
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1987

Creation and performance of music structures Creation and performance of music structures

Charles J. Zacky
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Zacky, Charles J., "Creation and performance of music structures" (1987). Graduate Student Theses,
Dissertations, & Professional Papers. 1933.
https://scholarworks.umt.edu/etd/1933

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F1933&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/1933?utm_source=scholarworks.umt.edu%2Fetd%2F1933&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976

THIS IS AN UNPUBLISHED MANUSCRIPT IN WHICH COPYRIGHT
SUBSISTS. ANY FURTHER REPRINTING OF ITS CONTENTS MUST BE
APPROVED BY THE AUTHOR,

I^TANSFIELD LIBRARY
UNIVERSITY OF MONTANA
DATE : 19 87

THE CREATION AND PERFORMANCE
OF

MUSIC STRUCTURES

Charles J. Zacky

B.A., University of California, 1974
M.M., University of Montana, 1983

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

University of Montana

1987

Approved by

Chairman,Board of Examiners

Date

UMI Number: EP35196

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
»-UMMnsnn rUDMning

UMI EP35196

Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Zacky, Charles J., M.S., Dec. 1987 Computer Science

The Creation and Performance of
Music Structures (85 + iv pp.)

Director: Spencer L. Manlove S OV\

Recent years have witnessed the development of
microprocessor-based musical instruments. More
recently, a communications specification has been
developed allowing these instruments to be networked
together. The Musical Instrument Digital Interface
(MIDI) specification has resulted in the development of
hardware and software systems designed to play and
record data generated by these digital instruments.
Systems that record and play MIDI data are called
sequencers.
A musical composition is a hierarchy of structures.

Current sequencer technology focuses on the objects at
the bottom of the hierarchy, notes and phrases. The
design of a composition requires the creation and
manipulation of structures at all levels of the
hierarchy. Therefore, an effective environment for the
development of musical compositions must allow the
creation and manipulation of high-level musical
constructs.
An approach to the definition and performance of

music structures is presented. Abstract data structures
and operations on them are defined which provide for
the creation of music structures. For performance,
these data structures are transformed into a tree which
more directly represents the hierarchical nature of the
music. The tree is traversed during the performance,
each node representing a part of the music structure.
The contents of a tree node and its attendant
operations are defined. An algorithm for traversing the
tree during performance is presented.

ii

Acknowledgments

Special thanks to Professor Patrick C. Williams of the

Music Department, Jerry Durrin, owner of Bitterroot Music,

Philip E. Rosine, and Douglas F. Marsh.

This effort is dedicated to my mother and to the memory

of my father.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

1 Background 1

2 Music Structure 15

3 Sequencer Structure 29

4 Definition and Performance of Music Structures 4 6

5 Evaluation and Future Enhancements 69

Appendix 80

Bibliography 84

iv

Chapter One

Background

1.1. Thesis Overview

This paper discusses a means to organize and manipulate

abstract musical structures and to realize these structures

in real-time.

Electro-acoustic hardware has evolved from its

formative stages. The variety and sophistication of

electronic instruments make possible the development of

software systems which can concentrate on high-level

functions rather than low-level control. The current

technological milieu, of both hardware and software, from

which this project developed is discussed.

A model of musical structure is presented which

reflects the hierarchical nature of music and which reflects

a constructive approach as used by those who compose music.

1

2

A notation to represent musical structures is introduced and

illustrative examples are developed.

The sequencer is a tool for recording, manipulating,

and performing music. Current trends in sequencer design are

examined. A model is presented which is constructed by

associating sequencer functions with the various levels of

musical structure. A case study examines an existing

sequencer in terms of the model presented.

The requirements for a compositional tool which

provides functions for the creation and manipulation of

abstract musical structures is presented. It is examined in

terms of its representation of the musical structures

previously presented and compared with the sequencer model

for functionality.

1.2. Chapter Overview

In recent years, microprocessor technology has

permeated the electronic music industry, giving rise to a

plethora of microprocessor-based devices. Some of these

devices are sound producing instruments, others act as

controllers or signal processors. The result is that the

music technologist of today has music-producing tools of

great power available. In response to the development of

intelligent instruments, a digital communications

3

specification has been developed which allows dissimilar

devices to be interfaced into a single system. This Musical

Instrument Digital Interface (MIDI) specification not only

provides for the connecting of MIDI-based equipment, but

also allows a computer to be part of a MIDI system.

1.3. MIDI Instruments

MIDI instruments can be classified into three broad

categories; sound generators, controllers, and signal

processors. Sound generators are the most familiar MIDI

instrument. The sound may be created by one of two methods,

synthesis or sampling. A synthesizer contains oscillators

which generate periodic waveforms such as sine, square, or

triangle waves. These waves are manipulated and combined

by other circuitry to produce complex audio signals. A

digital sampling instrument is like a digital tape recorder

in that it digitizes audio signals directly. In general, a

sampler has less sound modification functions than does a

synthesizer. Samplers are useful primarily for reproducing

existing sounds, whereas synthesizers are more flexible in

producing new sounds.

There are a great number of synthesizers available.

Product uniqueness is partially derived from functionality

but more fundamental is the uniqueness of sounds which the

4

synthesizer is able to generate. There are several methods

of synthesis currently in use: frequency modulation (FM),

additive synthesis, linear arithmetic synthesis, phase

distortion, wavetable synthesis, pulse code modulation,

subtractive synthesis, and structured adaptive synthesis.

Sampling instruments are characterized by the large

amounts of memory which must hold digitized audio signals.

Two or more megabytes of RAM is not uncommon on low-end

instruments with 8 to 50 megabytes1 available for more

expensive products.

A class of instruments which do not include sound

generation capabilities but specialize in sending MIDI data

to sound sources are called controllers. As the name

implies, they control or drive the devices connected to

their outputs. Controllers are played in real-time and

usually take the form of traditional instruments. The most

common controller is the keyboard controller. Other

controllers include guitar controllers, wind controllers

which resemble clarinets, and percussion controllers.

Related to controllers, in that they do not generate

sound directly, are sequencers. Whereas controllers resemble

[1] The Fairlight Series III has 50 megabytes of RAM, a 600
megabyte hard disk, a 400 megabyte optical storage and
a price tag of $175,000.

5

standard instruments, sequencers can be compared to tape

recorders. They store MIDI data for later playback. In

addition to recording and playback functions, sequencers

offer editing functions. Editing is usually accomplished on

two levels, event editing and track editing. Event editing

allows modification of individual parameters such as the

pitch of a single note. The scope of track-level editing is

an entire track. Transposing the pitch of an entire track is

an example of a track-level operation.

Signal processors are not new to the electronic music

field. In the past they were exclusively analog devices but

today are primarily digital. Signal processors are effects

devices which produce effects such as reverberation, delay,

echo, chorus, flange, distortion, tremolo, stereo panning,

compression, and equalization. The most common type of MIDI

implementation in signal processors is the ability to call

up a predefined effects configuration. Some devices allow

the modification of variable parameters through MIDI

messages.

MIDI processors are a class of device which includes

switchers, mergers, channelizers, converters, and filters.

These devices function as modifiers of the MIDI data stream.

For example, it is often desirable to reduce bandwidth by

6

filtering out certain types of controller messages.

Synchronizers are used to lock machines together which

use differing timing formats. A sequencer and drum machine

need to be synchronized to a tape recorder in order to

record multiple tracks. For film production, MIDI

instruments must be locked with video tape recorders.

Performers combining sequenced and nonsequenced material

during live performance have devices which translate audio

signals into MIDI clock messages enabling the machines to

follow the human performers rather than vice versa.

The computer/MIDI interface primarily converts the

computer output to the MIDI data rate of 31.25 kilobaud.

Timing information is often handled by the interface.

Interfaces are of two types, dumb or intelligent. The dumb

interface handles the conversion to the MIDI data rate.

Intelligent interfaces manage the data stream in various

ways such as filtering unwanted information.

1.4. MIDI

The Musical Instrument Digital Interface is a hardware

and software specification defined by the major synthesizer

manufacturers Kawai, Korg, Roland, Sequential, and Yamaha in

a meeting held in Japan in August 1983 [Cooper 1986]. A year

of discussion by these and other manufacturers preceded this

7

meeting. The MIDI specification allows electronic

instruments of different manufacturers to be connected

together by the MIDI hardware specification and to

communicate with each other by the MIDI software

specification. This communication is necessary as even a

modest MIDI system will have several components which must

interact in real-time. The software specification presents a

protocol for the distribution of musical data. This takes

the form of a command byte optionally followed by data

bytes. It is important to note that digital representations

of analog signals is not the information which is sent over

the MIDI bus2, but rather it is control information

directing a device to perform some action.

The MIDI command structure is outlined in figure 1-1.

It is broadly divided into two categories, channel messages

and system messages. System messages are received by all

devices in the message's path. Channel messages have an

encoding which specifies one of sixteen channels. The

individual devices in the data chain may be configured to

respond to a single channel. Thus, a single device or group

of devices may be addressed.

[2] Waveform information such as that used by a digital
sampling instrument can be sent over the MIDI bus, but
this is different from sending a digitized audio signal
for real-time processing.

8

Fig. l-l: MIDI Command Structure

I. Channel Messages

A. Voice

1. Note-Off
2. Note-On
3. Polyphonic After-Touch
4. Control Change
5. Program Change
6. Channel After-Touch
7. Pitch-Bend

B. Mode

1. Local Control
2. All Notes Off
3. Omni Off
4. Omni On
5. Mono Mode
6. Poly Mode

II. System Messages

A. Common

1. Song Position Pointer
2. Song Select
3. Tune Request
4. End of System Exclusive

B. Real-Time

1. Timing Clock
2. Start
3. Continue
4. Active Sensing
5. System Reset

C. System Exclusive

The channel voice messages make up the bulk of the MIDI

data that is transmitted as they specify the primitive

9

elements of musical material, such as pitch, loudness and

sound modifiers. A basic element of music is pitch. The

channel voice messages provide two pitch-related commands,

Note-On and Note-Off. A component of each of these commands

is a note number in the range 0 to 127. Note number 60

corresponds to middle-C on the piano keyboard. The note

number does not actually represent a specific pitch, but

rather refers to a key on the keyboard. The actual pitch

depends on the setup of the sounding device. The final data

byte following the Note-On/Off commands indicates the

velocity with which the note is struck or released. This

produces gradations in volume such as accent, diminuendo, or

crescendo.

Two sound modifier commands effect notes which have

already been struck and are currently being held.

Polyphonic Key After-Touch requires two data bytes to

specify a key number and a pressure value. Channel

After-Touch requires only a pressure value as it establishes

one overall level for the entire keyboard. The pressure

value may represent various parameters such as volume level,

modulation level, low frequency oscillator (LFO) speed, or

timbre depending upon the receiver's configuration.

Control Change implements a wide range of functions.

The data bytes which follow this message specify a

10

controller number and a controller position. This command

allows physical knobs, dials and buttons on an instrument to

be set under software control. Of the 128 possible

controller numbers, a few are defined by the MIDI

specification, others may be defined by individual

manufacturers for particular devices. Some of the

predefined controllers include the modulation wheel, breath

controller, main volume, portamento time, sustain pedal,

data increment, and data decrement.

As MIDI usage has evolved, the limitations of the

original specification have become apparent. One such

limitation is the limit of 128 addressable controllers. A

very recent extension to the MIDI specification has greatly

expanded the number of addressable controllers [Cooper

1987]. This new area of controllers is divided into two

main groups, registered and non-registered. Registered

controller numbers must be approved by the MIDI

Manufacturers Association (MMA) and the Japanese MIDI

Standards Committee (JMSC). The non-registered controller

numbers are available to manufacturers to be used as they

wish. Over 16,000 controller numbers are now available in

each of the newly defined controller areas. This was

accomplished by setting aside four of the previously

undefined Control Change numbers. Two numbers specify the

least significant byte (LSB) and most significant byte (MSB)

11

of a non-registered controller number and two specify the

LSB and MSB of a registered controller number. This gives

14 bits of resolution and thus 16,384 possible controllers.

As MIDI usage has become widespread, MIDI has been

implemented on devices that had not been considered before.

A mixing console used in a recording studio or for live

performance has many parameters that must be varied during

the course of the performance. A lighting controller may

have several hundred parameters which control a multitude of

lights. MIDI provides a way to automate the operation of

both of these devices and others such as home control

systems. Examples such as these prompted the expansion of

the MIDI specification.

The single data byte following a Program Change message

selects a particular patch or voice number in an instrument.

A patch contains the timbre or tone color that a sound

producing instrument will use. The patches are stored in

memory and are referenced by a patch number. This approach

is very general, as the voice defining parameters need not

be transmitted, but rather a predefined voice is selected.

Pitch-Bend is actually a controller but was given its

own command. The two data bytes which follow this command

indicate the position of the pitch wheel. As data bytes

12

always have the eighth bit clear, this gives 14 bits of

resolution. This increased resolution may be the reason it

was given its own controller status. Pitch-bend is the

process of gradually altering the pitch of a note or group

of notes. Examples of pitch-bend are a trombonist sliding

up to a note or a guitarist bending a string.

Channel Mode messages are configuration commands which

determine which channel the receiver will respond to. Omni

On mode allows the receiver to respond to voice messages on

all channels. Omni Off mode requires the receiver to

respond to only one transmitted channel.

MIDI Real-Time messages provide a means to synchronize

devices in a MIDI system. Usually, one instrument is

designated as the system clock with the other instruments

slaved to it. The Timing Clock is a pulse which is sent at a

rate of 24 clocks per quarter note. Thus, it determines the

tempo of the system. Instruments which contain sequencing

functions such as sequencers and drum machines can lock onto

the system clock. Other Real-Time commands allow a system to

Start and Stop together as well as resume (Continue) from

the location of the most recent Stop command.

The original MIDI specification has no provision for

the timing of events. Any automated electronic device which

sends MIDI data as control information must provide its own

13

format for handling absolute time information. MIDI systems

have become commonplace in the film scoring and television

industries. These industries have a code (SMPTE time code)

that has been in use which specifies absolute time intervals

between events. This is used to synchronize music and sound

effects to film. Recently (April 1987), an extension to

MIDI called the MIDI Time Code (MTC) was approved. MTC

defines a specification for absolute time intervals. This

is used in interfacing MIDI instruments with SMPTE devices.

System Exclusive messages provide a flexible and

open-ended means to implement a variety of MIDI functions.

Each manufacturer defines the system exclusive codes that

will be used by their instruments. It consists of a header

which includes the manufacturer's identification number, a

variable number of data bytes, and an End of Exclusive byte

which terminates the message.

Nearly all MIDI instruments store configurations such

as voice definitions or data such as drum machine patterns

in random access memory. System Exclusive messages provide

a means whereby the contents of memory can be downloaded to

an external storage device. Many MIDI implementations

contain System Exclusive codes which duplicate the functions

provided by front panel controls. Voice librarian software

uses these MIDI functions to allow voice definitions to be

14

entered at a computer which can have a much friendlier

interface.

Chapter Two

Music Structure

2.1. Overview

Music has structure. Structure is evident in the

melodies of children's nursery rhymes which repeat for each

new verse. Structure is evident in the organization of the

movements in a Haydn symphony. Throughout music history,

composers have written structured music. Many of the

archetypical musical structures have been formalized by

theorists and studied by music students. Forms such as the

isorhythmic motet, sonata-allegro, rondo, and fugue are a

part of the modern composer's knowledge base. These formal

structures point out the hierarchical nature of music. The

specific formal structures which have been created during

the course of music's history are not the particular concern

of this chapter. Rather, it is the notion of the hierarchy

that these structures imply which is discussed here. The

15

16

concern is how the structures are put together. What are the

pieces and how are they arranged?

2.2. Components of Musical Structure

The primitive element of the musical hierarchy is the

note. The note is multi-dimensional as it is composed of

several elements which exist and may vary in time. A note

has duration. Duration implies an onset time and a

termination time. The duration is, of course, the time in

between these two events. Thus a note exists in time. A

note has pitch. This is a fundamental attribute. A note will

often be abstracted to its pitch as when doing a harmonic

analysis. Pitch remains relatively constant for the

duration of the note although minor fluctuations are common,

as when a violinist adds vibrato to a held note. For a note

to be perceived, it must have some volume, so loudness is

another element of a note. A note's loudness need not

remain constant for its duration. Finally, the note must be

produced by some sound source, so it must have a timbre.

Timbre is the characteristic quality of a sound which

distinguishes one instrument from another.

A phrase is defined as a division of the musical line,

comparable to a sentence of prose [Apel 1972]. In formal

music study, there are many types of phrases. The technical

17

definition of phrase is not important here. A merely

descriptive definition will suffice. A collection of notes

which are heard sequentially, expressing a complete thought,

and which are usually performed by a single instrument is

called a phrase. Phrases are defined in terms of notes, and

thus constitute the next level of the musical hierarchy.

Phrase attributes are determined by the attributes of

its individual members. If each successive note in a phrase

is slightly louder than the previous note, the phrase

gradually crescendos.

A collection of phrases is called a part, the next

level of the hierarchy. What the trumpet plays during a

composition is the trumpet part, the violin plays the violin

part, etc. This is an obvious and somewhat insubstantial

definition, but it nevertheless describes an existing

phenomena and is a necessary component of musical structure.

The distinction between a phrase and a part is vague, as a

part may consist of a single phrase.

The note and the phrase may be thought of as the

primitive structures, out of which the higher-level

structures are composed. What makes a structure high-level

is its ability to be defined in terms of other structures of

the same type. A phrase is always concatenated notes but a

part is a concatenation of phrases and other parts. As an

18

illustration, assume four phrases are concatenated. This

could be described as one part composed of four phrases, or

one part composed of two subparts which are each composed of

two phrases, etc. The distinction is merely one of intent

and descriptive convenience.

It is difficult to give attributes to parts as they may

vary greatly over the course of the composition. A general

observation is that a part is performed by a single

instrument.

So far, only sequential structures have been

considered; a phrase is a series of one or more notes, a

part consists of the concatenation of phrases. Music is more

than the succession of individual notes. A string quartet

has four performers who often play simultaneously. An

orchestra may sound many notes at the same time. A

collection of parts sounding concurrently constitutes the

next level of the music hierarchy, the section. A piece of

music may contain several sections, as in a song which

alternates between verse and chorus, or a symphony whose

movements could each be considered a section.

2.3. Notation

A means of visually representing music structures is

necessary for further discussion. Computer programs have

19

structure. A well written program can be read from the top

down, each level filling in more detail. Just as a part is

made up of phrases, so a module is defined by references to

lower level modules. A program written for a computer in a

structured language is a hierarchical structure. The

similarities between program structure and music structure

indicate that a programming language may be an expressive

medium for musical structures3. Parts and sections are

differentiated primarily by their temporal characteristics;

parts are sequential structures, sections are parallel

structures. A programming language must have constructs

which express concurrency as well as sequential structures.

The musical examples presented in this paper are given in a

psuedo-code based on the Occam language [Pountain 1984].

The basic unit of the Occam language is a "process"

which performs a sequence of actions. The PROC keyword

begins the declaration of a process. For the structural

description language contained herein, a process contains

the information necessary to perform some part of the

musical hierarchy. What appears as a procedure call in a

traditional language, is actually an invocation of a

[3] This is verified by the existence of several
music-description languages. See [Byrd 1974, Gourlay
1986, Maxwell 1984, Smith 1973].

20

substructure to begin its performance.

Notes are the foreground of music. They are

responsible for nuance and detail. However, the domain of

structure is background, the large-scale movement of music.

So, notes are not included in the representations to follow.

Phrases, parts and sections are all assumed to be made up of

notes at the lowest level.

We assume the existence of a primitive type, PHRASE,

which is the same phrase structure described above. The

contents of each PHRASE type is described in a comment when

it is declared and given in traditional music notation in

the appendix.

A sequential structure represents a part and a parallel

structure represents a section as previously defined. For

structural clarity and continuity with developments in later

chapters, a substructure is either a parallel event or a

sequential event. The two types of processes are not mixed

together. More concretely, a process declaration contains

either the keyword SEQ or the keyword PAR but not both.

Listing 2-1 shows how parts are represented. To

indicate their sequential nature, the SEQ construct is used.

The invocations following the SEQ keyword are executed in

sequential order. In this example, the parent node, Part.

21

is realized by first performing its first child, A. When the

first child has completed, the second child, B, is begun.

The completion of the last child signals the termination of

the parent. The colon indicates the end of the declaration.

Listing 2-1: part representation

PROC Part =
SEQ

A()
B () :

Listing 2-2 illustrates a section node. The processes

following a PAR keyword are executed concurrently. To

realize the parent, Section, all its children are begun at

the same moment. The parent is completed when all its

children have completed.

Listing 2-2: section representation

PROC Section =
PAR
A()
B():

Attributes may be attached to each invocation of a

structure. Attributes will be more thoroughly discussed in

later chapters. When an attribute, other than the default,

is associated with a structure invocation, it is indicated

by naming the attribute as an argument and assigning it a

value. Listing 2-3 shows that A is played twice and that B

22

is transposed up three semitones.

Listing 2-3: attribute assignment

PROC Attributes =
SEQ
A(repeat = 2)
B(transpose = 3):

Listing 2-4 presents a complete example4 which includes

each type of structure. The example represents the structure

of a major scale, played one octave ascending and

descending, harmonized at the minor sixth below. The

primitive elements, phrases, each consist of a one octave

scale, ascending or descending.

Working from the highest level down, the root process,

Scale. is composed of two processes, Up and Down, played in

sequence. These structures are the harmonized scale,

ascending and descending. The process Up, which is the

harmonized ascending scale, consists of the two PHRASES

TonicUp and SixthUp performed concurrently. Likewise, the

structure Down is composed of TonicDown and SixthDown played

concurrently.

Note that the representation for a structure need not

be unique. Alternative descriptions exist and may be chosen

[4] The appendix provides traditional music notation for
several examples presented in this chapter.

23

Listing 2-4: Scale

PHRASE
TonicUp,
TonicDown,
SixthUp,
SixthDown:

PROC Up =
PAR
TonicUp()
SixthUp():

PROC Down =
PAR
TonicDown()
SixthDown():

PROC Scale =
SEQ
Up()
Down() :

for their clarity and expressiveness. Listing 2-5 shows the

previous example, but emphasizes the harmony (Tonic and

Sixth are high-level nodes), whereas the previous figure

emphasized the up and down motion.

2.4. Two Examples

The next two examples will further illustrate the use

of a structural description language to represent music

structures. Later chapters will refer to and expand upon

the examples presented in this section. The examples have

been chosen for their brevity and simplicity. They each

address different problems in organizing music, as will be

—a major scale ascending one octave.
—the same major scale descending one octave.
—TonicUp harmonized a minor sixth below.
—TonicDown harmonized a minor sixth below.

24

Listing 2-5: ScaleHarmony

PHRASE
TonicUp,
TonicDown,
SixthUp,
S ixthDown:

PROC Tonic =
SEQ
TonicUp()
TonicDown() :

PROC Sixth =
SEQ
SixthUp()
SixthDown():

PROC ScaleHarmony =
PAR
Tonic()
Sixth():

demonstrated in later chapters.

The first example is a piano prelude. It is a

monophonic composition and so, contains only sequential

structures. Taking a top-down approach, the high-level

structures are presented in listing 2-6. The prelude is a

tripartite form, ABA. For brevity, only the B part is

detailed here. The B part forms a triangular-shaped

symmetrical structure, abcba. Each of its component parts is

composed of four iterations of an individual substructure.

—a major scale ascending one octave.
—the same major scale descending one octave.
—TonicUp harmonized a minor sixth below.
—TonicDown harmonized a minor sixth below.

25

Listing 2-6: Prelude, C.J. Zacky, high-level structures

PROC a =
SEQ

a'()
a'O
a'O
a'() :

PROC b =
SEQ

b'()
b'O
b'O
b' () :

PROC c =
SEQ

c'()
c' 0
c'O
c'() :

PROC B =
SEQ

a()
b ()
c()
b ()
a () :

PROC A =
SEQ

PROC Prelude =
SEQ
A()
BO
A() :

Listing 2-7 shows the contents of the low-level

structures. Each of the lowest level routines from the

26

previous listing, a/, b^_, and cl, are similar in structure;

the concatenation of some form of x with the PHRASE y. The

phrases, x and y, contain only two notes each, so the

prelude is an example of creating a relatively large

structure from very few, simple pieces.

PROC a' =
SEQ

x()
Y() :

PROC b' =
SEQ
x2 ()
Y() :

PROC c' =
SEQ

X3()

Y() :

Listing 2-8 is the structure of a canon from The

Musical Offering by Johann Sebastian Bach. A canon is a

polyphonic composition in which a leading voice is strictly

imitated by a following voice or voices. A common type of

canon is the round, of which Three Blind Mice is an example.

The following canon has two imitative voices, played by

violins, set over a third, non-imitative voice, which plays

Listing 2-7: Prelude, low-level structures

PHRASE
X,

Y/
x2,
x3:

—left hand two note motive
—right hand two note motive
—x transposed up 2 semi-tones
—x transposed up 3 semi-tones

27

the theme given to Bach by King Frederick the Great. For

this example, we assume a process called rest, which outputs

silence information for the number of beats contained in its

argument.

Listing 2-8: Canon, J.S. Bach

PHRASE
Theme, —written by King Frederick the Great
Violin, —canonical voice
FirstNote: —first note of the Theme, needed for ending

PROC KingsTheme =
SEQ
Theme()
Theme()
Theme()
FirstNote():

PROC Violinl =
SEQ
Violin()
Violin()
Violin() :

PROC Violin2 =
SEQ
rest(4)
Violinl():

PROC Canon =
PAR
KingsTheme()
Violinl()
Violin2():

It is evident from the top-level module, Canon, that

the canon consists of three parallel events, the king's

theme, and the two violin parts. The module KingsTheme.

contains three repetitions of Theme. In order to provide an

28

ending, the KingsTheme must wrap around to the beginning

again and play the first note of the theme.

The first violin part (Violinl) is straightforward. It

consists of three repetitions of the canonic voice, Violin.

The second violin (Violin2) is the element of interest in

this example. It is the first violin part delayed by four

beats. This creates a temporally overlapping structure in

which Violinl terminates before Violin2. Suppose another

three-voiced structure is concatenated to the end of Canon.

Should its first voice begin execution as soon as the

canon's first voice terminated, thus creating another,

possibly unintentional, overlapping structure? This type of

behavior is addressed in chapter four.

Chapter Three

Sequencer Structure

3.1. Overview

As sequencer technology has advanced, musicians have

adopted it into their collection of tools. It is now an

integral part of many musicians' professional lives. It has

been incorporated into live acts and film scoring. It excels

as a compositional sketch pad, performing many of the same

functions as a multi-track tape recorder but with superior

editing capabilities. It has been compared to both a player

piano and a word processor. It is like a player piano in

that it automatically plays the music which has been

programmed into it. Its music editing capabilities make it

comparable to the use of a word processor in arranging and

29

30

perfecting text.

A sequencer records MIDI data, not audio signals. The

data can then be manipulated in ways not possible with audio

signals. Wrong notes can be corrected. Rhythmic

inaccuracies can be repaired. Music production is no longer

tied so closely to the physical process of performance.

A brief description of what a sequencer is was

presented in chapter one. The present chapter examines

current sequencer technology by examining functions provided

by sequencers. A case study of a commercial sequencer is

presented, followed by a look at its suitability for

programming the examples given in chapter two.

Two new terms are needed in this chapter. They are

related to terminology introduced in chapter two.

An event is a complete MIDI message as described in

chapter one. Just as a note was the primitive element

described in chapter two, a MIDI event is the primitive

element in music generation using MIDI. Notes were described

as single multi-dimensional elements having several

attributes. MIDI has no single event to correspond to a

note. Indeed, it requires two midi messages, Note-On and

Note-Off, to produce a single note. Attributes associated

with notes are shared by several MIDI event messages. For

31

example, to add vibrato to a held note requires controller

data indicating the changing position of the modulation

wheel. Thus, a single note has required a Note-On message,

some number of controller messages, and a Note-Off message.

The idea of a MIDI event is more general than the concept of

a note. MIDI events generally refer to MIDI voice messages,

but all MIDI messages may be considered events.

A track is a sequence of MIDI events. It is a term

inherited from analog tape recorder technology where it

designates one of the parallel recording surfaces put on

magnetic tape during the process of recording. In MIDI

terminology, a track consists primarily of Note-On/Off

events but other note modifying commands may be included. A

track corresponds to the phrase of chapter two where it is a

sequence of MIDI events usually generated by a single

source.

3.2. Sequencer Functions

3.2.1. Input/Output Functions

As the primary function of the sequencer is the

recording and playback of MIDI data, input and output

functions must be provided. Input functions take two forms:

32

real-time and step-time entry.

Real-time entry is similar to the traditional method of

input to a tape recorder. The MIDI instrument is connected

to the sequencer's input and the record standby mode is

activated. After an optional metronome lead-in, the record

mode is activated and the performer begins to play.

Recording may be terminated after a preselected number of

beats or measures, or when a "stop record" command is given.

The material has then been recorded onto a single track in

the sequencer where it is now ready for playback or editing.

Options for real-time input may be available. A

punch-in function may be provided. This is used on a

previously recorded track where a portion of the track is

not acceptable. The track begins to play. When a

preselected point is reached, the track material is muted

and recording automatically begins. The newly recorded

material replaces the prior contents of the selected portion

of the track. This is the same type of punch-in available on

multi-track tape recorders.

Often, only certain types of information, such as

Note-On/Off messages, may be wanted. Controller messages

typically use up a great deal of bandwidth. It may be

desirable to filter these messages from the input stream. A

filter function eliminates selected MIDI messages as they

33

appear at the sequencer input.

Step-time entry is a means of entering MIDI data in

"slow motion". The actual entry mechanism can take different

forms. A MIDI instrument's keyboard can be used to specify

the note numbers, or the sequencer may provide a means of

direct entry without using an external keyboard. A single

duration may be specified in advance with all input notes

taking on that value until another is entered, or each note

may require its duration be entered separately. Step-time is

useful for entering passages too complex for the human

performer.

Output functions allow the performed material to

undergo transformations during playback without affecting

the actual data stored within the sequencer. Tracks may be

selectively muted or unmuted to allow review of only a

portion of the recorded material. Looping causes a section

of data to be repeated continually or for a specified number

of hearings. This is useful for rehearsing a part which will

be recorded in parallel (overdubbed) to the looping

material. It may be desirable to direct output to a

different receiving instrument. Typically, individual

instruments are configured to receive on specified channels

and are configured with different timbres. The ability to

channelize an output stream allows the musician to compare a

34

part played by different voicings by directing output to

another instrument.

3.2.2. Event-Level Functions

The lowest accessible level available for editing is

the event. The friendliness of event-level editing varies

widely. The most primitive is a display of data as a list

of hexadecimal numbers. Other implementations may display

the data as a graph which shows relative durations and

pitches, or infrequently, traditional music notation. In

between these extremes is representing the data as a list,

but instead of hexadecimal numbers, the data is translated

into English and shows what the data represents. A

hypothetical display of a MIDI data stream is shown in

figure 3-2. The first event shows a C in the fifth octave

struck with a velocity of 64 on the first beat of a measure.

The second event shows the release of the previous note on

the second beat. This is still rather primitive but is

probably the most common method of displaying a MIDI data

stream.

Fig. 3-2: Sample MIDI Data Display "

1:00 C 5 64 NoteOn
2:00 C 5 0 NoteOff

Event-level operations include inserting an event into

35

the stream, deleting an event, and modifying one of the data

values such as changing the velocity value.

3.2.3. Track-Level Functions

A common and useful operation to apply to a track is

transposition: the process of shifting all pitches up or

down by the same number of half steps while maintaining

their positions relative to each other. As the sequencer has

no knowledge of tonality, the transposition is real rather

than tonal. Internally, a constant is added to every note

message. Since MIDI recognizes note numbers from 0 to 127,

any transposition which would place a note outside of this

range must be folded back within range. This may be handled

by replacing the out-of-range transposed note with the same

pitch-class but of the nearest octave which is in range.

Quantization is a very powerful function which is used

to correct timing inaccuracies. It may be desirable to have

a passage performed with rhythmic accuracy unobtainable by

the performer or to clean up a rhythmically sloppy

performance. Quantization will cause note onset times to

fall on multiples of the quantization value. If the eighth

note is the quantize value, then all notes will begin on

36

exact multiples of the eighth note.

There are several types of quantization. Note-On

commands may be quantized but the corresponding Note-Off is

not. This will change the duration of the note. It is

possible that a Note-On command moved backward in time will

overlap its corresponding Note-Off. This is a situation

that an 'intelligent' sequencer should be aware of.

The entire note may be moved in line with its

quantization value. The duration remains as it was but the

note is shifted in time. A problem arises with events such

as Pitch-Bend which may occur between the Note-On and

Note-Off. These intervening events can be shifted along

with the note or retained in their original position.

Both Note-On and Note-Off commands may be quantized.

This will either stretch or squeeze a note. Having both the

attack and release times quantized may give the music a

mechanical feel.

Merge is a function that combines several tracks into

one. Some sequencers have only a limited number of

available tracks. When it is necessary to make more

recording passes than there are available tracks, the merge

function can be used to compress the data from several

tracks into one. More information can then be recorded on

37

the free tracks. The ability to merge tracks can be useful

in more creative situations than that described above. One

pass may record only Note-On/Off information. A second pass

may record Pitch-Bend or modulation wheel events. The

controller information can be edited or recorded several

times until it is satisfactory. At this point, it can be

merged with the Note-On/Off information. This allows the

musician to work with isolated types of data, making editing

easier.

Track shift is a function which moves a track

temporally in one direction or the other by a fraction of a

second or fraction of a beat. This is sometimes necessary

to compensate for timing discrepancies when synchronizing to

tape or in large systems where the MIDI signal is passing

through many instruments causing the signal to be delayed by

a small amount. Track shift can be used to introduce an

intentional delay effect by copying a track and playing both

copies back simultaneously but with one track shifted with

respect to the other.

A velocity value is part of the Note-On command. The

velocity gives a relative dynamic to the note. The velocity

values of an entire track may be modified to give a

different dynamic contour. Corresponding to transposition

of notes, scaling adds a constant factor to each velocity

38

value, thereby raising or lowering the overall dynamic level

of the track while maintaining its internal relationships.

The velocity values may be clamped to a single constant

value. The basic contour may be maintained but the overall

dynamic may be compressed or expanded. Finally, the track

may be modified to create smooth crescendos or diminuendos.

A filter function removes unwanted data from the data

stream. Continuous controllers output a great deal of

information. It is often desirable to filter out this

information. Some sequencers allow a percentage of the

specified MIDI message to be removed, thus thinning out the

data. A few sequencers permit the entry of complex search

criteria, such as removing every note above or below a

certain range.

3.2.4. High-Level Functions

Track-level functions are implemented on virtually

every sequencer. Many have some form of event-level

editing. It is rare for a sequencer to have any but the most

basic functions available for manipulating musical data at a

high-level.

Much music is composed of sections that reappear

throughout the composition. An advantage of high-level

editing functions is that these sections may be recorded

39

separately and then rearranged and repeated as necessary by

a pilot track. A pilot track keeps track of the order in

which sections will be performed [Garvin 1987]. Pilot tracks

are usually called link or chain operations. Chaining will

be discussed further in the case study.

3.2.5. Performance Directives

The sequencer performs music in real-time, so in

addition to editing functions, it should include some means

of directing the performance, much like a conductor does.

The most basic performance directive found on a sequencer is

a tempo control. At its most primitive level, a single tempo

may be selected for the duration of the performance. More

advanced implementations allow both sudden and gradual tempo

changes to be specified throughout the music.

Some sequencers record the MIDI data that they receive

without regard to a time signature. Others include measure

information in the track data stream. Time signatures are

important in at least two situations: when a metronome is

used during recording and when editing options are specified

by measure number. In these cases it is important to be

able to vary the time signature. When recording a piece

with multiple time signatures, it is desirable to set up a

click track. The metronome can then produce an accent on the

downbeat of each measure which helps the musician and

40

machine stay synchronized.

3.3. Case Study: Texture by Roger Powell

Texture is a sequencer program written for the IBM-PC

family of computers. For the computer-to-MIDI interface,

Texture requires the Roland MPU-401 MIDI Processing Unit.

Texture was selected for an in-depth look for two reasons.

Most important is its functionality as a sequencer. It

implements an impressive number of the standard sequencer

features as well as going beyond most sequencers in its

implementation of high-level structural manipulation

functions. Second, it has achieved widespread popularity

with both amateur and professional musicians. Jan Hammer,

former keyboardist with Sarah Vaughan, currently uses

Texture in producing the sound track to the Miami Vice

television series [Milano 1987].

3.3.1. Event-Level Functions

Texture provides basic event-level operations such as

insert, delete, and modify values within an event. It has a

match function which will find the Note-Off event that

corresponds to the selected Note-On event and vice versa.

This is useful when deleting a note or modifying its pitch.

There is also a locate function which moves the current

editing position to the specified beat. The Texture event

41

edit display is similar to the above example (figure 3-2).

3.3.2. Track-Level Functions

Certainly one of Texture's strengths is its

implementation of a wide range of track operations.

Following is a list of Texture's track operations with brief

commentary where appropriate.

Advance (track shift)
Blend (merge) tracks
Block Copy: copy data to a new position
Block Move: move data to a new position
Copy
Erase
Fill: replicate data within a track
Filter unwanted MIDI data
Name
Play
Quantize
Scale event start times, note velocities and durations
Splice: append one track to another
Transpose
Undo previous track operation

3.3.3. High-Level Functions

Texture was chosen for this case study because it has

the most complete implementation of high-level functions of

all the sequencers studied. Texture recognizes the

hierarchical nature of music as its organization shows. The

highest level musical structure in Texture is called a song.

Texture can work with one song at a time. A song is

composed of links. Links are a list of patterns which are

42

ordered by the musician. A pattern is made up of tracks.

There are twenty-four tracks per pattern.

We can see that Texture goes beyond the simple

multi-track tape recorder analogy which is so prevalent

among sequencers. It allows the sectional organization of

music. A pattern is the basic section. It can contain up

to twenty-four parallel tracks. Sections can then be linked

together in any order to produce a song. Linking is a

sequential operation. Linked patterns form a list. The

patterns in the list are performed in sequence.

It is appropriate that the highest level structure in

Texture is called a song. Its limited implementation of the

musical hierarchy, not allowing nested structures, lends

itself to composing in the song form.

3.3.4. Performance Directives

Texture offers several performance directives

associated with links. There is a global tempo that is in

force when a song begins play. In addition, each link may

include a relative tempo and rate. A relative tempo change

modifies the tempo by some ratio, such as doubling or

halving the tempo. The rate determines how quickly the

change takes effect, from immediately to very gradually,

thus permitting accelerandos and ritardandos to appear in

43

the music.

A link may be repeated up to 255 times in succession.

A track or group of tracks may be muted within the link. A

link may also have a transposition constant associated with

it.

3.3.5. Texture Application

A good tool gives its user a natural and intuitive

means to express that which must be accomplished. Texture's

format is geared toward composing in song form. The strophic

nature of song form is readily compatible with the

track/pattern/link/song format of Texture. It is

instructive to apply Texture to the two previous examples,

Prelude and Canon. to see what the difficulties are in using

it to piece together music structured in other ways.

The first difficulty is at the phrase level. A Texture

pattern can be between 1 and 545 beats long [Powell 1986].

The two sixteenth note motives, x and y, are each only one

half of a beat in length. The originally conceived structure

must be modified to contain no phrases of less than a single

beat. If the low-level structures of listing 2-7, a/, b^. and

c_l, can be created at the track level, either by real-time

or step-time entry, then the single beat pattern length

requirement will be satisfied. Because Texture does not

44

allow nested structures, the high-level structure of listing

2-6 must also be modified. Essentially, the structure must

be flattened. To simplify the resulting structure, recall

that a link may be repeated up to 255 times. The resulting

structure (the two A sections are omitted entirely) is given

in listing 3-9.

Listing 3-9: Prelude, Texture version

PHRASE
a', —a' = x + y
b', —b' = x2 + y
c': —c' = x3 + y

PROC Prelude =
SEQ
a'(repeat = 4)
b'(repeat = 4)
c'(repeat = 4)
b'(repeat = 4)
a'(repeat = 4):

The resulting structure is quite a bit shorter than the

original. What is lost are several levels of abstraction,

which does not make a very big difference in a piece of this

size but would suffer in larger structures. Also, manual

entry was complicated, more preliminary work outside the

program was required.

It is difficult to represent overlapping structures,

such as those found in the Canon of listing 2-8, in a

strophic-based model. There is no way to do so while

preserving the original structural model. Using the track

45

copy function of Texture, it is possible to create Violinl

by replicating Violin until there are three concatenated

copies. The track copy command can create Violin2 from

Violinl with the addition of adding four beats of silence

onto the beginning of Violin2 using event-level editing

commands. All abstraction is lost. Clearly, a more flexible

sequencer model is needed to create and manipulate the full

range and complexity of musical structures.

Chapter Four

Definition and Performance of Music Structures

4.1. Overview

A discussion of the hierarchical nature of music was

presented in chapter two, where it was shown that a music

structure is composed of a number of substructures, each of

which is itself composed of other substructures until

further decomposition is prevented by the occurrence of a

structural primitive. In chapter three, current trends in

sequencer design were examined. From that discussion, it is

evident that the issue of the representation and creation of

abstract music structures has not been adequately addressed.

Yet, an effective environment for the development of musical

compositions must allow the creation and manipulation of

46

47

high-level musical constructs.

To further investigate this issue, the author has

developed a sequencer which provides operations on

high-level structures. This sequencer is an interactive tool

that allows structures to be created and performed in

real-time. Two subsystems, one that provides operations for

the creation and manipulation of structures, and the other

which traverses the structure during real-time performance,

are of particular interest and are described below.

4.2. General Description

The manipulation of abstract music structures involves

two main functions: defining the structure and performing

the structure. In the author's implementation, the structure

is defined interactively. A simple command language is

recognized by the interpreter which then transfers control

to the appropriate routine for execution. Upon receipt of a

command to perform a structure, the structure definition is

transformed into a tree data structure which contains the

information necessary for performance.

The problem of creating a hierarchy of structures was

alluded to at the end of the previous chapter. How should a

structure which consists of three parallel tracks be joined

to a structure of two parallel tracks? What is the result of

48

the concurrent performance of a track whose duration is

eight beats and a track of four beats duration? How will

the above structures be connected to others?

To create a complex structure involves the ability to

create simple structures, combine them into other

structures, and use the resulting structures to form yet

other structures. This is the same procedure used in

creating complex program structures, where a high-level

module may trigger the invocation of many lower level

modules which must complete before returning to their parent

module. In programming, certain details are known about

module behavior, such as the point to which a called module

will return control to its parent. The behavior of music

structures must also be known in order to create

well-behaved compositions.

A "black box" approach is used to define structure

behavior. In computer science, the black box approach to

program building means that the implementation details of a

module need not be known by any but its implementer. The

function of the module and its interface is all the

information required to include it in a program structure.

In building music structures, the black box analogy is taken

literally; the structure forms a figurative box or rectangle

in its two dimensions of duration and number of parallel

49

tracks. A behavior has been specified for the duration and

width of a structure whose components may not be of the same

durations and widths.

For structures executing concurrently, the total

duration is equal to the duration of the longest structure.

The total duration of structures executing sequentially is

equal to the sum of the individual structure durations.

Width has to do with the number of tracks which are

being performed concurrently. For structures executing

concurrently, the total width is equal to the sum of the

individual structure widths. The total width of structures

executing sequentially is equal to the width of the widest

structure.

A substructure may occur more than once within another

structure. An obvious example of this is the rondo with its

ABACA formal structure. However, rarely is it desirable to

repeat a structure verbatim. In the interest of variety,

some variation is required. Thus, it is necessary to attach

performance attributes to each occurrence of a structure. A

performance attribute is a value given to a variable

parameter that is specific to a particular occurrence of a

structure. The attributes which are built into this

sequencer implementation are described below. A specific

occurrence of a structure is called an instance. An instance

50

consists of a reference to the structure's formal definition

and the corresponding attribute values. To summarize the

"black box" approach to music construction, each box has two

dimensions, duration and width, which are determined at

definition time; and each box has attributes associated with

it which specify performance details unique to that

particular instance.

The data structures that are created while the

composition is being defined are not in a form suitable for

performance. When the "play" command is given, the specified

structure is expanded and transformed into a tree data

structure which has performance information in a form

accessible for real-time performance. The tree represents

the structure of the composition and is particularly suited

for the type of traversal needed to realize the music.

Traversal begins with the root node and proceeds down to the

leaf nodes and then back up to the root again. The path

taken varies according to the type of nodes encountered

during traversal. If a structure is composed entirely of

nodes which are sections, the traversal will be

breadth-first. Since the children of a section are

performed concurrently, the nodes of a tree of sections will

be visited level-by-level. At the other extreme, a tree made

up entirely of part nodes is traversed depth-first. The

51

nodes of an individual branch are visited before moving on

to the next branch.

A performance tree contains three types of nodes:

track, part, and section. A track is the primitive element

and contains the MIDI data which is transmitted to the

instruments connected to the sequencer output. A track is

always a leaf node. The other nodes, part and section, do

not contain playable data. They are control structures which

determine the traversal path. They also hold attribute

information which is inherited by their children. The

primary distinction between parts and sections is how their

children are activated. A part plays its children

sequentially; when the first child terminates, its next

eldest sibling is begun. A section plays its children

concurrently; all children are activated at the same time.

Control is returned to the parent after all its children

have terminated.

4.3. Structure Definition

A structure has a name so it may be referred to in

subsequent operations, it has a class which determines how

it and its children will be performed, and it contains a

list of nodes which represent specific instances of other,

predefined nodes. These instance nodes are the children,

which are invoked by the parent during performance. The

52

information which defines the parent is kept in a FORMAL

node, as this is a formal definition, that is, the structure

is defined in general, no attributes are attached to

distinguish one occurrence of this structure from another.

FORMAL node

name The label which is given to the structure. The
name is used to identify the structure for
operations directed to it.

class One of track, part, or section. Indicates
childrens' performance mode; sequential for a
part, concurrent for a section. A track has no
children.

definition A list of instances which define the node. If
the node class is a track, the definition
consists of MIDI data.

Operations which are applied to FORMAL nodes are

CREATE, DELETE, COPY, and RENAME. These operations effect

the structure as a whole. The utility of the CREATE and

DELETE operations is obvious while the RENAME operation is

largely for convenience. The COPY operation is useful for

two reasons: (1) a copy may be experimented upon without

destroying the original, (2) it may be desirable to have two

similar, yet different, structures appear in a work, as with

an exposition and recapitulation.

53

Structure Creation Operations

CREATE(name, class)
Create a FORMAL node of type "class" with label "name".
It is a precondition of this operation that an object
"name" does not currently exist.

DELETE(name)
Symbolic information for an existing object, "name", is
removed from the system. All references to instances of
"name" in existing objects must be removed. If the
object referred to by "name" is a track, the track data
is destroyed along with its symbolic information.

COPY(old, new)
Duplicate the structure named "old" and call it "new".
Only the top-level of the structure is duplicated; that
is, each defining node is not recursively duplicated.

RENAME(oldname, newname)
Preconditions are: "oldname" must exist, "newname" must
not exist. This operation replaces the label,
"oldname", with the label, "newname".

The structural definition of a FORMAL node is a list of

INSTANCE nodes. An INSTANCE node contains a reference to a

FORMAL node and a list of attributes. A structure may have

several occurrences of another structure in its definition,

but each instance may be different. The differences are

revealed in the list of attributes attached to each specific

occurrence of a node in a definition list.

54

INSTANCE node

reference An INSTANCE node is a list of attributes which
modify an occurrence of a structure. The
reference field indicates the specific structure
of which this is an instance. It refers to a
FORMAL node.

channel Channel voice messages for this INSTANCE node are
transmitted on the specified MIDI channel. The
default is no modification of the channel
information.

mute This node is played silently. Only timing
information is sent. The default is not muted.

repeat Perform node this many times in sequence. The
default is one performance of the node.

transpose Adjust all note messages by the transposition
factor. The default transposition constant is
zero, no transposition.

Operations are needed which act upon INSTANCE nodes.

The operations which effect part of a structure by modifying

its list of instances are INSERT, REMOVE, and

SET_ATTRIBUTES. These routines are used when a structure is

being defined. That structure, referred to below as

"editobj", is the object currently being edited.

55

Structure Definition Operations

INSERT(name, position, editobj)
An INSTANCE of the object, "name", is created and
placed at "position" in the list of instances defining
the current edit object, "editobj".

REMOVE(position, editobj)
The INSTANCE node at "position" is removed from the
current edit object, "editobj".

SET_ATTRIBUTES(attributes, position, editobj)
The list of attributes is installed in the INSTANCE
node located at "position" within the current edit
object, "editobj".

A graphic example of a music structure definition which

illustrates the nodes that are created and how they are

linked together is given below (figure 4-3). The example

shows how listing 4-10 is represented using the data

structures described in this chapter.

In the example, a FORMAL node is distinguished by the

name field. It also contains a field indicating its class.

An INSTANCE node has a reference, depicted as an arrow, to

the FORMAL node of which it is an instance. Attributes are

shown in INSTANCE nodes only if they are not default values.

The top-level of the example, the FORMAL node for Tree,

is a part node, whose children are Branchl and Branch2.

This instance of Branchl is transposed up a semitone. The

repeat attribute indicates that Branch2 is performed twice.

56

Fig. 4-3: Structure Definition

Leaf!

track
MIDI Data

Branch!
transpose = 2

section

• transpose repeat = 2

Branch2 Branch2
- {p

section section i

transpose = 7

track

Leaf2
MIDI Data

The FORMAL definitions for Branchl and Branch2 are similarly

57

Listing 4-10: Structure Definition Example

PHRASE
Leaf1,
Leaf2:

PROC Branch2 =
PAR
Leaf2()
Leaf2(transpose = 7):

PROC Branchl =
PAR
Leaf1()
Leaf2()
Leaf1(transpose = 2):

PROC Tree =
SEQ
Branchl(transpose = 1)
Branch2(repeat = 2):

structured. The PHRASE structures, Leaf1 and Leaf2. contain

MIDI data and so the definition part of their FORMAL nodes

contains that data.

4.4. Play Tree Traversal

4.4.1. Play Tree Node Description

The data structure used to represent the structure of

the music for real-time performance is a tree. The network

of references to other tree nodes contained in the data

structure provides uniform and rapid access to information

needed during performance. Each node contains three fields

with which to reference other tree nodes; (1) all nodes may

58

have children except those representing tracks. Each tree

node has a field used to reference its eldest child. The

eldest child is the child which is performed first in the

case of a part node. (2) each non-leaf node in the tree

may have any number of children. This precludes the use of a

fixed number of child fields. Therefore, each child has a

reference to its sibling. (3) the tree must be traversed up

as well as down; a node must have access to its parent for

obtaining information (parent's node type) and to perform

operations (increment/decrement parent's semaphore). For

these reasons, each node contains a reference to its parent.

Two references to the structure itself are provided.

The reference to the FORMAL definition yields the node type;

track, part, or section. The INSTANCE node provides

attribute information. After a node has been performed its

designated number of repeats, the repeat count is obtained

from the INSTANCE node and used to refresh the count in the

tree node. This solves the problem of nested repeats; an

ancestor node with a repeat count will activate all its

descendents that number of times. It is necessary for the

descendents to maintain their respective repeat counts

during each iteration.

The semaphore field is provided for the synchronization

required by section nodes. All children of a section begin

59

execution concurrently, but they may not all terminate at

the same time. To preserve the music structure, a node's

children must complete before the node may be reactivated.

The semaphore count is incremented for every child as it is

activated. When the child terminates, the semaphore count

is decremented. The last child to terminate decrements the

semaphore count to zero, allowing the traversal process to

continue.

The attributes contained in a tree node are the same as

those described above. However, the values appearing in the

tree node may not match those found in the corresponding

INSTANCE node. The case of the repeat count has already been

described. The transpose and mute attributes may differ from

the INSTANCE node because they inherit attribute values from

their ancestors. Reasonable behavior dictates that if a

node is muted, all its children must also be muted. Thus,

the mute attribute is inherited. A muted node causes all

its children to also be muted. Transposition is also

inherited. Transposition constants are additive. The

transposition constant of a node is the sum of the

transposition constants of its ancestors.

60

TREE node

FORMAL
The reference to the FORMAL node
needed information. Currently,
accessed from the FORMAL node.

INSTANCE
The reference to the INSTANCE node
structure attributes.

parent
Link to parent node.

child
Link to eldest child node.

sibling
Link to sibling node.

direction
Indicates the direction of traversal. Legal values are
UP and DOWN. At the beginning of play, all nodes are
set to DOWN.

semaphore
A parent node must wait for its children to terminate
before it may terminate. The semaphore keeps track of
children which are still in play. The semaphore is
incremented for each child when the child begins play
and is decremented by each child when the child
terminates.

attributes
The attributes are the same as those described for
INSTANCE nodes. The transpose and mute attributes are
inherited from ancestor nodes, along with any attribute
modification contained in the current node.

The repeats attribute is copied from the INSTANCE node
at the time the node begins play. It is decremented
each time the node is repeated.

provides access to
the node class is

provides access to

61

The example below (figure 4-4) is an illustration of

the tree created for the previous listing. Note that the

type of connection between nodes indicates whether they are

performed sequentially or concurrently.

Fig. 4-4: Play Tree

trans = 7

Leaf Leaf2

trans =

Leaf 1

trans = 3

Leaf 1

trans = I

Leaf2

repeat = 2

Branch2 Branchl

The substructure of Branchl. illustrates inheritance of

attributes. This instance of Branchl is transposed up a

semitone, therefore all its children are also transposed up

62

a semitone. Its eldest child, the second occurrence of

Leaf1. also contains a transposition factor in addition to

its inherited transposition. Its total transposition is the

sum of its inherited transposition and its own

transposition.

4.4.2. Informal Algorithm Description

During real-time play, a table is maintained which has

the same number of entries as the composition has tracks

which will play concurrently. Each entry contains a

reference to an active node in the play tree. A low-level

play algorithm, which is responsible for transmitting the

MIDI data, requests the data by track number. The track

number is mapped to the corresponding table entry which

points to the tree node currently active for that track. If

the active node is a track, a MIDI event is obtained from

the current track position. The MIDI event is modified by

any attributes which affect it. It is then transmitted to

the sequencer output. If the active node is not a track or

the end of the track has been reached, more data must be

found. The node stored in the table is used as a place

marker with which to locate the material which must be

performed next.

The Traversal Algorithm is called when more data is

needed for a particular track. Input to the algorithm is a

63

reference to a newly-terminated node which is obtained from

the table of active nodes. The function of the algorithm is

to locate the next node to be performed and to install it in

the table of active nodes. A next node may not be found for

either of two reasons, (1) the structure may have finished

playing in which case a flag is set which signals the end of

play, (2) there may be no more data for that particular

track number in which case the corresponding table entry is

marked empty.

There are two primary conditions which determine where

the next active node will be found; (1) the direction of

travel, UP or DOWN, (2) whether or not the node has

children. The simple case is a node whose direction is DOWN

and has at least one child. In this case, for a part node,

its eldest child is activated; for a section node, all its

children are activated.

A leaf node or a node whose direction is marked UP,

indicates the same condition; an entire branch has been

performed. The traversal now moves upward to find a new

branch to traverse or, in the case of a node which repeats,

to perform the branch over again. If a node repeats, the

repeat count is decremented and that node is installed in

the active table to be performed again. If there are no

repeats and the node is the root of the tree, then the

64

entire structure has been performed and play is terminated.

If there are no more repeats and the node is not the

root of the tree, then the algorithm continues its search

for a new branch to perform. The parent of the deactivated

node determines the direction of the algorithm.

If the parent is a section, all its children were

activated at the same time. Each activation incremented a

semaphore marker. Therefore, when the child of a section

node terminates, the semaphore marker of the parent is

decremented. When it reaches zero, all children have

completed and the parent becomes the next active node.

Part nodes have their children activated in sequence.

Therefore, if the parent is a part, the next sibling must be

activated. If there are no more siblings to perform, the

parent is activated.

Preliminary Traversal Operations

ACTIVATE(t)
Begin the performance of node "t" by placing it in the
table of active nodes. Set the direction of "t" to
DOWN.

END_OF_LIST(t)
Returns TRUE if the node "t" is the last sibling in a

65

list of nodes.

ROOT(t)
Returns TRUE if the node "t" is the root node of the
play tree.

In the Traversal Algorithm, ''t" is the node from the

active node table. It has just completed its activation,

and is used to locate the next node to activate.

Traversal Algorithm

1. if t.direction is UP or t is a leaf node then

1.1 if t.repeats > 1 then

1.1.1 t.repeats := t.repeats - 1

1.1.2 ACTIVATE(t)

1.2 else if ROOT(t) then

1.2.1 done

1.3 else

1.3.1 t.direction := UP

1.3.2 if t.parent is a part then

1.3.2.1 if END_OF_LIST(t) then

1.3.2.1.1 ACTIVATE(t.parent)

1.3.2.1.2 t.parent.direction := UP

1.3.2.2 else

1.3.2.2.1 ACTIVATE(t.sibling)

1.3.3 else

1.3.3.1 t.parent.semaphore
:= t.parent.semaphore - 1

66

1.3.3.2 if t.parent.semaphore = 0 then

1.3.3.2.1 ACTIVATE(t.parent)

1.3.3.2.2 t.parent.direction := UP

2. else

2.1 if t is a part then

2.1.1 ACTIVATE(t.child)

2.2 else

2.2.1 if t is a section then

2.2.1.1 for each child of t

2.2.1.1.1 ACTIVATE(child)

4.4.3. Algorithm Example

To illustrate the traversal algorithm, a simple example

is given in listing 4-11. In the following discussion, a

number in parenthesis refers to a step as listed in the

Traversal Algorithm.

In addition to building the play tree, another of the

preliminary operations performed before play actually begins

is placing the root node in the table of active nodes; so

when the traversal algorithm is first called, it is to find

the node which succeeds the root. In this example, Traverse

is the root node. It is a part (2.1), and so, Section.

67

Listing 4-11: Traversal Example

PHRASE
Trackl,
Track2,
Track3:

PROC Section =
PAR
Trackl()
Track2():

PROC Traverse =
SEQ
Section()
Track3(repeat = 2):

being the eldest child, is activated (2.1.1).

Section contains no MIDI data, so a new request is

generated immediately. Since Section is a section node

(2.2.1), its two children, Trackl and Track2, are

simultaneously activated (2.2.1.1). As long as Trackl and

Track2 contain data, the traversal algorithm is not called.

Assuming that Trackl completes first, the semaphore of

its parent, Section. is decremented (1.3.3.1) and the

traversal algorithm does not install a new node. When

Track2 terminates, Section's semaphore is zero, so Section

is activated with its direction set to UP (1.3.3.2.2).

The next invocation of the traversal algorithm receives

Section as the input node. Its direction is UP and its

parent is a part (1.3.2). It is not the last sibling, so

68

Track3 is activated (1.3.2.2.1). When Track3 has played all

its data, its repeat count is decremented (1.1.1) and it is

reactivated.

At the next node request, Track3 is found to be the

last sibling (1.3.2.1) and its parent, Traverse, is

activated. Since Traverse is the root node, the next node

request signals the end of play (1.2.1).

Chapter Five

Evaluation and Future Enhancements

5.1. Overview

The author has implemented a sequencer which

incorporates functions for creating and manipulating

high-level music structures. A defined structure may then be

performed in real-time. The program requires an IBM-PC or

compatible computer equipped with a Roland MPU-401 MIDI

Processing Unit or compatible interface.

The sequencer was built as an aid in developing this

thesis. It has made several contributions. Its design was

instrumental in developing the data structures and algorithm

presented in chapter four. Its correct operation verifies

the suitability of the material of chapter four. Finally, it

provides a means to examine this paper's hypothesis which is

69

70

stated below.

An effective environment for the development of
musical compositions must allow the creation and
manipulation of high-level musical constructs.

Any legitimate evaluation of the program must be based

upon significant use by more than one person. As the program

has not been adequately tested for "an effective

environment", its effectiveness in implementing the two

musical examples presented throughout this text, Prelude and

Canon. are discussed. In addition, future enhancements are

discussed which include appropriate interfaces and

performance directives.

5.2. Two Examples

Prelude and Canon, the two examples that have been

developed throughout this paper, can be implemented on this

project's sequencer directly from the listings given in

chapter two. However, the implementation of each may be

simplified. The KinqsTheme and the Violinl part of the

Canon. each contain a phrase repeated three times. Instead

of explicitly listing each repetition, the repeat attribute

can be attached to the initial phrase invocation. This

change simplifies and clarifies the structure. The result is

given in listing 5-12. The four beats of rest, which begins

Violinl, may be created in two different ways; (1) by going

71

into record mode for four beats without receiving any MIDI

data from an external MIDI instrument, (2) by using the

built-in rest function. This function is useful whenever

some duration of silence is needed. It creates a track which

contains silence information. This track is subject to the

same operations as any other track, although certain

operations, such as transposition, are meaningless.

Listing 5-12: Canon, with repeats

PHRASE
Theme, —written by King Frederick the Great
Violin, —canonical voice
FirstNote: —first note of the Theme, needed for ending

PROC KingsTheme =
SEQ
Theme(repeat = 3)
FirstNote():

PROC Violinl =
SEQ
Violin(repeat = 3):

PROC Violin2 =
SEQ
rest(4) —four beats of silence
Violinl():

PROC Canon =
PAR
KingsTheme()
Violinl()
Violin2():

The implementation of attributes allows the low-level

structures of the Prelude to be simplified. The phrases, x2

and x3, are merely transpositions of x. Utilizing the

72

transposition attribute reduces the amount of raw material

that must be created for this composition. The high-level

structures shown in chapter two are modified by adding the

repeat attribute. The resulting structures are given in

listing 5-13.

This points out a strength of the hierarchical approach

to composition using sequencers: major structural

modifications are easy to make. A change made at any level

is reflected throughout the composition. A useful

application is in designing the structure of a composition,

but only doing a rough sketch of the actual track material.

When track data is perfected, it can be easily substituted

for the original sketch. A function, assign, is included in

the author's sequencer to facilitate this type of operation.

It replaces the track data of one track with the data of

another without changing the name of the original track. In

this way, when an improved version of a track is created,

one simple operation will globally substitute its data for

the original throughout a composition.

5.3. Interface

Most sequencers are primarily multi-track tape

recorders modeled in software. This is most evident in

those with graphics-oriented interfaces; the screen is often

a replica of a tape recorder, complete with buttons to

73

Listing 5-13: Prelude, with transposition

PHRASE
x, —left hand two note motive
y: —right hand two note motive

PROC a' =
SEQ

x()
Y () :

PROC b' =
SEQ
x(transpose = 2)
Y() :

PROC c' =
SEQ
x(transpose = 3)
Y() :

PROC a =
SEQ
a'(repeat = 4):

PROC b =
SEQ
b'(repeat = 4):

PROC c =
SEQ
c'(repeat = 4):

PROC B =
SEQ

a ()
b()
c ()
b()
a () :

PROC Prelude =
SEQ
B ()

activate play, rewind, and record functions. An easily

74

recognizable model provides a comfortable environment and

reduces the time needed to learn to operate the sequencer.

The limitations of these models as a compositional tool have

been discussed.

This thesis arose from the need to resolve the conflict

between creating a hierarchical music structure and the

single dimensional concepts, which are so prevalent, for

realizing these structures. A question must be asked: In the

face of the apparent superior flexibility and organizational

power of a hierarchically-based sequencer, why have these

ideas not been implemented in commercial sequencer products?

During the course of this investigation, designing the

interface in particular, a partial answer was uncovered.

Representing multi-dimensional information in the confines

of a computer monitor is not an easy task. The act of

composition involves many conceptual jumps between

foreground, background and intermediate levels of

structure [Laske 1978]. The composer is able to make these

jumps instantaneously, the computer, however, is not. It is

not likely that all necessary information can be available

on the computer screen at the same time. It is probable that

the lack of a sufficiently intuitive interface between the

composer and the computer is largely responsible for the

dearth of sequencers which go beyond the tape recorder

75

analogy.

The sequencer developed for this thesis does not

adequately solve the above interface problems. Two

alternative approaches to the project's interface are

discussed below.

5.3.1. Programming Language Interface

The examples of music structures presented in this

paper have been based on the Occam language. It was chosen

because it has a syntax which represents concurrent, as well

as sequential, processes. Also, as with other block

structured languages, the program structure reveals a

hierarchical organization such as that found in music

structures. While Occam is probably not suited as a music

structure language, it is desirable to have such a language.

An integrated system where program text was entered with a

text editor, compiled, and performed by a sequencer might be

a suitable music development environment. All necessary

information would be available in the program text. The

problem is, of course, developing a music-definition

language.

76

5.3.2. Graphics Interface

A more intuitive approach to representing a structure

is to depict it graphically on the screen. Iconic interfaces

are quite common on microcomputers. With the addition of a

mouse as an input device, the command language can be

removed from structure manipulations and replaced with a

simpler point, drag and click input language. Since the

music structure being represented is a tree, the structure

creation process may involve constructing a tree, similar to

the tree constructed in the previous chapter, on the

computer screen. Each node of the tree is one of the

structure types, phrase, part, or section. Vital

information, such as structure name and associated

attributes, may be displayed within the node.

A windowing environment may provide a convenient

program interface. Each window contains the definition of a

substructure. The definitions may be entered as a

programming language similar to the listings presented in

this paper or the tree may be constructed by dragging

structure icons into the window. Multiple windows allow any

portion of the structure to be visible or hidden as required

by the composer.

A carefully designed input language or graphics

interface could significantly enhance the control the

77

composer has over shaping the musical materials.

5.4. Performance Directives

Performance directives were described in chapter three.

The most rudimentary performance directive has been

implemented in the sequencer built for this study; a master

tempo control. A flexible and powerful set of performance

directives would greatly enhance the usefulness of a

sequencer.

Performance directives may contain MIDI messages that

are not normally found in a recorded track, such as system

exclusive information. They may contain MIDI messages, such

as program change messages, that are more conveniently

included after the track has been recorded. Conductor

information, such as tempo control, are also included in

performance directives. A list of useful performance

directives is given below.

Performance Directives

control change
The control change command sends a control setting for
a specified controller. At the end of a performance,
this command may be sent to set controllers, such as
modulation and pitch-bend, to their default settings in
preparation for the next performance.

metronome
The audible metronome may be activated or deactivated

78

at a particular point in the music.

overdub
The overdub command turns recording on or off at a
specified point during play. This is similar to the
punch-in/punch-out command, but does not overwrite any
existing track information.

program change
The program change command is useful for quickly
changing voice settings on a MIDI instrument. Many
signal processors also respond to program change
messages.

system exclusive message
A system exclusive message may be sent. This may be
used to change a parameter setting of an instrument or,
before play begins, to send voice definition
information to the instruments in the MIDI system.

tempo
The tempo command can set either an absolute or a
relative tempo. An absolute tempo is specified in
beats per minute. A relative tempo change sets a new
tempo to some ratio of the current tempo.

The requirements for the behavior of performance

directives make them similar to attributes in some ways, but

with significant differences. It is desirable to attach a

performance directive, or a group of performance directives,

to a structure just like an attribute. The performance

directives are activated when the structure begins its

execution. In this way, a program change message may select

a different voice on a synthesizer at the beginning of a new

section.

The attributes which have previously been defined all

act upon existing data. Transposition modifies the pitch of

79

recorded MIDI note events, muting substitutes silence

information for note data, etc. Performance directives

contain their own data to be output. This may be a MIDI

message or it may be control information, such as a tempo

change. Thus, their internal representation and their

execution must differ from that of attributes.

MIDI systems may be configured in many ways. The

configuration of a large system may require that a great

deal of setup data be transmitted. It is convenient to have

the setup information for each instrument in the system

grouped together as when configuring the system for a

particular composition or series of compositions. For this

application, performance directives may defined as

independent entities. They may then be "performed" as a

music structure is performed, but setup information rather

than note data is transmitted.

Appendix

80

81

Scale

rNh 1—i—1 1 —n
/ ̂ 1 ' ! -i j r f/K ' U 1 1 ̂ 1 (> p
iU 1 J d • <ji -—: J-—1—j 1 "

TonicUp

r, ' * ' i r 1 1 I ' l l / f J p P : i ' i i
 ̂ ' 1 r 1 r " H J 1

[iy P 1 i 1—4 ' " d '• d J "
TonicDown

555E rrrr jM=l
nt t t

SixthUp

fui i f f if fif fir i : ! i r I
SixthDown

Prelude

CF t f II
' y" •'

x

x2

(Vif i *
z£i

x3

83

Canon

n--..r 1 I' Pi i .> f-^P bp 1 h p—m- 1_—
! J - t- 1 1 ! .

y a kw—a f—i—; ;— t] o J . ! ... j Ill 1 ! ; f T • U —i—i—i ^
,,,; * l! ; —r 1—i— i -

Theme

m
-L_

Li 'LC-' - * J
i rr ^ p-• r r ^ i f

-i——t-
,* v » » -S,

Pl l» r r ; } f+ f 1 ?•
^" TLI-J1 -L—1 •' |

i r

Viol in

Bibliography

Aikin, J. 1987. Sequencer Basics. Keyboard 13, 6. (June).

Apel, W. 1972. Harvard Dictionary of Music. The Belknap
Press of Harvard University Press. Cambridge, Massachusetts.

Byrd, D. 1974. A system for Music printing by computer.
Comput. Hum. 8. (May).

Cooper, J. 1986. An Insider's View of MIDI. Keyboard 12, 1
(Jan.).

Cooper, J. 1987. More On MIDI Continuous Controllers.
Keyboard 13, 7. (July).

Cooper, J. 1987. MIDI Time Code. Keyboard 13, 8. (Aug.).

Garvin, M. 1987. Designing a Music Recorder. Dr. Dobb's
Journal of Software Tools 12, 5. (May).

Gourlay, J. 1986. A Language For Music Printing.
Communications of the ACM 29, 5. (May).

Greenwald, T. 1986. Texture 2.0. Keyboard 12, 10. (Oct.).

Laske, O. 1978. Considering Human Memory in Designing User
Interfaces for Computer Music. Computer Music Journal 2, 4.

Many, C. 1987. Texture Version 2.5. Music Technology (May).

Maxwell, J. and Ornstein, S. 1984. Mockingbird: A Composer's
Amanuensis. Bvte 9. (Jan.).

MIDI Manufacturers Association, Inc. 1985. MIDI 1.0 Detailed

84

85

Specification. International MIDI Association, North
Hollywood, CA.

Milano, D. 1987. Tips from the Pros. Keyboard 13, 6 (June).

Pountain, D. 1984. Microprocessor Design. Bvte 9, 8
(August).

Powell, R. 1986. Texture 2.0 User Manual. Magnetic Music.

Smith, L. 1973. Editing and Printing Music by Computer.
Journal of Music Theory 17, 2.

	Creation and performance of music structures
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

