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There has been much interest in characterizing maps between Banach algebras that
preserve a certain equation or family of elements. There is a rich history in such
problems that assume the map to be linear, so called linear preserver problems. More
recently, there has been an interest in not assuming the map is linear a priori and
instead to assume it preserves some equation involving the spectrum, a portion of the
spectrum, or the norm.

After a brief introduction to uniform algebras, we give a rigorous development of
the theory of boundaries. This includes a new alternative proof of the famous Shilov
Theorem. Also a generalization of Bishop’s Lemma is given and proved. Two spectral
preserver problems are introduced and solved for the class of uniform algebras. One
of these problems is given in terms of a portion of the spectrum called the peripheral
spectrum. The other is given by a norm condition.

The first spectral preserver problem concerns weakly-peripherally multiplicative maps
between uniform algebras. These are maps T : A→ B such that σπ(TfTg)∩σπ (fg) 6= ∅
for all f, g ∈ A where σπ(f) is the peripheral spectrum of f . It is proven that if T is a
weakly-peripherally multiplicative map (not necessarily linear) that preserves the family
of peak functions then it is an isometric algebra isomorphism.

The second of these preserver problems shows that if T : A → B is a map (not
necessarily linear) between uniform algebras such that ‖TfTg + 1‖ = ‖fg + 1‖ for
all f, g ∈ A then T is a weighted composition operator composed with a conjugation
operator. In particular, if T (1) = 1 and T (i) = i then T also is an isometric algebra
isomorphism.
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Chapter 1

Overview

In this section we will outline the history and development of spectral preserver problems

and describe the contributions made to the theory by this work.1

1.1 Preserver Problems

A preserver problem, loosely speaking, is an attempt to categorize all maps between

objects of a category that preserve some property or class. Consider a map φ : G→ G

between groups that preserves the product, i.e., φ(gh) = φ(g)φ(h) for all g, h ∈ G. Then,

by definition, φ is a group homomorphism. This is a rather trivial example because

the preservation of products is the defining characteristic of a group homomorphism.

However other examples are more surprising. Consider the following theorem of Mazur-

Ulam.

Theorem 1.1.1 (Mazur-Ulam Theorem). Let f : X → Y be a surjective, zero pre-
1For readers unfamiliar with the notation of uniform algebras, Chapter 2 contains the relevant

definitions.

1



1.1. PRESERVER PROBLEMS 2

serving, distance preserving map between normed vector spaces over R, i.e., ‖x− y‖ =

‖f(x)− f(y)‖ for all x, y ∈ X and f(0) = 0. Then f is an isometric linear transforma-

tion.

As a consequence, f(x + αy) = f(x) + αf(y) for all x, y ∈ X and α in R. It is not

a priori clear that even f(x − y) = f(x) − f(y) since we only assume that these are

equal in norm. So the result is quite interesting. Note this result does not apply for

complex-valued spaces to get a C-linear map. Conjugation is a counter-example.

Banach spaces (i.e., complete normed vector spaces) are first and foremost vector spaces

and some of the theory is inherited from the general algebraic study of vector spaces.

Because of the additional norm condition, the important mappings between Banach

spaces are continuous, linear transformations. To establish that a given map is a con-

tinuous, linear transformation, one typically shows first that it is linear and then shows

that it is continuous using a norm condition. The Mazur-Ulam Theorem reverses the

usual order of things. We verify a norm condition first and conclude the map is lin-

ear. This serves as an analogy of the spectral preserver problems to be discussed here.

From a broad perspective we seek interesting analytic conditions that imply that a map

automatically has some algebraic property, often to be an isomorphism.

Linear Preserver Problems

A common type of preserver problem is a linear preserver problem. In this case the

maps are between algebras and the map is assumed to be linear . In classical linear

presever problems from matrix theory the given map is from Mn(F) to itself or F where

Mn(F) is the set of n by n matrices with entries in the field F. Analogous results are

explored for B(X), the set of bounded linear operators on the Banach space X.
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An example of using analytic conditions to get algebraic properties in the context of

Banach algebras is the famous Gleason-Kahane-Żelazko Theorem [18].

Theorem 1.1.2 (GKZ Theorem (1973)). Let A be a unital commutative Banach algebra

and B a uniform algebra. If T : A → B is a linear map with σ(Tf) ⊂ σ(f) for all

f ∈ A then T is multiplicative, i.e., T (fg) = T (f)T (g) for all f, g ∈ A.

This theorem assumes some algebraic properties to start with (linearity) and concludes

stronger algebraic properties (multiplicativity). The spectrum condition is considered to

be analytic in nature since the existence of (complete) norms on these spaces guarantee

some measure of invertibility that is inherent in the use of the spectrum, see Lemma 2.3.1

and Corollary 2.3.2. The Gleason-Kahane-Żelazko Theorem has inspired a great deal

of research in this area.

The technique used in the proof of the GKŻ theorem is to first establish the result for

B = C and apply a result from complex analysis. A classical linear preserver problem

using a very different technique is given by the Banach-Stone Theorem.

Theorem 1.1.3 (Banach-Stone Theorem). Let X and Y be compact Hausdorff spaces

and T : C(X) → C(Y ) be a linear, surjective isometry. Then there exists κ ∈ C(Y )

with |κ| = 1 and a homeomorphism ψ : Y → X such that

Tf = κ · f ◦ ψ

for all f ∈ C(X). In particular, T̃ = κT is an isometric algebra isomorphism.

If T (1) = 1, then Tf = f ◦ψ for all f ∈ C(X). In particular, T (fg)(y) = (fg)(ψ(y)) =

f(ψ(y))·g(ψ(y)) = Tf(y)·Tg(y) for all y ∈ Y and so T (fg) = TfTg for all f, g ∈ C(Y ).

Thus T is multiplicative, i.e., T is an isometric algebra isomorphism. The solution to
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this problem is expressed in a very important form. A map between uniform algebras of

the form, Tf = f ◦ψ, for some homeomorphism ψ, is called a composition operator. It

is automatically linear, multiplicative, and continuous. If T is of the form Tf = κ ·f ◦ψ

then we say it is a weighted composition operator. This result is the model for more

general spectral preserver problems.

The Banach-Stone Theorem result follows for continuous real-valued2 or complex-valued

functions. In the real-valued case, note that it is unnecessary to assume that T is

linear. By the Mazur-Ulam theorem we need only assume T is a surjective isometry

(and T (0) = 0). By putting the two theorems together we can eliminate the hypothesis

that T is linear.

Theorem 1.1.4. Let X and Y be compact Hausdorff spaces and T : CR(X)→ CR(Y )

be a surjective map (not necessarily linear) such that T (1) = 1, T (0) = 0 and

‖Tf − Tg‖ = ‖f − g‖

for all f, g ∈ CR(X). Then there exists a homeomorphism ψ : Y → X such that

Tf = f ◦ ψ for all f ∈ CR(X). In particular, T is an isometric algebra isomorphism.

Spectral Preserver Problems

In the Gleason-Kahane-Żelazko Theorem, a condition involving the spectrum was used.

Recently there has been a departure from assuming that the given map is linear to

start with, and assuming only conditions involving the spectrum. We introduce the term

spectral preserver problem to describe preserver problems of this nature, especially when
2We will rarely have occasion to discuss real-valued functions. All function spaces should be assumed

to be complex-valued unless otherwise stated.
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the map is not assumed to be linear. In a uniform algebra, the norm is the maximum

modulus of the values in the spectrum so preserver problems expressed in terms of the

norm conditions can be considered to be spectral in nature.

An early result that does not assume linearity is due to Kowalski and Słodkowski [10].

Theorem 1.1.5 (Kowalski-Słodkowski (1980)). Let T : A → B be a surjective map

between uniform algebras such that

σ(Tf − Tg) = σ(f − g)

for all f, g ∈ A, then T is an isometric algebra isomorphism.

This result can be seen an analogy of Theorem 1.1.4 for complex-valued uniform alge-

bras. Other spectral preserver problems involving an additive condition can be seen in

[16].

1.2 Multiplicative Spectral Preserver Problems

On might ask about problems involving a multiplicative spectral condition. In 2005 L.

Molnár published a paper [14] addressing this case.3

Theorem 1.2.1 (Molnár (2005)). Let X be a first countable compact Hausdorff space

and T : C(X)→ C(X) be a surjective map (not necessarily linear) such that

σ(TfTg) = σ(fg) (1.2.1)
3The paper also develops analogous, non-commutative results for B(X), bounded linear operators

on a Banach space with special results if X is a Hilbert space.
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for all f, g ∈ A. Then there exists a κ ∈ B with κ2 = 1 and a homemorphism ψ : X → X

such that

Tf = κ · f ◦ ψ (1.2.2)

for all f ∈ A. In particular, T̃ = κT is an isometric algebra isomorphism.

The technique used was to directly establish the map ψ similar to the conclusion to

Theorem 1.1.4. The result was extended to uniform algebras by Rao and Roy [15].

They showed that if A is a uniform algebra on its maximal ideal space, MA, and

T : A → A is a surjective map satisfying (1.2.1) then there exists a homeomorphism

ψ :MA →MA and κ ∈ B such that T is as in (1.2.2).

Following this, Hatori, Miura, and Takagi [8] took T : A→ B to be a mapping between

uniform algebras on compact Hausdorff spacesX and Y and replaced themultiplicatively

spectral preserving condition (1.2.1) with the weaker condition, multiplicatively range

preserving, Ran(TfTg) = Ran(fg). They also conclude that T must be a weighted

composition operator (when the functions are extended on their maximal ideal spaces).

Since Ran(f) ⊂ σ(f) this result is clearly an improvement.

Then Luttman and Tonev also considered uniform algebras A and B but further re-

stricted the portion of the spectrum required to be preserved. The peripheral spectrum

of f is given by σπ (f) = {λ ∈ σ(f) : |λ| = ‖f‖}. The homeomorphism they produce is

between the Shilov boundaries ∂A and ∂B which can be considered to be a subset of

the carrier spaces X and Y resp. They proved to following theorem.

Theorem 1.2.2 (Luttman-Tonev (2007)). If T : A → B a surjective map (not neces-

sarily linear) between uniform algebras such that

σπ (TfTg) = σπ (fg) (1.2.3)
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for all f, g ∈ A, then there exists a κ ∈ B with κ2 = 1 and a homemorphism ψ : ∂B →

∂A such that

Tf = κ · f ◦ ψ

on ∂B for all f ∈ A. In particular, T̃ = κT is an isometric algebra isomorphism.

One can see the hypotheses of the earlier result are obviously met by this theorem.

Thus the result of Luttman and Tonev extended (and included) all earlier results.

The hypothesis of the Theorem 1.2.2 would be further weakened in [11] by considering

a special class called peaking functions. A function f ∈ A is called a peaking function

if σπ (f) = {1}. The class of peaking function of A is denoted by F(A). Thus if T is

unital and σπ (TfTg) = σπ (fg), then σπ (Tf) = σπ (f), i.e., T (F(A)) = F(B). In [11]

we further improve the theorem by preserving this class, but requiring only that the

peripheral spectra meet. We call this condition weak peripheral multiplicativity.

Theorem (4.2.5). Let T : A → B be a mapping between uniform algebras. If T is

weakly peripherally-multiplicative and preserves the peaking functions (i.e., T (F(A)) =

F(B)) and σπ (TfTg) ∩ σπ (fg) 6= ∅ for all f, g ∈ A, then T is an isometric algebra

isomorphism.

In fact this uses a similar composition operator technique. We produce a homeomor-

phism between the Choquet boundaries ψ : δB → δA such that Tf = f ◦ ψ on δB for

all f ∈ A. Note the Choquet boundary δA may also be identified with a subset of the

carrier space of A as is with the case of the Shilov boundary of Theorem 1.2.2.

For the non-unital case we established the following.

Theorem (4.3.6). Let T : A→ B be a weakly peripherally-multiplicative mapping, not

necessarily linear, between uniform algebras such that (a) F(B) ⊂ (T1) ·T (F(A)), or,
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(b) (T1) · T (F(A)) ⊂ F(B) ⊂ (T1) · T (A). Then there exists a κ ∈ B with κ2 = 1 and

a homemorphism ψ : δB → δA such that

Tf = κ · f ◦ ψ

on δB for all f ∈ A. In particular, T̃ = κT is an isometric algebra isomorphism.

Note whenever T : A → B and satisfies (1.2.3) we have, {1} = σπ (1h) = σπ (T1Th)

for all h ∈ F(A), i.e., T1 · T (F(A)) ⊂ F(B). Thus this theorem applies whenever

Theorem 1.2.2, does and this is the strongest known version of this type of spectral

preserver problem. Also an alternative proof of Shilov’s theorem is given in [11] and by

Theorem 3.2.17.

One improvement contained here is the introduction of multiplicatively isolating families

(m.i.f.) of functions. We prove F(A) is a m.i.f. of A as is A−1. We establish the

following.

Theorem (4.1.9). Let T : A → B be a mapping between uniform algebras. If there

exists a multiplicatively isolating set A such that T (A) is a multiplicatively isolating set

and

‖TfTg‖ = ‖fg‖

for all f ∈ A and g ∈ A, then there exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB.

In [11] this result is only shown for the case A = F(A) and T (A) = F(B). In proving

the Hatori conjecture of Chapter 5, it is useful to have this stronger version since we

can immediately establish invertibles are preserved but not all peaking functions. In



1.3. HATORI’S CONJECTURE 9

considering other cases in the future, one needs only show a m.i.f. is preserved to get

similar results.

1.3 Hatori’s Conjecture

In private communication in 2005, O. Hatori proposed the following conjecture. A

surjective map T : A→ B between uniform algebras satisfying

‖TfTg + 1‖ = ‖fg + 1‖ (H)

for all f, g ∈ A is an isometric algebra isomorphism. It is “clearly” not true, since, if

T is either negation or conjugation of the function then (H), is satisfied, but negation

is not multiplicative and conjugation is not linear. The problem then becomes to char-

acterize such maps. If it is assumed that T is homogeneous, it was shown that T is

indeed an isometric isomorphism [11]. Further investigations led to results completely

characterizing such maps [12].

Theorem (5.1.4). Let T : A → B be a surjective map that satisfies ‖TfTg + 1‖ =

‖fg + 1‖ for all f, g ∈ A. Then there exist an idempotent e ∈ B and an isometric

algebra isomorphism T̃ : A→ Be⊕Be′ such that

T (f) = T (1)
(
eT̃ f + e′T̃ (f)

)

for all f ∈ A, where e′ = 1− e and (T1)2 = 1.

The interpretation of this result is that T is an “almost” isomorphism. The map T can be

thought of an isomorphism composed with a map that negates the values of functions on
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a connectedness component of the carrier space and conjugates on another. (We also get

a result if we replace (H) with ‖TfTg + λ‖ = ‖fg + λ‖ for any fixed non-zero constant.)

This is an interesting form to result from a spectral preserver problem since it implies

T is, in general, neither linear nor multiplicative but clearly implies the algebras have

the same “structure”. We have demonstrated spectral preserver problems that show the

map T is a composition operator (when T (1) = 1), a weighted composition operator,

and now a form that is a weighed composition operator composed with a conjugation

operator.

Publication

The major results of Chapter 4 were were presented at the Fifth International Con-

ference on Function Spaces in Edwardsville, IL in May 2006 and at a conference at

University Cork in Cork, Ireland in October 2006 and published in the Proceedings of

the American Mathematical Society in 2007. The results of Chapter 5 will appear in

the Central European Journal of Mathematics in 2008. All major results were presented

in the Analysis Seminar at University of Montana in April 2008.



Chapter 2

Basics of Uniform Algebras

2.1 Definitions and Examples

Definition 2.1.1. We say A is a Banach algebra if A is a Banach space over C with a

multiplication also making A into a ring such that

f(αg) = (αf)g = αfg (2.1.1)

and ‖fg‖ ≤ ‖f‖‖g‖ for all f, g ∈ A and α ∈ C.

We say A is unital if there exists an identity element, 1A ∈ A such that 1A · f =

f · 1A = f for all f ∈ A and ‖1A‖ = 1. We say A is commutative if the multiplication

is commutative.

It is customary to write both scalar action and multiplication as juxtaposition, relying on

context to distinguish between these when necessary. If A is a unital Banach algebra, we

may consider j : C→ A by j(λ) = λ·1A (scalar action of λ on the vector 1A). Clearly j is

11
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linear and multiplicative. Also, j is isometric since ‖j(λ)‖ = ‖λ · 1A‖ = |λ| ‖1A‖ = |λ|,

where we use the homogeneous property of the norm. Thus j embeds C into A, and we

may identify C with its image, i.e., we can assume C ⊂ A. With this perspective the

scalar α ∈ C acting on the vector f ∈ A is simply the product of α and f as elements of

A, and there is no need to distinguish between scalar action and multiplication. Thus,

in the unital case, (2.1.1) simply mandates this perspective.

Definition 2.1.2. Let A be a unital Banach algebra and f ∈ A. The invertible elements

of A are the members of the set A−1 = {f ∈ A : fg = 1 for some g ∈ A}. The spectrum

of f is defined by, σ(f) = {λ ∈ C : f − λ /∈ A−1}.

Example 2.1.3. Clearly C itself is a unital commutative Banach algebra. The norm,

of course, is the modulus, i.e., ‖z‖ = |z| for every z ∈ C.

Example 2.1.4. Let X be a Banach space. The set of bounded linear operators from X

to itself is denoted by B(X). This is well known to be a Banach space (with the operator

norm) and, in fact, is a Banach algebra with multiplication defined as composition. This

is an example of a non-commutative, unital Banach algebra. The identity element of

B(X) is idX , the identity operator on X. In fact B(Cn) can be thought of as the usual

ring of n × n matrices. With this perspective it is clear from the definition that the

spectrum is the set of eigenvalues. There are matrices over R with no eigenvalues, i.e.,

empty spectrum. This is undesirable which is why we consider Banach algebras over C

only.

Example 2.1.5. The Banach space of bounded sequences, l∞, can be given coordinate-

wise multiplication that makes it into a unital commutative Banach algebra. Clearly

e = (1, 1, . . .) is the multiplicative identity of the algebra. The algebra of zero conver-

gent sequences c0 is also a commutative Banach subalgebra of l∞, but it does not have

an identity and certainly does not contain e, the identity of l∞. Each element x ∈ c0
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has a spectrum defined for it as an element of l∞. However the spectrum of x as an

element of the (non-unital) Banach algebra c0 is undefined. Even if A ⊂ B are both

unital Banach algebras, a given element of A need not have the same spectrum when

considered as an element of B.

Example 2.1.6. Let X be a compact Hausdorff space. Then the set of complex-valued,

continuous functions on X, denoted C(X), with pointwise addition and multiplication

and endowed with the sup norm, is a commutative Banach algebra. Since continuous

functions on a compact set attain their maximum modulus at some point of the domain,

we have for any f, g ∈ C(X), |f(x)g(x)| = ‖fg‖ for some x ∈ X. Thus ‖fg‖ =

|f(x)g(x)| = |f(x)||g(x)| ≤ ‖f‖‖g‖. The identity is the constant function 1 and the

invertibles are precisely the functions which do not take the value zero. Thus λ ∈ σ(f) if

and only f −λ takes the value zero, i.e., f takes the value λ. Therefore σ(f) = Ran(f).

Subalgebras of C(X) form a very import class of Banach algebras.

Definition 2.1.7. Let X be a compact Hausdorff space. We say A is a uniform algebra

on X if

1. the elements of A are complex-valued continuous functions on X, i.e., A ⊂ C(X),

2. the constant functions are contained in A,

3. the operations are pointwise addition and multiplication,

4. the set A is (topologically) closed in C(X) with the sup norm, and

5. the functions of A separate the points of X, i.e., for every x 6= y ∈ X there exists

f ∈ A such that f(x) 6= f(y).

Clearly C(X) itself is a uniform algebra with separation of points given by Urysohn’s

Lemma. Also since X is a compact Hausdorff space, the supremum is attained on some
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point x ∈ X. Thus

‖f‖ = max
x∈X
|f(x)|

for all f ∈ A. This is also called the uniform norm, hence the term.

Within this class, one of the most important examples is the, so-called, disk algebra:

A(D) = {f ∈ C(D) : f |D is analytic}.

Example 2.1.8. Clearly A(D) is a linearly and multiplicatively closed subset of con-

tinuous functions. To show it is topologically closed in the uniform norm we recall that

uniform limits of analytic functions are analytic. We claim the invertible functions are

simply functions that do not take the value zero on D. If f is invertible in A(D) then

there exists g ∈ A(D) such that fg = 1 then neither f nor g can take the value zero.

Conversely, if f is never zero we know g =
1

f
is a analytic function and f is invertible.

Thus, as in Example 2.1.6, σ(f) = Ran(f).

2.2 Mappings Between Banach Algebras

Since Banach algebras are simultaneously vector spaces, rings, and metric spaces, the

natural mappings in each of these theories (linear transformations, ring homomor-

phisms, and isometries, respectively), are important mappings for the theory of Banach

algebras.

Definition 2.2.1. Let T : A→ B be a mapping between Banach algebras.

1. If T (fg) = TfTg for all f, g ∈ A, then we say T is multiplicative.

2. If T is multiplicative and a linear transformation we say T is an algebraic homo-

morphism.
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3. If T is a bijective, algebraic homomorphism that preserves the norm, we say it is

an isometric algebraic isomorphism and A and B are isometrically, algebraically

isomorphic.

4. Also, if A and B are both unital and T (1) = 1 we say T is unital.

These terms are standard in functional analysis, although some care is needed. In math-

ematics, an isomorphism is usually defined so that isomorphic objects are equivalent

for the theory being developed. The unqualified term isomorphism is generally avoided

in the theory of Banach algebras (and Banach spaces) in favor of a more specific de-

scription in order to avoid confusion with (weaker) isomorphisms of vector spaces or

rings.

2.3 The Spectrum of an Element in an Algebra

In the specific examples examined so far, we characterized the spectrum of elements in

the algebra. Here we show that, for any commutative Banach algebra, the spectrum of

an element is a non-empty compact set.1

Lemma 2.3.1. Let B be a unital, commutative Banach algebra and f ∈ B.

(a) If ‖f‖ < 1 then (1 − f) ∈ B−1 and (1 − f)−1 =
∞∑
n=0

fn (with the interpretation

f 0 = 1).

(b) If λ ∈ C with |λ| > ‖f‖ we have (λ− f) ∈ B−1 and (λ− f)−1 =
∞∑
n=0

fn

λn+1
.

(c) If f ∈ B−1 and g ∈ B such that ‖f − g‖ < 1

‖f−1‖
then g ∈ B−1 and g−1 =

∞∑
n=0

f−n−1 (f − g)n .

1Much of the development in this section may be done (with care) in the non-commutative case.
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Proof. If ‖f‖ < 1 then
∞∑
n=0

‖fn‖ ≤
∞∑
n=0

‖f‖n =
1

1− ‖f‖
< ∞. Thus the sequence

of partial sums is a Cauchy sequence in B, and since B is a Banach space, we have
∞∑
n=0

fn ∈ B. Hence,

(1− f)

(
∞∑
n=0

fn

)
=
∞∑
n=0

fn −
∞∑
n=1

fn = 1,

which proves (a).

If |λ| > ‖f‖ then
∥∥∥∥fλ
∥∥∥∥ < 1. By (a), 1 =

(
1− f

λ

) ∞∑
n=0

(
f

λ

)n
which yields,

1 = (λ− f)
∞∑
n=0

fn

λn+1
,

proving (b).

If ‖f − g‖ < 1

‖f−1‖
then ‖1− f−1g‖ = ‖f−1(f − g)‖ ≤ ‖f−1‖‖f − g‖ < 1. Thus by (a),

1 =
(
1−

(
1− f−1g

)) ∞∑
n=0

(
1− f−1g

)n
= f−1g

∞∑
n=0

f−n (f − g)n

= g

∞∑
n=0

f−n−1 (f − g)n ,

which completes the proof.

Corollary 2.3.2. If B is a commutative Banach algebra, then B−1 is an open subset

of B.

Proof. By Lemma 2.3.1(c), for each point f ∈ B−1, the open ball centered at f of radius
1

‖f−1‖
consists entirely of invertible elements. This proves B−1 is open in B.
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Lemma 2.3.3. Let B be a unital, commutative Banach algebra. For every f ∈ B, the

set σ(f) is a non-empty compact subset of D‖f‖ := {λ ∈ C : |λ| ≤ ‖f‖}.

Proof. Fix f ∈ B. For any |λ| > ‖f‖, Lemma 2.3.1(a) gives, λ − f is invertible.

Thus f − λ, is invertible, i.e., λ ∈ C\σ(f). The contrapositive of this result gives

σ(f) ⊂ D‖f‖ = {λ ∈ C : |λ| ≤ ‖f‖}.

Let z0 ∈ C\σ(f), and take z ∈ C such that |z0 − z| <
1

‖(f − z0)−1‖
. If we define

h = z0 − f and k = z − f , then h is invertible and ‖h− k‖ = |z0 − z| < 1

‖h−1‖
.

From Lemma 2.3.1(c), we have two conclusions. First k = z − f is invertible, as is

f − z, i.e., z ∈ C\σ(f). This demonstrates that for every point z0 in C\σ(f), the

open ball centered at z0 of radius
1∥∥(z0 − f)−1

∥∥ is entirely contained in C\σ(f). This

proves C\σ(f) is open, hence σ(f) is closed, and thus compact since we have already

established it is bounded. The second conclusion is a formula for (z − f)−1 that is valid

whenever |z − z0| <
1∥∥(z0 − f)−1

∥∥ . Specifically
(z − f)−1 = k−1 =

∞∑
n=0

h−n−1 (h− k)n

=
∞∑
n=0

(z0 − f)−n−1 (z0 − z)n

=
∞∑
n=0

− (f − z0)
−n−1 (z − z0)

n (2.3.1)

This will be helpful in proving σ(f) is non-empty.

Let r : C\σ(f)→ B be defined by r(z) = (z − f)−1. By (2.3.1), r(z) has a local power

series expansion centered at each z0 ∈ C\σ(f) of the form

r(z) =
∞∑
n=0

− (f − z0)
−n−1 (z − z0)

n for all z with |z − z0| <
1∥∥(z0 − f)−1

∥∥ .
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Let ϕ ∈ B∗ be a continuous linear functional and define rϕ : C\σ(f)→ C by rϕ = ϕ◦r.

The continuity and linearity of ϕ gives

rϕ(z) =
∞∑
n=0

−ϕ
(
(f − z0)

−n−1) (z − z0)
n for all z with |z − z0| <

1∥∥(z0 − f)−1
∥∥ .

Thus rϕ has a local power series expansion for each point z0 ∈ C\σ(f) with positive

radius of convergence. Therefore rϕ is analytic on its domain. If we were to assume

σ(f) = ∅, then rϕ would be entire.

Assume (for contradiction) that σ(f) = ∅, i.e., rϕ is entire. If z ∈ C such that |z| ≥ ‖f‖

then by 2.3.1(b) we have,

r(z) = (z − f)−1 =
∞∑
n=0

fn

zn+1
=

1

z

∞∑
n=0

(
f

z

)n
.

Thus |rϕ(z)| ≤ ‖ϕ‖‖r(z)‖ ≤ ‖ϕ‖ 1

|z|
1

1− ‖f/z‖
=

‖ϕ‖
|z| − ‖f‖

→ 0 as |z| → ∞. Thus

rϕ is bounded and by Liouville’s Theorem, constant. By these limits this constant can

only be zero. Finally we have ϕ
(

(z − f)
−1
)

= 0 for all ϕ ∈ B∗. A standard result from

functional analysis implies that the only element which every linear functional takes to

zero is zero [2, III.6.7]. Thus, (z − f)−1 = 0, but this is a contradiction since 0 is not

invertible. Therefore, σ(f) is not empty.

2.4 Maximal Ideal Space

In the theory of Banach spaces, (bounded) linear functionals and codimension-1 sub-

spaces play a key role. In the theory of Banach algebras, that role is taken by multi-

plicative linear functionals and maximal ideals. Let B be a unital commutative Banach
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algebra. We denote the set of non-trivial, multiplicative linear functionals on B byMB.

To establish the connection between multiplicative linear functionals and maximal ide-

als, we first recall a theorem of Gelfand and Mazur.

Theorem 2.4.1 (Gelfand-Mazur Theorem). Any Banach algebra that is a field is iso-

metrically isomorphic to C.

Proof. Suppose B\{0} = B−1, and let f ∈ B−1. By Theorem 2.3.3, there exists

λ ∈ σ(f), i.e., f − λ is not invertible. Since we have assumed B is a field, the only

non-invertible element is zero and so f−λ = 0, i.e, f = λ. In other words, the standard

embedding j : C→ B given by j(λ) = λ ·1B is surjective. Thus j is an isometric algebra

isomorphism between C and B.

Lemma 2.4.2. Let B be a commutative Banach algebra. If ϕ : B → C is a non-trivial

multiplicative linear functional, then ϕ(f) ∈ σ(f) for all f ∈ B, ‖ϕ‖ = 1 (i.e, ϕ is an

element of the unit sphere of the dual of B), and kerϕ is a maximal ideal.

Proof. Let ϕ be a multiplicative linear functional on B. Then ϕ(1) = ϕ(1 · 1) = ϕ(1)2

implies ϕ(1) = 0 or 1. If ϕ(1) = 0 then ϕ(f · 1) = ϕ(f)ϕ(1) = 0 for all f ∈ B, i.e.,

ϕ = 0. If ϕ is non-trivial, then ϕ(1) = 1, and, by linearity, ϕ(λ) = λ for all λ ∈ C.

If f ∈ B−1, then 1 = ϕ(f)ϕ(f−1). Thus ϕ(f) 6= 0, i.e., ϕ does not take any invertible

element to zero. Let f ∈ B and λ /∈ σ(f). Then f −λ is invertible, and 0 6= ϕ(f −λ) =

ϕ(f) − λ implies ϕ(f) 6= λ. The contrapositive of this gives us that ϕ(f) ∈ σ(f). By

Lemma 2.3.3, ϕ(f) ∈ σ(f) ⊂ D‖f‖ so |ϕ(f)| ≤ ‖f‖ and ‖ϕ‖ ≤ 1. Since ϕ(1) = 1 = ‖1‖,

we obtain ‖ϕ‖ = 1.

Since ϕ a ring homomorphism, kerϕ is an ideal and since ϕ ∈ B∗, the ideal has codi-

mension 1. Thus the only subspace of B containing kerϕ is kerϕ itself of B. Suppose
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M is an ideal containing kerϕ. Since M is a subspace of B either M = kerϕ or M = B

and this proves kerϕ is a maximal ideal.

Lemma 2.4.3. Let B be a unital commutative Banach algebra. If M is a maximal

ideal, there exists a unique multiplicative linear functional on B such that kerϕ = M .

Proof. As a proper ideal, M cannot contain invertible elements, i.e., M ⊂ B\B−1 and

so its closure, which is clearly an ideal, must be proper since B\B−1 is closed. By

maximality, M is equal to its closure, i.e., M is closed. Since M is closed, the quotient

B/M is a Banach space, and since M is a maximal ideal, B/M is a field. By the

Gelfand-Mazur Theorem, B/M is isometrically isomorphic to C. Thus the standard

embedding of C into B/M , j : C → B/M, is surjective. Let q : B → B/M be the

quotient map and ϕ = j−1 ◦ q : B → C. Then ϕ is a multiplicative linear functional,

since it is the composition of multiplicative linear maps, and kerϕ = ker q = M . For

uniqueness, let ψ be a multiplicative linear functional with kernel M . As the kernel of

a linear functional, M has codimension 1. Thus B = M ⊕ C (as vector spaces). Every

f ∈ B can be uniquely written as f = m+ λ with m ∈M and λ ∈ C and

ψ(f) = ψ(m+ λ) = ψ(m) + λ = λ = ϕ(m) + λ = ϕ(m+ λ) = ϕ(f),

i.e., ψ = ϕ.

These two lemmas show that multiplicative linear functionals and maximal ideals are in

bijective correspondence. So, even thoughMB is defined to be the set of multiplicative

linear functionals, it is customary to refer toMB as the maximal ideal space.

Lemma 2.4.4. Let B be a commutative, unital, Banach algebra. Then

σ(f) = {ϕ(f) : ϕ ∈MB}
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for all f ∈ B.

Proof. In Lemma 2.4.2 it was shown that {ϕ(f) : ϕ ∈MB} ⊂ σ(f). If λ ∈ σ(f) then

f − λ /∈ B−1. Let M = B(f − λ) = {g(f − λ) : g ∈ B}. Clearly M is an ideal,

and it is proper since 1 ∈ M implies there exists a g ∈ B such that g(f − λ) = 1

which contradicts f − λ /∈ A−1. By commutative, unital ring theory, M is contained

in a maximal ideal. Let ϕ be the corresponding multiplicative linear functional whose

kernel contains f − λ ∈M . So ϕ(f − λ) = 0 and ϕ(f) = λ.

By Lemma 2.4.2, MB is a subset of the unit sphere of the dual space, B∗. By the

Banach-Alaoglu Theorem [2, V 3.1], the unit sphere of B∗ is weak-* compact, so we

topologize MB by giving it the inherited weak-* topology of the unit sphere in B∗.

This is called the Gelfand topology onMB.

Lemma 2.4.5. The maximal ideal space,MB, is compact in the Gelfand topology.

Proof. It suffices to show that MB is closed in the unit sphere of B∗ with the weak-

* topology. In this topology a net {ϕα}α∈I converges to ϕ, ϕα → ϕ, if and only if

ϕα(f) → ϕ(f) (in C) for all f ∈ B. Let ϕα be a net in MB with limit ϕ in the unit

sphere of B∗. Then ϕ is a non-trivial linear functional, and we just need to show it is

multiplicative. Thus for every f, g ∈ B,

ϕ(f)ϕ(g) =
(

lim
α
ϕα(f)

)(
lim
α
ϕα(g)

)
= lim

α
ϕα(f)ϕα(g) = lim

α
ϕα(fg) = ϕ(fg),

due to the continuity of multiplication in C. Thus in the weak-* topology,MB is closed

subset of the unit ball of B∗.

Example 2.4.6. Let X be a compact Hausdorff topological space and consider the
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commutative, unital, Banach algebra C(X). For every x ∈ X let ϕx : C(X) → C be

given by ϕx(f) = f(x). Clearly this is a multiplicative linear functional so ϕx ∈MB.

In fact, as we show below, every multiplicative functional on C(X) is of this type. First,

however, we need the following lemma.

Lemma 2.4.7. Let X be a compact Hausdorff space. If I is a proper ideal of C(X),

then the elements of I have a common zero.

Proof. We will prove the contrapositive. Let I be an ideal of C(X) with no common

zero. Then {X\f−1(0) : f ∈ I} is an open cover of X. Since X is compact, it has a

finite subcover, i.e., there exists f1, . . . , fn ∈ I with no common zero. Since I is an ideal

and f1, . . . , fn ∈ C(X) then g =
n∑
i=1

fifi =
n∑
i=1

|fi|2 ∈ I. Since the fi’s have no common

zero, g never takes the value zero and is thus invertible, and I = C(X).

Lemma 2.4.8. Let X be a compact Hausdorff space. The assignment x 7→ ϕx is a

homeomorphism from X ontoMC(X).

Proof. For any two distinct points x, y ∈ X there exists a continuous (real-valued)

function f ∈ C(X) such that f(x) = 0 and f(y) = 1 by the well-known Urysohn’s

Lemma ([4, Thm 5.3]). Thus we have ϕx 6= ϕy for x 6= y, and the assignment is

injective. To show the assignment is onto, let ϕ be an arbitrary element of MC(X),

and so M = kerϕ is a maximal ideal of C(X). By the previous lemma, the functions

in M have at least one common zero, say at x. Thus M ⊂ kerϕx so by maximality

kerϕ = M = kerϕx. The uniqueness in Lemma 2.4.3 implies ϕ = ϕx.

For continuity we need to show that the assignment preserves convergence of nets, i.e.,

xα → x in X implies ϕxα → ϕx inMC(X). Let xα → x be a convergent net in X. For

every f ∈ C(X), ϕxα(f) = f(xα) and f is continuous so f(xα) → f(x) = ϕ(x). Thus
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ϕxα(f)→ ϕx(f) for every f ∈ C(X) which gives ϕxα → ϕx inMC(X). Finally, we have

a continuous bijective map from a compact space to a Hausdorff space and thus the

map is a homeomorphism.

2.5 The Gelfand Transform

The connection between C(X) and its maximal ideal space can be applied in general to

get a much better understanding of the class of unital, commutative, Banach algebras.

Definition 2.5.1. Let f be an element of a unital, commutative, Banach algebra B.

Define the Gelfand transform of f , f̂ :MB → C, by f̂(ϕ) = ϕ(f). Let B̂ = {f̂ : f ∈ B}

and Λ : B → B̂ ⊂ C(MB) be the mapping f 7→ f̂ .

Note the Gelfand topology (i.e., relative weak-* topology) given to MB insures that

each f̂ is continuous.

Theorem 2.5.2. Let B be a commutative, unital, Banach algebra. Then the Gelfand

transform Λ : B → C(MB) is an algebraic homomorphism which does not increase

the norm (i.e., ‖Λ‖ ≤ 1). Moreover, B̂ separates the points in MB and contains the

constant functions.

Proof. Let f, g ∈ B, then for all ϕ ∈ MB, f̂ g(ϕ) = ϕ(fg) = ϕ(f)ϕ(g) = f̂(ϕ)ĝ(ϕ)

which shows Λ is multiplicative. Linearity is similar. In the notation of the Gelfand

transform, Theorem 2.4.4 becomes f̂(MB) = σ(f) ⊂ D‖f‖. Thus ‖f̂‖ = max{|f(ϕ)| :

ϕ ∈ MB} ≤ ‖f‖. If ϕ1 6= ϕ2 then there is some f ∈ B where they differ so f̂(ϕ1) =

ϕ1(f) 6= ϕ2(f) = f̂(ϕ2). Finally, 1̂(ϕ) = ϕ(1) = 1 for all ϕ ∈ MB, and, by linearity, Λ

takes constants to the corresponding constant functions.
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The Gelfand transform maps any unital, commutative, Banach algebra to a subalgebra

of continuous functions on a compact Hausdorff space. Thus, we can gain a lot of

understanding of the more general class by examining the, more concrete, class of

subalgebras of C(X) where X is a compact Hausdorff space. Uniform algebra theory is

equivalent to the study of unital, commutative Banach algebras for which the Gelfand

transform is an isometry. In general, Λ need not even be injective. In the most extreme

case, it is possible that B̂ = C as the following example shows.

Example 2.5.3. Consider the unital, commutative Banach algebra Cn, equipped with

coordinate-wise operations and the sup norm. Let s : Cn → Cn be the right shift

operator given by

s(z1, z2, . . . , zn) = (0, z1, . . . , zn−1).

This is clearly a linear operator with operator norm 1. Thus s ∈ B(Cn). Let A be

the algebra generated by s0 = idCn and s in B(Cn) which has the basis, s0, . . . , sn−1.

Similarly, let A0 be the algebra generated by s which has the basis s1, . . . , sn−1. Any

a ∈ A0 has the form a =
n−1∑
m=1

αms
m for some choice of αm’s in C. Since sm = 0 for all

m ≥ n, then

an =

(
n−1∑
m=1

αms
m

)n

=
n2−n∑
m=n

βms
m = 0,

for some βm’s in C. In other words, each element of A0 is nilpotent. Let ϕ be any

multiplicative linear functional on A, then ϕ(a)n = ϕ(an) = ϕ(0) = 0 implies ϕ(a) = 0

for all a ∈ A0. Thus every multiplicative linear functional is zero on all of A0. Since a

multiplicative linear functional must preserve the identity, the only multiplicative linear

functional on A is the one given by
n−1∑
m=0

αms
m ϕ7→ α0. Thus the kernel of the Gelfand

transform of A is A0,2 which is a codimension 1 subspace, and Â = C.
2The algebra A0 is an example of a radical algebra.
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Of course, if Λ is injective,3 then B̂ is algebraically isomorphic to B, though possibly

not isometrically. In particular, B̂ need not be closed in the uniform norm. In that

case, the Gelfand transform is still quite useful. We consider two norms on B̂: the norm

from B induced by Λ (‖b̂‖1 := ‖b‖) and the uniform norm that B̂ has as a subalgebra of

C(MB). We can then use the uniform norm (which, by the theorem, is dominated by

the inherited one) and we may consider B̂ as a dense subalgebra of the uniform algebra

obtained by closing B̂ in the uniform norm.

In the case that the Gelfand transform is not only injective but also isometric, then B̂ is

a uniform algebra. On the other hand, if B is a uniform algebra on X, then each point

evaluation is a multiplicative linear functional and thus in MB. In fact, X embeds

topologically intoMB. The interpretation for this is thatMB is the largest topological

space containing X such that all the functions in B can be continuously extended from

X to MB. The Gelfand transform of each function in B is that extension. This is

remarkable since usually one asks if extensions of functions exist in a specifically given

topological space, Y containing X. With the Gelfand transform, one need not guess

the space Y on which to seek extentions.

One can interpret the Gelfand transform as dividing the study of commutative, unital

Banach algebras into two classes: algebras for which the Gelfand transform is trivial

(B̂ = C) and algebras for which the Gelfand transform is injective. A refinement of the

latter case, is the class for which the Gelfand transform is not only injective but also

isometric. This is the class (up to isomorphism) of uniform algebras which is the class

we will consider in the sequel.

3If the Gelfand transform is injective the algebra is semisimple.



Chapter 3

Boundaries of Uniform Algebras

3.1 Boundaries and the Peripheral Spectrum

It is well known that analytic functions on the unit disk D take their maximum modulus

on T, which is the topological boundary of D. This phenomenon can be extended for

commutative Banach algebras in general.

Definition 3.1.1. Let B be a unital, commutative Banach algebra. A subset E ofMB

is a called a boundary if max{|f̂(ϕ)| : ϕ ∈ E} = ‖f̂‖ for every f ∈ B.

Clearly MB itself is a boundary for B. If A is a uniform algebra on X, then X is

a boundary, identified with its embedding in MA. In this way we will also consider

subsets E of X satisfying max{|f(x)| : x ∈ E} = ‖f‖ to be boundaries. If we wish

to consider properties that require the Gelfand transform of the algebra on the entire

maximal ideal space, we simply take the hypothesis that “A is a uniform algebra on

MA” as in the following lemma. This can always be done formally via the Gelfand

transform which is an isometric algebra isomorphism.

26
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Lemma 3.1.2. Let A be a uniform algebra onMA and E ⊂MA be a boundary for A.

Then the restriction map r : A→ A|E = {f |E : f ∈ A} ⊂ C(E) given by r(f) = f |E is

an isometric algebra isomorphism.

This result follows simply by making a few observations. The map is clearly linear

and multiplicative. By the definition of boundary, it is norm-preserving and thus an

isometric embedding, i.e., injective. It is surjective by definition, and that is all that is

required to show. However, we also know the restrictions of constants are constant and

E separates points. So, although E need not be closed, if it is, then A|E is a uniform

algebra on E.

A key consequence of this result is that if f |E = g|E then f = g. This follows from the

injectivity in the lemma above but can also be seen directly from the definition of a

boundary. If f |E = g|E then (f − g) |E = 0 thus the maximum modulus of f − g on E

is zero, so the maximum modulus on all of X (i.e., the norm) is zero. Thus ‖f − g‖ = 0

implies f = g.

Let A be a uniform algebra on X, and define Ran(f) = f(X). Recall that the point

evaluations are multiplicative linear functionals, so Ran(f) = f(X) ⊂ f̂(MA) = σ(f)

by Lemma 2.4.4. However this containment may be strict. Consider A(D), which is a

uniform algebra on D. By the previous lemma, A(D)|T ∼= A(D) is a uniform algebra on

T. If f ∈ A(D)|T is the function given by f(z) = z then Ran(f) = T but σ(f) = D. It is

convenient to have Ran(f) = σ(f), that way all values of the spectrum may be realized

by evaluating the function, which can simplify proofs. (This is another case where we

add the assumption that A is a uniform algebra on MA.) We can get an analogous

property by considering a portion of the spectrum.

Definition 3.1.3 ([11, 13]). Let A be a uniform algebra on X. For every f ∈ A let
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σπ (f) = {λ ∈ σ(f) : |λ| = ‖f‖}. This set is called the peripheral spectrum [5, 13] of

f . We introduce the notation, M(f) = {x ∈ X : |f(x)| = ‖f‖} = f−1(σπ (f)) which we

call the maximizing set of f . Let Ranπ(f) = {f(x) : x ∈M(f)} = f(M(f)) denote the

peripheral range.

Note the spectrum and the peripheral spectrum are invariant under an isometric alge-

braic isomorphisms. However, M(f) is tied to a specific representation of the algebra.

For example if A(D) is the disk algebra, which is isometrically isomorphic to A(D)|T,

then M(1A(D)) = D and yet M(1A(D)|T) = T. It appears the same issue could occur with

the peripheral range. However, we will provide an alternative characterization of the

peripheral spectrum, which will show this is not the case. To assist with this we give

the following lemma.

Lemma 3.1.4. Let g ∈ C(X) for X compact Hausdorff and let ε > 0. Then for all

x ∈ X we have the following dichotomy,

|g(x) + ε| = ‖g‖+ ε if and only if g(x) = ‖g‖

|g(x) + ε| < ‖g‖+ ε if and only if g(x) 6= ‖g‖ .

Proof. Suppose |g(x) + ε| = ‖g‖+ ε, then

‖g‖+ ε = |g(x) + ε| ≤ |g(x)|+ ε ≤ ‖g‖+ ε,
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and there is equality throughout. In particular, ‖g‖ = |g(x)|. Using this we have,

|g(x)|2 + 2 |g(x)|+ ε2 = |g(x) + ε|2 = (‖g‖+ ε)2

= ‖g(x)‖2 + 2 ‖g(x)‖+ ε2

= |g(x) + ε|2 = (g(x) + ε)
(
g(x) + ε

)
= |g(x)|2 + g(x) + g(x) + ε2

= |g(x)|2 + 2 Re g(x) + ε2

which implies ‖g‖ = |g(x)| = Re g(x) = g(x). The converse is clear. Thus we

have established the first assertion and its contrapositive which is |g(x) + ε| 6= ‖g‖ +

ε if and only if g(x) 6= ‖g‖. However for all x we have, |g(x) + ε| ≤ ‖g + ε‖ ≤ ‖g‖ + ε,

so |g(x) + ε| 6= ‖g‖+ ε if and only if |g(x) + ε| < ‖g‖+ ε.

Lemma 3.1.5. Let A be a uniform algebra onMA and let E ⊂MA be a boundary of

A. For any f ∈ A the following are equivalent:

(a) α ∈ σπ (f),

(b) ‖αf + 1‖ = ‖f‖2 + 1 and |α| = ‖f‖,

(c) ‖αf + 1‖ ≥ ‖f‖2 + 1 and |α| = ‖f‖,

(d) there exists x ∈ E such that x ∈M(f) and f(x) = α.

Proof. Let α ∈ σπ(f). Since the functions of A are defined on their maximal ideal space

Lemma 2.4.4 applies to give an x ∈ MA such that f(x) = α and |α| = ‖f‖. Lemma

3.1.4 gives ‖αf + 1‖ = ‖αf‖+ 1 = ‖f‖2 + 1 justifying (b).

The fact that (b) implies (c) is trivial. We now show show (c) implies (d). If α = 0 the

justification is trivial so assume α 6= 0. By definition of boundary there exists x ∈ E
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such that |αf(x) + 1| = ‖αf + 1‖. We have,

‖αf‖+ 1 = ‖f‖2 + 1 ≤ ‖αf(x) + 1‖ = |αf(x) + 1| ≤ |αf(x)|+ 1 ≤ ‖αf(x)‖+ 1

and we have equality throughout. By Lemma 3.1.4, we have αf(x) = ‖αf‖ = |α| |α| =

αα, which implies f(x) = α since α 6= 0. Clearly |f(x)| = |α| = ‖f‖, i.e., x ∈M(f).

Finally we show (d) implies (a). If f(x) = α and x ∈ M(f), then α ∈ σ(f) and

|α| = ‖f‖. These are the necessary conditions for α ∈ σπ (f).

Corollary 3.1.6. If A is a uniform algebra on X and E ⊂ X is a boundary then for

all f ∈ A we have Ranπ(f) = σπ (f) = f(M(f) ∩ E).

This result is an immediate consequence of (a) =⇒ (b) with both E and X considered

as boundaries of MA. In other words, this says that every point in the peripheral

spectrum can be assumed to be a maximum modulus value taken by the function on X

or any other boundary.

3.2 Peaking Functions and the Choquet Boundary

In this section we are seeking a “small” boundary for a given uniform algebra. If X

is metrizable, it can be shown that A does have a smallest boundary, which is auto-

matically closed. However, for general compact Hausdorff spaces there is no smallest

boundary, although there is a smallest closed boundary, called the Shilov boundary.

One of the purposes of this chapter is to give an alternative proof of this well-known

result. We first develop another well-known boundary, called the Choquet boundary,

that is not in general closed, but is contained in every closed boundary.
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For the remainder of the section let A be a fixed uniform algebra on X =MA.

Definition 3.2.1. A non-empty set E ⊂ X is called an m-set if it is the (arbitrary)

intersection of maximizing sets, i.e., E =
⋂
f∈AE

M(f) 6= ∅ for some subset AE ⊂ A.

For an m-set E, let EE = {E ′ ⊂ E : E ′ is an m-set} be the the family of all m-sets

contained in E. Note that inclusion in a partial order on EE and the set of all m-sets is

simply EX .

Lemma 3.2.2. For each m-set E, the family EE contains minimal elements.

Proof. We will apply Zorn’s lemma. Let C is a chain of EE. Clearly
⋂
E′∈C

E ′ is a lower-

bound for the chain and an m-set in EE, provided it is non-empty. Since X is compact

and m-sets are closed, the finite intersection property applies. Thus it suffices to show

that a finite chain has non-empty intersection. If E1 ⊂ E2 ⊂ . . . ⊂ En is a finite chain,

then clearly ∅ 6= E1 =
n⋂
i=1

Ei. Therefore, by Zorn’s lemma, EE has minimal elements.

Lemma 3.2.3. Let δA =
⋃
{E : E is minimal in EX}. The set δA is a boundary for

A and each m-set meets δA.

Proof. First we show that each m-set meets δA. Let E ⊂ X be an m-set and E0 be

a minimal element of EE. Suppose F ∈ EX such that F ⊂ E0, then F ∈ EE and, by

minimality of E0 in EE, F = E0. Thus E0 is also minimal in EX and E0 ⊂ δA. Thus

∅ 6= E0 ⊂ δA ∩ E. Finally, for any f ∈ A, M(f) is an m-set so M(f) ∩ δA 6= ∅, which

shows δA is a boundary for A.

We call the minimal elements in EX minimal m-sets. When dealing with m-sets, it is

useful to note that if a finite number of non-zero functions share a common maximizer,

then the maximizing set of their product is the intersection of their maximizing sets.

This is made precise by the following lemma.
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Lemma 3.2.4. Let {fi}ni=1 ⊂ A\ {0}. The following are equivalent:

(a) the functions have a common maximizer, i.e.,

n⋂
i=1

M(fi) 6= ∅,

(b) the norm of the product is the product of the norms, i.e.,

∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥ =
n∏
i=1

‖fi‖ , and

(c) the maximizers of the product are the common maximizers,

M

(
n∏
i=1

fi

)
=

n⋂
i=1

M(fi).

Proof. By induction it suffices to show this for n = 2.

To prove (a) implies (b) assume f, g ∈ A such thatM(f)∩M(g) 6= ∅. Then there exists

x ∈M(f)∩M(g) and ‖f‖ ‖g‖ = |f(x)| |g(x)| ≤ ‖fg‖ ≤ ‖f‖ ‖g‖ and so ‖fg‖ = ‖f‖ ‖g‖.

To show (b) implies (c), suppose ‖fg‖ = ‖f‖ ‖g‖ and let x ∈M(fg). Thus |f(x)g(x)| =

‖fg‖ = ‖f‖ ‖g‖. Since f 6= 0 we have
|f(x)|
‖f‖

≤ 1 so ‖g‖ =
‖f‖ ‖g‖
‖f‖

=
|f(x)g(x)|
‖f‖

≤

|g(x)| which implies x ∈ M(g) and x ∈ M(f) similarly. Thus ∅ 6= M(fg) ⊂ M(f) ∩

M(g). If x ∈ M(f) ∩M(g) then |f(x)g(x)| = ‖f‖ ‖g‖ = ‖fg‖ and x ∈ M(fg) which

proves (b). Since clearly (c) implies (a) the proof is complete.

Definition 3.2.5. Let A be a uniform algebra. A function h ∈ A is called a peaking

function if σπ (h) = {1}. Let F(A) be the family of all peaking functions of A, namely,

F(A) = {h ∈ A : σπ (h) = {1}}. For the case special case of h ∈ F(A), the maximizing

set M(h) is called the peak set of h, and it is customary to denote it instead by P (f).

For any E ⊂ X define FE(A) = {h ∈ F(A) : E ⊂ P (h)}, and for any x ∈ X define
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Fx(A) = F{x}(A). The non-empty intersection of peak sets is called a p-set which is

clearly an m-set.

This next lemma directly establishes the existence and, indeed, the prevalence of peaking

functions.

Lemma 3.2.6. Let A be a uniform algebra.

(a) For every f ∈ A\{0}, λ ∈ σπ (f), and ε > 0 the function h =
f/λ+ ε

1 + ε
is a peaking

function of A with peak set f−1(λ) and σπ(fh) = {λ}.

(b) A = C · F(A) + C, i.e., the linear span of F(A) is A.

(c) For each fixed r ∈ (0, 1) then C (F(A)− r) = A.

Proof. Clearly if f(x) = λ then h(x) = 1. Note

|h(x)| =
∣∣∣∣f(x)/λ

1 + ε
+

ε

1 + ε

∣∣∣∣ ≤ ∥∥∥∥f(x)/λ

1 + ε
+

ε

1 + ε

∥∥∥∥ ≤ ‖f/λ‖1 + ε
+

ε

1 + ε

=
1

1 + ε
+

ε

1 + ε
= 1.

By Lemma 3.1.4, equality holds if only if
f(x)/λ

1 + ε
=

∥∥∥∥f(x)/λ

1 + ε

∥∥∥∥ =
1

1 + ε
, i.e., f(x) = λ

in which case, not only is |h(x)| = 1 but h(x) = 1. Thus h ∈ F(A) and P (h) = f−1(λ).

The assertion in (b) comes by solving, f = (λ+ λε)h − λε, then (c) follows by f =

(λ+ λε)

(
h− ε

1 + ε

)
for ε =

r

1− r
. Since M(h) = P (h) = f−1(λ) ⊂ M(f), the func-

tions h and f share a common maximizer. Thus σπ (fh) =
{
f(x)h(x) : x ∈ P (h) ∩M(f) = P (h) = f−1(λ)

}
=

{λ · 1}.

Parts (b) and (c) of the lemma show that the set of peaking functions in a uniform

algebra is a very large class.
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Lemma 3.2.7. Every minimal m-set is a p-set.

Proof. Let E be a minimal m-set and x ∈ E. By definition E =
⋂
f∈AE

M(f) for some

family S ⊂ A. Without loss of generality we may assume f 6= 0 for all f ∈ S. Since

f(x) ∈ σπ (f), Lemma 3.2.6(a) implies that there exists some hf ∈ F(A) such that

P (hf ) = f−1(f(x)) ⊂M(f). Thus x ∈ P (hf ) and

x ∈
⋂
f∈S

P (hf ) ⊂
⋂
f∈S

M(f) = E

which implies equality since E is minimal.

Lemma 3.2.8. Let E be a p-set. For every open set U containing E there exists

h ∈ FE(A) such that P (h) ⊂ U .

Proof. By definition of p-set, there is some set S ⊂ FE(A) such that E =
⋂
f∈S

P (f).

Thus E ⊂
⋂

f∈FE(A)

P (f) ⊂
⋂
f∈S

P (f) = E which gives

⋃
f∈FE(A)

X\P (f) = X\E.

Since E ⊂ U , we have {X\P (f) : f ∈ FE(A)} ∪ {U} is an open cover of X (compact).

Thus there exists, f1, . . . , fn ∈ FE(A) such that
n⋃
i=1

X\P (fi) ∪ U = X, i.e.,
n⋂
i=1

P (fi) ∩

(X\U) = ∅. Let h =
n∏
i=1

fi. By Lemma 3.2.4, M(h) =
n⋂
i=1

P (fi), so clearly h ∈ FE(A).

Thus P (h) ∩ (X\U) = ∅, i.e., P (h) ⊂ U .

The following is a generalization of a important result called Bishop’s Lemma.

Lemma 3.2.9 (Bishop’s Lemma for p-sets [11]). Let A be a uniform algebra on X and
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E be a p-set of A. If f ∈ C(X) is such that f |E 6≡ 0, then there is a peaking function

h ∈ FE(A) such that fh takes its maximum modulus on E.

Proof. Without loss of generality, assume that the maximum modulus of f on E is 1.

F or each n ∈ N define the open set

Un =

{
x ∈ X : |f(x)| < 1 +

1

2n+1

}
,

and observe that U1 ⊃ U2 ⊃ . . . ⊃ E. For each fixed n ∈ N, Lemma 3.2.8 gives that

there exists k ∈ FE(A) such that P (k) ⊂ Un . For each x ∈ X\Un then |k(x)| < 1 and

since X\Un is compact the maximum modulus on X\Un is strictly less than 1. For a

large enough power m ∈ N, |km| < 1

2‖f‖
on X\Un. Define hn = km.

Now define h =
∞∑
n=1

hn
2n

. It is clear that the series is absolutely convergent (since

‖hn‖ = 1) and ‖h‖ ≤ 1. In fact |h(x)| = 1 if and only if |hn(x)| = 1 = hn(x) for all n,

which implies x ∈ E, thus h(x) = 1. Since |h(x)| = 1 implies h(x) = 1, it follows that

h ∈ FE(A). Clearly ‖fh‖ ≥ 1, since max
x∈E
|f(x)| = 1 and h ≡ 1 on E. We claim that

‖fg‖ ≤ 1. Allow U0 = X and fix x ∈ X. There are two cases to consider.

Case 1: x ∈ UN−1\UN for some N ≥ 1. Then x ∈ U1, U2, . . . , UN−1 and x ∈ X\Un

for all n ≥ N . Thus |f(x)| < 1 +
1

2N
, |hn(x)| < 1

2‖f‖
<

1

2
for all n ≥ N , and

|h(x)| ≤
N−1∑
n=1

|hn(x)|
2n

+
∞∑
n=N

|hn(x)|
2n

≤
N−1∑
n=1

1

2n
+

∞∑
n=N

1/2

2n

=

(
1− 1

2N−1

)
+

1

2
· 1

2N−1
= 1− 1

2N−1

(
1− 1

2

)
= 1− 1

2N
.

Consequently, |f(x)h(x)| <
(

1 +
1

2N

)(
1− 1

2N

)
= 1− 1

4N
< 1.
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Case 2: x ∈
∞⋂
n=1

Un. Then x ∈ Un for all n. Hence |f(x)| < 1 +
1

2n+1
for all

n, so |f(x)| ≤ 1 and therefore, |f(x)h(x)| ≤ 1, since, as a peaking function,

|h(x)| ≤ 1.

The original Bishop’s Lemma can be obtained as a corollary of Lemma 3.2.9.

Lemma 3.2.10 (Bishop’s Lemma [1]). Let E be a peak set of a uniform algebra A and

let f ∈ A be such that f |E 6≡ 0. Then there is a peaking function h ∈ FE(A) such that

fh takes its maximum modulus only within E = P (h) .

Proof. According to Bishop’s Lemma for p-sets, there exists k ∈ FE(A) such fk takes

its maximum modulus on E, i.e., M(fk) ∩ E 6= ∅. By definition of peak sets, there

exists some k′ ∈ F(A) such that P (k) = E. Thus fk and k′ have a common maximizer

and M(fkk′) = M(fk) ∩ P (k′) ⊂ E. The lemma is satisfied by h = kk′.

Lemma 3.2.11. For all f ∈ A and all x ∈ δA such that f(x) 6= 0 there exists h ∈ Fx(A)

such that σπ (fh) = {f(x)}.

Proof. Let E be the minimal p-set containing x. Bishop’s Lemma for p-sets asserts

that there exists k ∈ FE(A) such that fk takes its maximum modulus on E, i.e.,

M(fk) ∩ E 6= ∅. By minimality E ⊂ M(fk) and f(x) ∈ σπ (fk). By Lemma 3.2.6(a)

there exists k′ ∈ F(A) with P (k′) = (fk)−1(f(x)) such that σπ (fkk′) = {f(x)}. Thus

k′ ∈ Fx(A), since f(x) = f(x)k(x) and h = kk′ is as desired.

Lemma 3.2.12. Minimal m-sets are singletons. Equivalently, x ∈ δA if and only if

{x} is a p-set.

Proof. Let E be a minimal m-set and x, y ∈ E. If we show f(x) = f(y) for all f ∈ A,

then, by the “separation of points” condition required in the definition of a uniform
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algebra, x = y and E is a singleton. Note by Lemma 3.2.7 E is a p-set.

Let f ∈ A. If both f(x) and f(y) are zero then there is nothing to show. Without loss

of generality, assume f(x) 6= 0. By 3.2.11 there exists h ∈ Fx(A) such that σπ (fh) =

{f(x)}. So P (h) ∩ E 6= ∅ and, by minimality, E ⊂ P (h). Similarly, E ⊂M(fh). Thus

y ∈ M(fh) ∩ P (h), which gives, f(y) = f(y)h(y) ∈ σπ (fh) = {f(x)} which completes

the proof.

The following corollary is a restatement of Lemma 3.2.8 combined this result.

Corollary 3.2.13. For every x ∈ δA and every open neighborhood U of x there exists

h ∈ Fx(A) such that P (h) ⊂ U .

Definition 3.2.14. A point x ∈MA is a p-point [3] if for every open neighborhood U

of x there exists h ∈ Fx(A) such that P (h) ⊂ U . The Choquet boundary is the set of

all p-points.

Corollary 3.2.13 and the previous results of this section provide an alternative proof of

the existence of the Choquet boundary expressed in the following theorem.

Theorem 3.2.15 (Choquet Boundary Theorem for Uniform Algebras). If A is a uni-

form algebra then the set of all p-points is a boundary of A.

Lemma 3.2.16. The boundary δA is contained in any closed boundary E ⊂MA of A.

Proof. Let E ⊂ MA be a closed boundary of A. Suppose that δA\E 6= ∅ and let

x ∈ δA\E ⊂ X\E. Then X\E is an open neighborhood of x in X and, by Corollary

3.2.13, there exists h ∈ Fx(A) such that P (h) ⊂ X\E. Thus |h(x)| < 1 = ‖h‖ on E,

which contradicts the assumption that E is a boundary. Consequently, δA\E = ∅, thus

δA ⊂ E. Therefore, δA is contained in every closed boundary.



3.3. MULTIPLICATIVELY ISOLATING FAMILIES 38

Theorem 3.2.17 (Shilov’s Theorem). The intersection of all closed boundaries of a

unital commutative Banach is a closed boundary.

Proof. Let ∂A be the intersection of all closed boundaries. By the previous lemma, δA

is contained in every closed boundary, so δA ⊂ ∂A ⊂ δA. Since ∂A contains a boundary

it is itself a boundary and, as the intersection of closed sets, it is closed. Thus ∂A = δA

is a boundary.

Theorem 3.2.17 implies there exists a smallest closed boundary ∂A = δA. This result

is well known and ∂A is the famous Shilov boundary. The standard proof found of its

existence in [17, Thm 1.5.2] is much shorter but uses the Gelfand topology which is

not elementary. Our proof of Theorem 3.2.17 is longer, but more constructive. Also we

simultaneously prove the existence of the Choquet boundary, which is useful when we

cannot use the Shilov boundary, e.g. [11].

3.3 Multiplicatively Isolating Families in a Uniform

Algebra

Recall a subset of X is a p-set if it is an (arbitrary, non-empty) intersection of peak

sets and x is a p-point if {x} is a p-set. The Choquet boundary, δA, the is set of all

p-points.

We define a general class of functions that have properties similar to the set of peaking

functions, F(A).

Definition 3.3.1. Let A be a subset of a uniform algebra A and for each x ∈ δA let

Ax = {f ∈ A\{0} : x ∈ M(f)}. We say A is a multiplicatively isolating family (m.i.f)
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of A if

(i) each Ax is multiplicatively closed and

(ii) for every open neighborhood U of x there is f ∈ Ax such that M(f) ⊂ U .

The set of peaking functions, F(A), is itself a multiplicatively isolating family. Clearly

if two functions peak on x ∈ δA then so does their product, which is then a peaking

function, so (i) is satisfied. Condition (ii) is satisfied by Corollary 3.2.13. The en-

tire algebra, A, is multiplicatively isolating since it is closed under multiplication and

F(A) ⊂ A provides the functions whose existence is required by (ii).

Lemma 3.3.2. If A is a m.i.f. of A then Ax1 ⊂ Ax2 implies x1 = x2.

Proof. We prove the contrapositive. If x1 6= x2 then there exists an open neighborhood

U of x1 that excludes x2. By condition (ii) of the definition there exists f ∈ Ax1 such

that M(f) ⊂ U . Thus f /∈ Ax2 , i.e., Ax1 6⊂ Ax2 .

The importance of multiplicatively isolating families is illustrated by the following

lemma.

Lemma 3.3.3. Let A be a multiplicatively isolating family of A. Then for every f ∈ A

and x ∈ δA,

inf
h∈Ax

‖fh‖
‖h‖

= |f(x)|. (3.3.1)

Proof. For all h ∈ Ax\{0}, |h(x)| = ‖h‖ so ‖fh‖
‖h‖

≥ |f(x)||h(x)|
‖h‖

= |f(x)| and this gives

inf
h∈Ax

‖fh‖
‖h‖

≥ |f(x)|. To show the opposite inequality, for each ε > 0 we will produce

h ∈ Ax such that
‖fh‖
‖h‖

< |f(x)|+ ε. Note if f = 0 there is nothing to show. Let X be

the carrier space of the uniform algebra, and define U = {y ∈ X : |f(y)| < |f(x)|+ ε}.
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Clearly U is an open neighborhood of x ∈ δA, and there exists k ∈ Ax such that

M(k) ⊂ U . If U = X, there is nothing to show, otherwise let δ = max
y∈X\U

|k(y)|. Since

X\U is compact, the maximum is justified. Since X\U is disjoint from M(k), δ < ‖k‖,

i.e.,
δ

‖k‖
< 1. Thus, for a sufficiently high power n,

δn

‖k‖n
<
|f(x)|+ ε

‖f‖
. By taking

h = kn ∈ Ax this inequality becomes

max
y∈X\U

|h(y)|
‖h‖

<
|f(x)|+ ε

‖f‖
,

and so for all y ∈ X\U we have
|f(y)||h(y)|
‖h‖

<
|f(y)|
‖f‖

(|f(x)|+ ε) ≤ |f(x)| + ε. For

y ∈ U, we have
|f(y)||h(y)|
‖h‖

≤ |f(y)| < |f(x)|+ ε, which completes the proof.

For each f ∈ A, consider the series ef =
∞∑
i=0

fn

n!
. Note

∞∑
i=0

‖f‖n

n!
= e‖f‖ < ∞ which

shows the series is convergent in A. The set eA = {ef : f ∈ A} is called the exponent

of the algebra. Since ef(x)e−f(x) = 1 for all x ∈ X, we see eA consists of invertible

elements.

Lemma 3.3.4. The set A = eA ∩ F(A) is a multiplicatively isolating family.

Proof. Let x ∈ δA and f, g ∈ Ax, i.e., f, g ∈ eA ∩ F(A) and x ∈ P (f) ∩ P (g). Since

both f and g are in F(A) with a common maximizer, x, their product is in F(A) with

maximizer x, i.e., fg ∈ Fx(A). There exists f ′, g′ ∈ A such that f = ef
′
and g = eg

′
.

Thus fg = ef
′+g′ ∈ eA and condition (i) of Definition 3.3.1 is satisfied.

Let x ∈ δA and U be an open neighborhood of x. Then there exists k ∈ F(A) such

that P (k) ⊂ U . Let h = ek−1. If x ∈ P (k) then h(x) = ek(x)−1 = e0 = 1. If x /∈ P (k),

then |k(x)| < 1 and Re k(x) < 1 which gives Re k(x) − 1 < 0. Thus eRe k(x)−1 < 1 and

|h(x)| =
∣∣ek(x)−1

∣∣ = eRe k(x)−1 < 1. Thus h ∈ eA ∩ F(A) and P (h) = P (k) ⊂ U so
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condition (ii) of Definition 3.3.1 is satisfied.

Example 3.3.5. Let A be a uniform algebra then the following sets are multiplicatively

isolating,

(a) F(A)

(b) F(A) ∩ eA

(c) F(A) ∩ A−1

(d) A−1

(e) A

Let A be any of the above sets. In all of the cases, Ax is closed under products and thus

condition (i) of the definition is satisfied. Condition (ii) requires for each x ∈ δA and

each open neighborhood there exists h ∈ Ax such thatM(f) ⊂ U . Since F(A)∩eA ⊂ A

in all the above cases, the existence required is met by an f ∈ F(A) ∩ eA by Lemma

3.3.4.

The following lemma is a stronger version of Bishop’s Lemma.

Lemma 3.3.6. If E ⊂ X is a peak set, and f ∈ A is such that f |E 6= 0, then there

exists h ∈ F(A) ∩ eA such that fh attains its maximum modulus exclusively on E. In

particular, h is invertible.

Proof. We will use the following inequality, easily verified with Rolle’s Theorem.

en(x−1) < x, ∀ x ∈
[
2−1, 1

)
, ∀ n ≥ 2 (3.3.2)

Let E be a peak set and f ∈ A such that f |E 6= 0. By Lemma 3.2.10 there exists

h ∈ F(A) such that P (h) = E and fh takes its maximum modulus only on E. Choose
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n ≥ 2 such that
(
e−

1
2

)n
<
‖fh‖
‖f‖

and define k = en(h−1). Firstly, for all x ∈ X, |k(x)| =

en(Reh(x)−1) ≤ eReh(x)−1 ≤ 1 since Reh(x)− 1 ≤ 0. Also

1 = |k(x)| ⇐⇒ n(Reh(x)− 1) = 0 ⇐⇒ Reh(x) = 1 ⇐⇒ h(x) = 1,

and thus 1 = |k(x)| implies k(x) = 1. Therefore k ∈ F(A) and P (k) = P (h) = E.

Also for any x ∈ X with ‖fh‖ = |f(x)h(x)|, we have x ∈ P (h) = P (k), which implies

‖fh‖ = |f(x)h(x)| = |f(x)k(x)| ≤ ‖fk‖.

Finally we show that fk attains its maximum modulus exclusively on E. Let x ∈ X

such that x /∈ P (k). Then x /∈ P (h) and −1 ≤ Reh(x) < 1.

Case 1:
1

2
≤ Reh(x) < 1. Then |k(x)| = en(Reh(x)−1) < Reh(x) ≤ |h(x)|, by (3.3.2), so

|f(x)k(x)| < |f(x)h(x)| ≤ ‖fh‖ ≤ ‖fk‖ .

Case 2: Reh(x) <
1

2
. Then Reh(x) − 1 < −1

2
and |k(x)| =

(
eReh(x)−1

)n
<
(
e−

1
2

)n
<

‖fh‖
‖f‖

. Thus |f(x)k(x)| < ‖f‖‖fh‖
‖f‖

= ‖fh‖ ≤ ‖fk‖.

Since |f(x)k(x)| < ‖fk‖ for all x /∈ P (k) = E, fk attains its maximum modulus

exclusively on E.



Chapter 4

Weakly Peripherally-Multiplicative

Mappings Between Uniform Algebras

4.1 Norm Multiplicative Mappings

In this chapter we show a given mapping between uniform algebras is an isometric

algebra isomorphism if it satisfies rather general conditions. Suppose A is a uniform

algebra on the compact Hausdorff space X, and there exists a homeomorphism ψ :

Y → X. Let T : A → C(Y ) be given by Tf = f ◦ ψ. Since f and ψ are continuous,

so is Tf . It is easy to show this map is linear, multiplicative, injective and continuous.

For example, T (f + g) = (f + g) ◦ ψ = f ◦ ψ + g ◦ ψ = T (f) + T (g), shows T is

additive and mainly consists of applying definitions. Maps defined in this way are

called composition operators. So, if T is a composition operator, then T is an isometric

algebraic isomorphism. However this condition is not necessary. Thus we have the

following lemma.

43



4.1. NORM MULTIPLICATIVE MAPPINGS 44

Lemma 4.1.1. Let ψ : Y → X be a homeomorphism between topological spaces. Let

A be a Banach algebra of continuous functions on X with pointwise operations and

uniform norm then T : A → C(Y ) given by T (f) = f ◦ ψ is an isometric algebra

isomorphism to its image.

Consider a uniform algebra A; let Â be its Gelfand transform and Â|E be the restric-

tion of the Gelfand transforms to a boundary E. Clearly the restriction map is an

algebraic homomorphism, and, since E is a boundary, it is isometric. This implies the

restriction is injective and thus an isometric algebraic isomorphism between Banach

algebras. If E is closed, for example E = ∂A, then the restriction map is an isometric

algebraic isomorphism between uniform algebras. However in general ∂A will not be

homeomorphic to MA. In particular, ∂A(D) = T and MA(D) = D which are clearly

not homeomorphic. This demonstrates that isomorphic uniform algebras can exist on

non-homeomorphic carrier spaces. They will, however, have homeomorphic maximal

ideal spaces. If A and B are uniform algebras on their maximal ideal spaces X =MA

and Y = MB correspondingly, then an isometric algebraic isomorphism T : A → B

induces a homeomorphism ψ : MB →MA such that (Tf)(y) = f(ψ(y)) for all f ∈ A

and y ∈ Y . Additionally the Shilov and Choquet boundaries will be homeomorphic by

restricting ψ. We will seek to find conditions under which a given map T : A→ B is a

composition operator of the form T (f) = f ◦ψ for some homeomorphism ψ : δB → δA.

Then the linearity and multiplicativity come immediately. The first step in this task is

to show that |T (f)| = |f ◦ ψ| as in the following theorem.

Theorem 4.1.2. Let A and B be multiplicatively isolating subsets of uniform algebras

A and B respectively. If T : A → B is a surjective mapping such that

‖TfTg‖ = ‖fg‖ (4.1.1)
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for all f, g ∈ A then there exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB.

In the following lemmas we assume that hypotheses of Theorem 4.1.2 hold.

Lemma 4.1.3. For all f ∈ A, ‖Tf‖ = ‖f‖.

Proof. By (4.1.1), ‖Tf‖2 =
∥∥Tf 2

∥∥ = ‖TfTf‖ = ‖ff‖ =
∥∥f 2
∥∥ = ‖f‖2.

Lemma 4.1.4. The inequality
|f |
‖f‖

≤ |g|
‖g‖

holds on δA if and only if the inequality

|Tf |
‖Tf‖

≤ |Tg|
‖Tg‖

holds on δB.

Proof. For the forward direction assume
|f |
‖f‖

≤ |g|
‖g‖

on δA. Let y ∈ δB, k ∈ By and

h ∈ A with T (h) = k. Since the maximum modulus must be taken on a boundary,
|fh|
‖f‖

≤ |gh|
‖g‖

on δA implies
‖fh‖
‖f‖

≤ ‖gh‖
‖g‖

and
‖Tf · k‖
‖k‖ ‖Tf‖

≤ ‖Tg · k‖
‖k‖ ‖Tg‖

using condition

(4.1.1) and norm equality from Lemma 4.1.3. Taking the infimum over all k ∈ By and

applying Lemma 3.3.3, we have
|Tf(y)|
‖Tf‖

≤ |Tg(y)|
‖Tg‖

.

For the converse, assume
|Tf |
‖Tf‖

≤ |Tg|
‖Tg‖

on δB. Let x ∈ δA, h ∈ Ax. Then
|TfTh|
‖Tf‖

≤

|TgTh|
‖Tg‖

on δB implies
‖TfTh‖
‖Tf‖

≤ ‖TgTh‖
‖Tg‖

and
‖fh‖
‖h‖ ‖f‖

≤ ‖gh‖
‖h‖ ‖g‖

using condition

(4.1.1) and norm equality from Lemma 4.1.3. Taking the infimum over all h ∈ Ax, we

have
|f(x)|
‖f‖

≤ |g(x)|
‖g‖

.

Lemma 4.1.5. There exists a unique bijection ψ : δB → δA such that

Aψ(y) = T−1(By)

for all y ∈ δB.
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Proof. Fix y ∈ δB and define,

Fy =
⋂

f∈T−1(By)

M(f).

First we show that Fy is nonempty. By the finite intersection property, it suffices to

show
n⋂
k=1

M(fk) 6= ∅ for fk ∈ T−1(By), since X is compact. Let f ∈ T−1

(
n∏
k=1

Tfk

)
,

i.e., Tf =
n∏
k=1

Tfk. Note

|Tf(y)| ≤ ‖Tf‖ =

∥∥∥∥∥
n∏
k=1

Tfk

∥∥∥∥∥ ≤
n∏
k=1

‖Tfk‖ ≤
n∏
k=1

|Tfk(y)| = |Tf(y)|

so ‖Tf‖ =
n∏
k=1

‖Tfk‖ and hence

|Tf |
‖Tf‖

=

∏n
k=1 |Tfk(y)|∏n
k=1 ‖Tfk‖

=
n∏
k=1

|Tfk|
‖Tfk‖

.

Since each factor is clearly less than or equal to one,
|Tf |
‖Tf‖

≤ |Tfk|
‖Tfk‖

for all k = 1 . . . n.

Thus
|f |
‖f‖
≤ |fk|
‖fk‖

≤ 1 on δA, by Lemma 4.1.4. By Lemma 3.2.3, M(f) ∩ δA 6= ∅ and

for x ∈M(f)∩ δA we have 1 =
|f(x)|
‖f‖

≤ |fk(x)|
‖fk‖

≤ 1. Consequently, x ∈M
(

fk
‖fk‖

)
=

M(fk) for any k, implying x ∈
n⋂
k=1

M(fk). By Lemma 3.2.3 there exists x ∈ δA ∩ Fy.

Thus x ∈
⋂

f∈T−1(B′y)

M(f), i.e., all the functions in T−1(By) maximize on x. Thus we

have shown

∀y ∈ δB,∃x ∈ δA such that T−1(By) ⊂ Ax. (4.1.2)

We now repeat the procedure above to produce a y ∈ δB associated with each given
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x ∈ δA. Fix x ∈ δA and define

Ex =
⋂

g∈T (Ax)

M(g).

Similarly we show that Ex is nonempty by establishing
n⋂
k=1

M(T (fk)) 6= ∅ for fk ∈ Ax.

Let f =
n∏
k=1

fk. Note |f(x)| ≤ ‖f‖ ≤
n∏
k=1

‖fk‖ =
n∏
k=1

|fk(x)| = |f(x)| so ‖f‖ =
n∏
k=1

‖fk‖

and hence
|f |
‖f‖

=
n∏
k=1

|fk|
‖Tf‖

.

Since each factor is clearly less than or equal to one,
|f |
‖f‖

≤ |fk|
‖f‖

for all k = 1 . . . n.

Thus
|Tf |
‖Tf‖

≤ |Tfk|
‖Tfk‖

≤ 1 on δB, by Lemma 4.1.4. By Lemma 3.2.3, there exists

y ∈ M(Tf) ∩ δB. For such y we have 1 =
|Tf(y)|
‖Tf‖

≤ |Tfk(y)|
‖Tfk‖

≤ 1 implies x ∈

M

(
Tfk
‖Tfk‖

)
= M(Tfk) for any k, so y ∈

n⋂
k=1

M(Tfk) as desired. By Lemma 3.2.3,

there exists y ∈ δB ∩ Ex. Thus y ∈
⋂

g∈T (A′x)

M(g), i.e., all the functions in T (Ax)

maximize on y. Thus we have shown

∀x ∈ δA, ∃y ∈ δB such that T (Ax) ⊂ B′y. (4.1.3)

Equation (4.1.2) implies there exists ψ : δB → δA such that such that T−1(By) ⊂ Aψ(y).

We now show this function is unique and the containment is actually equality. Fix

y ∈ δB. Suppose x1, x2 ∈ δA such that

T−1(By) ⊂ Ax1 and T−1(By) ⊂ Ax2 (4.1.4)
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as in (4.1.2). Since T is surjective, this implies By ⊂ T (Ax1) and By ⊂ T (Ax2). By

(4.1.3) there exists y1, y2 ∈ δB such that T (Axi) ⊂ Byi for i = 1, 2. Thus By ⊂ Byi

and by Lemma 3.3.2, y = y1 = y2. Thus we have Ax1 ⊂ T−1T (Ax1) ⊂ T−1(By1) =

T−1(By) ⊂ Ax2 by (4.1.4). Thus x1 = x2 by Lemma 3.3.2 and T−1(By) = Ax1 . This

shows ψ : δB → δA is the unique map such that T−1(By) = Aψ(y). Lastly we show ψ

is onto. By (4.1.3) for each x ∈ δA there exists y such that T (Ax) ⊂ By. This gives

Ax ⊂ T−1T (Ax) ⊂ T−1(By). We also have T−1(By) = Aψ(y) and so Ax ⊂ Aψ(y) which

gives x = ψ(y) by Lemma 3.3.2.

Lemma 4.1.6. For all f ∈ A and y ∈ δB,

|T (f)(y)| = |f(ψ(y))|.

Proof. By Lemmas 3.3.3 and 4.1.5 we get

|Tf(y)| = inf
k∈By
‖Tf · k‖ = inf

h∈T−1(By)
‖TfTh‖

= inf
h∈Aψ(y)

‖TfTh‖ = inf
h∈Aψ(y)

‖fh‖

= |f(ψ(y))|.

To establish that ψ is a homeomorphism, we will consider a particular topological basis

for the Choquet boundary.

Lemma 4.1.7. The family of sets B = {|f |−1 ((δ,∞)) : δ ≥ 0, f ∈ A\{0}} is a basis

for the topology of δA.

Proof. Clearly every element in B is open in X. Let x ∈ δA and U be an open

neighborhood of x in X (and thus U ∩ δA is an arbitrary neighborhood of x in δA.) We
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now show that every such neighborhood contains a neighborhood of x in B. Since A is a

multiplicatively isolating family of A, there exists an h ∈ Ax\{0} such that M(h) ⊂ U .

If U = X, then |h|−1((0,∞)) ⊂ U . Otherwise X\U is a non-empty compact set and

so is |h|(X\U), which is disjoint from the compact set |h|(M(h)). Thus there exists a

δ such that max |h|(X\U) < δ < ‖h‖. If |h(y)| > δ then y /∈ X\U , i.e., y ∈ U . Thus

|h|−1((δ,∞) ⊂ U and B is a basis for the topology of δA.

Lemma 4.1.8. The bijection ψ from Lemma 4.1.5 is a homeomorphism.

Proof. First we show continuity of ψ. Let BA be the basis as in Lemma 4.1.7 for δA.

We need only show ψ−1(U) is open for U ∈ BA. So for some δ > 0, U = |f |−1((δ,∞))

and y ∈ ψ−1(|f |−1((δ,∞)) if and only if δ < |f(ψ(y))| if and only if δ < |Tf(y)|. Thus

ψ−1(U) = |Tf |−1((δ,∞)).

For the continuity of ψ−1, let BB be the basis as in Lemma 4.1.7 for δB. We need

only show ψ(U) is open for U ∈ BB. So for some δ > 0, U = |Tf |−1((δ,∞)) and

x ∈ ψ(|Tf |−1((δ,∞)) if and only if δ < |Tf(ψ−1(x))| if and only if δ < |f(x)|, which

yields ψ(U) = |Tf |−1((δ,∞)).

We have now proven Theorem 4.1.2, stated at the beginning of the section.

Theorem (4.1.2). Let A and B be multiplicatively isolating subsets of uniform algebras

A and B, respectively. If T : A → B is a surjective mapping such that

‖TfTg‖ = ‖fg‖

for all f, g ∈ A then there exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB.
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The following theorem follows immediately from Theorem 4.1.2.

Theorem 4.1.9. Let T : A→ B be a mapping between uniform algebras. If there exist

a multiplicatively isolating set A such that T (B) is a multiplicatively isolating set and

‖TfTg‖ = ‖fg‖

for all f ∈ A and g ∈ A then there exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB.

Proof. Let B = T (A). The restriction T |A satisfies Theorem 4.1.2 so we get ψ and

|Tf | = |f ◦ ψ| for all f ∈ A. However Lemmas 4.1.5 and 3.3.3 give for all f ∈ A,

|Tf(y)| = inf
k∈By
‖Tf · k‖ = inf

h∈T−1(By)
‖TfTh‖

= inf
h∈Aψ(y)

‖TfTh‖ = inf
h∈Aψ(y)

‖fh‖

= |f(ψ(y))|.

The result obtained in [11, Theorem 1] is a particular case of Theorem 4.1.2 with

A = F(A). From the examples of multiplicatively isolating families given in Example

3.3.5 we have the following corollaries.

Corollary 4.1.10. Let T : A → B be a mapping between uniform algebras satisfying

T (A−1) = B−1 and

‖TfTg‖ = ‖fg‖
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for all f ∈ A and g ∈ A−1. Then there exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB.

Corollary 4.1.11. Let T : A → B be a surjective mapping between uniform algebras

such that

‖TfTg‖ = ‖fg‖

for all f, g ∈ A. Then there exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB.

In [9] O. Hatori asks if the preservation of peaking functions hypothesis of Theorem 4.1.9

(as was published in [11]) may be replaced by surjectivity. Corollary 4.1.11 answers this

in the affirmative.

4.2 Unital Weakly Peripherally-Multiplicative Map-

pings

Theorem 4.1.2 shows that under its assumptions T resembles an algebra isomorphism.

The following examples show, however, that the conditions of Theorem 4.1.2 are nec-

essary but not sufficient for T to be an algebra isomorphism.

Example 4.2.1.

(a) Let A be a uniform algebra, B = A and let T : A→ B be the conjugation mapping

Tf = f .



4.2. UNITAL WEAKLY PERIPHERALLY-MULTIPLICATIVE MAPPINGS 52

(b) If A = B = C ({x0}), then any f ∈ A is of the form reiθ. Let T : A→ A be defined

as T (reiθ) = re2iθ.

The set of peaking functions of A is a multiplicatively isolating family of A, and, in both

cases, T (F(A)) = F(B) and T is unital. Also, T is norm-multiplicative since, in case

(a), ‖fg‖ = ‖fg‖ and in case (b),
∣∣r1e2iθ1r2e2iθ2∣∣ = r1r2 =

∣∣r1eiθ1r2eiθ2∣∣. In both cases

T is multiplicative. However in the first case T (λf) = T (λ)T (f) = λT (f), which is not

equal to λT (f) in general. In the second case T (λf) = T (λ)T (f) = λ2T (f), which is

not equal λT (f) in general. Thus T is not homogeneous and so T is not an isomorphism,

though it satisfies the conditions of Theorem 4.1.2. These examples demonstrate that

even unital mappings that preserve the peaking functions and are norm-multiplicative

need not be algebra isomorphisms. We now consider strengthening the hypothesis of

Theorem 4.1.2 so that we may conclude T is an isometric algebra isomorphism. In [13] it

is shown that it suffices to assume T is surjective and the peripheral spectra of elements

fg and TfTg are equal, i.e., σπ (TfTg) = σπ (fg) for all f, g ∈ A. Such mappings are

called peripherally multiplicative. Strengthening the result of [13], we consider mappings

T : A→ B between uniform algebras that satisfy the condition

σπ (TfTg) ∩ σπ(fg) 6= ∅ (WPM)

for all f, g ∈ A. Such mappings we call weakly peripherally-multiplicative mappings.

Lemma 4.2.2 ([11]). Let T : A → B be a weakly peripherally-multiplicative mapping

between two uniform algebras. Then

(a) T is norm-multiplicative

(b) σπ (T1Tf) ∩ σπ (f) 6= ∅ for every f ∈ A
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(c) 1 ∈ σπ
(
(Th)2

)
for every h ∈ F(A); in particular, 1 ∈ σπ

(
(T1)2

)
(d) 1 ∈ σπ (T1Th) for every h ∈ F(A).

If, in addition, T is unital, then

(e) σπ (Tf) ∩ σπ (f) 6= ∅ for every f ∈ A

(f) 1 ∈ σπ (Th) for every h ∈ F(A).

(g) 1 ∈ σπ (h) for every h ∈ T−1(F(B)).

(h) If Tf ∈ F(B), then 1 ∈ σπ (f).

Proof. (a) follows immediately from the weakly peripherally-multiplicative property

(WPM), since |λ| = ‖f‖ for every λ ∈ σπ (f); (b), (c) and (d) follow by substituting

h = 1, f = g and f = 1 in (WPM) correspondingly. The remaining statements are

straightforward.

However the following example shows that the weakly peripherally-multiplicative con-

dition is not strong for T to be an isometric algebra isomorphism.

Example 4.2.3. Let X be a compact Hausdorff space. Consider two disjoint copies,

X1, X2 of X. Let A = C(X), B = C (X1 tX2), and define T : A → B by T (0) =

0, (Tf)|X1 = f , (Tf)|X2 = f 2/‖f‖, f 6= 0.

Here T is unital, σπ (f) ⊂ σπ (Tf), and σπ (fg) ⊂ σπ (TfTg). Therefore, T is weakly

peripherally-multiplicative, without being peripherally multiplicative, i.e., the sets σπ (TfTg)

and σπ (fg) do not necessarily coincide. For example these sets are different for f = 1

and g = −1. Thus the weakly peripherally-multiplicative condition alone does not

suffice. Note that T in this example fails to preserve a multiplicatively isolating set
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of elements. In particular, T fails to perserve the (multiplicatively isolating) family of

peaking functions. Thus we will consider mappings that preserve the peaking functions,

i.e.,

F(B) = T (F(A)) . (PPF)

Lemma 4.2.4. If T : A→ B is norm multiplicative mapping and preserves the peaking

functions then it is unital.

Proof. By Theorem 4.1.2, |T1| = |1◦ψ| = 1 on δB, but T1 is a peaking function, which

implies T1 ≡ 1 on δA and so T1 = 1.

Condition (PPF) implies, in particular, that σπ (Th) = σπ (h) for all h ∈ F(A), i.e., that

T preserves the peripheral spectrum of peaking functions. Note that all unital mappings

considered in [5, 6, 7, 13, 14, 15] automatically preserve the peaking functions and are

weakly peripherally-multiplicative. The next theorem shows, any such mapping is an

algebra isomorphism.

Theorem 4.2.5 ([11]). Let T : A → B be a mapping between uniform algebras. If T

is weakly peripherally-multiplicative and preserves the peaking functions,1 then T is an

isometric algebra isomorphism.

Proof. Since weakly peripherally-multiplicative mappings are norm-multiplicative and

the set peaking functions of A (resp. B) are a multiplicatively isolating family of A

(resp. B), Theorem 4.1.2 implies that the mapping ψ : δB → δA is a homeomorphism,

and

|Tf(y)| = |f(ψ(y))| (4.2.1)

for all y ∈ δB and f ∈ A. We now show that (Tf)(y) = f(ψ(y)).
1Note that we do not assume T is surjective.
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Take f ∈ A and y ∈ δB. Equation (4.2.1) implies f(ψ(y)) = 0 if and only if (Tf)(y) = 0,

so we may assume that f(ψ(y)) 6= 0. Let U be an open neighborhood of y. Bishop’s

Lemma 3.2.10 implies that there exists a Th ∈ F(B) such that TfTh assumes its maxi-

mum modulus only within P (Th) ⊂ U . By Lemma 3.2.6 (a), if λ ∈ σπ (TfTh)∩σπ (fh),

then (fh)−1 ({λ}) and (TfTh)−1 ({λ}) are peak sets ofA andB correspondingly. Hence,

by Lemma 3.2.3 these sets meet the Choquet boundaries δA and δB correspondingly.

Therefore we can choose elements y1, y2 ∈ δB such that

λ = Tf(y1) · Th(y1) = f(ψ(y2)) · h(ψ(y2)). (4.2.2)

Applying (4.2.1) we obtain

‖TfTh‖ = |λ| = |Tf(y1) · Th(y1)| = |f(ψ(y2)) · h(ψ(y2))| = |Tf(y2) · Th(y2)| .

The assumption on Th implies TfTh takes is maximum modulus only on P (Th). Thus

both points y1 and y2 belong to P (Th) ⊂ U , and therefore, ψ(y1), ψ(y2) ∈ P (h),

by (4.2.1). Hence Th(y1) = 1 = h(ψ(y1)) which applied to (4.2.2), yields Tf(y1) =

f(ψ(y2)). Since for any neighborhood of y there exist two such points, the continuity

of Tf and f ◦ ψ implies Tf(y) = f(ψ(y)), as intended.

Finally note that since δA and δB are boundaries for A and B resp., the restrictions

rA : A→ A|δA and rB : B → B|δB are isometric algebra isomorphisms by Lemma 3.1.2.

Define a mapping T̃ : A|δA → B|δB by T̃ (f |δA) = (Tf)|δB. Clearly, T̃ = rB ◦ T ◦ r−1
A so
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that the following diagram commutes:

A

rA
��

T // B

rB
��

A|δA
eT // B|δB

We have just shown that T̃ f = f ◦ ψ. By Lemma 4.1.1, T̃ is an injective isometric

algebra homomorphism. Therefore, T = r−1
B ◦ T̃ ◦ rA is an injective isometric algebra

homomorphism. Recall F(B) ⊂ T (A) and, by Lemma 3.2.6, the linear span of F(B)

is B. Thus T is also surjective and now we may conclude it is an isometric algebra

isomorphism from A onto B.

Actually one can see from the proof that Theorem 4.2.5 is true if the condition σπ (TfTg)∩

σπ (fg) 6= ∅ holds for all f ∈ A and for peaking functions g ∈ F(A) only.

Clearly if T is surjective and preserves the peripheral spectra of algebra elements, i.e.,

σπ(Tf) = σπ(f), then it preserves the families of peaking functions. In particular, we

have the following corollary.

Corollary 4.2.6. Let A and B be uniform algebras. If T : A → B is a surjective

mapping such that

(i) σπ(Tf) = σπ(f) for every f ∈ A and

(ii) σπ (TfTg) ⊂ σπ (fg), or σπ (TfTg) ⊃ σπ (fg) for all f, g ∈ A,

then T is an isometric algebra isomorphism.

In [13], maps T : A → B such that σπ (TfTg) = σπ (fg) are called peripherally-

multiplicative. If T is unital then σπ (Tf) = σπ (T1Tf) = σπ (1 · f) = σπ (f), i.e., T
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preserves the peripheral spectra of algebra elements. Hence we get the main result of

[13] as a corollary.

Corollary 4.2.7 ([13, Theorem 1]). Let A and B be uniform algebras. If T : A → B

is a surjective mapping such that

(i) T is unital and

(ii) T is peripherally multiplicative, i.e., σπ (TfTg) = σπ (fg), f, g ∈ A,

then T is an isometric algebra isomorphism.

The preservation of peaking functions property

F(B) = T (F(A)) (PPF)

is clearly equivalent to the inclusions F(B) ⊂ T (F(A)) and T (F(A)) ⊂ F(B). In

fact as the next lemma shows, in the case when F(B) ⊂ T (A) either of these condi-

tions is sufficient for a weakly peripherally-multiplicative mapping to preserve peaking

functions, which leads to a stronger version of Theorem 4.2.5.

Lemma 4.2.8 ([11]). Let T : A → B be a weakly peripherally-multiplicative mapping

between two uniform algebras. If

(a) F(B) ⊂ T (F(A)), or,

(b) T (F(A)) ⊂ F(B) ⊂ T (A),

then F(B) = T (F(A)), i.e., T preserves the peaking functions.
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Proof. (a) Let f ∈ F(A) and λ ∈ σπ (Tf). Thus (Tf)−1(λ) is a peak set by Lemma

3.2.6 (a). Bishop’s Lemma implies that there exists k ∈ F(Tf)−1(λ)(B) such that (Tf) ·k

takes its maximum modulus only on (Tf)−1(λ), i.e., σπ ((Tf) · k) = {λ}. Since T

preserves the norms, ‖(Tf)·k‖ = |λ| = ‖Tf‖ = ‖f‖ = 1. By the hypothesis there exists

h ∈ F(A) such that Th = k. Norm-multiplicativity then implies ‖fh‖ = ‖TfTh‖ = 1.

Since the product of peaking functions is a peaking function if and only if its norm is

1, we conclude that fh is a peaking function of A. Thus ∅ 6= σπ (TfTh) ∩ σπ (fh) =

{λ}∩ {1} implies λ = 1, and so σπ(Tf) = {1}. Therefore Tf is a peaking function and

consequently, T (F(A)) ⊂ F(B).

Proof (b). If k ∈ F(B), then by the hypotheses there is f ∈ A such that Tf = k ∈

F(B). Let λ ∈ σπ(f). Thus f−1(λ) is a peak set by Lemma 3.2.6 (a). Bishop’s Lemma

implies that there exists h ∈ Ff−1(λ)(A) such that fh takes its maximum modulus only

on f−1(λ), i.e., σπ(fh) = {λ}. Similarly ‖TfTh‖ = ‖fh‖ = ‖f‖ = ‖Tf‖ = 1 implies

that TfTh is a peaking function since, by hypothesis, Th ∈ F(B), i.e., σπ (TfTh) =

{1}. So ∅ 6= σπ (TfTh) ∩ σπ (fh) = {1} ∩ {λ} gives λ = 1 and so σπ(f) = {λ}.

Therefore f is peaking function and consequently, F(B) ⊂ T (F(A)).

Theorem 4.2.5 implies the following

Corollary 4.2.9 ([11]). If T : A → B is a weakly peripherally multiplicative mapping,

not necessarily linear nor continuous, between uniform algebras such that

(a) F(B) ⊂ T (F(A)), or,

(b) T (F(A)) ⊂ F(B) ⊂ T (A),

then T is an isometric algebra isomorphism. Thus T is automatically continuous, linear

and multiplicative.
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4.3 Non-Unital Weakly Peripherally-Multiplicative

Mappings

In general, neither weakly peripherally-multiplicative, nor norm-multiplicative map-

pings need to be unital.

Example 4.3.1. Let A be a uniform algebra and T : A→ A.

(a) If T is the identity, then Ran(T1) = {1}.

(b) If T is the negative of the identity, then Ran(T1) = {−1}.

(c) If A = C({x1, x2}) and T (z1, z2) = (z1,−z2) then Ran(T1) = {±1}.

In all cases T is weakly peripherally-multiplicative; in (a) and (b) it is surjective, while in

(b) and (c) it is not unital. Observe that in (b) and (c) T is not an algebra isomorphism.

As mentioned before, weakly peripherally-multiplicative mappings that do not preserve

the peaking functions might fail to be algebra isomorphisms. As established in this

section, though, a large class of such mappings are closely related in certain sense to

algebra isomorphisms. Recall that the peripheral spectrum of any peaking function

h ∈ F(A) is a singleton, namely σπ (h) = {1}. If T denotes the unit circle in the

complex plane C, then T · F(A) is the set of all functions f ∈ A with ‖f‖ = 1 and

singleton spectra.

Proposition 4.3.2 ([11]). Let T : A→ B be a weakly peripherally-multiplicative map-

ping between uniform algebras. If

(a) F(B) ⊂ T (T · F(A)), or,

(b) T (F(A)) ⊂ T · F(B) ⊂ T (A),
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then either T or its negative is an isometric algebra isomorphism, and is, therefore, a

bounded linear operator.

Proof (a). According to Lemma 4.2.2 (a), T is norm-multiplicative, and by Lemma 4.1.3

it is norm preserving. By (a), for any k ∈ F(B) there is f ∈ A with Tf = k and σπ (f)

a singleton. In particular, there is e ∈ A such that σπ (e) is a singleton and Te = 1.

Since σπ
(
e2
)
∩ σπ

(
(Te)2

)
= σπ

(
e2
)
∩ {1} 6= ∅, we see that σπ

(
e2
)

= {1}. There are

two possibilities for σπ (e): either σπ (e) = {1} or σπ (e) = {−1}.

Suppose σπ (e) = {1}. The set A = T · F(A) is a multiplicatively isolating family and,

by Lemma 3.3.3,

|e(x)| = inf
h∈T·F(A)

‖eh‖
‖h‖

= inf
h∈T·F(A)

‖eh‖
‖h‖

= inf
h∈T·F(A)

‖1 · Th‖
‖Th‖

= 1,

for all x ∈ δA. Since σπ (e) = {1}, e = 1 and T is unital. By Lemma 4.2.2 (g), if f ∈

F(A), then 1 ∈ σπ (f). Consequently, σπ (f) = {1}, since σπ (f) is a singleton. Hence,

f ∈ F(A), and therefore F(B) ⊂ T (F(A)). By Corollary 4.2.9, T is an isomorphism.

If σπ (e) = {−1}, then the above argument applies to the mapping T ′f = T (−f), which

is weakly-peripherally multiplicative, and so T ′ is an isomorphism. In particular, T ′ is

linear so T ′ = −T and T is the negative of an isomorphism.

(b) As in part (a), T is norm-multiplicative and norm preserving. According to (b),

σπ (Th) is a singleton for all h ∈ F(A). So σπ
(
12
)
∩σπ

(
(T1)2

)
6= ∅ implies σπ

(
(T1)2

)
=

{1}. There are two possibilities for σπ (T1): either σπ (T1) = {1} or σπ (T1) = {−1}.

Suppose σπ (T1) = {1}. The set B = T ·F(B) is a multiplicatively isolating family and,
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by Lemma 3.3.3,

|T1(y)| = inf
h∈T−1(T·F(B))

‖T1Th‖
‖Th‖

= inf
h∈T−1(T·F(B))

‖1 · h‖
‖h‖

= 1,

for all y ∈ δB. Since σπ (T1) = {1}, T1 = 1 and T is unital. Lemma 4.2.2 (f) implies

that 1 ∈ σπ (Th) for any h ∈ F(A). Consequently, σπ (Th) = {1}, since σπ (Th) is a

singleton. Hence, Th ∈ F(B), and therefore T (F(A)) ⊂ F(B). By Corollary 4.2.9, T

is an isomorphism.

If −T1 ∈ F(B), then the above argument applies to −T , so it is an isomorphism.

If T is a weakly peripherally-multiplicative mapping, then 1 ∈ σπ (T1Th) for any h ∈

F(A), by Lemma 4.2.2 (d). If, moreover, σπ (T1Th) = {1}, then T1Th ∈ F(B) and

consequently,

(T1) · T (F(A)) ⊂ F(B). (4.3.1)

Example 4.2.3 shows that the above condition is not sufficient to characterize weakly

peripherally-multiplicative mappings. However, as the next theorem shows, the stronger

condition

(T1) · T (F(A)) = F(B) (4.3.2)

is sufficient for this. Note that the mappings considered in [6, 13, 15, 17] automatically

satisfy this condition.

Theorem 4.3.3 ([11]). If a mapping T : A → B, not necessarily linear, between two

uniform algebras satisfies the conditions

(i) F(B) = (T1) · T (F(A)) and

(ii) T is weakly peripherally-multiplicative,
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then T is the product of a function in B with values in the set {±1} and an algebra

isomorphism from A onto B. More precisely, there exists an isometric algebra isomor-

phism T̃ : A→ B, such that for any f ∈ A

Tf = (T1) · T̃ f, (4.3.3)

and therefore T is automatically a bounded linear operator.

Proof. The mapping T̃ = (T1)·T satisfies the hypothesis of Theorem 4.2.5 and therefore

is an isometric algebra isomorphism. Thus 1 = T̃ (1) = T1 · T1 = (T1)2, (T1)−1 = T1,

and the values of T1 are in the set {±1}. This completes the proof since T = (T1)·T̃ .

Actually Theorem 4.3.3 holds if the weak peripheral multiplicativity of T is replaced by

the condition σπ (TfTh)∩σπ (fh) 6= ∅ for all f ∈ A and for peaking functions h ∈ F(A)

only. Observe that if a unital mapping satisfies condition (4.3.2), then it preserves the

peaking functions.

In the context of Theorem 4.3.3, we obtain the following:

Corollary 4.3.4 ([11]). Let A and B be uniform algebras on their maximal ideal spaces

X and Y correspondingly. If a mapping T : A→ B satisfies the assumptions of Theorem

4.3.3, then there exists a homeomorphism ψ : Y → X such that

(Tf)(y) = κ(y) · f(ψ(y)) (4.3.4)

for all f ∈ A, where κ = T1 ∈ B and Ran(κ) ⊂ {±1}.

Corollary 4.3.4 implies that T is a weighted composition operator on A. Clearly, iso-

morphisms are weighted composition operators with trivial weight.
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Example 4.3.5. Let X = X1 t X2, X1
∼= X2 be the compact Hausdorff space from

Example 4.2.3, A = C(X), and B = C(X1 tX2). The mapping T : A→ B defined by

(Tf)|X1 = f , (Tf)|X2 = −f , is linear, but not of the type (4.3.3). Clearly, σπ (T1) =

{±1}, σπ (f) ⊂ σπ (Tf), and therefore, T is weakly peripherally-multiplicative. Here T

violates condition (i) of Theorem 4.3.3. In particular F(B) 6⊂ T (A).

As in the unital case, condition (i) in Theorem 4.3.3 can be relaxed. Indeed the proof

follows the same line except that it is based on Corollary 4.2.9 instead of Theorem 4.2.5.

Corollary 4.3.6 ([11]). Let T : A → B be a weakly peripherally-multiplicative map-

ping between uniform algebras such that (a) F(B) ⊂ (T1) · T (F(A)), or, (b) (T1) ·

T (F(A)) ⊂ F(B) ⊂ (T1) · T (A). Then T is as in Theorem 4.3.3.

Peripherally-multiplicative mappings, mentioned earlier, are introduced in [13]. By

definition, these mappings require

σπ (fg) = σπ (TfTg)

to hold for all f, g ∈ A. Peripherally-multiplicative mappings are automatically weakly

peripherally-multiplicative. It is easy to show that surjective and peripherally-multi-

plicative mappings meet the assumptions of Corollary 4.3.6. Indeed, the second inclu-

sion in (b) is satisfied by the surjectivity of T , so it is enough to check only the first

inclusion in (b). If h ∈ F(A), then T1Th ∈ F(B) since σπ (T1Th) = σπ (1 · h) = {1},

by the peripheral multiplicativity. Hence (T1) · T (F(A)) ⊂ F(B). Corollary 4.3.6 now

implies the following main result of Luttman and Tonev in [13]:

Corollary 4.3.7. Let A and B be uniform algebras. If the mapping T : A → B, not

necessarily linear, is surjective and peripherally-multiplicative, then T is as in Theorem

4.3.3.



Chapter 5

Norm Conditions for Isomorphism -

The Hatori Conjecture

5.1 Introduction

In 2005 O. Hatori proposed (in private communication) the following conjecture: Con-

sider a surjective map T : A→ B between uniform algebras satisfying

‖Tf Tg + 1‖ = ‖fg + 1‖ , for all f, g ∈ A. (H)

Then T is an isometric algebra isomorphism. The conjecture is false as shown by the

examples in the following two lemmas.

Lemma 5.1.1. Let κ ∈ C(Y ) such that κ2 = 1. Define a map Ψ : C(Y ) → C(Y )

by Ψf = κf ∈ C(Y ). Then Ψ is an isometric C-linear bijection with Ψ−1 = Ψ and

satisfies ‖ΨfΨg + 1‖ = ‖fg + 1‖ for all f, g ∈ C(Y ).

64
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Proof. Note κ2 = 1. So Ψ2 = idC(Y ) which implies Ψ is a bijection with Ψ−1 = Ψ. For

all f, g ∈ C(Y ) and λ ∈ C we find Ψ(f +λg) = κ(f +λg) = κf +λκg = Ψf +λΨg and

Ψ is C linear. Since κ2 = 1, |κ| = 1 and |Ψf | = |κf | = |f |. So Ψ preserves the modulus

of functions and thus the norm proving Ψ is an isometry. Also ΨfΨg = (κf) (κg) = fg

so Ψ satisfies (H).

The map Ψ is multiplicative if and only if κ = 1 (i.e., Ψ is the identity map) since

Ψ1Ψ1 = κ2 = 1 and Ψ1 = κ and these are equal only if κ = 1. If Y is connected then

κ must be constant in which case Ψ is either the identity map or the negation map.

If Y is disconnected more complicated examples. Suppose Y is the disjoint union of

two compact subspaces, say Y1 and Y2. Then κ defined by κ|Y1 = 1 and κ|Y2 = −1 is

continuous and κ2 = 1. In this example Ψ is neither the identity map nor the negation

map.

Lemma 5.1.2. Let e ∈ C(Y ) be an idempotent, i.e., e2 = e and let e′ = 1− e. Define

a map Φ : C(Y ) → C(Y ) by Φf = ef + e′f ∈ C(Y ). Then Φ is an multiplicative,

isometric, R-linear bijection with Φ−1 = Φ and satisfies ‖ΨfΨg + 1‖ = ‖fg + 1‖ for

all f, g ∈ C(Y ).

Proof. Note ee′ = e(1 − e) = e − e2 = 0 and (e′)
2

= e′ − e′e = e′. Thus e′ is also

idempotent, and ee′ = 0. As idempotents, e and e′ and only take the values 0 or 1. In

particular, they are real-valued. Thus

Φ ◦ Φ(f) = e
(
ef + e′f

)
+ e′

(
ef + e′f

)
= e2f + ee′f + e′ef + (e′)

2
f

= ef + e′f = (e+ e′) f = f,
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which proves Φ is a bijection with Φ−1 = Φ. If f, g ∈ C(Y ) and r ∈ R, then

Φ(f + rg) = e (f + rg) + e′(f + rg) = ef + reg + e′f + re′g = Φf + rΦg

proves R-linearity. Note

ΦfΦg =
(
ef + e′f

)
(eg + e′g) = e2fg + ee′fg + e′efg + (e′)

2
fg =

= efg + e′fg = Φ(fg) =


fg on e−1(1)

fg on e−1(0) = (e′)−1(1)

for all f, g ∈ C(Y ). Thus Φ is multiplicative and |ΦfΦ + 1| = |fg + 1| on e−1(1) and

|ΦfΦ + 1| =
∣∣fg + 1

∣∣ = |fg + 1| on e−1(0). Since the uniform norm is the maximum

modulus, (H) holds. Similarly |Φf | = |f | on e−1(1) and |Φf | =
∣∣f ∣∣ = |f | on e−1(0).

Thus Ψ preserves the modulus and thus the norm and is an isometry.

Note that in general Φ(1) = 1. The map Φ is C-linear if and only if e ≡ 1 (i.e., Φ

is the identity map) since Φ(i) = (2e − 1)i and iΦ(1) = i and these are equal if and

only if e ≡ 1. If Y is connected then e is constant and thus Φ is either the identity

map (if e ≡ 1) or the conjugation operator (if e ≡ 0). If Y is the disjoint union of two

compact subspaces Y1 and Y2. Then e defined by e|Y1 = 1 and e|Y2 = 0 is continuous

and e is idempotent and the corresponding map Φ is neither the identity map nor the

conjugation map. In any case Φ fixes real-valued functions.

Another interesting fact is that maps satisfying (H) compose to a map satisfying (H).

Lemma 5.1.3. If T : A → B and S : B → C are maps between uniform algebras

satisfy (H) then so does S ◦ T : A→ C.
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Proof. Let f, g ∈ A. Then ‖S(Tf)S(Tg) + 1‖ = ‖TfTg + 1‖ = ‖fg + 1‖.

In [11] it was shown that surjective maps satisfying condition (H) are isometric algebra

isomorphisms provided that they are assumed to be homogeneous which, of course, Ψ

and Φ are not in general. However in [12] we showed that surjective maps satisfying

(H) have the form Ψ ◦Φ ◦ T̃ where T̃ is an isometric algebra isomorphism. Specifically

we have the following theorem.

Theorem 5.1.4 ([12, Theorem 2.9]). Let T : A→ B be a surjective map that satisfies

‖TfTg + 1‖ = ‖fg + 1‖ for all f, g ∈ A. Then there exist an idempotent e ∈ B and an

isometric algebra isomorphism T̃ : A→ Be⊕Be′ such that

Tf = (T1)
(
eT̃ f + e′T̃ f

)

for all f ∈ A, where e′ = 1− e and (T1)2 = 1.

The rest of this chapter is devoted to the proof of Theorem 5.1.4 also contained in [12].

5.2 Preliminary Results

The following result applies in any uniform algebra. However the hypothesis is quite

relevant to condition (H).

Lemma 5.2.1. Let A be a uniform algebra and f ∈ A. Then ‖f‖+ 1 = ‖f + 1‖ if and

only if ‖f‖ ∈ σπ (f).
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Proof. For any complex number λ ∈ C, the following statements will be justified.

|λ+ 1|2 = |λ|2 + 2 Reλ+ 1 (5.2.1)

λ = |λ| ⇐⇒ |λ+ 1| = |λ|+ 1 (5.2.2)

Equation (5.2.1) is verified by,

|λ+ 1|2 = (λ+ 1)
(
λ+ 1

)
= |λ|2 + λ+ λ+ 1 = |λ|2 + 2 Reλ+ 1,

since
λ+ λ

2
= Reλ.

Clearly λ = |λ| if and only if λ is a non-negative real number, so |λ+ 1| = λ+1 = |λ|+1.

For the other direction we square both sides to get |λ+ 1|2 = |λ|2 + 2 |λ|+ 1. Applying

(5.2.1) we get |λ|2 + 2 Reλ+ 1 = |λ|2 + 2 |λ|+ 1 which simplifies to Reλ = |λ|. Clearly

this gives λ = |λ| and (5.2.2) is justified.

For the main part, if ‖f‖+ 1 = ‖f + 1‖ then there exists x ∈ δA such that |f(x) + 1| =

‖f + 1‖. Thus

|f(x)|+ 1 ≤ ‖f‖+ 1 = ‖f + 1‖ = |f(x) + 1| ≤ |f(x)|+ 1,

and we have equality throughout. Thus |f(x)| = ‖f‖, and |f(x)|+1 = |f(x) + 1|. From

(5.2.2) we have f(x) = |f(x)|, yielding f(x) = ‖f‖. Thus ‖f‖ = f(x) ∈ σπ (f).

Conversely, if ‖f‖ ∈ σπ (f) then there exists some x such that f(x) = ‖f‖. Thus

‖f‖+1 = |‖f‖+ 1| = |f(x) + 1| ≤ ‖f + 1‖ ≤ ‖f‖+1 and we have equality throughout,

justifying ‖f + 1‖ = ‖f‖+ 1.

For the remainder of this section will assume T : A → B is a surjective map between
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uniform algebras satisfying (H).

Lemma 5.2.2. The map T is bijective and T−1 : B → A satisfies (H).

Proof. Suppose Tf = Tg for f, g ∈ A. Then ‖fk + 1‖ = ‖TfTk + 1‖ = ‖TgTk + 1‖ =

‖gk + 1‖ for all k ∈ A. We now show that f = g using,

‖fk + 1‖ = ‖gk + 1‖ for all k ∈ A

For all k ∈ A and n ∈ N we have

∥∥∥∥fk +
1

n

∥∥∥∥ =
1

n
‖f · (nk) + 1‖ =

1

n
‖g · (nk) + 1‖ =

∥∥∥∥gk +
1

n

∥∥∥∥ .
Taking the limit as n→∞, yields ‖fk‖ = ‖gk‖.

For any x ∈ δA such that f(x) 6= 0 then g(x) 6= 0 and we may apply Lemma 3.2.11

to get a peaking function h ∈ Fx(A) such that σπ (gh) = {g(x)}. Let k = f(x)−1h so

σπ (gk) =
{
g(x)f(x)−1

}
and ‖gk‖ =

∣∣g(x)f(x)−1
∣∣ = 1 since |f | = |g| on δA. Thus

2 =
∣∣f(x)f(x)−1h(x) + 1

∣∣ = |f(x)k(x) + 1|

≤ ‖fk + 1‖ ≤ ‖gk + 1‖ ≤ ‖gk‖+ 1 = 2,

and we have equality throughout. In particular, ‖gk + 1‖ = ‖gk‖ + 1 and by Lemma

5.2.1, 1 = ‖gk‖ ∈ σπ (gk) =
{
g(x)f(x)−1

}
, i.e., f(x) = g(x). Thus f = g on δA, so

f = g and T is injective.

Since T is surjective and injective, there exists a well-defined, bijective map T−1 : B →
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A. For all f, g ∈ B,

‖fg + 1‖ =
∥∥T (T−1(f)

)
T
(
T−1(g)

)
+ 1
∥∥ = ‖T−1(f)T−1(g) + 1‖

and so T−1 satisfies (H).

Lemma 5.2.3. The map T preserves invertibility, i.e., f ∈ A−1 if and only if Tf ∈

B−1. In particular

(Tf)−1 = −T
(
−f−1

)
.

Proof. Let f ∈ A−1. Then 0 =
∥∥f (−f−1

)
+ 1
∥∥ =

∥∥TfT (−f−1
)

+ 1
∥∥. Thus

TfT
(
−f−1

)
= −1, which implies that Tf is invertible and which proves T (A−1) ⊂ B−1.

This result applies also to T−1 so T−1(B−1) ⊂ A−1 and thus T (A−1) = B−1.

Recall, a mapping T is called norm-multiplicative if it satisfies ‖fg‖ = ‖TfTg‖ for all

f, g ∈ A. Following an argument similar to that of Honma [9, Lemma 3.3], we next

show that T satisfies the norm-multiplicative property when at least one of factors is

invertible.

Lemma 5.2.4. For all f ∈ A and g ∈ A−1, ‖TfTg‖ = ‖fg‖.

Proof. For all f, g ∈ A,

‖fg‖ = ‖fg + 1− 1‖ ≤ ‖fg + 1‖+ 1 = ‖TfTg + 1‖+ 1

≤ ‖TfTg‖+ 2.

Since T−1 also satifies (H), we also have ‖TfTg‖ ≤ ‖fg‖+ 2.

For any n ∈ N, f ∈ A, and g ∈ A−1 we have,
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n ‖fg‖ = ‖f · (ng)‖ ≤ ‖TfT (ng)‖+ 2

=
∥∥TfTg(Tg)−1T (ng)

∥∥+ 2

≤ ‖TfTg‖
∥∥(Tg)−1T (ng)

∥∥+ 2

≤ ‖TfTg‖
∥∥−T (−g−1)T (ng)

∥∥+ 2 (5.2.3)

≤ ‖TfTg‖
(∥∥−g−1ng

∥∥+ 2
)

+ 2

= ‖TfTg‖ (n+ 2) + 2,

where line (5.2.3) is obtined by Lemma 5.2.3. Thus ‖fg‖ ≤ ‖TfTg‖ n+ 2

n
+

2

n
which

shows that ‖fg‖ ≤ ‖TfTg‖, by letting n → ∞. Since T−1 also satisfies (H) we

may apply this result to get, ‖TfTg‖ ≤
∥∥T−1(Tf)T−1(Tg)

∥∥ = ‖fg‖ Thus ‖fg‖ =

‖TfTg‖.

With this result we now have the necessary conditions for the map ψ : δB → δA to exist

as in Theorem 4.1.9. The multiplicatively isolating sets used to satisfy the hypothesis

will be A−1 and T (A−1) = B−1 (Lemma 3.3.5).

Corollary 5.2.5. There exists a homeomorphism ψ : δB → δA such that

|Tf | = |f ◦ ψ| on δB

for all f ∈ A. Consequently ‖fg‖ = ‖TfTg‖ , ‖f‖ = ‖Tf‖.

Lemma 5.2.6. For all α, β ∈ C, ReTαTβ ≤ Reαβ

Proof. First we justify,

|Tα| = |α| (5.2.4)
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for α ∈ C. By Corollary 5.2.5, T preserves the norm. Thus (5.2.4) follows for α = 0,

since T0 = 0. For the case α ∈ C\ {0}, then α is invertible and |α−1| = |α|−1, so using

Lemma 5.2.3 we have,

∣∣(Tα)−1
∣∣ ≤ ∥∥(Tα)−1

∥∥ =
∥∥−T (−α−1)

∥∥ = ‖ − α−1‖ = |α|−1.

Thus |α| ≤ |Tα| ≤ ‖Tα‖ = |α|, proving (5.2.4).

Now for all α, β ∈ C, |TαTβ+1|2 ≤ ‖TαTβ+1‖2 = |αβ+1|2. Applying equation (5.2.1)

to both sides we get |Tα|2|Tβ|2 + 2 ReTαTβ + 1 ≤ |α|2|β|2 + 2 Reαβ + 1. Simplifying

this with (5.2.1) completes the proof.

Lemma 5.2.7. The map T satisfies (Ti)2 = T (−i)2 = T (1)T (−1) = −1, T (−i) = −Ti,

and (T1)2 = 1.

Proof. From (H) we have 0 = ‖i · i+ 1‖ = ‖TiT i+ 1‖ so (Ti)2 = −1. Similarly,

0 = ‖−i · −i+ 1‖ = ‖T (−i)T (−i) + 1‖ and 0 = ‖1 · −1 + 1‖ = ‖T (1)T (−1) + 1‖ give

T (−i)2 = −1 = T (1)T (−1).

Let E =
1− T (i)T (−i)

2
. Note

‖−E + 1‖ =
‖T (i)T (−i) + 1‖

2

=
‖i · −i+ 1‖

2

= 1.
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Let e = T−1(T (i)E), i.e., Te = T (i)E = T (−i)E. Thus

‖ie+ 1‖ = ‖T (i)Te+ 1‖ =
∥∥T (i)2E + 1

∥∥ = ‖−E + 1‖ = 1, and

‖−ie+ 1‖ = ‖T (−i)Te+ 1‖ =
∥∥T (−i)2E + 1

∥∥ = ‖−E + 1‖ = 1.

Applying equation (5.2.1) we have

|ie|2 + Re ie+ 1 = |ie+ 1| ≤ ‖ie+ 1‖ = 1, and

| − ie|2 − Re ie+ 1 = |−ie+ 1| ≤ ‖−ie+ 1‖ = 1

which, when added and simplified, gives 2 |e|2 ≤ 0. Thus 0 = ‖e‖ = ‖T (i)E‖, i.e.,

E = 0 since T (i) is invertible. Finally 0 = E =
1− T (i)T (−i)

2
implies T (i)T (−i) = 1.

So using formula for the inverse in Lemma 5.2.3, T (−i) = (Ti)−1 = −T (−i−1) = −Ti.

Finally we must justify (T1)2 = 1. Since |T1| = |1| by (5.2.4) it suffices to show

ImT1 = 0. By Lemma 5.2.6 ReTiT1 ≤ Re i · 1 = 0 and −ReTiT1 = ReT (−i)T1 ≤

Re−i ·1 = 0, using also T (−i) = −T (i). Thus 0 = ReTiT1. Since (Ti)2 = −1, Ti takes

purely imaginary values and so iT i is an invertible function taking purely real values.

So 0 = iT iReTiT1 = Re i(Ti)2T1 = Re−iT1 = ImT1.

5.3 Special Case: T Preserves 1 and i

In this section, in addition to assuming T : A → B is surjective and satisfies (H), we

will assume T1 = 1 and Ti = i.

Lemma 5.3.1. The map T preserves all constants, i.e., Tα = α for all α ∈ C.

Proof. In Lemma 5.2.7 we established T (1)T (−1) = −1 and T (−i) = −Ti. Thus the
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assumption that T1 = 1 and Ti = i produces T (−1) = −1 and T (−i) = −i. Applying

Lemma 5.2.6 successively with β = 1 and −1, yields ReTα = ReTαT1 ≤ Reα and

−ReTα = ReTαT (−1) ≤ −Reα. Thus ReTα = Reα. Now apply Lemma 5.2.6

with β = i and −i to get, Re iTα = ReTiTα ≤ Re iα and −Re iTα = ReT (−i)Tα ≤

−Re iα. Thus Re iTα = Re iα. Note that Re iλ = − Imλ for any λ ∈ C. So ImTα =

Imα and Tα = α.

Lemma 5.3.2. The map T preserves the peripheral spectrum, i.e., σπ (f) = σπ (Tf)

for all f ∈ A.

Proof. Since T preserves the norm (Corollary 5.2.5) T0 = 0 and the peripheral spectrum

is preserved for f = 0. For the case that f 6= 0, let α ∈ σπ (f) so
∥∥α−1f

∥∥ = 1 ∈

σπ
(
α−1f

)
. Lemma 5.2.1 asserts

∥∥α−1f
∥∥ ∈ σπ (α−1f

)
if and only if

∥∥α−1f
∥∥+ 1 =

∥∥α−1f + 1
∥∥ . (5.3.1)

Note 1 =
∥∥α−1f

∥∥ =
∥∥T (α−1

)
Tf
∥∥ and from condition (H) we have,

∥∥α−1f + 1
∥∥ =

∥∥T (α−1
)
Tf + 1

∥∥ .
Substituting these into (5.3.1) we have

∥∥T (α−1
)
Tf
∥∥ + 1 =

∥∥T (α−1
)
Tf + 1

∥∥. Using

Lemma 5.2.1 again we obtain, 1 =
∥∥T (α−1

)
Tf
∥∥ ∈ σπ

(
T
(
α−1
)
Tf
)

= σπ
(
α−1Tf

)
since T preserves constants. Thus α ∈ σπ (Tf), i.e., σπ (f) ⊂ σπ (Tf) for all f ∈ A.

Since this result also applies to T−1, we have σπ (Tf) ⊂ σπ
(
T−1(Tf)

)
= σπ (f), and

thus σπ (f) = σπ (Tf).

These results lead to the following theorem, which is a special case of [7, Corollary 7.5],

provided here with an alternate proof.
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Theorem 5.3.3 ([12]). If T : A→ B is a surjective map between uniform algebras that

satisfies (H) and preserves 1 and i, i.e T1 = 1 and Ti = i, then T is an isometric

algebra isomorphism.

Proof. By Corollary 5.2.5 for all f ∈ A we have |Tf | = |f ◦ ψ| on δB. We will show

that T is an isometric algebra isomorphism by proving it is a composition operator, i.e.,

Tf = f ◦ ψ (5.3.2)

on δB for all f ∈ A.

Fix f ∈ A and y ∈ δB. If Tf(y) = 0 then |f(ψ(y))| = 0 and (5.3.2) is satisfied for

that case. For Tf(y) 6= 0 then f(ψ(y)) 6= 0. By 3.2.11 there exist k ∈ Fy(B) such that

σπ (Tf · k) = {Tf(y)}. Abbreviate f(ψ(y))−1 by λ and observe |λ| = |f (ψ(y))|−1 =

|Tf(y)|−1. Thus σπ (Tf · λk) = {λTf(y)} and ‖Tf · λk‖ = |λ| |Tf(y)| = 1. Let h =

T−1 (λk). By Lemma 5.3.2, T preserves the peripheral spectrum so σπ (Th) = σπ (λk) =

{λ}, since k is a peaking function. Also note |h(ψ(y)| = |Th(y)| = |λk(y)| = |λ · 1|,

since k was chosen in Fy(B). Since |h(ψ(y))| = |λ| = ‖h‖, then h(ψ(y)) ∈ σπ (h) = {λ},

i.e., h(ψ(y)) = λ = f(ψ(y))−1. Putting these facts together we have,

2 = |f(ψ(y))f(ψ(y)−1 + 1| = |f(ψ(y))h(ψ(y)) + 1|

≤ ‖fh+ 1‖ = ‖TfTh+ 1‖ ≤ ‖TfTh‖+ 1 = 2

so we have equality throughout. In particular, ‖TfTh+ 1‖ = ‖TfTh‖+1 so by Lemma

5.2.1 1 = ‖TfTh‖ ∈ σπ (TfTh) =
{
Tf(y)f(ψ(y))−1

}
, i.e., Tf(y) = f(ψ(y)) and 5.3.2

is justified. As in the proof of Theorem 4.2.5 this proves that T is an injective isometric

algebra homomorphism. Since T was assumed from the beginning to be surjective it
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actually an isomorphism.

5.4 Proof of Theorem Theorem 5.1.4

We return to analyzing T without assuming it preserves 1 and i to get our main result.

This is done by using the counterexamples Ψ and Φ from Lemmas 5.1.1 and 5.1.2 to

“correct” T so that preserves both 1 and i.

Theorem (5.1.4). Let T : A→ B be a surjective map that satisfies ‖T (f)T (g) + 1‖ =

‖fg + 1‖ for all f, g ∈ A. Then there exist an idempotent e ∈ B and an isometric

algebra isomorphism T̃ : A→ Be⊕Be′ such that

Tf = (T1)
(
eT̃ f + e′T̃ f

)
(5.4.1)

for all f ∈ A, where e′ = 1− e.

Proof. Note that e′ is also idempotent and ee′ = e(1− e) = e− e2 = 0. This property

allows B to be written as the internal direct sum (as rings) of the ideals Be and Be′.

Also Be⊕Be′ ⊂ C(Y ) is clearly a uniform algebra on Y .

For e satisfying (5.4.1) we note Ti = (T1)(ie−ie′) = i(T1)(e−e′) = (2e−1). Multiplying

both sides by −i(T1) and applying (T1)2 = 1, we obtain −i(T1)(Ti) = 2e − 1, i.e.,

e =
1− iT1Ti

2
.

Now let e =
1− iT1Ti

2
. Note

e2 =
1− 2iT1Ti+ i2(T1)2(Ti)2

4
=

1− 2iT1Ti− 1 · 1 · −1

4
=

2− 2iT1Ti

4
= e,
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using (T1)2 = 1 and (Ti)2 = −1, from Lemma 5.2.7. Let Φ : B → Be ⊕ Be′ be

given by Φf = ef + e′f ∈ Be ⊕ Be′, as in Lemma 5.1.2. Note Φe = e2 + e′e = e

and Φe′ = ee′ + (e′)
2

= e′. To show Φ is surjective we take and arbitrary element

h ∈ Be ⊕ Be′, which necessarily has the form h = ef + e′g for f, g ∈ B. Thus

ef + e′g ∈ B, and, since Φ is additive and multiplicative,

Φ(ef + e′g) = ΦeΦf + Φe′Φg = e
(
ef + e′f

)
+ e′ (eg + e′g)

= ef + 0 · f + 0 · g + e′g = h.

Let Ψ : B → B be given by Ψ(f) = T1 · f ∈ B as in 5.1.1 for κ = T1. Clearly Ψ is

bijective since Ψ = Ψ−1.

Let T̃ = Φ ◦Ψ ◦ T : A→ Be⊕ Be′. By Lemma 5.1.3, T̃ satisfies (H) and is surjective,

since it is the composition of surjective maps. By Lemma 5.2.7 and the fact that Φ

fixes real-valued constants, T̃1 = Φ(Ψ(T1)) = Φ(T1 · T1) = Φ1 = 1. From (Ti)2 = −1

and (T1)2 = 1 we get Ti = −T (i) and T1 = T1. Thus

T̃ i = Φ(Ψ(Ti)) = Φ(T1Ti) = eT1Ti+ e′T1Ti = eT1Ti− e′T1Ti

= T1Ti(e− e′) = T1Ti (e− (1− e)) = T1Ti (2e− 1)

T1Ti(1− iT1Ti− 1) = −i(T1)2(Ti)2 = −i · 1 · −1 = i,

recalling e′ = 1− e.

Thus, by Lemma 5.3.3, T̃ is an isometric algebra isomorphism onto Be ⊕ Be′. Recall

Ψ−1 = Ψ and Φ−1 = Φ, so T = Ψ−1 ◦ Φ−1 ◦ T̃ = Ψ ◦ Φ ◦ T̃ which is explicitly given in

(5.4.1).
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5.5 A Generalization of Theorem 5.1.4

We can generalize the condition (H) to get a deeper result as given bellow.

Theorem 5.5.1. Let λ ∈ C\ {0} be fixed. If T : A→ B is a surjective map satisfying

‖TfTg + λ‖ = ‖fg + λ‖ (Hλ)

for all f, g ∈ A, then there exist an idempotent e ∈ B, a function κ ∈ B with κ2 = 1,

and an isometric algebra isomorphism T̃ : A→ Be⊕Be′ such that

Tf = κ
(
eT̃ f + γe′T̃ f

)

for all f ∈ A, where e′ = 1− e and γ =
λ

|λ|
.

Proof. Choose α such that α2 = λ, and define T ′(f) = α−1T (αf). Since α is invertible,

T ′ is surjective, and

‖T ′fT ′g+1‖ = ‖α−2T (αf)T (αg)+1‖ =
1

|λ|
‖T (αf)T (αg)+λ‖ =

1

|λ|
‖α2fg+λ‖ = ‖fg+1‖,

proves T ′ satisfies (H). By Theorem 5.1.4 there exist an idempotent e ∈ B and an

isometric algebra isomorphism T̃ : A → Be ⊕ Be′ such that T ′f = κ
(
eT̃ f + e′T̃ f

)
,

where κ = T ′1 = α−1Tα. Using the fact that T̃ is an isomorphism we get

Tf = αT ′(α−1f) = ακ
(
eT̃ (α−1f) + e′T̃ (α−1f)

)
= κ

(
eT̃ f + αα−1e′T̃ f

)
= κ

(
eT̃ f + γe′T̃ f

)
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since
α

α
=
α2

αα
=

α2

|α2|
=

λ

|λ|
= γ. (5.5.1)

Curiously this formula holds even though T ′ was defined by an arbitrary choice of one

of two solutions to α2 = λ. The appearance of α is suppressed, but, in fact, κ = α−1Tα.

The other option is −α. From the formula given for T , it is clear that T is an R-linear

isometry. This addresses the mystery, since we may use this to show (−α)−1T (−α) =

α−1Tα. Also using this formula, we may give sufficient conditions for T to be an

isomorphism or the conjugate of an isomorphism.

Corollary 5.5.2. Let A and B be uniform algebras, λ ∈ C \ {0}, and T : A → B a

surjective map such that

‖TfTg + λ‖ = ‖fg + λ‖

for all f, g ∈ A. Then T is an isometric algebra isomorphism if and only if T1 = 1 and

Ti = i. Similarly, T is a conjugate-isomorphism if and only if T1 = 1 and Ti = −i.

The equivalence if vacuous unless λ ∈ R.

Proof. Theorem 5.5.1 implies T (1)− iT (i) = κ(e+γe′)− iκ(ie−γie′) = 2κe, in general.

Thus, since κ2 = 1,
T (1)− iT (i)

2
κ = e (5.5.2)

for any map T satisfying (Hλ).

If T1 = 1 and Ti = i, then (5.5.2) gives κ = e. Since κ can only take the values ±1

and e can only take the values 0 and 1, κ = e = 1, which forces e′ = 0 and T = T̃ .

Conversely if T is an isometric isomorphism T1 = 1 and Ti = 1.

If T1 = 1 and Ti = −i then (5.5.2) gives 0 = e, forcing e′ = 1 and T = κγT̃ . Applying
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T1 = 1 forces γκ = 1, i.e., γ = κ. Under these conditions clearly T is a conjugate

isomorphism.

For T to be a conjugate isomorphism then necessarily T1 = 1 and Ti = i, i.e., 0 = e.

This only occurs if e′ = 1, since κ is invertible. Thus e′ = 1 and T (f) = κγT̃ (f), but

T (1) = 1 additionally requires that κγ = 1 so T (f) = T̃ (f). Thus T is a conjugate

isomorphism. However if T is a conjugate isomorphism then (Hλ) gives 2 |Reλ| =∣∣λ+ λ
∣∣ = ‖T (λ)T1 + λ‖ = ‖λ · 1 + λ‖ = 2 |λ| implies λ ∈ R. So it is impossible for T

to be a conjugate isomorphism unless the λ in the original condition happens to be a

real number.
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