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  Climate-driven changes in wildfire and other disturbance regimes are expected to affect 

populations and communities worldwide. Understanding how these changes will affect native 

species is critical for future conservation efforts, especially on managed forests. Using data from 

several wildfires that burned between 1988 and 2003 in and next to Glacier National Park, 

Montana, I examined how fire affected the distribution, abundance, and infection status of 3 

native amphibians. In Chapter 1, I used long-term data on wetland occupancy to show the long-

toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris) 

were resistant to change during the first 6 years after wildfire, but declined over longer time 

periods in areas of high-severity fire. In contrast, boreal toad (Anaxyrus boreas) occupancy 

increased greatly during the 3 years after wildfire burned low-elevation forests, followed by a 

gradual decline. In Chapter 2, I measured how the interaction of stand-replacement wildfire and 

forest management affected amphibian abundance and 2 nematodes that infect amphibians. 

Population size of salamanders was negatively related to fire severity, with stronger effects on 

populations that were isolated or in managed forests. These effects were not evident in the 

abundance of the nematode Cosmocercoides variabilis. Population size of spotted frogs 

increased weakly with burn extent in managed and protected forests, a pattern that was reflected 

in the greater infection intensity of the mutualistic nematode Gyrinicola batrachiensis. In 

Chapter 3, I investigated how environmental variation and habitat use affects the probability that 

boreal toads had chytridiomycosis, a disease linked with amphibian declines worldwide. 

Probability of infection was lower for toads captured terrestrially than aquatically, and was lower 

for toads captured in recently burned habitats compared with unburned habitats. Simulations 

showed that spatial variation in infection, like that related to habitat use in a heterogeneous 

landscape, could significantly reduce the risk of metapopulation decline. Collectively, my results 

underscore the importance of measuring individual-, population-, and community-level 

responses across a range of disturbances and in both managed and protected forests. These 

results will provide scientists and land managers a greater understanding of the long-term effects 

of wildfire on local amphibians and other native species. 
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INTRODUCTION AND OVERVIEW 

Disturbance is one of the primary ecological forces shaping biological communities. Despite 

its ubiquity, most early ecologists viewed disturbance as a temporary interruption of the orderly 

progression towards a stable community (e.g., Cowles 1899, Clements 1936). The role of 

disturbance as a fundamental driver of community structure and function was not widely 

recognized until the latter half of the 20
th
 Century, when the influence of local disturbances on 

vegetation dynamics and recognition of the importance of scale were incorporated into concepts 

such as the intermediate disturbance hypothesis, ecosystem ecology, and patch dynamics 

(Cooper 1913, Watt 1947, Skellam 1951, Likens et al. 1970, Grime 1973, Pickett and White 

1985). It is now a basic tenet of ecology that natural disturbances—through effects on vegetation 

structure or habitat, species interactions, and changes in vital rates—are critical for promoting 

and maintaining biological diversity (Connell 1978, Sousa 1984, Pickett and White 1985). 

Through these same mechanisms, however, disturbance can have negative and often 

unpredictable consequences, especially if the frequency or severity of disturbances is outside the 

range of conditions with which native species evolved.   

Defined broadly, disturbance is ―a discrete event that damages or kills residents on a site‖ 

(Platt and Connell 2003). This definition includes events that occur at small spatial scales, such 

as the toppling of a tree or damming of a stream by beaver, to events like wildfires and 

hurricanes that can encompass large areas and multiple populations. In western North America 

and many ecosystems across the world, wildfire was historically the most important natural 

disturbance, where it served a critical role in maintaining varied habitat conditions that supported 

diverse  communities (DeBano et al. 1989, Hessburg and Agee 2003). Many of the clearest 

examples of benefits of fire come from studies of birds, which can respond quickly to post-fire 

changes in vegetation structure (Hutto 1995, Smucker et al. 2005). Fire can restore population 
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size, gene flow, and metapopulation structure of reptiles surrounded by unsuitable habitat (Webb 

et al. 2005, Templeton et al. 2011), and it can decrease disease transmission by reducing 

abundance of vectors (Fyumagwa et al. 2007). Patchy habitat structure that results from fire can 

also facilitate the coexistence of competitors (Andersen et al. 2007).  

Many of the beneficial effects of fire are documented from systems where natural 

disturbance regimes still resemble those of pre-European settlement, or where fire is used as a 

management tool to restore habitat in fire-suppressed areas. However, wildfire can cause 

population declines or extirpations—especially in fragmented systems or where habitat has been 

lost, but also in intact landscapes where the historic fire regime has not been altered (Propst et al. 

1992, Smucker et al. 2005, Hossack and Pilliod 2011). Determining how species respond to 

wildfire in both managed and intact, protected landscapes is essential to forming effective 

conservation strategies. This knowledge will be especially important given expected climate-

related increases in the frequency and severity of weather anomalies and natural disturbances, as 

well as increases in the emergence and spread of infectious diseases (Daszak et al. 2000, IPCC 

2007). Understanding the relationships among disturbances has become a critical issue for 

conservation, especially for moisture- and temperature-sensitive species like amphibians that are 

often responsive to changes, and served as the primary motivation for my dissertation research. 

Wildfires vary widely in their size and severity, and in most cases, direct mortality from fire 

is not likely to be a threat to amphibian populations (Russell et al. 1999). As a result, long time-

series of data or sampling across several wildfires of different ages are often required to isolate 

changes from background variation (Foster et al. 1998, Kelly et al. 2011). In Chapter 1, I used 11 

years of occupancy data from wetlands associated with 6 wildfires that burned in Glacier 

National Park, Montana, between 1988 and 2003 to evaluate predictions about how fire extent, 
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fire severity, and interactions between wildfire and wetland isolation or forest structure affected 

the distribution of breeding populations. The occupancy data were collected up to 4 years before 

an area burned and up to 21 years after wildfire, providing a measure of short-  and long-term 

responses. Both the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted 

frog (Rana luteiventris) were resistant to change during the first 6 years after wildfire, but 

declined over longer time periods in areas of high severity fire. In contrast, occupancy of the 

boreal toad (Anaxyrus boreas) increased greatly in the 3 years after wildfire burned low-

elevation forests, which was then followed by a gradual decline back to pre-fire levels. I found 

no change in occupancy in high elevation forests, where toads were abundant before wildfire.  

Most research on amphibian populations and wildfire in the Northern Rockies has been 

conducted in protected landscapes like national parks or wilderness. To gain a broad 

understanding, however, it is critical to assess how populations are affected on both managed and 

protected landscapes. The majority of forests in the Northern Rockies are managed for timber 

and have extensive road networks, which can reduce population size, distribution, or 

connectivity of amphibians and other species (Naughton et al. 2000, Marsh and Beckman 2004, 

Ewers et al. 2007). Although the combined effect of stand-replacement wildfire and forest 

management on amphibians has not been examined, factors that reduce fitness and population 

growth in amphibians may be exacerbated in managed forests that burn (Beschta et al. 2004, 

Lindenmayer and Noss 2006). Changes in amphibian abundance could also have important 

implications for dependent organisms like parasites, which can be directly or indirectly affected 

by disturbance through changes in their own vital rates, changes in host abundance, or changes to 

the transmission process (Hudson et al. 2002, McCallum 2008).  
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In Chapter 2, I measured how the combination of stand-replacement wildfire and forest 

management affects amphibian abundance and 2 nematodes that commonly infect amphibians. 

To determine whether effects differed between protected and managed landscapes, I compared 

population sizes of long-toed salamanders, Columbia spotted frogs, and infection prevalence and 

intensity by nematodes from burned and unburned wetlands in Glacier National Park and 

neighboring managed forests burned by the same stand-replacement wildfires in 1988, 2001, and 

2003. Population sizes of long-toed salamanders decreased as a function of increasing fire 

severity, with stronger negative effects for populations that were isolated or in managed forests. 

These negative effects were not evident in the distribution or infection intensity of the nematode 

Cosmocercoides variabilis in salamanders. In contrast, population sizes of frogs increased 

weakly with fire extent in both managed and protected forests. Infection intensity of the 

mutualistic nematode Gyrinicola batrachiensis in spotted frog larvae was strongly correlated 

with host density in wetlands, and thus was higher in burned wetlands than in unburned 

wetlands.  

Chapter 2 presents strong independent and comparative measurements of the effects of 

wildfire on abundance of amphibians in managed and protected forests, as well the subsequent 

implication for their nematodes. Additionally, research on effects of disturbance on amphibian 

populations has typically used changes in distribution or indices of abundance as the response 

metric. Occupancy studies (like in Chapter 1) are the most practical way to make valid inferences 

across long time periods and large spatial scales. However, estimates of abundance or population 

size provide more insight into extinction risk, especially if local extinction is rare or is limited 

primarily to small populations (Baguette 2004). 
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Environmental heterogeneity caused by natural disturbances like wildfire could also modify 

prevalence and implications of disease. In Chapter 3, I investigated how environmental variation 

and habitat use by boreal toads affects the probability that they were infected by the aquatic 

fungus Batrachochytrium dendrobatidis (Bd), and the potential implication of variation in 

infection across a network or populations. Bd causes chytridiomycosis, a recently emerged 

disease that has been linked to amphibian declines globally (Berger et al. 1998, Bosch et al. 

2001, Muths et al. 2003). The effects of disease in communities are complex and difficult to 

predict (Lafferty and Holt 2003). But how disturbance and individual habitat use interact to 

affect infection could have important implications for conservation, because of the broad 

expectations for increases in emerging infectious diseases and disturbances to have strong, 

negative on wildlife populations (e.g., Daszak et al. 2000, McKenzie et al. 2004).  

To determine how Bd infection varied in relation to habitat use, landscape heterogeneity 

caused by wildfire, and demographic group (female vs. males and juveniles), I sampled boreal 

toads for disease across Glacier National Park during 4 summers. Probability of infection was 

lower for toads captured terrestrially than aquatically, and was lower for toads captured in 

recently burned habitats than in unburned habitats. Based on this variation and documented 

effects of infection on survival of boreal toads elsewhere in the region (Pilliod et al. 2010b), I 

used matrix model simulations to examine how spatial variation in disease prevalence among 

populations might affect metapopulation dynamics under different infection and dispersal 

scenarios. These simulations showed that spatial variation in infection, like that related to habitat 

use in a heterogeneous landscape, could significantly reduce the risk of metapopulation decline. 

Results from this study provide a more thorough assessment of long-term responses of 

amphibians to wildfire than previous efforts in western North America. Although changes may 
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be rapid and short-lived or time-lagged and persistent, some species increase after wildfire and 

some species decrease after wildfire, as expected in a dynamic ecosystem shaped by large 

disturbances (Dunham et al. 2003, McKenzie et al. 2004). Measuring these responses in 

protected landscapes with intact disturbance regimes is critical for forming expectations about 

how species should respond in managed landscapes. However, the negative effects of wildfire I 

documented suggest that future increases in fire severity could have negative implications for 

amphibians and associated species like parasites, especially on managed forests. Collectively, my 

results underscore the importance of measuring individual-, population-, and community-level 

responses across a range of disturbances in both managed and protected landscapes. These 

results provide scientists and land managers a greater understanding of the long-term 

implications of wildfire on local amphibians and other native species and highlight the 

importance of maintaining natural disturbance regimes and diverse habitats. 
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Abstract.  Global climate change is expected to modify disturbance regimes worldwide, 

including increasing the frequency and severity of wildfires in western North America. Aquatic 

and semi-aquatic species like amphibians may be particularly sensitive to these changes because 

stand-replacement wildfires tend to occur during extended droughts, potentially compounding 

threats to individuals and populations. We still have limited understanding of the implications of 

these wildfires for amphibians, because the few published studies have been short-term and often 

only encompass 1 fire. Since 1988, several stand-replacement wildfires have burned in Glacier 

National Park (Montana, USA), where we have conducted long-term monitoring of wetland 

amphibians. This increased wildfire activity allowed us to measure responses of 3 amphibian 

species across fires of varying size, severity, and age in a small geographic area of similar 

biogeography and management. We used data from wetlands associated with 6 wildfires that 

burned between 1988 and 2003 to evaluate predictions about how burn extent, burn severity, and 

interactions between wildfire and wetland isolation or forest structure affected the distribution of 

breeding populations. To measure responses, we used models that accounted for imperfect 

detection to estimate pre-fire occupancy (0-4 years before fire) to occupancy 1-21 years after an 

area burned. We also estimated wetland occupancy separately for different post-fire recovery 

periods (e.g., 1–6 years and 7–21 years) to allow for expected non-linear, temporal changes. For 

the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana 

luteiventris), the best-supported models predicted that occupancy was not affected by wildfire 

during the first 6 years following fire, but occupancy decreased sharply during post-fire years 7–

21 in accordance with the amount of high severity burn near wetlands, a pattern consistent with 

reduced recruitment into local populations. There was no effect of wetland isolation for either 
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species. Occupancy of the boreal toad (Anaxyrus boreas) increased greatly in the 3 years after 

wildfire burned low elevation forests, followed by a gradual decline to near pre-fire levels during 

years 7–21 after wildfire. However, we found no change in occupancy in high elevation forests, 

where toads were abundant before wildfire. Our results show that accounting for detection, the 

magnitude of change, and time lags is critical to understanding population dynamics of 

amphibians after large disturbances like wildfire. Our results are also important for 

understanding the potential threat of increases in wildfire frequency or severity to amphibians 

and other native species in the region.  
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INTRODUCTION 

The frequency and severity of many disturbances have already increased or are expected to 

increase with global climate change and a growing human population (Dale et al. 2001, IPCC 

2007), and these modified disturbance regimes will likely have broad effects on biodiversity 

(McKenzie et al. 2004, Scholze et al. 2006). How species respond to disturbance can depend 

upon the type and magnitude of disturbance, the amount and configuration of remaining habitats, 

and life-history characteristics that influence resistance and resilience (Keith et al. 2008, Prugh et 

al. 2008, Kuussaari et al. 2009). For example, the multiple life-history strategies of some fishes 

can help facilitate population recovery after large disturbance events, but recovery is slowed in 

isolated or fragmented habitats where colonization from neighboring populations is limited 

(Dunham et al. 2003, Burton 2005). Species’ and community responses to disturbance and 

changing climate can also be counter to expectations (e.g., Ferraz et al. 2007, Rood et al. 2007, 

Ozgul et al. 2010), highlighting the need for greater knowledge of how disturbance affects 

species across a  broad range of life history strategies and in both protected and fragmented 

landscapes. 

The recent increase in wildfire activity in many ecosystems worldwide underscores the need 

for greater understanding of its effects on native species. This need is especially urgent for 

aquatic and moisture-sensitive species, like amphibians, because large wildfires tend to occur 

during periods of extended drought (Westerling et al. 2006, Morgan et al. 2008), when these 

species may already be challenged by environmental conditions (Pechmann et al. 1991, Lake 

2003, Ruetz et al. 2005). Direct mortality from fire is not likely to be the primary threat to 

populations (Russell et al. 1999), but multiple disturbance-related mechanisms may interact 

synergistically after wildfire to reduce vital rates. For example, lack of water can cause skipped 
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breeding opportunities and eventual extirpation of isolated populations (Corn and Fogleman 

1984, Church et al. 2007), and early drying of water bodies can trigger accelerated development 

of larvae at the expense of juvenile size and immune function (Semlitsch et al. 1988, Gervasi and 

Foufopoulos 2008). Additionally, individuals that disperse away from disturbed areas, like 

burned or logged forests, increase their risk of desiccation and predation (Semlitsch et al. 2008, 

Hossack et al. 2009, Rittenhouse et al. 2009). These reduced vital rates can result in changes to 

the distribution of populations, although there can be also substantial lags between the time of a 

disturbance or loss of habitats and when those changes are manifested (Ligon and Stacey 1996, 

Brooks et al. 1999). As a result, it is important to measure patterns across several wildfires and 

with long time series of data, because the short-term studies that have been done likely represent 

an incomplete assessment of the effects of wildfire on amphibian populations. 

Since 1988, several large wildfires have burned in Glacier National Park (NP), Montana, 

USA. Many of these wildfires burned areas where we were already monitoring wetland 

occupancy of the long-toed salamander (Ambystoma macrodactylum), Columbia spotted frog 

(Rana luteiventris), and boreal toad (Anaxyrus boreas). All 3 species breed primarily in 

temporary wetlands in our study area, but habits of juveniles and adults differ among species. 

Like most ambystomatid (mole) salamanders, long-toed salamanders spend the majority of their 

lives underground and are thought to be limited primarily to the area surrounding breeding sites 

(Rittenhouse and Semlitsch 2007). The Columbia spotted frog (hereafter, the spotted frog) is 

highly aquatic and moves among distinct breeding and foraging habitats in the spring and 

summer before migrating to permanent water bodies for hibernation (Werner et al. 2004). The 

boreal toad hibernates terrestrially, reducing its dependence on permanent water bodies 
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compared with the spotted frog, and typically occurs at lower densities than the long-toed 

salamander and spotted frog (Werner et al. 2004).  

We used our long-term monitoring data on these 3 species to evaluate support for 

predictions about how the distribution of breeding populations would be affected by the extent 

and severity of wildfire, time since fire, and the interaction between wildfire and population 

isolation. Specifically, we predicted the largely fossorial long-toed salamander would decline 

gradually after fire, especially in areas that burned with high severity and had few wetlands, and 

that declines would not be evident based on changes in occupancy for several years after fire. 

Like many other wetland-breeding salamanders, the long-toed salamander is sensitive to forest 

disturbances that modify habitats (Naughton et al. 2000, Semlitsch et al. 2009). We predicted no 

effect of wildfire on occupancy of the spotted frog except where populations were most isolated. 

Most spotted frog populations in our study area are small and experience high annual turnover 

(Hossack and Corn 2007). If dispersal is risky in a burned landscape, isolated populations of both 

the long-toed salamander and spotted frog may be more likely to go extinct compared with those 

closer to other sources of colonists (e.g., Brown and Kodric-Brown 1977). Finally, we expected a 

post-fire increase in occupancy by the boreal toad, but only in low-elevation forests. In Glacier 

NP, the boreal toad is rare in dense forests at low elevations but common in subalpine forests and 

tundra meadows at high elevations (Hossack et al. 2006), and often responds positively to 

disturbances that modify habitats (Crisafulli et al. 2005, Pearl and Bowerman 2006, Deguise and 

Richardson 2009). Collectively, these long-term response data are critical for forming accurate 

assessments of how current and future fire regimes might affect the distribution and population 

dynamics of wetland-associated amphibians. 
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METHODS 

Study Area 

Our research focused on 6 stand-replacement wildfires that occurred on the west side of 

Glacier National Park between 1988 and 2003 (Table 1, Figure 1). Three of the wildfires 

occurred during 2003, a year with historic dry conditions and an early fire season, ultimately 

resulting in the most area burned in the park since at least 1655 (Pederson et al. 2006). Four 

wildfires occurred primarily in low-elevation areas (Red Bench, Moose, Robert, and Middle 

Fork fires; wetland elevations: 982–1464 m), burning dense forests dominated by Douglas fir 

(Pseudotsuga menziesii), lodgepole pine (Pinus contorta), and western larch (Larix occidentalis) 

that were historically replaced by fire every ~140–340 years (Barrett et al. 1991). Two wildfires 

were at high elevation (McDonald Creek and Trapper Creek fires; wetland elevations: 1867–

2133 m), in areas of open forests of subalpine fir (Abies lasiocarpa), Douglas fir, and Engelmann 

spruce (Picea engalmannii) established ca. 1735 (Barrett 1988).  

 

Sampling design 

To measure how amphibian occupancy changes in response to wildfires, we surveyed 

wetlands within each of the 6 wildfire perimeters and reference wetlands outside of each wildfire 

perimeter. Prior to 2002, the areas we surveyed each year were part of a long-term monitoring 

program and were selected without respect to wildfire boundaries (Corn et al. 2005). After the 

2001 Moose fire and subsequent 2003 wildfires burned areas where we had data on amphibian 

occupancy (Table 1), we increased sampling effort of wetlands within and adjacent to each 

wildfire to measure changes in occupancy. To provide a longer-term perspective on changes in 
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amphibian occupancy after wildfire, we also surveyed wetlands in and adjacent to areas burned 

by 1988 and 1998 wildfires (Table 1).  

Logistical and environmental constraints limited sampling efforts in some years, so that we 

did not sample wetlands associated with all wildfires in all years. But each year we sampled 

wetlands associated with a particular wildfire, we surveyed both unburned reference and burned 

wetlands to provide a representative measure of occupancy. Reference wetlands had not burned 

since at least 1967; most had not burned in >80 years prior to our surveys. If we found 

previously-undetected wetlands in either unburned or burned forest, we added them to our survey 

list and included the data in the analysis even if we did not have pre-fire data.  

 

Wetland sampling 

We used dip-net surveys of wetlands to determine occupancy for the 3 focal species. 

Surveys were conducted by searching the perimeter and shallow areas (  0.5 m depth) of each 

wetland, sweeping through vegetation and along the substrate to capture amphibian larvae (Corn 

et al. 2005). We timed wetland surveys to coincide with the approximate 6–8 wk period during 

which we expected larvae to be present, and we considered a wetland occupied only if we 

detected embryos, larvae, or recently metamorphosed juveniles. With the exception of 2001, 

most wetlands were sampled twice per year so we could use detection probabilities to produce 

unbiased estimates of occupancy (MacKenzie et al. 2006).  

During each visit to a wetland, we recorded habitat characteristics that we expected could 

affect occupancy or detection of amphibians, including approximate wetland size (ha), maximum 

depth (< 1 m, 1– 2 m, > 2 m), extent of emergent vegetation, and percent of each wetland ≤ 0.5 

m deep (Corn et al. 2005). Wetlands ranged in size from 0.01 ha to 15.6 ha (median = 0.10 ha) 
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and most were < 1 m maximum depth. Most of these wetlands fill from snowmelt and rain in the 

spring, support extensive emergent vegetation (primarily Carex spp.), and dry by mid-August. 

Wildfires in Glacier NP typically occur after most seasonal wetlands have dried.  

 

GIS Analyses 

We used a geographic information system (ArcGIS 9.2) to measure landscape characteristics 

that we expected to influence the presence of amphibian populations. All characteristics were 

measured from 500-m buffers formed around the perimeter of each wetland. Wildfire 

information was calculated using 30-m burn severity data from the Monitoring Trends in Burn 

Severity project (http://mtbs.gov/index.html). We defined areas that burned with high severity as 

those pixels with differenced Normalized Burn Ratio (dNBR) values ≥ 550, which represents the 

midpoint of the moderate–high severity burn category that Key and Benson (2006) defined for 

several wildfires in Glacier National Park. The dNBR is based on changes in vegetation between 

pre-fire and post-fire Landsat imagery. We measured area of emergent wetlands and freshwater 

ponds in the 500 m buffers using a National Wetlands Inventory dataset 

(http://www.fws.gov/wetlands/data).  

 

Statistical analyses 

To measure changes in amphibian occupancy relative to the timing of wildfire, we organized 

data according to years before and after the wildfire to which wetlands were associated. For 

example, for wetlands associated with the 2003 Robert fire, surveys conducted in 1999 were 

coded as 4 years pre-fire, surveys conducted immediately before the fire were coded as 0 years 

pre-fire, and surveys conducted in 2009 were coded as 6 years post-fire. This coding scheme 

http://mtbs.gov/index.html
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resulted in 5 seasons of pre-fire data and 17 seasons of post-fire data, corresponding to 4 years 

before to 21 years after a wildfire occurred (Figure 2). This hybrid space-for-time approach 

allowed us to model occupancy as a function of wildfire and time-since-fire simultaneously 

across data sets from each of the 6 wildfires.  

We used the multi-season implicit dynamics model in program Presence v. 3.1  to account 

for variation in detection probability of each species and produce unbiased estimates of 

occupancy (Hines 2006, MacKenzie et al. 2006). The implicit dynamics model applies a single-

season occupancy model to each season of data and does not estimate local colonization or 

extinction rates. This model assumes that wetlands are closed to changes in occupancy within a 

season (i.e., occupancy status does not change between surveys within each summer), but allows 

for changes in occupancy between seasons.  

Prior to estimating how wildfire affected occupancy, we used a used a multi-stage approach 

to find the best model for each species that accounted for variation in detection and occupancy, 

independent of a wildfire effect. Our goal was to account for ―nuisance‖ spatial, temporal, and 

habitat-related variation in detection probability and occupancy so that it would not bias our 

inferences about effects of wildfire. We found the best detection model for each species by 

evaluating the effect of wetland size (normalized), percent of vegetative cover in each wetland, 

maximum wetland depth, and percent of each wetland that was ≤ 0.5 m deep while occupancy 

was held constant. We expected detection would be higher in wetlands with more shallow areas 

and lower in large wetlands and in those with deeper water or more vegetation. Also, we made 

the a priori decision to include a wildfire effect in all models to account for any bias in detection 

related to burn status.  



19 

 

After we found the combination of detection covariates that minimized AIC for each species 

(Burnham and Anderson 2002), we evaluated the effects of the same habitat covariates plus 

wetland elevation on the probability of wetland occupancy. Elevation was coded as low (982–

1464 m) or high (1867–2133 m) to account for elevation-related variation in habitat. For each 

species, we added all habitat covariates to the best detection model and eliminated variables with 

small effect sizes until we identified the most parsimonious combination of covariates. This 

process resulted in a basic habitat model that we used as the starting point to measure support for 

hypotheses about the effects of wildfire and wetland isolation on amphibian populations.  

We expected that occupancy of the long-toed salamander and spotted frog would be 

positively related to the proximity of suitable habitat that could host other populations. 

Therefore, we included area of wetland habitat (normalized) within 500 m of each surveyed 

wetland as an occupancy covariate in all models, except in the basic habitat model described 

above and in an intercepts-only model. Based on 11 years of surveying wetlands in Glacier 

National Park and previous descriptions of toad responses to wildfire and other disturbances 

(Crisafulli et al. 2005, Pearl and Bowerman 2006, Hossack and Corn 2007), we had no reason to 

expect isolation would affect the response by toads to wildfire, and thus did not estimate its 

effect. 

We used a before-after-control-impact (BACI) design to evaluate changes in amphibian 

occupancy that were attributable to wildfire (Underwood 1992). For long-toed salamanders and 

spotted frogs, we started with the best detection and non-fire occupancy model and added a 

location term that described whether a wetland was inside or outside of a fire perimeter and a 

time effect that corresponded to the number of seasons before or after a wildfire. This model 

served as a control to measure the temporal changes in occupancy. Using this same model 
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structure, we then added a location × time term (pre-fire vs. post-fire; hereafter ―burn effect‖) 

that measured the effect of wildfire on occupancy. To determine whether the effect of wildfire on 

occupancy differed according to isolation, we fit a subsequent model with a burn effect × 

isolation interaction term. We used this same model structure to estimate occupancy as a 

function of the amount of severely burned forest within 500 m of wetlands, resulting in 4 BACI 

models based on changes in mean pre-fire (1–5 seasons) and post-fire (1–21 seasons) occupancy 

that included additive and interactive effects of isolation.  

After fitting models based on mean pre- and post-fire occupancy for the long-toed 

salamander and spotted frog, we used the same models to estimate post-fire occupancy 

separately for 2 categories of post-fire recovery: 1–6 years after wildfire and 7–21 years after 

wildfire. These separate post-fire estimates allowed for detection of non-linear responses over 

time, like those that may be expected from a gradual decline or a temporary decline-and–recover 

response (Whelan et al. 2002). We chose these time periods because 6 years after fire represents 

the longest continuous time series of data for any fire in our dataset (the 2003 Robert fire), and 

because it encompasses at least 1 generation for each species.  

We used a similar modeling approach to estimate occupancy of boreal toads as a function of 

wildfire, except we did not include isolation effects in any models. Instead, based on prior 

knowledge of the study system, we expected different population responses between open forests 

at high elevations and dense forests at low elevations, similar to responses by many bird species 

that vary according to forest structure before wildfire (e.g., Kotliar et al. 2002). To measure 

responses at different elevations, we included burn effect × elevation and burn severity × 

elevation interactions. Previous analyses also indicated transient changes in occupancy by toads 

after wildfire that were driven by change s in colonization and extinction (Hossack and Corn 
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2007). To more accurately capture these brief so , we estimated occupancy separately for post-

fire seasons 1–3, 4–6, and 7–21 in addition to the basic pre-fire vs. post-fire BACI models that 

we fit for the long-toed salamanders and spotted frog.  

In total, we fit 12 models for each of the 3 species, which included 2 models that measured 

temporal and spatial variation in occupancy independent of a fire effect, 8 models that compared 

changes in occupancy after wildfire, a basic habitat model, and an intercepts-only model. All 

models were parameterized so that effect of wildfire (including interaction terms) was estimated 

with its own intercept and slope for each time period. We measured support for models using 

differences in the Akaike Information Criterion (AIC) and model weights (wi), which represent 

the probability that a particular model is the best for a set of data and fitted models (Burnham 

and Anderson 2002).  

 

RESULTS 

In the basic habitat model that was used as the starting point for estimating effects of 

wildfire, occupancy of long-toed salamanders was negatively related to elevation and positively 

related to increasing amounts of wetland vegetation (Table 2). Detection probability for long-

toed salamanders increased from 0.82 (SE = 0.03) before wildfire to 0.89 (0.01) after wildfire, 

but it increased equally in unburned and burned wetlands (Table 2). The 5 models we fitted with 

3 time periods received almost all of the model support, indicating occupancy differed between 

pre- and post-fire periods, as well as between the 2 recovery periods 1–6 years after fire and 7–

21 years after fire. The best model for salamanders predicted that occupancy did not differ with 

regards to burn severity during the first 6 years following fire, but it decreased during post-fire 

years 7–21 in accordance with the amount of high severity burn near wetlands (Table 3, Figure 
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3a). Models that described salamander occupancy as simply a function of time and space (no fire 

effect) or that described variation in occupancy as a function of wildfire extent received 

moderate support (Table 3). Models that included interactions between fire effects and wetland 

isolation received little support (Table 3), likely because isolation by itself had little effect on 

occupancy (Table 2). 

Occupancy of the spotted frog increased as a function of wetland size and vegetation, and 

was lower in high elevation wetlands than in low elevation wetlands (Table 2). Detection 

probability was a function of wetland size and increased from 0.77 (0.05) before wildfire to 0.88 

(0.02) after wildfire. The post-fire increase in detection was larger in wetlands that burned (Table 

2). The top-ranked model for the spotted frog was clearly the best of the set and described 

occupancy as an interaction between time since fire and burn severity, with separate estimates 

during years 1–6 and 7–21 after fire (Table 4). Occupancy did not differ with regards to burn 

severity during the first 6 years after wildfire, but it decreased as a function of the amount of 

high severity burn near wetlands 7–21 years after fire (Figure 3b). The second-ranked model for 

this data set predicted stable occupancy in unburned sites, but predicted a small increase for 

burned sites 1–6 years after wildfire before decreasing during 7–21 yrs after fire, similar to the 

burn severity model. We also found evidence of a weak, additive effect of wetland isolation, 

which predicted greater occupancy in areas with less wetland habitat (Table 2, Table 4). 

Occupancy of boreal toads increased as a function of elevation, wetland size, and amount of 

vegetation (Table 2). Detection was high across the study period, but it decreased from 0.95 (05) 

to 0.90 (0.02) after wildfire because detection probability decreased in wetlands that burned 

(Table 2). The model that described occupancy as an interaction between burn extent and 

elevation received overwhelming support as the best model (Table 5). At low elevations, 
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occupancy increased greatly in the 3 years after fire, followed by a gradual decline during years 

4–6 and 7–21 after wildfire (Figure 4a). In contrast, toads occupied most high-elevation wetlands 

regardless of wildfire (Figure 4b). Occupancy in these wetlands declined in both burned and 

unburned wetlands over time, with weak evidence that the declines were greater in burned 

wetlands.  

 

DISCUSSION 

By comparing time series of occupancy data for 268 wetlands that from 4 years before 

wildfire to 21 years after wildfire, we were able to measure how wildfire and the severity with 

which it burned, patch quality, and wetland isolation affected the distribution of breeding 

populations of 3 species of amphibians. Accounting for detection error improved our ability to 

draw inferences related to the effects of wildfire, especially because detection for the spotted 

frog and boreal toad covaried with wildfire but in opposite directions. Our results show that 

changes to the distribution of breeding populations range from rapid increases in occupancy by 

the boreal toad shortly after an area burns, to time-lagged declines in occupancy by the long-toed 

salamander and spotted frog. Overall, these results show that accounting for detection, burn 

severity, and time lags is critical to understanding the potential current and future threat of 

wildfire to populations.  

Inference about the importance of wildfire to occupancy of the long-toed salamander was 

weaker than for the spotted frog, but breeding populations of both species were less likely to 

occupy wetlands where burn severity was high. Notably, this severity effect was not evident until 

> 6 years after disturbance. Declines and local extinctions after disturbance may take several 

years to be detectable (e.g., Ligon and Stacey 1996, Findlay and Bourdages 2000), making 
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sampling designs based on disturbance chronosequences an effective method to measure timing 

of declines and recoveries (DeWalt et al. 2003, Kelly et al. 2011). Because wetlands burned by 

the oldest fire (1988 Red Bench fire) were surrounded by the highest mean severity, it is difficult 

to separate the effect of time-since-fire and burn severity. However, for both species, occupancy 

was similar in unburned wetlands and wetlands surrounded by little high-severity burn during 

years 1–6 and 7–21 after wildfire. Furthermore, the mean severity around wetlands within the 

2003 Trapper Creek fire was similar to that of wetlands surrounded by the 1988 Red Bench fire. 

Many wetlands within the perimeter of the 2003 Robert fire also burned more severely than 

those surrounded by the 1988 fire. Sampling wetlands associated with 6 wildfires from a small 

geographic area of similar biogeography and uniform management also provided a level of 

spatial and temporal replication that is uncommon in studies of wildlife responses to wildfire. 

Thus, it seems unlikely that lower occupancy in areas of high burn severity resulted from 

differences in habitat quality among areas. 

The slow response by the long-toed salamander and spotted frog indicates reductions in 

occupancy were more likely from changes in vital rates rather than immediate extirpation of 

populations. Reduced colonization rates in disturbed or fragmented habitats can also cause time-

lagged declines (Brown and Kodric-Brown 1977), but our data indicate habitat quality was more 

important that than wetland isolation, regardless of burn severity. Occupancy of the long-toed 

salamander was unrelated to wetland isolation, perhaps because the density of wetlands in our 

study area was high and salamanders occupied most potential breeding sites. Counter to our 

expectations, probability of occupancy by the spotted frog increased with isolation in both 

unburned and burned areas. It is possible that measures of wetland isolation at 500 m, like those 

we used, are less useful for detecting effects of isolation than measures at larger spatial scales. 
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However, this lack of a relationship with isolation is consistent with other several studies of 

amphibians and other species with spatially-structured populations in intact landscapes, where 

turnover in occupancy is less common than in fragmented landscapes (Marsh and Trenham 2001, 

Baguette 2004). This positive relationship between occupancy and wetland isolation for the 

spotted frog is also consistent with the conspecific attraction hypothesis, which posits that 

females are more attracted to large breeding congregations, and males should abandon wetlands 

with few conspecifics if a large congregation is nearby (Ray et al. 1991, Schmidt and Pellet 

2005).  

Lower occupancy over time in areas of high severity burn regardless of wetland isolation 

matched our prediction for the long-toed salamander, but was opposite of our prediction for the 

spotted frog. The spotted frog and many other anurans are more common at wetlands with open 

canopies (Werner and Glennemeier 1999, Pearl et al. 2007a); thus, we expected a neutral or even 

positive response by spotted frogs to wildfire except in areas where populations were most 

isolated. Our second-ranked model for the spotted frog predicted a small increase in occupancy 

in burned wetlands 1–6 years after wildfire, but like the top-ranked burn severity model, it also 

predicted a large decline in occupancy in burned wetlands 7–21 years after wildfire compared to 

unburned wetlands. These results suggest areas burned by high severity wildfires could be 

ecological traps (Schlaepfer et al. 2002), where post-fire conditions are attractive to adult frogs 

but represent poor habitat for juveniles. 

The negative effect of wildfire on occupancy of the long-toed salamander and spotted frog 

differs from a previous study that found no change in occupancy for these species between the 3 

years before and 3 years after the 2001 Moose fire (Table 1; Hossack and Corn 2007). 

Importantly, we did not estimate the effect of burn severity near wetlands in the previous study. 
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Among burned sites in our current study, total area that burned and the area burned with high 

severity weak correlation (Spearman’s r = 0.27), indicating that one measure is not a substitute 

for the other. Severity represents post-fire changes in vegetation and is more likely to reflect 

modifications to habitat and microclimate than simple measures of burn extent (Key and Benson 

2006, Guscio et al. 2008, Hossack et al. 2009). Declines or losses of amphibian populations after 

wildfire have been linked most strongly to high severity fire and related post-fire changes, 

especially for salamanders and in managed or fragmented landscapes (Major 2005, Rochester et 

al. 2010, Hossack and Pilliod 2011). Similarly, severe wildfire and drought in eucalypt forests 

have been associated with persistent declines of small, ground-dwelling mammals and some 

birds, with different forms and timing of responses among species (Whelan et al. 2002, Recher et 

al. 2009, Kelly et al. 2011).  

Mechanisms that drive population change of amphibians after habitat disturbance are still 

not well understood. However, several recent experiments have shown removal of forest canopy 

and woody debris can reduce dispersal, survival, and other vital rates of juvenile amphibians 

(Semlitsch et al. 2009, Popescu and Hunter 2011). In areas of low quality habitat, juveniles 

crowd into the few high quality habitats and experience strong density-dependent mortality 

(Patrick et al. 2008). Similar mechanisms could operate in areas of severe fire that lose woody 

debris and other cover (Guscio et al. 2008), and population growth of both the long-toed 

salamander and spotted frog is expected to be highly sensitive to reductions in juvenile survival 

(Biek et al. 2002, Vonesh and Cruz 2002). If survival of adults is also reduced, population 

growth would likely decline even more quickly, potentially increasing local extinction rates and 

resulting in the lower occupancy rates we observed in areas that burned with high severity. 
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In contrast to occupancy patterns of the long-toed salamander and spotted frog, the response 

of the boreal toad was rapid and positive. Occupancy of the boreal toad increased greatly during 

the first 3 years after wildfire in low-elevation forests and then decreased to near pre-fire levels 

7–21 years after wildfire. This post-fire increase was driven by colonization of several previously 

unoccupied wetlands the first year after wildfire, a pattern that has been documented for the 

boreal toad after other disturbances (Crisafulli et al. 2005, Pearl and Bowerman 2006). More 

than 20 years after extensive wildfires in Yellowstone National Park (Wyoming, USA), boreal 

toad populations near burned forests had greater genetic connectivity than populations farther 

from burned areas, suggesting a similar pattern of increased colonization after wildfire (Murphy 

et al. 2010). Also, some endangered toads in Europe are more abundant in areas with frequent 

disturbances that maintain a mix of habitats in different successional stages (Denton et al. 1997, 

Tockner et al. 2006, Warren and Büttner 2008). We do not know what triggers the response of 

the boreal toad to disturbance, the source of colonists, and why occupancy declines rapidly after 

an initial post-fire colonization phase. However, this pattern resembles the facilitation and 

decline response typical of some birds and other species that increase in abundance after a 

temporary change in resources and can have a lasting effect on population structure and genetics 

(Whelan et al. 2002, Smucker et al. 2005, Schrey et al. 2011).  

Although the boreal toad and some other amphibians can respond positively to many forms 

of disturbance, the response is context specific and cannot be generalized too broadly, as 

evidenced by the lack of change in occupancy by toads after wildfire at high elevations in our 

study area. We suspect the null response by the boreal toad to wildfire at high elevations reflects 

the reflect the extent of change effected by wildfire in low- and high-elevation forests. Most low-

elevation wetlands in our study areas were embedded in dense forests, whereas wetlands in high-
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elevation forests were more likely to be in sparse forest or open meadows that experience less 

relative change in canopy cover and solar insolation after wildfire. Similarly, responses of many 

birds to wildfire varies with forest structure before wildfire and the magnitude of change caused 

by fire (Kotliar et al. 2002). Toads also bred in most high-elevation wetlands in our study area 

before wildfire, reducing the capacity for an increase in occupancy. 

The different responses we documented to wildfire extent and burn severity created distinct 

temporal and spatial patterns in amphibian occupancy. We found additional evidence that 

disturbance can benefit some amphibians, depending upon forest structure before wildfire. Along 

with other species that respond positively to wildfire, these results reinforce the importance of 

maintaining natural disturbance regimes for diverse communities (Russell et al. 1999, Smucker 

et al. 2005). We also found strong evidence of time-lagged declines in occupancy of the long-

toed salamander and spotted frog, but only in areas that burned with high severity. Native species 

in the region evolved in dynamic ecosystems shaped by large disturbances (Dunham et al. 2003, 

McKenzie et al. 2004). Temporary declines after large disturbances should be expected for many 

species, and measuring patterns of decline and eventual recovery in protected landscapes is 

critical for forming expectations about how species should respond to these disturbances. 

More importantly, our data highlight the potential negative effects from expected changes to 

climate-associated disturbance regimes, even to species considered relatively resistant to 

disturbance, like the long-toed salamander and spotted frog (Hossack and Corn 2007). The 

consequences of changing disturbance regimes will likely be even more important outside of 

protected landscapes, where populations or connectivity may already be reduced (Naughton et al. 

2000, Dunham et al. 2003, Burton 2005). Extending our results outside of protected landscapes 
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will be critical for development of models to predict where and under what conditions wildfire 

might be a significant threat to populations and to help prioritize targeted conservation efforts. 
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Table 1. Wildfires in Glacier National Park, Montana (USA), sampled to measure changes in wetland occupancy by amphibians. High 

severity indicates the mean (range, in parentheses) area (for burned wetlands only) that burned with high severity within 500 m around 

the perimeter of wetlands.  

 

Wildfire 

Fire size    

(ha) 

Wetlands surveyed 

(reference/burned) 

High severity 

(%) 

 

Years sampled 

1988 Red Bench 14584 11/21 

51.3  

(4.9 – 83.8) 

 

2001–2005, 2008–2009 

1998 McDonald Creek 3544 6/9 

28.9 

(2.0 – 80.2) 

 

2001–2002, 2004–2009 

2001 Moose 28574 41/42 

17.5 

(0.01 – 70.4) 

 

1999–2006, 2008–2009 

2003 Middle Fork 4855 4/9 

0.40 

(0.0 – 1.5) 

 

2001, 2004–2009 

2003 Robert 21908 17/92 

38.9 

(0.4 – 98.9) 

 

1999–2009 

2003 Trapper Creek 7446 6/10 
46.9  

(1.7 – 78.7) 
2001–2002, 2004–2009 

 

 



36 

 

Table 2. Model-averaged occupancy and detection parameters (unconditional SE) for covariates used to measure the effect of wildfire 

on the distribution of 3 amphibian species. The detection parameters ―Before‖ and ―After‖ refer to detection before and after wildfire 

occurred. ―Burned‖ is the difference in detection between burned and unburned wetlands. Isolation is the amount of wetland habitat 

within 500 m of each sampled wetland. For the boreal toad, a model that included an interaction with the elevation covariate received 

all the model weight, which precluded averaging the main effect. The elevation parameter below is the average estimate from other 

models with the same time structure as the best model. 

 Occupancy ( ˆ ) Detection ( p̂ ) 

Species Elevation Area Vegetation Isolation Before After Burned Area 

long-toed salamander 
-1.99  

(0.27) 
— 

2.19  

(0.34) 

0.04  

(0.10) 

1.50 

(0.21) 

2.06 

(0.14) 

-0.05 

(0.21) 
— 

Columbia spotted frog 
-1.33  

(0.46) 

4.32  

(0.56) 

1.92  

(0.35) 

-0.21  

(0.09) 

1.04 

(0.29) 

1.02 

(0.23) 

0.82 

(0.27) 

 

-0.51 

(0.12) 

 

        

boreal toad 
4.28 

(0.39) 

0.66  

(0.20) 

0.62  

(0.51) 
— 

3.03 

(1.12) 

3.61 

(0.73) 

-1.42 

(0.77) 
— 
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Table 3. Models used to estimate the effects of wildfire on wetland occupancy ( ) by breeding populations of the long-toed 

salamander (Ambystoma macrodactylum), after accounting for the effects of wetland elevation, vegetation, and wetland isolation. 

Isolation is the area of wetlands within 500 m of the sampled site. Models were structured so occupancy was estimated as time-

constant (1 time period [Time]) or varying over time periods before and after wildfire occurred: 2 time periods (4–0 yrs before and 1-

21 yrs after), or 3 time periods (4–0 yrs before,1–6 yrs after, and 7–21 yrs after). ―Location‖ indicates whether a wetland was inside or 

outside of a wildfire perimeter, including before a wildfire occurred. The covariates ―Burned‖ and ―Severity‖ estimate the change in 

occupancy that resulted after wildfire. Severity is the percent of area within 500 m of wetlands that burned with high severity. Models 

are ranked according to ΔAIC and model weights (wi).  

Model Time -2log(L) k ΔAIC wi 

(Elevation, Vegetation, Isolation, Severity) 3 2186.96 12 0.00 0.57 

 (Elevation, Vegetation, Isolation, Location) 3 2193.29 10 2.33 0.18 

 (Elevation, Vegetation, Isolation, Burned) 3 2189.35 12 2.39 0.17 

 (Elevation, Vegetation, Isolation, Severity, Isolation × Severity)   3 2191.09 13 6.13 0.03 

 (Elevation, Vegetation, Isolation, Burned, Isolation × Burned)  3 2191.48 13 6.52 0.02 

 (Elevation, Vegetation) 1 2206.18 6 7.22 0.02 

 (Elevation, Vegetation, Isolation, Severity, Isolation × Severity) 2 2199.12 11 10.16 0.00 

 (Elevation, Vegetation, Isolation, Severity) 2 2201.31 10 10.35 0.00 

 (Elevation, Vegetation, Isolation, Burned) 2 2203.64 10 12.68 0.00 

 (Elevation, Vegetation, Isolation, Location) 2 2205.85 9 12.89 0.00 

 (Elevation, Vegetation, Isolation, Burned, Isolation × Burned) 2 2204.59 11 15.63 0.00 

 (.) 1 2489.53 2 282.57 0.00 

*We used the same detection structure (p) for all models (p[Location, before vs. after wildfire]) except for the intercepts-only model, 

where p(.). 

Key: -2log(L), -2 log-likelihood; k, number of model parameters; AIC, Akaike Information Criterion; ΔAIC, difference in the Akaike 

Information Criterion (AIC) between a particular model and the top-ranked model. 
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Table 4. Models used to estimate the effects of wildfire on wetland occupancy ( ) by breeding populations of the Columbia spotted 

frog (Rana luteiventris), after accounting for the effects of wetland elevation, size (Area), vegetation, and wetland isolation. Isolation 

is the area of wetlands within 500 m of the sampled site. Models were structured so occupancy was estimated as time-constant (1 time 

period [Time]) or varying over time periods before and after wildfire occurred: 2 time periods (4–0 yrs before and 1-21 yrs after), or 3 

time periods (4–0 yrs before,1–6 yrs after, and 7–21 yrs after). ―Location‖ indicates whether a wetland was inside or outside of a 

wildfire perimeter, including before a wildfire occurred. The covariates ―Burned‖ and ―Severity‖ estimate the change in occupancy 

that resulted after wildfire. Severity is the percent of area within 500 m of wetlands that burned with high severity. Models are ranked 

according to ΔAIC and model weights (wi).  

Model Time -2log(L) k ΔAIC wi 

 (Elevation, Area, Vegetation, Isolation, Severity)  3 1783.52 14 0.00 0.96 

 (Elevation, Area, Vegetation, Isolation, Burned) 3 1790.59 14 7.07 0.03 

 (Elevation, Area, Vegetation, Isolation, Severity, Isolation × Severity)  3 1791.66 15 10.14 0.01 

 (Elevation, Area, Vegetation, Isolation, Burned, Isolation × Burned)  3 1792.71 15 11.19 0.00 

 (Elevation, Area, Vegetation, Isolation, Severity)  2 1801.19 12 13.67 0.00 

 (Elevation, Area, Vegetation, B/A, Isolation, Location)  3 1801.98 12 14.46 0.00 

 (Elevation, Area, Vegetation, Isolation, Burned, Isolation × Burned)  2 1804.39 13 18.87 0.00 

 (Elevation, Area, Vegetation, Isolation, Severity, Isolation × Severity) 2 1806.13 13 20.61 0.00 

 (Elevation, Area, Vegetation) 1 1816.23 8 20.71 0.00 

 (Elevation, Area, Vegetation, Isolation, Burned)  2 1808.73 12 21.21 0.00 

 (Elevation, Area, Vegetation, B/A, Location, Isolation)  2 1812.46 11 22.94 0.00 

 (.) 1 2052.91 2 245.39 0.00 

*We used the same detection structure (p) for all models (p[Area, Location, before vs. after wildfire]) except for the intercepts-only 

model, where p(.). 

Key: T, number of time periods for which we estimated occupancy; -2log(L), -2 log-likelihood; k, number of model parameters; AIC, 

Akaike Information Criterion; ΔAIC, difference in the Akaike Information Criterion (AIC) between a particular model and the top-

ranked model. 
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Table 5. Models used to estimate the effects of wildfire on wetland occupancy ( ) by breeding populations of the boreal toad 

(Anaxyrus boreas), after accounting for the effects of wetland elevation, size (Area), and vegetation. Models were structured so 

occupancy was estimated as time-constant (1 time period [Time]) or varying over time periods before and after wildfire occurred: 2 

time periods (4–0 yrs before and 1-21 yrs after), or 4 time periods (4–0 yrs before, 1–3 yrs, 4–6 yrs, and 7–21 yrs after). ―Location‖ 

indicates whether a wetland was inside or outside of a wildfire perimeter, including before a wildfire occurred. The covariates 

―Burned‖ and ―Severity‖ estimate the change in occupancy that resulted after wildfire. Severity is the percent of area within 500 m of 

wetlands that burned with high severity. Models are ranked according to ΔAIC and model weights (wi).  

Model Time -2log(L) k ΔAIC wi 

 (Elevation, Area, Vegetation, Burned, Elevation × Burned) 4 891.17 14 0.00 0.99 

 (Elevation, Area, Vegetation, Severity) 4 901.11 14 9.94 0.01 

 (Elevation, Area, Vegetation, Severity, Elevation × Severity) 4 902.49 14 11.32 0.00 

 (Elevation, Area, Vegetation, Burned, Elevation × Burned) 2 914.36 10 15.19 0.00 

 (Elevation, Area, Vegetation, Location) 4 913.22 11 16.05 0.00 

 (Elevation, Area, Vegetation, Burned) 4 907.80 14 16.63 0.00 

 (Elevation, Area, Vegetation, Severity) 2 932.42 10 33.25 0.00 

 (Elevation, Area, Vegetation, Severity, Elevation × Severity) 2 933.43 10 34.26 0.00 

 (Elevation, Area, Vegetation, Location) 2 938.62 9 37.45 0.00 

 (Elevation, Area, Vegetation, Burned) 2 937.22 10 38.05 0.00 

 (Elevation, Area, Vegetation) 1 968.90 6 61.73 0.00 

 (.) 1 1279.91 2 364.74 0.00 

*We used the same detection structure (p) for all models (p[Location, before vs. after wildfire]) except for the intercepts-only model, 

where p(.). 

Key: T, number of time periods for which we estimated occupancy; -2log(L), -2 log-likelihood; k, number of model parameters; AIC, 

Akaike Information Criterion; ΔAIC, difference in the Akaike Information Criterion (AIC) between a particular model and the top-

ranked model. 
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FIGURE LEGENDS 

Figure 1. Location of 85 unburned wetlands (white circles) and 183 burned wetlands (black 

circles) associated with 6 wildfires that burned in Glacier National Park, Montana (USA), 

between 1988 and 2003. Wetlands were surveyed for amphibians between 1999 and 2009. Areas 

in yellow indicate the perimeter of wildfires. Brown indicates areas of high-severity burn.  

 

Figure 2. Number of sites surveyed in Glacier National Park between 1999 and 2009 relative to 

the number of years before (-4–0) and after (1–21) wildfire occurred. Sites coded ―0‖ were 

surveyed prior to a wildfire burning that same season.  

 

Figure 3. Estimated occupancy (± 1 approximate SE) of the long-toed salamander (Ambystoma 

macrodactylum) and Columbia spotted frog (Rana luteiventris) relative to amount of area within 

500 m of wetlands that burned with high severity (x-axis) and time since wildfire. In each graph, 

open bars represent occupancy during the first 6 years after wildfire and gray bars represent 

occupancy during years 7–21 after wildfire. 

 

Figure 4. Estimated occupancy (± 1 approximate SE) of the boreal toads (Anaxyrus boreas) in 

unburned (empty bars) and burned wetlands (filled bars) at low elevation (<1465 m) and high 

elevation (>1866 m) during the 5 summers years before wildfire and 1–21 years after wildfire 

(yrs. 1-3, 4-6, 7-21; x-axis). 
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Abstract.  Projected increases in wildfire and other climate-driven disturbances will affect 

populations worldwide. These effects may be magnified by synergisms with human disturbances, 

such as forest management activities that fragment habitats and alter microclimates. Previous 

research in the Northern Rockies has documented weak negative effects of wildfire on 

amphibians, but this research has been restricted primarily to protected landscapes. Furthermore, 

we know little about how changes in habitat or hosts populations as a result of disturbances like 

wildfire affect directly-transmitted parasites. Parasites represent a large component of 

biodiversity and can affect host fitness, host population dynamics, and can modify species 

interactions. To determine how wildfire affects amphibian populations and their parasites, and 

whether the effects differ between protected and managed landscapes, we compared population 

sizes of male long-toed salamanders (Ambystoma macrodactylum) and female Columbia spotted 

frogs (Rana luteiventris) in burned and unburned wetlands in Glacier National Park and 

neighboring managed forests burned by the same stand-replacement wildfires in 1988, 2001, and 

2003. We also compared prevalence and infection intensity by a generalist nematode that 

infected salamanders and a specialist nematode that infected spotted frog larvae. Population sizes 

of long-toed salamanders decreased with increasing burn severity, with stronger negative effects 

on populations that were isolated or in managed forests. These negative effects were not evident 

in the distribution or infection intensity of the generalist nematode Cosmocercoides variabilis in 

salamanders. In contrast, population sizes of frogs increased weakly with burn extent in both 

managed and protected forests. Infection intensity of the specialist nematode Gyrinicola 

batrachiensis in larvae of the Columbia spotted frog was strongly correlated with host density in 

wetlands, and thus was higher in burned wetlands than in unburned wetlands. These results show 

that effects of wildfire on amphibian populations depend upon burn severity, isolation, and prior 
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land use. Through subsequent effects on the abundance of a specialist parasite, these results also 

illustrate how large disturbances like wildfire can affect communities across trophic levels. 
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INTRODUCTION 

Climate-driven changes to disturbance regimes are expected to have widespread effects on 

biological communities. In many areas, including western North America, these changes will 

likely include altered precipitation regimes, greater intensity of droughts, and increased 

frequency and severity of wildfires and other disturbances (Westerling et al. 2006, IPCC 2007). 

In most cases, these changes will occur in working landscapes that have been altered by various 

forms of management or fragmentation. Consequently, understanding how these climate-related 

changes will interact with human land use has become a major emphasis for conservation 

(Laurance and Williamson 2001, Kuussaari et al. 2009), and may be especially important for 

species like amphibians that are often responsive to habitat change. These changes and their 

interactions with land use histories could also have large effects on abundance, community 

structure, or ecological effects of parasites (Gulland et al. 1993, Kutz et al. 2005). Parasites 

represent a large but often hidden component or biodiversity and often at greater risk of decline 

after disturbances than are their hosts (Dunn et al. 2009). 

Wildfire is an integral component of many ecosystems, where it serves a critical role in 

maintaining suitable habitat conditions for diverse communities (Hutto 1995, Hessburg and Agee 

2003, Means 2006). Although wildfire may have filled a similar role in structuring amphibian 

habitats and communities in western North America, there are few studies from the cold forests 

with long fire-return intervals that cover much of the region, including the Northern Rockies 

(Hossack and Pilliod 2011). Additionally, most forests in the Northern Rockies are managed for 

timber and have extensive road networks, which can reduce population size, distribution, or 

connectivity of amphibians and other species (Marsh and Beckman 2004, Ewers et al. 2007). 

How the combination of stand-replacement wildfire and forest management affects amphibian 



 48 

populations and their parasites in the region is unknown. But factors that reduce fitness and 

population growth may be exacerbated in burned forests with legacies of timber harvest, 

including roads, edge effects, and reduced recruitment of large woody debris (Beschta et al. 

2004, Lindenmayer and Noss 2006). Although native species evolved with wildfire and have 

persisted in managed landscapes, the combined effects of wildfire and human disturbances on 

populations may be additive or synergistic (Laurance and Williamson 2001, Castro et al. 2010). 

The effects of wildfire and fragmentation may not be easily predicted from life-history 

characteristics or from research conducted only in protected landscapes (Ricketts 2001). For 

example, mobile species that are good colonizers in unfragmented landscapes can be more 

adversely affected by fragmentation than sedentary species (Funk et al. 2005, Fahrig 2007), and 

individuals of the same species can have different dispersal abilities in fragmented and 

unfragmented systems (Ferraz et al. 2007). Burned and fragmented forests may also act as 

ecological traps for species that are good colonizers and are attracted to early successional 

habitats, especially if there is a mismatch between habitat suitability of adults and offspring 

(Schlaepfer et al. 2002).  

Changes in amphibian populations in response to wildfire and forest management are also 

likely to have important implications for their parasites. Parasites can affect host fitness and  

population dynamics, and by modifying the outcome of species interactions, they can have large 

effects on ecosystem structure and function (Dobson and Hudson 1986, Lafferty et al. 2006). 

Disturbances can directly or indirectly affect parasite abundance or richness through changes in 

vital rates of parasites; through changes in host vital rates, abundance, or activity; or through 

changes in the transmission process (Hudson et al. 2002, McCallum 2008). Parasites that use 

intermediate hosts such as snails and amphibians often increase in response to aquatic 
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eutrophication (Johnson et al. 2002, Poteet 2006), but little is known about how land use patterns 

or disturbances that change host abundance affect directly-transmitted parasites of amphibians 

(McKenzie 2007). Most helminths like nematodes must complete part of their life cycle outside 

of a host, exposing them to variation in habitat and microclimate independent of variation in host 

condition or population dynamics. There is a general expectation that changes in abundance of 

hosts will affect abundance of their parasites (Dobson and Hudson 1992, Arneberg et al. 1998), 

but the link between hosts and their parasites may vary according to the ability of parasites to 

infect multiple hosts versus reliance on a single host (Dobson 2004). However, few studies have 

evaluated host–parasite relationships—and how that relationship is modified by disturbance—

using field estimates of amphibian abundance.  

We used a natural experiment to conduct an integrated analysis of the independent and 

combined effects of wildfire and land-use history on amphibians and their parasites. Specifically, 

we compared population sizes of the long-toed salamander (Ambystoma macrodactylum) and 

Columbia spotted frog (Rana luteiventris) and infection prevalence and intensity by 2 common 

nematodes in neighboring managed and protected forests that were burned by the same wildfires. 

Long-toed salamanders spend the majority of their time underground, limiting surface activity 

primarily to cool seasons (Werner et al. 2004). Despite their sedentary habits, there is substantial 

inter-population movement by long-toed salamanders (Giordano et al. 2007), and forest harvest 

has been linked reductions in their abundance (Naughton et al. 2000). Therefore, we predicted 

population sizes would be reduced by wildfire, especially in areas of high severity fire, and that 

the effects of wildfire would be greater in managed forests than in protected forests. 

The Columbia spotted frog (hereafter, spotted frog) often moves among complementary 

hibernating, breeding, and foraging habitats (Pilliod et al. 2002). We predicted populations in 
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managed forests would be smaller than in protected forests because fragmentation by roads can 

impede dispersal and increase mortality of similar species (Carr and Fahrig 2001, Eigenbrod et 

al. 2008). Overall, we expected a neutral or positive relationship between wildfire and size of 

spotted frog populations because many ranid frogs are attracted to breeding sites with open 

canopies, but we also expected the most isolated population might be negatively affected by 

post-fire changes in habitat, especially in areas with extensive roads.  

Through changes in habitat conditions or host abundance, we expected wildfire and forest 

management would also affect the distribution and abundance of 2 nematode species with 

contrasting levels of host specificity. The nematode Cosmocercoides variabilis hatches and 

develops into an infective stage in the soil before colonizing a wide range of terrestrial 

amphibians and reptiles, including the long-toed salamander (Vanderburgh and Anderson 1987). 

The nematode Gyrinicola batrachiensis, which infects only anuran (frog and toad) larvae and 

cannot persist in its host after it metamorphoses (Adamson 1981), infects multiple species, like 

C. variabilis does, but the spotted frog was the only common host in our study area. Both 

nematodes are transmitted directly and lack intermediate hosts, and thus we expected their 

abundance would be correlated with host abundance (Arneberg et al. 1998). However, C. 

variabilis has a free-living life-stage that we hypothesized could be susceptible to disturbance-

related changes in microclimate as well as to differences in host abundance. In contrast, 

transmission of G. batrachiensis occurs by ingestion of resting eggs that are resistant to 

environmental variation (Adamson 1981). Thus, we expected infection prevalence and intensity 

of infection by G. batrachiensis would be controlled by host density alone (Adamson 1981). 

Changes in abundance of either amphibians or parasites as a result of wildfire, especially if those 

effects differ between managed and protected forests, could have important implications for 
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species conservation and community structure under future disturbance regimes.  

 

METHODS 

Study Area 

Our research focused on 3 stand-replacement fires that occurred in the North Fork Valley, 

Montana: the 1988 Red Bench fire (14584 ha), the 2001 Moose fire (28574 ha), and the 2003 

Wedge Canyon fire (21615 ha) (Figure 1). The study area is divided by the North Fork Flathead 

River, which forms the boundary between Glacier National Park (NP) on the east and a 

landscape of mixed ownership on the west. The area outside of the park includes Forest Service, 

state, and private lands that are managed for varied activities, including timber production and 

recreation. Human residences on private lands include small ranches and homes surrounded by 

forest and meadows. Forests within the park are not harvested and have fewer roads than in 

forests on neighboring lands. Hereafter, we refer to land outside of the park as ―managed forest‖ 

and land inside the park as ―protected forest‖.  

All 3 wildfires started on public lands outside of the park, where they were ignited by 

lightning during drought conditions. The fires burned in an area covered with dense forests 

composed primarily of Douglas fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), 

and western larch (Larix occidentalis). The fire regimes of these forests range from mixed-

severity with mean fire-return intervals of < 100 years in some areas of the north, to a stand-

replacement fire regime with mean fire-return intervals of 140–340 years in the southern end of 

the valley (Barrett et al. 1991). Due to the naturally long fire intervals, fire suppression has not 

greatly altered the natural succession of most forest stands in this area (Barrett 2002).  

The study area is densely populated by shallow wetlands in depressions left by receding 
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Pleistocene glaciers. There are also a few lakes and large wetlands that we excluded from 

sampling (see below). The wetlands we sampled ranged in size from 0.01 ha to 1.4 ha and only 3 

were >1 m maximum depth. Most of these wetlands fill from snowmelt and rain in the spring, 

support extensive emergent vegetation, and dry by mid-August. Consequently, most of our study 

sites were likely dry when the fires occurred. Two wetlands on Forest Service lands were human-

created or modified but contained suitable habitat for local amphibians.  

 

Sampling Design 

To determine if wildfire and fragmentation from forest management and roads affect 

amphibian populations and their associated parasites, we randomly selected wetlands based on 

their burn status (burned vs. unburned) and location (managed vs. protected) to achieve a fully 

replicated, factorial sampling design represented by 4 classes of wetlands: burned/protected, 

unburned/ protected, burned/managed, and unburned/managed. We limited our sampling 

population to small wetlands ≤ 1 km of roads to reduce travel time because we had to access 

wetlands several times when there was still deep snow cover. We also limited the size of 

wetlands trapped for salamanders to 1 ha, because we were not confident we could effectively 

trap larger sites.  

After identifying candidate wetlands, we randomly selected 3 burned and 3 unburned 

wetlands inside and outside of the park for each of the 3 fires (n = 36). For example, for the 2003 

Wedge Canyon fire, we selected 3 burned and 3 unburned wetlands in protected forest, and 3 

burned and 3 unburned wetlands in managed forest. We also randomly selected alternate 

wetlands that were used in the few cases that wetlands did not fill with water. We estimated 

abundance of the long-toad salamander and spotted frog in each of these 36 wetlands.  
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We selected wetlands for sampling frogs by including the same 36 wetlands where we 

trapped salamanders, and then adding 2 wetlands in each combination of burn and management 

status. These additions resulted in 60 wetlands, with 5 per combination of burn status (burned vs. 

unburned), location (managed vs. protected), and fire (Red Bench, Moose, Wedge Canyon). The 

spotted frog occupies fewer wetlands than the long-toed salamander in our study area (Corn et al. 

2005), necessitating the larger sample size. One of the sites we selected for the 2001 Moose fire 

was burned by the 2003 Robert Fire instead, near where the 2 fires overlapped, and 1 wetland > 1 

ha was included in our sample of wetlands where we searched for spotted frog egg masses. 

  

Amphibian sampling and abundance  

We captured salamanders by placing unbaited minnow traps along the margins of wetlands 

as they started to fill with snowmelt and rain, when salamanders migrate from terrestrial 

hibernacula to breeding sites. Using the same type of traps, Wilson and Pearman (2000) showed 

captures rates of adult rough-skinned newts (Taricha granulosa)—a species with similar 

breeding behaviors as the long-toed salamander—was an accurate measure of abundance. We 

scaled the number of traps to area of open water, with approximately 1 trap every 10 m of open 

shoreline (range = 2–13 traps). Trapping dates varied widely among wetlands according to 

topography and insolation, starting as early as 18 March 2010 at the southern end of our study 

area and ending on 25 April 2010 at the northern end of our study area. 

Traps were left overnight and captured salamanders were sedated with tricaine methane 

sulfonate (MS-222) before being marked with a session-specific toe clip used to construct 

capture histories. We measured snout-vent length (mm) and weight (g) of the first 25 

salamanders captured at each wetland. This trapping method primarily captured male 
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salamanders (>90% of captures), so we excluded females from the population estimates. After 

the final trapping session at each wetland, we euthanized 15 male salamanders or 25% of the 

total number of individuals captured (whichever was less) with an overdose of MS-222 and froze 

them for necropsies.  

We estimated population size of salamanders using closed population estimators in program 

MARK (White and Burnham 1999). Before fitting models, we tested for population closure 

using program CloseTest and pooled captures as needed by combining trap sessions (e.g., by 

combining captures from the first 2 sessions; Stanley and Jon 2005). This pooling resulted in 

between 2 and 5 capture sessions used to estimate population size. We fit the data to models that 

assumed constant capture probability (M0) and models that allowed for temporal heterogeneity in 

captures (Mt), and used AICc weights to generate model-averaged estimates of population size of 

male salamanders for each wetland. 

At 9 of the 36 wetlands we trapped, we captured too few salamanders to estimate population 

size or could not satisfy the closure assumption of the models. For these wetlands, we estimated 

population size using a linear regression model based on data from the other 27 wetlands by 

regressing the population estimate from MARK against peak number of captures at each 

wetland. We log-transformed both variables prior to the regression to make the relationship 

linear and kept the predicted values in the log-transformed format for all subsequent analyses. 

Other measures of trapping effort, such as number of traps deployed or number of trap nights, 

did not improve the fit of the regression model. 

We estimated population size of breeding female spotted frogs by counting egg masses at 

wetlands. Spotted frogs lay 1 egg mass, providing an accurate way to track size of the breeding 

population (Licht 1975). We conducted egg mass surveys by walking the entire shoreline and 
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other shallow areas of each wetland on every visit. Spotted frog egg masses float at the water’s 

surface and are typically laid communally near shore, making them easy to detect. We marked 

individual masses by inserting a colored toothpick into the center of each egg mass. We also 

placed a flag pin at each location with eggs and labeled it with the date and count of egg masses. 

Marking the masses and flagging their locations reduced counting errors because egg masses 

become more difficult to distinguish as they age.  

We conducted between 3 and 10 surveys at each wetland (mean = 5.7) during the breeding 

season. We visited a wetland at least once per week until the count of masses did not change for 

2 consecutive visits and there was no change in counts in neighboring wetlands. Egg masses 

were first detected on 19 April 2011. We continued surveys through 27 May, although we did 

not detect new masses after 20 May. We returned to breeding sites later in the summer (6 to 11 

July) to collect up to 15 spotted frog larvae from throughout each wetland (to avoid sampling 

siblings). Larvae were euthanized with MS-222 and stored in 10% formalin until they were 

necropsied for nematodes. 

 

Nematode sampling 

We examined the external surface, buccal cavity, body cavity, lungs, and digestive tract of 

3–15 long-toed salamanders from 30 wetlands (373 total) under a dissecting scope to measure 

infection prevalence and intensity by C. variabilis. To measure infection prevalence and intensity 

by G. batriachiensis, we excised the entire digestive tract of 2–15 spotted frog larvae from 22 

wetlands (205 total), removed the digestive contents, and counted the nematodes under a 

dissecting scope. All nematodes were stored in 70% ethanol and identified using characteristics 

described in Vanderburgh and Anderson (1987) and Adamson (1981). 
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There is uncertainty about the identity of some Cosmocercoides in amphibians. 

Cosmocercoides variabilis is a common parasite of amphibians and reptiles (Vanderburgh and 

Anderson 1987), but it is possible some amphibians may also become infected by C. dukae after 

ingesting infected gastropods (Baker 1978). However, isozymes and cross-transmission 

experiments showed that Cosmocercoides in anurans and gastropods were distinct, suggesting C. 

dukae found in amphibians are accidental infections and are likely temporary (Vanderburgh and 

Anderson 1987). Also, we did not find any male worms in our samples, which are preferred for 

species identification. We refer to nematodes we found in salamanders as C. variabilis, but 

acknowledge that some could have been C. dukae. 

 

GIS Analyses 

We used a geographic information system (ArcGIS 9.2) to measure landscape characteristics 

within 2-km buffers surrounding wetlands that we expected to be correlated with population 

sizes of amphibians and nematodes. Within each buffer, we calculated the extent of burned area, 

the area that burned with high severity, length of roads, area of ponds and emergent wetlands, 

mean canopy cover, and mean topographic slope. Fire information was calculated using 30 m 

burn severity data from the Monitoring Trends in Burn Severity project (MTBS; 

http://mtbs.gov/index.html). We defined areas that burned with high severity as pixels with 

differenced Normalized Burn Ratio (dNBR) values ≥ 550, which represents the midpoint of the 

moderate-high severity burn category that Key and Benson (2006) defined for several wildfires 

in Glacier NP. The dNBR is based on changes in vegetation between pre-fire and post-fire 

Landsat imagery. Length of roads was calculated from a database for Flathead County 

(http://nris.mt.gov/gis/). Area of emergent wetlands and freshwater ponds was measured using 

http://mtbs.gov/index.html
http://nris.mt.gov/gis/
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the National Wetlands Inventory dataset (http://www.fws.gov/wetlands/data/). We estimated 

mean canopy cover for forested vegetation only (i.e., we excluded riparian areas, meadows, and 

water) within each buffer using LANDFIRE data (http://www.landfire.gov/). Mean topographic 

slope was calculated from a 10 m digital elevation model for the study area 

(http://nris.mt.gov/gis/). 

 

Statistical Analyses 

Amphibian populations.—Before evaluating our research hypotheses, we first sought to account 

for background variation in amphibian abundance unrelated to wildfire or management effects. 

Specifically, we expected topographic slope and area of wetlands in the surrounding landscape to 

be important predictors for both the long-toed salamander and spotted frog. The slope and 

wetland variables also account for natural differences between managed and protected forest, 

because the former included areas with greater topographic variation and had less wetland area 

(Table 1). Slope and wetland area were also strongly, negatively correlated, because steeper 

areas are less likely to have ponded water. To describe the covariation between topography and 

wetlands, we used principal components analysis to reduce them into a single variable that we 

used as a measure of population isolation, which we included as a covariate in all linear models. 

The first principal component accounted for 85% of the covariation between slope and wetlands. 

Positive values of the principal component represented areas of high slope and few wetlands 

(i.e., greater isolation).  

We evaluated 15 models that included additive and interactive effects of isolation, length of 

roads, forest management (managed vs. protected), percent of area burned (burn extent), and 

percent of area burned severely to describe variation in amphibian abundance. We hypothesized 

http://www.landfire.gov/
http://nris.mt.gov/gis/
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the effects of fire would be greater in steeper areas or where there were fewer neighboring 

wetlands. Steeper areas impose greater energetic costs for movement and should increase 

effective isolation (e.g., Ricketts 2001). More wetlands in the surrounding area could facilitate 

movement and provide a source of colonists to rescue local populations (Brown and Kodric-

Brown 1977). We expected roads would be associated with smaller population sizes because 

they can inhibit movement of amphibians, they create strong edge effects that alter the local 

habitat and microclimate, and because they are often associated with forest management 

activities such as logging that can reduce population sizes (Gibbs 1998, Naughton et al. 2000, 

Marsh and Beckman 2004).  

We included the management term to account for differences in timber harvest between 

areas, but it is also reflects differences in road density and fragmentation by private residences 

and ranches. Because management and roads were correlated, we did not include both terms in 

the same model. Given the mixed ownership of the study area, there is no data source that 

provides consistent, accurate information on harvest history. Canopy cover is generally reflective 

of timber harvest over large areas (Houlahan and Findlay 2003), but it was highly correlated with 

both percent of area burned (r = -0.73) and percent of area burned severely (r = -0.86) in our 

study area and thus was not included in any models. We evaluated both burn extent and burn 

severity because severity is more specifically related to consumption of vegetation and 

subsequent heating and exposure of soils (Key and Benson 2006). Burn severity is often highly 

variable, however, and the cumulative effect of the net area burned may be more important in 

some cases or at broader spatial scales.  

We originally fit these 15 models to data measured from both 500 m and 2 km wetland 

buffers. For both species, however, results from the 2 spatial scales were nearly identical and 
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data measured from 2 km wetland buffers explained more variation in population sizes. As a 

result, we do not show or discuss results from models based on 500 m buffers. 

To model salamander abundance (on the log scale), we used generalized linear models with 

a normal distribution and identity link (PROC GENMOD, SAS 9.2). Counts of spotted frog egg 

masses were modeled using generalized linear models with a negative binomial distribution and 

log link, because the counts were over-dispersed (mean = 5.23, variance = 108.45). We included 

area of the sampled wetland (log transformed) as an offset variable for the population models 

because larger wetlands tended to host larger populations, especially for salamanders. In 

preliminary analyses, we also evaluated the ability of wetland depth, vegetative cover, and other 

wetland characteristics to explain variation in population size of salamanders and spotted frogs; 

none were useful predictors for either species. For these and subsequent analyses, we ranked 

models in each respective set using AICc and model weights to evaluate support for our 

hypotheses (Burnham and Anderson 2002). Model weights represent the probability that a 

particular model is the best for the given data set.  

Prior to the analyses, we tested the population data for evidence of spatial autocorrelation 

using a distance-weighted matrix to calculate Moran’s I (PROC VARIOGRAM). Moran’s I measures 

how values are correlated based on distance, with 0 representing no correlation and -1 or +1 

indicating perfect negative or positive correlation, respectively (Moran 1950). We did not find 

evidence of significant autocorrelation for either the long-toed salamander (I = 0.10, P = 0.27) or 

spotted frog data (I = 0.12, P = 0.16). 

 

Nematodes.— We used different analytical approaches to compare abundance of nematodes in 

salamanders and spotted frogs. The nematode in salamanders (C. variabilis) has a free –living 
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stage that could be sensitive to environmental variation, but this parasite should also be sensitive 

to variation in host abundance (Dobson and Hudson 1992). To estimate the probability and 

intensity of infection by C. variabilis, we used generalized linear mixed models (PROC GLIMMIX) 

estimated with Laplace maximum likelihood methods and empirical standard errors. We used the 

same 15 models that we used to model variation in salamander abundance, but considered 

wetlands and individuals as random factors. We modeled within-wetland covariance using the 

compound symmetry structure, which assumes equal correlation among individuals in a wetland. 

Infection probability was modeled using the binomial distribution and a logit link. We used the 

gamma distribution with a log link to model infection intensity, because intensity was under-

dispersed (mean = 1.84, variance = 1.45). We considered both snout-vent length and the scaled 

mass index (Peig and Green 2009) of salamanders as offsets to account for potential relationships 

between size or condition and infection, but neither improved the fit of the models.  

We did not expect landscape disturbances would directly affect the distribution or infection 

intensity of G. batrachiensis in spotted frog larvae. This nematode produces resting eggs that 

must survive outside of a host (Adamson 1981), but we had no reason to expect egg survival 

varied among wetlands. Also, G. batrachiensis does not infect salamanders and only 2 wetlands 

contained larvae of an alternative host (boreal toad, Anaxyrus boreas; B. Hossack, unpublished 

data). Thus, we expected variation in G. batrachiensis would primarily reflect the density of 

spotted frog larvae. For this analysis, we fit a single model for each of infection prevalence and 

intensity based on burn status of each wetland (i.e., burned vs. unburned). We used burn status 

because it provided a better fit to the data than quantitative measures of fire effects (e.g., percent 

of area burned), given the reduced set of wetlands where we collected frog larvae and range of 

burn severity at these wetlands. 
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We estimated the probability of infection and infection intensity by G. batrachiensis in 

spotted frog larvae according to burn status using the same random effects model as for C. 

variabilis in salamanders, except we modeled infection intensity using the negative binomial 

distribution and a log link because the count of G. batrachiensis was overdispersed (mean = 

19.78, variance = 459.51). We excluded data from 1 wetland where most spotted frog larvae 

appeared sick and many had empty or atrophied guts. These larvae generally were not infected 

by G. batrachiensis, perhaps because they were not feeding or because their gut provided 

unsuitable habitat for the nematodes. Larvae in this same wetland have experienced occasional 

die-offs in previous years (B. Hossack, personal observation). 

 

RESULTS 

Amphibian populations.—Estimated population sizes for long-toed salamanders from program 

MARK ranged from 8 to 4220, with a mean population size of 599 (SE = 126). At the 9 wetlands 

where we captured too few salamanders to estimate population size or could not satisfy the 

closure assumption of the models, estimated population size from linear regression based on 

peak captures ranged from 2 salamanders at a wetland where we never had any captures, to 690 

at a wetland where we captured 245 male salamanders. 

The model with the interaction between isolation and burn extent received the most support 

and predicted a negative effect of wildfire in areas with greater burn extent and in steep areas 

with few wetlands (Table 2, Figure 2). There was only a weak effect of isolation in areas that 

burned with moderate extent (e.g., 50% of 2 km buffer) and in areas that experienced little 

wildfire, population sizes were larger in more isolated wetlands. The model that included an 

isolation × burn severity interaction received less support but predicted a similar response to that 
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of the isolation × burn extent model, with increasingly negative effects of high severity burn for 

isolated populations (Table 2).  

There was also substantial support for the models that described additive or interactive 

effects of burn severity and forest management or length of roads (Table 2). Collectively, there 

was more support for effects of burn severity (Σwi = 0.70) than for burn extent (Σwi = 0.30), even 

though the latter was in the top-ranked model. All severity models described a strong, negative 

effect of high severity burn on salamander populations. Road density had a negative effect on 

population size of salamanders in addition to the effect of burn severity (Figure 3), and the effect 

of high severity burn was stronger in managed forests than in protected forests (Figure 4). 

To evaluate the influence of the 9 populations for which we had to estimate population size 

using linear regression, we conducted a sensitivity analysis by refitting all of the models using 

only population estimates generated from program MARK. The only significant change from 

using the smaller dataset was reduced support for the isolation × burn extent model (w = 0.02 

instead of w = 0.27 for the full dataset). This change resulted because some of the wetlands 

where we could not estimate population size in MARK were also the most isolated and occurred 

in thoroughly burned areas. For example, the only wetland where we did not capture salamanders 

was in an area where 99% of the surrounding area burned. This site also had the fewest 

neighboring wetlands and highest mean topographic slope. 

We detected spotted frog egg masses at 26 of 60 wetlands, with the number of egg masses 

ranging from 1 to 57. Seventeen of the 26 breeding sites were burned. In contrast to salamanders, 

counts of spotted frog egg masses were weakly, positively correlated with burn extent near 

wetlands (Figure 5). No model clearly fit the data the best, but the model with burn extent 

received the most support, followed by the models with the interaction between burn extent and 
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isolation (Table 3). The isolation × burn extent term indicated that wildfire had a negative effect 

on isolated populations; however, the estimate did not differ from 0. None of the other models 

explained additional variation in population size relative to the top model.  

 

Nematodes.—We found the nematode C. variabilis in 39% of salamanders. Infection intensity 

ranged from 1 to 7 worms (mean = 1.84). All nematodes were juveniles or females and were 

found in the intestine or (rarely) the body cavity. We found no evidence that the probability or 

intensity of infection was related to wildfire, management effects, or isolation of populations. 

The basic model that included only population isolation received the most support for both the 

prevalence and intensity data sets (models not shown). However, the effect of isolation did not 

differ from 0 for either infection prevalence or intensity. The covariance parameter for the 

random intercepts (i.e., different wetlands) also did not differ from 0 for either set of models, 

indicating differences in host density or other factors that varied among wetlands had little effect 

on infection.  

We found G. batrachiensis in 66% of spotted frog larvae and in 75% of breeding sites. Of 

infected larvae, intensity ranged from 1 to 107 worms. We found no difference in probability of 

infection of larvae between unburned and burned wetlands (b = 0.26, SE = 0.79). However, 

infection intensity was greater in larvae collected from burned wetlands (least-squares mean = 

21.71, SE = 1.23) compared with unburned wetlands (least-squares mean = 13.18, SE = 1.16). 

Burned wetlands had more than twice the density of spotted frog egg masses as unburned 

wetlands (mean of 69 vs. 33 masses ha
-1

, respectively). Mean infection intensity by G. 

batrachiensis was strongly correlated (log-log r = 0.66) with the density of spotted frog egg 

masses in wetlands, which we considered a surrogate for host density (Figure 6).  
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DISCUSSION 

Given the expected increases in drought and conditions that foster wildfire in many forested 

ecosystems, along with increases in insect-related tree mortality and the use of forest harvest to 

mitigate wildfire hazards, it is important to understand how interactions among disturbances will 

affect native species at all trophic levels (IPCC 2007, Reinhardt et al. 2008, Bentz et al. 2010). 

Our results show that projected changes to disturbance regimes in western North America could 

affect abundance of amphibians and their parasites, depending upon the extent and severity of 

wildfire, isolation from other populations, and host specificity. Additionally, these implications 

may differ between managed and protected forests.    

We found strong evidence that salamander populations were smaller in areas that burned 

with high severity. Burn extent was also negatively related to salamander abundance, but less so 

than burn severity. Burn severity likely was more important than extent because it represents 

post-fire changes in vegetation structure that provides protective cover and modifies the 

microclimate of ground-dwelling organisms (Key and Benson 2006). This negative relationship 

with burn severity is consistent with results from an 11-year study of wetland occupancy by 

breeding populations of the long-toed salamander in Glacier NP wetlands, in which wetlands in 

areas of high severity wildfire were less likely to be occupied > 6 years after they burned 

(Chapter 1). There have been few population estimates for adult ambystomatid salamanders, 

especially across multiple populations and a large study area like ours, but they provided more 

information on the relationship with burn severity than measures of occupancy.  

Connectivity among populations is critical for population persistence and recovery after 

declines, especially in disturbed or fragmented landscapes (Thomas and Jones 1993, Ricketts 

2001). For example, high connectivity in stream systems reduces probability of decline or local 
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extinction for fishes during drought or after wildfire (Fagan et al. 2002, Neville et al. 2009), and 

the presence of neighboring water bodies reduces extinction probability of amphibians in 

montane catchments with introduced fish (Pilliod et al. 2010a). Similarly, the effects of wildfire 

on long-toed salamanders increased with population isolation, indicating isolated populations 

were less resistant or resilient to the effects of wildfire. However, isolation was negatively 

associated with population size only in areas where >50% of the area within 2 km of wetlands 

burned. The positive correlation we found between wetland isolation and population size has 

been documented previously for mole salamanders and could result from focusing breeding 

efforts when there are few alternative breeding sites (Veysey et al. 2011). This interaction 

suggests isolated populations will also be the most vulnerable to future increases in frequency or 

severity of wildfire, and underscores the importance of maintaining suitable habitat between 

breeding habitats to facilitate colonization and recovery after disturbances. 

We suspect the increased vulnerability of isolated populations in steep, burned areas reflects 

the direct effect of wildfire on habitat and resulting costs of dispersal. Loss of tree canopy results 

in reduced movement and increased desiccation and mortality of other ambystomatid 

salamanders (Rothermel and Luhring 2005). Amphibians are also less likely to disperse into 

forested habitats with strong edges or open canopies (Todd et al. 2009, Popescu and Hunter 

2011), characteristics that are more common in burned forest than in unburned forest (Guscio et 

al. 2008). A previous study in Glacier NP showed soil temperatures averaged 3°C higher in 

severely burned areas compared to neighboring unburned forest, and surface temperatures were 

frequently higher than those preferred by most salamanders (Hossack et al. 2009). After a severe 

wildfire in New Mexico, temperatures in microhabitats of the Jemez Mountain salamander 

(Plethodon neomexicanus) often exceeded the thermal preference for the species, and 
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occasionally exceeded its critical thermal maximum (Cummer and Painter 2007). The lower 

cover and higher temperatures in burned forests could limit surface and foraging activity or 

increase desiccation and mortality during dispersal for long-toed salamanders, ultimately 

reducing population connectivity and size.  

Projected increases in frequency and severity of wildfires will present many challenges for 

conservation. These challenges will be greater if the effects of wildfire and other disturbances  

are additive or even synergistic (e.g., Laurance and Williamson 2001, Castro et al. 2010), like 

those we found indicating the negative effects of high-severity wildfire on long-toed salamanders 

were magnified on managed forests fragmented by roads and development. By themselves, forest 

management and roads were weakly related to population size of salamanders. The lack of a 

management effect was surprising, because timber harvest has been associated with reduced 

abundance of long-toed salamanders elsewhere in western Montana (Naughton et al. 2000). But 

in areas that burned with high severity, the effect of fire increased in areas with high road 

densities and on managed forests. These additive and synergistic effects could result from post-

fire salvage logging, but because of the mixed private and public ownership of the study area and 

the age of the oldest fire, we do not have data to evaluate this hypothesis.  

In contrast to the data for long-toed salamanders, we did not find negative effects of 

wildfire, forest management, or fragmentation by roads on population size of spotted frogs. We 

expected population size to be negatively associated with road density because spotted frogs and 

other vagile anurans are more likely to encounter roads, increasing the risk of mortality or 

reducing dispersal (Funk et al. 2005, Eigenbrod et al. 2008). Instead, we found a weak, positive 

association between burn extent and population size that was similar in managed and protected 

forests. Spotted frogs prefer exposed wetlands for breeding and foraging and thus may be 
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attracted to disturbed areas with open canopies (Pilliod et al. 2010a). Some ranid frogs have 

suffered population losses or persistent declines after large wildfires, particularly in the US 

Southwest (Hossack and Pilliod 2011). However, those species typically occupied stream 

habitats that are more likely to experience significant post-fire changes in habitat than the 

temporary wetlands we sampled, which quickly recover to pre-fire conditions. Notably, in a 

long-term occupancy study across a series of wildfires inside Glacier NP, the distribution of 

spotted frog populations was negatively associated with burn severity in wetlands that burned 7–

21 years before they were surveyed (Chapter 1). Burn severity was not an important predictor for 

variation in population size in the wetlands we sampled here, but over time, persistent reductions 

in recruitment or dispersal away from the most severely burned areas could reduce population 

growth.  

Although we found huge variation in abundance of salamanders that was strongly associated 

with wildfire, isolation, and forest management, infection prevalence and intensity by the 

generalist nematode C. variabilis was not related to these habitat characteristics or to variation in 

salamander abundance among wetlands. We expected abundance of C. variabilis would vary 

spatially because it has a free-living stage that could be directly affected by variation in habitat 

and because the long-toed salamander is the most abundant host in the area (Dobson and Hudson 

1992; B. Hossack, unpublished data). Remarkably, abundance of C. variabilis did not differ 

among populations. We suspect the ability of C. variabilis to infect multiple species of 

amphibians and reptiles—most of which probably do not decline in abundance in response to 

wildfire or forest management—may have buffered it from high variation in salamander 

abundance (Dobson 2004). C. variabilis can also be more abundant in these other, less sedentary 
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host species because they are more likely to encounter infectious stages of the nematode (e.g., 

Yoder and Coggins 2007).  

Unlike C. variabilis, the gut nematode G. batrachiensis is almost completely dependent 

upon the spotted frog in our study area, where the only other potential host bred occurred in < 

3% of wetlands. The close relationship between G. batrachiensis and the spotted frog was 

evident by the 60% greater infection intensity in burned wetlands compared with unburned 

wetlands, which mirrored differences in host density. Infection by G. batrachiensis can 

accelerate development of American bullfrog (Lithobates catesbeiana) larvae, with no sacrifice 

in size at metamorphosis (Pryor and Bjorndal 2005). Developmental rate and size-at-

metamorphosis are both strong predictors of fitness for amphibians, especially in temporary 

wetlands like we sampled (Semlitsch et al. 1988). Thus, greater infection intensity in spotted 

frogs in burned wetlands compared with unburned wetlands could increase host fitness. Despite 

the greater infection intensity in burned wetlands, however, there was no effect of wildfire or 

other covariates on infection prevalence, suggesting the conditions that allow G. batrachiensis to 

become established or persist in an individual and conditions that control infection intensity may 

be independent.  

By estimating sizes of amphibian populations in burned and unburned wetlands in both 

managed and protected forests, we found strong, negative effects of wildfire on long-toed 

salamanders, especially on isolated populations in managed forests. These synergistic effects 

could increase the threat of wildfire to salamanders and other species that are sensitive to post-

wildfire changes in habitat or microclimate, especially if expected increases in wildfire 

frequency and severity are realized (Westerling et al. 2006, IPCC 2007). Despite these strong 

effects on population size of salamanders, infection by C. variabilis seemed insulated from the 
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effects of disturbance or host abundance, likely because it is capable of infecting many host 

species in the area that are less sensitive to disturbance than salamanders. However, the positive 

association between wildfire, spotted frogs, and the specialist nematode G. batrachiensis 

reinforces the important role of wildfire in structuring populations and communities. The close 

relationship between abundance of spotted frogs and infection intensity by G. batrachiensis also 

illustrates the hidden loss of biodiversity that has likely resulted from the global decline of 

amphibians (and other hosts) on parasites, especially in areas where host diversity is low or 

where host–parasite relationships are specific (Dunn et al. 2009). Collectively, our results 

underscore the importance of measuring population- and community-level responses across a 

range of disturbances and in both managed and protected forests. To form effective conservation 

strategies, future research should prioritize isolating the mechanisms underlying these population 

differences, and in particular, how those mechanisms differ between managed and protected 

forests. 
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Table 1. Mean (SD) wetland and landscape characteristics according to forest 

management (managed vs. protected) of 30 burned and 30 unburned wetlands. All data 

except wetland size were measured from 2 km buffers around the sampled wetlands. 

―Surrounding wetlands‖ refers to area of wetland habitat within the 2 km buffers around 

sampled wetlands.  

Variable Management Unburned Burned 

Wetland size (ha) managed 0.15 (0.25) 0.29 (0.28) 

 protected 0.25 (0.36) 0.17 (0.12) 

 

Roads (km) managed 

 

16.68 (6.19) 15.72 (4.55) 

 protected 6.59 (3.55) 5.87 (2.55) 

 

Surrounding wetlands (ha) managed 

 

10.36 (8.79) 6.91 (2.99) 

 protected 24.67 (18.53) 11.59 (7.92) 

 

Topographic slope (%) managed 

 

7.23 (3.68) 8.29 (5.68) 

 protected 4.88 (2.34) 5.58 (1.92) 

 

Burn extent (%) managed 

 

3.23 (5.63) 85.57 (12.95) 

 protected 38.58 (15.22) 73.08 (10.70) 

 

High severity (%) managed 

 

0.59 (1.87) 30.27 (13.10) 

 protected 10.92 (7.13) 25.36 (17.55) 
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Table 2. Models fitted to estimated population size of male long-toed salamanders in 18 burned and 18 unburned 

wetlands using fire and landscape information measured from 2 km buffers. Models are ranked according to AICc and 

model weights (wi).  

Model -2log(L) AICc wi 

Isolation + % Burned + % Burned × Isolation 121.80 133.80 0.27 

Isolation + % Severe + Roads 122.29 134.29 0.21 

Isolation + % Severe + Management +% Severe × Management 119.64 134.54 0.19 

Isolation + % Severe + Roads +% Severe × Roads 119.99 134.88 0.16 

Isolation + % Severe + % Severe × Isolation 124.43 136.43 0.07 

Isolation + % Severe 128.55 137.77 0.04 

Isolation + % Severe + Management 125.97 137.97 0.03 

Isolation + % Burned + Management + % Burned × Management 123.45 138.34 0.03 

Isolation + % Burned + Roads 130.67 142.67 <0.01 

Isolation + % Burned 133.57 142.86 <0.01 

Isolation + % Burned + Management 131.78 143.78 <0.01 

Isolation + % Burned + Roads + % Burned × Roads 130.58 145.47 <0.01 

Isolation 146.83 153.58 <0.01 

Isolation + Roads 146.50 155.79 <0.01 

Isolation + Management 146.82 156.11 <0.01 
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Table 3. Models fitted to counts of Columbia spotted frog egg masses in 30 burned and 30 unburned wetlands using fire 

and landscape information measured from 2 km buffers. Models are ranked according to AICc and model weights (wi).  

Model -2log(L) AICc wi 

Isolation + % Burned 243.32 252.05 0.37 

Isolation + % Burned + % Burned × Isolation 243.09 254.20 0.13 

Isolation + % Burned + Roads 243.26 254.37 0.12 

Isolation + % Burned + Management 243.31 254.42 0.11 

Isolation + % Burned + Management + % Burned × Management 241.67 255.25 0.08 

Isolation + % Burned + Roads + % Burned × Roads 242.58 256.17 0.05 

Isolation + % Severe 248.41 257.14 0.03 

Isolation 251.31 257.74 0.02 

Isolation + % Severe + Roads + % Severe × Roads 244.28 257.87 0.02 

Isolation + % Severe + Management + % Severe × Management 244.36 257.95 0.02 

Isolation + % Severe + Roads 247.57 258.68 0.01 

Isolation + % Severe + Management 247.70 258.81 0.01 

Isolation + Roads 250.49 259.22 0.01 

Isolation + % Severe + % Severe × Isolation 248.18 259.29 0.01 

Isolation + Management 250.99 259.71 <0.01 
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FIGURE LEGENDS 

Figure 1. Location of 60 wetlands sampled for long-toed salamanders (Ambystoma 

macrodactylum) and Columbia spotted frogs (Rana luteiventris) in the North Fork Flathead 

Valley, Montana, and 4 stand-replacement wildfires that have burned since 1988. Circles 

indicate the 36 wetlands sampled for both salamanders and frogs; squares indicate the 24 

wetlands sampled only for spotted frogs. Wetlands within the perimeter of a wildfire are 

designated by solid symbols. The North Fork Flathead River forms the boundary between 

protected forests inside Glacier National Park and managed forest outside of the park. 

 

Figure 2. Mean effect (±95% CI) of isolation on population size of male long-toed salamanders 

given 10%, 50%, and 90% burn extent in 2 km buffers around breeding wetlands. Isolation was 

measured as the covariation between topographic slope and wetland area, with high values 

representing steep areas with few wetlands.   

 

Figure 3. Mean effect (±95% CI) of length of roads within 2 km of breeding wetlands on 

population size of male long-toed salamanders, after accounting for the effect of variation in high 

severity burn.  

 

Figure 4. Mean effect (±95% CI) of amount of 2 km wetland buffer that burned with high 

severity on population size of male long-toed salamanders in managed vs. protected forest.  

 

Figure 5. Mean predicted count (± 95% CI) of Columbia spotted frog egg masses according to 

burn extent in the 2 km area around wetlands.   
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Figure 6. Relationship between infection density of Columbia spotted frog egg masses (host 

density) in wetlands and infection intensity in spotted frog larvae. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Abstract. Disturbances are generally expected to magnify the negative effects of disease on 

hosts; however, these expectations depend on the ecology of the hosts and pathogens, 

mechanisms of disease transmission, and how disease affects populations. To determine how 

infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies in relation to 

environmental heterogeneity caused by recent wildfires and use by hosts of aquatic vs. terrestrial 

habitats, we sampled 404 juvenile and adult boreal toads (Anaxyrus boreas) across Glacier 

National Park, Montana (USA), during 4 years. Bd causes chytridiomycosis, an emerging 

infectious disease that has been associated with amphibian declines globally. After accounting 

for capture environment, infection probability for females and the combined group of males and 

juveniles was similar. Only 9% of toads captured terrestrially were infected, compared to >30% 

of toads captured in wetlands, and toads captured in recently burned areas were half as likely to 

be infected as toads in unburned areas. We suspect the large differences in infection prevalence 

among habitats reflect habitat choices by toads that affect exposure to the pathogen, as well as 

the increased ability of terrestrial animals to clear infections in arid environments that are less 

conducive to pathogen growth. To determine how the observed variation in disease prevalence 

could affect metapopulation dynamics under different infection and dispersal scenarios, we used 

demographic simulations based on documented effects of Bd on toad survival. Our simulations 

showed that spatial variation in infection related to habitat use and landscape characteristics can 

significantly reduce the risk of metapopulation decline over a 10-year period. More broadly, our 

results show that maintenance of natural disturbance regimes and diverse habitats can strongly 

influence disease prevalence and population-level effects across broad landscapes. 
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INTRODUCTION 

Despite growing recognition of the role of diseases in the population dynamics of wild 

animals (Brown et al. 1995, Jolles et al. 2005), how environmental variation and individual 

habitat use affect host–pathogen interactions is not well understood (McCallum 2008, Mbora and 

McPeek 2009). Environmental variation and individual exposure to this variation could modify 

disease risk through several mechanisms. For example, perturbations such as disturbance (e.g., 

fragmentation) or unusual climate events (e.g., drought) can magnify the effects of disease by 

increasing the density of hosts and transmission rates (Anderson and May 1978), by changing 

community structure (Van Buskirk and Ostfeld 1998, Poteet 2006), or by affecting the condition 

of hosts or pathogens (Jokela et al. 2005, Jolles et al. 2005, Becker and Zamudio 2011). 

However, these predictions may be context-specific, depending upon the ecology of the hosts 

and pathogens, how disease transmission occurs, and the effects of disease on the host population 

(Lafferty and Holt 2003). Greater knowledge of how disease varies among habitats and 

individuals, and the implications of such variation, are important for making predictions about 

the effects of disease on populations.   

Disease is one of the primary causes of amphibian decline worldwide (Wake and 

Vredenburg 2008). Many of these declines have been attributed to chytridiomycosis, a 

widespread, recently emerged disease caused by the aquatic fungus Batrachochytrium 

dendrobatidis (Bd) (Berger et al. 1998, Bosch et al. 2001, Muths et al. 2003). Bd infects 

keratinized tissues and is transmitted by flagellated zoospores in water or by contact with 

infected individuals (Longcore et al. 1999, Nichols et al. 2001). There is growing evidence that 

environmental variation may affect prevalence of Bd infection among populations (Kriger and 

Hero 2007, Adams et al. 2010, Hossack et al. 2010, Becker and Zamudio 2011), but there has 
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been less emphasis on how habitat use by individuals affects disease prevalence and its potential 

implication for population dynamics. Variation in aquatic diseases has been linked to habitat 

conditions such as water permanence, elevation, habitat fragmentation, and differences in host 

communities (Johnson et al. 2002, Urban 2006, Kriger and Hero 2007, Muths et al. 2008). For 

amphibian species that use a variety of habitats, this variation may alter the population-level 

implications of chytridiomycosis by limiting infection rates or promoting host recovery (Briggs 

et al. 2010, Pilliod et al. 2010b, Puschendorf et al. 2011).  

The environmental limitations of Bd suggest that how individuals use their environment 

could mediate disease exposure or the ability of individuals to recover from infection. Not 

surprisingly, highly aquatic amphibians that experience greater exposure to Bd often have greater 

prevalence of infection than more terrestrial species (Longcore et al. 2007, Rowley and Alford 

2007). Ecological and physiological mechanisms may also affect disease prevalence of females 

compared to males. Females of many amphibians are less aquatic than males or juveniles 

(Tinsley 1989, Bartelt et al. 2004, Grayson and Wilbur 2009), which may reduce the frequency 

of disease-transmitting encounters, especially during breeding season when males linger at 

breeding sites and may mount each other frequently (Wells 1977). Females also may have 

stronger immune systems or invest more resources into immunity than males (Zuk and McKean 

1996, Stoehr and Kokko 2006). These differences in exposure or susceptibility to disease could 

be especially significant because female survival is often the most important vital rate for driving 

population growth of temperate amphibians (Biek et al. 2002, Trenham and Shaffer 2005). More 

generally, variation in disease prevalence among individuals and demographic classes could 

produce very different vital rates and population dynamics in the host species. 
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Temperature is also a critical factor in host–pathogen interactions. Most pathogens have 

optimal temperatures below that of their hosts, and elevated body temperature can increase the 

ability of hosts to combat infection (Kluger et al. 1975, Elliot et al. 2002, Ribas et al. 2009). For 

example, induction of behavioral fever by locusts (Schistocerca gregaria) infected by a fungus 

increased survival time and allowed them to reproduce, increasing their fitness relative to locusts 

that were not able to induce fever (Elliot et al. 2002). In a laboratory experiment, boreal toads 

(Anaxyrus boreas) infected with Bd were more likely to select warm temperatures and induce 

fever than uninfected toads, and infected toads with access to a heat gradient had higher survival 

than infected toads without access to a heat source (Murphy et al. 2011). More generally, the 

innate immune system plays a large role in resistance to chytridiomycosis (Ribas et al. 2009), 

underscoring the importance of environmental variation to the outcome of infection. Notably, 

toads (family Bufonidae) and some other anurans often respond positively to disturbances and 

favor open habitats (Denton et al. 1997, Hossack and Corn 2007, Warren and Büttner 2008), 

suggesting that disturbances that increase landscape variation could affect the prevalence and 

population-level implications of disease.  

To determine how Bd infection varies in relation to habitat use, landscape heterogeneity 

caused by wildfires, and demographic group, we sampled 404 boreal toads during 4 years in 

Glacier National Park, Montana, USA. During the last year, we also sampled Columbia spotted 

frogs (Rana luteiventris) to provide an independent measure of the association between habitat 

characteristics and Bd infection. We subsequently incorporated published estimates of the effect 

of chytridiomycosis on survival of boreal toads into matrix model simulations to examine how 

spatial variation in disease prevalence among populations might affect metapopulation dynamics 

under different infection and dispersal scenarios.  
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STUDY AREA 

We sampled all toads ≥ 1 year old encountered in Glacier National Park, Montana, during 

the late spring and summers of 2004–2005 and 2008–2009. Toads were captured during surveys 

of wetlands that were part of an amphibian monitoring program (Corn et al. 2005). The majority 

of surveyed water bodies were wetlands < 0.5 ha and < 1.0 m deep. These wetlands typically fill 

from snowmelt in late spring, support extensive emergent vegetation, and dry by late summer. 

Other wetlands included permanent beaver ponds, forest ponds, and small cirque lakes. Sampled 

habitats ranged from 950 m to 2164 m in elevation. The Columbia spotted frog and the long-toed 

salamander (Ambystoma macrodactylum) are the only other widespread lentic-breeding 

amphibians in the park, and commonly occupy the same wetlands as boreal toads.  

Many toads were captured within the perimeters of 9 wildfires that burned between 1998 

and 2006, including 5 wildfires that burned in 2003 (Figure 1). All wildfires were stand-

replacement burns that occurred in forests dominated by Douglas fir (Pseudotsuga menziesii), 

lodgepole pine (Pinus contorta), western larch (Larix occidentalis), and western redcedar (Thuja 

plicata).  

 

DISEASE SAMPLING 

Boreal Toads 

We sampled each toad for Bd by thoroughly swabbing the pelvic patch and the undersides of 

legs and feet with a sterile swab, using standardized, clean procedures (Muths et al. 2008). Each 

swab was stored in a sealed vial with ethanol or was air-dried and then placed into a sealed vial 

and refrigerated until analysis for presence of Bd DNA using a PCR assay (Annis et al. 2004).  
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After sampling for Bd, we recorded whether the toad was collected within the perimeter of a 

recent wildfire and assigned each toad to a demographic group (juvenile, female, or male) and 

measured its snout-vent length (SVL). Distinguishing large juveniles from small females can be 

difficult because neither vocalizes or has secondary sexual characteristics; consequently, we 

considered all toads ≤ 60 mm SVL to be juveniles. Above 60 mm SVL, males have reliable 

secondary sexual characteristics (BRH, personal observation). We recorded sampling date, 

capture environment (aquatic vs. terrestrial), geographic coordinates, and distance from a 

wetland for each toad. Toads within 10 m of a lentic water body were considered aquatic, 

because many had obviously just departed from the water or were basking next to a water body. 

If a wetland was not visible from the capture point, we measured the distance to the nearest 

known lentic water in a geographic information system using a National Wetlands Inventory 

database (http://www.fws.gov/wetlands). We did not consider proximity of streams because Bd 

is rare or absent in local streams (Hossack et al. 2010).  

 

Columbia Spotted Frogs  

We used similar techniques to sample 98 Columbia spotted frogs during summer 2009, 

except we focused our efforts in and adjacent to areas that have burned since 1998 rather than 

park-wide. Our primary goal in including spotted frogs was to provide an independent test of the 

relationship between wildfire and prevalence of Bd, because preliminary analyses suggested an 

association between recent fire and infection prevalence in toads. Specifically, we used the frogs 

to determine whether conditions in wetlands surrounded by burned forest limit Bd populations. 

Columbia spotted frogs are much more aquatic than boreal toads, which should increase their 

exposure to Bd (e.g., Longcore et al. 2007).  
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STATISTICAL ANALYSES 

Boreal Toads 

We estimated the mean prevalence of infection on toads in relation to demographic group 

(juvenile, female, or male), capture environment (aquatic or terrestrial), and whether or not they 

were captured in an area burned since 1998 using generalized estimating equations (GEE; PROC 

GENMOD in SAS 9.2). These models account for the expected correlation among observations 

from the same water body (Hanley et al. 2003). We grouped toads captured in or ≤ 10 m from 

the shore of the same water body into 1 site and assumed all toads at a site were equally likely to 

be infected.  

Before estimating the effects of interest, we sought to account for as much nuisance 

variation as possible. Specifically, infection prevalence often covaries with season and elevation 

(Muths et al. 2008, Adams et al. 2010). Because we were not explicitly interested in this 

variation, we first fit a set of models that included individual and interactive effects of sample 

date, year, and linear and quadratic functions of elevation to determine which nuisance 

parameters described the most variation in the response data. The model with year and the linear 

effect of elevation provided the best fit and was used as the basis for all subsequent models. 

We estimated the effects of capture environment and demographic group because we 

expected both to affect Bd exposure and therefore influence disease status. We hypothesized 

capture environment (aquatic vs. terrestrial) would affect disease status because individuals 

captured in or near wetlands likely experienced greater, or at least more recent, exposure to Bd 

than individuals captured away from wetlands. We expected the warmer temperatures in recently 

burned forests might reduce infection prevalence relative to toads in unburned forest. Finally, we 

hypothesized the more aquatic tendencies of males would increase their exposure to Bd relative 
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to females. We did not consider the effect of community structure because in previous analyses 

we found no relationship between infection of toads and the presence of breeding populations of 

the Columbia spotted frog or long-toed salamander (BRH, unpublished analysis). 

We also fit models with demographic group × capture environment and fire × capture 

environment interactions. A demographic group × capture environment interaction would be 

important if differences in how individuals use habitats, such as frequency of use of aquatic 

versus terrestrial habitats according to age or sex, affected exposure and prevalence of disease. 

Similarly, the capture environment × fire interaction would be important if disease prevalence in 

burned and unburned areas was mediated by use of terrestrial or aquatic habitats. We did not 

consider a demographic group × fire interaction because we captured too few females in burned 

habitats.   

We ranked models using QICu, an analog to Akaike’s information criterion (AIC) (Pan 

2001). QICu includes a penalty of 2 for each covariate, like AIC, but it also incorporates the 

correlation among observations into the penalty term. We calculated model weights (wi), the 

likelihood that a model is the best for the given dataset, to measure support for each model and 

used them to calculate model-weighted probabilities of infection for each main effect (Burnham 

and Anderson 2002). After initially fitting all of the models, we combined the juveniles and 

males into 1 group and re-ran the models. The estimated probability of infection for these 2 

groups was always nearly identical, and combining them resulted in more parsimonious models 

and more precise estimates. 

Columbia Spotted Frogs 

We used similar methods for the analysis of infection of Columbia spotted frogs, except we 

were interested solely in isolating the effect of wildfire on infection status, because we sampled 
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frogs during the last years of the survey to determine whether conditions in wetlands surrounded 

by burned forests limited Bd populations. To estimate the effect of wildfire on infection of 

Columbia spotted frogs, we started with a basic model that included sample date and elevation to 

describe nuisance variation, then added terms for frog size (snout-vent length) and burn status of 

the water body where each frog was captured. We used frog size rather than sex and 

developmental stage because we sampled only 5 juveniles and preliminary analyses indicated no 

differences in infection between sexes. We did not consider the effect of capture environment 

because only 1 frog was captured away from a water body. Support for an effect of wildfire or 

body size was assessed using model weights and estimated probability of infection as described 

above. 

 

Implications of Variation in Disease Prevalence 

To estimate how spatial variation in disease prevalence might affect population dynamics, 

we used matrix projection models to compare population growth and probability of decline for 

hypothetical metapopulations comprised of 4 breeding ponds. In the first scenario, 30% of toads 

at each of 4 breeding ponds were infected by Bd. This metapopulation was compared to one in 

which disease prevalence was 0%, 20%, 40%, or 60% at the 4 breeding populations. In the 

second scenario, we compared a metapopulation in which disease prevalence was 40% at each of 

4 breeding ponds to a metapopulation in which disease prevalence was 10%, 30%, 50%, or 70% 

at the 4 breeding populations. In both scenarios, the mean infection prevalence of the 2 

metapopulations was the same (30% or 40%), allowing us to assess the importance of spatial 

variation in disease prevalence independently of differences in mean infection. We chose these 
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infection levels because one was similar to the mean of our field samples (described below) and 

the other represents a realistic alternative.  

We used stage-based, transition matrix models to project population growth of toad 

populations in RAMAS Metapop (Akçakaya 2005). We used the same vital rates and transition 

probabilities from the post-birth pulse model that Biek et al. (2002) used to conduct a sensitivity 

analysis of the boreal toad, except we incorporated estimates of survival from a 6-year capture-

recapture study of 3 populations (1 was disease-free) that estimated the effect of 

chytridiomycosis on survival of boreal toads (Pilliod et al. 2010b; see Appendix Tables 1 and 2 

for vital rates). Each matrix model had 3 stages: pre-juveniles (embryos, tadpoles, and 

overwintering metamorphs), juveniles, and adult males. We used a male-based model because 

there are no estimates of the effects of infection on survival of female toads. We used a single 

standard deviation matrix based on uninfected toads for all populations, regardless of disease 

prevalence. Using the same standard deviation matrix likely provided conservative estimates of 

disease effects, because disease is expected to increase temporal variation in vital rates, which 

could further reduce population growth (Gaillard et al. 2000). 

We incorporated disease effects into matrix elements by weighting the mean survival of the 

population at each breeding pond by the presumed infection rate. For example, for a population 

in which 20% of the toads were infected, mean survival was (0.80 ×0.732) + (0.20 × 0.422) = 

0.670, where 0.732 and 0.422 are mean survival estimates for uninfected and infected toads, 

respectively, and 0.80 and 0.20 are the proportions of the populations in the 2 groups. 

Application of these rates for each infection level resulted in mean survival rates of breeding 

populations ranging from 0.515 (70% infection) to 0.732 (0% infection). Pilliod et al. (2010) 

estimated effects of Bd on survival for 2 toad populations: Black Rock and Lost Trail. We used 
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only the estimates from the Black Rock population because they were similar to Lost Trail, but 

were much more precise. 

We assumed the same disease-related reduction in survival for juvenile toads as for adults. 

We believe this is a reasonable assumption because the 2 life stages share habitats and because 

preliminary results indicated similar infection prevalence. We did not incorporate disease effects 

into the pre-juvenile life stage. Although tadpoles of boreal toads can be infected by Bd in the lab 

(Blaustein et al. 2005), infection in the wild is rare (Green and Muths 2005, Padgett-Flohr and 

Goble 2007, Pearl et al. 2007b, Adams et al. 2010). We are unaware of data on infection rates for 

boreal toad metamorphs, which already have low survival (Biek et al. 2002).  

For metapopulations with variable disease prevalence, we modeled dispersal among 

populations using annual dispersal rates of 1% or 10%. Dispersal was density independent and 

equally likely by all life stages and among all breeding populations within a metapopulation. 

Dispersal also did not affect survival relative to non-dispersers; however, dispersers assumed the 

survival rate of their recipient population. We are unaware of estimated dispersal rates for boreal 

toads, but the rates we used are similar to those documented for the Fowler’s toad (A. fowleri)  

and used in a simulation of population dynamics of the natterjack toad (Epidalea calamita) 

(Smith and Green 2006, Stevens and Baguette 2008), species with similar habitat associations as 

the boreal toad. We did not simulate dispersal in metapopulations where all populations had the 

same disease prevalence because varying the dispersal rate had no effect on projections.  

We incorporated demographic and environmental stochasticity into each simulation. 

Demographic stochasticity was estimated by sampling the parameters from a lognormal 

distribution during each time step (i.e., year; Akçakaya 2005). Environmental stochasticity was 

modeled by sampling the standard deviation matrix of the matrix elements from a lognormal 
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distribution during each time step (Akçakaya 2005). We assumed 50% correlation in 

environmental variation among the 4 subpopulations, as would be expected from variation in 

weather or other factors that would simultaneously affect all populations.  

All projections were run using stable population growth (log λ = 0.0) in the absence of 

disease or stochasticity. We set growth to log λ = 0.0 by modifying the pre-juvenile matrix 

element (Conroy and Brook 2003). The resulting growth rate of uninfected populations then 

matched the estimated growth rate of the disease-free population of boreal toads in the Colorado 

population in Pilliod et al. (2010), where mean annual survival of males (0.760) was similar to 

that of uninfected toads (0.732) in the population we used as the basis of our survival rates. For 

all simulations, each of the 4 breeding populations in a metapopulation started at stable age 

distribution with 50 adult males and we simulated exponential growth of 10,000 replicated 

populations for 10 years. We calculated stochastic growth of metapopulations using maximum 

likelihood methods and assessed population risk by the probability of metapopulation decline at 

the end of the 10 year projections.  

 

RESULTS 

Boreal Toads 

We sampled 404 A. boreas across Glacier National Park, of which 29% tested positive for 

Bd. Of the 404 toads, 69% were captured aquatically, 23% were female, and 43% were captured 

in an area that had burned since 1998. The model with the main effects of capture environment 

(aquatic or terrestrial), demographic group (female or male/juvenile), and burn status (burned or 

unburned) provided the best fit to the data and received 2.5 times more support than the second-

ranked model (Table 1). There was little difference in model weights among the next 4 models 
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(wi = 0.13–0.17), which all received similar levels of support because they included the covariate 

for capture environment, the covariate with the largest effect size. Only 9% of toads captured 

terrestrially were infected, compared to >30% of toads captured in wetlands (Figure 2a). Greater 

probability of infection for aquatic toads was consistent for both females and males/juveniles 

(Figure 3a). 

Although the effect of fire on infection status of toads received less support than capture 

environment, its inclusion improved the fit of models and the 95% confidence interval around 

the coefficient excluded 0. Toads in recently burned areas were only half as likely to be infected 

as toads in unburned areas (Figure 2b). This fire effect was consistent regardless of capture 

environment, suggesting that toads in burned areas were less likely to be infected in both aquatic 

and terrestrial environments compared with toads in unburned habitats, but the estimates for the 

interaction between capture environment and wildfire did not differ from 0 (Figure 3b).  

After controlling for capture environment, the sex or developmental stage of a toad had the 

smallest effect on probability of infection. The model with the main effect of demographic group 

provided only a slightly better fit to the data than the base model that included only capture year 

and elevation (Table 1). Males and juveniles combined were 1.4 times more likely to be infected 

as females, but the estimates were imprecise (Figure 2c). The higher infection prevalence for 

males and juveniles was evident only for toads captured aquatically (Figure 3a). Terrestrial toads 

of both demographic groups had similar infection rates (9%). 

 

Columbia Spotted Frogs 

Thirty-two percent of 98 Columbia spotted frogs tested positive for Bd in 2009. The 

prevalence of infection on Columbia spotted frogs increased slightly with body size (b = 0.04 
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[SE = 0.02]), but the probability of infection was similar for frogs from burned (0.33 [0.07]) and 

unburned wetlands (0.28 [0.06]), suggesting that wildfire did not reduce the suitability of 

wetlands for Bd populations. 

 

Implications of Variation in Disease Prevalence 

Stochastic growth rates (log λs) of simulated toad metapopulations ranged from a low of       

-0.101 (± 0.054 [95% CI] ) for the metapopulation comprised of 4 populations each with 40% 

infection prevalence, to a high of -0.059 (± 0.052) for the metapopulation with 1% dispersal rate 

and a mean of 30% infection prevalence that varied among populations. All metapopulations 

were predicted to decline over the 10 year projection, which we expected because vital rates 

were set so populations would experience stable growth only in the absence of disease and 

stochasticity. Regardless, there were clear differences in projected rates of decline attributable to 

spatial variation in disease prevalence, and, to a lesser extent, dispersal rate within 

metapopulations. 

Metapopulations with uniform disease prevalence were much more likely to experience a 

projected 50%–60% decline in number of adult males over 10 years than metapopulations where 

disease prevalence varied spatially (Figure 4). With a mean infection prevalence of 30%, there 

was a 64% chance of 50% decline in metapopulation size when all populations had the same 

prevalence, compared to only 36% chance of the same decline for the metapopulation with 

variable disease prevalence and 1% annual dispersal. The metapopulation had a 95% chance of 

50% decline when all populations had 40% infection prevalence, compared to 81% chance for 

the metapopulation with variable disease prevalence and 1% annual dispersal.  

In metapopulations with spatially variable disease prevalence, increasing dispersal among 
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populations reduced growth rate and increased risk of metapopulation decline (Figure 4). For 

both simulations, risk of decline was higher for the metapopulation with 10% annual dispersal 

than for the metapopulation with 1% annual dispersal. However, the risk imposed by increased 

dispersal among populations with different disease prevalence was still smaller than the risk for 

metapopulations with the same mean infection but uniform disease prevalence.  

 

DISCUSSION 

Our results show that how individuals use habitats in a heterogeneous landscape can have a 

large effect on their infection status, and that this variation may have important population-level 

implications. Habitat use by toads at the time of capture was the best predictor of infection status, 

with aquatic toads averaging 35% infection compared to only 9% infection for terrestrial toads. 

We suspect this large difference reflects both recent exposure to the aquatic fungus, as well as 

the enhanced ability of terrestrial animals to clear minor or moderate infections in an arid 

environment that is less conducive to pathogen growth (Piotrowski et al. 2004, Murphy et al. 

2011). Among Litoria frogs in Queensland rainforests, species more closely associated with 

water were more likely to be infected and to have suffered declines consistent with 

chytridiomycosis (Rowley and Alford 2007), and species that used permanent water bodies for 

breeding were more likely to be infected than congeners that used temporary water bodies 

(Kriger and Hero 2007). In our study area, several toads that were tracked using radio telemetry 

had mild Bd infections when they were first captured in wetlands, but tested negative shortly 

after shifting to terrestrial habitats (Guscio et al. 2008; BRH and PSC, unpublished data). If the 

ability to avoid or clear infection is linked with habitat use, variation in habitat composition and 

how individuals use those habitats could partially ameliorate the effects of disease. 
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The lower prevalence of disease on toads occupying recently burned areas indicates that 

landscape disturbances like wildfire may reduce disease risk or prevalence. The effect of wildfire 

was clearly secondary in importance to use of aquatic versus terrestrial habitats, but all fire-

effects models, including the best-supported model (Table 1), predicted a lower occurrence of Bd 

on toads in burned habitats than in unburned habitats. Furthermore, this fire effect occurred in 

both aquatic and terrestrial habitats, although the imprecise estimates of infection prevalence 

prohibit a strong conclusion about the interaction between capture environment and wildfire 

(Figure 3). The lower prevalence of disease on toads in recently burned areas is consistent with 

other studies showing that natural and anthropogenic disturbances can modify disease risk or 

prevalence. For example, expansion of tall grasslands that resulted from fire suppression was 

linked with an increase in tick density and tick-borne haemolytic disease in African buffalo 

(Syncerus caffer); the disease declined after reintroduction of fire (Fyumagwa et al. 2007). 

Modification of ponds and fragmentation by roads has lead to an increase in trematodes that 

infect amphibians and other aquatic hosts (Johnson et al. 2002, Urban 2006). Also, similar to our 

evidence of lower infection prevalence for toads in burned wetlands, warm water temperatures in 

ponds with open canopies may limit Bd infection in aquatic newts (Raffel et al. 2010). 

We suspect the warmer conditions in burned forests compared with unburned forests may 

reduce infection either by limiting growth of Bd or by enhancing the immune response of hosts. 

There is increasing evidence that small, achievable increases in body temperature may confer 

important survival advantages to hosts infected by Bd. Growth of the fungus declines above  

approximately 24°C (Longcore et al. 1999, Piotrowski et al. 2004), which is below the optimum 

growth or performance temperature of boreal toads (Lillywhite et al. 1973) and some other 

anurans (Hillman et al. 2009). During a chytridiomycosis epidemic, Panamanian golden frogs 
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(Atelopus zeteki) that increased their body temperature via behavioral thermoregulation were less 

likely to become infected than frogs that did not induce fever (Richards-Zawacki 2010). 

Terrestrial habitats in recently burned forests in Glacier NP are warmer and provide more 

opportunities for boreal toads to achieve preferred temperatures than in neighboring unburned 

forest (Hossack et al. 2009), which may help toads combat infection.  

It is uncertain whether Bd infection in free-ranging animals is directly limited by host 

temperatures, by increased immune response by hosts, or a combination of these factors. 

Increased survival of infected boreal toads that induced fever was achieved while ambient 

temperatures remained within the optimum growth range of Bd (Murphy et al. 2011), and some 

species can clear Bd infection even when housed at optimal growth temperatures for Bd 

(Bustamante et al. 2010, Márquez et al. 2010). These studies suggest that infection can be 

inhibited by an increased immune response rather than ambient temperature alone, thus a 

combination of environmental variation and host behavior may buffer some individuals and 

populations from the effects of a lethal disease. If Bd is limited by warmer host or ambient 

temperatures in recently burned areas, the same benefits should be achievable in open habitats 

like meadows or in forests disturbed by other mechanisms. For example, tropical anuran 

communities in deforested areas had lower prevalence or intensity of infection by Bd than 

anurans inhabiting intact forest, possibly as result of less hospitable conditions for the fungus in 

forest fragments (Van Sluys and Hero 2009, Becker and Zamudio 2011).  

Interactions between disturbance and disease are usually expected to have negative 

consequences for populations, because the increased density of hosts crowded into fragments of 

suitable habitat can facilitate disease transmission or reduce host condition and immunological 

function (Daszak et al. 2000, McCallum 2008). Our study system has a simple amphibian 
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community, with only 2 pond-breeding anurans distributed park-wide. Toads tend to increase in 

abundance after an area burned, whereas Columbia spotted frogs may increase or decrease, 

depending upon burn severity and time since fire (Hossack and Corn 2007, Chapters 1 and 2). 

Therefore, it is unlikely that the lower probability of infection for toads in burned forests results 

from changes in the transmission process or in host density. Similarly, Bd infection was less 

common on Litoria wilcoxii in open habitats even though host density was higher than in intact 

forests (Van Sluys and Hero 2009). The comparable Bd prevalence on Columbia spotted frogs 

from burned and unburned wetlands in our study area further suggests that lower infection 

probability in burned areas was not a result of changes in wetland characteristics or host 

community after wildfire. 

Counter to our expectation, we found only moderate evidence that prevalence of Bd differed 

between demographic groups. Males and juveniles were 1.4 times as likely to be infected as 

females, but they were also twice as likely to be captured aquatically as females. We suspect 

higher infection prevalence in males and juveniles results from greater exposure to the pathogen 

than females, rather than differences in immune response or susceptibility to infection. Most 

males likely try to breed every year and can spend > 1 month at a breeding site (BRH, 

unpublished data). Males are also more aquatic than females outside of the breeding season 

(Bartelt et al. 2004). In contrast, females likely do not breed every year in our study area, 

especially at higher elevations, and do not stay long at wetlands when they do breed (Pilliod et 

al. 2010b). Our results suggest aquatic females may have a slightly higher prevalence of 

infection than terrestrial females (Figure 3a). More importantly, terrestrial toads had the same 

low prevalence of infection (9%) regardless of demographic group (Figure 3b), which suggests 

leaving the source of pathogen exposure provides similar opportunities to clear infection. These 
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results also highlight the importance of sampling the full range of habitats used by a species to 

provide a better understanding of disease prevalence and risk. 

Our simulations showed that variation in disease prevalence related to habitat use and 

landscape characteristics can have large effects on expected population growth and risk of 

decline. Matrix models based on realistic infection prevalence and vital rates for male boreal 

toads, including documented effects of chytridiomycosis on survival, show that among-

population variation in disease prevalence reduces risk of metapopulation decline over 10 years. 

With a mean Bd prevalence of 30% and 1% annual dispersal rate, a metapopulation composed of 

4 populations with equal disease prevalence was nearly twice as likely to experience a 50% 

decline in size as a metapopulation where infection varied spatially. If infection prevalence was 

increased to 40%, the benefit of spatial variation in infection prevalence was reduced because 

decline was more inevitable; however, variation still resulted in a larger population size after 10 

years (Figure 4).  

Spatial structure and dispersal among populations also has important implications for the 

spread of disease and population persistence (Hess 1996, McCallum and Dobson 2002). In our 

simulations, risk of decline was always higher for metapopulations with 10% annual dispersal 

than for 1% annual dispersal. The lower dispersal rate allowed populations with less disease to 

maintain more independent dynamics, slowing their rate of decline. With a 10% dispersal rate, 

more of the offspring that would have otherwise stayed in a disease-free or low-disease 

environment instead colonized areas with higher disease prevalence and lower survival rates. 

There are no estimates of dispersal rates by boreal toads, but frequent colonization of new 

habitats by adults suggests dispersal rates are high (Pearl and Bowerman 2006, Hossack and 

Corn 2007). In the most detailed study of toad dispersal, inter-population dispersal by Fowler’s 
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toads (A. fowleri) was estimated at 11% annually and did not differ by life stage (Smith and 

Green 2005). If dispersal rates for boreal toads are similar, spatial variation in disease prevalence 

may provide less of a buffer against disease than if populations are more independent unless 

dispersal is biased towards areas with less disease. 

All models are dependent upon the vital rates and assumptions that are used, and the outputs 

are best used to rank outcomes rather than make specific predictions. Some assumptions we used 

to model variation in disease—for example, static disease prevalence for 10 years and no 

changes in vital rates other than survival—are unlikely to be met. Information on infection 

intensity rather than just infection prevalence would also help in predicting effects on survival 

(Briggs et al. 2011). Nevertheless, our results suggest that variation in prevalence of Bd among 

populations, documented in our study and elsewhere (e.g., Kriger and Hero 2007, Muths et al. 

2008, Adams et al. 2010), may be crucial to slowing declines. More broadly, our results show 

that maintaining natural disturbance regimes and diverse habitats can produce significant 

variation in disease prevalence and projected population growth across large landscapes.  
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Table 1. Models used to describe variation in infection of 404 boreal toads (Anaxyrus boreas) by the fungus Batrachochytrium 

dendrobatidis relative to capture environment (aquatic or terrestrial), demographic group (female or male/juvenile), and burn status 

(burned since 1998 or not). Models are ranked according to differences in QICu and models weights (wi). All models included an 

intercept. For models with interactions, main effects were fitted but are not shown. ―k‖ indicates the number of parameters.  

Model k ΔQICu wi 

capture environment + demographic group + burn status 8 0.00 0.42 

capture environment × demographic group  8 1.88 0.17 

capture environment × burn status 8 2.20 0.14 

capture environment 8 2.25 0.14 

capture environment × demographic group  + burn status × demographic group 10 2.36 0.13 

burn status 6 21.49 0.00 

demographic group 6 32.27 0.00 

year + elevation 5 34.99 0.00 
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FIGURE LEGENDS 

Figure 1. Distribution of boreal toads (Anaxyrus boreas; circles) and Columbia spotted frogs 

(Rana luteiventris; squares) sampled for the aquatic fungus Batrachochytrium dendrobatidis 

in Glacier National Park, Montana (USA), during 2004–2005 and 2008–2009. Nine wildfires 

that burned between 1998 and 2006 are shown in gray. For both species, solid symbols 

indicate individuals that tested positive for Bd and open symbols indicate individuals that 

tested negative.  

 

Figure 2. Estimated probability of infection of 404 boreal toads (Anaxryus boreas) by the 

aquatic fungus Batrachochytrium dendrobatidis according to capture habitat (a), burn status 

of habitat (b), and demographic group (c).  

 

Figure 3. Estimated probability of infection of boreal toads (Anaxryus boreas) by 

Batrachochytrium dendrobatidis according to the interaction between capture habitat 

(aquatic or terrestrial) and whether or not the toad was in burned forest (a), and the 

interaction between capture habitats and demographic group (b).  

 

Figure 4. Expected  decline of boreal toad (Anaryxus boreas) metapopulations with 30% 

mean infection (a) and 40% mean infection prevalence (b). In each plot, the solid line 

represents 4 populations with the same infection prevalence, the dash-dot line represents 

variable infection with 1% annual dispersal, and the dashed line represents variable infection 

with 10% annual dispersal. Note the different scales on the x-axes for the 2 plots. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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APPENDIX 

Appendix Table 1. Vital rates and transition probabilities used to project population growth of 

boreal toads (Anaxyrus boreas). All vital rates are from Biek et al. (2002) except for adult 

survival. Adult survival is from Pilliod et al. (2010) and represents survival of uninfected male 

toads from Black Rock, Wyoming. For the simulations, we modified the product of the pre-

juvenile estimates to achieve stable population growth (log λ = 0.0) in the absence of growth or 

stochasticity (see text). 

Vital Rate Mean SD 

Embryo survival 0.78 0.36 

Larval survival 0.47 0.24 

Metamorph survival 0.08 0.06 

Juvenile survival 0.26 0.04 

Juvenile to juvenile 0.26 0.04 

Juvenile to adult 0.014 0.007 

Adult survival 0.732 0.07 

Probability of mating 0.50 0.25 

Clutch size (females) 3532 856 

Age at sexual maturity (year) 4–7 — 

 

Appendix Table 2. Survival rates used for adult and juvenile boreal toads (Anaxyrus boreas) to 

estimate the effect of variation in infection by Batrachochytrium dendrobatidis. See text for a 

description of how estimates were derived.  

Infection prevalence (%) Adult survival Juvenile survival 

0 0.732 0.260 

10 0.701 0.249 

20 0.670 0.238 

30 0.639 0.227 

40 0.608 0.216 

50 0.577 0.205 

60 0.546 0.194 

70 0.515 0.183 
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