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Recent years have witnessed the development of 
microprocessor-based musical instruments. More 
recently, a communications specification has been 
developed allowing these instruments to be networked 
together. The Musical Instrument Digital Interface 
(MIDI) specification has resulted in the development of 
hardware and software systems designed to play and 
record data generated by these digital instruments. 
Systems that record and play MIDI data are called 
sequencers. 
A musical composition is a hierarchy of structures. 

Current sequencer technology focuses on the objects at 
the bottom of the hierarchy, notes and phrases. The 
design of a composition requires the creation and 
manipulation of structures at all levels of the 
hierarchy. Therefore, an effective environment for the 
development of musical compositions must allow the 
creation and manipulation of high-level musical 
constructs. 
An approach to the definition and performance of 

music structures is presented. Abstract data structures 
and operations on them are defined which provide for 
the creation of music structures. For performance, 
these data structures are transformed into a tree which 
more directly represents the hierarchical nature of the 
music. The tree is traversed during the performance, 
each node representing a part of the music structure. 
The contents of a tree node and its attendant 
operations are defined. An algorithm for traversing the 
tree during performance is presented. 
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Chapter One 

Background 

1.1. Thesis Overview 

This paper discusses a means to organize and manipulate 

abstract musical structures and to realize these structures 

in real-time. 

Electro-acoustic hardware has evolved from its 

formative stages. The variety and sophistication of 

electronic instruments make possible the development of 

software systems which can concentrate on high-level 

functions rather than low-level control. The current 

technological milieu, of both hardware and software, from 

which this project developed is discussed. 

A model of musical structure is presented which 

reflects the hierarchical nature of music and which reflects 

a constructive approach as used by those who compose music. 

1 
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A notation to represent musical structures is introduced and 

illustrative examples are developed. 

The sequencer is a tool for recording, manipulating, 

and performing music. Current trends in sequencer design are 

examined. A model is presented which is constructed by 

associating sequencer functions with the various levels of 

musical structure. A case study examines an existing 

sequencer in terms of the model presented. 

The requirements for a compositional tool which 

provides functions for the creation and manipulation of 

abstract musical structures is presented. It is examined in 

terms of its representation of the musical structures 

previously presented and compared with the sequencer model 

for functionality. 

1.2. Chapter Overview 

In recent years, microprocessor technology has 

permeated the electronic music industry, giving rise to a 

plethora of microprocessor-based devices. Some of these 

devices are sound producing instruments, others act as 

controllers or signal processors. The result is that the 

music technologist of today has music-producing tools of 

great power available. In response to the development of 

intelligent instruments, a digital communications 
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specification has been developed which allows dissimilar 

devices to be interfaced into a single system. This Musical 

Instrument Digital Interface (MIDI) specification not only 

provides for the connecting of MIDI-based equipment, but 

also allows a computer to be part of a MIDI system. 

1.3. MIDI Instruments 

MIDI instruments can be classified into three broad 

categories; sound generators, controllers, and signal 

processors. Sound generators are the most familiar MIDI 

instrument. The sound may be created by one of two methods, 

synthesis or sampling. A synthesizer contains oscillators 

which generate periodic waveforms such as sine, square, or 

triangle waves. These waves are manipulated and combined 

by other circuitry to produce complex audio signals. A 

digital sampling instrument is like a digital tape recorder 

in that it digitizes audio signals directly. In general, a 

sampler has less sound modification functions than does a 

synthesizer. Samplers are useful primarily for reproducing 

existing sounds, whereas synthesizers are more flexible in 

producing new sounds. 

There are a great number of synthesizers available. 

Product uniqueness is partially derived from functionality 

but more fundamental is the uniqueness of sounds which the 
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synthesizer is able to generate. There are several methods 

of synthesis currently in use: frequency modulation (FM), 

additive synthesis, linear arithmetic synthesis, phase 

distortion, wavetable synthesis, pulse code modulation, 

subtractive synthesis, and structured adaptive synthesis. 

Sampling instruments are characterized by the large 

amounts of memory which must hold digitized audio signals. 

Two or more megabytes of RAM is not uncommon on low-end 

instruments with 8 to 50 megabytes1 available for more 

expensive products. 

A class of instruments which do not include sound 

generation capabilities but specialize in sending MIDI data 

to sound sources are called controllers. As the name 

implies, they control or drive the devices connected to 

their outputs. Controllers are played in real-time and 

usually take the form of traditional instruments. The most 

common controller is the keyboard controller. Other 

controllers include guitar controllers, wind controllers 

which resemble clarinets, and percussion controllers. 

Related to controllers, in that they do not generate 

sound directly, are sequencers. Whereas controllers resemble 

[1] The Fairlight Series III has 50 megabytes of RAM, a 600 
megabyte hard disk, a 400 megabyte optical storage and 
a price tag of $175,000. 
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standard instruments, sequencers can be compared to tape 

recorders. They store MIDI data for later playback. In 

addition to recording and playback functions, sequencers 

offer editing functions. Editing is usually accomplished on 

two levels, event editing and track editing. Event editing 

allows modification of individual parameters such as the 

pitch of a single note. The scope of track-level editing is 

an entire track. Transposing the pitch of an entire track is 

an example of a track-level operation. 

Signal processors are not new to the electronic music 

field. In the past they were exclusively analog devices but 

today are primarily digital. Signal processors are effects 

devices which produce effects such as reverberation, delay, 

echo, chorus, flange, distortion, tremolo, stereo panning, 

compression, and equalization. The most common type of MIDI 

implementation in signal processors is the ability to call 

up a predefined effects configuration. Some devices allow 

the modification of variable parameters through MIDI 

messages. 

MIDI processors are a class of device which includes 

switchers, mergers, channelizers, converters, and filters. 

These devices function as modifiers of the MIDI data stream. 

For example, it is often desirable to reduce bandwidth by 
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filtering out certain types of controller messages. 

Synchronizers are used to lock machines together which 

use differing timing formats. A sequencer and drum machine 

need to be synchronized to a tape recorder in order to 

record multiple tracks. For film production, MIDI 

instruments must be locked with video tape recorders. 

Performers combining sequenced and nonsequenced material 

during live performance have devices which translate audio 

signals into MIDI clock messages enabling the machines to 

follow the human performers rather than vice versa. 

The computer/MIDI interface primarily converts the 

computer output to the MIDI data rate of 31.25 kilobaud. 

Timing information is often handled by the interface. 

Interfaces are of two types, dumb or intelligent. The dumb 

interface handles the conversion to the MIDI data rate. 

Intelligent interfaces manage the data stream in various 

ways such as filtering unwanted information. 

1.4. MIDI 

The Musical Instrument Digital Interface is a hardware 

and software specification defined by the major synthesizer 

manufacturers Kawai, Korg, Roland, Sequential, and Yamaha in 

a meeting held in Japan in August 1983 [Cooper 1986]. A year 

of discussion by these and other manufacturers preceded this 
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meeting. The MIDI specification allows electronic 

instruments of different manufacturers to be connected 

together by the MIDI hardware specification and to 

communicate with each other by the MIDI software 

specification. This communication is necessary as even a 

modest MIDI system will have several components which must 

interact in real-time. The software specification presents a 

protocol for the distribution of musical data. This takes 

the form of a command byte optionally followed by data 

bytes. It is important to note that digital representations 

of analog signals is not the information which is sent over 

the MIDI bus2, but rather it is control information 

directing a device to perform some action. 

The MIDI command structure is outlined in figure 1-1. 

It is broadly divided into two categories, channel messages 

and system messages. System messages are received by all 

devices in the message's path. Channel messages have an 

encoding which specifies one of sixteen channels. The 

individual devices in the data chain may be configured to 

respond to a single channel. Thus, a single device or group 

of devices may be addressed. 

[2] Waveform information such as that used by a digital 
sampling instrument can be sent over the MIDI bus, but 
this is different from sending a digitized audio signal 
for real-time processing. 
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Fig. l-l: MIDI Command Structure 

I. Channel Messages 

A. Voice 

1. Note-Off 
2. Note-On 
3. Polyphonic After-Touch 
4. Control Change 
5. Program Change 
6. Channel After-Touch 
7. Pitch-Bend 

B. Mode 

1. Local Control 
2. All Notes Off 
3. Omni Off 
4. Omni On 
5. Mono Mode 
6. Poly Mode 

II. System Messages 

A. Common 

1. Song Position Pointer 
2. Song Select 
3. Tune Request 
4. End of System Exclusive 

B. Real-Time 

1. Timing Clock 
2. Start 
3. Continue 
4. Active Sensing 
5. System Reset 

C. System Exclusive 

The channel voice messages make up the bulk of the MIDI 

data that is transmitted as they specify the primitive 
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elements of musical material, such as pitch, loudness and 

sound modifiers. A basic element of music is pitch. The 

channel voice messages provide two pitch-related commands, 

Note-On and Note-Off. A component of each of these commands 

is a note number in the range 0 to 127. Note number 60 

corresponds to middle-C on the piano keyboard. The note 

number does not actually represent a specific pitch, but 

rather refers to a key on the keyboard. The actual pitch 

depends on the setup of the sounding device. The final data 

byte following the Note-On/Off commands indicates the 

velocity with which the note is struck or released. This 

produces gradations in volume such as accent, diminuendo, or 

crescendo. 

Two sound modifier commands effect notes which have 

already been struck and are currently being held. 

Polyphonic Key After-Touch requires two data bytes to 

specify a key number and a pressure value. Channel 

After-Touch requires only a pressure value as it establishes 

one overall level for the entire keyboard. The pressure 

value may represent various parameters such as volume level, 

modulation level, low frequency oscillator (LFO) speed, or 

timbre depending upon the receiver's configuration. 

Control Change implements a wide range of functions. 

The data bytes which follow this message specify a 
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controller number and a controller position. This command 

allows physical knobs, dials and buttons on an instrument to 

be set under software control. Of the 128 possible 

controller numbers, a few are defined by the MIDI 

specification, others may be defined by individual 

manufacturers for particular devices. Some of the 

predefined controllers include the modulation wheel, breath 

controller, main volume, portamento time, sustain pedal, 

data increment, and data decrement. 

As MIDI usage has evolved, the limitations of the 

original specification have become apparent. One such 

limitation is the limit of 128 addressable controllers. A 

very recent extension to the MIDI specification has greatly 

expanded the number of addressable controllers [Cooper 

1987]. This new area of controllers is divided into two 

main groups, registered and non-registered. Registered 

controller numbers must be approved by the MIDI 

Manufacturers Association (MMA) and the Japanese MIDI 

Standards Committee (JMSC). The non-registered controller 

numbers are available to manufacturers to be used as they 

wish. Over 16,000 controller numbers are now available in 

each of the newly defined controller areas. This was 

accomplished by setting aside four of the previously 

undefined Control Change numbers. Two numbers specify the 

least significant byte (LSB) and most significant byte (MSB) 
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of a non-registered controller number and two specify the 

LSB and MSB of a registered controller number. This gives 

14 bits of resolution and thus 16,384 possible controllers. 

As MIDI usage has become widespread, MIDI has been 

implemented on devices that had not been considered before. 

A mixing console used in a recording studio or for live 

performance has many parameters that must be varied during 

the course of the performance. A lighting controller may 

have several hundred parameters which control a multitude of 

lights. MIDI provides a way to automate the operation of 

both of these devices and others such as home control 

systems. Examples such as these prompted the expansion of 

the MIDI specification. 

The single data byte following a Program Change message 

selects a particular patch or voice number in an instrument. 

A patch contains the timbre or tone color that a sound 

producing instrument will use. The patches are stored in 

memory and are referenced by a patch number. This approach 

is very general, as the voice defining parameters need not 

be transmitted, but rather a predefined voice is selected. 

Pitch-Bend is actually a controller but was given its 

own command. The two data bytes which follow this command 

indicate the position of the pitch wheel. As data bytes 
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always have the eighth bit clear, this gives 14 bits of 

resolution. This increased resolution may be the reason it 

was given its own controller status. Pitch-bend is the 

process of gradually altering the pitch of a note or group 

of notes. Examples of pitch-bend are a trombonist sliding 

up to a note or a guitarist bending a string. 

Channel Mode messages are configuration commands which 

determine which channel the receiver will respond to. Omni 

On mode allows the receiver to respond to voice messages on 

all channels. Omni Off mode requires the receiver to 

respond to only one transmitted channel. 

MIDI Real-Time messages provide a means to synchronize 

devices in a MIDI system. Usually, one instrument is 

designated as the system clock with the other instruments 

slaved to it. The Timing Clock is a pulse which is sent at a 

rate of 24 clocks per quarter note. Thus, it determines the 

tempo of the system. Instruments which contain sequencing 

functions such as sequencers and drum machines can lock onto 

the system clock. Other Real-Time commands allow a system to 

Start and Stop together as well as resume (Continue) from 

the location of the most recent Stop command. 

The original MIDI specification has no provision for 

the timing of events. Any automated electronic device which 

sends MIDI data as control information must provide its own 
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format for handling absolute time information. MIDI systems 

have become commonplace in the film scoring and television 

industries. These industries have a code (SMPTE time code) 

that has been in use which specifies absolute time intervals 

between events. This is used to synchronize music and sound 

effects to film. Recently (April 1987), an extension to 

MIDI called the MIDI Time Code (MTC) was approved. MTC 

defines a specification for absolute time intervals. This 

is used in interfacing MIDI instruments with SMPTE devices. 

System Exclusive messages provide a flexible and 

open-ended means to implement a variety of MIDI functions. 

Each manufacturer defines the system exclusive codes that 

will be used by their instruments. It consists of a header 

which includes the manufacturer's identification number, a 

variable number of data bytes, and an End of Exclusive byte 

which terminates the message. 

Nearly all MIDI instruments store configurations such 

as voice definitions or data such as drum machine patterns 

in random access memory. System Exclusive messages provide 

a means whereby the contents of memory can be downloaded to 

an external storage device. Many MIDI implementations 

contain System Exclusive codes which duplicate the functions 

provided by front panel controls. Voice librarian software 

uses these MIDI functions to allow voice definitions to be 



14 

entered at a computer which can have a much friendlier 

interface. 



Chapter Two 

Music Structure 

2.1. Overview 

Music has structure. Structure is evident in the 

melodies of children's nursery rhymes which repeat for each 

new verse. Structure is evident in the organization of the 

movements in a Haydn symphony. Throughout music history, 

composers have written structured music. Many of the 

archetypical musical structures have been formalized by 

theorists and studied by music students. Forms such as the 

isorhythmic motet, sonata-allegro, rondo, and fugue are a 

part of the modern composer's knowledge base. These formal 

structures point out the hierarchical nature of music. The 

specific formal structures which have been created during 

the course of music's history are not the particular concern 

of this chapter. Rather, it is the notion of the hierarchy 

that these structures imply which is discussed here. The 

15 
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concern is how the structures are put together. What are the 

pieces and how are they arranged? 

2.2. Components of Musical Structure 

The primitive element of the musical hierarchy is the 

note. The note is multi-dimensional as it is composed of 

several elements which exist and may vary in time. A note 

has duration. Duration implies an onset time and a 

termination time. The duration is, of course, the time in 

between these two events. Thus a note exists in time. A 

note has pitch. This is a fundamental attribute. A note will 

often be abstracted to its pitch as when doing a harmonic 

analysis. Pitch remains relatively constant for the 

duration of the note although minor fluctuations are common, 

as when a violinist adds vibrato to a held note. For a note 

to be perceived, it must have some volume, so loudness is 

another element of a note. A note's loudness need not 

remain constant for its duration. Finally, the note must be 

produced by some sound source, so it must have a timbre. 

Timbre is the characteristic quality of a sound which 

distinguishes one instrument from another. 

A phrase is defined as a division of the musical line, 

comparable to a sentence of prose [Apel 1972]. In formal 

music study, there are many types of phrases. The technical 
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definition of phrase is not important here. A merely 

descriptive definition will suffice. A collection of notes 

which are heard sequentially, expressing a complete thought, 

and which are usually performed by a single instrument is 

called a phrase. Phrases are defined in terms of notes, and 

thus constitute the next level of the musical hierarchy. 

Phrase attributes are determined by the attributes of 

its individual members. If each successive note in a phrase 

is slightly louder than the previous note, the phrase 

gradually crescendos. 

A collection of phrases is called a part, the next 

level of the hierarchy. What the trumpet plays during a 

composition is the trumpet part, the violin plays the violin 

part, etc. This is an obvious and somewhat insubstantial 

definition, but it nevertheless describes an existing 

phenomena and is a necessary component of musical structure. 

The distinction between a phrase and a part is vague, as a 

part may consist of a single phrase. 

The note and the phrase may be thought of as the 

primitive structures, out of which the higher-level 

structures are composed. What makes a structure high-level 

is its ability to be defined in terms of other structures of 

the same type. A phrase is always concatenated notes but a 

part is a concatenation of phrases and other parts. As an 
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illustration, assume four phrases are concatenated. This 

could be described as one part composed of four phrases, or 

one part composed of two subparts which are each composed of 

two phrases, etc. The distinction is merely one of intent 

and descriptive convenience. 

It is difficult to give attributes to parts as they may 

vary greatly over the course of the composition. A general 

observation is that a part is performed by a single 

instrument. 

So far, only sequential structures have been 

considered; a phrase is a series of one or more notes, a 

part consists of the concatenation of phrases. Music is more 

than the succession of individual notes. A string quartet 

has four performers who often play simultaneously. An 

orchestra may sound many notes at the same time. A 

collection of parts sounding concurrently constitutes the 

next level of the music hierarchy, the section. A piece of 

music may contain several sections, as in a song which 

alternates between verse and chorus, or a symphony whose 

movements could each be considered a section. 

2.3. Notation 

A means of visually representing music structures is 

necessary for further discussion. Computer programs have 
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structure. A well written program can be read from the top 

down, each level filling in more detail. Just as a part is 

made up of phrases, so a module is defined by references to 

lower level modules. A program written for a computer in a 

structured language is a hierarchical structure. The 

similarities between program structure and music structure 

indicate that a programming language may be an expressive 

medium for musical structures3. Parts and sections are 

differentiated primarily by their temporal characteristics; 

parts are sequential structures, sections are parallel 

structures. A programming language must have constructs 

which express concurrency as well as sequential structures. 

The musical examples presented in this paper are given in a 

psuedo-code based on the Occam language [Pountain 1984]. 

The basic unit of the Occam language is a "process" 

which performs a sequence of actions. The PROC keyword 

begins the declaration of a process. For the structural 

description language contained herein, a process contains 

the information necessary to perform some part of the 

musical hierarchy. What appears as a procedure call in a 

traditional language, is actually an invocation of a 

[3] This is verified by the existence of several 
music-description languages. See [Byrd 1974, Gourlay 
1986, Maxwell 1984, Smith 1973]. 
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substructure to begin its performance. 

Notes are the foreground of music. They are 

responsible for nuance and detail. However, the domain of 

structure is background, the large-scale movement of music. 

So, notes are not included in the representations to follow. 

Phrases, parts and sections are all assumed to be made up of 

notes at the lowest level. 

We assume the existence of a primitive type, PHRASE, 

which is the same phrase structure described above. The 

contents of each PHRASE type is described in a comment when 

it is declared and given in traditional music notation in 

the appendix. 

A sequential structure represents a part and a parallel 

structure represents a section as previously defined. For 

structural clarity and continuity with developments in later 

chapters, a substructure is either a parallel event or a 

sequential event. The two types of processes are not mixed 

together. More concretely, a process declaration contains 

either the keyword SEQ or the keyword PAR but not both. 

Listing 2-1 shows how parts are represented. To 

indicate their sequential nature, the SEQ construct is used. 

The invocations following the SEQ keyword are executed in 

sequential order. In this example, the parent node, Part. 
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is realized by first performing its first child, A. When the 

first child has completed, the second child, B, is begun. 

The completion of the last child signals the termination of 

the parent. The colon indicates the end of the declaration. 

Listing 2-1: part representation 

PROC Part = 
SEQ 

A() 
B () : 

Listing 2-2 illustrates a section node. The processes 

following a PAR keyword are executed concurrently. To 

realize the parent, Section, all its children are begun at 

the same moment. The parent is completed when all its 

children have completed. 

Listing 2-2: section representation 

PROC Section = 
PAR 
A() 
B(): 

Attributes may be attached to each invocation of a 

structure. Attributes will be more thoroughly discussed in 

later chapters. When an attribute, other than the default, 

is associated with a structure invocation, it is indicated 

by naming the attribute as an argument and assigning it a 

value. Listing 2-3 shows that A is played twice and that B 
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is transposed up three semitones. 

Listing 2-3: attribute assignment 

PROC Attributes = 
SEQ 
A( repeat = 2 ) 
B( transpose = 3 ): 

Listing 2-4 presents a complete example4 which includes 

each type of structure. The example represents the structure 

of a major scale, played one octave ascending and 

descending, harmonized at the minor sixth below. The 

primitive elements, phrases, each consist of a one octave 

scale, ascending or descending. 

Working from the highest level down, the root process, 

Scale. is composed of two processes, Up and Down, played in 

sequence. These structures are the harmonized scale, 

ascending and descending. The process Up, which is the 

harmonized ascending scale, consists of the two PHRASES 

TonicUp and SixthUp performed concurrently. Likewise, the 

structure Down is composed of TonicDown and SixthDown played 

concurrently. 

Note that the representation for a structure need not 

be unique. Alternative descriptions exist and may be chosen 

[4] The appendix provides traditional music notation for 
several examples presented in this chapter. 



23 

Listing 2-4: Scale 

PHRASE 
TonicUp, 
TonicDown, 
SixthUp, 
SixthDown: 

PROC Up = 
PAR 
TonicUp() 
SixthUp(): 

PROC Down = 
PAR 
TonicDown() 
SixthDown(): 

PROC Scale = 
SEQ 
Up() 
Down() : 

for their clarity and expressiveness. Listing 2-5 shows the 

previous example, but emphasizes the harmony (Tonic and 

Sixth are high-level nodes), whereas the previous figure 

emphasized the up and down motion. 

2.4. Two Examples 

The next two examples will further illustrate the use 

of a structural description language to represent music 

structures. Later chapters will refer to and expand upon 

the examples presented in this section. The examples have 

been chosen for their brevity and simplicity. They each 

address different problems in organizing music, as will be 

—a major scale ascending one octave. 
—the same major scale descending one octave. 
—TonicUp harmonized a minor sixth below. 
—TonicDown harmonized a minor sixth below. 
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Listing 2-5: ScaleHarmony 

PHRASE 
TonicUp, 
TonicDown, 
SixthUp, 
S ixthDown: 

PROC Tonic = 
SEQ 
TonicUp() 
TonicDown() : 

PROC Sixth = 
SEQ 
SixthUp() 
SixthDown(): 

PROC ScaleHarmony = 
PAR 
Tonic() 
Sixth(): 

demonstrated in later chapters. 

The first example is a piano prelude. It is a 

monophonic composition and so, contains only sequential 

structures. Taking a top-down approach, the high-level 

structures are presented in listing 2-6. The prelude is a 

tripartite form, ABA. For brevity, only the B part is 

detailed here. The B part forms a triangular-shaped 

symmetrical structure, abcba. Each of its component parts is 

composed of four iterations of an individual substructure. 

—a major scale ascending one octave. 
—the same major scale descending one octave. 
—TonicUp harmonized a minor sixth below. 
—TonicDown harmonized a minor sixth below. 
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Listing 2-6: Prelude, C.J. Zacky, high-level structures 

PROC a = 
SEQ 

a'() 
a'O 
a'O 
a'() : 

PROC b = 
SEQ 

b'() 
b'O 
b'O 
b' () : 

PROC c = 
SEQ 

c'() 
c' 0 
c'O 
c'() : 

PROC B = 
SEQ 

a() 
b () 
c() 
b () 
a () : 

PROC A = 
SEQ 

PROC Prelude = 
SEQ 
A() 
BO 
A() : 

Listing 2-7 shows the contents of the low-level 

structures. Each of the lowest level routines from the 
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previous listing, a/, b^_, and cl, are similar in structure; 

the concatenation of some form of x with the PHRASE y. The 

phrases, x and y, contain only two notes each, so the 

prelude is an example of creating a relatively large 

structure from very few, simple pieces. 

PROC a' = 
SEQ 

x() 
Y() : 

PROC b' = 
SEQ 
x2 () 
Y() : 

PROC c' = 
SEQ 

X3() 

Y() : 

Listing 2-8 is the structure of a canon from The 

Musical Offering by Johann Sebastian Bach. A canon is a 

polyphonic composition in which a leading voice is strictly 

imitated by a following voice or voices. A common type of 

canon is the round, of which Three Blind Mice is an example. 

The following canon has two imitative voices, played by 

violins, set over a third, non-imitative voice, which plays 

Listing 2-7: Prelude, low-level structures 

PHRASE 
X, 

Y/ 
x2, 
x3: 

—left hand two note motive 
—right hand two note motive 
—x transposed up 2 semi-tones 
—x transposed up 3 semi-tones 
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the theme given to Bach by King Frederick the Great. For 

this example, we assume a process called rest, which outputs 

silence information for the number of beats contained in its 

argument. 

Listing 2-8: Canon, J.S. Bach 

PHRASE 
Theme, —written by King Frederick the Great 
Violin, —canonical voice 
FirstNote: —first note of the Theme, needed for ending 

PROC KingsTheme = 
SEQ 
Theme() 
Theme() 
Theme() 
FirstNote(): 

PROC Violinl = 
SEQ 
Violin() 
Violin() 
Violin() : 

PROC Violin2 = 
SEQ 
rest(4) 
Violinl(): 

PROC Canon = 
PAR 
KingsTheme() 
Violinl() 
Violin2(): 

It is evident from the top-level module, Canon, that 

the canon consists of three parallel events, the king's 

theme, and the two violin parts. The module KingsTheme. 

contains three repetitions of Theme. In order to provide an 
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ending, the KingsTheme must wrap around to the beginning 

again and play the first note of the theme. 

The first violin part (Violinl) is straightforward. It 

consists of three repetitions of the canonic voice, Violin. 

The second violin (Violin2) is the element of interest in 

this example. It is the first violin part delayed by four 

beats. This creates a temporally overlapping structure in 

which Violinl terminates before Violin2. Suppose another 

three-voiced structure is concatenated to the end of Canon. 

Should its first voice begin execution as soon as the 

canon's first voice terminated, thus creating another, 

possibly unintentional, overlapping structure? This type of 

behavior is addressed in chapter four. 



Chapter Three 

Sequencer Structure 

3.1. Overview 

As sequencer technology has advanced, musicians have 

adopted it into their collection of tools. It is now an 

integral part of many musicians' professional lives. It has 

been incorporated into live acts and film scoring. It excels 

as a compositional sketch pad, performing many of the same 

functions as a multi-track tape recorder but with superior 

editing capabilities. It has been compared to both a player 

piano and a word processor. It is like a player piano in 

that it automatically plays the music which has been 

programmed into it. Its music editing capabilities make it 

comparable to the use of a word processor in arranging and 

29 
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perfecting text. 

A sequencer records MIDI data, not audio signals. The 

data can then be manipulated in ways not possible with audio 

signals. Wrong notes can be corrected. Rhythmic 

inaccuracies can be repaired. Music production is no longer 

tied so closely to the physical process of performance. 

A brief description of what a sequencer is was 

presented in chapter one. The present chapter examines 

current sequencer technology by examining functions provided 

by sequencers. A case study of a commercial sequencer is 

presented, followed by a look at its suitability for 

programming the examples given in chapter two. 

Two new terms are needed in this chapter. They are 

related to terminology introduced in chapter two. 

An event is a complete MIDI message as described in 

chapter one. Just as a note was the primitive element 

described in chapter two, a MIDI event is the primitive 

element in music generation using MIDI. Notes were described 

as single multi-dimensional elements having several 

attributes. MIDI has no single event to correspond to a 

note. Indeed, it requires two midi messages, Note-On and 

Note-Off, to produce a single note. Attributes associated 

with notes are shared by several MIDI event messages. For 
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example, to add vibrato to a held note requires controller 

data indicating the changing position of the modulation 

wheel. Thus, a single note has required a Note-On message, 

some number of controller messages, and a Note-Off message. 

The idea of a MIDI event is more general than the concept of 

a note. MIDI events generally refer to MIDI voice messages, 

but all MIDI messages may be considered events. 

A track is a sequence of MIDI events. It is a term 

inherited from analog tape recorder technology where it 

designates one of the parallel recording surfaces put on 

magnetic tape during the process of recording. In MIDI 

terminology, a track consists primarily of Note-On/Off 

events but other note modifying commands may be included. A 

track corresponds to the phrase of chapter two where it is a 

sequence of MIDI events usually generated by a single 

source. 

3.2. Sequencer Functions 

3.2.1. Input/Output Functions 

As the primary function of the sequencer is the 

recording and playback of MIDI data, input and output 

functions must be provided. Input functions take two forms: 
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real-time and step-time entry. 

Real-time entry is similar to the traditional method of 

input to a tape recorder. The MIDI instrument is connected 

to the sequencer's input and the record standby mode is 

activated. After an optional metronome lead-in, the record 

mode is activated and the performer begins to play. 

Recording may be terminated after a preselected number of 

beats or measures, or when a "stop record" command is given. 

The material has then been recorded onto a single track in 

the sequencer where it is now ready for playback or editing. 

Options for real-time input may be available. A 

punch-in function may be provided. This is used on a 

previously recorded track where a portion of the track is 

not acceptable. The track begins to play. When a 

preselected point is reached, the track material is muted 

and recording automatically begins. The newly recorded 

material replaces the prior contents of the selected portion 

of the track. This is the same type of punch-in available on 

multi-track tape recorders. 

Often, only certain types of information, such as 

Note-On/Off messages, may be wanted. Controller messages 

typically use up a great deal of bandwidth. It may be 

desirable to filter these messages from the input stream. A 

filter function eliminates selected MIDI messages as they 
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appear at the sequencer input. 

Step-time entry is a means of entering MIDI data in 

"slow motion". The actual entry mechanism can take different 

forms. A MIDI instrument's keyboard can be used to specify 

the note numbers, or the sequencer may provide a means of 

direct entry without using an external keyboard. A single 

duration may be specified in advance with all input notes 

taking on that value until another is entered, or each note 

may require its duration be entered separately. Step-time is 

useful for entering passages too complex for the human 

performer. 

Output functions allow the performed material to 

undergo transformations during playback without affecting 

the actual data stored within the sequencer. Tracks may be 

selectively muted or unmuted to allow review of only a 

portion of the recorded material. Looping causes a section 

of data to be repeated continually or for a specified number 

of hearings. This is useful for rehearsing a part which will 

be recorded in parallel (overdubbed) to the looping 

material. It may be desirable to direct output to a 

different receiving instrument. Typically, individual 

instruments are configured to receive on specified channels 

and are configured with different timbres. The ability to 

channelize an output stream allows the musician to compare a 
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part played by different voicings by directing output to 

another instrument. 

3.2.2. Event-Level Functions 

The lowest accessible level available for editing is 

the event. The friendliness of event-level editing varies 

widely. The most primitive is a display of data as a list 

of hexadecimal numbers. Other implementations may display 

the data as a graph which shows relative durations and 

pitches, or infrequently, traditional music notation. In 

between these extremes is representing the data as a list, 

but instead of hexadecimal numbers, the data is translated 

into English and shows what the data represents. A 

hypothetical display of a MIDI data stream is shown in 

figure 3-2. The first event shows a C in the fifth octave 

struck with a velocity of 64 on the first beat of a measure. 

The second event shows the release of the previous note on 

the second beat. This is still rather primitive but is 

probably the most common method of displaying a MIDI data 

stream. 

Fig. 3-2: Sample MIDI Data Display " 

1:00 C 5 64 NoteOn 
2:00 C 5 0 NoteOff 

Event-level operations include inserting an event into 
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the stream, deleting an event, and modifying one of the data 

values such as changing the velocity value. 

3.2.3. Track-Level Functions 

A common and useful operation to apply to a track is 

transposition: the process of shifting all pitches up or 

down by the same number of half steps while maintaining 

their positions relative to each other. As the sequencer has 

no knowledge of tonality, the transposition is real rather 

than tonal. Internally, a constant is added to every note 

message. Since MIDI recognizes note numbers from 0 to 127, 

any transposition which would place a note outside of this 

range must be folded back within range. This may be handled 

by replacing the out-of-range transposed note with the same 

pitch-class but of the nearest octave which is in range. 

Quantization is a very powerful function which is used 

to correct timing inaccuracies. It may be desirable to have 

a passage performed with rhythmic accuracy unobtainable by 

the performer or to clean up a rhythmically sloppy 

performance. Quantization will cause note onset times to 

fall on multiples of the quantization value. If the eighth 

note is the quantize value, then all notes will begin on 
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exact multiples of the eighth note. 

There are several types of quantization. Note-On 

commands may be quantized but the corresponding Note-Off is 

not. This will change the duration of the note. It is 

possible that a Note-On command moved backward in time will 

overlap its corresponding Note-Off. This is a situation 

that an 'intelligent' sequencer should be aware of. 

The entire note may be moved in line with its 

quantization value. The duration remains as it was but the 

note is shifted in time. A problem arises with events such 

as Pitch-Bend which may occur between the Note-On and 

Note-Off. These intervening events can be shifted along 

with the note or retained in their original position. 

Both Note-On and Note-Off commands may be quantized. 

This will either stretch or squeeze a note. Having both the 

attack and release times quantized may give the music a 

mechanical feel. 

Merge is a function that combines several tracks into 

one. Some sequencers have only a limited number of 

available tracks. When it is necessary to make more 

recording passes than there are available tracks, the merge 

function can be used to compress the data from several 

tracks into one. More information can then be recorded on 
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the free tracks. The ability to merge tracks can be useful 

in more creative situations than that described above. One 

pass may record only Note-On/Off information. A second pass 

may record Pitch-Bend or modulation wheel events. The 

controller information can be edited or recorded several 

times until it is satisfactory. At this point, it can be 

merged with the Note-On/Off information. This allows the 

musician to work with isolated types of data, making editing 

easier. 

Track shift is a function which moves a track 

temporally in one direction or the other by a fraction of a 

second or fraction of a beat. This is sometimes necessary 

to compensate for timing discrepancies when synchronizing to 

tape or in large systems where the MIDI signal is passing 

through many instruments causing the signal to be delayed by 

a small amount. Track shift can be used to introduce an 

intentional delay effect by copying a track and playing both 

copies back simultaneously but with one track shifted with 

respect to the other. 

A velocity value is part of the Note-On command. The 

velocity gives a relative dynamic to the note. The velocity 

values of an entire track may be modified to give a 

different dynamic contour. Corresponding to transposition 

of notes, scaling adds a constant factor to each velocity 
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value, thereby raising or lowering the overall dynamic level 

of the track while maintaining its internal relationships. 

The velocity values may be clamped to a single constant 

value. The basic contour may be maintained but the overall 

dynamic may be compressed or expanded. Finally, the track 

may be modified to create smooth crescendos or diminuendos. 

A filter function removes unwanted data from the data 

stream. Continuous controllers output a great deal of 

information. It is often desirable to filter out this 

information. Some sequencers allow a percentage of the 

specified MIDI message to be removed, thus thinning out the 

data. A few sequencers permit the entry of complex search 

criteria, such as removing every note above or below a 

certain range. 

3.2.4. High-Level Functions 

Track-level functions are implemented on virtually 

every sequencer. Many have some form of event-level 

editing. It is rare for a sequencer to have any but the most 

basic functions available for manipulating musical data at a 

high-level. 

Much music is composed of sections that reappear 

throughout the composition. An advantage of high-level 

editing functions is that these sections may be recorded 
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separately and then rearranged and repeated as necessary by 

a pilot track. A pilot track keeps track of the order in 

which sections will be performed [Garvin 1987]. Pilot tracks 

are usually called link or chain operations. Chaining will 

be discussed further in the case study. 

3.2.5. Performance Directives 

The sequencer performs music in real-time, so in 

addition to editing functions, it should include some means 

of directing the performance, much like a conductor does. 

The most basic performance directive found on a sequencer is 

a tempo control. At its most primitive level, a single tempo 

may be selected for the duration of the performance. More 

advanced implementations allow both sudden and gradual tempo 

changes to be specified throughout the music. 

Some sequencers record the MIDI data that they receive 

without regard to a time signature. Others include measure 

information in the track data stream. Time signatures are 

important in at least two situations: when a metronome is 

used during recording and when editing options are specified 

by measure number. In these cases it is important to be 

able to vary the time signature. When recording a piece 

with multiple time signatures, it is desirable to set up a 

click track. The metronome can then produce an accent on the 

downbeat of each measure which helps the musician and 
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machine stay synchronized. 

3.3. Case Study: Texture by Roger Powell 

Texture is a sequencer program written for the IBM-PC 

family of computers. For the computer-to-MIDI interface, 

Texture requires the Roland MPU-401 MIDI Processing Unit. 

Texture was selected for an in-depth look for two reasons. 

Most important is its functionality as a sequencer. It 

implements an impressive number of the standard sequencer 

features as well as going beyond most sequencers in its 

implementation of high-level structural manipulation 

functions. Second, it has achieved widespread popularity 

with both amateur and professional musicians. Jan Hammer, 

former keyboardist with Sarah Vaughan, currently uses 

Texture in producing the sound track to the Miami Vice 

television series [Milano 1987]. 

3.3.1. Event-Level Functions 

Texture provides basic event-level operations such as 

insert, delete, and modify values within an event. It has a 

match function which will find the Note-Off event that 

corresponds to the selected Note-On event and vice versa. 

This is useful when deleting a note or modifying its pitch. 

There is also a locate function which moves the current 

editing position to the specified beat. The Texture event 
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edit display is similar to the above example (figure 3-2). 

3.3.2. Track-Level Functions 

Certainly one of Texture's strengths is its 

implementation of a wide range of track operations. 

Following is a list of Texture's track operations with brief 

commentary where appropriate. 

Advance (track shift) 
Blend (merge) tracks 
Block Copy: copy data to a new position 
Block Move: move data to a new position 
Copy 
Erase 
Fill: replicate data within a track 
Filter unwanted MIDI data 
Name 
Play 
Quantize 
Scale event start times, note velocities and durations 
Splice: append one track to another 
Transpose 
Undo previous track operation 

3.3.3. High-Level Functions 

Texture was chosen for this case study because it has 

the most complete implementation of high-level functions of 

all the sequencers studied. Texture recognizes the 

hierarchical nature of music as its organization shows. The 

highest level musical structure in Texture is called a song. 

Texture can work with one song at a time. A song is 

composed of links. Links are a list of patterns which are 
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ordered by the musician. A pattern is made up of tracks. 

There are twenty-four tracks per pattern. 

We can see that Texture goes beyond the simple 

multi-track tape recorder analogy which is so prevalent 

among sequencers. It allows the sectional organization of 

music. A pattern is the basic section. It can contain up 

to twenty-four parallel tracks. Sections can then be linked 

together in any order to produce a song. Linking is a 

sequential operation. Linked patterns form a list. The 

patterns in the list are performed in sequence. 

It is appropriate that the highest level structure in 

Texture is called a song. Its limited implementation of the 

musical hierarchy, not allowing nested structures, lends 

itself to composing in the song form. 

3.3.4. Performance Directives 

Texture offers several performance directives 

associated with links. There is a global tempo that is in 

force when a song begins play. In addition, each link may 

include a relative tempo and rate. A relative tempo change 

modifies the tempo by some ratio, such as doubling or 

halving the tempo. The rate determines how quickly the 

change takes effect, from immediately to very gradually, 

thus permitting accelerandos and ritardandos to appear in 
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the music. 

A link may be repeated up to 255 times in succession. 

A track or group of tracks may be muted within the link. A 

link may also have a transposition constant associated with 

it. 

3.3.5. Texture Application 

A good tool gives its user a natural and intuitive 

means to express that which must be accomplished. Texture's 

format is geared toward composing in song form. The strophic 

nature of song form is readily compatible with the 

track/pattern/link/song format of Texture. It is 

instructive to apply Texture to the two previous examples, 

Prelude and Canon. to see what the difficulties are in using 

it to piece together music structured in other ways. 

The first difficulty is at the phrase level. A Texture 

pattern can be between 1 and 545 beats long [Powell 1986]. 

The two sixteenth note motives, x and y, are each only one 

half of a beat in length. The originally conceived structure 

must be modified to contain no phrases of less than a single 

beat. If the low-level structures of listing 2-7, a/, b^. and 

c_l, can be created at the track level, either by real-time 

or step-time entry, then the single beat pattern length 

requirement will be satisfied. Because Texture does not 
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allow nested structures, the high-level structure of listing 

2-6 must also be modified. Essentially, the structure must 

be flattened. To simplify the resulting structure, recall 

that a link may be repeated up to 255 times. The resulting 

structure (the two A sections are omitted entirely) is given 

in listing 3-9. 

Listing 3-9: Prelude, Texture version 

PHRASE 
a', —a' = x + y 
b', —b' = x2 + y 
c': —c' = x3 + y 

PROC Prelude = 
SEQ 
a'( repeat = 4 ) 
b'( repeat = 4 ) 
c'( repeat = 4 ) 
b'( repeat = 4 ) 
a'( repeat = 4 ): 

The resulting structure is quite a bit shorter than the 

original. What is lost are several levels of abstraction, 

which does not make a very big difference in a piece of this 

size but would suffer in larger structures. Also, manual 

entry was complicated, more preliminary work outside the 

program was required. 

It is difficult to represent overlapping structures, 

such as those found in the Canon of listing 2-8, in a 

strophic-based model. There is no way to do so while 

preserving the original structural model. Using the track 



45 

copy function of Texture, it is possible to create Violinl 

by replicating Violin until there are three concatenated 

copies. The track copy command can create Violin2 from 

Violinl with the addition of adding four beats of silence 

onto the beginning of Violin2 using event-level editing 

commands. All abstraction is lost. Clearly, a more flexible 

sequencer model is needed to create and manipulate the full 

range and complexity of musical structures. 



Chapter Four 

Definition and Performance of Music Structures 

4.1. Overview 

A discussion of the hierarchical nature of music was 

presented in chapter two, where it was shown that a music 

structure is composed of a number of substructures, each of 

which is itself composed of other substructures until 

further decomposition is prevented by the occurrence of a 

structural primitive. In chapter three, current trends in 

sequencer design were examined. From that discussion, it is 

evident that the issue of the representation and creation of 

abstract music structures has not been adequately addressed. 

Yet, an effective environment for the development of musical 

compositions must allow the creation and manipulation of 

46 
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high-level musical constructs. 

To further investigate this issue, the author has 

developed a sequencer which provides operations on 

high-level structures. This sequencer is an interactive tool 

that allows structures to be created and performed in 

real-time. Two subsystems, one that provides operations for 

the creation and manipulation of structures, and the other 

which traverses the structure during real-time performance, 

are of particular interest and are described below. 

4.2. General Description 

The manipulation of abstract music structures involves 

two main functions: defining the structure and performing 

the structure. In the author's implementation, the structure 

is defined interactively. A simple command language is 

recognized by the interpreter which then transfers control 

to the appropriate routine for execution. Upon receipt of a 

command to perform a structure, the structure definition is 

transformed into a tree data structure which contains the 

information necessary for performance. 

The problem of creating a hierarchy of structures was 

alluded to at the end of the previous chapter. How should a 

structure which consists of three parallel tracks be joined 

to a structure of two parallel tracks? What is the result of 
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the concurrent performance of a track whose duration is 

eight beats and a track of four beats duration? How will 

the above structures be connected to others? 

To create a complex structure involves the ability to 

create simple structures, combine them into other 

structures, and use the resulting structures to form yet 

other structures. This is the same procedure used in 

creating complex program structures, where a high-level 

module may trigger the invocation of many lower level 

modules which must complete before returning to their parent 

module. In programming, certain details are known about 

module behavior, such as the point to which a called module 

will return control to its parent. The behavior of music 

structures must also be known in order to create 

well-behaved compositions. 

A "black box" approach is used to define structure 

behavior. In computer science, the black box approach to 

program building means that the implementation details of a 

module need not be known by any but its implementer. The 

function of the module and its interface is all the 

information required to include it in a program structure. 

In building music structures, the black box analogy is taken 

literally; the structure forms a figurative box or rectangle 

in its two dimensions of duration and number of parallel 
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tracks. A behavior has been specified for the duration and 

width of a structure whose components may not be of the same 

durations and widths. 

For structures executing concurrently, the total 

duration is equal to the duration of the longest structure. 

The total duration of structures executing sequentially is 

equal to the sum of the individual structure durations. 

Width has to do with the number of tracks which are 

being performed concurrently. For structures executing 

concurrently, the total width is equal to the sum of the 

individual structure widths. The total width of structures 

executing sequentially is equal to the width of the widest 

structure. 

A substructure may occur more than once within another 

structure. An obvious example of this is the rondo with its 

ABACA formal structure. However, rarely is it desirable to 

repeat a structure verbatim. In the interest of variety, 

some variation is required. Thus, it is necessary to attach 

performance attributes to each occurrence of a structure. A 

performance attribute is a value given to a variable 

parameter that is specific to a particular occurrence of a 

structure. The attributes which are built into this 

sequencer implementation are described below. A specific 

occurrence of a structure is called an instance. An instance 
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consists of a reference to the structure's formal definition 

and the corresponding attribute values. To summarize the 

"black box" approach to music construction, each box has two 

dimensions, duration and width, which are determined at 

definition time; and each box has attributes associated with 

it which specify performance details unique to that 

particular instance. 

The data structures that are created while the 

composition is being defined are not in a form suitable for 

performance. When the "play" command is given, the specified 

structure is expanded and transformed into a tree data 

structure which has performance information in a form 

accessible for real-time performance. The tree represents 

the structure of the composition and is particularly suited 

for the type of traversal needed to realize the music. 

Traversal begins with the root node and proceeds down to the 

leaf nodes and then back up to the root again. The path 

taken varies according to the type of nodes encountered 

during traversal. If a structure is composed entirely of 

nodes which are sections, the traversal will be 

breadth-first. Since the children of a section are 

performed concurrently, the nodes of a tree of sections will 

be visited level-by-level. At the other extreme, a tree made 

up entirely of part nodes is traversed depth-first. The 
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nodes of an individual branch are visited before moving on 

to the next branch. 

A performance tree contains three types of nodes: 

track, part, and section. A track is the primitive element 

and contains the MIDI data which is transmitted to the 

instruments connected to the sequencer output. A track is 

always a leaf node. The other nodes, part and section, do 

not contain playable data. They are control structures which 

determine the traversal path. They also hold attribute 

information which is inherited by their children. The 

primary distinction between parts and sections is how their 

children are activated. A part plays its children 

sequentially; when the first child terminates, its next 

eldest sibling is begun. A section plays its children 

concurrently; all children are activated at the same time. 

Control is returned to the parent after all its children 

have terminated. 

4.3. Structure Definition 

A structure has a name so it may be referred to in 

subsequent operations, it has a class which determines how 

it and its children will be performed, and it contains a 

list of nodes which represent specific instances of other, 

predefined nodes. These instance nodes are the children, 

which are invoked by the parent during performance. The 
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information which defines the parent is kept in a FORMAL 

node, as this is a formal definition, that is, the structure 

is defined in general, no attributes are attached to 

distinguish one occurrence of this structure from another. 

FORMAL node 

name The label which is given to the structure. The 
name is used to identify the structure for 
operations directed to it. 

class One of track, part, or section. Indicates 
childrens' performance mode; sequential for a 
part, concurrent for a section. A track has no 
children. 

definition A list of instances which define the node. If 
the node class is a track, the definition 
consists of MIDI data. 

Operations which are applied to FORMAL nodes are 

CREATE, DELETE, COPY, and RENAME. These operations effect 

the structure as a whole. The utility of the CREATE and 

DELETE operations is obvious while the RENAME operation is 

largely for convenience. The COPY operation is useful for 

two reasons: (1) a copy may be experimented upon without 

destroying the original, (2) it may be desirable to have two 

similar, yet different, structures appear in a work, as with 

an exposition and recapitulation. 
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Structure Creation Operations 

CREATE( name, class ) 
Create a FORMAL node of type "class" with label "name". 
It is a precondition of this operation that an object 
"name" does not currently exist. 

DELETE( name ) 
Symbolic information for an existing object, "name", is 
removed from the system. All references to instances of 
"name" in existing objects must be removed. If the 
object referred to by "name" is a track, the track data 
is destroyed along with its symbolic information. 

COPY( old, new ) 
Duplicate the structure named "old" and call it "new". 
Only the top-level of the structure is duplicated; that 
is, each defining node is not recursively duplicated. 

RENAME( oldname, newname ) 
Preconditions are: "oldname" must exist, "newname" must 
not exist. This operation replaces the label, 
"oldname", with the label, "newname". 

The structural definition of a FORMAL node is a list of 

INSTANCE nodes. An INSTANCE node contains a reference to a 

FORMAL node and a list of attributes. A structure may have 

several occurrences of another structure in its definition, 

but each instance may be different. The differences are 

revealed in the list of attributes attached to each specific 

occurrence of a node in a definition list. 
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INSTANCE node 

reference An INSTANCE node is a list of attributes which 
modify an occurrence of a structure. The 
reference field indicates the specific structure 
of which this is an instance. It refers to a 
FORMAL node. 

channel Channel voice messages for this INSTANCE node are 
transmitted on the specified MIDI channel. The 
default is no modification of the channel 
information. 

mute This node is played silently. Only timing 
information is sent. The default is not muted. 

repeat Perform node this many times in sequence. The 
default is one performance of the node. 

transpose Adjust all note messages by the transposition 
factor. The default transposition constant is 
zero, no transposition. 

Operations are needed which act upon INSTANCE nodes. 

The operations which effect part of a structure by modifying 

its list of instances are INSERT, REMOVE, and 

SET_ATTRIBUTES. These routines are used when a structure is 

being defined. That structure, referred to below as 

"editobj", is the object currently being edited. 
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Structure Definition Operations 

INSERT( name, position, editobj ) 
An INSTANCE of the object, "name", is created and 
placed at "position" in the list of instances defining 
the current edit object, "editobj". 

REMOVE( position, editobj ) 
The INSTANCE node at "position" is removed from the 
current edit object, "editobj". 

SET_ATTRIBUTES( attributes, position, editobj ) 
The list of attributes is installed in the INSTANCE 
node located at "position" within the current edit 
object, "editobj". 

A graphic example of a music structure definition which 

illustrates the nodes that are created and how they are 

linked together is given below (figure 4-3). The example 

shows how listing 4-10 is represented using the data 

structures described in this chapter. 

In the example, a FORMAL node is distinguished by the 

name field. It also contains a field indicating its class. 

An INSTANCE node has a reference, depicted as an arrow, to 

the FORMAL node of which it is an instance. Attributes are 

shown in INSTANCE nodes only if they are not default values. 

The top-level of the example, the FORMAL node for Tree, 

is a part node, whose children are Branchl and Branch2. 

This instance of Branchl is transposed up a semitone. The 

repeat attribute indicates that Branch2 is performed twice. 
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Fig. 4-3: Structure Definition 
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The FORMAL definitions for Branchl and Branch2 are similarly 
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Listing 4-10: Structure Definition Example 

PHRASE 
Leaf1, 
Leaf2: 

PROC Branch2 = 
PAR 
Leaf2( ) 
Leaf2( transpose = 7 ): 

PROC Branchl = 
PAR 
Leaf1( ) 
Leaf2( ) 
Leaf1( transpose = 2 ): 

PROC Tree = 
SEQ 
Branchl( transpose = 1 ) 
Branch2( repeat = 2 ): 

structured. The PHRASE structures, Leaf1 and Leaf2. contain 

MIDI data and so the definition part of their FORMAL nodes 

contains that data. 

4.4. Play Tree Traversal 

4.4.1. Play Tree Node Description 

The data structure used to represent the structure of 

the music for real-time performance is a tree. The network 

of references to other tree nodes contained in the data 

structure provides uniform and rapid access to information 

needed during performance. Each node contains three fields 

with which to reference other tree nodes; (1) all nodes may 
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have children except those representing tracks. Each tree 

node has a field used to reference its eldest child. The 

eldest child is the child which is performed first in the 

case of a part node. (2) each non-leaf node in the tree 

may have any number of children. This precludes the use of a 

fixed number of child fields. Therefore, each child has a 

reference to its sibling. (3) the tree must be traversed up 

as well as down; a node must have access to its parent for 

obtaining information (parent's node type) and to perform 

operations (increment/decrement parent's semaphore). For 

these reasons, each node contains a reference to its parent. 

Two references to the structure itself are provided. 

The reference to the FORMAL definition yields the node type; 

track, part, or section. The INSTANCE node provides 

attribute information. After a node has been performed its 

designated number of repeats, the repeat count is obtained 

from the INSTANCE node and used to refresh the count in the 

tree node. This solves the problem of nested repeats; an 

ancestor node with a repeat count will activate all its 

descendents that number of times. It is necessary for the 

descendents to maintain their respective repeat counts 

during each iteration. 

The semaphore field is provided for the synchronization 

required by section nodes. All children of a section begin 
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execution concurrently, but they may not all terminate at 

the same time. To preserve the music structure, a node's 

children must complete before the node may be reactivated. 

The semaphore count is incremented for every child as it is 

activated. When the child terminates, the semaphore count 

is decremented. The last child to terminate decrements the 

semaphore count to zero, allowing the traversal process to 

continue. 

The attributes contained in a tree node are the same as 

those described above. However, the values appearing in the 

tree node may not match those found in the corresponding 

INSTANCE node. The case of the repeat count has already been 

described. The transpose and mute attributes may differ from 

the INSTANCE node because they inherit attribute values from 

their ancestors. Reasonable behavior dictates that if a 

node is muted, all its children must also be muted. Thus, 

the mute attribute is inherited. A muted node causes all 

its children to also be muted. Transposition is also 

inherited. Transposition constants are additive. The 

transposition constant of a node is the sum of the 

transposition constants of its ancestors. 
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TREE node 

FORMAL 
The reference to the FORMAL node 
needed information. Currently, 
accessed from the FORMAL node. 

INSTANCE 
The reference to the INSTANCE node 
structure attributes. 

parent 
Link to parent node. 

child 
Link to eldest child node. 

sibling 
Link to sibling node. 

direction 
Indicates the direction of traversal. Legal values are 
UP and DOWN. At the beginning of play, all nodes are 
set to DOWN. 

semaphore 
A parent node must wait for its children to terminate 
before it may terminate. The semaphore keeps track of 
children which are still in play. The semaphore is 
incremented for each child when the child begins play 
and is decremented by each child when the child 
terminates. 

attributes 
The attributes are the same as those described for 
INSTANCE nodes. The transpose and mute attributes are 
inherited from ancestor nodes, along with any attribute 
modification contained in the current node. 

The repeats attribute is copied from the INSTANCE node 
at the time the node begins play. It is decremented 
each time the node is repeated. 

provides access to 
the node class is 

provides access to 
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The example below (figure 4-4) is an illustration of 

the tree created for the previous listing. Note that the 

type of connection between nodes indicates whether they are 

performed sequentially or concurrently. 

Fig. 4-4: Play Tree 

trans = 7 

Leaf Leaf2 

trans = 

Leaf 1 

trans = 3 

Leaf 1 

trans = I 

Leaf2 

repeat = 2 

Branch2 Branchl 

The substructure of Branchl. illustrates inheritance of 

attributes. This instance of Branchl is transposed up a 

semitone, therefore all its children are also transposed up 
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a semitone. Its eldest child, the second occurrence of 

Leaf1. also contains a transposition factor in addition to 

its inherited transposition. Its total transposition is the 

sum of its inherited transposition and its own 

transposition. 

4.4.2. Informal Algorithm Description 

During real-time play, a table is maintained which has 

the same number of entries as the composition has tracks 

which will play concurrently. Each entry contains a 

reference to an active node in the play tree. A low-level 

play algorithm, which is responsible for transmitting the 

MIDI data, requests the data by track number. The track 

number is mapped to the corresponding table entry which 

points to the tree node currently active for that track. If 

the active node is a track, a MIDI event is obtained from 

the current track position. The MIDI event is modified by 

any attributes which affect it. It is then transmitted to 

the sequencer output. If the active node is not a track or 

the end of the track has been reached, more data must be 

found. The node stored in the table is used as a place 

marker with which to locate the material which must be 

performed next. 

The Traversal Algorithm is called when more data is 

needed for a particular track. Input to the algorithm is a 
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reference to a newly-terminated node which is obtained from 

the table of active nodes. The function of the algorithm is 

to locate the next node to be performed and to install it in 

the table of active nodes. A next node may not be found for 

either of two reasons, (1) the structure may have finished 

playing in which case a flag is set which signals the end of 

play, (2) there may be no more data for that particular 

track number in which case the corresponding table entry is 

marked empty. 

There are two primary conditions which determine where 

the next active node will be found; (1) the direction of 

travel, UP or DOWN, (2) whether or not the node has 

children. The simple case is a node whose direction is DOWN 

and has at least one child. In this case, for a part node, 

its eldest child is activated; for a section node, all its 

children are activated. 

A leaf node or a node whose direction is marked UP, 

indicates the same condition; an entire branch has been 

performed. The traversal now moves upward to find a new 

branch to traverse or, in the case of a node which repeats, 

to perform the branch over again. If a node repeats, the 

repeat count is decremented and that node is installed in 

the active table to be performed again. If there are no 

repeats and the node is the root of the tree, then the 
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entire structure has been performed and play is terminated. 

If there are no more repeats and the node is not the 

root of the tree, then the algorithm continues its search 

for a new branch to perform. The parent of the deactivated 

node determines the direction of the algorithm. 

If the parent is a section, all its children were 

activated at the same time. Each activation incremented a 

semaphore marker. Therefore, when the child of a section 

node terminates, the semaphore marker of the parent is 

decremented. When it reaches zero, all children have 

completed and the parent becomes the next active node. 

Part nodes have their children activated in sequence. 

Therefore, if the parent is a part, the next sibling must be 

activated. If there are no more siblings to perform, the 

parent is activated. 

Preliminary Traversal Operations 

ACTIVATE(t) 
Begin the performance of node "t" by placing it in the 
table of active nodes. Set the direction of "t" to 
DOWN. 

END_OF_LIST(t) 
Returns TRUE if the node "t" is the last sibling in a 
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list of nodes. 

ROOT(t) 
Returns TRUE if the node "t" is the root node of the 
play tree. 

In the Traversal Algorithm, ''t" is the node from the 

active node table. It has just completed its activation, 

and is used to locate the next node to activate. 

Traversal Algorithm 

1. if t.direction is UP or t is a leaf node then 

1.1 if t.repeats > 1 then 

1.1.1 t.repeats := t.repeats - 1 

1.1.2 ACTIVATE(t) 

1.2 else if ROOT(t) then 

1.2.1 done 

1.3 else 

1.3.1 t.direction := UP 

1.3.2 if t.parent is a part then 

1.3.2.1 if END_OF_LIST(t) then 

1.3.2.1.1 ACTIVATE(t.parent) 

1.3.2.1.2 t.parent.direction := UP 

1.3.2.2 else 

1.3.2.2.1 ACTIVATE(t.sibling) 

1.3.3 else 

1.3.3.1 t.parent.semaphore 
:= t.parent.semaphore - 1 
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1.3.3.2 if t.parent.semaphore = 0 then 

1.3.3.2.1 ACTIVATE(t.parent) 

1.3.3.2.2 t.parent.direction := UP 

2. else 

2.1 if t is a part then 

2.1.1 ACTIVATE(t.child) 

2.2 else 

2.2.1 if t is a section then 

2.2.1.1 for each child of t 

2.2.1.1.1 ACTIVATE(child) 

4.4.3. Algorithm Example 

To illustrate the traversal algorithm, a simple example 

is given in listing 4-11. In the following discussion, a 

number in parenthesis refers to a step as listed in the 

Traversal Algorithm. 

In addition to building the play tree, another of the 

preliminary operations performed before play actually begins 

is placing the root node in the table of active nodes; so 

when the traversal algorithm is first called, it is to find 

the node which succeeds the root. In this example, Traverse 

is the root node. It is a part (2.1), and so, Section. 
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Listing 4-11: Traversal Example 

PHRASE 
Trackl, 
Track2, 
Track3: 

PROC Section = 
PAR 
Trackl() 
Track2(): 

PROC Traverse = 
SEQ 
Section( ) 
Track3( repeat = 2 ): 

being the eldest child, is activated (2.1.1). 

Section contains no MIDI data, so a new request is 

generated immediately. Since Section is a section node 

(2.2.1), its two children, Trackl and Track2, are 

simultaneously activated (2.2.1.1). As long as Trackl and 

Track2 contain data, the traversal algorithm is not called. 

Assuming that Trackl completes first, the semaphore of 

its parent, Section. is decremented (1.3.3.1) and the 

traversal algorithm does not install a new node. When 

Track2 terminates, Section's semaphore is zero, so Section 

is activated with its direction set to UP (1.3.3.2.2). 

The next invocation of the traversal algorithm receives 

Section as the input node. Its direction is UP and its 

parent is a part (1.3.2). It is not the last sibling, so 
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Track3 is activated (1.3.2.2.1). When Track3 has played all 

its data, its repeat count is decremented (1.1.1) and it is 

reactivated. 

At the next node request, Track3 is found to be the 

last sibling (1.3.2.1) and its parent, Traverse, is 

activated. Since Traverse is the root node, the next node 

request signals the end of play (1.2.1). 



Chapter Five 

Evaluation and Future Enhancements 

5.1. Overview 

The author has implemented a sequencer which 

incorporates functions for creating and manipulating 

high-level music structures. A defined structure may then be 

performed in real-time. The program requires an IBM-PC or 

compatible computer equipped with a Roland MPU-401 MIDI 

Processing Unit or compatible interface. 

The sequencer was built as an aid in developing this 

thesis. It has made several contributions. Its design was 

instrumental in developing the data structures and algorithm 

presented in chapter four. Its correct operation verifies 

the suitability of the material of chapter four. Finally, it 

provides a means to examine this paper's hypothesis which is 

69 
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stated below. 

An effective environment for the development of 
musical compositions must allow the creation and 
manipulation of high-level musical constructs. 

Any legitimate evaluation of the program must be based 

upon significant use by more than one person. As the program 

has not been adequately tested for "an effective 

environment", its effectiveness in implementing the two 

musical examples presented throughout this text, Prelude and 

Canon. are discussed. In addition, future enhancements are 

discussed which include appropriate interfaces and 

performance directives. 

5.2. Two Examples 

Prelude and Canon, the two examples that have been 

developed throughout this paper, can be implemented on this 

project's sequencer directly from the listings given in 

chapter two. However, the implementation of each may be 

simplified. The KinqsTheme and the Violinl part of the 

Canon. each contain a phrase repeated three times. Instead 

of explicitly listing each repetition, the repeat attribute 

can be attached to the initial phrase invocation. This 

change simplifies and clarifies the structure. The result is 

given in listing 5-12. The four beats of rest, which begins 

Violinl, may be created in two different ways; (1) by going 
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into record mode for four beats without receiving any MIDI 

data from an external MIDI instrument, (2) by using the 

built-in rest function. This function is useful whenever 

some duration of silence is needed. It creates a track which 

contains silence information. This track is subject to the 

same operations as any other track, although certain 

operations, such as transposition, are meaningless. 

Listing 5-12: Canon, with repeats 

PHRASE 
Theme, —written by King Frederick the Great 
Violin, —canonical voice 
FirstNote: —first note of the Theme, needed for ending 

PROC KingsTheme = 
SEQ 
Theme( repeat = 3 ) 
FirstNote(): 

PROC Violinl = 
SEQ 
Violin( repeat = 3 ): 

PROC Violin2 = 
SEQ 
rest(4) —four beats of silence 
Violinl(): 

PROC Canon = 
PAR 
KingsTheme() 
Violinl() 
Violin2(): 

The implementation of attributes allows the low-level 

structures of the Prelude to be simplified. The phrases, x2 

and x3, are merely transpositions of x. Utilizing the 



72 

transposition attribute reduces the amount of raw material 

that must be created for this composition. The high-level 

structures shown in chapter two are modified by adding the 

repeat attribute. The resulting structures are given in 

listing 5-13. 

This points out a strength of the hierarchical approach 

to composition using sequencers: major structural 

modifications are easy to make. A change made at any level 

is reflected throughout the composition. A useful 

application is in designing the structure of a composition, 

but only doing a rough sketch of the actual track material. 

When track data is perfected, it can be easily substituted 

for the original sketch. A function, assign, is included in 

the author's sequencer to facilitate this type of operation. 

It replaces the track data of one track with the data of 

another without changing the name of the original track. In 

this way, when an improved version of a track is created, 

one simple operation will globally substitute its data for 

the original throughout a composition. 

5.3. Interface 

Most sequencers are primarily multi-track tape 

recorders modeled in software. This is most evident in 

those with graphics-oriented interfaces; the screen is often 

a replica of a tape recorder, complete with buttons to 
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Listing 5-13: Prelude, with transposition 

PHRASE 
x, —left hand two note motive 
y: —right hand two note motive 

PROC a' = 
SEQ 

x() 
Y () : 

PROC b' = 
SEQ 
x( transpose = 2 ) 
Y( ) : 

PROC c' = 
SEQ 
x( transpose = 3 ) 
Y( ) : 

PROC a = 
SEQ 
a'( repeat = 4 ): 

PROC b = 
SEQ 
b'( repeat = 4 ): 

PROC c = 
SEQ 
c'( repeat = 4 ): 

PROC B = 
SEQ 

a ( )  
b() 
c ( )  
b() 
a () : 

PROC Prelude = 
SEQ 
B () 

activate play, rewind, and record functions. An easily 
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recognizable model provides a comfortable environment and 

reduces the time needed to learn to operate the sequencer. 

The limitations of these models as a compositional tool have 

been discussed. 

This thesis arose from the need to resolve the conflict 

between creating a hierarchical music structure and the 

single dimensional concepts, which are so prevalent, for 

realizing these structures. A question must be asked: In the 

face of the apparent superior flexibility and organizational 

power of a hierarchically-based sequencer, why have these 

ideas not been implemented in commercial sequencer products? 

During the course of this investigation, designing the 

interface in particular, a partial answer was uncovered. 

Representing multi-dimensional information in the confines 

of a computer monitor is not an easy task. The act of 

composition involves many conceptual jumps between 

foreground, background and intermediate levels of 

structure [Laske 1978]. The composer is able to make these 

jumps instantaneously, the computer, however, is not. It is 

not likely that all necessary information can be available 

on the computer screen at the same time. It is probable that 

the lack of a sufficiently intuitive interface between the 

composer and the computer is largely responsible for the 

dearth of sequencers which go beyond the tape recorder 
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analogy. 

The sequencer developed for this thesis does not 

adequately solve the above interface problems. Two 

alternative approaches to the project's interface are 

discussed below. 

5.3.1. Programming Language Interface 

The examples of music structures presented in this 

paper have been based on the Occam language. It was chosen 

because it has a syntax which represents concurrent, as well 

as sequential, processes. Also, as with other block 

structured languages, the program structure reveals a 

hierarchical organization such as that found in music 

structures. While Occam is probably not suited as a music 

structure language, it is desirable to have such a language. 

An integrated system where program text was entered with a 

text editor, compiled, and performed by a sequencer might be 

a suitable music development environment. All necessary 

information would be available in the program text. The 

problem is, of course, developing a music-definition 

language. 
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5.3.2. Graphics Interface 

A more intuitive approach to representing a structure 

is to depict it graphically on the screen. Iconic interfaces 

are quite common on microcomputers. With the addition of a 

mouse as an input device, the command language can be 

removed from structure manipulations and replaced with a 

simpler point, drag and click input language. Since the 

music structure being represented is a tree, the structure 

creation process may involve constructing a tree, similar to 

the tree constructed in the previous chapter, on the 

computer screen. Each node of the tree is one of the 

structure types, phrase, part, or section. Vital 

information, such as structure name and associated 

attributes, may be displayed within the node. 

A windowing environment may provide a convenient 

program interface. Each window contains the definition of a 

substructure. The definitions may be entered as a 

programming language similar to the listings presented in 

this paper or the tree may be constructed by dragging 

structure icons into the window. Multiple windows allow any 

portion of the structure to be visible or hidden as required 

by the composer. 

A carefully designed input language or graphics 

interface could significantly enhance the control the 
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composer has over shaping the musical materials. 

5.4. Performance Directives 

Performance directives were described in chapter three. 

The most rudimentary performance directive has been 

implemented in the sequencer built for this study; a master 

tempo control. A flexible and powerful set of performance 

directives would greatly enhance the usefulness of a 

sequencer. 

Performance directives may contain MIDI messages that 

are not normally found in a recorded track, such as system 

exclusive information. They may contain MIDI messages, such 

as program change messages, that are more conveniently 

included after the track has been recorded. Conductor 

information, such as tempo control, are also included in 

performance directives. A list of useful performance 

directives is given below. 

Performance Directives 

control change 
The control change command sends a control setting for 
a specified controller. At the end of a performance, 
this command may be sent to set controllers, such as 
modulation and pitch-bend, to their default settings in 
preparation for the next performance. 

metronome 
The audible metronome may be activated or deactivated 
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at a particular point in the music. 

overdub 
The overdub command turns recording on or off at a 
specified point during play. This is similar to the 
punch-in/punch-out command, but does not overwrite any 
existing track information. 

program change 
The program change command is useful for quickly 
changing voice settings on a MIDI instrument. Many 
signal processors also respond to program change 
messages. 

system exclusive message 
A system exclusive message may be sent. This may be 
used to change a parameter setting of an instrument or, 
before play begins, to send voice definition 
information to the instruments in the MIDI system. 

tempo 
The tempo command can set either an absolute or a 
relative tempo. An absolute tempo is specified in 
beats per minute. A relative tempo change sets a new 
tempo to some ratio of the current tempo. 

The requirements for the behavior of performance 

directives make them similar to attributes in some ways, but 

with significant differences. It is desirable to attach a 

performance directive, or a group of performance directives, 

to a structure just like an attribute. The performance 

directives are activated when the structure begins its 

execution. In this way, a program change message may select 

a different voice on a synthesizer at the beginning of a new 

section. 

The attributes which have previously been defined all 

act upon existing data. Transposition modifies the pitch of 
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recorded MIDI note events, muting substitutes silence 

information for note data, etc. Performance directives 

contain their own data to be output. This may be a MIDI 

message or it may be control information, such as a tempo 

change. Thus, their internal representation and their 

execution must differ from that of attributes. 

MIDI systems may be configured in many ways. The 

configuration of a large system may require that a great 

deal of setup data be transmitted. It is convenient to have 

the setup information for each instrument in the system 

grouped together as when configuring the system for a 

particular composition or series of compositions. For this 

application, performance directives may defined as 

independent entities. They may then be "performed" as a 

music structure is performed, but setup information rather 

than note data is transmitted. 
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