

(OTU8; Alphaproteobacteria), 38 (OTU9; Gammaproteobacte-
ria), and 38 (OTU10; Betaproteobacteria) sequences out of
4,889 (Tables 1 and 2).

Effect of sequence length on community analysis. The region
of the 16S rRNA gene used to generate the clone library in the
current study is approximately 400 bp in length, spanning be-
tween E. coli positions 518 and 927 and encompassing two
hypervariable regions (V4 and V5). Further, the highly con-
served regions representing primers 536f and 907r (15) were
removed prior to analysis because the minor degeneracies built
into these primers potentially introduce errors into the se-
quences analyzed.

To test the effect that using this smaller (versus full-length)
but highly variable region had on data analysis, we created a
1,184-sequence library from (nearly) full-length sequences in
the ARB database. These reference sequences covered all of
the phyla detected and were selected as having the greatest
similarity to the sequences within our own library, thus serving
as proxies to the sequences obtained in the current study.
These reference sequences were analyzed separately as both
full-length and truncated sequences (by trimming to match the
536-to-907 region, excluding primers) to create distance ma-
trices at 97% sequence similarity which were used as input for
the DOTUR program (26). Fairly modest differences were
observed for the truncated and full-length sequences, with 911
and 1,031 OTUs identified, respectively (Table 3). Likewise,
the Shannon-Weaver indices derived from truncated and full-

TABLE 1. Effect of sample size on similarity-based OTUs, Shannon-Weaver diversity index, evenness, and richness estimation

Sequence sample
size, % similarity

level

No. of
unique
OTUs

Shannon-Weaver
index Evenness Richness

estimatea

No. of sequences represented in top 10 OTUs

OTU1 OTU2 OTU3 OTU4 OTU5 OTU6 OTU7 OTU8 OTU9 OTU10

First 500b

100 461 6.10 0.995 5,851 6 3 3 2 2 2 2 2 2 2
97 335 5.62 0.966 1,020 12 8 7 7 7 7 5 5 5 5
70 30 2.94 0.866 32 59 45 43 41 40 31 27 24 24 23
55 6 0.78 0.434 6 379 51 43 6 5 3
47 2 0.13 0.188 2 473 14

First 2,000c

100 1,662 7.33 0.986 12,163 22 9 8 8 7 6 5 5 5 5
97 928 6.39 0.935 2,126 44 33 24 24 24 22 19 18 16 12
70 67 3.34 0.794 80 174 156 139 134 132 110 100 97 96 91
55 14 1.69 0.641 20 608 597 297 224 91 82 29 12 10 8
38 6 0.04 0.025 12 1,950 8 1 1 1 1

First 3,390d

100 2,680 7.73 0.980 15,015 40 17 15 15 11 10 8 8 8 7
97 1,319 6.59 0.918 2,991 76 54 54 41 38 31 27 27 27 26
70 84 3.48 0.785 88 309 243 237 210 200 182 165 159 150 147
55 14 1.62 0.615 14 1,284 1,064 387 205 85 85 60 54 46 28
38 2 0.02 0.032 2 3,311 11

First 5,000e

100 3,789 8.04 0.976 20,790 54 25 22 17 15 14 13 12 12 10
97 1,714 6.75 0.906 3,555 99 81 81 63 62 61 46 39 38 38
70 102 3.60 0.778 119 474 345 297 256 248 236 233 215 211 210
55 18 1.98 0.685 20 1,402 1,026 729 504 453 231 221 175 58 37
38 5 0.03 0.017 5 4,873 13 2 2 1

a Based on full biased corrected Chao1 richness estimates.
b Based on 487 starting sequences.
c Based on 1,962 starting sequences.
d Based on 3,322 starting sequences.
e Based on 4,887 starting sequences and 2 archeal sequences used as references.
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length sequences were slightly different, being 6.65 and 6.86,
respectively. A substantial effect on Chao1 richness estimation
was detected however, with an almost-twofold increase in es-
timated OTUs when full-length sequences were used for the
analysis, presumably reflecting the additional fineness of phy-
logenetic resolving power afforded by the additional sequence
information.

We further tested the effect of sequence length on outcome
by comparing taxonomic placements based on full-length ver-
sus truncated sequences and found that comparable results
were obtained for both. In 1,166 of the 1,184 cases (98.5%),
congruent taxonomic assignments were obtained with the trun-
cated sequences, while in only 16 cases (1.5%) did the addi-
tional sequence information result in a different taxonomic
assignment (Table 3). Phylum-level classification based on
ARB-based tree generation was highly reproducible indepen-
dent of fragment length (Table 4). Collectively, this suggests
that the �400-bp V4-V5 region examined for our survey, which
is readily obtained from a single dideoxy sequence reaction, is
sufficient to provide reliable phylogenetic placement at phylum

and higher-order levels. The effect of sequence length on finer-
level placement (genus and species) was not examined, being
outside the context of the current study.

Assignment of cutoff values for phylogenetic clusters. Pre-
vious publications have suggested that sequences sharing �60
to 80% identity likely belong to the same phylum (26, 29).
Using this guideline, we empirically assessed the feasibility of
employing such a “universal” cutoff value for phylum-level
discrimination and the effect of using truncated versus full-
length sequences to determine cutoff values. To accomplish
this, we developed and applied the DAM program, which
matches a list of query sequences (belonging to a discrete
group [i.e., phylum-level cluster] as determined by ARB) to a

FIG. 1. The effects of sampling size on estimated diversity (A),
number of OTUs detected (B), and evenness (C). Iterative plots of
estimated Shannon-Weaver diversity (H�), OTUs detected, and dom-
inance score were generated for the first 500, 2,000, 3,390, and 5,000
sequences in the partial 16S gene sequence library to demonstrate the
effects of sample size on each parameter. Note that the lines in each
panel directly overlap as a result of this iterative process and that the
trajectory of each estimation curve is extended as sample size in-
creases.

TABLE 2. Taxonomic classification based on multiple methods

Taxon ARBa
Total no. of sequences % Sequence

similarityd
Classifiedb Unclassifiedc

Phylum
Acidobacteria 955 88 41 38
Actinobacteria 491 452 39 38
Bacteroidetes 453 450 17 59
CD OD1 68 0 0 49
CD OP10 43 18 0 38
CD OP11 14 6 6 27
CD OP3 12 0 0 53
CD TM6 3 0 0 83
CD TM7 17 11 2 56
CD WS1 2 0 0 99

CD WS3 34 17 5 38
Chamydiae 2 2 10 88
Chlorobi 22 0 1 70
Chloroflexi 27 32 18 55
Cyanobacteria 12 6 57 38
Defferibacteres 0 0 2
Deinococcus-Thermus 1 0 3 100
Dictyoglomi 0 0 21
Fibrobacteres 11 0 0 60
Firmicutes 15 16 800 48

Gemmatimonadetes 251 195 33 38
Lentisphaerae 0 0 1
Nitrospira 59 47 0 38
Planctomycetes 243 174 22 38
Proteobacteria 1,690 1,631 506 21
Spirochaetes 3 1 5 38
Thermodesulfobacteria 0 0 4
Thermomicrobia 323 0 10 38
Thermotogae 0 0 1
Verrucomicrobia 103 89 50 43
Unclassified 35 1,654

Class
Alphaproteobacteria 374 368 13 21
Betaproteobacteria 485 475 0 43
Deltaproteobacteria 348 278 22 38
Epsilonproteobacteria 1 0 0 99
Gammaproteobacteria 478 468 7 38
Unclassified

Proteobacteria
4

a Classification based on ARB-generated tree. CD, candidate division.
b Sequences were considered classified if assigned to the same phylum using

both SeqMatch and Classifier of the RDP.
c Unclassified sequences were assigned to likely phylum based on Classifier

results.
d Based on ARB phylum level classification.
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distance matrix-determined OTU group encompassing all se-
quences in a given query list (as created by the DOTUR pro-
gram). This allowed determination of the percent sequence
similarity at which groupings of sequences were identified as
discrete OTUs. For this exercise, phylum-level groups with
both large and smaller numbers of sequences were compared
again using the ARB-derived full-length and truncated se-
quences described above, as well as the KBS-LTER study data
set. The results showed that no single, consistent consensus
value can be used as a phylum-level cutoff point across all taxa
(Tables 1 and 4). With our own large data set, we annotated
102 separate groups at 70% sequence similarity, greatly ex-
ceeding estimates of 36 to 52 extant bacterial phyla suggested
by Rappé and Giovannoni (24). At 55% sequence similarity, 18
groups were defined, in line with the number of phyla expected
to be in soil (Table 1).

Comparison of fractionated versus nonfractionated DNA
libraries. In order to clearly test the effect of GC fractionation
on the recovery of low-abundance sequences in the complex
mixture of bacterial community DNA, a direct comparison was
made between 16S rRNA gene clone libraries generated with

and without the use of GC fractionation. No substantive dif-
ferences in phylum or genus level community composition
were detected (see the supplemental material). However, when
these aligned sequences were analyzed using the DOTUR and
EcoSim programs, a species detection (also known as rarefac-
tion) curve of OTUs detected at 97% sequence similarity in-
dicated a higher rate of recovery of new phylotypes for the
GC-fractionated library (Table 5; see the supplemental mate-
rial). In addition, the values for the Shannon-Weaver diversity
index, evenness, and Chao1 richness estimation were all higher
for the GC-fractionated DNA (Table 5).

To compare community composition and classification re-
sults for the above-mentioned libraries, the data were analyzed
using the SONS program (27), which was designed to compare
OTUs between libraries in order to establish patterns of com-
munity membership and structure based on sequence compar-
isons. This analysis indicated that GC fractionation facilitated
the detection of a higher number of OTUs, both shared and
unique, from the same soil bacterial community (Table 5; see
the supplemental material).

Community composition. We relied on a tree-based ap-
proach utilizing an ARB-annotated (18) sequence library into
which our sequences were placed for assignment of phylog-
enies. Essentially all of the sequences in the study were as-
signed into 25 known phyla by this approach, with just 35 of the
4,898 sequences not assignable to any known phylum or group
(Table 2). The most predominant phylum in this soil was the
Proteobacteria, which comprised 35% of the sequence library,
followed by the Acidobacteria with 20% of the total. Six other
phyla, including Actinobacteria, Bacteroidetes, Thermomicrobia,
Gemmatimonadetes, Planctomycetes, and Verrucomicrobia, av-
eraged 7% representation. The remaining phyla were repre-
sented by numbers of phylotypes totaling �2% of the total
library.

DISCUSSION

Based on the results presented herein, this agricultural soil
bacterial community was empirically demonstrated to be a
highly complex assemblage with extremely broad evenness.
Such a community composition requires vast sequencing ef-
forts to even approach onefold coverage of richness and to
obtain reliable results for traditional ecological parameters
originally developed for the analysis of many metazoan com-
munities. One way to mitigate sample size requirements for
complete coverage of community diversity is to reduce sample
complexity and disparity in abundance between taxa by pre-

TABLE 3. Effect of fragment length on similarity-based OTU
number, Shannon-Weaver diversity index, and

richness estimation

Sequence length, %
similarity level

No. of unique
OTUs

Shannon-Weaver
index

Richness
estimatea

Full lengthb

100 1,183 7.08 350,169
97 1,031 6.86 7,452
70 54 3.01 67
55 6 0.67 6
46 2 0.01 2

Truncatedc

100 1,166 7.05 61,646
97 911 6.65 4,175
70 80 3.41 93
55 15 1.68 18
46 5 0.47 6

a Based on full biased corrected Chao1 richness estimates.
b Based on 1,184 full-length sequences.
c Based on 1,184 truncated sequences. Truncations were created by deleting

the upstream base pair region from the E. coli consensus position 536 and
downstream of consensus position 906.

TABLE 4. Effect of sequence length on taxonomic placement and
distance based on ARB alignment

Taxona

Full-length Truncated

% Sequence
similarity

No. of
sequences

% Sequence
similarity

No. of
sequences

Phylum
Acidobacteria 58 176 46 175
Bacteroidetes 52 106 46 107
CD OD1 57 20 46 20
Gemmatimonadetes 75 42 51 41
Planctomycetes 46 88 39 88

Class
Betaproteobacteria 61 141 54 144

a CD, candidate division.

TABLE 5. Effect of GC fractionation on similarity-based OTU
numbers, Shannon-Weaver diversity indices, and

richness estimates

Fractionation status
No. of
unique
OTUs

Shannon-
Weaver
index

Evenness Richness
estimate

% of
shared
OTUsc

GC fractionateda 335 5.62 0.966 1,020 64
Not GC fractionatedb 301 5.45 0.954 780 74

a Based on 487 starting sequences.
b Based on 490 starting sequences.
c OTUs identified in both libraries.

VOL. 75, 2009 16S SURVEYS ARE AFFECTED BY SIZE, METHODS, AND PRIMERS 673



fractionation of community DNA, using methods such as GC
fractionation. Using this method, 1,714 OTUs were detected at
a sequence similarity level cutoff of 97% (representing a new
OTU for every 2.9 sequences acquired), with an estimated
3,555 OTUs present. These values are potentially underesti-
mations due to the focus on an �400-bp hypervariable region
within the 16S gene, with the corrected richness estimation for
full-length sequences approaching 6,500 OTUs (based on the
twofold increase detected in our data) (Table 3). Compared to
the results of other, conventional 16S rRNA gene clone li-
brary-based soil studies (26), our library exhibits an �1.6-fold
increase in the Shannon-Weaver diversity index, most likely
due to the 50-fold increase in sample size and DNA prefrac-
tionation approach employed. This is the highest index re-
ported to date for a bacterial community and presumably re-
flects the additional resolution afforded by the unique
combination of existing and novel approaches employed.

While it may seem intuitive even in the absence of empirical
data as presented here, the comparison of different-sized li-
braries from the same sample clearly demonstrates that for
highly complex bacterial communities, such as those typically
found in surface soils, rich sampling of 16S rRNA gene se-
quences (i.e., several thousand) is necessary to obtain a robust
measure or estimation of community diversity parameters.
This is especially true where even near saturation of sampling
curves is not feasible or is seemingly impossible due to large
numbers of taxa exhibiting high degrees of evenness, or where
theoretical estimates based on sample sizes under 1,000 do not
appear to be accurate (e.g., asymptotic behavior is not yet
apparent in a sampling curve). The importance of at least
approaching sampling saturation is supported by a recent pub-
lication indicating that surveys missing or ignoring a small
subset (e.g.�10%) of species result in minimal loss of infor-
mation but that more-extensive gaps substantially increase
rates of information loss (33).

To directly compare the effectiveness of GC fractionation
for sampling coverage, we compared our results to a nonfrac-
tionated 500-clone library from the same soil sample, which
produced lower recovery of OTUs, as well as a lower Shannon
diversity index and less evenness. The main benefit of GC
fractionation prior to PCR amplification is the reduction in
DNA complexity within each fraction which allows underrep-
resented sequences to be detected more readily than in a
random survey. This resulted in a higher recovery rate for
minority species and more-even detection of total diversity,
thereby reducing the required survey size needed to approach
complete coverage of the entire bacterial community.

The low and variable levels of sequence similarity required
to sort this large group of sequences into phylum-level bins
comparable to those suggested by other soil microbiological
studies suggests that having a universally applied phylum-level
cutoff is impractical and would not apply across the full range
of known bacterial taxa. Additionally, the sample size (number
of sequences within a given group) showed no correlation with
the percent sequence similarity required for clustering, sug-
gesting that there are actual differences in the degree of 16S
sequence variation between different phyla. This observation
potentially represents different evolutionary strategies between
phyla at the molecular level where ribosomal-gene sequence
conservation is concerned.

When full-length sequence data were compared to those for
the 400-bp region of focus in our library, a 1.4-fold increase in
sequence similarity at the phylum level was observed. We sug-
gest that this is explained by the hypervariable nature of the
536f-907r-sequenced region as mentioned above, especially
given that the conserved primer regions at each end were
removed prior to analysis. The inclusion of nearly full-length
sequences in the comparison would introduce several addi-
tional highly conserved areas into the analyses and thus lower
the overall variation observed between longer 16S rRNA gene
sequences. Contrary to what was observed for percent se-
quence similarity, phylum-level classification based on ARB-
based tree generation was highly reproducible independent of
fragment length, as shown in Table 4.

Based on the data presented here, we suggest that GC frac-
tionation or other prefractionation approaches for reducing
complexity within total community DNA prior to PCR and
cloning are useful for DNA-based phylogenetic surveys of mi-
crobial community diversity. We further suggest that, even with
prefractionation of community DNA, 16S rRNA gene clone
libraries of at least 2,000 sequences are required to achieve
reliable results for estimating ecological parameters, such as
richness, evenness, and diversity, for complex bacterial com-
munities such as those typically found in surface soils. The
results also validate the use of the 536f-907r primer set for
rapid and relatively inexpensive analysis of total bacterial di-
versity based on single, unidirectional sequence reads that sup-
port binning into a reasonable number of OTUs. This strategy
provided sufficient resolution for the analyses described herein.
However, analysis of full-length or nearly full-length sequences
is highly recommended where phylogenetic placement at the
genus or near-species level is desired. The determination of
evolutionary relatedness between organisms requires the use
of large stretches of genetic information. This is especially true
for highly conserved genes, such as the 16S rRNA gene (10).

Wherever possible, phylogenetic surveys should use large
library sizes and scrutinize data using multiple taxonomic tools.
As part of our study, we used methods from the study of
Thompson et al. (31) (Clustal W alignments) and MUSCLE
software (9), which produced datasets with similar numbers of
OTUs, Chao1 richness estimates, and other diversity parame-
ters. However, phylogenetic trees generated from those ap-
proaches did not produce coherent clustering with phyloge-
netic assignments using RDP tools (not shown). In contrast,
phylogenetic trees generated using ARB alignments were re-
producible and provided consistent phylogenetic placement
with the RDP toolset.

The continued use of nucleic acid sequence-based phyloge-
netic approaches will yield more information, providing addi-
tional insights into the effectiveness and validity of current
phylogenetic classification strategies and whether they reflect
fundamental biological properties. Continued evolution of this
general approach should come with the development of a com-
mon platform for data acquisition and analysis, which would
allow for microbial community comparisons across multiple
studies. Special focus should be given to a universal set of rules
for assigning bacterial phylogenies. Although our data clearly
suggest that there is no universal cutoff value for phylum as-
signment, it does not provide enough insight to suggest a spe-
cific number of phyla in our sample based strictly on sequence
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similarity, nor does it suggest phylum-specific cutoff values
which might come from a more-complete integration of all
data in reliably assigned phylotypes present in extant data-
bases. The fact that sequences in the current study were only
reliably affiliated to higher-order phylogenetic groups (phylum
level and higher) highlights the need to develop a clearer
definition for bacterial phylogenetic assignments at the genus
and species level that are based on more than just single 16S
rRNA gene sequences. In closing, we suggest that additional
studies are needed to explore the extent of taxonomic variance
within and between phylogenetic groups to provide additional
ecological and biological context that will underpin bacterial
community diversity studies into the future.
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In order to retrieve phylogenetic information from distance matrices generated from large-scale clone
libraries, and to explore OTU distribution among them, we have developed downstream applications for use
with the already available DOTUR program. These programs enhance and ease data extraction, providing
phylogeny to the already generated distance data.

© 2008 Elsevier B.V. All rights reserved.

The past ten years have seen an explosion in microbial ecology
research based on 16S rRNA gene sequences. Concurrent with that
movement has come the development of tools for analyzing ever-
increasing data sets of rRNA gene sequences (Cole et al., 2003, 2005,
2007; Desantis et al., 2006; Lozupone and Knight 2005; Wang et al.,
2007). Two of the most commonly used tools are DOTUR (Schloss and
Handelsman 2005) and ARB (Ludwig et al., 2004). ARB properly aligns
sequence data and generates distance matrices that can be trans-
formed by DOTUR into operational taxonomic unit (OTU) composition
data: groups of sequences binned together under given similarity
parameters. OTU groups are then used to make collector's and
rarefaction curves for sampling coverage estimations, richness
estimators, and diversity indices. Although the two programs
represent powerful tools for data analysis, some information is not
easily extracted from DOTUR output files. Rank abundance and OTU
distribution files are generated, but these are not linked to sequences,
and are not ordered by abundance (in the case of OTU distribution).
Sequence identity is left out of the analysis unless individual
identification tags (names) from DOTUR are manually linked to their
corresponding DNA sequence prior to using some phylogenetic
assignment tool. This is a time-intensive task which is often skipped,
but which provides critical information regarding OTU bin composi-
tion. The ability to use alternative methods to validate group
phylogeny depends on being able to track specific OTUs to their
sequences. Although manual searching and matching is feasible for

small libraries, new studies analyzing thousands of sequences make
this task intractable.

Another concept not easily explored is the cohesive organization of
OTU placements at different phylogenetic levels and how they relate
to tree topology in well-annotated trees. Although programs like ARB
allow users to align their own sequences to reference sequences and
insert them into annotated trees, the DOTUR program bins them into
OTUs using arbitrary cutoffs not linked to any validated hierarchy
(Schloss and Handelsman, 2005). To date, multiple 16S rRNA gene
based studies have used this approach without rigorously assessing its
appropriateness or validity.

To address both of these concerns, we developed two simple
programs that are freely available from the authors at: http://dbs.umt.
edu/research_labs/holbenlab/links.php. The DAM (DOTUR — ARB
Matching) application matches a list of sequence IDs to bins as given
by the DOTUR program for some range of DOTUR distance values
(Fig. 1). This allows the user to identify the phylogenetic distance at
which all sequences within the provided list are grouped as a single
OTU. Input for the program (Fig. 1A) includes: (i) A DOTUR list file
comprised of rows of space or tab delimited entries, (ii) A list file with
one sequence ID on each line, and (iii) A configuration file (not shown).
The program was created to match to DOTUR bins a list of sequences
that represent a cluster gathered from the output of the ARB program,
but any list of sequence IDs can be matched so long as each is present
in all the DOTUR list lines and they are in a file with the proper format.

Having stored the bin information in the DOTUR list file, the list of
target sequence IDs (TIDs) to be matched to the bins, and a user-
specified range of distance values for each distance value in range,
DAM first keys each TID to a bin in the DOTUR list by finding it's match
in the DOTUR bin information. Each bin that contains at least one of
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the TIDs is then copied from the DOTUR file and added to a list of bins
for the given distance. The output, then, is a filtered version of the
original DOTUR list file, in which bins are listed only for the specified
range of distance values, and for each distance only bins containing at
least one of the TIDs in the sequence ID list file.

DAM output is a file formatted similarly to a DOTUR list file
(Fig. 1B). For each DOTUR distance value, there is a line in the file
giving the distance value itself and the set of bins found in the DOTUR
file that account for all of the sequences given by the list file, followed
by a list of bins and their contents.

The second program, DotMan (DOTUR Manipulation Program),
creates FASTA files from DOTUR bins (Fig. 2). For a list of DOTUR
distance values, it makes one FASTA file for each of the k largest bins
listed at each distance. Inputs for the program (Fig. 2A) include: (i) A

DOTUR list file comprised of rows of space- or tab-delimited entries,
(ii) A file of sequences and their identification tags in FASTA format
matching those contained in the DOTUR list, and (iii) A configuration
file that provides the programwith the names of the above data files, a
base name for the FASTA files, a range of distance values over which to
create FASTA files, and a list of distance values, each of which is the
basis for a series of FASTA files (not shown). Dotman reads, in order,
the DOTUR list file, the FASTA file, the user-specified k value and then
the list of distance values. Then, for each specified distance value, the
program first orders the DOTUR bins by population from largest to
smallest. For each of the k largest bins in the list, it matches each
sequence ID in the bin to an entry in the FASTA file, assembling one
FASTA file for each bin. In each output file, The ID entry is the sequence
ID as given in the DOTUR bin, and the sequence itself is formatted as

Fig. 1. Examples of the format of input files and the output file from the DAM program. The data shown comes from a 16S rRNA gene sequence survey from an agricultural soil in
Michigan. DAM also reads a configuration file (not shown) listing the user-specified settings, an example of which is given with the program's help file.
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given in the original FASTA file (Fig. 2B). If the number of bins n in the
DOTUR list for a given distance value is less than k, DotManwrites one
file for each of the n bins, ordered from largest to smallest. When
selecting the ith bin of the k largest bins, DOTUR bin order is not
necessarily preserved when selecting among bins of equal size. This

means, for example, that when requesting the 5 largest bins from a set
of 10 bins of equal size, the FASTA files produced will not necessarily
represent the 5 leftmost bins as ordered in the DOTUR list file.

Both programs are written in C++ as command-line programs.
They are available either as Windows-executables or source-code

Fig. 2. Examples of the format of DotMan input files and an example FASTA file from its output. These examples come from the same soil study noted in Fig. 1. As with the DAM
program, DotMan also reads a configuration file (not shown) with user-specified settings. An example of the configuration file is given in the program's help file.
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packages for compiling on Linux or the MacIntosh using OSX. Recent
studies in our lab have used both programs, allowing us to identify
specific groups of sequences found to be numerically dominant within
our clone library (Morales et al., 2008)and demonstrating that
“universal” cutoff values for binning at the phylum level were not
observed within the studied site . A sample output file from that study
is used in Fig. 1. The figure shows the distance score (similarity score is
calculated as 1-distance score) needed to bin all Acidobacteria
sequences into a single OTU (62% distance or 38% sequence similarity).
These tools should be useful to anyone interested in identifying
specific subgroups of OTUs at given taxonomic levels of resolution, or
wanting to corroborate OTU bins byway of tools like the RDP Classifier
(Wang et al., 2007) or BLAST (Altschul et al., 1990; Tatusova and
Madden 1999).
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Bacterial gene abundances as indicators of
greenhouse gas emission in soils

Sergio E Morales1, Theodore Cosart2,3 and William E Holben1,3

1Microbial Ecology Program, Division of Biological Sciences, The University of Montana, Missoula, MT, USA;
2Department of Computer Science, The University of Montana, Missoula, MT, USA and 3Montana—Ecology
of Infectious Diseases Program, The University of Montana, Missoula, MT, USA

Nitrogen fixing and denitrifying bacteria, respectively, control bulk inputs and outputs of nitrogen in
soils, thereby mediating nitrogen-based greenhouse gas emissions in an ecosystem. Molecular
techniques were used to evaluate the relative abundances of nitrogen fixing, denitrifying and two
numerically dominant ribotypes (based on the X97% sequence similarity at the 16S rRNA gene) of
bacteria in plots representing 10 agricultural and other land-use practices at the Kellogg biological
station long-term ecological research site. Quantification of nitrogen-related functional genes
(nitrite reductase, nirS; nitrous oxide reductase, nosZ; and nitrogenase, nifH) as well as two
dominant 16S ribotypes (belonging to the phyla Acidobacteria, Thermomicrobia) allowed us to
evaluate the hypothesis that microbial community differences are linked to greenhouse gas
emissions under different land management practices. Our results suggest that the successional
stages of the ecosystem are strongly linked to bacterial functional group abundance, and that the
legacy of agricultural practices can be sustained over decades. We also link greenhouse gas
emissions with specific compositional responses in the soil bacterial community and assess the use
of denitrifying gene abundances as proxies for determining nitrous oxide emissions from soils.
The ISME Journal (2010) 4, 799–808; doi:10.1038/ismej.2010.8; published online 25 February 2010
Subject Category: Geomicrobiology and microbial contributions to geochemical cycles
Keywords: 16S rRNA; greenhouse gases; KBS-LTER; nifH; nirS; nosZ

Introduction

The impact of agricultural practices on the environ-
ment has been studied extensively, leading to
changes in land management policy worldwide
(Tilman et al., 2002). Yet, surprisingly little is
known about the interactions between agroecosys-
tem management practices and the soil microbial
community, which has a key role in nutrient
transformation and chemical cycling (Staley and
Reysenbach, 2002). The Kellogg biological station
long-term ecological research (KBS-LTER) site has
hosted numerous microbiological studies (Bruns
et al., 1998, 1999; Broughton and Gross, 2000;
Phillips et al., 2000a, b; Buckley and Schmidt,
2001; Blackwood and Paul, 2003), but few studies
have focused on quantitative analysis of bacterial
community composition in relation to nitrogen
turnover rates, specifically those related to green-
house gas emissions. In addition, comparative
quantitative analysis of specific functional or

phylogenetic groups within the soil community is still
limited. To date, genes encoding enzymes involved
in nitrogen cycling have been targets of choice for
studies focusing on functional groups (that is,
guilds) of bacteria (Leininger et al., 2006; Henry
et al., 2008). This focus is well founded as nitrogen
is essential for plant growth, along with phosphate,
carbon, hydrogen and oxygen. However, simulta-
neous comparison of the abundance of multiple
N-cycle-related genes across multiple treatments
and land-use types has not yet been conducted,
especially when framed around an ecosystem-
level process, such as, greenhouse gas emissions
from soils.

The United States Department of Agriculture
tracks emissions of multiple greenhouse gases
related to agricultural activities and ranks them
based on their global warming potential (GWP). Of
all the sources of GWP in cropping systems,
including CO2 and CH4, none are more poorly
quantified than N2O production (Robertson and
Grace, 2004). This represents a tremendous know-
ledge gap regarding the role of N2O in global
warming, especially considering the fact that its
GWP is 296-fold greater than that of CO2 and it is
frequently the major source of GWP in agricultural
systems (Robertson et al., 2000; Robertson and
Grace, 2004; EIA, 2008). Poor quantification of
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N2O is to a large extent linked to the challenges
of measuring N2O fluxes in the field, requiring
numerous measurements with inherently high
variability. This constraint has limited data collec-
tion, and, until refined, represents a rudimentary
measurement of a globally important activity.
The ability to construct more informative models,
predictions and mitigation strategies related to
greenhouse gas emissions depends on the develop-
ment of new analytical approaches that are more
efficient and accurate than currently available ones.
As microbial populations control natural production
and consumption of nitrous oxide, their abundance
and activities represent a potential method for
predicting gas emissions.

Using real-time quantitative PCR (qPCR), we
examined the abundance of key soil microbial
guilds and taxa, including nitrogen-fixing bacteria
(through the nifH gene) and denitrifying bacteria
(through the nirS and nosZ genes). Although
nitrification represents a key step in the conversion
of ammonia nitrogen into its gaseous forms (NO2

and NO3), this process is less relevant to N2O
emissions. Further, nitrifier numbers are typically
low in soils and are challenging to quantify using
direct qPCR as it is applied to all other genes
analyzed making nitrification measures beyond the
scope of this study. Quantification of two numeri-
cally predominant operational taxonomic units
(OTUs) belonging to the phyla Acidobacteria and
Thermomicrobia obtained at KBS (Morales and
Holben, 2009) was also performed for comparison
with data obtained using function-based primers.
These analyses were performed across 10 different
treatments based on land-use types at the KBS-LTER.
Analyses in other soils using 16S rRNA gene-based
PCR denaturing gradient gel electrophoresis have
shown that soil type may be the strongest selector of
soil microbial community structure (Wakelin et al.,
2008), but that study focused on large-scale rearran-
gements in community composition measured using
a broad-scale technique. However, changes in func-
tional or phylogenetic group abundance may go
undetected when using such 16S rRNA gene-based
approaches, as poor resolution between taxa due to
gene conservation, nonspecific primers and other
factors (for example, see Morales and Holben, 2009)
can lead to mistaken conclusions about functional
group abundance or population dynamics. To exam-
ine the extent to which this occurs in this system,
the current study employed qPCR targets directly
related to functional traits, as well as two 16S rRNA
gene-based ribotypes, to compare the patterns
observed based on the abundance of genes encoding
key enzymatic activities with those observed using
‘OTU-based primers’.

Four general hypotheses were tested. The first
stated that 16S-based taxon abundance estimates
would be higher than those observed for the
functional genes as the former can detect multiple
phylogenetic subgroups that might each harbor

multiple different bacterial functional groups (for
example, denitrifiers and nitrogen fixers can both be
found within the same genus). Second, we hypothe-
sized that, due to the high number of leguminous
and other nitrogen-fixing symbiotic plants in certain
land-use treatments at the KBS-LTER site, nitrogen-
ase reductase gene (nifH) numbers would be
consistently higher in all treatments involving legu-
minous cover crops (that is, treatments 1–4 (T1–4),
soybean; and T6, alfalfa). The third hypothesis
predicted that abundance of denitrification bacterial
genes (nosZ and nirS) would be relatively uniform
across all treatments, given the widespread distribu-
tion of this metabolic activity across the breadth of
bacterial phylogenetic groups. Finally, as the bal-
ance between input and output of nitrogen gas in
soils is respectively controlled by nitrogen fixers
and denitrifiers, we hypothesized that differences in
bacterial gene abundances of these key nitrogen
cycling genes between annual, perennial and suc-
cessional sites would correspond to those observed
for greenhouse gas emission rates for these sites.

Materials and methods

Study site and sample collection
Samples were collected from the KBS-LTER Row-Crop
Agriculture site in mid-Michigan (for an overview of
that project see http://lter.kbs.msu.edu/). Our study
examined the bacterial community in the replicate
plots of Treatment 1–8 (T 1–8) of the main experi-
mental site, as well as two additional successional
and forest sites (Table 1). Four of the eight main site
treatments are annual crop rotations (T1–4), two
are perennial (T5, poplars; and T6, alfalfa), and two
are successional systems under native vegetation

Table 1 Kellogg biological station LTER treatment and
successional regimes

Treatment Crop cover Notes

T1 WCS STD, chisel plowed
T2 WCS STD, no-till
T3 WCS Org red, N at planting,

WCCC, H, PPC
T4 WCS Rotary hoed, WCCC, PCC
T5 Continuous poplar
T6 Continuous alfalfa
T7 Native successional Last plowed on spring of

1989
T8 Native mid-successional Never plowed, soil

organic matter historical
control

DFR Deciduous forest Late successional site
SFR Successional 40 to 60-year-old former

agricultural field

Abbreviations: DFR, deciduous forest; LTER, long-term ecological
research; N, nitrogen added; Org Red, reduced input organic; PCC,
post planting cultivation; SFR, successional forest; STD, standard;
WCCC, winter clover cover crop; WCS, wheat corn soy rotation.
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(T7, former agricultural site left fallow following
spring plowing in 1989; and T8, never plowed or
cultivated). The two forested sites comprised of a
set of 40 to 60-year-old successional sites (former
agricultural fields, SFR (successional forest) and
DFR (a deciduous forest site that has never been
cut)). All soils in these treatments are classified as
fine loamy, mixed and mesic Typic Hapludalfs.
Sampling was carried out on 2 May 2007 by
collecting five randomly positioned, 0–20 cm soil
cores using a soil probe from each of the treat-
ment replicates as is standard at the LTER site
(http://lter.kbs.msu.edu/protocols/112). Each set of
five samples was sieved through 2 mm mesh and
then mixed thoroughly in equal proportions, pro-
viding a single composite sample for each replicate
treatment plot (that is, there were either three or six
replicated plots per treatment, and one composited
sample was developed and examined for each
replicate plot). All soil samples were stored in
Whirl-Pak bags on dry ice or at �70 1C immediately
after sieving and mixing until processed for bacterial
community DNA extraction. All samples were
processed within 20 days of sampling.

DNA extraction
Total community DNA was extracted from 0.25 g
of each soil sample, in triplicate, using the MoBio
PowerSoil DNA Isolation Kit (MoBio, Solana Beach,
CA, USA) according to the manufacturers instruc-
tions and using sterile MilliQ water in the final
elution step. All DNA samples were stored at �20 1C
until used in downstream analyses.

Real-time qPCR assays
Real-time qPCR was performed using an iCycler iQ
thermocycler (Bio-Rad, Hercules, CA, USA) with an
ABsolute QPCR SYBR green mix (AbGene, Epsom,
UK) using primers and conditions previously de-
scribed (nitrogenase reductase (nifH gene) (Rösch
and Bothe, 2005; Yergeau et al., 2007); nitrite
reductase (nirS gene) (Throback et al., 2004; Yergeau
et al., 2007); nitrous oxide reductase (nosZ) (Henry
et al., 2006); Thermomicrobia group 4 (OTU-specific
based on X97% sequence similarity at the 16S rRNA
gene) (Morales and Holben, 2009); Acidobacteria
group 6 (OTU-specific based on X97% sequence
similarity at the 16S rRNA gene) (Morales and
Holben, 2009)) and are summarized in Appendix
Table S1. Although no function- or 16S-based
primer sets are necessarily comprehensive across
the spectrum of microbial diversity, they have been
widely used to good effect in comparative studies
(for example, between treatments), as is the case in
the current study. Known template standards
were made from cloned PCR products amplified
from whole-genome extracts of pure bacterial
isolates (see Appendix Table S1), and each stan-
dard was sequenced to confirm target identity.

Primer validation analyses were performed before
use as previously described (Morales and Holben,
2009).

Variance in gene abundance measurements was
determined between replicate plots of the same
treatment by pooling three individual DNA prepara-
tions from each replicate plot in equimolar amounts
to provide a representative sample for that replicate
plot. A total of 5 ng of DNA was used to compare
gene abundance in each plot. For comparing the
effect of different treatments on the overall abun-
dance of each gene, DNA preparations from all
replicate plots and extractions within a treatment
were combined in equimolar amounts to provide a
representative sample for that treatment. All qPCR
reactions for any single sample were run at least in
triplicate, as described above.

Correct target amplification from soil DNA was
confirmed by cloning PCR fragments from T1.
Triplicate standard PCR reactions were performed
separately as described above for each primer pair
using total community DNA from T1, which
represents the canonical treatment practice for the
KBS-LTER site. The resultant PCR products were
purified and cloned as previously described (Mor-
ales and Holben, 2009) to confirm that specific
amplification of the corresponding target had
occurred.

Statistical analysis
Relationships between microbial gene abundance,
successional stage, greenhouse gas flux and other
environmental parameters, were determined by
principal components analysis (PCA) with data
matrices composed of chemical and bacterial qPCR
data (Supplementary Table S2) for T1–8, SFR and
DFR of the KBS-LTER, collectively representing
annual, perennial and successional sites. Chemical
data were extracted from Robertson et al. (2000)
and represented gas fluxes and their respective
greenhouse warming potentials, aboveground net
primary productivity, NO3-N, N mineralization
potentials and soil carbon concentrations over
an 8-year period. The chemical metadata set
used was from 1991 to 1999 (as reported in
Robertson et al., 2000) because this timeframe
maximized the number of variables available for
analysis, as several of the measurements were not
continued beyond that point. However, more recent
gas emission data through 2007 (presented in
Supplementary Figure S6) strongly support the
suggestion that the same soil processes and relation-
ships persisted at KBS through our sampling time
and beyond, as observed differences in these
parameters are consistent across treatments and
the relative relationships between treatments remain
constant. Further, the classification of treatments as
a sink or source of gases on the basis of current or past
mean gas fluxes for any treatment remains the same.
Data were organized with rows representing treat-
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ments and columns representing individual vari-
ables. Principal component scores were plotted by
site, abbreviated as shown in the site description
and in Table 1, for the first two principal compo-
nents. Parameters driving the distribution of the
PCA plots were determined by querying all variables
against the first three principal components. Indivi-
dual chemical factors were also independently
queried to qPCR results on a per gene basis by
conducting pairwise correlations.

To show co-trends between genetic and chemical
variables, data were also analyzed using co-inertia
analysis (CIA) (Dray et al., 2003), computed with the
MADE4 package in the R statistical software envi-
ronment (Culhane et al., 2005). CIA is a dimensional
reduction procedure designed to measure the simi-
larity of two sets of variables (measurements), as
they are associated with a single set of cases. Due
to very strong correlations (40.99) between some
chemistry measurements, we were able to unclutter
the CIA plot by using CH4, N2O and Organic C as
proxies for CH4-C, N2O-N and Organic C (kg),
respectively.

Results

Bacterial gene abundance and diversity
The efficiencies of real-time PCR assays for all
targets averaged 92% (s.d.±4%), allowing for direct
comparison of results for all targets. Statistically
significant differences in gene target abundances
were observed between replicate plots under the
same treatment (T1) for all tested genes (Table 2). As
anticipated, qPCR results obtained from pooling
DNA extracted from each individual replicate plot
and run as a representative sample for that treatment
resulted in mean values within the standard devia-
tion of the true replicates (Figure 1). Two 16S rRNA
gene targets representing the numerically dominant
bacterial groups Thermomicrobia and Acidobacteria
based on sequences generated from this site
(Morales et al., 2009) were the most abundant of
all targets tested (Figure 1), supporting the first
hypothesis regarding higher abundances based on
phylogenetic targets (that is, ‘genus-level’ 16S rRNA
genes) compared with functional gene (that is,
enzyme coding) targets.

By contrast, the measured abundances of the
nitrogenase gene (nifH) did not support our second

hypothesis that predicted higher abundance in
treatments containing crops with known symbiotic
nitrogen fixation associations (for example, soybean
rotations). Indeed, the abundance of nifH was
generally higher in the successional treatments
(SFR and DFR) than in traditional agricultural sites
(Figure 1). Denitrifier abundance, as indicated by
nirS and nosZ gene abundance, varied significantly
between treatments, which did not support the
third hypothesis predicting comparable denitrifier
numbers between treatments.

Correlating bacterial gene abundance to environmental
variables
Principal component analysis of annual ecosystem
averages for key environmental parameters, global
warming potential (GWP), bacterial qPCR results and
a combined data set comprised of all variables was
employed to assess relationships between bacterial
gene abundance and process-level measurements.
Strong clustering of samples based on aboveground
plant cover type (that is, annual, perennial, succes-
sional) was observed (Figure 2), supporting the
fourth hypothesis predicting differences in green-
house gas emissions as being correlated to differ-
ences in the balance between nitrogen fixing and
denitrifying bacteria. PCA based solely on qPCR
results from bacterial gene targets accounted for
the most variance within the first two components
(B89%). Lower combined principal component 1
and 2 scores were observed for annual ecosystem
averages and GWP values (B75%) and for the
combined data set (B68%) (Figure 2). All three
PCA plots showed general clustering of sites based
on land-use type, with the exception of T7 (the
early-successional site which was previously a
woodpile). Loadings for principal components 1
and 2 (that is, loading vectors) were plotted to
show independent variable contributions to variance
between the treatments (Figure 2). Successional
sites were generally associated with higher organic
carbon levels and nifH gene abundance. Perennial
plant-based treatments, as well as the early native
successional plot T7, exhibited increased nitrous
oxide reducer abundance (nosZ), total carbon
levels and abundance of Thermomicrobia and
Acidobacteria. Aboveground annual productivity,
nitrite reducers (nirS) and GWP were all strongly

Table 2 t-Test analysis of replicate plot qPCR values for each gene target within T1.

Target Test value Count Mean Std dev Std Error of mean t df P-level

AB#6 10 24 2.63E + 05 1.36E + 05 2.79E + 04 9.44 23 o0.001
TM#4 10 23 9.97E + 04 6.91E + 04 1.44E + 04 6.92 22 o0.001
nifH 10 21 3.59E + 03 1.75E + 03 3.82E + 02 9.37 20 o0.001
nirS 10 19 4.63E + 04 1.98E + 04 4.53E + 03 10.2 18 o0.001
nosZ 10 20 8.16E + 03 4.71E + 03 1.05E + 03 7.74 19 o0.001

Abbreviations: t, test score; df, degrees of freedom; qPCR, quantitative PCR; Std dev, standard deviation.
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correlated with PC1, which was responsible for
clustering of sites into annual, perennial and
successional treatments, with annual sites showing
the highest levels of nitrite reducers and GWP.

Although plotting the first two principal compo-
nents accounted for much of the variance in the
data, the third component significantly increased
the percentage of variance accounted for. On the
basis of the first three principal components for
the qPCR data alone, B98% of the variance was
accounted for, whereas the number decreased to
B86% when only the annual ecosystem averages
and GWP values were analyzed. The combined data

set of all measured variables accounted for B82%
of the variance within the first three components,
with nosZ gene abundance being significantly
and negatively correlated (�0.85, Pp0.05) to the
third component. Correlation values of individual
variables with each principal component are
summarized in Supplementary Table S3.

An alternative way of analyzing the data based on
CIA showed a pattern similar to that in the PCA
analysis (Appendix S4). The CIA gives an RV
coefficient, a global measure of similarity between
data sets based on a multivariate extension of the
Pearson correlation coefficient, scaled from 0 (no
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similarity) to 1.0 (identical). The genetic and chemical
variables show strong similarity with an RV¼ 0.76.
The significance of the similarity is underscored by
a permutation test (Culhane et al., 2003), in which
total co-inertia (the measure of co-variability of the
two data sets) is computed after permutations to one
of the two data sets (randomly chosen before each
permutation). This shuffles the data, disassociating
the soil sites from the genetic and chemical sample
values. The test yielded 100 000 permutation-based
values of total co-inertia. Under the null hypothesis
that the data sets are independent, only five of
these 100 000 values were as large or larger than that
observed for the genetic and chemical data sets, for
a P-value of 0.00005. The plots also provide a view
of the relative strengths of relationships between
genetic and chemical variables with respect to each
other and to the different soil environments. Genetic
and chemical variables show the strongest overall
co-trend (shortest arrows) in the group of annuals
(Appendix S4). This figure also indicates that,
although chemical profiles in transition treatments
(former agricultural sites left to undergo natural
succession; namely T7 and SFR) closely resembled
expected values for successional sites, genetic
variables were slower to change, retaining their
original signature for longer periods. This is to say,
the original bacterial community signature asso-
ciated to agricultural treatments is seemingly per-
sistent (that is, apparent) after 440 years, but this
cannot be unequivocally confirmed with our data as
no temporal comparisons are available.

Pairwise correlations between all of the variables
showed strong (40.65) positive correlation between
bacterial gene numbers and either greenhouse gas
fluxes, GWP, annual productivity or carbon levels
(Appendix S5). Nitrite reductase (nirS) gene abun-
dance was positively correlated to greenhouse gas
(N2O-N, NO3-N and CH4-C) emission values, GWP
values and aboveground net primary productivity,
while being negatively correlated to organic carbon.
Nitrogenase (nifH) gene abundance was positively
correlated to organic carbon levels. The abundance
of the nifH gene shared a weak negative correlation
(�0.358) with the abundance of the nirS gene (nitrite
reductase) (Appendix S5). A second denitrification
gene (nosZ), responsible for the reduction of nitrous
oxide to dinitrogen, did not exhibit the same trend
as nirS (Figure 1). The two target genes correspond-
ing to the numerically dominant OTUs belonging
to Thermomicrobia and Acidobacteria (Morales
et al., 2009) were the most abundant of all targets
measured (Figure 1). These genes also showed a
strong positive correlation (Appendix S5) across all
treatments, with the highest values found in single
cultivar perennial treatment plots (Figure 1).

nirS–nosZ gene abundance as proxy for greenhouse gas
(N2O) emissions
A simple regression analysis was conducted to
compare direct measurements of nitrous oxide
emissions from soils with the abundance of nirS
gene targets minus nosZ gene targets (Figure 3),

Figure 2 Principal component analysis (a) and factor loadings plot (b) for gene abundances (far right), ecosystem chemistry (center) and
combined data sets (far left) summarized in Appendix S1 for different management systems at the KBS-LTER site (described in Table 1).
The percentage of the variation in the samples described by the plotted principle components is indicated on the axis.
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which showed a strong correlation (r2¼ 0.74). Two
discrete data clusters were observed related to direct
N2O measurements, whereas a more incremental
relationship was found between site successional
stage and nirS–nosZ gene abundance (Figure 3).

Discussion

Multivariate analysis of annual ecosystem parameter
averages, global warming potential and bacterial
gene abundances in the current study support the
hypothesis that the legacy of agriculture (that is,
resilience of treatment effects) has a stronger
influence on soil biogeochemistry than current
environmental parameters (that is, real-time soil
conditions), as previously suggested by other
studies (Buckley and Schmidt, 2001, 2003). Strong
correlations were obtained that suggest a key role for
bacterial activities in controlling responses between
agricultural practice or land-use regimes and green-
house gas emissions. The data also support the
interpretation of long-term repercussions at the
microbial community level to certain land-use
practices. However, given that our study does not
include a temporal sampling sequence, these inter-
pretations are based on hypothesized ecosystem
successions, as observed on successional treatment
plots at the KBS-LTER site after 40–60 years of
cessation of agricultural management. Those plots
represent more advanced successional stages of the
current agricultural treatments, and can be used as
references for comparisons.

Previous research at KBS showed differences in
microbial community structure between treat-
ments (for example, indicating effects on bacterial
community composition based on 16S rRNA sequ-
ences (Buckley and Schmidt, 2001, 2003); denitri-
fiers (Cavigelli and Robertson, 2001; Stres et al.,
2004); and ammonia oxidizers (Bruns et al., 1999)).
In addition, treatment-based differences at KBS have

been reported for greenhouse gas emission and have
suggested possible mitigating properties of certain
treatments (Robertson et al., 2000; Suwanwaree and
Robertson, 2005). Related findings have also been
reported for other systems, with plant species
identity affecting denitrifying communities (Bremer
et al., 2007), and vegetation type driving separation
of community structure (Chim Chan et al., 2008).

We found carbon levels to be strongly correlated
to the clustering of treatments based on cropping
system, suggesting a strong role for carbon as a
driver of bacterial community structure. Although
higher emission values of the greenhouse gas nitrous
oxide were positively correlated to traditional
annual crop rotations, previous work has suggested
that nitrate, as applied in fertilizer, does not select
for denitrifiers (Tiedje, 1988). Instead, it has been
proposed that denitrifiers are generally functioning
as aerobic competitors for carbon, using their
denitrification capabilities only under metabolically
advantageous conditions (Tiedje, 1988). Although it
appears that carbon has a major role in community
structure in these treatments, the activity of an
established community can be significantly altered
by real-time events such as nitrogen deposition
(Suwanwaree and Robertson, 2005). This leads us to
suggest that community composition measurements
(for example, DNA-based measurements of gene
abundance in treatments) are good indicators of
how treatment practices shape the community in the
long run, whereas rRNA or mRNA measurements
would be more useful to illustrate the response of
the community to changing parameters in the short
term (for example, diel cycles, rainfall, fertilizer
application).

Although we included qPCR analysis of two
predominant taxa (at approximately the sub-phylum
or ‘genus’ level) based on 16S rRNA gene quantifica-
tion to assess their ubiquity and abundance, data
derived from those groups are hard to interpret in
the context of biogeochemical cycling, given the lack
of correlation between a specific 16S ribotype and
its metabolic or catabolic capabilities. Where a
direct link to a given biogeochemical reaction is
desired, specific tracking of relevant functional
genes is likely to be more productive. Thus, in the
current study, we rely on quantification of func-
tional genes for nitrogen cycling for correlation
with process-level greenhouse gas emissions from
KBS soils.

Contrary, perhaps, to common assumptions, the
numbers of nitrogen fixers (as determined by nifH
gene quantification) were found to be higher in
forested or successional sites than in the agricultural
fields, including those with regular soybean rotations.
Although leguminous plants, which include beans,
clover, alfalfa, lupine and peanuts, are among the
best studied systems for nitrogen-fixing symbioses
(Young and Haukka, 1996; van der Heijden et al.,
2006; Nandasena et al., 2007; Houlton et al., 2008),
other non-leguminous plants including grasses
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(Minamisawa et al., 2004; Coelho et al., 2008),
pine (Izumi et al., 2006), wheat (Iniguez et al.,
2004) and alder (Ridgway et al., 2004) have also
been shown to posses significant populations of
endophytic nitrogen-fixing bacteria. This suggests
that the contribution of non-leguminous nitrogen-
fixing plant symbioses and free-living nitrogen
fixers is not just significant, but likely essential, in
ecosystem development.

Two other nitrogen cycle-related genes encoding
the denitrification enzymes nitrous oxide reductase
(nosZ) and cytochrome cd1 nitrite reductase (nirS)
did not exhibit similar trends in abundance across
the system. Instead, what was observed was an
apparent balance in the relative abundance of the
two genes that can be used to predict greenhouse
gas emissions and global warming potential (refer
to Figures 3 and 4). To maximally relate our
measurements to available metadata, we have used
the same 1991–1999 data set as described by
Robertson et al. (2000) for the KBS treatments.
Whereas we note that gas emission data from 2000
to 2007 for both CH4 and N2O showed that emissions
of these gases rose somewhat compared with the
1991–1999 timeframe (Robertson et al., unpublished
data (http://lter.kbs.msu.edu/datatables/28)), the
relationship of these parameters between treatments
has not changed. As noted above and in Supple-
mentary Figure S6, this suggests that the same soil
processes and relationships between treatments
have persisted through to our sampling time, and
that classification of treatments as a sink or source of
greenhouse gas emissions remains the same. As the
KBS is an LTER site with same conditions carefully
maintained for more than two decades, it is well
supported that ecosystem processes should remain
comparable within and between treatments.

In the schematic model that we have developed to
explain this behavior (Figure 4), the rate of green-
house gas emissions is controlled by the interplay
between different guilds within the local bacterial
community. In this initial study, we focused on
nitrogen cycling and show how the prevalence of
bacteria involved in key steps in the cycle are
related to the overall outcome in terms of key
environmental parameters, and also how differences

in relative abundance of individual functional
groups control, or at least relate to, whether a system
is a net sink or a net source of greenhouse gases.

The data presented herein showed the presence of
all targeted genes, and also illustrated how soil
management practices have altered the relative
abundance of two predominant ribotypes and
several functional genes involved in different stages
of the nitrogen cycle. These were linked, or at least
correlated to, measured differences in greenhouse
gas emissions and global warming potential result-
ing from various land-use practices. Although the
general roles of nitrogen fixers and denitrifiers in
the nitrogen cycle have been known for decades, the
application of a quantitative approach based on
functional gene abundance to provide predictive
power regarding the fate of nitrogenous compounds
in soils is novel.

Two major observations arise from these findings.
The first is that monitoring bacterial community
response variables, which can exhibit greater
sensitivity to environmental change than other
commonly used measures (Feris et al., 2009), re-
presents a robust way to monitor geochemical
dynamics. Second, the possibility, perhaps prob-
ability, that bacteria can respond rapidly to environ-
mental change without major changes in community
composition through altered patterns of gene ex-
pression suggests the importance of considering the
contributions and responses of microbial popula-
tions in global biogeochemical cycles to such
phenomena as climate change. The latter point
further suggests that there is a role for both DNA-
and RNA-based approaches in modern molecular
microbial ecology depending on whether the in-
vestigator is looking at long-term drivers that shape
community composition or at short-term response to
perturbation and change, respectively.

The variability observed with our approach, as
indicated by plot-to-plot replicate variability within
a treatment, likely reflects an inherent property
of small- or mid-scale heterogeneities in the soil
environment that affect bacterial populations
locally. Thorough sampling of study sites can
compensate for such variability. This is readily
achieved when using molecular methods by collect-

Figure 4 Generalized schematic model showing predicted changes in nitrogen flux, N-based greenhouse gas emissions and greenhouse
warming potential in soils as a function of plant community differences and bacterial group abundance. Line thickness represents
relative contribution of a given gene to nitrogen compound turnover rate based on data from this study and from a study by Robertson
et al. (2000), and also summarized in Appendix S2.
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ing multiple, small soil samples that can be pooled
(composited), creating a representative sample for a
site or treatment and thus its greenhouse gas
production potential.

We note that our analyses focused on a single
nitrite reductase gene, nirS. The copper-containing
nitrite reductase (encoded by the nirK gene) was not
analyzed in this study and might contribute to some
of the variation not accounted for in our data.
However, it has been shown that three-quarters of
cultured denitrifying bacteria contain nirS rather
than nirK (Zumft, 1997) and it has been found to
predominate in most environments (Bothe et al.,
2000). It is also important to note that these
experiments targeted copy numbers of genes of
interest, which represent the standing community
and its potential for activity rather than an actual
measure of real-time gene expression levels or the
corresponding enzymatic activity. Ongoing methods
development to directly measure actual gene ex-
pression levels will likely enhance the resolution
and accuracy of studying microbial contributions or
response to key environmental functions and activ-
ities. Although our data link key gene abundance
data with measured greenhouse gas potential,
changes in gene expression levels could transiently
change a given soil or treatment from a greenhouse
gas source to a sink. Thus, making more direct
molecular measurements of flux in microbial
community gene expression patterns (for example,
through environmental transcriptomics) is indeed
highly desirable for future work.

This study provides the first quantitative assess-
ment of the effect of land management practice on
multiple microbial community constituents at both
the functional and phylogenetic level. We showed
that microbial assemblages do not readily return to a
native or baseline community state following agri-
cultural disturbance, consistent with previous find-
ings that soil nutrient levels require decades or more
to recover after agriculture (Robertson et al., 1988,
1993; Drinkwater et al., 1998; Knops and Tilman,
2000). We also present the first quantitative study
illustrating interactions between different bacterial
activities and their role in controlling nitrogen flux
as a response to ecosystem changes.

In conclusion, we note that this initial analysis
linking bacterial gene abundance data to process-
level greenhouse gas emission rates represents an
early step in integrating key bacterial activities to
larger-scale biogeochemical cycles. Additional re-
search in this area will extend such capabilities and
allow us to assess microbial contributions and
responses to ecosystem, and even to global-scale
ecological phenomena such as climate change. This
is particularly important as it is widely acknowl-
edged that microorganisms govern or at least
contribute to global biogeochemical cycles, yet
their roles and activities are generally not even
considered in current large-scale models for climate
change and other global phenomena.
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