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ABSTRACT

Roberts,  Sheila M ., M.S., 1982 Geology

Depos i t iona l  Environments and Diagenesis o f  Permian Scaphopod- 
Be l1erophontacean Gastropod-Bearing Beds in  Southwestern Montana

D i re c to r :  Dr. Donald Winston ^

In southwestern Montana, several s i te s  o f  exposed Middle 
Permian rocks d is p la y  a r e s t r i c t e d  molluscan fauna charac te r ized  
by bel 1erophontacean gastropods and g ia n t  scaphopods which is  
be l ieved to  be i n d i c a t i v e  o f  sha l low-water  marine environments 
(eg. Yochelson, 1968; Bretsky and Birmingham, 1970).

De ta i led  examination o f  the v e r t i c a l  and la t e r a l  rock suc­
cessions a t  f i v e  se lected mollusc l o c a l i t i e s  provided evidence 
th a t  the s h e l ls  were indeed deposited in  near-shore sediments, 
but not n e cessa r i ly  as undisturbed ijT_ si tu communities. Foss i ls  
appear 1} as c o n s t i tu e n ts  o f  a storm-beach depos i t  in  a mixed 
carbonate - te r r igenous  s a n d s to n e -s p ic u l i t i c  che r t  succession; 2) 
as channel lag and coarse sediment in  a dominantly te r r igenous  
sandstone b a r r i e r  bar system; 3) as storm lag in  a very sha l low- 
water r e s t r i c t e d  carbonate s h e l f  o r  lagoon; 4) poss ib ly  as an in  
s i t u  pe r i  t i d a l  community a t  a s i t e  where carbonate mudstone, 
s p i c u l i t i c  c h e r t ,  te r r igenous  sandstone and phosphorite create a 
complexly in te r to n g u in g  sequence. Stresses inheren t  in these 
sha l low-water  h a b i ta ts  (suscep tab i1i t y  to  s trong wave and cu r ren t  
d i s r u p t io n ,  probably f l u c t u a t i n g  s a l i n i t y  and recu r ren t  exposure) 
apparen t ly  r e s t r i c t e d  the b io lo g ic  community to  a l o w - d iv e r s i t y ,  
dominantly  mol luscan fauna.

Rocks which enclose the mol luscs a t  these s i t e s  are impure 
do lomite  mudstone and/or te r r igenous  sandstone. Associated l i t h -  
o log les  inc lude  bedded c h e r t ,  most o f  which is  in te rp re te d  here 
as very sha l low-water  depos i ts ,and phosphor i te ,  which a lso shows 
tex tu re s  and s t ru c tu re s  t h a t  probably formed in  shallow water.
The phosphor i te  may have o r ig in a te d  in  a nearby environment th a t  
provided a t o x i c  b a r r i e r  to  faunal m ig ra t io n .  At two l o c a l i t i e s  
nodu lar che r t  re ta in s  suggest ive remnant tex tu res  o f  evapor i tes  
th a t  probably formed dur ing e a r ly  diagenesis in  a sup ra t ida l  
sabkha. This is  a s i g n i f i c a n t  westward extension o f  Permian evap- 
o r i t i c  fac ie s  in  Montana.

These marine sediments, which were deposited very near shore­
l i n e  dur ing a t ime o f  f requent  sea- leve l  f l u c t u a t i o n ,  experienced 
e a r ly  subaer ia l  a l t e r a t i o n .  That h i s to r y  is  r e f le c te d  e s p e c ia l ly  
c l e a r l y  in  f o s s i l  p re se rva t ion .  Shel l molds formed by f resh -w a te r  
d is s o lu t io n  o f  a ragon i te  and subsequently f i l l e d  w i th  cements 
which show d i s t i n c t i v e  vadose-zone tex tu res  and w i th  d e t r i t a l  mat­
e r i a l  washed in to  the molds by downward-percolat ing waters. A l l  
carbonate, except a la te  b locky c a l c i t e  cement, was do lom it ized  
dur ing e a r ly  d iagenes is .
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INTRODUCTION

Purpose and Scope

In southwestern Montana Permian s t r a t a ,  beds a t  several l o c a l i t i e s  

are cha rac te r ized  by scaphopods and b e l lerophontacean gastropods and 

present some in te r e s t in g  quest ions :

1) Is t h i s  an assemblage o f  animals t h a t  l i v e d  toge the r  in  a 

community, and i f  so what s o r t  o f  community was i t ?

2) Is i t  ins tead a death assemblage concocted by physical 

processes which mixed s h e l ls  dur ing sedimentat ion or  s e le c t i v e ly  

preserved mol lusc s h e l ls  dur ing diagenesis?

3) In e i t h e r  case, what combinations o f  sedimentary environment 

and d iagene t ic  h i s to r y  created and preserved the molluscan assoc ia t ion?

The scaphopod-bel1erophontacean assemblage has already received 

re c o g n i t io n  and comment in  southwestern Montana (Yochelson, 1968) and 

elsewhere (see e s p e c ia l l y  Bretsky and Bermingham, 1970) and is  sus­

pected to  be a d i s t i n c t i v e  faunal r e f l e c t i o n  o f  r e s t r i c t e d ,  sha l low- 

wate r ,  p o ss ib ly  hypersa l ine  marine environments. Because o f  the 

mol luscs '  connection w i th  unstable physica l cond i t ions  and t h e i r  f r e ­

quent numerical dominance in  rocks where they occur (Yochelson, 1968; 

Bretsky and Birmingham, 1970), I was in te re s te d  in  pursuing a study o f  

these animals as a community o f  o p p o r tu n is t i c  species (Sanders, 1968; 

Slobodkin and Sanders, 1969; Lev in ton ,  1970; V a len t ine ,  1971; Alexander,  

1977). Evidence o f  energe t ic  sediment and sh e l l  t r a n s p o r t  in three o f

1



the f i v e  l o c a l i t i e s  refocused a t t e n t io n  away from t h a t  community 

approach and h ig h l ig h te d  the importance o f  i n t e r p r e t i n g  the deposi­

t i o n a l  environments. Extreme v a r i a t i o n  in  q u a l i t y  and method o f  pre­

se rva t ion  made s t a t i s t i c a l  analyses o f  the f o s s i l s  o f  quest ionable va lue,  

but  also provided the o p p o r tu n i ty  to  unravel a fa s c in a t in g  and complex 

d iagene t ic  h i s to r y  t h a t  e ve n tu a l ly  led to  a b e t te r  understanding o f  

cond i t ions  soon a f t e r  b u r ia l  and to  the unexpected conclusion t h a t  a l l  

the l o c a l i t i e s  had experienced a remarkably s im i l a r  sequence o f  d iagene t ic  

events regard less o f  t h e i r  s p e c i f i c  environments o f  depos i t ion  or 

o r i g in a l  l i t h o l o g i e  c h a r a c t e r i s t i c s .

In the f i n a l  a n a ly s is ,  the f o s s i l s  were used la rg e ly  as a c a ta ly s t  

in  t h i s  s tudy,  lead ing me to  t h e i r  f i n a l  re s t in g  places, underscoring 

t h e i r  ra th e r  unstable anc ien t  marine h a b i ta t s ,  but  g iv in g  up on ly  a few 

secre ts  about the l i v i n g  communities. The emphasis o f  my work evolved 

toward i n te r p r e t i n g  paleoenvironments o f  depos i t ion  and d iagenesis.

F ie ld  and Laboratory Procedures

From the molluscan l o c a l i t i e s  descr ibed by Cressman and Swanson 

(1964), Yochelson (1968) and McLellan (1973),  I chose f i v e  f o r  sec t ion  

measurement, d e ta i le d  d e s c r ip t io n  and sampling (F ig .  1).  S i tes  were 

se lec ted  to  ob ta in  maximum geographic d ispe rs ion  in  southwestern Montana 

and the best poss ib le  p rese rva t ion  o f  f o s s i l s .

Four la rge  blocks from Cedar Creek con ta in ing  s i l i c a - f i l l e d  f o s s i l  

molds in  do lomite  m a t r ix  were etched in  fo rm ic  ac id .  O r ie n ta t io n ,  

number and co n d i t io n  o f  f o s s i l s  were observed a f t e r  p a r t i a l  e tch ing  and
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the f o s s i l s  and in s o lu b le  residues were sor ted and examined w i th  a 

b in o c u la r  microscope a f t e r  complete d is s o lu t io n  o f  the carbonate.

Blocks from the o th e r  l o c a l i t i e s  were s i m i l a r l y  t rea te d  but those f o s s i l s  

were not s i l i c i f i e d  so the process y ie ld e d  no comparable in fo rm a t ion  

about the faunal remains a t  these s i t e s .

Most o f  the la b o ra to ry  work cons is ted o f  pé trograph ie  ana lys is  o f  

po l ished slabs and t h in  sec t ions .  Slabs were etched w i th  hyd roch lo r ic  

or a ce t ic  acid and s tud ied  w i th  a b in o cu la r  microscope. With vary ing 

success, se lected slabs and t h in  sect ions were s ta ined w i th  potassium 

fe r r i c y a n id e  and a l i z a r i n  red-S (procedure in  Dickson, 1965) or 

a l i z a r i n  red-S on ly  (procedure in  Friedman, 1959) in  an attempt to  d i s ­

t in g u is h  ferroan carbonate and d i f f e r e n t i a t e  c a l c i t e  from dolomite.

X-ray analyses were performed when pé trograph ie  methods were i n s u f f i c i e n t  

to determine minera logy,  e s p e c ia l l y  on phosphatic  and impure mi c r i t i c  

rocks. A few se lected chips were observed under a scanning e lec t ron  

mi croscope.



CHAPTER 1 

DEPOSITIONAL ENVIRONMENTS

Regional S t r a t ig ra p h ie  S e t t in g  

Permian sedimentary rocks in  the west cen t ra l  United States are 

a v a r i e t y  show o f  geo log ic  o d d i t ie s  in c lu d in g  t h ic k  sequences o f  

phosphate rock,  che r t  and evapor i tes  w i th  n o to r io u s ly  abnormal faunal 

assemblages. L u c k i l y ,  these o d d i t ie s  and the presence o f  phosphorite 

ore ,  o i l  and uranium a t t r a c te d  the a t te n t io n  o f  the U. S. Geological 

Survey and o the rs .  T he ir  ex tens ive s tud ies  o f  the physica l s t ra t ig ra p h y  

o f  the Phosphoria Formation and c o r r e la t i v e  Permian rocks in  Montana, 

Wyoming, Idaho, Utah and Nevada prov ide a s o l i d  background f o r  more de­

t a i l e d  research (see e s p e c ia l l y  McKelvey e;b aj. , 1959; Sheldon, 1963; 

Cressman and Swanson, 1964; Sheldon e t  a l . ,  1967; McKee e t  a l . ,  1967; 

Swanson, 1970; Peterson, 1972, 1980a, 1980b).

Figure 2 is  a genera l ized l i t h o f a c i e s  map o f  Permian rocks in  the 

west cen t ra l  United S ta tes ,  showing major te c to n ic  elements, the approx i­

mate p o s i t io n  o f  the pa leoequator,  and the approximate maximum ex ten t  o f  

the Phosphoria Sea, a sha l low marine embayment which hosted depos i t ion  o f  

the Phosphoria rock complex ( te rm ino logy  from Yochelson, 1968).

S t ra t ig ra p h y  and nomenclature o f  the Phosphoria and re la te d  rocks 

were summarized by McKelvey e^ al^ (1959), Sheldon (1963),  Cressman and 

Swanson (1964) and McKee e^  (1967). Nomenclature used in t h i s  re p o r t  

is  adapted from McKelvey e_t (1959), Peterson (1972),  and McClellan

(1973). The Phosphoria rock complex is  broad ly  d i v i s i b l e  in to  three
5
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major fac iès  which c o r re la te  w i th  the major s t r a t i g ra p h ie  d i v i s io n s :

1) western basinal ch e r ts ,  mudstones and phosphorites (Phosphoria);

2) northern s h e l f  sandstones shed o f f  an exposed land mass in  Montana 

(Shedhorn Sandstone); and 3) c e n t r a l ,  southern and eastern s h e l f  ca r ­

bonates (Park C i t y )  (F igs.  2 and 3). A warm, low la t i t u d e  p o s i t io n  

and perhaps p e rv a i l i n g  wind d i r e c t io n  o f f  the con t ine n t  (eg. McKelvey 

e t  a l . ,  1959; Sheldon, 1963; Cressman and Swanson, 1964; Peterson,

1980a, 1980b) created a ho t ,  dry c l im ate  and l e f t  red beds and evapor i tes  

to  mark the easternmost ( c o n t in e n ta l )  l i m i t  o f  the Permian marine 

t ransgress ion .  D e l ta ic  deposits  have not been i d e n t i f i e d ,  in d ic a t in g  

th a t  r a i n f a l l  was i n s u f f i c i e n t  to  e s ta b l i s h  permanent r i v e r s .

Oceanward (now westward) on the s h e l f  loca l  basins and swel ls  are 

recorded by th ickness and fac ie s  changes in  the sediments in  Wyoming and 

eastern Idaho (Peterson, 1980b) and southwestern Montana (eg. Cressman 

and Swanson, 1964, p i .  25; Swanson, 1970, Fig. 172). On the western side 

o f  the embayment Permian rocks th icken  across the Paleozoic hinge l i n e  

and become dominantly dark c h e r t ,  mudstone.phosphori te and carbonate. 

Upwell ing currents  a t  t h i s  western (oceanic) margin have been pos tu la ted  

as the source o f  phosphate and s i l i c a  which appear so abundantly in  the 

rocks (McKelvey e;t ^ . , 1953 is  probably the e a r l i e s t  d iscussion o f  the 

upwel l ing  theory app l ied  to  Phosphoria rocks) .  The Phosphoria Sea was 

probably a t  le a s t  p a r t i a l l y  enclosed on i t s  western margin by a h igh­

land v a r io u s ly  a t t r i b u t e d  to  a c t i v i t y  along a la te  northern extension 

o f  the middle Paleozoic A n t le r  orogeny (eg. Stevens, 1977; Peterson, 

1980a) or to a separate la te  Paleozoic Humbolt orogeny (Ketner,  1977).
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The reg iona l  s t r a t i g r a p h ie  p a t te rn  is  w e l l - d e f in e d  by dominant 

l i t h o l o g i e s ,  but a c t u a l l y  var ious fac ie s  s h i f t e d  back and f o r t h ,  

apparen t ly  in  response to  constant  sea le v e l ,  chemical and/or topo­

graph ic  changes, and l e f t  a very complex record o f  i n t e r f i n g e r i n g  rock 

types. My study s i t e s  in  southwestern Montana are s i tu a te d  along the 

margin o f  t h i s  sea where water le ve l  f l u c tu a t io n s  and the m ig ra t ion  o f  

var ied  near-shore environments l e f t  r e l a t i v e l y  t h in  sequences o f  i n ­

t r i c a t e l y  in te r to n g u in g  l i t h o l o g ie s  w i th  very rap id  la te r a l  and v e r t i c a l  

fac ies  changes. Figure 4 demonstrates the general east-west fac ies  

changes and the term inology adopted by Peterson (1972) and McClellan 

(1973) to  accommodate the t h in  in te r to n g in g  l i t h o l o g ie s  in  t h i s  area.

They assign a l l  Permian rocks in  southwestern Montana to the Phosphoria 

Formation and g ive member or tongue s ta tus  to major l i t h o l o g i e  u n i ts  

w i th in  t h a t  fo rmat ion .

While these anomalous sediments accumulated in  the Phosphoria Sea, 

b i o l o g i c a l l y  r e s t r i c t i v e  cond i t ions  there  a lso re s u l te d  in  a fauna which 

is  notable f o r  i t s  lack o f  f u s u l in id s  and cephalopods, creatures gen­

e r a l l y  used as t im e - c o r r e la t i v e  f o s s i l s  f o r  the Permian System worldwide. 

Most o f  the f o s s i l s  examined by Yochelson (1968) in  h is survey o f  

a v a i la b le  U. S. Geological Survey c o l le c t io n s  from t h i s  area were common, 

long-rang ing  genera o f  Middle Permian age. Consequently, s t r a t ig ra p h ie  

c o r re la t i o n s  across the western United States have ne cessa r i ly  been 

based p r im a r i l y  on l i t h o l o g i e  r e la t io n s h ip s .  Recent work w i th  conodant 

and brachiopod c o r re la t io n s  (eg. Wardlaw and C o l l in so n ,  1979; Wardlaw,

1980) may f i n a l l y  prov ide a b io s t r a t i g r a p h i c  framework f o r  these rocks.
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The mol luscs o f  t h i s  study are among the long-rang ing  fauna and 

occur l i t e r a l l y  from the base to  the top o f  the sec t ions .  Except f o r  

the observa t ion th a t  a t  each l o c a l i t y  the sçaphopod-bellerophontacean 

f o s s i l s  are u su a l ly  r e s t r i c t e d  to  a s in g le  bed or  group o f  c lo se ly  

spaced, s im i l a r  beds, the re  i s  no reason to  be l ieve  th a t  they could 

be used to  de l in e a te  a t ime zone w i t h in  these Middle Permian s t r a ta .

At the f i v e  l o c a l i t i e s  o f  t h i s  s tudy,  the molluscan fauna occurs in  the 

Lower and Upper Shedhorn Sandstone, in  the Franson Member and in  a 

tongue o f  what i s  probably the Ervay Member o f  the Park C i ty  (a ca r ­

bonate u n i t  commonly found above the Upper Shedhorn Sandstone in  

Wyoming), and in  an undesignated u n i t  above the Pennsylvanian sandstone. 

On the basis o f  h is  conodant and brachiopod s tu d ie s ,  Wardlaw (1980) 

placed the s t r a t ig ra p h ie  u n i ts  l i s t e d  above in  e a r ly  to la te  Wordian 

(Middle Permian).

D escr ip t ions  and In te rp re ta t io n s  o f  Sedimentary Rocks by L o c a l i t y  

General Statement

This study was d i re c te d  s p e c i f i c a l l y  toward understanding the Middle 

Permian depos i t iona l  environments in  which the mol luscs l i v e d  and those 

where they were f i n a l l y  deposited. There fore ,  the s t r a t ig ra p h ie  sect ions 

are l im i t e d  to  rock u n i t s  most l i k e l y  to have been contemporary adjacent 

fac ie s  w i th  the f o s s i l - b e a r in g  rocks. Sect ion bases were picked a t  the 

f i r s t  e ros iona l  unconformity  or  o the r  obvious surface o f  non-deposi t ion 

below the f o s s i l s .  At  Boulder R iver and Devi ls  S l ide  t h i s  was the con­

glomerate a t  the Pennsylvanian-Permian boundary and a t  La Marche Gulch
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North i t  was an in t ra fo rm a t io n a l  conglomerate. Both Cedar Creek and 

Sappington Canyon sect ions  begin a t  a chert-sandstone boundary because 

a t  Cedar Creek i t  is  an undu la t ing  eros iona l  con tac t  th a t  marks a d i s ­

t i n c t  fac ie s  change and a t  Sappington Canyon there is  a t h i n ,  d iscon­

t inuous ,  laminated c ru s t  a t  the boundary which appears to  be a sub­

a e r ia l  exposure fe a tu re .

Where p o ss ib le ,  upper l i m i t s  were a lso  picked a t  unconformable 

sur faces.  The Cedar Creek and La Marche Gulch North sect ions end above 

subaer ia l  exposure surfaces a t  the top o f  the f o s s i l i f e r o u s  dolomites 

(a few meters o f  o v e r ly in g  sediments were measured a t  these l o c a l i t i e s  

to demonstrate the change in  sedimentat ion a f t e r  the h ia tu s ) .  At 

Sappington Canyon measurement was completed above an in te n s e ly  burrowed 

zone which accompanies a l i t h o l o g i e  change from sandstone to s i l i c e o u s  

do lomite  and probably represents a per iod o f  non-deposi t ion or very 

slow sedimentat ion. I t  l i e s  above the f o s s i l i f e r o u s  zone and provided 

a r e l i a b le  upper marker a l l  along s t r i k e  a t  t h a t  l o c a l i t y .  Lack o f  

well -exposed outcrop term inated upper measurements a t  Boulder River 

and Dev i ls  S l id e .

1, Cedar Creek

Three p a r t i a l  sec t ions  w i t h in  the Franson Member (F ig .  5a and 

Appendix la )  were measured along s t r i k e  over a d is tance o f  about 250 m to 

demonstrate v e r t i c a l  and l a t e r a l  v a r i a t i o n  in  bedding, l i t h o l o g ie s  and 

th ickness o f  the rock types a t  Cedar Creek. The middle sec t ion  is  gen­

e ra l i z e d  in  Figure 5b.
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Figure 5a. Three partial sections measured at Cedar Creek.
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Interbedded Lenticular SANDSTONE  
and CHE RT
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Fig. 5b. P a r t ia l  s t r a t i g r a p h ie  sec t ion  showing the mol lusc-bear ing 
rocks and re la te d  s t r a t a .  Cedar Creek (genera l ized from 
Appendix Ib ) .

14



a. Rock d e s c r ip t io n s :

C her t . Immediately below the base o f  the p a r t i a l  sec t ion  

(F ig .  5 ) ,  bedded ch e r t  o f  the Rex Member is  f a i r l y  we l l  exposed.

Very t h i n l y  h o r i z o n t a l l y  laminated, s t ru c tu re le s s  or m ott led  w h i te ,  

gray and brown ch e r t  a t  the top o f  the Rex forms wavy beds ge n e ra l ly  

less than 5 cm t h i c k  th a t  are d iscont inuous along s t r i k e  over a few tens 

o f  cm to  1 m. In t h in  sec t ion  the che r t  is  a combination o f  m icro-  

c r y s t a l l i n e  q u a r tz ,  chalcedony and megaquartz. Some beds conta in  

abundant r e l i c t  sponge sp icu les  and/or sca t te red  euhedral dolomite rhombs. 

Near the Franson contac t  many ch e r t  beds are sandy and a few beds are 

a c tu a l l y  c h e r ty ,  f in e -g ra in e d  te r r igenous  chert-phosphate-quar tz  sand­

stone. The boundary between these bedded cherts  and o ve r ly in g  i n t e r ­

bedded l e n t i c u l a r  che r t  and sandstone undulates w i th  up to  1 m o f  r e l i e f .

I t  is  charac te r ized  by load casts and channel-shaped, low angle t r u n ­

ca t ions  o f  c h e r t  beds, which demonstrate th a t  the s i l i c e o u s  sediment was 

u n l i t h i f i e d  when o v e r ly in g  sediments were deposited.

Interbedded L e n t i c u la r  Sandstone and C h e r t . There are two i n t e r ­

bedded l i t h o l o g ie s  in  t h i s  s t r a t i g r a p h ie  u n i t  (F ig .  5 and Appendix la ) .

The dominant l i t h o l o g y  is  l i g h t  to medium brown te r r igenous  sandstone 

composed o f  g ra in -suppor ted  phospha te -cher t -quar tz  sand. Grain s ize  and 

s o r t in g  vary from lens to  lens ,  but in  general sand is  very f in e  to 

medium grained and moderate ly  o r  we l l  sor ted  in  lower beds, w i th  f i n e -  

to  coarse-gra ined,  p o o r ly -s o r te d  lenses appearing more f re q u e n t ly  in  the 

upper p a r t  o f  the i n t e r v a l .  S i l i c a  is  the most common cement and i n ­

cludes syn ta x ia l  quar tz  overgrowths, m ic r o c r y s ta l l i n e  quartz  and 

chalcedony. P o i k o l i t i c  c a l c i t e  and m ic r o c r y s ta l l i n e  do lomite  are common
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minor cements. Toward the top o f  the interbedded l e n t i c u l a r  sandstone 

and ch e r t  is  an in te r v a l  o f  p laty-bedded calcareous sandstone th a t  is  

s i m i l a r  in  composit ion,  bu t  l o c a l l y  coarser than the under ly ing sand­

stone and conta ins  more carbonate and less s i l i c a  cement (F ig .  5 and 

Appendix l a ) .  I t  is  about 1.5 m t h i c k  in  the south sec t ion  and i t  th in s

and disappears to  the north  (F ig .  5a).

Bedding takes the form o f  we l l -deve loped,  trough-shaped sandstone 

lenses up to  50 cm th i c k  w i th  c ro s s c u t t in g  concave lower margins. Lower 

sandstone lenses are somewhat t h ic k e r  (5 to 50 cm) than upper ones 

(2 to  20 cm), most are much less than three meters long, and they overlap 

and t run ca te  each o the r  along s t r i k e  (F ig .  5 ) .  In d iv id u a l  lenses cannot 

be c o r re la te d  between sec t io ns .

Although sedimentary s t ru c tu re s  w i th in  the sandstone lenses are not 

we l l  preserved, small r i p p le  crossbeds and low- to  moderate-angled medium

crossbeds (5° to  20*) are recognizable and appear to  be the dominant

sedimentary s t ru c tu re s .  Medium crossbeds in  c ro s s c u t t in g  trough-shaped 

sand lenses record m ig ra t io n  o f  lunate  megaripples ( C l i f t o n  et^ 1971). 

Upper surfaces o f  many lenses are very rough (F ig .  6) and a few re ta in  

t races o f  shal low burrows. These in te n s e ly  burrowed upper surfaces show 

t h a t  sand t ra n s p o r t  ceased p e r i o d i c a l l y  and t h a t  depos i t ion  was ep isod ic .

The o the r  major in terbedded l i t h o l o g y  contains a la rg e r  component

o f  au th igen ic  s i l i c a  and ranges from near ly  pure che r t  to  very cherty

te r r igenous  sandstone. Terrigenous cher t -phosphate-quar tz  sand gra ins

and ra re  t i n y  s i l i c i f i e d  c r in o id  oss ic le s  usu a l ly  f l o a t  in  a m a t r ix  o f

a u th ig e n ic  s i l i c a  (m ic ro c rys ta l  1ine q u a r tz ,  chalcedony and blocky mega-

q ua r tz )  which conta ins r e l i c t  sponge sp icu les  t h a t  are best recognized

16
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Fig. 6. Very rough (burrowed?) upper surface o f  a sandstone
bed o f  the interbedded l e n t i c u l a r  sandstone and che r t  
rock type (pen f o r  sca le ) .

F ig.  7. P a r t i a l l y  ac id -e tched block (about 30x20 cm) o f  
molluscan packstone do lom ite .  Note the unsorted 
te x tu re  and m ix ture  o f  whole and broken s h e l ls .  The 
pelecypod she l l  in  the middle o f  the block is  worn 
through a t  the cen te r .  Two g ia n t  scaphopod s h e l ls  
are a l l i g n e d  roughly  p a r a l le l  to bedding (arrows).
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by t h e i r  phosphat ic  canals.  Terr igenous sand gra ins are in  g ra in  

support  where they de f ine  in d iv id u a l  sm a l l -  and medium-scale c ross­

laminae in  crossbedded sandy che r t  lenses. This more s p i c u l i t i c ,  s i l i c e o u s  

l i t h o l o g y  occurs in  g e n e ra l ly  sm a l le r  and more d iscont inuous lenses than 

the te r r igenous  sandstone l i t h o l o g y .  The s i l i c e o u s  lenses are commonly 

wavy and d iscon t inuous ,  and o v e r ly in g  sandstone appears to have produced 

load s t ru c tu re s  l o c a l l y .  In te rn a l  sedimentary s t ru c tu re s  are we l l  

preserved where sandy laminae accent crossbeds. Medium-grained sand in 

the crosslaminae is  contained w i th in  a che r ty  rock which must have been 

deposited as very s p i c u l i t i c ,  medium to  f in e -g ra in e d  sand w i th  somewhat 

coarser te r r igenous  sand laminae. Spicules apparent ly  r e c r y s t a l l i z e d  to 

form an au th ig en ic  che r t  m a t r ix  which now supports the sand gra ins .  A few 

che r t  lenses conta in  e longate c la s ts  o f  y e l lo w is h  gray, s i l i c i f i e d  

do lom ite  mudstone and rare  v e r t i c a l ,  s a n d - f i l l e d  burrows. Chert beds, 

lenses and nodules comprise less than 40 percent o f  the t o t a l  rock.

The two major l i t h o l o g ie s  in  the interbedded l e n t i c u l a r  sandstone 

and c h e r t  r e f l e c t  two d i f f e r e n t  sources. Most gra ins in  the te r r igenous  

p h o s p h o r i te -c h e r t -q u a r tz  sandstone came from o lde r  eroding rocks. The 

most l i k e l y  source o f  ch e r t  and phosphori te  gra ins  is  o ld e r  exposed 

Permian rocks (Cressman and Swanson, 1964; Shepherd, 1971). Quartz sand 

probably  records eros ion o f  e a r l i e r  Pa leozo ic ,  e s p e c ia l ly  Pennsylvanian, 

s t r a ta  (Cressman and Swanson, 1964; Shepherd, 1971). The s p i c u l i t i c ,  

s i l i c e o u s  rock a lso inc ludes some te r r igenous  sand but i t  must have 

o r i g i n a l l y  contained a la rge  p ro po r t io n  o f  more l o c a l l y  der ived sand­

s ized sponge sp icu les .  In o ther  words, both l i t h o l o g ie s  were deposited
18



as sands, but one was composed p r im a r i l y  o f  gra ins from eroding rocks 

and the o th e r  was composed p r im a r i l y  o f  gra ins  from a r e l a t i v e l y  l o c a l ,  

b io lo g ic a l  source.

Burrowed, F in e ly  Interbedded Sandstone and Do lomite . D isc re te ,  

but very d iscon t inuous ,  whisps, lenses and in terbeds o f  sandy dolomite 

mudstone and very f i n e -  to  coarse-gra ined ph o sp h o r i te -ch e r t -q u a r tz  

sandstone ch a ra c te r ize  t h i s  rock type. The f i n e  scale o f  in d iv id u a l  

s t r a ta  (mm to  cm t h i c k  and cm to  1 m long) con tras ts  sharp ly  w i th  the 

unde r ly ing  rocks. V e r t i c a l l y  and h o r i z o n t a l l y  branch ing,  s a n d - f i l l e d  

burrows about 0.5 cm in  diameter and less than 5 cm high are most e a s i l y  

d is t in g u is h e d  in  the do lom ite .  This b io tu rb a t io n  d id  not destroy a l l  

the o the r  sedimentary s t r u c tu re s ,  al though i t  may be responsib le  f o r  

the r a r i t y  o f  w e l l -p rese rved  h o r izo n ta l  laminae in  the dolomite mudstone. 

Sands preserve r i p p l e  crosslaminae and small scour channels. There are 

a lso rare  f l a s e r  beds and wavy and p lanar  beds. Graded coarse sand-to-  

do lomite  mud beds r e f l e c t  a de po s i t io na l  system th a t  a l te rn a te d  between 

high energy bed-load t r a n s p o r t  and depos i t ion  and q u ie t  suspension-load 

s e t t l i  ng.

The th ickness o f  t h i s  rock type va r ies  from about 0.5 m to 2.5 m in  

the th ree  measured sec t ions  (F ig .  5a).  A poor ly  developed f in ing -upward  

sequence (dominant ly  sandstone to dominantly  do lom ite  mudstone) a t  the 

middle and south sec t ions  is  accompanied by inc reas ing  b io tu rb a t io n  up­

ward. The south sec t ion  conta ins anonomously t h i c k  p lanar and lensy 

sandstone beds and is  less d o lo m i t i c  and a lso less b io tu rba ted  than the 

o th e r  sec t ions  (F ig .  5a and Appendix l a ) .
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Mol Tuscan Packstone Do lom ite . A most ly  unsorted mol Tuscan 

gra ins tone /packs tone bed appears a b ru p t ly  above the u n fo s s i l i f e ro u s  

do lom ite  and sandstone (F ig .  5 and Appendix l a ) .  Much o f  the depos i t  

i s  a chao t ic  m ix tu re  o f  unsorted sand- to g ra ve l -s ize d  f o s s i l  hash in  

a m a tr ix  o f  f i n e l y  c r y s t a l l i n e ,  vaguely p e l l e t a i  do lomite  w i th  a few 

percent sand, s i l t  and c la y .  Many o f  the la rg e r  f o s s i l s  are preserved 

in  l o c a l l y  b i f u r c a t i n g  lenses ( less  than 0.3 m by 1 m) o f  s h e l ls  which 

are in  g ra in  support .  Most f o s s i l s  which have long axes are o r ien ted  

p a r a l l e l  w i th  bedding and l o c a l l y  d i r e c t i o n a l l y  o r ien ted  (F ig .  6 ) .  In 

two p laces,  bedding-plane accumulat ions o f  scaphopods th a t  must have 

been deposited in  low spots l i e  r a d ia t i n g  from a cen t ra l  area l i k e  spokes 

on a wheel.

The c o n d i t io n  o f  the f o s s i l s  var ies  w ide ly .  Although some she l ls  

are near ly  p e r f e c t l y  preserved, most have been broken and worn t h in  in  

spots ,  record ing time spent in  a t u rb u le n t  environment (F ig .  7).

Pelecypod s h e l ls  are most ly  d i s a r t i c u la t e d .  Some s h e l l s  are bored or 

encrusted by worm tubes and i t  i s  poss ib le  t h a t  breakage was p a r t l y  the 

work o f  predaceous f i s h  (see Boyd and Newell [1972] f o r  an example o f  

t h i s  type o f  breakage in  a s im i l a r  Permian f o s s i l  zone in  Wyoming).

The th ickness o f  the f o s s i l i f e r o u s  bed var ies  in the three sect ions 

(F ig .  5a) and outcrop disappears and reappears along s t r i k e ,  suggesting 

t h a t  i t  may be d i s t r i b u t e d  as d iscon t inuous lenses along a s in g le  

s t r a t i g r a p h ie  hor izon.

The actua l con tac t  between the f o s s i l  bed and o v e r ly in g  rocks was

covered, but the f i r s t  observed o ve r ly in g  rocks are u n fo s s i l i f e r o u s
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sandstone, sandy burrowed dolomite and che r ty  do lomite  which were in  a 

d i f f e r e n t  s t r a t i g r a p h ie  o rder  a t  each sec t ion .

b. I n te r p r e ta t io n s  o f  rock types:

C h e r t . Cressman and Swanson (1964) ca lcu la te d  th a t  s i l i c e o u s  

sponge sp icu les  cou ld have provided a la rge  enough source o f  b iogenic  

opa l ine  s i l i c a  to  account f o r  a l l  the che r t  in  the Phosphoria rocks.

They also summarized in fo rm a t io n  a v a i la b le  a t  the t ime on the t r a n s fo r ­

mation o f  in d i v id u a l  sponge sp icu le  gra ins to che r t  rock by contem­

poraneous d i s s o lu t io n  o f  opa l ine  s i l i c a  and p r e c ip i t a t i o n  o f  quartz  (see 

B la t t  £ t  , 1980, f o r  a more up - to -da te  review o f  th a t  process).  The 

Permian l o c a l i t i e s  in  t h i s  study are among those in ve s t ig a te d  by Cressman 

and Swanson and they do, a t  le a s t  l o c a l l y ,  con ta in  abundant r e l i c t  

remains o f  sponge sp icu le s .  The Rex che r t  beds a t  Cedar Creek were 

probably o r i g i n a l l y  composed dominantly o f  sponge sp icu les  w i th  vary ing 

amounts o f  im p u r i t i e s ,  e s p e c ia l l y  quar tz  sand and s i l t .  D isso lu t io n  o f  

opa l ine  s i l i c a  sponge sp icu les  prov ided a loca l  source f o r  quartz  cemen­

t a t i o n .

There are ,  however, some con t inu in g  problems w i th  t h i s  i n t e r p r e ta t i o n .  

Yochelson (1968) noted the remarkable absence o f  whole sponge f o s s i l s  

in  Phosphoria che r ts .  I t  i s  now apparent th a t  s p i c u l i t e s  (beds composed 

p r im a r i l y  o f  sponge sp icu les  or  t h e i r  r e c ry s ta l  1ized remains) very 

r a r e l y  con ta in  complete sponges, and t h a t  depos i ts  which do inc lude  

complete sponges very r a r e ly  conta in  in d iv id u a l  beds o f  sp icu les  (Lane,

1981).
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Cressman and Swanson (1964) re je c te d  the p o s s i b i l i t y  t h a t  s o r t in g  

by phys ica l  processes created the beds o f  un i fo rm ly  la rge  sp icu les  which 

they s tu d ie d .  More recent  workers have re -eva lua ted  the importance o f  

s o r t in g  to  s p i c u l i t e s .  Beds composed p r im a r i l y  o f  s i l i c e o u s  sponge 

sp icu les  have been repor ted  in  sho re l ine  deposits  o f  d e l t a i c  sequences 

(Cavaroc and Perm, 1968), in  the per i  t i d a l  zone in  and adjacent to  rocks 

c on ta in in g  s i l i c i f i e d  evapor i tes  (Chowns and E lk in s ,  1974), and in  a 

sequence o f  sha l low -w ater  l imestones j u s t  oceanward o f  coals and f l u v i a t i l e  

channel sandstones (Lane, 1981). E i th e r  these s i l i c e o u s  sponges were 

t o le r a n t  o f  much more r e s t r i c t i v e  con d i t ion s  than t h e i r  modern descedents 

or  the sp icu les  were s e le c t i v e l y  t ranspo r ted  in to  the sha l low-water  areas 

from a more normal marine environment. Cavaroc and Perm (1958) and 

Chowns and E lk ins  (1974) suggest t h a t  the low s p e c i f i c  g ra v i t y  and small 

s ize  ( s i l t  to  f i n e  sand) o f  sponge sp icu les  al lows them to be winnowed 

from the l i v i n g  communities and concentrated by waves and cu r re n ts .

Previous environmental i n te r p r e ta t io n s  o f  Phosphoria s p i c u l i t e s  have 

had to  accommodate the l i v i n g  sponges' requirements f o r  r e l a t i v e l y  c le a r  

wa te r ,  moderate cu r ren ts  and normal marine s a l i n i t y  (Cressman and 

Swanson, 1964). This  becomes a problem where the associa ted fauna is  

no t  c h a r a c t e r i s t i c  o f  normal marine waters (see, e g . ,  the f o s s i l s  

assoc ia ted w i th  the Rex and Tosi cher ts  as descr ibed by Yochelson, 1968). 

The examples o f  extremely nearshore s p i c u l i t e s  c i t e d  above open up the 

p o s s i b i l i t y  o f  r e i n t e r p r e t a t i o n  o f  some o f  these Phosphoria beds. A few 

small c r in o id  o s s ic le s  were the on ly  faunal remains besides d i s a r t i c u la t e d  

sp icu les  observed in  the uppermost beds o f  Rex c h e r t  a t  Cedar Creek.
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These beds are th e re fo re  in te rp re te d  to  be t ranspo r ted  remains o f  a 

l i v i n g  community t h a t  was p e r i o d i c a l l y  winnowed by storm waves. The 

sponge community may have l i v e d  oceanward o f  the s i t e  where s p i c u l i t e s  

were depos i ted ,  in  o r  near carbonate bioherms as described by McLellan 

(1973).

The in te r to n g u in g  r e la t io n s h ip  o f  t e r r ig in o u s  and s p i c u l i t i c  sands 

in  the sec t ion  immediately  above the Rex ch e r t  suggests th a t  s i l i c e o u s  

sediments which became upper Rex c h e r t  beds were forming ad jacent to ,  

and contemporaneously w i t h ,  the interbedded l e n t i c u l a r  sandstone and che r t  

rock type t h a t  overrode them. Perhaps che r t  lenses w i th in  the sandstones 

represent  the coarses t  (sand s ized) f r a c t i o n  o f  these winnowed sp icu les .

The Rex ch e r t  beds could be a f i n e r  ( s i l t  to  f i n e  sand) f r a c t i o n  th a t  was 

deposited in  q u ie te r  water seaward o f  the sand.

Interbedded L e n t i c u la r  Sandstone and C her t . M ig ra t ing  lunate 

megaripp les,  which deposited most o f  these sediments, are produced in  the 

upper lo w e r - f lo w  regime (Simons and Richardson, 1963; Harms and 

Fahnestock, 1965). In marine nearshore environments they are c h a r a c te r i s t i c  

o f  b a r - c re s t  sediments (Dav idson-Arnot t  and Greenwood, 1976) o r ,  more 

commonly, o f  t i d a l  channel sediments (Dav idson-Arnott  and Greenwood, 1976). 

They are formed by h ig h ly  asymmetr ical breaking waves o r  by u n id i r e c t io n a l  

cur ren ts  generated by shoal ing waves or t id e s  ( C l i f t o n  ^  al_. , 1971;

C l i f t o n ,  1976; Reineck and Singh, 1975).

Burrowed upper lens surfaces t e s t i f y  to  ep isod ic  depos i t iona l  events 

t h a t  were separated by q u ie te r  per iods th a t  were long enough to perm it  

ex tens ive  b io tu rb a t io n .  This means th a t  these sand lenses formed dur ing
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r e l a t i v e l y  uncommon high-energy events,  most l i k e l y  storms,and th a t  

they were e i t h e r  deep enough or  o therwise pro tec ted  enough to  escape 

po s tde po s i t ion a l  reworking a t  the bed surfaces except by burrowing 

organisms. Storm events are more l i k e l y  to  be preserved in  the rock 

record than bedforms created by fa i r -w e a th e r  processes because they are 

cut  to  a g re a te r  depth and are th e re fo re  less suscep t ib le  to deep erosion 

and reworking by normal waves and curren ts  (see, e g . ,  Kumar and Sanders,

1976; Vos and Hobday, 1977; Kre isa,  1981).

Lack o f  c u r re n t  d i r e c t i o n  data and in fo rm a t ion  about the la rge  scale 

morphology o f  t h i s  rock type or o f  i t s  o r i g in a l  s p a t ia l  o r i e n ta t io n  to 

the p a le o s h o re l ine leaves i n t e r p r e ta t i o n  open to a number o f  p o s s i b i l i t i e s .  

For example. Ba l l  (1967) s tud ied  sand bodies o f  the Bahamas and F lo r id a

and concluded th a t  medium scale r ip p le s  o f  the marine sand b e l t  migrated

on ly  dur ing storms. In the t i d a l  bar b e l t ,  he noted th a t  bar sands in  

s l i g h t l y  deeper water than the bar c res ts  were burrowed, and probably a lso 

migrated on ly  du r ing  storms. S p i l l - o v e r  lobes in both sand be l ts  also 

conta ined storm-generated luna te  megaripples.

Burrowed, F in e ly  Interbedded Sandstone and Dolomite . The sediments 

in  t h i s  rock u n i t  r e f l e c t  a l t e r n a t i n g  depos i t ion  by sand moving in  the 

lower f low-reg ime and by mud s e t t l i n g  out  o f  suspension. This a l t e r n a t io n  

o f  processes is  c h a r a c t e r i s t i c  o f  t i d a l  f l a t s  and the rocks have most o f  

the sedimentary s t ru c tu re s  seen on mixed sand and mud t i d a l  f l a t s  (Reineck 

and Singh, 1976, p. 358-359). Absence o f  f l a t  mud i n t r a c l a s t s ,  mud 

c racks ,  b irdseye s t ru c tu re s  or  any o th e r  evidence o f  subaer ia l  exposure 

suggests th a t  these sediments were u su a l ly  submerged, which is  c e r t a i n l y
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l i k e l y  i f  the rocks represent the seaward edge o f  a t i d a l  f l a t  where 

muds and sands i n t e r f i n g e r .  Th icker  sands w i t h in  t h i s  rock type, 

e s p e c ia l l y  in  the south sec t ion  (F ig .  5a),  might be t i d a l  channel depos i ts ,  

but exposure and p rese rva t ion  o f  sedimentary s t ru c tu re s  is  too poor to 

a l low  p o s i t i v e  i d e n t i f i c a t i o n .  Again, a l te rn a te  in te rp re ta t io n s  are 

poss ib le .  For example, s im i l a r  i n te r c a la te d ,  burrowed, s i l ty -m uddy 

sediments and sands can occur toge the r  in  t i d a l  de l tas  or lagoons, where 

sand is  u su a l ly  brought in  by storms (Reineck and Singh, 1975, p. 351).

Molluscan Packstone Do lomite . The unusual ly  coarse f o s s i l  g ra in  

s ize  ( f o r  t h i s  sequence), mixed and unsorted nature o f  the depos i t ,  ab­

sence o f  sedimentary s t ru c tu re s  and abrupt and unrepeated appearance a l l  

argue f o r  a storm coquina i n t e r p r e ta t i o n .  T e x tu r a l l y  i t  resembles 

deposits  l e f t  by modern coasta l  storms (eg. Ba l l  e;t , 1967; Maragos 

e t  , 1973). This i n t e r p r e t a t i o n  is  strengthened by faunal evidence 

(Chapter 2) and the d iag en e t ic  sequence (Chapter 3).

Sandy Burrowed Dolomite and Chert and Sandstone. These sediments, 

w i th  t h e i r  v a r ia b le  l i t h o l c g i e s  and abundant burrows, f i l l e d  in  over and 

around the storm depos i t  record ing  cont inued complex m ig ra t ion  o f  t h is  

mixed te r r igenous  and s p i c u l i t i c  sand-carbonate mud system,

c. Summary and environmental i n t e r p r e ta t i o n :

The p a r t i a l  sec t ion  a t  Cedar Creek apparen t ly  records a progra-  

da t iona l  sequence. R e s t r i c te d ,  shal low submarine s p i c u l i t e s  (Rex Member) 

were overr idden by a su b t id a l  sand body ( in te rbedded l e n t i c u l a r  sandstone 

and c h e r t )  t h a t  represents h igher energy de po s i t io n .  A r e l a t i v e l y  lower

energy mixed carbonate mud and te r r igenous  sand fac ies  (burrowed, f i n e l y
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in terbedded sandstone and do lom ite)  very l i k e l y  records the marine edge 

o f  a prograding i n t e r t i d a l  f l a t ,  o r  perhaps a she l te red  su b t ida l  zone 

behind the sand. A la rge  storm abandoned a t h i c k  coquina o f  s h e l ls  from 

mixed communities (mol luscan packstone do lom ite )  on top o f  the burrowed, 

f i n e l y  in terbedded sandstone and do lom ite .  The storm depos i t  was 

e v e n tu a l ly  covered by burrowed sediments o f  mixed l i t h o l o g ie s  th a t  

probably represent  a s l i g h t  r i s e  in  sea le v e l .

2. La Marche Gulch North

a. Rock d e s c r ip t io n s :

Conglomeratic Sandstone and Do lom ite . At the base o f  the p a r t i a l  

s e c t io n ,  measured w i t h in  the upper pa r t  o f  the Park C i ty  carbonate 

( u n d i f f e re n t ia t e d  here in to  Grandeur and Franson, see Cressman and 

Swanson, 1964), d iscont inuous lenses o f  sandy burrowed do lomite  separate 

two t h i n  conglomerat ic  c h e r t -q u a r tz  sandstones (F ig .  8 and Appendix Ib ) .

In each conglomerat ic  bed pebble- to  bou lde r-s ized  c la s t s ,  some o f  them 

id e n t i c a l  to  the under ly ing  rock types ,  are most ly  conf ined to  a t h in  

basal depos i t  w i th  an uneven lower con tac t  th a t  p a r t i a l l y  t runcates  under­

ly in g  beds. Each o f  these is  o v e r la in  by f i n e r  g ra ined ,  more d o lo m i t ic  

rocks.

P e l le ta i  Wackestone Dolomite. A se r ies  o f  dolomite beds separated

by t h in  s i l t s t o n e  p a r t ing s  is  repeated a t  le a s t  nine times in  e ig h t

meters o f  rock o ve r ly in g  the conglomerat ic  zone. Dolomite beds (0 .4  to

2 m t h i c k )  appear to  be ta b u la r  over the d is tance o f  in d iv id u a l  ou tc rops,

a l though comparison w i th  o the r  measured sect ions  from t h i s  area by
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McLellan (1973) and Gosman and Peterson Cressman and Swanson, 1964) 

suggests t h a t  th icknesses o f  beds may vary cons iderab ly  over la rg e r  

l a t e r a l  d is tances .

The medium-gray do lomite  weathers to  l i g h t e r  gray and forms low 

c l i f f s  o r  less r e s i s t a n t  ledges. R e l i c t  p e l l e t a i  te x tu re  is  s u b t ly  

v i s i b l e  in  most t h i n  sec t ions  (F ig .  9 ) .  Dolomite c r y s ta ls  w i th in  dark 

p e l l e t a i  zones measure .0001 mm to  .0005 mm. Outside these areas c ry s ta l  

s ize  increases to  ,01 mm to  .02 mm but sca t te red  rhombs up to  .05 mm are 

common, and la rg e  rhombs up to  0.1 mm e n c i r c le  some pore spaces. Some 

rocks have a m ott led  and s w i r l y  (burrowed?) te x tu re ,  but no o the r  sed i ­

mentary s t ru c tu re s  remain, and f o s s i l  s h e l ls  are also absent. Thin 

sec t ions  show up to  a few percent s c a t te re d ,  very f i n e  quartz sand and 

s i l t  and sca t te red  and l o c a l l y  concentrated phosphor i te  p e l le t s  and 

i  n t r a c l a s t s .

Thin p a r t in g s  o f  d o lo m i t i c  s i l t s t o n e  which con ta in  vary ing amounts 

o f  f in e -g ra in e d  quartz  sand, phosphor i te  p e l l e t s  and i n t r a c l a s t s ,  and 

a u th ig en ic  cher t  nodules separate the in d iv id u a l  do lom ite  beds (F ig .  8 ) .  

They are a few cm to  a maximum o f  20 cm th ic k  and u s u a l ly  have narrow 

g rada t iona l  contacts  w i th  surrounding do lomite  beds. Except f o r  the 

a d d i t io n  o f  la rge  au th igen ic  ch e r t  nodules, these s i l t s t o n e  pa r t ings  are 

e s s e n t i a l l y  very  t h in  beds o f  the same m a te r ia ls  which occur as im p u r i t ie s  

in  the do lom ite .  Quartz s i l t  w i th  minor f in e -g ra in e d  sand and d e t r i t a l  

mica are concentrated in  wavy, mi 11im e te r -sca le  laminae.

Scattered throughout the lower do lom ite  beds, but most concentrated 

in  s i l t y  p a r t in g s ,  are f i n e  sand-s ized phosphor i te  p e l l e t s  and angular
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F ig .  9. R e l i c t  p e l l e t a i  s t r u c tu r e  (darker  c i r c u l a r  
patches) in  do lom ite  o f  the p e l l e t a i  wacke­
stone do lom ite  rock type.

Phosphori te fragments 
^  Nodular cher t

calcareous 
si 1ts tone  
^o&^matrix Approximately 3 t imes 

actual s ize .

F ig .  10. Diagrammatic re p rese n ta t io n  o f  a s i l t y  p a r t ­
ing zone o f  the p e l l e t a i  wackestone do lomite  
rock type showing concen t ra t ion  o f  phosphor i te  
fragments and small c h e r t  nocules.
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phosphor i te  c la s ts  ( less  than 1.0 mm to  1.0 cm lo ng ) .  Some p e l l e t s  form 

g ra p e s to n e - l ike  c lu s te rs  several mm in  s ize .

Also concentrated w i t h in  the s i l t  laminae and a t  p a r t ing  zones be­

tween the do lom ite  beds are small (up to  about 1.0 cm diameter) wh ite  

quartz  nodules and la rge  (up to  10 by 25 cm), s i l t y  b lack or mott led cher t  

nodules. Small nodules are composed o f  t i n y  leng th -s low  and le n g th - fa s t  

chalcedony ro se t te s  arranged in  c lu s te rs  elongated p a r a l le l  to  bedding 

(F ig .  10).  T h e i r  bulbous rounded surfaces d i s t o r t  surrounding sediment 

and, in  densely packed zones, in d iv id u a l  nodules are separated from each 

o the r  by t h in  pa r t ing s  o f  m a tr ix  and i ro n  ox ide -s ta ined  s t y o l i t e s .

These c h a r a c te r i s t i c s  demonstrate growth by d is p la c iv e  expansion in to  a 

s o f t  m a t r ix .  Rounded to  elongated la rg e r  che r t  nodules are u su a l ly  

m ixtures o f  c h e r t ,  chalcedony and b locky megaquartz (F ig .  11). Nodules 

are cemented by c o l lo fo rm  growths o f  f ib ro u s  quartz  w i th  a l te rn a t in g  

layers  o f  leng th -s low  chalcedony (qu a r tz in e  and l e u t i c i t e — terminology 

from Folk and P it tman, 1971) and le n g th - fa s t  chalcedony, o f ten  brown w i th  

u l t ra -m ic ro s c o p ic  in c lu s io n s .

Brecc iated Dolomite and S t ro m a to l i t e  (?) Zone. Dolomite w i th  a 

p e c u l ia r  in te rn a l  t e x tu re  o v e r l ie s  a che r t  nodule zone. Angular fragments 

o f  dark gray,  spa rse ly  f o s s i l i f e r o u s  do lom it ized  d i s m ic r i t e  f l o a t  randomly 

or  l i e  in  g ra in  support  in  a m a tr ix  o f  gray d o lo m ic r i te  (F ig .  12). 

D o lo m i t iz a t io n  must have occurred a f t e r  t h i s  te x tu re  developed because 

boundaries between c la s ts  and m a tr ix  are i n d i s t i n c t .  The unsorted an­

gu la r  te x tu re  o f  darker fragments suggests a b recc ia .  About 10 cm o f  

appa ren t ly  undeformed gray calcareous quartz  s i l t s t o n e  w i th  f i n e  wavy
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Fig.  11. Photomicrograph o f  some la rge  ch e r t  nodule te x ­
tures  showing fragments o f  sandy, s i l t y  m icro­
c r y s t a l l i n e  quartz  ( r i g h t ) ,  overgrown by f r a c ­
tu re d ,  i n c lu s io n - r i c h  c o l lo fo rm  chalcedony. A 
f i n e  overgrowth o f  chalcedony grading to b locky 
megaquartz f i l l s  the r e s t  o f  the c a v i t y .

= 1 mm

Fig.  12. Photomicrograph o f  b recc ia ted  do lomite rock 
type showing angular fragments (dark) in  
l i g h t e r  m a t r ix .
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lam ina t ions  f i l l s  in  some minor rough topography on the brecc ia ted 

do lom ite .  B re c c ia t io n  th e re fo re  occurred before d o lo m i t i z a t io n  and 

before b u r i a l .  Above the s i l t s t o n e  l i e s  10 to  30 cm o f  very s i l t y ,  

sandy do lom ite .  The shape o f  the upper sur face o f  t h i s  do lomite is  

convex-upward l in ke d  hemispheroids up to  15 cm across which resembles 

l a t e r a l l y - l i n k e d  hemispheroidal s t ro m a to l i t e s  (Logan e t  a l , ,  1964). I ro n -  

oxide s ta ined  s i l t  laminae a t  the surface and w i th in  the bed repeat the 

curved shape and f l a t t e n  toward the base. There was s o lu t io n  along the 

s i l t  laminae and i t  is  d i f f i c u l t  to  d i r e c t l y  assess the importance o f  th a t  

d iagene t ic  process in  the format ion  o f  the s t r o m a t o l i t e - l i k e  s t ru c tu re s .

No a lga l  o r  o th e r  b io lo g ic  s t ru c tu re s  remain. The uneven upper boundary 

is  f i l l e d  in  and capped by ye l lo w ish  gray, very f in e -g ra in e d  sandstone.

Up to  20 cm o f  do lomite brecc ia  o v e r l ie s  the sandstone and t h i s  brecc ia 

grades upward to  about 0.5 m p e l l e t a i  wackestone dolomite.

B io c la s t i c  Wackestone Do lom ite . Fragments o f  gastropods, pelecypods 

and p o ss ib ly  ostracods appear here in  a rock th a t  is  otherwise s im i l a r  to  

the unde r ly ing  do lom ite .  A l l  the f o s s i l s  are small ( less  than 0.5 cm 

long) and most are fragmented and po o r ly  preserved.

S i l t y  Black C h e r t . The base o f  t h i s  t h i c k  che r t  u n i t  is  cha rac te r ­

ized by lumpy p ro t ru s io ns  (1.0 to  30 cm diameter) in to  the under ly ing 

do lom ite .  I t  lacks obvious la y e r in g  or sedimentary s t ru c tu re s ;  i t  is  

instead f a i n t l y  to  d i s t i n c t l y  nodular and is  c h a o t i c a l l y  crossed by f in e  

wh ite  and gray m ot t les  and veins g iv in g  i t  a curd led te x tu re .  L o c a l ly ,  

angu lar dark fragments are cemented by a l i g h t e r  colored m a tr ix .

M icroscopic  examination also reveals  chao t ic  au th igen ic  quartz
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t e x tu re s .  Rounded o r  angu lar patches o f  m ic r o c r y s ta l l i n e  quartz  and 

t i n y  rose t te s  o f  q u a r tz in e ,  l e u t e c i t e  and cha lcedon i te  grade in to  patches 

o f  megaquartz w i th  up to  mm-sized g ra ins  and cement growth tex tu res  

(F ig .  13).  Some o f  the m ic r o c r y s ta l l i n e  quar tz  patches also have i n ­

c l u s i o n - r i c h ,  m u l t i - l a y e r e d  col lo fo rm chalcedony overgrowths. Fractures 

in  t h i s  chalcedony are healed by quar tz  and remaining c a v i t i e s  conta in  

b locky megaquartz cement (F ig .  13).  Cement overgrowths and f ra c tu re s  

demonstrate th a t  che r t  patches are the e a r l i e s t  s i l i c a  form and th a t  they 

were broken and recemented repea ted ly .  This che r t  i s  1i t h o l o g i c a l l y  

s im i l a r  to  che r t  nodules in  the p e l l e t a i  wackestone do lomite.

Molluscan Packstone Do lomite . Matr ix  rock in  t h i s  u n i t  i s  s im i la r  

to  the u n fo s s i l i f e r o u s  do lomite  below but the major d i f fe re n c e  is  abundant 

la rge  f o s s i l  mol luscs.  Sedimentary s t ru c tu re s  are not preserved and the 

rock has a g e n e ra l ly  unsorted te x tu re .  Smaller ( less  than 0.5 cm) f o s s i l s  

are d i s t r i b u t e d  more or less randomly throughout but la rg e r  ones (up to  

several cm) tend to  occur in  d iscont inuous lenses (2 .0  to 10 cm wide by 

less than a meter long ) .  In these lenses la rge  gra in -supported  f o s s i l s  

w i th  ra re  geopetal f i l l i n g s  in d ic a te  t h a t  the mudstone m atr ix  i s  a l a t e r  

a d d i t io n  to  l o c a l l y  h igher  energy, winnowed sediments.

O r ie n ta t io n  o f  the la rg e r  f o s s i l s  provide some clues about the

processes t h a t  deposited them. Pelecypods are d i s a r t i c u la t e d  and o r ien ted

p a r a l l e l  to  bedding. A l l  scaphopods l i e  elongate in  the plane o f  bedding,

some are t e le s c o p i c a l l y  nested and d i r e c t io n a l  o r i e n ta t i o n  is  common

(F ig .  14). D i s a r t i c u la te d  pelecypod s h e l ls  and telescoped scaphopods

as we l l  as la rge  pieces o f  she l l  fragments lodged in s id e  the c a v i t i e s  o f
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Fig.  13. Photomicrograph o f  chaot ic  
che r t  tex tu res  in  the s i l t y  
black che r t  rock type.
Scale bar = .5 cm.

0

#

n i i i

Fig. 14. Large gra in -supported
scaphopods in  the molluscan 
packstone dolomite rock 
type. Note the p a ra l le l  
a l l ignm ent  and te le scop ic  
nest ing o f  some sh e l ls  (see 
a r ro w s ) .
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scaphopods and some gastropods, record t ra n s p o r t  o f  the s h e l ls  a f t e r  

animal bodies had decayed and washed ou t .  The energy regime requ ired  to  

move and o r i e n t  these la rge  s h e l ls  was much h igher than the normal mud- 

depos i t ing  one.

R e to r t  Member Phosphatic Sediments. A few meters o f  these sed i ­

ments were measured to  demonstrate the dramatic  l i t h o l o g i e  change which 

fo l lowed carbonate sed imenta t ion.  A basal conglomerate o f  quar tz  sand, 

phosphor i te  s k e le ta l  fragments and do lomite  c la s ts  is  o v e r la in  by p e l l e t a i  

phosphor i te  sandstone and i n t r a c l a s t i c  phosphor i te  sandstone conglomerate 

(F ig .  8 ) .  Poor exposure a t  the con tac t  w i th  under ly ing  dolomite p a r t i a l l y  

obscures what appears to  be a t ru n c a t in g  eros iona l boundary,

b. Rock type i n te r p r e ta t i o n s :

The sequence a t  La Marche Gulch (F ig .  8) presents a very d i f f e r e n t  

p ic tu re  than the Cedar Creek rocks (F ig .  5 ) .  L i th o lo g ie  con t ra s t  is  s i g ­

n i f i c a n t ;  a t  La Marche Gulch e l a s t i c s  are much f i n e r ,  inc lude mica, and 

are not crossbedded. Chert i s  e n t i r e l y  d i f f e r e n t  t e x t u r a l l y ;  dolomite is  

more p e l l e t a i ,  has fewer im p u r i t ie s  and is  a more dominant rock type. At 

Cedar Creek l ig h o lo g ie s  i n t e r f i n g e r  on a f a i r l y  f i n e  scale w h i le  the 

dominant type g ra d u a l ly  changes, leav ing  the impression o f  several d i f ­

fe re n t  i n te r a c t in g  environments. At La Marche Gulch, at  le a s t  on the 

scale o f  the a v a i la b le  ou tc rop ,  each la y e r  is  l a t e r a l l y  ex tens ive ,  and 

s i g n i f i c a n t  sm a l l -sca le  i n te r le n s in g  was not seen. The carbonate-producing 

environment dominated but appears to  have been p e r i o d i c a l l y  shut o f f  or 

overwhelmed.
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Conglomerat ic Sandstone and Do lom ite . These th in  conglomerates 

o v e r l i e  e ros iona l  surfaces and record i n i t i a l  depos i t ion  dur ing or before 

the t ra n sg re ss ive  episode th a t  e v e n tu a l l y  culminated in  a carbonate- 

producing environment.

P e l le ta i  Wackestone Do lom ite . Very f i n e l y  c r y s t a l l i n e ,  p e l l e t a i  

do lomite  w i th  no c l a s t i c  im p u r i t ie s  except a l i t t l e  f i n e  sand and s i l t  

and no preserved sedimentary s t ru c tu re s  probably o r ig in a te d  as p e l l e t a i  

carbonate mud in  a low-energy sub t ida l  zone. Although a burrowing and 

p e l le t - f o r m in g  fauna l i v e d  in  the sediments, the environment was apparent ly  

not hosp i tab le  to  even the  most t o le r a n t  s h e l l y  fauna. The p o s s i b i l i t y  

t h a t  s h e l l s  ex is te d  but were not preserved seems u n l i k e l y  since a very 

s im i l a r  do lom ite  a few meters h igher in  the sec t ion  does conta in  f o s s i l s .

Scattered s i l t  and f i n e  quartz  sand was probably most ly  wind blown 

( f i n e  g ra in  s iz e ,  random d i s t r i b u t i o n )  in to  the area and l o c a l l y  reworked 

( t h in  la m in a t io n s ) .  P reservat ion o f  laminated s t ru c tu re  in  the s i l t s t o n e  

pa r t ing s  suggests d e po s i t io n  in  a sha l lower i n t e r t i d a l  or  sup ra t ida l  

s e t t in g  out o f  the range o f  extens ive burrowing. Postdepos i t iona l  so lu ­

t i o n  played a pa r t  in  the development o f  the s i l t s t o n e s ,  as evidenced 

by concen tra t ions  o f  i r o n  oxides and o the r  inso lub les  in  sinuous, simple 

f l a s e r  type s o lu t io n  zones ( te rm ino logy  in  Garr ison and Kennedy, 1977) 

w i t h in  and near the s i l t y  laminae, but there must have been an i n i t i a l  

co n t ro l  on the d i s t r i b u t i o n  o f  s o lu t io n  planes, probably the increased 

p o ro s i t y  o f  a l r e a d y -e x is t in g  s i l t y  laminae. S o lu t ion  a m p l i f ied  l i t h o l o ­

g ie  v a r i a t i o n  by removing o r i g in a l  carbonate from the si 1 t i e r  areas and 

a lso probab ly  removed some o f  the do lomite adjacent to  the s i l t s t o n e
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p a r t in g s ,  c o n t r i b u t in g  to  the g rada t iona l  nature o f  the s i l t - d o l o m i t e  

con tac ts .

Specu la t ion about the o r i g i n  o f  the phosphatic component in  the do lo ­

mite  and s i l t s t o n e  a lso  in d ic a te s  shallow water.  Angular c la s ts  are very 

s im i l a r  to  m a te r ia l  descr ibed as a lga l  mat chips elsewhere (eg. G i l l ,

1973; Browning, 1973; Budros and B r iggs ,  1977). These chips form as the 

s u b a e r ia l l y  exposed i n t e r t i d a l  mat drys and cracks and is  reworked by 

waves. The f a c t  t h a t  the m ate r ia l  a t  La Marche Gulch is  phosphorite 

instead o f  carbonate presents no rea l problem f o r  the in te r p r e ta t i o n .  

S t r o m a to l i t i c  phosphor i te  described in  Ind ian Precambrian rocks (Banerjee, 

1971) demonstrates th a t  algae may p lay  a ro le  in  pr imary phosphogenesis 

o r ,  a l t e r n a t i v e l y ,  t h a t  very  e a r ly  chemical replacement may occur in  t h is  

envi ronment.

Cer ta in  c h a r a c t e r i s t i c s  o f  che r t  nodules in  these beds compare 

c lo s e ly  to  nodules descr ibed in  sediments o f  Precambrian to P le is tocene 

age which have been in te rp re te d  as m in e ra lo g ic a l l y  replaced evapor i tes  

(eg. Folk and P it tman, 1971; S ied lecka, 1972; Chowns and E lk in s ,  1974;

Mil l i k e n ,  1979; Young, 1979). S ize ,  shape and evidence o f  d is p la c iv e  

growth crea te  a te x tu re  id e n t i c a l  to  growth tex tu res  o f  some nodular 

anhyd r i te  (eg. Shearman, 1966) seen in  recent sabhka sediments. Even 

more conv inc ing are s i l i c e o u s  nodules w i th in  s i l t y  dolomite a few meters 

below the base o f  the measured sec t ion  in  t h i s  s tudy. These are p r a c t i ­

c a l l y  id e n t i c a l  to  ones f ig u re s  by Brown (1973, p. 47 ) ,  Chowns and 

E lk ins  (1974, p. 890) and Young (1979, p. 290) and in te rp re te d  to be 

s i l i c a - r e p la c e d  e va po r i tes .  Length-slow chalcedony in  the nodules may 

in d ic a te  evapo r i te  replacement (eg. Folk and P i t tman, 1971) a l though
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the s ig n i f i c a n c e  is  not u n iv e r s a l l y  accepted (eg. Chowns and E lk in s ,

1974). Chaotic and i n t e r n a l l y  b recc ia ted  tex tu res  are in te rp re te d  to 

be the s i l i c i f i e d  remains o f  deformation which occurred dur ing evapor i te  

replacement and/o r  d i s s o lu t io n .

Dolomite Breccia and S t ro m a to l i te  (?) Zone. This zone o f  breccia 

and s t r o m a t o l i t i c  s t ru c tu re s  could be in te rp re te d  as a remnant sabhka 

in te r v a l  where s i l t y  calcareous s t ro m a to l i te s  formed in the i n t e r t i d a l  

zone and evapo r i tes  grew and l a t e r  d isso lved leav ing  the brecc ia ted 

do lom ite .

B io c la s t i c  Wackestone Do lom ite . The rock has e s s e n t ia l l y  the 

same m a t r ix  m a te r ia l  as the p e l l e t a i  wackestone dolomite but in  ad d i t io n  

i t  has small f o s s i l  fragments and is  in te rp re te d  as having the same shallow 

su b t ida l  o r i g i n .  The s tun ted(? )  s h e l l y  fauna suggests s l i g h t l y  less 

r e s t r i c t i v e  c o n d i t io n s .  Absence or s c a r c i t y  o f  che r t  nodules and phos­

p h o r i te  i n t r a c l a s t s  suggests depos i t ion  f a r t h e r  from the sho re l ine  sabhka.

S i l t y  Black Chert.  Many o f  the m icro- and m ac ro -cha rac te r is t ics  

o f  the che r t  are s im i l a r  to  the lower nodular occurrences and a lso re ­

semble lumpy mott led  che r t  and ja spe r  descr ibed by McBride and Folk (1977) 

and in te rp re te d  by Folk to  be d iag en e t ic  replacement o f  evapo r i tes .  The 

b recc ia ted  appearance and i n c l u s i o n - r i c h ,  banded co l lo fo rm  overgrowths 

are a lso l i k e  quar tz  tex tu re s  in  beds Nichols and S i l b e r l i n g  (1980) and 

Rubin and Friedman (1981) in te rp re te d  to  be e v a p o r i t e - s i1c r e t e s . S i l c re te s  

form today in  a r id  c l im ates  by p r e c ip i t a t i o n  o f  a s i l i c a  c ru s t  on or near 

the e a r th 's  sur face (Lamplugh, 1902; W i l l iamson,  1957; Friedman and

Sanders, 1978). This reg ion probably had an a r id  c l im ate  through most
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o f  the Permian (Cressman and Swanson, 1964), but the presence o f  a 

s i l c r e t e  between two carbonate beds is  m in e ra lo g ic a l l y  puzz l ing .  I f  the 

s i l i c a  came from sponge sp icu les  they have l e f t  no t race  in  the rocks.

I f  i t  came from meteor ic  ground wate r ,  why was i t  s e le c t i v e ly  deposited 

in  t h i s  bed? Rubin and Friedman (1981) i n f e r  t h a t  e le c t r o l y te s  provided 

by d is s o lv in g  evapor i te  m inera ls  may fo rce  the p r e c ip i t a t i o n  o f  s i l i c a ,  

p ro v id ing  a poss ib le  exp lana t ion  f o r  the s e le c t iv e  depos i t ion  here. The 

s i l c r e t e  described by N icho ls  and S i l b e r l i n g  (1980) occurs in  a dolomite 

and che r t  in te r v a l  t h a t  replaces a c l a s t i c  and biogenic s i l i c a - r i c h  

l imestone. T h e i r  observat ions in d ic a te  th a t  the s i l i c a  became concen­

t ra te d  in  lenses and layers  o f  secondary che r t  separated from r e l a t i v e l y  

pure do lomite  dur ing d iagenesis .

The bed a t  La Marche Gulch is  probably a s i l c r e t e  because: 1) i t  is

p e t ro g ra p h ic a l l y  s im i l a r  to  o the r  s i l c r e t e s ;  2) i t  was apparen t ly  l i t h i -  

f i e d  before carbonate depos i t ion  resumed over i t  because f r a c t u r i n g ,  

b re c c ia t io n  and co l lapse  w i t h in  the che r t  bed are not re f le c te d  in  the 

o v e r ly in g  rocks;  3) i t s  p o s i t io n  between two do lomite  beds suggests, by 

in fe rence  from the loca l  s t r a t i g r a p h ie  cyc les ,  th a t  i t  may have formed 

a t  an exposure sur face.

Molluscan Packstone Do lom ite . Large mollusc f o s s i l  lenses which 

d is t i n g u is h  t h i s  rock from the b i o c l a s t i c  wackestone probably represent 

lag depos i ts  o f  storm a c t i v i t y  which provided rare  and lo c a l iz e d  bursts  

o f  high energy to t h i s  q u ie t  bas in .  The source o f  normal a d u l t - s iz e d  

sh e l ls  was probably ou ts ide  and seaward o f  the immediate de po s i t io na l  

environment where water was more l i k e  normal marine wate r ,  but s t i l l  some­

what r e s t r i c t e d .
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R e to r t  Member Phosphatic Sediments. The d isco n fo rm i ty  a t  the top 

o f  the do lom ite  c o r re la te s  r e g io n a l l y  (Peterson, 1980b) throughout 

western Montana, Wyoming and southeastern Idaho. Over ly ing phosphorite 

p e l l e t a i  and i n t r a c l a s t i c  conglomerates and p e l l e t a i  phosphorite mud­

stone are the i n i t i a l  depos i ts  o f  the l a s t  major marine t ransgress ion 

recorded in  Permian rocks o f  t h i s  area (Peterson, 1980b). The h ia tus 

between carbonate and phosphor i te  beds may not represent a very long 

t ime. The presence o f  phosphor i te chips in  the dolomite beds suggests 

th a t  a phosphogenic environment was nearby throughout the carbonate de­

p o s i t io n a l  i n t e r v a l .

C. Summary and environmental i n t e r p r e ta t i o n :

The in te rp re te d  depos i t iona l  sequence fo l lo w s :

1) Basal conglomerates were reworked and depos i ted,  probably 

dur ing an i n i t i a l  stage o f  a t ransgress ing  sea.

2) In a sha l low , r e s t r i c t e d  lagoon or s h e l f  basin created by 

the t ra n s g re s s io n , p e l l e t a i  carbonate mud accumulated ra p id ly  and was 

p e r i o d i c a l l y  in te r ru p te d  by in te r v a l s  o f  s i l t  d e po s i t io n .  Evidence o f  

phosphatic a lga l  mats and evapor i tes  suggests th a t  the water became ex­

t remely  shallow and/or hypersa l ine  dur ing s i l t - d e p o s i t i n g  episodes, and 

these cond i t ions  te m p o ra r i ly  i n h ib i t e d  carbonate sedimentat ion.

3) An abundant but s tunted o r  j u v e n i le  mull use fauna and 

ostracods in  the uppermost sediments suggest t h a t  l a t e r  in  i t s  h i s to r y  

the lagoon o r  shallow s h e l f  became somewhat more h o sp i ta b le ,  perhaps 

because o f  s l i g h t l y  more open connection to  the sea.
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4) Lenses o f  la rg e r  mol lusc s h e l ls  and she l l  debr is  were t ra n s ­

ported in to  the area by storms dur ing the f i n a l  episode o f  carbonate 

d e p o s i t io n .  Perhaps the mol luscs also in d ic a te  increased connection to 

more normal marine waters.

5) A per iod o f  non-depos i t ion  preceded the onset o f  ove r ly ing  

phosphatic sed imentat ion.

3. Sappington Canyon

a. Rock d e s c r ip t io n s :

Four p a r t i a l  sec t ions  in the Upper Shedhorn Sandstone (F ig .  15a 

and Appendix Ic )  were measured along s t r i k e  over a d is tance o f  about 500 m 

to demonstrate how sedimentary s t ru c tu re s ,  bedding, f o s s i l  content and 

l i t h o l o g ie s  vary l a t e r a l l y  and v e r t i c a l l y .  Section 2, which contains the 

th ic k e s t  f o s s i l  d e p o s i t ,  became the " type" sec t ion  o f  the l o c a l i t y  

(F ig .  15b).

Tosi Chert and S i l i c i f i e d  Dolomite Marker Zone. Bedded cher t  o f  

the Tosi Member (F ig .  15) under l ies  the measured sect ions o f  f o s s i 1-bear ing 

Upper Shedhorn Sandstone. Composition and bedding is  s im i la r  to  th a t  o f  

the Rex Chert a t  Cedar Creek. Colors range in  the grays and browns and 

most beds have l i g h t e r  colored o r  reddish weathering r inds  a few mm th i c k .  

L o c a l ly ,  sandy zones or c o lo r  changes o u t l i n e  f i n e  ho r izo n ta l  lam ina t ion .

P a tc h i l y  d i s t r i b u t e d  a t  the top o f  the cher t  is  a d i s t i n c t i v e  horizon

o f  s p i c u l i t i c  and la r g e ly  s i l i c i f i e d  do lomite (F ig .  16) th a t  d isp lays  rare

h o r iz o n ta l  la m in a t ion .  The top o f  t h i s  rock type marks the base o f  the

p a r t i a l  sec t io ns .  Fresh surfaces are shades o f  y e l lo w ,  brown and orange,

depending apparen t ly  on the amount o f  black organ ic  m ate r ia l  and i ro n
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Fig. 15a. Four par t ia l  sections measured at Sappington Canyon showing 
la te ra l  corre la t ion over a distance of about 250 meters.
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from Appendix I c ) .
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Fi g. 16. Slabbed sample o f  s i  11 c i  f l e d  dolomite marker zone
rock type showing f ra c tu re d  laminated horizon under­
l a in  by mott led rock and p a r t i a l l y  o ve r la in  by dark 
massive do lomite .

Fig. 17. Trough-shaped crossbeds 
o f  the crossbedded, con­
g lomerat ic  sandstone rock 
type. Voids, e s p e c ia l ly  
in lower zones o f  beds, 
are weathered-out do lo ­
mite mudstone i n t r a c la s t s
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oxide In the rock .  In the upper 2 to 5 cm o f  the bed, concentra t ions  o f  

these s ta in in g  m a te r ia ls  form roughly h o r i z o n ta l ,  mm-scale c o lo r  banding 

which appears to  be unre la ted to o r i g i n a l  rock composit ion or  tex tu res  

(F ig .  16).  Below the upper laminated zone, banding disappears and the 

rock takes on a m ott led  te x tu re .  The mott led rock is  porous w i th  rare 

vugs up to several cm across. Rare ly ,  unlaminated dark brown m icro­

c r y s t a l l i n e ,  p a r t l y  s i l i c i f i e d  do lom ite  is  preserved above the laminated 

zone. B r i t t l e  f r a c tu re s  in  the banded zone become in c re a s in g ly  i n d i s t i n c t  

and disappear as they are traced in to  o ve r ly in g  and under ly ing rocks 

(F ig .  16), suggest ing t h a t  when f r a c t u r in g  occurred on ly  the middle zone 

o f  banded rock was l i t h i f i e d .

The upper con tac t  between t h i s  marker bed and ove r ly in g  sandstone is  

probably a t  le a s t  p a r t i a l l y  e ros iona l ;  the boundary undulates and the 

marker u n i t  th in s  and disappears l o c a l l y  along s t r i k e .

Crossbedded Conglomerat ic Sandstone- Fine- to  medium-grained, 

medium-brown to  brownish gray sandstone composed o f  quartz  plus cher t  and 

phosphor i te  gra ins o v e r l i e s  the marker bed. Sandstone gra ins are cemented 

by quartz  overgrowths and/o r  b locky ,  l o c a l l y  p o i k o l i t i c ,  c a l c i t e .  Some 

lense and trough shaped beds (up to  20 cm t h i c k  and a few m long) conta in  

low- to  moderate-angled crosslaminae which, where measurable, range from 

8 to  20 degrees (F ig .  17).  Chert and phosphor i te  pebbles and gravel and 

f la t te n e d  do lom ite  mud i n t r a c l a s t s  (commonly 1.0 cm to  3.0 cm long, 

maximum 10 cm) are concentrated a t  the base o f  many beds or a l l ig n e d  

p a r a l le l  to  cross laminae.

There is  cons iderab le  l a t e r a l  v a r i a t i o n  in  these lowest beds above
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the marker zone (Appendix Ic  and F ig.  15a). In the same horizon a t  

sec t ion  1 phosphor i te -pebb ly  sandstone occurs in  th in n e r  (2 .0  to  4.0 cm) 

beds w i th  h o r iz o n ta l  o r  very  low-angle crossbeds. The amounts o f  chert  

pebbles and do lom ite  i n t r a c l a s t i c  m a te r ia l  vary  from bed to bed w i th in  

measured sec t ions  and along s t r i k e  between them. Trough crossbeds at 

sect ions 1 and 2 pass to  massive ( l o c a l l y  pebbly) sand a t  sec t ion  3 and 

reappear a t  sec t io n  4 (F ig .  15a).

Interbedded Lensy MoHuscan B io c la s t i c  Conglomerate and Sandstone. 

The main f o s s i l  zone, or  l a t e r a l l y  equ iva len t  u n fo s s i l i f e ro u s  sands 

(F ig .  15a) o v e r l i e  and i n t e r f i n g e r  w i th  the crossbedded, conglomerat ic 

sandstone. Sandstone composit ion i s  s im i l a r  in  both un i ts  but bed forms 

and sedimentary s t ru c tu re s  are not we l l  preserved in  the f o s s i l i f e r o u s  

zone except where they are def ined by f o s s i l  concentra t ions or  mud c la s ts  

and pebbles. Scour surfaces are common. Interbedded, w e l l - s o r te d ,  un­

f o s s i l  i fe ro u s  sandstones very r a r e l y  preserve crossbedding. At sect ion 

lo ca t io n s  3 and 4 e s p e c ia l l y ,  massive, th ick-bedded sands are perhaps 

too we l l  sorted to  d is p la y  in te rn a l  s t ru c tu re s .  The scale o f  bedding is  

l o c a l l y  somewhat l a rg e r  than the lower sandstone; a la rge  trough-shaped 

lens o f  w e l l - s o r te d  sand about a meter t h i c k  and a t  le a s t  3 m wide was 

observed in t h i s  zone between sec t ions  1 and 2.

The best development o f  the f o s s i l  zone is  at  sec t ion  lo c a t io n  2,

where molluscs are found in  lenses most ly  less than a meter t h i c k  and a

few meters long (F ig .  18).  Trough-shaped lenses w i th  m u l t i - d i r e c t i o n a l

o r ie n ta t io n s  are f i l l e d  w i th  o r ie n te d  or  c h a o t i c a l l y  arranged f o s s i l s  or

more r a r e l y ,  sands con ta in in g  basal pebble depos i ts .  O r ie n ta t io n  o f  the
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Fig. 18. U n fo s s i l i f e ro u s  trough-shaped sandstone bed su r­
rounded by molluscan conglomerate o f  the i n t e r ­
bedded lensy molluscan b io c l a s t i c  conglomerate 
and sandstone rock type. V e r t i c a l  view f i e l d  is  
about 1 meter.

F ig. 19. Bel lerophontacean gastropod w i th  geopetal f i l ­
l i n g  (g ) .  Geode-type s i l i c a  cement f i l l s  the 
she l l  mold and the void above the geopetal sand. 
Note an a r t i c u la t e d  pelecypod (p) in  the lower l e f t  
corner and cross sect ions o f  scaphopod s h e l ls  in 
the upper r i g h t  ( s ) .  Hor izon ta l  f i e l d  o f  view is  
about 11 cm.
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f o s s i l s  w i th  t h e i r  beds is  d i f f i c u l t  to  asce r ta in  where gastropods 

dominate, but scaphopods roughly  p a r a l l e l  the bedding and in  many lenses 

they are te lescoped and/or  d i r e c t i o n a l l y  a l l ig n e d .  D is a r t i c u la te d  

pelecypod s h e l l s  are concave-up and nested in  some lenses o r  c h a o t ic a l l y  

d is tu rbed  in  o the rs .  Tabu la r ,  h o r i z o n t a l l y  laminated s h e l ly  layers  up 

to 10 cm th i c k  are a ra re  v a r i a t i o n ;  these conta in  concave-down she l ls  

c h a r a c t e r i s t i c  o f  sheet f lo w  ( C l i f t o n ,  1976). A r t i c u la te d  pelecypods 

(F ig .  19) occur much less commonly than d i s a r t i c u la t e d  ones in  f o s s i l i f e r o u s  

lenses and very r a r e l y  as is o la te d  s h e l ls  in  interbedded sandstones.

Although most o f  the f o s s i l  lenses are poor ly  sor ted ,  s ize  and perhaps 

shape s o r t in g  produced a few depos i ts  o f  un i fo rm-s ized gastropods and 

scaphopods and what is  probably  t h e i r  hydrodynamic equ iva len t  in  pelecypod 

s h e l ls .  Foss i ls  in  many lenses are in  g ra in  contact  and some have geopetal 

f i l l i n g s  (F ig .  19) imp ly ing  th a t  the s h e l ls  were o r i g i n a l l y  deposited 

w i th  l i t t l e  o r  no m a t r ix .  She l ls  and she l l  debr is  are sparse ly  i n t e r ­

mixed w i th  sandy, s p i c u l i t i c  carbonate mudstone in t r a c la s t s  in  the 

v i c i n i t y  o f  sec t ions  1 and 2 and the same m a te r ia l  appears ins ide  some 

f o s s i l  c a v i t i e s  and adheres to  some ou te r  edges. Uneven cher ty  patches 

o f  s i l i c a  replacement are lo c a l i z e d  w i th in  the mudstone. Replacement may 

have occurred in  the environment from which the sh e l ls  and pebbles were 

r ipped up, before they were deposited w i th  the sands, s ince there  is  no 

other  evidence o f  carbonate replaced by s i l i c a  in  the re s t  o f  the rock.

Sandstone inc luded in  t h i s  u n i t  th ickens  markedly from less than 1 m 

at sec t ion  1 to  about 6 m a t  sec t ion  2; e q u iv a le n t ,  mostly u n f o s s i l i f e r o u s ,  

sands a t  sect ions 3 and 4 are up to  8.5 m t h i c k  (F ig .  15a). The u n i t
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th in s  again and becomes ch e r ty  f a r t h e r  eastward (no sect ions measured). 

Mol lusc f o s s i l  lenses appear in  the eastern extension o f  sect ion 1, be­

come dominant in  the sands a t  sec t ion  2, and then lens out eastward to 

u n f o s s i l i f e r o u s ,  massive sandstone.

B io tu rba ted  Marker Zone and Burrowed, Interbedded Sandstone and 

Cher t . The upper marker zone v/as recognized a t  each sub -s ta t ion  by the 

abrupt appearance o f  la rg e  v e r t i c a l  che r ty  burrows, smal le r  v e r t i c a l l y  

and h o r i z o n t a l l y  branching burrows and y e l lo w is h  g ray-weather ing , usua l ly  

s i l i c e o u s  do lom ite .  Sm al l -sca le  b io tu rb a t io n  i s  most in tense on upper 

bed su r faces ,  w h i le  la rg e r  burrows penetrate through one or  more beds. 

Bedded and nodular che r t  reappears above the marker zone a f t e r  an absence 

throughout the f o s s i l i f e r o u s  sand u n i t  and occurs w i th  in terbedded sand­

stone and do lom ite .  Foss i l  mol luscs are absent in  the beds above the 

marker zone.

b. I n t e r p r e ta t i o n  o f  rock types:

Tosi Chert and S i l i c i f i e d  Dolomite Marker Zone. L i th o lo g ie  

s i m i l a r i t i e s  in  the che r t  under ly ing  t h i s  p a r t i a l  sec t ion  and th a t  at 

Cedar Creek suggest s i m i l a r i t i e s  in  o r i g i n .  Both are in te rp re te d  as 

probable shallow submarine s p i c u l i t e s  winnowed from the l i v i n g  community 

and t ranspo r ted  by waves o r  c u r re n ts .

Rock in  the marker zone compares c lo s e ly  to  subaer ia l  laminated 

c rus ts  on carbonate rocks in  the F lo r id a  Keys (M u l te r  and Hoffme is ter ,  

1968; Robbin and S t ip p ,  1979), and i s  in fe r re d  to  be a s im i la r  sub­

a e r ia l  l y  exposed surface.  The t h i n ,  patchv, eroded d i s t r i b u t i o n  o f  the 

rock supports th a t  conc lus ion .
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Crossbedded, Conglomerat ic Sandstone. Bedding and wel l  preserved 

sedimentary s t ru c tu re s  in  t h i s  rock u n i t  resemble the Interbedded 

L e n t ic u la r  Sandstone and Chert u n i t  a t  Cedar Creek. Most crossbeds are 

s i m i l a r l y  in te rp re te d  as depos i ts  o f  m ig ra t ing  megaripples and a t  le a s t  

some o f  the p lana r  beds were deposited dur ing sheet f low .  They were 

produced by cu r re n ts  o r  shoa l ing  waves in  a sand bar and channel system.

At Sappington Canyon the sandstone a lso conta ins dolomite in t r a c la s ts  

which probably o r ig in a te d  nearby in  an i n t e r t i d a l  l ime mud environment 

(Ginsburg, 1957). L e n t i c u la r  and channel-shaped beds w i th  eros iona l basal 

surfaces o v e r la in  by lag depos i ts  o f  t i d a l  f l a t  mud in t r a c la s t s  probably 

accumulated in  t i d a l  o r  storm channels (Shinn ^  > 1969; Reineck and

Singh, 1975, p. 366, 327; Friedman, 1977).

Interbedded Lensy Mol 1uscan B io c la s t i c  Conglomerate and Sandstone.

The molluscan conglomerates were probably deposited by storm currents  in 

r i p  channels o f  the bar system. The la rge number o f  unbroken f o s s i l s  

and the a r t i c u la te d  pelecypods in d ic a te  a rap id  depos i t iona l  process l i k e  

storms which could remove animals from l i v i n g  communities and depos i t  

them q u ic k ly  and permanently. Some o f  the more worn and broken she l ls  

probably came from the b a c k -b a r r ie r  lagoon or t i d a l  f l a t .  They re ta in  

some s p i c u l i t i c  carbonate mud or  are deposited w i th  mud in t r a c la s t s  from 

the t i d a l  f l a t .  Lenses cha rac te r ized  by geopetal f o s s i l  f i l l i n g  and 

g ra in -supported  f a b r i c  were o r i g i n a l l y  deposited w i th o u t  m a t r ix ,  as lag 

deposits dur ing high energy f low .  Most mol lusc f o s s i l  lenses are l o ­

ca l ize d  in  the v i c i n i t y  o f  sec t ion  2, perhaps the s i t e  o f  a la rge  channel 

t h a t  breached the bar.
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B io tu rba ted  Marker Zone and Burrowed Interbedded Sandstone and 

Cher t . Perhaps s h i f t i n g  channel and bar pa t te rns  o r  changing sea leve l  

tem p o ra r i ly  te rm inated  sand depos i t ion  in  the Sappington Canyon area and 

a t h in  zone o f  b io tu rb a te d ,  l o c a l l y  s i l i c e o u s ,  dolomite was deposited 

ra th e r  un i fo rm ly  over the sea. Abundant small burrows on upper bed 

surfaces probably  record i n te r v a l s  o f  non-depos i t ion as a t  Cedar Creek. 

Sediments o v e r ly in g  t h a t  hor izon represent  a combination o f  a l te rn a t in g  

t r a c t i o n  load (sand) and bed load (do lomite  mud) depos i t ion  in  an env iron­

ment th a t  was probably normal ly  q u ie t  but sub jec t  to  high energy storm 

b u rs ts .

c. Summary and environmental i n te r p r e t a t i o n :

Shedhorn Sandstone in  the Sappington Canyon area belongs to a 

la rg e r  b a r r i e r  bar system recognized in  t h i s  area by Shepherd (1971).

There is  probably not enough data to  t e l l  i f  t h i s  sequence records re ­

gressive o r  t ransg ress ive  fa c ie s .  Because prograding b a r r ie r  bar systems 

are more l i k e l y  to  be preserved than re t rog rad in g  systems (Reinson, 1979) 

and because the d iag en e t ic  record suggests e a r ly  subaer ia l  exposure 

(Chapter 3 ) ,  these rocks are t e n t a t i v e l y  in te rp re te d  as p ro g ra d a t io n a l .

4. Dev i ls  S l ide

The Devi ls  S l ide  l o c a l i t y  was the on ly  one o f  t h i s  study which con­

ta ined members o f  the mol luscan assemblage in  more than one s t r a t ig ra p h ie  

horizon (F ig .  20 and Appendix I d ) ,  so almost the e n t i r e  exposed sect ion 

was measured. Although the Permian rocks are t h in  ( less  than 20 m), they

inc lude an astounding v a r i e t y  o f  l i t h o l o g i e s  and gene ra l ly  good exposure
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makes t h i s  an e x c e l l e n t  place to  observe s t r a t ig ra p h ie  re la t io n s h ip s  near 

the edge o f  the Phosphoria Sea.

a. Rock d e sc r ip t io n s  :

Conglomerate and D o lo m it ic ,  F o s s i l i f e ro u s  Sandstone. The 

base o f  the Permian sec t ion  a t  Devi ls  S l ide  is  marked by t h in  patches o f  

gra in -supported  conglomerate which f i l l  s l i g h t l y  undu la t ing topography 

on the Pennsylvanian Quadrant Sandstone (F ig .  20, and Appendix Id ) .  This 

basal Lower Shedhorn Sandstone conglomerate grades upward to sandy dolomite 

and d o lo m i t ic  sandstone w i th  c a l c i t e - f i 1 led f o s s i l  molds toward the center 

o f  the bed and s a n d - f i l l e d  molds a t  the top.  Sand molds are t runcated 

by another conglomerate t h a t  inc ludes unsorted, rounded to very angular 

dolomite and c h e r t  c la s ts  w i th  blackened, i ro n  sta ined and phosphatic (?) 

r in d s ,  t h a t  are supported in  a m a tr ix  o f  d o lo m i t ic  quartz  sandstone. A 

very uneven con tac t  separates the second conglomerate from the ove r ly in g  

pe bb le - to -bou lde r  conglomerate. The base o f  t h i s  bed contains rounded 

c h e r t  and more angu lar sandy dolomite c la s ts  up to  10 cm diameter,  

dominantly m a t r ix  supported in  d o lo m i t ic  quartz  sandstone. Average c la s t  

s ize decreases upward in  t h i s  bed, which suggests subaqueous g ra v i ta t io n a l  

s e t t l i n g  and s o r t in g .  The upper 10 cm is  f in e  to  coarse quartz sand and 

sand- to  elongated pebb le-s ized phosphatic f o s s i l  hash and contains a few 

la rge  che r ty  columnar burrow s t ru c tu re s  s im i l a r  to  those a t  Sappington 

Canyon. None o f  the beds in  t h i s  u n i t  show in te rn a l  s t r a t i f i c a t i o n .

Phosphori te Shale and Sandstone. Phosphatic components increase 

upward throughout the conglomerat ic  sequence; gravely  and very coarse­

gra ined phosphor i te  s k e le ta l  sandstone th a t  caps the conglomerate u n i t  is

more than 50 percent worn and fragmented i n a r t i c u l a t e  brachiopod she l l
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hash. The o v e r ly in g  impure phosphor i te  mudstone and p e l l e t a i  and ske le ta l  

sandstone o f  the R e to r t  Member (F ig .  20) i s  h igh-  to  medium-grade phos­

p h o r i te  up to  23.4 percent (Cressman and Swanson, 1964, p. 548).

Very t h in  lam ina t ions  in  the f i n e r  gra ined lenses provide the on ly  ob­

served pr imary sedimentary s t ru c tu re s .  Mudstone and phosphatic f o s s i l  

hash dominates the u n i t  and must have been deposited in  a moderately qu ie t  

environment which was p e r i o d i c a l l y  in te r ru p te d  by h igher energy events.

Much o f  the coarser phosphatic  she l l  debr is  appears in  abundant, i d e n t i c a l ,  

la rge v e r t i c a l  burrows which are bent and squeezed, record ing deformation 

dur ing sediment compaction.

Burrowed Nodular Sandstone. Upper Shedhorn Sandstone beds above 

the phosphor i te  record d ra m a t ic a l ly  increased c l a s t i c  sedimentat ion. Fine- 

to  very f in e -g ra in e d  phosphatic  and che r ty  quartz  sandstone is  t h ic k  bed­

ded and con ta ins  few sedimentary s t ru c tu re s  besides la rge  v e r t i c a l  burrows 

l i k e  those in  the phosphor i te .  Probably the a c t i v i t y  o f  these borrowers, 

whose traces l o c a l l y  comprise g re a te r  than 50 percent o f  the rock,  ob­

l i t e r a t e d  o the r  s t ru c tu re s .  The borrows bend un i fo rm ly  at about 7 m in  

the measured sec t ion  (F ig .  20 ) ,  accent ing so f t -sed iment  deformation w i t h ­

in  the sand bed. The sandstone u n i t  inc ludes some che r t  nodules apparent ly  

unre la ted to  burrows, and l o c a l l y  coarse pebbly che r t  and phosphorite as 

wel l  as a few t h in  in te rbeds  o f  phosphor i te  sandstone and mudstone. The 

tongue o f  c a l c i t e  nodular do lomite  (a t  about 10.3 m to  11.1 m in  the 

sec t io n )  i s  s im i l a r  to  the rock a t  the top o f  the sec t ion  (above 18.3 m) 

which is  descr ibed below. The sandstone is  th e re fo re  in  gradat ional 

con tac t  w i th  both the o v e r ly in g  nodular carbonate and under ly ing phosohor i te ,

making i t  a t r a n s i t i o n a l  fa c ie s  between the two.
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C a lc i t e  and Quartz Nodules in  Do lom ite . Most o f  the Ervay 

Member do lomite  rocks above about 12.5 m in  the measured sec t ion  are 

r id d le d  w i th  quar tz  and c a l c i t e  nodules (F ig .  21) as is o la te d  masses, 

lenso id  concen tra t ions  and densely packed beds. They are rounded to  

e longate and are u s u a l ly  a few cm in  d iameter ,  although they range from 

less than 1.0 cm to  more than 10 cm. Surfaces, best seen where the nodules 

weather out o f  the rock and form lose geodes, are bulbous and c a u l i f l o w e r  

te x tu re d .  Most o f  the do lom ite  m a t r ix  i s  m ic r o c r y s ta l l i n e  except f o r  

la rg e r  euhedral rhombs which commonly f l o a t  in  che r ty  zones. L o c a l ly  d i s ­

to r te d  lam inat ions  in  the m a tr ix  in d ic a te  th a t  nodules grew by displacement 

o f  the s o f t  host sediment. Near the nodules, e longate gra ins in  the 

sediment l i e  ta n g e n t ia l  to  nodule surfaces which suggests th a t  they were 

r e a l l ig n e d  dur ing  nodule growth.

Nodules are f i l l e d  w i th  a v a r i e t y  o f  s i l i c a  and carbonate cements and 

replacement m inera ls .  S i l i c a  phases inc lude  m ic ro c rys ta l  1i ne qua r tz ,  

q u a r tz in e ,  l e u t e c i t e  and cha lcedon i te .  Euhedral , doub ly- term inated quartz 

c r y s ta ls  (F ig .  22) grew in  the nodules and occupy u n f i l l e d  centers o f  some 

nodules o r  are overgrown by c a l c i t e  cement which f i l l s  the centers o f  

many nodules. P y r i t e  i s  a common c o n s t i t u e n t  o f  che r ty  nodule r ims. 

Although m ine ra log ica l  composit ion o f  the nodules is  mixed, i t  va r ies  from 

p r im a r i l y  s i l i c a  in  beds below the f o s s i l  hor izon to  p r im a r i l y  c a l c i t e  

in  and above the f o s s i l  zone. This d i f fe re n c e  is  in te rp re te d  to be the 

r e s u l t  o f  uneven d i s t r i b u t i o n  o f  sponge sp icu les  which probably provided 

the source o f  d isso lved  s i l i c a  f o r  nodule f i l l i n g .  S i l iceous  m atr ix  in 

the lower beds re ta in s  some recognizable r e c r y s t a l l i z e d  sp icu les  and t h e i r

55



CJl(T»

/

4\ \
DOLOMITE

, w  '

&

# .

# &

Figure 21. Cherty (dark) nodules and dolomite matrix (lig h t) from 14.8 m in the measured section, 
calcite and quartz nodules in dolomite rock type.
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Fig .  22. Two a lmost-coa lesc ing 
elongated nodules (en­
closed in  dashed l i n e s )  
w i th  a d o ub ly - term inated 
quartz  c r y s ta l  (arrow) 
from the phosphat ic ,  
d o lo m i t ic  nodular che r t  
rock type a t  about 16.3 
meters in  the s e c t io n ) ,  
rece ss ive ly  weathering 
m a tr ix  immediately su r ­
rounding the nodules i s  
u n s i1i c i f i e d .  Approx. 
actual s ize .

m

F ig .  23. Fe l ted  te x tu re  in  m ic ro c rys ta l  1ine q u a r tz ,  
p o ss ib ly  r e l i c t  evapo r i tes .
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phosphat ic  cana ls ,  which are apparent even when the sp icu le  i t s e l f  has 

d isso lved .  M a t r ix  immediately  surrounding the nodules tends to  be un- 

s i l i c i f i e d  (F ig .  22).

The lower nodu lar p a r t  o f  the sec t ion  begins w i th  about 0.7 meters 

o f  vuggy rock supported by an open framework o f  che r t  and c a l c i t e  nodules, 

lenses and i r r e g u la r  masses (about 12.5 m to  13.2 m, see Fig. 20 and 

Appendix I d ) .  A res idue o f  unconsol idated reddish calcareous s i l t  in  

the middle o f  the bed is  almost a l l  t h a t  remains o f  the m a t r ix .  Some 

nodules pro trude in to  under ly ing  sandstone, producing a grada t iona l  lower 

boundary. The upper con tac t  i s  sharp and very rough.

Over ly ing  rocks are densely nodular and create a remarkable outcrop 

o f  up to  50 percent dark b lu is h -g ra y  to  brownish-gray cher t  nodules in  a 

l i g h t  tan -wea ther ing ,  s i l t y ,  che r ty  dolomite m a tr ix  (F ig .  21). Preserva­

t io n  o f  m a t r ix  i s  the major d i f fe re n c e  between these nodular rocks and 

the under ly ing  ones.

Phosphat ic ,  D o lom it ic  Nodular C her t . This rock is  a very dark 

b lu is h  gray,  phosphat ic ,  s i l i c i f i e d  do lomite  w i th  abundant f o s s i l  sponge 

s p ic u le s ,  phosphatic  she l l  f ragments, small gastropod s te inkerns  and 

p e l l e t s ,  s i l i c i f i e d  p h y l l o id  a lga l  (?) f ragments, and nodules. Most o f  

the nodules are zoned w i th  d o lo m i t i c ,  s p i c u l i t i c ,  phosphatic che r t  grading 

inward to  a t h i n  (mm to  cm scale)  uneven r in d  o f  i r o n -o x id e  s ta ined 

phosphatic  m icrodo lom ite  th a t  surrounds blocky c a l c i t e  cement. The 

c a l c i t e  conta ins  no i n t r a c r y s t a l l i n e  in c lu s io n s  o r  r e l i c t  tex tu re s  and 

appears black because o f  abundant amorphous i n t e r c r y s t a l l i n e  organic  (?) 

res idu e ,  probably dead o i l .
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Very Sandy C h e r t . This poor ly -exposed, dark gray rock has near ly  

h o r i z o n t a l ,  very sinuous pa r t ing s  less than 1 cm t h i c k .  I t  contacts 

the c h a o t ic ,  nodular c h e r ty  rock below along a very uneven, poss ib ly  

e ros iona l  boundary. R e l i c t  sponge sp icu les  and quar tz  sand gra ins  in  a 

m ic r o c r y s ta l l i n e  q u a r tz ,  chalcedony and megaquartz m atr ix  comprise most 

o f  the rock.

C a lc i te  Nodular Do lom ite . Nodules are v a r ia b le  in  t h i s  u n i t .

W ith in  the recess ive rock below the f o s s i l  bed (F ig .  20) they conta in 

s p h e r u l i t i c  chalcedony, in c lu d in g  l e u t e c i t e  and qua r tz ine  l o c a l l y  r e ­

t a in in g  a r e l i c t  f e l t e d  te x tu re  (F ig .  23 ) ,  t i n y ,  rec tangu la r  (anhydr i te?)  

in c lu s io n s  (F ig .  24 ) ,  and one example o f  a r e l i c t  bladed c r y s ta l  th a t  is  

probably gypsum (F ig .  25).

Nodule centers in  and above the f o s s i l  zone are most ly  coarse blocky

c a l c i t e  w i th  common black i n t e r c r y s t a l l i n e  organ ic  res idue. They form

aggregates up to  10 by 20 cm in  s ize  in  d iscont inuous lenses along bedding

planes (18.5 m to  19.1 m in  the measured s e c t io n ) .  They are much smal le r

(mm to  cm sca le)  above and below th a t  zone and tend to  be more randomly

sca t te red .  S i l ice o u s  r inds  around c a l c i t e  in  the nodules con ta in

euhedral quar tz  and s p h e r u l i t i c  chancedony l i k e  t h a t  described above.

Vaguely p e l l e t a i ,  s i l t y ,  p y r i t i c  m a t r ix  do lomite  i s  ra th e r  un i fo rm ly

m ic ro c ry s ta l  1ine (.001 to  .02 mm) and sponge sp icu les  are ra re  to  absent.

No in te rn a l  s t r a t i f i c a t i o n  was observed but the do lomite  has a mott led

appearance and a few recogn izab le  burrow s t ru c tu re s .  The rock conta ins

m a t r ix -  and g ra in -suppor ted  s i l i c a  molds o f  b e l lerophontacean gastropods

in  t h i n  lenses along a s in g le  bedding plane (17.7 to  17.8 m in  the measured

s e c t io n ) .  M ic ro sph o r i te  i n t r a c l a s t s  and s te inke rns  (F ig .  26) are abundant
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Fig .  24. P o r t ion  o f  a quar tz  and c a l c i t e  nodule from 
about 18 m in  the measured sec t ion  a t  Devi ls  
S l id e .  Euhedral quar tz  c r y s ta ls  conta in  re c ­
ta n g u la r  in c lu s io n s  (eg. arrow) which may be 
a n h y d r i te .  Center o f  t h i s  nodule i s  b locky 
c a l c i t e .

F ig.  25. R e l i c t  balded c r y s ta l  in  c h e r t  nodule, 
p o ss ib ly  gypsum.

F ig .  26. Abundant m ic ro sp h o r i te  i n t r a c l a s t s  ( l i g h t  gray, 
e g . ,  P) and a ne a r ly  complete small s i l t y  micro 
s p h o r i te  gastropod s te in ke rn  (G) in  s i l t y  d o lo ­
m ite  o f  the c a l c i t e  nodular do lomite  rock type.
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from the base o f  the f o s s i l  lens to  about 18.2 m, and cont inue above th a t  

as a t ra c e  c o n s t i t u e n t .  Above the bel 1erophontacean packstone/wackestone 

lenses f o s s i l  fragments are sca t te red  through the mudstone m a tr ix  to about 

18.2 m and then d isappear.

b. I n t e r p r e t a t i o n  o f  rock types:

Conglomerate and D o lom it ic  F o s s i l i f e ro u s  Sandstone. This sequence 

is  the preserved record o f  h igh-energy con d i t ion s  t h a t  repeatedly  eroded 

under ly ing  s t r a t a  and deposited very coarse sediments. Truncated, sand- 

f i l l e d  molds o f  mol luscs a t  the top o f  the lower conglomerat ic  bed suggest 

th a t  a s i g n i f i c a n t  per iod o f  nondeposi t ion and eros ion separated i t  from 

the o v e r ly in g  conglomerate. I t  could be a l l  t h a t  remains o f  the f i r s t  

marine t ransg ress ion  t h a t  reached t h i s  area dur ing the Permian. The 

upper two conglomerates below the Re to r t  Member phosphorite are probably 

the e a r l i e s t  depos i ts  o f  the f i n a l  and most extensive Permian t ra n s ­

gress ion in  the reg ion (see Peterson, 1980b)'. Phosphorite c la s ts  and 

rounded che r t  and do lomite  c la s ts  coated w i th  b lack phosphatic (?) r inds  

probably  are s im i l a r  to  phosphate nodules and coated p a r t i c le s  th a t  form 

dur ing  long exposure o f  sediments in  upwel l ing  areas o f  modern shallow 

s h e l f  environments, (eg. B a tu r in  e t  1974; Veeh ^  _a l . , 1973;

B u rn e t t ,  1977; B i r c h ,  1979).

Phosphori te Shale and Sandstone. The Re to r t  Member here is  the

northeasternmost extension o f  a huge phosphor i te  accumulat ion th a t  centered

in  southwestern Montana but is  a lso represented in  c o r r e la t i v e  rocks o f

Idaho, Wyoming and Utah (eg. McKelvey e^ , 1959, Cressman and Swanson,

1964; Wardlaw, 1979). Major phosphogenic environments l i k e  t h i s  one are
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ra re  in  the geo log ic  reco rd ,  r e q u i r in g  a p e c u l ia r  se t  o f  circumstances.

They appear to  develop: 1) in  l o w - la t i t u d e  lo ca t io n s  dur ing ea r ly

stages o f  marine t ran sg ress ive  episodes, 2) in  areas o f  l o c a l l y  re ­

s t r i c t e d  c i r c u l a t i o n ;  3) created by moderate te c to n ic  highs and lows;

4) where the re  is  a la rge  a v a i la b le  source o f  PgOg (Cook and McElhinny,

1979; Peterson, 1977, 1980b; Riggs, 1979a, 1979b, 1980; Sheldon, 1964, 1981; 

A r thu r  and Jenkyns, 1981).

This de po s i t  c o r re la te s  w i th  t ransgress ive  Reto r t  Member phosphorites 

elsewhere (see esp. Peterson, 1980b), and independent evidence from the 

l im i t e d  fauna and nodular do lom ite  in  the o v e r ly in g  rocks ind ica tes  th a t  

c i r c u l a t i o n  was r e s t r i c t e d  in  t h i s  area dur ing the Permian. The com­

b in a t io n  o f  mud- and sand-sized phosphor i te  r e f l e c t s  a l t e r n a t in g  f a i r  

weather suspension-1oad depo s i t io n  and stormy weather winnowing and 

t r a c t io n - lo a d  de p o s i t io n  (see e g . ,  Specht and Brenner, 1979). That se­

quence in d ic a te s  t h a t  the water  was sha l low enough f o r  storm waves or 

cu r ren ts  to  e f f e c t  the bottom.

Accumulation o f  high grade phosphor i te  a lso demands an anomalous

environment where phosphate p roduc t ion  e i t h e r  s imply overwhelms o r  a c tu a l l y

i n h i b i t s  o the r  types o f  depos i ts .  Shallow, low l a t i t u d e  seas normally

support  a la rge  calc ium carbonate-producing popu la t ion  i f  te r r igenous

i n f l u x  is  not too h igh.  However, the re  i s  abundant evidence th a t  major

phosphogenic environments are in h e re n t l y  b i o l o g i c a l l y  s tressed. They

have g e n e ra l ly  lo w - d iv e r s i t y / h ig h - d e n s i t y  popu la t ions  o f  animals such as

phosphat ic  brachiopods, n o n -sh e l ly  borrowers and phosphate-producing

microorganisms (Riggs, 1979b). High phosphate waters commonly develop

euxenic c o n d i t io n s  which are s t r e s s fu l  to  most h igher l i f e  forms
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(McNaughton and Wolf ,  1973). Phosphate compounds may also act  as i n ­

h i b i t o r s  o f  c a l c i f i c a t i o n  (Rhodes and Bloxam, 1969), thus r e s t r i c t i n g  

ca lca re ou s -she l le d  animals. Phosphate deposits  commonly conta in 

anomalous concen tra t ions  o f  f l u o r i n e  and vanadium (Gulbrandson, 1977), 

uranium (Cressman and Swanson, 1964; Kolodny and Kaplan, 1970) and o ther  

elements, which were concentrated in  the sediments con curren t ly  w i th  the 

phosphate (Riggs, 1979b) a t  le ve ls  t o x ic  to  many organisms (Table 1).

Table 1. Heavy metal concentra t ions  in  
Riggs (1979b) from Tooms e t  al

phosphor i tes.  Adapted by 
(1969) and Turkian (1968).

Concentrat ion in Concentrat ion
phosphori tes in  sea water

Metal (Range in  ppm) (avg. in  ppb)

Mercury 10-1.00 0.15
Zi nc 4-345 11.00
Copper 0.6-394 23.00
Lead 0-100 0.03
Arsen ic 0.4-188 2.60
Cadmi um 1-10 0.11
Chromium 7-1600 0.20

Titan ium 100-3000 1.00

The p o s s i b i l i t y  t h a t  t h i s  s trange and to x ic  environment was a neighbor 

to  the molluscan h a b i ta t  might help exp la in  the low d i v e r s i t y  o f  th a t  

assemblage, e s p e c ia l l y  i f  the phosphogenic system was a b a r r i e r  to  faunal 

m ig ra t io n  pos i t io ne d  seaward o f  the carbonate fa c ie s .  M ic rosphor i te
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p e l l e t s  and i n t r a c l a s t s  are present almost throughout the whole sec t ion  

in  a t  l e a s t  t ra c e  amounts, suggesting th a t  the pr imary phosphorite en­

vironment which passed through t h i s  lo c a t io n  may have continued as an 

a c t iv e  ad jacent f a c ie s ,  o r  a t  le a s t  an exposed and u n l i t h i f i e d  nearby 

sediment f o r  most o f  Permian de p o s i t io n a l  h i s to r y .  La Marche Gulch 

carbonates con ta in ing  phosphor i te  a lga l  mat chips and p e l l e t s  and absent 

to  very  r e s t r i c t e d  macro fauna perhaps a lso r e f l e c t  the in f lu e n ce  o f  a 

nearby t o x i c  phosphogenic fa c ie s .

Burrowed, Nodular Sandstone. E ve n tua l ly ,  c l a s t i c  sedimentat ion 

overwhelmed or  replaced phosphor i te .  Without in te rn a l  s t ru c tu re s  the 

sandstones are d i f f i c u l t  to  i n t e r p r e t .  They are ge n e ra l ly  coarser grained 

than the phosphor i tes and represent h igher  energy depos i t ion .  S o f t - s e d i ­

ment deformat ion may r e f l e c t  accumulat ion on an unstable slope.

Nodular Rocks ( in c lu d in g  C a lc i te  and Quartz Nodules in  Dolomite, 

Phosphatic D o lom i t ic  Nodular Chert and C a lc i te  Nodular Do lomite) .  A l ­

though quar tz  and c a l c i t e  nodules a t  Dev i ls  S l ide  d i f f e r  in  form from 

those a t  La Marche Gulch North ,  they are also in te rp re te d  to  be replaced 

evapor i tes  on the basis o f  s im i l a r  m inera log ies ,  tex tu res  and occurrence. 

At Dev i ls  S l id e  the nodules are much more abundant, and ge n e ra l ly  l a rg e r ,  

c re a t in g  an outcrop rem in iscen t  o f  chicken w i re  anhydr i te  te x tu re  l o c a l l y  

(Mai klem ejL , 1969). They are m in e ra log ica l  l y  more complex, w i th  zoned 

quartz  forms and c a l c i t e  (see Mil l i k e n ,  1979, f o r  a summary o f  zoned 

m inera log ies  in  replaced evapo r i te  nodu les) ,  and they conta in  more con­

v in c in g  r e l i c t  evapo r i te  in c lu s io n s .  Cement tex tu res  in d ic a te  t h a t  a t  

le a s t  some o f  the space th a t  the nodules now occupy was once open and
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r e l i c t  in c lu s io n s  and tex tu re s  r e ta in  evidence o f  the anhydr i te  and 

gypsum t h a t  were removed.

In a d d i t io n  to  very f in e -g ra in e d ,  burrowed, l o c a l l y  s p i c u l i t i c  

do lom ite ,  which was probably a shal low su b t id a l  carbonate mud, the matr ix  

conta ins te r r igenous  c l a s t i c  sand and s i l t  g ra ins  which may be windblown. 

The b io lo g ic a l  component r e f l e c t s  r e s t r i c t e d  cond i t ions  probably caused 

by very sha l low , abnormally  s a l in e  water .  Some o f  the phosphorite p e l le t s  

and i n t r a c l a s t s  resemble the a lga l  mat m ate r ia l  a t  La Marche Gulch North.

These sediments are th e re fo re  in te rp re te d  to  have accumulated in  

sha l low, r e s t r i c t e d  coasta l  bas ins,  probably as a ser ies  o f  progradat ional 

u n i ts  which were in te r ru p te d  by periods o f  exposure and sabkha d iagenesis.  

The s i t u a t i o n  was perhaps analogous to  the modern T ruc ia l  Coast embayment 

in  the southern Persian G u l f  (see Kendal l ,  1979, f o r  a summary o f  t h is  

modern sabkha). P y r i t e  in  the sediments may have formed dur ing e a r ly  

d iagenesis  since m ic ro b ia l  s u l fa te  reduc t ion  and generat ion o f  H^S is  

common in  recent sabkha sediments (B u t le r  ^  _a]_. , 1973).

Very Sandy C h e r t . Fine quartz  sand and r e l i c t  sponge sp icu les  in  

t h i s  rock suggest t h a t  the o r i g in a l  s i l i c e o u s  depos i t  was dominantly f i n e -  

sand s ized. The placement o f  a s p i c u l i t i c  che r t  bed between two very 

shallow wa te r ,  s u p r a t i d a l l y - a l t e r e d  dolomite u n i ts  suggests th a t  the cher t  

was o r i g i n a l l y  a sho re l in e  s p i c u l i t e  sand (see Chowns and E lk in s ,  1974).

c. Summary and environmental i n t e r p r e ta t i o n :

The sequence o f  rocks a t  Dev i ls  S l ide  (F ig .  20) records a t r a n s ­

g ress ive  - reg ress ive  cyc le  in  an area th a t  probably never a t ta in e d  very 

deep water or  normal marine c i r c u l a t i o n .  Three basal conglomerat ic  un i ts
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are e a r l y  f a i l e d  at tempt by the sea to  cover t h i s  area. Phosphorites 

here, as elsewhere (eg. Peterson, 1980b; Riggs, 1980; Sheldon, 1981), 

represent  abnormal t ran sg ress ive  marine sedimentat ion a t  the shallow on- 

lapp ing edge where normal marine c i r c u la t i o n  was probably obstruc ted  by 

loca l  topography. The sandstone, which i s  s t r a t i g ra p h ic a l  l y  s i tu a te d  

between two f i n e r  gra ined d e po s i ts ,  might be the remains o f  a sand bar 

t h a t  formed when c l a s t i c  sediment i n f l u x  increased, perhaps a t  the 

i n f l e c t i o n  p o in t  between t ransgress ion  o f  the sea and progradat ion o f  land­

ward fac ie s  ( re g re s s io n ) .  Carbonate mud formed in  q u i te  shallow water 

and experienced e a r l y  d iagenesis under hypersa l ine  cond i t ions  as the sea 

leve l  cont inued to  f a l l .  This cyc le  corresponds to  the l a s t  and h ighest  

marine t ran sg re ss io n - re g re ss io n  event observed in  c o r r e la t i v e  Permian 

rocks o f  southeastern Idaho, Wyoming, and Utah (eg. Peterson, 1980; 

Wardlaw, 1979).

5. Boulder R iver

This sec t ion  was too poor ly  exposed to  a l lo w  d e ta i le d  environmental 

i n t e r p r e t a t i o n  but  is  inc luded here because i t  provides some in te r e s t in g  

a d d i t io n a l  data, e s p e c ia l l y  on faunal r e la t io n s h ip s ,

a. Rock d e s c r ip t io n s :

Conglomerat ic ,  D o lom i t ic  Sandstone. The easternmost Permian 

sec t ion  o f  the study (F ig .  27 and Appendix le )  begins above a poor ly  

exposed, undu la t ing  eros iona l  sur face on the Pennsylvanian Tensleep 

Sandstone. The o v e r ly in g  conglomerate conta ins s p i c u l i t i c  che r t  c la s ts
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BOULDER RIVER

C O V E R

C O V E R

A

PARK CI TY?
Petroliferous, Molluscan 
Bioclastic, Packstone DOLOMITE

Sandy D O LO M ITE

SHEDHORN SANDSTONE (LOWER)?
Conglomeratic, Dolomitic 
SANDSTONE

TENSLEEP FORMATION

Fig .  27. P a r t ia l  s t r a t i g r a p h ie  sec t ion  showing the mol lusc-  
bearing rocks and re la te d  s t r a t a ,  Boulder River 
(gene ra l ized  from Appendix l e ) .
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up to  10 cm in  d iameter.  There boulders l i e  in both m atr ix  and gra in  

support ,  l o c a l l y  c re a t in g  a lag depos i t  in  the sand and in d ic a t in g  very 

h igh-energy c o n d i t io n s .  M a t r ix  i s  w e l l - s o r te d ,  medium-grained quartz 

sandstone w i th  a b r i t t l e  b lack organic  m ate r ia l  (dead o i l ? )  f i l l i n g  

much o f  the in te r g r a n u la r  pore space and dolomite and c a l c i t e  cement.

A very d iscon t inuous  zone o f  la rge  angular che r t  c la s ts  (up to several 

tens o f  cm) in  do lom ite  m a t r ix  caps the sandstone conglomerate.

R. C. Douglas, U. S. Geological Survey, examined che r t  boulders I sampled 

which conta ined r e l i c t  algae and f u l u l i n i d s  and he assigned the f o s s i l s  

a Middle Pennsylvanian, probably Desmionesian, age ( w r i t t e n  communication, 

1979).

A t h i r d  conglomerate conta ins molluscs and ch e r t  c la s ts  in  m ot t led ,  

p in k is h - ta n  d o lo m i t i c  sandstone and sandy dolomite m a t r ix  (F ig .  28). 

Foss i ls  and o th e r  c la s ts  l i e  in  both g ra in  and m a tr ix  support.  The fauna 

is  dominantly  mol luscan; b e l lerophontacean gastropods are the most 

abundant la rge f o s s i l ,  bu t  scaphopods and pelecypods are also common and 

la rge  ramose bryzoan fragments (g re a te r  than 1 cm long) occur in loca l  

concen tra t ions  as we l l  as a few randomly sca t te re d ,  s i l i c i f i e d  in te rn a l  

molds o f  bel 1erphontacean gastropods and scaphopods,

Sandy Phosphatic Do lom ite . Above the conglomerates is  a covered zone 

w i th  f l o a t  and one small outcrop o f  very sandy, very phosphat ic ,  burrowed 

do lomite (F ig .  27).  Angular fragments o f  m ic ro sph o r i te  and small (1.0 

to 2 .0  mm basal d iameter)  stubby con ica l  pa leon isco id  f i s h  tee th  occur 

in  a l l  beds, but here they comprise up to  10 percent o f  the rock l o c a l l y .  

F ine- to  medium-grained quartz  sandstone w i th  a t race  o f  che r t  and rare
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Fig .  28. Conglomerat ic d o lo m i t ic  sandstone rock type 
showing poor ly -preserved b e l lerophontacean 
f o s s i l s  (arrows) and o the r  f o s s i l s .  Actual s ize

Fig.  29. P e t ro l i f e ro u s  molluscan 
packstone dolomite rock 
type showing in te rn a l  
molds o f  two la rge  
scaphopods (arrows) 
w i th  col lapsed she l l  
w a l ls  and packstone t e x ­
tu re  o f  f o s s i l s .  Scale 
bar = .5 cm.
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l a r g e r  c h e r t  granules comprise up to  40 percent o f  the rock,  but gra ins 

are chem ica l ly  eroded and replaced by do lomite a t  the surfaces and may 

have o r i g i n a l l y  been a much la rg e r  f r a c t i o n .

P e t r o l i f e r o u s  Molluscan Packstone Do lom ite . About h a l f  o f  the 

exposed sec t ion  is  composed o f  t h i s  rock type (F ig .  27).  The l i g h t  gray 

weathering sur face d isgu ises  a rock which becomes progress ive ly  darker 

colored upward w i th  inc reas ing  dead o i l  in  pore spaces. Large b e l le ro -  

phontaceans, which dominate the molluscan fauna in  the conglomerates and 

in the lower p a r t  o f  the packstone, are replaced upward by la rge scaphopods 

although very  small gastropods cont inue to  be present in  about the same 

numbers throughout .  In c o n t ra s t  to  lower beds, pebbles and other l i t h o -  

c la s ts  disappear here and quartz  sand becomes a minor co n s t i tu e n t .  M a tr ix  

do lomite  i s  f i n e l y  c r y s t a l l i n e  and la rg e r  euhedral c r y s ta ls  l i n e  pore 

spaces. F oss i ls  are preserved as molds, near ly  a l l  o f  which are broken 

and deformed, but  the a l te re d  remains are abundant enough to create a 

packstone te x tu re  (F ig .  29).  The top o f  t h i s  bed i s  poor ly  exposed and 

s t r a t i g r a p h i c a l l y  o v e r la in  by a broad swale w i th  no exposures.

b. I n t e r p r e ta t io n  o f  rock types;

Absence o f  sedimentary s t ru c tu re s ,  poor q u a l i t y  o f  exposures and 

extens ive d iag en e t ic  a l t e r a t i o n  make i n te r p r e ta t i o n  o f  these rocks 

d i f f i  c u l t .

Conglomerat ic D o lo m i t ic  Sandstone. This coarse ly  conglomeratic 

zone l i e s  a t  the base o f  Permian rocks dominated by a r e s t r i c t e d  marine 

molluscan fauna and is  the i n i t i a l  d e po s i t  o f  a marginal marine sequence.
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Clasts  and w e l l - s o r te d  quar tz  sand came from erosion o f  Pennsylvanian 

and perhaps e a r l i e r  s t r a ta  as the sea transgressed.

Sandy Phosphatic Do lom ite . Moderately w e l l - s o r te d  f i s h  tee th  and 

quartz  sand encourage specu la t ion  th a t  the carbonate po r t io n  o f  t h i s  rock 

was a lso  o r i g i n a l l y  deposited as sand-sized gra ins  which were o b l i te ra te d  

dur ing d iagenes is .  In near-shore marine environments such sands are most

common in  beach o r  bar sediments.

P e t ro l i f e ro u s  Molluscan Packstone Do lomite . This rock type may 

represent  in  s i t u  accumulat ion w i th  continuous p a r t i a l  winnowing o f  f i n e r  

grained m a t r ix  or  a t ranspo r ted  depos i t  o f  g ra in -supported  f o s s i l s .  I t  

could be a storm depos i t  s im i la r  to  the one a t  Cedar Creek or channel 

la g — evidence is  s imply i n s u f f i c i e n t  to  determine the depos i t iona l  en­

v ironment,

c.  Summary and environmental i n te r p r e ta t i o n :

This  l o c a l i t y  l i e s  in  an environmental t r a n s i t i o n  zone between 

western marine-dominated and eastern con t inenta l-dom ina ted sediments.

Less than 30 km to  the southeast,  in  the Nye area, Vhay (1934) noted red-

beds and preserved a n h y d r i te ,  which have not been described in Permian

rocks in  Montana west o f  the area. Sediments a t  the Boulder River l o c a l i t y  

con ta in  coarse c l a s t i c  and b io lo g ic  components w i th  minimal f i n e r  m a t r ix ,  

and m ost ly  record f a i r l y  high energy d e po s i t io n .  This marine-marginal 

area would have been covered by on ly  the h ighest  stands o f  the Middle 

Permian sea and may c o r r e la te  w i th  the h ighes t  recorded t ransgress ion ,  

making these rocks fa c ie s  o f  Upper Shedhorn Sandstone and Ervay carbonate 

in  Montana and Wyoming.
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Summary and Conclusions

Rock u n i t  c h a r a c t e r i s t i c s  and in te r p r e ta t io n s  f o r  the f i v e  l o c a l i t i e s  

are summarized in  Tables 2 through 6. The re la t io n s h ip s  between depo­

s i t i o n a l  environments and f o s s i l  mol lusc deposits  are var ied :

Cedar Creek p a r t i a l  sec t ion  records a prograding,  shallow marine, 

m ixed -1 i tho logy  system w i th  a s p i c u l i t i c  ou te r  f a c ie s ,  te r r igenous  higher 

energy sand fa c ie s  and mixed te r r igenous  sand and carbonate mud t i d a l  f l a t .  

The mol lusc f o s s i l s  were incorpora ted  in to  a storm coquina deposited on 

the t i d a l  f l a t .

La Marche Gulch North p a r t i a l  sec t ion  conta ins several sha l low ing- 

upward (p rograd ing)  carbonate sequences w i th  the f o s s i l  mol lusc deposit  

occurr ing  as channel o r  storm lag deposits  in  a normal ly  q u ie t ,  r e s t r i c t e d  

carbonate lagoon or  shallow basin.

Sappinqton Canyon p a r t i a l  sec t ion  appears to  be a prograding (?) 

b a r r i e r  bar system h e a v i ly  dominated by te r r igenous  c l a s t i c  sedimentat ion. 

Foss i l  mol lusc conglomerates are probably t i d a l  channel lag depos i ts .

D ev i ls  S l ide  sec t ion  i s  a complete t ran sg ress ive - re g ress ive  sequence 

w i th  mol luscs appearing in  a t ran sg ress ive  (?) sandstone and conglomerate 

a t  the base and a ( reg re ss ive )  p ro g ra d a t io n a l ,  shallow r e s t r i c t e d  carbonate 

depos i t  a t  the top.  The upper she l l  depos i t  may be in  s i t u .

Boulder R ive r  environment is  unknown except th a t  i t  was f a i r l y  high 

energy and very near the h ighes t  recorded stand o f  the Permian sea in 

t h i s  area. Mol luscs appear abundantly  in a conglomerate and packstone 

do lomite  o f  undetermined o r i g i n s .
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DAfA INTERPRETATIONS

mu DEDFORMS
INTRABED
STRICTURES TEXTURES/COMPOSITION TYPE OF FLOW PROCESSES

DEPOSITIONAL
ENVIRONMENT

Chert V thin, planar, 
wavy, discon­
tinuous

thin horizontal lam, 
massive or mottled

re l ic t  sponge spic­
u les ,s i t ,  cly, f  sand 
& authigenic s il ica

uncertain poss. storm-deposited 
spicu lite  layers

shallow sub­
marine

Interbedded 
Lenticular 
Sandstone 
and Chert

trough & lens­
shaped beds w/ 
erosional bot­
toms, some 
planar beds

dom massive, rare low- 
to modéra te -angle 
megaripple crosslam, 
sm ripple crosslam, 
planar lam, burrowed 
upper bed surfaces

2'sand types (sources) 
vf-crs sand, section 
coarsens upward crud­
ely, rare mud in tra ­
clasts

upper lower- 
flow regime, 
poss. local 
upper flow 
regime

episodic unidirec­
tional currents or 
V assymetric waves

shallow-water 
sand body (bar 
and/or channels)

Burrowed, 
Finely In ter­
bedded Sand­
stone and 
Dolomite

V discontinu­
ous, thin beds

sm ripple crosslam, 
scour channels, Closer 
beds, graded beds, 
flame structures, 
burrows

f-crs terrigenous 
sand and s lty  
dolomite mdst

lower-flow 
regime and 
no flow

intermittent waves 
or currents and 
suspension sett l ing

mixed sand-mud 
tida l f la t  or 
poss. lagoon, 
tidal delta

Molluscan 
Packstone 
Dolomite

tk bed, poss. 
lenticu lar on 
several-meter 
scale

not evident except for 
locally d irectionally 
oriented shells,bed- 
parallel shells, rare 
bifurcating shell 
lenses

poorly srtd shell 
hash, grain and mat­
r ix  support w/ s lty  
(cly) dolomdst matrix, 
worn, broken & fresh 
fossil shells

turbulent, 
high energy

single, gen non- 
sorting depositional 
event w/ local re­
working

storm coquina

Sandy Burrow­
ed Dolomite 
& Chert and 
Sandstone

V th in-tk  beds, 
lenticu lar 
and planar

abundant burrows esp. 
in f  seds, rare planar 
lam

f-m sand, s lty  calc 
chert and sdy or 
cherty dolomdst

variable alternating current 
or wave conditions 
and slack water

semi-protected 
shallow 
subtidal

Table 2. Rock un it  character is t ics and in terpre ta t ions,  Cedar Creek.
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DATA INTERPRETATIONS

UNIT BEOFORMS
INTRABED
STRUCTURES TEXTURES/COMPOSITION TYPE OF FLOW PROCESSES

DEPOSITIONAL
ENVIRONMENT

Conglomeratic 
Sandstone 
& Do! Dini te

nied-tk bedded, 
crudely planar, 
some truncating 
lower contacts

mottles, horizontal 
to vertical branching 
burrows

pebble to boulder 
congl at base of beds 
w/finer sed overlying

sporadically 
turbulent & 
energetic

episodic erosion & 
transport of crs sed 
followed by lower 
energy deposition

submarine

Pelletai
Nackestone
Dolomite
1) dolomite
2 )s lts t  part* 
ings w/ chert 
nodules

1) tk planar 
beds. 2)v th in- 
med beds, 
crudely planar

1)burrows, s ty lo ! i tes
2)wavy planar lam & 
s ty lo l i te s ,  poss. 
birdseye structure,

1)impure pelletai 
wackestone dolomite
2 )s lt  w/vf sand,chert 
nodules,pel lets & 
ang phos frags

suspension 
sett l ing w/ 
poss. some 
lower-flow 
regime

l)organic production 
of carbonate mud & 
pellets. 2)wind and/ 
or water-deposited 
elastics, sabkha 
diagenesis, solution

V shallow-water 
restricted car­
bonate lagoon or 
shelf, shallowing 
upward cycles

1) Breed- 
ated Dolo­
mite and
2)Stroma to- 

l i te (? )  Zone

1)thin, d is­
continuous.
2)med, discon­
tinuous

1)breccia
2)wavy planar lam 
grading upward to prob. 
la tera lly-l inked hemi- 
spheroids, s ty lo l i tes

1) unsrtd ang clasts 
in grain and matrix 
support. 2) s i t  & 
dolomite mudst w/mnr 
sand and clay

2) some
lower-flow
regime

l)autobrecciation, 
prob. solution co l­
lapse. 2) organic- 
related accumulation, 
prob. algal

shallow subtidal 
to supra tidal

Bioclastic
Wackestone
Dolomite

tk beds, 
planar

bioturbation, sty lo­
l i te s  esp. near bed 
surfaces

bioclastic wackestone 
w/ v sm foss i ls ,s lty ,  
pelletal

suspension 
settling

in situ production 
of carbonate mud & 
shells

shallow, semi­
restricted car­
bonate shelf or 
lagoon

S il ty  Black 
Chert

tk , lumpy bed fa in t ly  to d is t in c t ly  
nodular,brecciated, 
s ty lo l i t ic

chaotic qtz textures, 
self-healed fractures, 
mottles, t iny inclu­
sions in authigenic 
s i l ica

inferred dissolution 
and replacement of 
evaporites by s i l ic a ,  
brecciation and 
col lapse

silcrete  devel­
oped on exposed 
dolomite-evaporite 
surface

Molluscan 
Packstone 
Dolomite

tk, planar 
beds

bioturbation, local 
grain-supported lenses 
of large molluscs

molluscan packstone 
in bioclastic pelletai 
wackestone dolomite, 
mnr f  elastics

intermit­
tently quiet 
and turbu­
lent

in situ production 
of carbonate mud and 
shells w/stronger 
energy transport of 
larger shells

semi-protected, 
semi-restricted 
shelf or lagoon 
Subject to epi­
sodic storms

Table 3. Rock unit characteristics and interpretations» La Marche Gulch North.



H A I A I N T E R P R E T A T I O N S

UNIT BCOFORMS
I N T K A B r . D
S T R U C I U ( ? r . S TEXTURES/COMPOSITION TYPE OF FLOW P R O C E S S E S

DEPOSITIONAL
E N V I R O N M E N T

S i l ic i Tied 
Dolomite 
Marker Zone

thin, discon­
tinuous beds

poss. thin planar sed. 
lam w/lani of oxides 
and organic residue, 
non-tectonic fractures

dark mottles, f  lam, 
re l ic t  sponge spic­
ules, authigenic 
chert, dolo rhombs

suhaerial exposure 
of siliceous dolomite 
sediment, formation 
of s ilcrete  crust

Crossbedded
Conglomer­
atic
Sandstone

nied trough-& 
lens-shaped 
beds w/erosion- 
al boundaries, 
rare planar 
beds

low- to mod-angled 
multi-directional 
crosslam, some v low- 
to planar-lam

f-m sand,w/dolomdst 
intraclasts and chert 
pebbles in bottom 
sets & along cross­
lam, rare discontin­
uous dolomdst beds

upper lower- 
flow regime, 
poss. upper- 
flow regime 
locally

intermi t ten t ly  
migrating lunate 
megaripples, poss. 
local sheet flow

channels in sand 
bar system, poss. 
some bar crest 
seds and beach 
sands

Interbedded 
Lensy 
Mol 1uscan 
Bioclastic 
Conglomerate 
& Sandstone

m-tk beds, dom 
lens & trough 
shaped, planar 
beds

dom massive, rare low- 
to mod-angle crosslam 
outlined by pebble or 
fossil lag, some o r i ­
ented shells, troughs 
multidirectional

fossiliferous lenses 
unsrtd to bimodal, 
usu. grain support, 
geopetal matrix rare, 
f-m sand, some mud 
intraclasts^, chert 
pebbles

turbulent, 
high energy, 
upper lower- 
to upper- 
flow regime

intermittently 
migrating lunate 
megaripples, sheet 
flow, poss. debris 
flow

tidal or longshore 
channels in bar­
r ie r  bar system

Bioturbated 
Marker Zone 
& Burrowed, 
Interbedded 
Sandstone 
& Chert

thin-med beds,
discontinuous
planar-wavy

rare planar & crosslam 
intense burrowing in 
marker zone

cherty dolomdst, 
well-srtd sands, sdy 
s ity  dolomi t ic  chert

variable-- 
lower-flow 
regime and 
suspension 
settling

alternating sediment 
sources and processes

semi-protected 
s ho re face or 
lagoon

-vj

Table 4. Rock unit characteristics and interpretations, Sappington Canyon.



DATA INTERPRETATIONS

UNIT BEDFORMS
INTRABCD
STRUCTURES TEXTURES/COMPOSITION TYPE OF FLOW PROCESSES

DEPOSITIONAL
ENVIRONMENT

Conglomer­
atic and 
Dolomitic 
Foss il i fe r­
ous
Sandstone

med-tk beds, 
crudely planar

erosional bases, 
massive except for 
some grading in 
upper conglomerate

pebble-cobble lag in 
lowest bed w/finer 
overlying seds,other 
beds poorly srtd, 
pebble-boulder clasts, 
rnd in upper bed, 
intraclasts in middle 
bed

episodic, 
turbulent 
& energetic

intermittent ero­
sion and deposition

chanriel deposit? 
debris flow? 
proximal 
tubidite?

Phosphorite 
Shale and 
Sandstone

thin beds, 
discontinuous 
to planar

thin horizontal lam, 
Ig vertical burrows

impure pelletai mdst, 
pelletai and fo s s i l - 
fragmental sandstone

lower-flow 
regime and 
suspension 
settling

episodic sand 
transport or win­
nowing by currents 
or waves, otherwise 
quiet

protected, 
restricted 
subtidal w/crs 
storm? deposits

Burrowed
Nodular
Sandstone

tk beds, 
planar?

Ig vertical burrows, 
soft-sed folding

crs-vf sand, mod well 
srtd w/ thin chert & 
phosphate pebble beds

evidence
destroyed ?

poss. submarine 
bar or channel 
sands

Calcite and 
Quartz Nod­
ules in 
Dolomite & 
Phosphatic 
Dolomitic 
Nodular 
Chert

tk beds nodular, chaotic, 
rare thin lam in 
dolomite

massively nodular, 
locally chicken-wire 
texture, dolomdst 
matrix

suspension 
settling of 
carbonate 
mud

organic accumulation 
of carbonate mud 
followed by sabkha 
diagenesis

restricted la ­
goon or shallow 
carbonate shelf 
to supratidal

Very Sandy 
Chert

poorly exposed 
poss. thin beds ?

re l ic t  sponge spic­
ules & authigenic 
s i l ica  w /s lt, sd

? ?
shoreline 
spiculite?

Calcite
Nodular
Dolomite

tk beds nodular zones paral­
le l to bedding, 
bioturbation

impure pelletai? 
wackestone, horizon 
of Ig gastropod 
shells, phosphorite 
frags

evidence
destroyed

organic accumulation 
of carbonate mud & 
shells, in s itu , 
sabkha diagenesis

shallow re s t r ic ­
ted lagoon or 
shelf to 
supratidal

•vj

Table 5. Rock un i t  character is t ics and in te rpre ta t ions,  Devfls Slide.



DATA INTERPRETATIONS

UNIT BEDFORMS
INTRABED
STRUCTURES

4

TEXTURES/COMPOSITION TYPE OF FLOW PROCESSES
DEPOSITIONAL
ENVIRONMENT

Conglomer­
a tic ,
Dolomitic
Sandstone

poorly exposed 
discontinuous

truncating lower 
boundaries, burrows, 
no internal sed 
structures

pebble-boulder sized 
clasts of mixed 1ith -  
ologies & large fos­
s i l  molluscs in 
grain & matrix sup­
port

turbulent 
& energetic, 
sporadic

intermittent erosion 
and deposition of 
crs sediment, non­
sorting

storm deposits? 
debris flows?

Sandy 
Dolomi te

?too poorly 
exposed

bioturbated sdy dolomite, sm 
fish teeth ? not enoug ) data to interpret?

P e tro l i fe r­
ous
Molluscan 
Packstone 
Dolomi te

tk-med beds, 
poorly exposed

mottles, massive packstone, molluscs 
of a l l  sizes w/dolo- 
mdst matrix, mnr s i t  
& sand, collapsed 
fossil molds

turbulent 
& energetic

non-sorting storm deposits? 
insuff ic ien t data

00

Table 6. Rock unit characteristics and interpretations, Boulder River.



Wherever they l i v e d ,  the mol luscs '  h a b i ta ts  were d e f i n i t e l y  sub ject  

to  v i o le n t  e ros ive  fo rces  and the community must have had to surv ive 

t h i s  d i s r u p t i v e  a c t i v i t y  o r  become rees tab l ished  f a i r l y  q u ic k ly .  This 

was no t  the o n ly  problem imposed by t h e i r  physica l environment; waters 

were very sha l low and may have had v a r ia b le  and/or h igher than normal 

s a l i n i t y .  I t  i s  po ss ib le ,  but  not proven, t h a t  t o x ic  phosphogenic 

systems sometimes created seaward b a r r ie r s  to faunal m ig ra t ion .  Apparent ly  

the mol luscs could su rv ive  and sometimes even f l o u r i s h  under these con­

d i t i o n s ,  occupying both dominantly c l a s t i c  and dominantly carbonate sed i­

mentary environments.
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CHAPTER 2

THE MOLLUSCAN ASSOCIATION AND OTHER FOSSILS 

In t ro d u c t io n

Giant scaphopods and bellerophontacean gastropods were recognized

as a re c u r r in g  lo w - d i v e r s i t y  f o s s i l  group in  Permian rocks o f  the western

phosphate f i e l d  by Yochelson (1968) whose f o s s i l  category number s ix

(p. 592) inc ludes :

P Ia g io g ly p ta , bellerophontacean gastropods, and 
Schizodus, or  r a r e l y  P Iag iog lyp ta  and (o r )  be l-  
lerophontaceans a lone,  commonly associated w i th  
pectenoid pelecypods and p leu rophor id  pelecypods, 
and r a r e ly  associated w i th  o r b ic u lo id  brachiopods,
Composita, nucu lo id  pelecypods, and (o r )  m ya l in id  
pelecypods.

The most common scaphopod o f  these c o l l e c t i o n s ,  i d e n t i f i e d  by Yochelson 

as P lag iog lyp ta  canna, was reassigned to  Prodentaliurn canna by Yancey 

(1973), Yochelson in fe r r e d  from the a v a i la b le  b io lo g ic a l ,  paleogeographic 

and s t r a t i g r a p h ie  evidence t h a t  the mol luscs l i v e d  in  very shallow, 

po ss ib ly  hypersa l ine  wate r .  Table 7 summarizes Yochelson's (1960, 1963,

1968) and many o th e r  au tho rs '  conclus ions about the l i f e  s t y le s ,  pre­

fe r re d  substra tes  and b io lo g ic a l  and environmental assoc ia t ions  o f  

anc ien t  scaphopods and be l lerophontaceans. They appear to have had a 

strong a f f i n i t y  f o r  r igo rous  nearshore environments which were un in ­

hab i tab le  by more normal Paleozoic marine faunas. In th is  study I chose 

l o c a l i t i e s  where scaphopods and bellerophontaceans were the most abundant
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SCAPHOPODS BELLEROPHONTACEANS

Shallow in fauna l  borrowers. E p i fauna l ,  benthonic
m ic rocarn ivores  and/or a c t iv e  grazers o r  d e t r i t u s
d e t r i t u s  feeders .  Move feeders ,  poss ib ly  shallow

O) h o r i z o n t a l l y  through the burrowers .

I t sediment w i th  long muscuar
_J CO f o o t .

•o  aj F ine-gra ined sandstone and Fine-gra ined e l a s t i c s .
c u  +-> 
S- rrs carbonates (u s u a l ly  d o lo ­ sometimes phosphatic and
i-
<U m ite ,  calcareous mudstone. organ ic  r i c h ,  notab ly

4— 00 
OJ o f ten  phosphat ic ,  organ ic b io tu rb a te d ,  f i rm  bottom.
S- =3 

Q_ to r i c h ,  p y r i t i c .

Modern are wide ranging. R e s tr ic te d  by aspidobranch.
Ancient  show a f f i n i t i e s  f o r g i l l  to  c le a r  water ( t o l e r ­

fO r e s t r i c t e d  marine, poss ib ly ated brackish and hyper­
4-> hypersa l ine  o r  f l u c t u a t i n g sa l in e  as wel l  as normal

s a l i n i t y ,  nearshore, sh a l ­ marine).  I n t e r t i d a l  to
zn. low, moderate ly  q u ie t  water. nearshore p la t fo rm  areas.

Epifaunal and in fauna l  b i ­ Lagoonal and offbeach a lga l
valves esp. nuculo ids and stands, lo v / -d iv e rs i t y ,  e p i ­

1----- 00 p e c t in o id s ,  Schizodus, faunal and in fauna l d e t r i ­
(U OJ
o  +-> L ing u la ,  O rb icu lo idea ,  b e l ­ tus feeding b iva lves  and

•r— fO 
CD r- lerophontaceans. Very abun­ mol luscs,  esp. nuculo ids.
O  U  

r— O dant l o c a l l y  w i th  mol luscan- l i n g u lo id s ,  l o c a l l y  found
O  00

•(—  CO dominated near shore ben- w i th  scaphopods.
CO <C t h i c  community.

Barnes,1968; Bretsky and Bretsky,  1969; L in s le y ,  1978;
Bermingham, 1970; Donahue R o l l in s  and Donahue, 1975;

00
OJ and R o l l i n s ,  1974; Ludbrook Sutton, Bowen and McAlester,
u
c 1960; Morton, 1959; 1970; Yochelson, 1960, 1968.
<u
S- Nassichuk and Hodgkinson,

1976; R o l l in s  and Donahue,
2 1975; Trueman, 1968;

Yochelson, 1963, 1968.

Table 7. L i f e  s ty le s  and phys ica l and b io lo g ic a l  assoc ia t ions o f  
scaphopods and be l lerophontacean gastropods.
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and obvious b i o t i c  elements in  the rocks ,  hoping t h a t  they would lead 

me to  some d e ta i le d  conclus ions about nearshore Permian paleoenvironments 

in  southwestern Montana and the p h y s ic a l ,  and perhaps b io lo g ic a l  con­

d i t i o n s  t h a t  cons tra ined  them. This  sec t ion  in troduces the b io lo g ic a l  

component o f  the rocks.  Appendix I I  provides a l i s t  o f  f o s s i l s  found a t  

the f i v e  l o c a l i t i e s .

The Molluscs

1. Scaphopods

Throughout t h e i r  h i s t o r y ,  from Ear ly  Ordovic ian to  Recent (Bretsky 

and Birmingham, 1970), scaphopods have e xh ib i ted  remarkable evo lu t iona ry  

s t a b i l i t y ,  conserving a basic  con ica l she l l  form which puts taxonomists 

to task f in d in g  s i g n i f i c a n t  v a r ia t io n s  in  ornamentat ion, curva ture  and 

size f o r  c l a s s i f i c a t i o n .  T h e i r  lack  o f  c te n id ia  ( g i l l s )  and hear t ,  

coupled w i th  a very  p r i m i t i v e  c i r c u la t o r y  system and unique feeding 

apparatus (Ludbrook, 1960) apparen t ly  place Severe r e s t r i c t i o n s  on the 

v a r ie t y  o f  h a b i ta ts  scaphopods can occupy and co n t r ib u te  to  t h e i r  evolu­

t io n a ry  s t a b i l i t y  (B re tsky  and Birmingham, 1970). A l l  representa t ives  

o f  Carboniferous and Permian scaphopods in  North America are accommodated 

w i th in  on ly  fo u r  o r  f i v e  genera (Nassichuk and Hodgkinson, 1976), a f a c t  

which f u r t h e r  emphasizes t h e i r  conservatism.

The cosmopoli tan genus. Prodental iurn ranges from Lower Devonian to 

Upper Permian (Emerson, 1962). A t  Cedar Creek, s i l i c a  molds f a i t h f u l l y ,  

preserved the s u b t le  ou te r  lo n g i tu d in a l  she l l  ornamentat ion th a t  is  the 

pr imary d i s t i n g u is h in g  c h a r a c t e r i s t i c  o f  Prodentaliurn canna (White).
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At the o th e r  l o c a l i t i e s  scaphopods are s i m i l a r l y  la rge  and th i c k  she l led 

and are probably  the same species,  al though the actua l f o s s i l  mater ia l  

i s  not u s u a l ly  i d e n t i f i a b l e  to the s p e c i f i c  or  even generic  le v e l .

During a Permo-Carboniferous acme Prodentaliurn became the la rg e s t  member o f  

i t s  c lass  ever repo r ted ,  w i th  sh e l l  th icknesses up to  8 mm and lengths 

over 200 mm. Giant Permian scaphopod s h e l ls  in  southwestern Montana are 

c h a r a c t e r i s t i c a l l y  2 to  7 mm th ic k  and many had o r i g in a l  lengths o f  

200mm o r  more. Modern scaphopod s h e l ls  are composed o f  two layers  o f  

a ragon i te  (Majewske, 1969). Ancient ones had two layers  o f  aragon i te  

(O r lov ,  1960, JJ1 Bretsky and Birmingham, 1970) or three calcareous layers  

(Emerson, 1962; Nassichuk and Hodgkinson, 1976).

Modern scaphopods l i v e  p a r t i a l l y  bur ied in  f in e -g ra in e d ,  o rg a n ic - r i c h  

sediment. They c o l l e c t  food p a r t i c le s  w i th  s p e c ia l l y  adapted ten tac les  

ca l le d  captacula and p u l l  themselves forward w i th  a strong fo o t .  The 

p o s te r io r  end p ro je c ts  above the sediment surface f o r  in h a l in g  and exhal ing 

water (F ig .  30) (Morton, 1959; Yonge, 1960; Trueman, 1968; Barnes, 1968). 

Scaphopods appear in  the rocks o f  t h i s  study in  do lomite and sandstone 

which o r i g i n a l l y  ranged in  g ra in  s ize  from mud to  f i n e  sand. During t h e i r  

l i v e s ,  water movement must have been normal ly  less than th a t  requ ired  

to move the subs tra te  and d is lodge them.

Most scaphopod f o s s i l s  in  t h i s  study are o r ien te d  p a r a l le l  o r  sub­

p a r a l l e l  to  bedding. This could be a l i f e  p o s i t io n  very s l i g h t l y  a l te re d  

by winnowing o r  s e t t l i n g ,  but i t  i s  probably the r e s u l t  o f  s t ronger  wave 

and c u r re n t  a c t i v i t y  s ince most s h e l ls  occur in  la rge  but broken sec t io ns ,  

commonly d i r e c t i o n a l l y  a l l ig n e d  and f r e q u e n t ly  in  g ra in  support .  C u r io us ly ,
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a t  Sappington Canyon and La Marche Gulch, scaphopod s h e l ls  are t e l e ­

s c o p ic a l l y  nested in s id e  each o the r  (F ig .  14).  Yochelson and Fraser 

(1973) observed s i m i l a r l y  nested scaphopods in  a beach depos it  in  the 

Permian Plympton Formation o f  Nevada and suggested t h a t  the nest ing is  

a fe a tu re  o f  c u r re n t  d e p o s i t io n .  A l t e r n a t i v e l y ,  the back-and- fo r th  

motion o f  waves might be respons ib le .  Given s u f f i c i e n t  she l l  d e n s i ty ,  

arcs c ircumscr ibed by o s c i l l a t i n g  con ica l  s h e l l s  could in te r s e c t ,  

o c c a s io n a l ly  a l lo w in g  la rg e r  s h e l ls  to  "capture"  smal le r  ones and c rea t ing  

the nested e f f e c t .  Because the o r i e n ta t i o n  occurs a t  on ly  tv/o l o c a l i t i e s  

i t  i s  probab ly  not re la te d  to  l i f e  hab i ts  o f  the animal.

Abundant bor ings on specimens a t  Cedar Creek, La Marche Gulch and 

Sappington Canyon are roughly  the same s ize  and shape a t  a l l  l o c a l i t i e s  

and resemble ac ro tho rac ican  barnacle borings (Tomlinson, 1963, 1969; 

Yochelson, 1968; S e i la ch e r ,  1969). Borings are p r e f e r e n t i a l l y  located 

along grooves in  the p o s te r io r  ends, along a s in g le  s ide o f  the she l l  

le n g th ,  o r  around worn and broken ends. P o s te r io r  bor ings were probably 

acquired dur ing  the an imals '  l i v e s  when th a t  was the on ly  exposed po r t ion  

o f  the s h e l ls  and when water cu r re n ts  created by the l i v i n g  scaphopods 

may have created favo rab le  c o n d i t io n s  f o r  the f i l t e r  feeding barnacles. 

Other bor ings (eg. those located on worn ends o f  broken s h e l l s )  were 

o b v io us ly  made when the s h e l l  la y  immobil ized and p a r t i a l l y  buried in  the 

s u b s t ra te .  Borings r a r e ly  penetra te  the whole she l l  and there i s  no 

reason to  suspect a p a r a s i t i c  r e la t i o n s h ip .  Tomlinson (1969) notes t h a t ,  

" the c i r r i p e d  can a t  most be considered a very modest she l l  weakening 

pes t ,  and in  general does l i t t l e  i f  any harm to  the h o s t . "
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2. Bel lerophontaceans:

The super fam i ly  Bel 1erophontacea (Upper Cambrian to  Lower T r ia s s ic )  

(Cox, 1960) encompasses most o f  the gastropod f o s s i l s  in  these rocks. 

These s h e l l s  are cha rac te r ized  by a high degree o f  b i l a t e r a l  symmetry, 

lack  o f  septae, and an anal s l i t  t h a t  aided in  separat ing exhalent and 

in h a le n t  water cu r ren ts  (F ig .  31) (L in s le y ,  1978). Shel ls  were probably 

o r i g i n a l l y  a ragon i te  (Cox, 1960). A p r i m i t i v e ,  e a s i l y  fou led aspidobranch 

g i l l  s t r u c tu re  probably  r e s t r i c t e d  them to  r e l a t i v e l y  c le a r  water and 

f i rm  bottoms (Yonge, 1947 and Yonge j_n Yochelson, 1960). They were a 

d ive rse  group w i th  adapta t ions p r im a r i l y  f o r  a c t iv e  grazing but also 

perhaps f o r  burrowing and even f o r  preying upon o ther animals (L in s le y ,  

1978).

Four genera o f  bellerophontaceans are d is t in g u is h a b le  a t  the f i v e  

l o c a l i t i e s  o f  t h i s  study (Appendix I I ) .  At Cedar Creek many specimens 

can be i d e n t i f i e d  to  species leve l  but elsewhere i n f e r i o r  p reserva t ion  

u s u a l ly  on ly  a l lows re c o g n i t io n  o f  the b i l a t e r a l  symmetry o f  the super­

fa m i l y .  T he ir  maximum s ize  a t  a l l  l o c a l i t i e s  is  about 4 cm wide. As 

Yochelson and Fraser (1973) no te ,  these ad u l ts  were probably  too big to 

l i v e  on a lga l  f ronds and may have grazed sho re l ine  a lga l  mats. They may 

a lso have fed on s e a f lo o r  algae o r  d e t r i t u s .

Bellerophontacean s h e l l s  are preserved in the same sandstones and 

do lomites as the scaphopods, but t h e i r  spher ica l  shapes preclude pre­

f e r e n t i a l  o r i e n t a t i o n .  Although there are some ne a r ly  pe r fec t  specimens, 

they are commonly worn, broken and e x te n s iv e ly  bored. Barnacle borings

l i k e  those on the scaphopods are sometimes l o c a l l i z e d  on p o s i t i v e
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surfaces and w i t h in  grooves o f  she l l  ornamentat ion (see also S e i lache r ,

1969). Some o f  the s h e l ls  are abraded in  a manner c h a r a c t e r i s t i c  o f  

beach s h e l l s ,  e s p e c ia l l y  a t  Cedar Creek.

T iny gastropods 1.0 to 2.0 mm wide form a s i g n i f i c a n t  microfauna 

a t  a l l  l o c a l i t i e s  and are in te rp re te d  to  be ju v e n i le s  (o r  perhaps very 

s tunted a d u l t s ) .  T he i r  she l l  shapes show a f f i n i t i e s  w i th  h igh,  medium 

and low sp i red  asymmetrical gastropods in  a d d i t io n  to  bellerophontaceans 

and they appear to  represent  a more d iverse  group than the la rg e r  s h e l l s .  

The be l lerophontaceans are s p e c i f i c a l l y  in te rp re te d  to be ju v e n i le s  on 

the basis  o f  t h e i r  small number o f  whorls ( a l l  those counted had less than 

4) (see Tasch, 1953).

Preserved s h e l ls  in  the upper f o s s i l  zone a t  Devi ls  S l ide  are almost 

e n t i r e l y  two species o f  bellerophontaceans (Appendix I I )  plus a pelecypod, 

Schizodus, i d e n t i f i e d  by Yochelson (1968), and some u n id e n t i f i a b le  f r a g ­

ments. Many o f  the best preserved bel lerophontacean s h e l ls  appear to 

have been o r i g i n a l l y  f resh  and unworm. Most o f  them are about the same 

s ize  (3 to  4 cm wide) and they occur concentrated a t  one s t r a t ig ra p h ie  

leve l  as d iscon t inuous lenses one o r  a few s h e l l s  t h i c k .  The s t r i k i n g  

lack  o f  d i v e r s i t y  i s  probab ly  no t  s imply a m atte r  o f  s e le c t iv e  p rese r ­

v a t io n  o r  hydrodynamic s e le c t io n  s ince u n id e n t i f i e d  f o s s i l  fragments in  

the bed are i d e n t i c a l l y  preserved as a u th ig en ic  s i l i c a  mold f i l l i n g s .  

Perhaps the be l lerophontaceans were t ranspo r ted  from a place where they 

were the o n ly  la rge  she l led  animal l i v i n g ,  o r  perhaps they l i v e d  more 

o r  less where they are deposited and represent  a " f la s h  in  the pan"

c o lo n iz a t io n  event by a generat ion o f  o p p o r tu n is t i c  gastropods. The
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l a t e r  might e xp la in  why they are a l l  the same s ize .  E i th e r  way, the 

de po s i t  records a remarkably n o n -d iv e r s i f ie d  s h e l l y  community and t h i s  

n o n - d i v e r s i f i c a t i o n  must have been the r e s u l t  o f  very r igorous physical 

o r  chemical r e s t r i c t i o n .  The gastropods might have th r iv e d  on an 

i n t e r t i d a l  a lg a l  mat f o r  a b r i e f  t ime when the water was not too s a l t y .

A modern analog could be the browsing c i r i t h i d  gastropods and t h e i r  

faecal p e l l e t s  which make up most o f  the i n t e r t i d a l  b e l t  faunal remains 

around hypersa l ine  lagoons in  the southwestern Persian G u l f  ( I I  l i n g ,  

e t  a l . ,  1965).

The on ly  o th e r  whole f o s s i l s  a t  Dev i ls  S l ide  are the small gastropod 

s te inkerns  which are d i s t r i b u t e d  throughout much o f . t h e  sect ion and are 

p o ss ib ly  ju v e n i le s  k i l l e d  by the same cond i t ions  which excluded o ther  

animals. These m ic ro sph o r i te  s te inke rns  are also un iform sized (1 .0  to 

2.0 mm). Perhaps a t  th a t  s ize  the gastropods changed l i f e  s t y le s ,  f o r  

example by moving from hosp i ta b le  sur face waters to  anoxic or  above­

normal l y  s a l in e  bottom waters. D ia g e n e t ica l ly - re p la ce d  evapor i te  nodules 

in  the sediments record hypersa l ine  cond i t ions  and au th igen ic  p y r i t e  and 

m ic rosphor i te  in d ic a te  low oxygen le v e l s .  I f  these cond i t ions  a lso 

a f fe c te d  the d e p o s i t io n a l  environment they would have had powerful r e ­

s t r i c t i v e  in f lue nce  on the d i v e r s i t y  o f  l i f e  forms. A l t e r n a t i v e l y ,  the 

micro-gastropods might have occupied a s u b t id a l  a lga l  mat which was a 

phosphogenic system a t  le a s t  p e r i o d i c a l l y .  Ba thurs t  (1976, p. 123) 

descr ibes a fauna in c lu d in g  micromolluscs which he found in  modern sub­

t i d a l  mats in  the Bahamas. Since i t  i s  best developed in  very shal low 

w a te r ,  the mat i s  sub jec t  to  storm d i s r u p t i o n ,  p o s s ib ly  exp la in in g  why

88



the s te in ke rn s  and phosphor i te  fragments a t  Dev i ls  S l ide  are sca t te red  

through the carbonate rocks.

3. Pelecypods:

Six genera o f  pelecypods were i d e n t i f i e d  in  t h i s  study (Appendix 

I I ) .  A l l  are cosmopolitan and except f o r  Po l idevc ia  (Devonian to  Lower 

T r ia s s i c )  t h e i r  common range is  Carboniferous to  Permian. A l l  or  most 

o f  these s h e l ls  were o r i g i n a l l y  a ragon i te  (Cox, 1969). The protobranchs 

(Nucu lops is , P o l id e v c ia ) are very p r im i t i v e  b iva lves  whose modern rep re ­

sen ta t ive s  make t h e i r  l i v i n g s  as shallow in fauna l  d e t r i t u s  feeders 

(Yonge, 1939). They are most abundant in  extremely shallow water ,  

o rg a n ic - r i c h  sediments where they use p ro b o s c is - l i k e  extensions o f  the 

la b ia l  palps to  gather food p a r t i c l e s .  The o ther  most common b iv a lv e s ,  

Schizodus, Permophorus and Pseudopermophorus are a l l  sha l low-burrow ing,  

in fauna l  f i l t e r  feeders (Yochelson, 1968). Schizodus and the nucul ids  

appear in  o the r  faunal assoc ia t ions  noted by Yochelson and i n d i v i d u a l l y  

as the dominant genera o f  very  near shore, perhaps hypersa l ine env i ron ­

ments e s p e c ia l l y  in  the Franson Member (Yochelson, 1968).

In the rocks o f  t h i s  s tudy pelecypod s h e l l s  are usu a l ly  d i s a r t i c u ­

la ted  and p r e f e r e n t i a l l y  o r ie n te d .  A few Schi zodus a t  Sappington Canyon 

Canyon and Pseudopermophorus a t  Cedar Creek were preserved as a r t i c u la te d  

in d i v id u a l s .  At Cedar Creek a r t i c u la t e d  pelecypod s h e l l s  are a lso  the 

on ly  ones found in  a v e r t i c a l  ( l i f e )  o r i e n ta t i o n .  Perhaps they l i v e d  in 

the sediments a f t e r  they were deposited o r  are preserved in  an attempt to 

r e o r ie n t  themselves and escape a f t e r  they were incorpora ted in to  the
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sediment. Some a r t i c u la t e d  Pseudopermophorus s h e l ls  never f i l l e d  w i th  

sediment and were crushed dur ing e a r ly  compaction o f  the sediment.

Barnacles bored surfaces o f  the s to u te r  s h e l ls  and she l l  fragments. 

Pseudopermophorus s h e l l s  a t  Cedar Creek are c h a r a c t e r i s t i c a l l y  most i n ­

te n se ly  bored a t  the p o s te r io r  t i p s  (F ig .  32),  suggesting t h a t ,  l i k e  the 

scaphopods, they were bored dur ing l i f e ,  when on ly  the p o s te r io r  t i p s  o f  

the s h e l l s  were exposed. Coarse sur face ornamentat ion o f  Pseudopermophorus 

s h e l l s  in d ic a te s  t h a t  they were designed f o r  s t a b i l i t y  in  a substra te  

th a t  may have been r e g u la r l y  reworked by wave and cu r re n t  ac t ion  

(Kauffman, 1969). At Cedar Creek, i n t e r i o r  surfaces o f  b iva lve  sh e l ls  

o cca s io n a l ly  con ta in  s i l i c i f i e d  tubes o f  worms which inhab i ted  the dead 

animals '  s h e l l s .

Miscellaneous Animals 

T in y ,  very  p o o r ly  preserved s h e l ls  o f  crea tures which might have been 

ostracods were noted a t  a l l  l o c a l i t i e s ,  e s p e c ia l ly  a t  La Marche Gulch and 

Boulder R ive r .  The f r a g i l e  nature o f  these s h e l l s  suggests th a t  they 

were not t ranspo r ted  very f a r  and t h e i r  presence in d ica te s  the p o s s i b i l i t y  

o f  abnormal s a l i n i t i e s  (Benson, 1961; Walker and LaPorte, 1970).

Most o f  the o th e r  animal f o s s i l s  were probably on ly  p e r ip h e ra l l y  

re la te d  to  the molluscan fauna, o r  are t o t a l l y  e x o t ic  to  i t .  Ramose 

bryzoan fragments,  l o c a l l y  la rge  and abundant a t  Cedar Creek, are very 

minor c o n s t i tu e n ts  elsewhere. D is a r t i c u la te d  c r in o id  oss ic les  were seen 

o n ly  a t  Cedar Creek, where they are a common c o n s t i tu e n t  o f  the g ra v e l - 

s ized s h e l l  d e b r is .  Bryzoans and c r in o id s  both re q u i re  more normal
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S c a l e  3 cm.

Fig. 32. S i l ic a  mold of Pseudopermophorus annettae 
with barnacle-bored posterior t ip  (arrow)
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marine waters than the mol luscs.  They may have l i v e d  in  carbonate 

bioherms a l i t t l e  f a r t h e r  to  the west and south (M c le l la n ,  1973;

Br i t tenham, 1976). T h e i r  r a r i t y  in  the rocks,  worn and fragmented con­

d i t i o n  and s tenoha l ine  r e s t r i c t i o n  a l l  suggest t h a t  they were not p a r t  

o f  the l i v i n g  scaphopod-bel lerophontacean community. The f o s s i l  depos it  

a t  Cedar Creek w i th  i t s  m ix ture  o f  members from d i f f e r e n t  communities, 

wide range o f  h ig h ly  abraded to  unworn s h e l ls  and unsorted to  moderately 

sor ted  te x tu re  s t ro n g ly  support  the in t e r p r e t a t i o n  t h a t  i t  i s  a beach 

coquina.

S i l ic e o u s  sponge sp icu les  in  the Phosphoria and re la te d  rocks are 

o f  the c lass Desmospongia, a sha l low-water  form th a t  t h r iv e s  w i th in  the 

ph o t ic  zone in  areas o f  c le a r ,  normal marine wate r ,  moderate currents  

and f i r m  substra tes  (Cressman and Swanson, 1964; de Laubenfels, 1955).

Sponge sp icu les  are extremely rare  in  mol lusc-bear ing  rocks although 

s p i c u l i t i c  dolomite and ch e r t  i n t e r f i n g e r  w i th  those sediments. Spicu­

l i t i c  mud adhered to  s h e l ls  and formed in t r a c la s t s  in  some o f  the sand­

stones a t  Sappington Canyon. No whole sponges were observed and the 

sp icu les  probably came from ou ts ide  the mol lusc community.

Phosphatic f i s h  te e th ,  bone fragments and sca les ,  and fragmented 

phosphat ic  brachiopods are found l o c a l l y  in  t race  amounts in  the f o s s i l i -  

ferous sediments o r  as more concentrated depos i ts .  L ingula and Orb icu lo idea 

fragments are a major c o n s t i tu e n t  o f  some phosphor i te  beds a t  Devi ls  

S l id e  and they appear as whole f o s s i l  impressions on bed surfaces o f  

sandstones unde r ly ing  the molluscan hor izon a t  Sappington Canyon along 

w i th  rare  Acanthopecten and Schi zodus.
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Plants

S u r p r i s i n g l y ,  some i d e n t i f i a b l e  p la n t  remains are preserved in  these 

very a l te re d  rocks. Dasycladacean (green) a lga l  fragments are rare in  the 

f o s s i l i f e r o u s  rocks a t  Cedar Creek and f a i r l y  common in  the s i l i c e o u s  

do lom ite  i n t r a c l a s t i c  sandstone a t  Sappington Canyon where many have a 

l i t t l e  s i l i c e o u s  do lomite adhering to  them. Modern Dasyclads grow in  

warm, extremely sha l low w a te r ,  j u s t  below low t i d e  to  about 15 m depth, 

e s p e c ia l l y  in  p ro tec ted  lagoonal environments where they are major con­

t r i b u t o r s  to  calcareous mud sed imentat ion.  They can to le r a te  water 

s a l i n i t y  o f  50 to  60 0/00 (Wray, 1969; Ginsburg e;t al_. , 1971; Wilson, 1975). 

Also a t  Sappington Canyon, an impression in  sandstone o f  a la rge ,  he av i ly  

r ibbed l e a f  suggests the presence o f  t e r r e s t r i a l  p lan ts  nearby. Small 

fragments o f  what appears to  be p h y l l o id  (Codiacean?) algae are preserved 

in  s i l i c i f i e d  do lomite  below the f o s s i l - b e a r in g  horizon a t  Devi ls  S l ide .

They appear in  rocks which probably hosted d iagene t ic  growth o f  evapor i tes  

and are a lso  considered to  be shal low water p lan ts  which are t o le r a n t  o f  

s l i g h t l y  increased s a l i n i t y  (Ginsburg, e t  £ 1 - ,  1971; Wilson, 1975). T he i r  

presence helps su b s ta n t ia te  the theory  t h a t  the sediments formed in  a 

r e s t r i c t e d  sha l low s h e l f  or carbonate lagoon. Both o f  these a lga l  types 

grew as e re c t  p lan ts  and could have acted as sediment b a f f le s  and also 

d is s ip a te d  wave energy, reducing water c i r c u la t i o n  in  a manner analogous 

to modern seagrasses (see, e g . ,  carbonate banks o f  Shark Bay, A u s t r a l i a ,  

Davies, 1970). Foss i l  b lue-green algae cannot be d i r e c t l y  i d e n t i f i e d  

in  these rocks,  but wavy l i n e a r  s t ru c tu re s  in  the dolomite a t  La Marche 

Gulch and s t rom a to l i te -sh ap ed  s t ru c tu re s  might record t h e i r  former
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presence. Also a t  th a t  l o c a l i t y ,  angu lar fragments o f  phosphorite are 

t e n t a t i v e l y  i d e n t i f i e d  as a lga l  mat ch ips .

Trace Foss i ls

Besides barnacle bor ings on s h e l l s  (described above) a v a r i e t y  o f  

burrows (Appendix I I )  record the a c t i v i t y  o f  l i v i n g  c rea tu res .  These 

t race  f o s s i l s ,  g e n e ra l ly  not a major element o f  the f o s s i l i f e r o u s  beds, 

are f r e q u e n t ly  abundant in  ad jacent s t r a ta .

The most conspicuous burrows are la rge  (up to  7 cm diameter by 1.5 m 

lo n g ) ,  columnar-shaped (and very r a r e l y  branched) s t ruc tu re s  noted 

p r im a r i l y  in  sandstones but a lso observed in  sandy dolomite and phos­

p h o r i te .  They have been p re v io u s ly  descr ibed and discussed (Cressman 

and Swanson, 1964; Yochelson, 1968; Peterson, 1972; Young, 1973) and are 

found throughout the Permian rocks in  southwestern Montana, and in  

no r theas te rn  Idaho and northwestern Wyoming, most ly  in  the Shedhorn Sand­

stone. Gutschick and Su t tne r  (1975) summarized previous s tud ies  and com­

p i le d  new in fo rm a t ion  about these s t r u c tu r e s ,  concluding th a t  they are 

feed ing  o r  escape burrows, created perhaps by in fauna l  s iphon-feeding 

clams o r  decapod crustaceans. No f o s s i l  animal capable o f  c re a t in g  the 

burrows has ever been discovered in  one.

D ip lo c r a t e r i o n , S ko l i tho s  , P I a n o l i t e s , Thalass ino ides and escape 

burrows, a l l  o f  which occur in  the b io tu rb a ted  s t r a ta  d i r e c t l y  above 

f o s s i l  beds a t  Sappington Canyon (Appendix I I ) ,  were i d e n t i f i e d  in  the 

p ro tec ted -sho re face  environment o f  Permian rocks in  A u s t r a l i a ,  w i th  the 

l a s t  th ree  exc lus ive  to  t h a t  environment (McCarthy, 1979). By analogy, 

these t ra c e  f o s s i l s  c o n t r ib u te  to  the in t e r p r e ta t i o n  o f  the Sappington

94



Canyon rocks as a q u ie t ,  p ro tec ted sha l low-water  fa c iè s ,  which in  t h i s  

case was probably  s i tu a te d  behind a f o s s i l i f e r o u s  sand bar and channel 

fa c ie s  (Chapter 1 ) .  The f o s s i l  bed a t  Cedar Creek o v e r l ie s  beds which 

con ta in  poss ib le  Tha lass ino ides burrows (Appendix I I ) .  The ir  p ro tec ted -  

soreface a f f i n i t y  (McCarthy, 1979) strengthens the independent evidence 

suggesting th a t  those rocks a lso formed in  a pro tected shal low-water 

s e t t i n g .

Knut Andersson ( U n iv e rs i t y  o f  Wyoming) i s  conducting an extensive 

study o f  Permian t race  f o s s i l s  in  the western phosphate f i e l d  which i n ­

cludes some o f  the l o c a l i t i e s  o f  t h i s  study.

Summary and Conclusions

S t a t i s t i c a l  comparisons o f  faunal d i v e r s i t y  a t  the f i v e  southwestern 

Montana l o c a l i t i e s  were im p ra c t ica l  because q u a l i t y  o f  p reserva t ion  var ied 

too w id e ly  between l o c a l i t i e s .  Table 8 shows the dominant faunal elements 

and gives an approximate idea o f  r e l a t i v e  d i v e r s i t y .  In a sem i-quan t i ­

t a t i v e  manner the l o c a l i t i e s  can be l i s t e d  in  order o f  decreasing d i ­

v e r s i t y :  1) Cedar Creek, 2) Sappington Canyon, 3) Boulder R ive r ,

4) La Marche Gulch and 5) D ev i ls  S l id e .  Cedar Creek almost c e r t a in l y  

preserves a death assemblage o f  mixed l i v i n g  groups and d i v e r s i t y  is  

a lso h ighest  the re  because o f  the good p rese rva t ion .  The Devi ls  S l ide  

l o c a l i t y  is  d e f i n i t e l y  the le a s t  d ive rse  o f  the f i v e .

The apparent low d i v e r s i t y  and absence o f  more normal Paleozoic 

marine l i f e  in d ica te s  some b i o l o g i c a l l y  r e s t r i c t i v e  in f lu e n c e .  Although 

d i v e r s i t y  is  a complex community p ro p e r ty ,  responsive to  many parameters 

besides phys ica l  h a b i ta t  s t ru c tu re s  (eg. Terborgh, 1977), most preserved
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members o f  t h i s  fauna were re p o r te d ly  t o le r a n t  o f  r igo rous  physica l con­

d i t i o n s ,  s p e c i f i c a l l y  v a r ia b le  s a l i n i t y .  A mol 1uscan-dominated fauna is  

by i t s e l f  i n d i c a t i v e  o f  shallow water (eg. B re tsky ,  1969; Stevens, 1971). 

The d i s t r i b u t i o n  and s ize  o f  f o s s i l s ,  e s p e c ia l l y  a t  Dev i ls  S l id e ,  suggests 

th a t  animal popu la t ions  f lu c tu a te d  r a p id l y ,  probably w i th in  the l i f e t i m e  

o f  a s in g le  genera t ion .  Except f o r  microgastropods, mol luscs a t  a l l  

s i t e s  tend to  be e i t h e r  absent a l to g e th e r  o r  la rge  and abundant. While 

t h i s  might be p a r t i a l l y  the r e s u l t  o f  physical processes dur ing sedimen­

t a t i o n  o r  d iag en e t ic  processes e f f e c t in g  p re se rva t ion ,  most l o c a l i t i e s  

show on ly  minor e f f e c t s  o f  s o r t in g  and a lso conta in  minor non-molluscan 

f o s s i l s .  More l i k e l y ,  the rocks preserve a h i s to r y  o f  creatures who 

l i v e d  on the b o rd e r l in e  o f  p h y s ic a l l y  t o le r a b le  marine cond i t ions  th a t  

f l u c tu a te d  between extremely in h o sp i ta b le  and r e s t r i c t i v e l y  hosp i tab le  

to  t o le r a n t  o p p o r tu n is t i c  organisms. Enough time elapsed between 

d is r u p t i v e  events to  a l low  f o r  g ig a n t ic  growth o f  scaphopods.

In fe r re d  l i f e  hab i ts  o f  the mol luscs as we l l  as evidence from these 

rocks in d ic a te s  a very  low degree o f  b io lo g ic a l  i n te r a c t io n .  They probably 

comprise a non-dependent asso c ia t io n  as de f ined by Kauffman and Scott  

(1976, p. 20).  A low le ve l  o f  b io lo g ic a l  i n te r a c t io n  provides c ircum­

s t a n t i a l  evidence in  fa v o r  o f  i n t e r p r e t i n g  them as members o f  a p h y s ic a l ly  

c o n t ro l l e d  community.

Although b e l lerophontaceans and scaphopods were o f ten  deposited t o ­

ge the r ,  t h e i r  hab i ts  probably d id  not p re c is e ly  over lap but were close 

enough f o r  s h e l ls  to  mix dur ing d e p o s i t io n .  This suggestion is  supported

by the occurrence o f  b e l lerophontaceans w i th o u t  scaphopods a t  Dev i ls  S l ide

96



and by the dominance o f  be! lerophontaceans in  the lower f o s s i l i f e r o u s  

zone a t  Boulder R iver  and scaphopods in  the upper zone ( p . 71 ) .  That 

these are not re s u l t s  o f  hydrodynamic s e l e c t i v i t y  is  supported by the 

f a c t  t h a t  the two animals occur toge the r  in  o ther  deposits  o f  t h i s  study 

and elsewhere, where c u r re n t  and wave s o r t in g  did occur a t  le a s t  to  a 

minor degree. Grazing b e l lerophontaceans might have surv ived b e t te r  in  

f i r m e r  bottomed (s u b t id a l  o r  i n t e r t i d a l  a lga l  mat) zones wh i le  shal low- 

burrowing scaphopods p re fe r red  a s l i g h t l y  s o f t e r  (sha l low s u b t id a l )  sub­

s t r a te  .

LOCALITY SCAPHOPODS BELLEROPHONTACEANS PELECYPODS

CC Proden ta l i  urn Kn iqh t i  t i e s  
Bellerophon

Nuculopsi s 
Pseudopermophorous
Schizodus

LG Scaphopod 
( i n d e t . )

Bellerophontacean 
( i n d e t . )

Pelecypod ( in d e t . )

SC Scaphopod 
( i n d e t . )

Bel 1erophontacean 
( i n d e t . )

Schizodus

DS Bellerophon 
Euphemi tops i  s

BR Scaphopod 
( i n d e t . )

Bel lerophontacean 
( i n d e t . )

Pelecypod ( i n d e t . )

Table 8. Dominant fauna in  the f o s s i l - b e a r in g  rocks, determined 
s e m i - q u a n t i t a t i v e l y .  In fo rm at ion  from Yochelson (1968) and t h is  
study.
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CHAPTER 3

DIAGENESIS IN THE FOSSILIFEROUS ROCKS

A f t e r  sediments are depos i ted ,  d iagenesis usu a l ly  a l t e r s  or  ob­

l i t e r a t e s  some o f  the o r i g i n a l  c h a r a c te r i s t i c s .  As the sediments a l t e r  

toward e q u i l ib r iu m  w i th  changing physica l and chemical c o n d i t io n s ,  clues 

r e f l e c t i n g  the de po s i t io na l  environment are ove rp r in ted  by new tex tu res  

and m inera log ies .  Although diagenesis i s  p r im a r i l y  p o s td e p o s i t io n a l , i t  

can proceed a t  normal surface temperatures and pressures so th a t  very 

e a r ly  d iagenesis is  common, e s p e c ia l l y  in  carbonate rocks. In t h is  case, 

a l t e r a t i o n  w i l l  r e f l e c t  con d i t ion s  inhe ren t  i n ,  or  a t  le a s t  re la ted  t o ,  

the o r i g i n a l  sedimentary environment. I in ves t ig a te d  the types and se­

quences o f  d iag en e t ic  events recorded in  the Permian rocks p r im a r i l y  to  

d iscover  what environments produced the e a r l i e s t  changes in  the sediments 

and were th e re fo re  most c lo s e ly  re la te d  to  depos i t iona l  co n d i t ion s .

This  chapter descr ibes and in te r p r e ts  the observed e f fe c ts  o f  

d iagenesis in  the f o s s i l i f e r o u s  zones, where carbonate was an important 

component o f  the o r i g in a l  sediments a t  a l l  l o c a l i t i e s .  Foss i ls  are 

e s p e c ia l l y  useful indexes o f  change because, where remains are i d e n t i ­

f i a b l e ,  o r i g i n a l  shapes, tex tu re s  and m inera log ies can be determined 

w i th  r e l a t i v e  c e r t a in t y .  A summary and environmental in te r p r e ta t i o n  

fo l lo w s  a l o c a l i t y - b y - l o c a l i t y  d e s c r ip t io n  o f  d iagene t ic  events and t h e i r  

r e l a t i v e  t im in g .
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Descr ip t ions  and In te rp re ta t io n s  by L o c a l i t y

1. Cedar Creek

a. D e s c r ip t io n :

At Cedar Creek, f o s s i l s  occur in  a 0.5 m to  1 m t h i c k ,  poor ly  

so r te d ,  impure packstone do lom ite .  The f o s s i l  component is  dominated 

by scaphopods, b e l lerophontacean gastropods and pelecypods and a lso 

con ta ins  c r i n o i d ,  bryzoan, brachiopod and probably a lga l  debr is .  The 

o r i g i n a l  carbonate mineralogy was th e re fo re  a ragon i te  w i th  minor h igh- 

and low-Mg c a l c i t e .  The s i l t y ,  sandy m ic ro c rys ta l  1ine matr ix  was 

probably impure l ime mud before d iagenes is .

Foss i l  con tent  throughout the bed i s  f a i r l y  c o n s is te n t ,  but d i f fe ren ces  

in  p rese rva t ion  g ive i t  a very heterogeneous appearance; diagenesis has 

produced a cur ious t h r e e - t i e r e d  v e r t i c a l  zonat ion o f  f o s s i l s  (F ig .  33). 

Weathered surfaces on the u n re s is te n t  upper p a r t  o f  the bed. Zone A, 

d is p la y  sandy concen tra t ions  which, on c lo se r  s c r u t in y ,  tu rn  out to  be 

s a n d - f i l l e d  molds o f  d isso lved  mol lusc s h e l l s .  In the middle .  Zone B, 

the same kinds o f  f o s s i l  molds are f i l l e d  w i th  au th igen ic  s i l i c a .  These 

f o s s i l s ,  and some l o c a l l y  ch e r t - re p la ce d  m a t r ix ,  make t h i s  pa r t  o f  the 

bed more r é s i s t e n t .  At the base, in  Zone C, most o f  the la rg e r  mollusc 

f o s s i l  molds co l la pse d ,  leav ing  on ly  t h e i r  impressions which appear 

sub t ley  on f r e s h ly  broken rock sur faces.

Zone A. The upper zone conta ins  t h in  lenses and s t r in g e rs  o f  sand 

which stand out in  moderate r e l i e f  on weathered surfaces (F ig .  34).

Many sand concen tra t ions  have the shapes o f  gastropods, scaphopods and

99



ZONED FOSSIL PRESERVATION
1.0

. 6 —

«/>

.4 —

ZON E A 
sand cast)

Z O N E  B 
silica casts

Fig. 33. Diagrammatic representa­
t io n  o f  the mollusc f o s ­
s i l  bed a t  Cedar Creek, 
showing the zonat ion o f  
three d i f f e r e n t  types o f  
she l l  p reserva t ion .

Z O N E  C
collapsed molds

Collapsed Molds  

Authigenic  Silica Costs 

Sand C asts

F ig .  34. Sand f o s s i l s  in  Zone A in c lu d in g  pelecypods (p) 
and p a r t i a l l y  co l lapsed scaphopod (s ) .  Finger 
f o r  sca le .
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pelecypods. Some f o s s i l  molds are complete ly  f i l l e d  by sand but others 

were d i s to r t e d  du r ing  p a r t i a l  co l lapse  (F ig .  34) and in  some places by 

shear ing ,  which demonstrate th a t  the sediment was s t i l l  s o f t  when the 

molds formed and f i l l e d .  Most sand pockets and lenses are on ly  vaguely 

suggest ive o f  f o s s i l s ,  burrows or s o lu t io n  c a v i t i e s .  Density o f  sand- 

f o s s i l  c a s ts ,  lenses and s t r in g e rs  ge n e ra l ly  increases upward in  the 

zone, but may be l o c a l l y  very e r r a t i c a l l y  d i s t r i b u t e d .  Sand s t ruc tu re s  

commonly form connected networks, but these could not always be observed

Thin sec t ions  show th a t  mold f i l l i n g  is  f in e -g ra in e d  carbonate- 

phospha te -cher t -quar tz  sandstone cemented by sparse quartz overgrowths 

and do lomite  (F ig .  35). M a tr ix  m i c r i t i c  carbonate a t  mold surfaces de­

formed p l a s t i c a l l y  around sand g ra in s ,  des troy ing  she l l  d e t a i l .  No 

carbonate o r  s i l i c a  cement l i n e s  the w a l ls  o f  these s a n d - f i l l e d  molds 

and do lom ite  te x tu re  is  unchanged from the m a tr ix  to  the cement o f  sand 

f i l l i n g s ,  suggesting th a t  d o lo m i t i z a t io n  accompanied or postdated mold 

format ion  and f i l l i n g .

Zone B. Ten o r  15 cm below the sand cas ts ,  in  Zone B, the f i n e s t  

she l l  d e t a i l s  were preserved by s i l i c a  cement casts .  Although the two 

zones over lap  l o c a l l y  the boundary i s  s t i l l  q u i te  recogn izab le ,  l o c a l l y  

marked by a few cm -th ick  zone which is  barren o f  e i t h e r  type o f  f o s s i l  

(F ig .  36).

S i l ica -cemented casts in  t h i s  zone are the best preserved f o s s i l s

o f  a l l  the l o c a l i t i e s .  In t h in  s e c t io n ,  most o f  the f o s s i l  f i l l i n g s

show geode-type cement growth from the mold sur face inward. Many o f

them are id e n t i c a l  to  tex tu res  descr ibed by Schmitt  (1979) and Schmitt
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Fig .  35. Photomicrograph o f  p a r t  o f  a s a n d - f i l l e d  
pelecypod mold. Zone A. Note w e l l - s o r te d  
quar tz  and c h e r t  g ra ins  and col lapsed m a tr ix  
around them.

Fig. 36. Zonation o f  f o s s i l  p rese rva t ion :  s i l i c a
molds o f  pelecypods and scaphopods a t  the 
base (Zone B),  sand molds a t  the top (Zone 
A) and an area o f  most ly  col lapsed molds 
between them.

Fig .  37. Typ ica l  open s p a c e - f i l l i n g  quar tz  tex tures  
in  a s i l i c a - f i l l e d  f o s s i l  mold. Zone B. A 
m ic r o c r y s ta l l i n e  quar tz  r in d  (m) was over­
grown by cha lcedon i te  (c)  which grades i n ­
ward to  b locky megaquartz (q ) .
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Fig.  35

Fig. 36

Sand Foss i ls

Collapse Zone

S i l i c a  Foss i ls

F ig . 37
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and Boyd (1981) from s i l i c i f i e d  f o s s i l s  in  Permian rocks o f  Wyoming. 

Figure 37 shows quar tz  te x tu re s  t y p ic a l  o f  growth in to  a vo id ;  a th in  

r in d  o f  m ic ro c ry s ta l  1ine quar tz  i s  o v e r la in  inward by chalcedonic

megaquartz which grades to  b locky megaquartz in  the cen te r .  A few o f  the

f o s s i l s  are e n t i r e l y  m ic r o c r y s ta l l i n e  quartz  and i t  i s  poss ib le  th a t  

t h i s  t e x tu re  is  d i r e c t  replacement o f  she l l  m a te r ia l  (Schm it t ,  1979) 

a l though no o r i g i n a l  organ ic  s t ru c tu re s  remain. Chert replaced carbonate 

m atr ix  very  l o c a l l y  in  the v i c i n i t y  o f  densely f o s s i l i f e r o u s  lenses.

Many, but  not a l l ,  o f  these w e l l -p rese rved  f o s s i l s  have a dark, 

extremely f in e - g r a in e d ,  i n c lu s io n - r i c h  ou te r  zone th a t  is  probably a 

remnant m ic r i t e  r im (F ig .  38).  Foss i ls  which had m ic r i t e  rims tend to 

have do lomite  cement a t  the mold sur face.  A few she l l  molds are l ine d  

by do lomite  d is p la y in g  r e l i c t  c a l c i t e  cement tex tu res  (F ig .  38). Loca l ly  

quartz  replaces do lomite  rhombs in  both mold f i l l i n g s  and m a t r ix ,  showing 

t h a t  quar tz  growth fo l low ed  do lomite  growth in  those molds.

In a d d i t io n  to  lo c a l iz e d  mold co l la pse ,  many s h e l ls  in Zone B were

f ra c tu re d  before d i s s o lu t io n  and cement mold f i l l i n g .  Most o f f s e t  is

on ly  a few m i l l im e te r s  and s i l i c a  cement has mended the breaks showing 

th a t  breakage occurred be fore s i l i c a  cementation. Angular f ra c tu re s  

o f f s e t  otherwise undeformed f o s s i l s  and are not v i s i b l y  propagated 

i n to  the surrounding m a t r ix ,  i n d i c a t in g  th a t  breakage preceded she l l  

d i s s o lu t io n  and m a tr ix  l i t h i f i c a t i o n .  Fractures are genera l ly  perpen­

d i c u la r  to  bedding and appear to  be the r e s u l t  o f  compaction deformat ion.

Zone C. The la rge  f o s s i l  molluscs in  Zone C are very sub t ley  pre­

served. The same s ize  f o s s i l s  which have she l l  w a l ls  several m i l l im e te rs
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a.

= .5 mm

b.

F ig .  38. Plane l i g h t  (a) and crossed p o la r iz e rs  (b) 
photomicrographs o f  a f o s s i l  fragment in  
Zone B. Note dark r e l i c t  m ic r i t e  r im (m), 
r a d ia l  f ib ro u s  c a l c i t e  cement ( c ) ,  c a v i t y -  
l i n i n g  do lomite  rhombs ( d ) ,  and blocky mega­
quar tz  f i l l i n g  (g ) .
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t h i c k  in  Zone B are co l lapsed to  less than 1.0 mm o f  f i l l e d  or  open mold 

space. On the outcrop they are ra ised in  low r e l i e f  on broken and 

weathered sur faces.  In t h in  sec t ion  they can be d is t ing u ishe d  sometimes 

by t h in  zones o f  do lomite which appear to  have pseudomorphously replaced 

f ib ro u s  a ragon i te  o r  c a l c i t e  l i n i n g  molds. In Figure 39 the t h in  do lo­

mite l i n e  i s  a l l  t h a t  remains o f  a scaphopod she l l  wa l l  which o r i g i n a l l y  

must have been about 3 mm t h i c k .  Mate r ia l  to  the r i g h t  was o r i g i n a l l y  

in s id e  o f  the sh e l l  and i s  denser and sandier  than m atr ix  m ater ia l  to  the 

l e f t .  The m a tr ix  is  cha rac te r ized  by a jumble o f  dark l i n e a r  zones.

Some o f  these are m ic r i t e  rims which have col lapsed in to  open molds and 

can be t raced i n t o  d o lo m i t e - f i l l e d  f o s s i l  molds. P a r t i a l l y  open molds 

are commonly l i n e d  w i th  euhedral do lomite  rhombs and some are f i l l e d  w i th  

b locky c a l c i t e  cement. An opaque, black substance (dead o i l ? )  coats the 

ins ides  o f  some molds inward from the dolomite and appears to have l o c a l l y  

obs t ruc ted  l a t e r  c a l c i t e  p r e c ip i t a t i o n .  Collapsed or p a r t i a l l y  f i l l e d  

molds are the dominant type o f  p reserva t ion  in  Zone C but a lso occur in  

Zones A and B.

Dolomite is  a minor cement in  a l l  th ree  zones. Coarse, blocky c a l c i t e  

is  the l a s t  a r r i v a l ;  i t  f i l l e d  a few remaining voids and some f ra c tu re s  

th a t  c rosscu t  the e a r l i e r  cements.

b. Discussion:

C rosscu t t ing  r e la t io n s h ip s  o f  she l l  and mold deformation and

successive cement growth as we l l  as lo ca l  m inera log ica l  replacement help

d e f ine  the sequence o f  events. This sequence is  c le a r  except f o r  t im ing

o f  do lom ite  growth which over laps some o f  the o ther  events:
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Fig, 39. The th in  dolomite l in e  (arrow) in th is  picture  
is a collapsed mold in Zone C. I t  separates 
the in te r io r  o f a large scaphopod ( l e f t )  from 
the porous dolomite matrix ( r ig h t )  which con­
tains more collapsed molds, seen as dark l in e a r  
structures.
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1) Soon a f t e r  d e p o s i t io n ,  a ragon i te  f o s s i l s  and some o f  the m atr ix  

d isso lved  and minor c a l c i t e  cement p r e c ip i t a te d .

2) D o lo m i t iz a t io n  probably began dur ing mold format ion or s h o r t l y  

a f te rw a rd .  Newly forming mol d ie  p o ro s i ty  probably enhanced movement

o f  d o lo m i t i z in g  f l u i d s  through the sediment, which was s t i l l  mostly  un- 

l i t h i f i e d .

3) Except where they were propped up by dolomite cement, most o f  

the molds in  Zone C and many elsewhere co l lapsed soon a f t e r  they formed.

4) Molds in  Zone A were f i l l e d  w i th  sand and deformed p l a s t i c a l l y  

w h i le  the surrounding m a tr ix  was s t i l l  most ly  u n l i t h i f i e d .

5) Although there may be minor ove r lap ,  major d o lo m i t iz a t io n  

stopped be fore  s i l i c a  p r e c ip i t a t i o n  began. By t h is  t ime the rock was 

becoming l i t h i f i e d ,  w i th  p e rm e a b i l i t y  l a r g e ly  conf ined to  connected 

mol d ie  p o ro s i t y  in  the middle zone which had escaped sand f i l l i n g  and 

co l la p se .  The most permeable reg ion would be the na tura l  path f o r  s i l i c a  

bearing s o lu t io n s ,  and th a t  is  where most o f  the au th igen ic  s i l i c a  grew. 

Some carbonate m a tr ix  was replaced and sands in  Zone A were p a r t i a l l y  

cemented by quar tz  overgrowths.

6) F i n a l l y ,  minor b locky c a l c i t e  grew as the l a s t  cement.

2. La March Gulch North

a . D e s c r ip t io n :

Foss i l  mol luscs a t  t h i s  l o c a l i t y  l i e  in  an impure p e l l e t a i  wacke- 

stone do lom ite  a t  the top o f  a se r ies  o f  d o lo m i t e - t o - s i1ts tone un i ts  

(F ig .  8 ) .  Recognizable f o s s i l s  are dominantly gastropods and scaphopods; 

o r i g i n a l  she l l  m a te r ia l ,  which was most ly  a ra g o n i te ,  has vanished along

108



w i th  s h e l l  te x tu re s  and s t r u c tu re s .  The very f in e -g ra in e d  dolomite 

m a t r ix  was probab ly  m ic r i t e  mud before d iagenesis .

Two types o f  p re se rva t ion  emphasized (o r  poss ib ly  created) an 

apparent bimodal s iz e  d i s t r i b u t i o n  o f  f o s s i l s  (F ig .  40).  Most o f  the 

la rg e r  f o s s i l s  are p a r t  o f  a connected network o f  molds in  gra in-supported 

lenses which are f i l l e d  w i th  f in e -g ra in e d ,  l i g h t  gray do lomite .  Smaller 

f o s s i l  molds ( le ss  than about 0.5 cm la rg e s t  dimension) are l in e d  w i th  

coarse euhedral do lom ite  and f i l l e d  w i th  b locky c a l c i t e .

Large F o s s i l s . Dolomite f i l l i n g  the la rg e r  f o s s i l s  and connecting 

vuggy pore spaces in  the m atr ix  i s  equ ig ranu la r  and anhedral to  subhedral 

w i th  c r y s ta l  diameters u su a l ly  between 0.02 mm and 0.05 mm. Crysta l  

f a b r i c  o f  the f o s s i l - f i l l i n g  do lomite grades in to  m atr ix  do lom ite ,  some­

times across a dark r e l i c t  m ic r i t e  r im ,  but the boundary between f o s s i l s  

and m a tr ix  is  e a s i l y  d is t in g u is h a b le  because o f  the darker co lo r  o f  the 

m atr ix  which conta ins  f i n e l y  disseminated organic  m a te r ia l ,  p y r i t e ,  quartz 

sand and s i l t ,  phosphor i te  gra ins and small f o s s i l s .  These m a te r ia ls  are 

absent in  the f o s s i l  do lom ite  except where they occur in  angular ,  0.1 mm 

to  1.0 mm s ized ,  f l o a t i n g  fragments o f  m a t r ix - typ e  dolomite (F ig .  41).

The clean do lom ite  f i l l s  la rge  f o s s i l s  and some adjacent pores and, 

very r a r e l y ,  occurs above geopeta l ,  m a t r ix - ty p e  dolomite f i l l i n g  primary 

void spaces. I t  i s  never found in  small f o s s i l s  and does not form beds 

or o th e r  pr imary sedimentary packages in  the surrounding rocks.

Small F o s s i l s . Wel l - fo rmed, rhombohedal do lomite  cement c r y s ta ls  

(commonly 0.05 mm to  0.1 mm in  d iameter) l i n e  the w a l ls  o f  most small 

f o s s i l s  and a few la r g e r  ones which are not f i l l e d  w i th  the dolomite 

discussed above (F ig .  42).  Many o f  the smal le r  molds have r e l i c t  m ic r i t e
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Fig .  40. Large th in  sec t ion  showing 
bimodal f o s s i l  s ize  d i s t r i ­
bu t ion  a t  La March Gulch 
North. A la rge broken scapho­
pod in  the lower r i g h t  corner 
con tras ts  w i th  sm al le r  fo s ­
s i l s  and f o s s i l  hash in  most 
o f  the s l i d e .  Scale = .5 cm.

= 1 mm '

Fig .  41. Photomicrograph showing mold f i l l i n g  o f  a 
la rge  scaphopod on the l e f t  ( l i g h t  c o lo r )  
and do lom ite  m a t r ix  on the r i g h t .  Pieces 
o f  m a t r ix - t y p e  do lomite  and d e t r i t a l  quartz  
g ra ins  f l o a t  in  the mold f i l l i n g .
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b.

F ig .  42. Photomicrograph o f  one o f  the f o s s i l s  w i th  
do lomite  and c a l c i t e  cement f i l l i n g  ty p ic a l  
o f  small f o s s i l s  a t  La Marche Gulch North. 
Expanded view (b) shows d e ta i l s  o f  dolomite 
l i n i n g  and twinned c a l c i t e  f i l l .
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r ims.  Blocky twinned c a l c i t e  f i l l s  most remaining mold space and ex­

te n s ive  macro- and m ic ro - f ra c tu re s ,

b. D iscussion:

Both la rge  and small a ragon i te  s h e l ls  in  the sediment d isso lved 

in  a very  e a r ly  phase o f  d iagenesis as they d id  a t  Cedar Creek. D is­

s o lu t io n  o f  f o s s i l s  is  in d ica te d  by a combination o f  f a c to r s :  1) o r ig in a l

mol lusc she l l  m inera logy,  tex tu re s  and s t ru c tu re s  are absent; 2) mater ia l  

f i l l i n g  small f o s s i l s  demonstrates cement-type growth; 3) angular f r a g ­

ments o f  m a tr ix  do lom ite  and d e t r i t a l  m a te r ia l  w i th in  she l l  w a l ls  o f  

l a r g e r  f o s s i l s  must have entered open spaces; 4) in  some places col lapsed 

in te rn a l  sediment f i l l i n g s ,  e s p e c ia l l y  o f  scaphopods, l i e  touching outer 

w a l ls  o f  s h e l l  molds. D is s o lu t io n  also appears to  have l o c a l l y  a f fec ted  

m ic r i t e  mud w i t h in  the m a tr ix  ad jacent  to  moldic p o ro s i ty .  The se d i ­

ment was appa ren t ly  s t i f f ,  but most ly  u n l i t h i f i e d ,  dur ing t h i s  stage 

because f ra c tu re s  are uncommon around col lapsed molds.

Diagenesis a t  La Marche Gulch fo l lowed t h i s  sequence:

1) Aragonite s h e l l s  and some m a tr ix  ad jacent to  the s h e l ls  d i s ­

so lved, poss ib ly  accompanied by p a r t i a l  c a l c i t e  cementation o f  the m a tr ix .  

The sediment was s t i f f  enough to  mainta in  many open molds but as moldic 

p o ro s i t y  increased, i t  became l o c a l l y  unstab le and col lapsed in to  open 

spaces.

2) Carbonate s i l t  o r  sand con ta in ing  some angular fragments o f  m a tr ix  

comple te ly  f i l l e d  la rge  connected moldic p o ro s i ty .

3) D o lo m i t iz a t io n  a l te re d  the m a tr ix  and m o l d - f i l l i n g  carbonate 

and la rge  euhedral do lomite  c r y s ta ls  grew a t  the surfaces o f  small molds 

and o th e r  vo ids .
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4) A f t e r  l i t h i f i c a t i o n ,  b locky c a l c i t e  entered remaining spaces 

through a f i n e  f r a c tu r e  system.

3. Sappington Canyon

a. D e s c r ip t io n :

C l i f f  faces a t  Sappington Canyon d isp lay  s t r i k i n g l y  weathered 

outcrops o f  wh i te  c a l c i t e  and s i l i c a  f o s s i l s  in  brown sandstone. The 

o r i g i n a l  sediment was a m ix tu re  o f  most ly  a ragon i te  s h e l ls  in  a carbonate- 

phospha te -cher t-quar tz  sand m a t r ix .  Minor co n s t i tu e n ts  inc lude  algae 

and o th e r  p la n t  fragments, s i l i c e o u s  carbonate mud i n t r a c l a s t s ,  scat tered 

ooids and rare  s i l i c e o u s  sponge sp icu les .

Aragon ite  d i s s o lu t io n  occurred a t  t h i s  l o c a l i t y  a lso ;  f o s s i l s  lack 

o r i g in a l  she l l  m ineralogy and organ ic  in te rn a l  s t ru c tu re s  and mater ia l  

in s id e  the she l l  w a l ls  cons is ts  o f  layers  o f  vary ing cement minera log ies 

and growth forms.

The ou te r  sur face o f  many f o s s i l s  i s  a do lom it ized  r e l i c t  m ic r i t e  

r im. In a d d i t i o n ,  o r  a l t e r n a t e l y ,  a s in g le  la y e r  o f  carbonate cement 

c r y s ta ls  evenly l i n e s  many o f  the mold w a l ls  (F ig .  43). Long axes 

(0.1 mm to  0.3 mm) o f  these c r y s ta ls  fan out  s l i g h t l y  and become t h ic k e r  

away from the w a l l .  Crys ta l  leng th :b read th  r a t i o  i s  up to  5:1.  Ter­

minat ions are s l i g h t l y  f l a t t e n e d .  Under crossed p o la r i z e r s ,  t h in  

sec t ions  o f  t h i s  m a te r ia l  e x t in g u ish  r a d i a l l y  but the " c r y s ta l s "  have a 

fuzzy composite appearance. This cement is  most l i k e l y  a pseudomor­

phously d o lo m i t iz e d ,  coarse, r a d ia l - f i b r o u s  c a l c i t e  cement. Carbonate 

in c lu s io n s  a t  the boundaries between sand gra ins  and s i l i c a  overgrowth or

c a l c i t e  cement may be remmants o f  another e a r ly  c a l c i t e  cement.
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Fig. 43. P lan e-lig h t photomicrograph showing a com­
plete sequence of cements f i l l i n g  foss il  
mold a t  Sappington Canyon. Dolomitized ra ­
d ia l fibrous c a lc ite  cement lin in g  (arrow) 
was overgrown by pseudocubically-terminated  
quartz crystals(Q ) and chalcedonite(C). The 
remainder of the mold is f i l l e d  with blocky 
c a lc ite .

= 1 mm

Fig. 44. P lan e-ligh t photomicrograph of foss il mold 
f i l l i n g  s im ila r  to Fig. 43. Note the d is t r i  
bution o f quartz f i l l i n g  (white) in both 
figures along part of the wall surface, 
thickening in corners in a manner analogous 
to vadose c a lc ite  cement.
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S i l i c a  p re c ip i t a te d  as s yn ta x ia l  overgrowths on quartz  gra ins  in  

the m a t r ix  sand and as cement in  f o s s i l  molds. I t  is  d i f f i c u l t  to  de­

termine the o r i g i n a l  ex ten t  o f  cement around quartz  gra ins because o f  

widespread embayment by l a t e r  c a l c i t e  cement. W ith in  f o s s i l  molds, 

s i l i c a ,  in  the form o f  chalcedonic and b locky megaquartz and minor c h e r t ,  

grew unevenly,  and d id  not g e n e ra l ly  f i l l  the c a v i t i e s  complete ly .  I t  

appears t h a t  s i l i c a - p r e c i p i t a t i n g  f l u i d s  dripped along a few wa l ls  or  

concentrated in  corners (F ig .  44).  S i l i c a  forms and tex tu res  vary 

s y s te m a t ic a l l y  from the edge o f  the cemented mold surface inward (F igs.  

43, 44) .  Very l o c a l l y ,  che r t  replaces some o f  the carbonate cement rim 

described above. Inward, megaquartz w i th  euhedra l,  o f ten  pseudocubic 

te rm ina t ions  (F igs .  43, 44) i s  o v e r la in  by chalcedonic megaquartz which 

f i l l s  many c a v i t i e s  o r  grades inward to  b locky megaquartz.

Extensive growth o f  very  coarse b locky ,  twinned c a l c i t e  cement f i l l s  

remaining p o ro s i ty  in  most f o s s i l  molds and i s  a much more abundant 

cement than s i l i c a  (F igs .  43, 44) .  C a lc i te  f i l l s  spaces above geopetal 

f i l l i n g s  and is  a common cement in  the sand m atr ix  where i t  is  l o c a l l y  

p o i k i l i t i c  and embays quar tz  sand gra ins  and overgrowth cement except 

where gra ins are p ro tec ted  by o o l i t i c  coa t ings .  Small,  c a l c i t e - f i 11ed 

f ra c tu re s  c rosscu t  e a r l i e r  tex tu re s  and s t ru c tu re s  and appear to have 

provided access f o r  the c a l c i t e - p r e c i p i t a t i n g  f l u i d s  in to  an a l ready-  

indurated rock.

Some f o s s i l s  d is p la y  the complete sequence o f  cements described

above but most lack  one o r  more phases. S i l i c a  is  a major co n s t i tu e n t

o f  f o s s i l  molds a t  on ly  one ho r izon ,  which is  no more than a few meters
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t h i c k  (F ig .  15). L o c a l ly  in  t h i s  zone, f o s s i l s  w i th  dominantly s i l i c a  

cement s i t  ad jacen t  to  o thers  w i th  dominantly  c a l c i t e ,  o r  mixed cements 

(F ig .  45) .  There are a lso  ta b u la r  areas o f  s i l i c i f i e d  f o s s i l s  su r ­

rounded by c a l c i t e  f o s s i l s .  Capric ious movement o f  s i l ica -cem en t ing  

groundwater through connected openings in  a p a r t i a l l y  cemented sand­

stone might account f o r  t h i s  d i s t r i b u t i o n .  More commonly, very large 

b locky c a l c i t e  i s  the on ly  cement.

These rocks appear to  lack  pr imary dolomite cement but a l a t e r  

d o lo m i t i z a t io n  event replaced a l l  carbonate in  the rock except the 

b locky c a l c i t e  cement, sometimes preserv ing o r i g in a l  tex tures  o f  rare 

ooids (F ig .  46 ) ,  m i c r i t i c  r im s ,  carbonate sand g ra ins  and e a r ly  c a l c i t e  

cement.

Several deformat ion events can be d is t in g u is h e d .  Some f o s s i l s  were 

broken and e x te n s iv e ly  bored before de po s i t io n .  More minor breakage 

occurred a f t e r  a ragon i te  d i s s o lu t i o n ,  as unsupported m ic r i t e  rims 

co l lapsed in to  newly created molds (F ig .  47). The rock was not ye t  

complete ly  indurated because f ra c tu re s  in  the f o s s i l s  do not extend 

in t o  the m a t r ix .  A f t e r  s i l i c a  cementation and d o lo m i t i z a t io n ,  f ra c tu re s  

in  a l i t h i f i e d  sediment cu t  across both f o s s i l s  and m a t r ix ,

b. D iscussion:

Ear ly  d iagenesis o f  t h i s  f o s s i l i f e r o u s  sandstone was c h a ra c te r i ­

zed by a s c a r c i t y  o f  cementing m a te r ia l .  L o ca l ly  der ived carbonate 

from d is s o lv in g  s h e l ls  d id  not complete ly  indu ra te  the sands and minor 

compaction and co l lapse  cont inued. S i l i c a  cement was ra re ly  s u f f i c i e n t

to f i l l  c a v i t i e s  even in  the zone where i t  i s  most abundant. P r io r  to
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Fig .  45. Mixed cement types a t  Sappington Canyon.
Recessively  weathering f o s s i l s  are c a l c i t e  
f i l l e d  (eg. the b e l lerophon, B, a t  upper 
l e f t ) ;  s i l i c a - f i l l e d  f o s s i l s  are ra ised in 
r e l i e f  (eg. pelecypods, P, and scaphopods, 
S, a t  bottom c e n te r ) .  Approximately one 
h a l f  ac tua l  s ize .

F ig.  46. Photomicrograph o f  sandstone m atr ix  a t  
Sappington Canyon showing a rare  w e l l -  
preserved do lom it ized  ooid (arrow).

F ig. 47. Photomicrograph o f  a f o s s i l  mold from 
Sappington Canyon. The r i g h t  s ide c o l ­
lapsed (arrow) a f t e r  the ra d ia l  f ib ro u s  
cement r im formed but before l i t h i f i c a ­
t i o n  and b locky c a l c i t e  cementation.
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blocky c a l c i t e  cementation the rock had very high moldic p o r i s i t y  and 

l o c a l l y  high in te r g r a n u la r  p o ro s i ty .

This sequence o f  d ia g e n e t ic  events emerges:

1) Mollusc s h e l l s  were s e le c t i v e l y  leached and the d isso lved ca r ­

bonate was p a r t i a l l y  r e p re c ip i t a te d  as c a l c i t e  around sand gra ins and 

around the i n t e r i o r  w a l ls  o f  some molds.

2) S i l i c a  cementation and d o lo m i t i z a t io n  fo l low ed .

Evidence to  d i f f e r e n t i a t e  these two events s e q u e n t ia l l y  is  inconc lus ive

3) P o r e - f i l l i n g  b locky c a l c i t e  cement developed in  remaining 

in te rg ra n u la r  and mold ic  p o ro s i t y  a f t e r  the rock was indurated and 

f r a c t u r e d .

4. Dev i ls  S l ide

a. D e sc r ip t io n :

The Devi ls  S l ide  l o c a l i t y  conta ins f o s s i l s  o f  the molluscan 

assemblage in  two beds which are w ide ly  separated s t r a t i g r a p h i c a l l y  

(F ig .  20).

Lower F o s s i l s . The lower bed, which inc ludes a few bellerophon- 

taceans and a t  le a s t  one probable scaphopod, l i e s  in  the conglomerat ic ,  

d o lo m i t i c  sandstone bed d i r e c t l y  above the Pennsylvanian sandstone and 

below a scour su r face .  F oss i ls  a t  the top o f  t h is  bed are f i l l e d  w i th  

sand, s im i l a r  to  the p re se rva t ion  in Zone A a t  Cedar Creek. Toward the 

middle o f  the f o s s i l i f e r o u s  bed p rese rva t ion  is  l i k e  th a t  a t  Sappington 

Canyon where b locky c a l c i t e  cement re ta in s  f o s s i l  shapes, but no i n ­

te rn a l  she l l  d e t a i l s .
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Upper F o s s i l s . Near the top o f  the Permian depos i t  a t  Devils 

S l ide  a tongue o f  do lom ite  conta ins abundant be!lerophontacean gas­

tropods in  a t h in  zone near i t s  base. Foss i ls  are preserved as open 

or s i l i c a - f i l l e d  molds. Sparse chalcedony spherules w i th  separate 

laye rs  o f  both l e n g th - f a s t  and leng th -s low  chalcedony nucleated and 

grew on the i n t e r i o r  w a l ls  o f  molds (F ig .  48). P y r i te  c ry s ta ls  formed 

a t  boundaries between chalcedony la y e rs ,  w i th in  le n g th - fa s t  layers  and 

a lso  in  the surrounding carbonate. S t rong ly  undulose blocky megaquartz 

grades inward from the chalcedony and f i l l s  most o f  the remaining 

space. These s i l ica -cem en ted  molds apparen t ly  lacked m ic r i t e  rims and 

quar tz  and chalcedony f i l l i n g s  are in  very uneven con tac t  w i th  the 

surrounding sediment.

Sandy d o lo m i t i c  phosphor i te  f i l l s  body c a v i t i e s  in  some s h e l l s .

In places molds co l lapsed leav ing  the phosphor i te  s te inkern  in  d i r e c t  

con tac t  w i th  the do lomite  m a t r ix  (F ig .  49).  Elsewhere phosphatic 

s te inkerns  surv ive  w i th  open mold space around them.

Some molds surv ived w i th  reasonable good d e t a i l ,  but others are 

g r e a t l y  deformed by co l lapse  and shear ing.  One gastropod she l l  appears 

to have been p a r t l y  unco i led  du r ing  compaction, apparent ly  by shearing 

w i th in  the sediment (F ig ,  49).

Very minor b locky c a l c i t e  cemented some o f  the remaining open space 

in  the f o s s i l  molds,

b. D iscussion;

In the upper f o s s i l i f e r o u s  zone a t  Dev i ls  S l ide  aragoni te  she l ls

d isso lved  before the sediment was very we l l  indu ra ted .  Molds were
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a.

b.

F ig.  48. Photomicrograph (a) and expanded view (b) o f
be! lerophontacean mold f i l l i n g  a t  Devi ls  S l id e ,  
upper f o s s i l  zone (crossed p o la r iz e rs  w i th  
quar tz  p la t e ) .  Layered quartz  spherules conta in 
both leng th -s low  and le n g th - fa s t  chalcedony 
w i th  p y r i t e  concentrated a t  some laye r  bound­
a r ie s .  These chalcedony spherules are sparsely 
d i s t r i b u te d  along one wa l l  o f  the mold (a) and 
b locky megaquartz f i l l s  the r e s t  o f  the c a v i ty .

121



>(

Fig. 49. Cut slab, mottled dolomite 
of the upper b e llerophon­
tacean zone (about 17,9 m 
in the measured section),  
showing fossil molds that 
are p a r t ia l ly  f i l l e d  with 
s i l ic a  and p a r t ia l ly  co l­
lapsed ( l e f t  center). The 
lower foss il appears to 
have been unrolled and 
shows tensional fractures  
(arrows). Many of the black 
specks are fragments or cut 
slices of small phosphatiz- 
ed gastropod steinkerns. 
Scale = 1 cm.

Fig. 50. Photomicrograph of dolomite textures and 
residual petroleum (b la ck ), Boulder River
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deformed by s e t t l i n g  o f  unstab le sediments and the uneven boundary be­

tween mold cement and m a tr ix  in d ica te s  th a t  c r y s ta ls  e i t h e r  grew in to  the 

s o f t  m a t r ix  o r  i t  deformed around them dur ing co l lapse .

Diagenesis a t  Dev i ls  S l id e  inc ludes these events, which are in  

sequent ia l  o rder  except f o r  number 4:

1) A ragon ite  s h e l l s  d isso lved .

2) Quartz cement grew in  f o s s i l  molds.

3) Blocky c a l c i t e  f i l l e d  the few remaining spaces in  molds.

4) D o lo m i t iz a t io n  is  d i f f i c u l t  to  place in  the sequence; i t  was 

probably e i t h e r  before a ragon i te  d i s s o lu t io n  or  a f t e r  s i l i c a  cementation 

since these molds are not l ined w i th  rhombohedral dolomite cement. In ­

d iv id u a l  do lom ite  rhombs are common in  the phosphate mud and a lso occur 

in  c h e r t ,  f u r t h e r  com p l ica t ing  the i n t e r p r e ta t i o n .  Perhaps a t  t h i s  

l o c a l i t y  there  was more than one episode o f  d o lo m i t iz a t io n  or p rev ious ly  

do lom it ized  sediments may have been brought here from o ther  environments.

5. Boulder River

a. D e sc r ip t io n :

F oss i ls  occur here in  two u n i ts  (F ig .  27). The lower conglomera­

t i c ,  d o lo m i t i c  sandstone is  dominated by bel 1erophontaceans and the 

upper impure, packstone do lomite  i s  dominated by scaphopods, although 

both u n i t s  con ta in  bel 1erophontaceans, scaphopods and a few pelecypods. 

Diagenesis a t  t h i s  easternmost l o c a l i t y  i s  another vers ion o f  the now- 

f a m i l i a r  theme.

E a r ly  d i s s o lu t io n  and co l lapse  o f  the o r i g i n a l l y  a ragon i te -she l led  

f o s s i l s  i s  evidenced by absence o f  i n te rn a l  she l l  s t ru c tu re s ,  d i s t o r t i o n
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o f  s h e l l  forms, a t te n tu a t io n  o f  some she l l  w a l ls  (F ig .  29) and broken 

r e l i c t  m i c r i t e  r ims. Mold co l lapse  does not appear to  have f ra c tu re d  

the m a t r ix  which must have been q u i te  p l a s t i c  dur ing t h is  event.  Much 

o f  the f o s s i l  m a te r ia l  i s  u n id e n t i f i a b le ;  except f o r  a few s i l i c i f i e d  

mol luscs none o f  the la rg e r  f o s s i l s  are w e l l -p rese rved .  The s i l i c i f i e d  

f o s s i l s  are worn and sca t te red  about in  a conglomeratic  zone and were 

probably reworked from e a r l i e r  rocks o r  sediments.

Dolomite l i n e d  the f o s s i l  molds and formed throughout the rock in  

c r y s ta ls  o f  micron scale to  more than 1.0 mm diameter. C rys ta ls  are 

la rg e s t  and best developed where they grew in to  open pore spaces 

(F ig .  50).

In the upper bed a b r i t t l e ,  black m ate r ia l  which is  probably 

petroleum res idue f i l l s  pores inward from the dolomite cement (F ig .  50). 

The same m a te r ia l  i s  present in  the lower bed, but less abundantly.

Some broken rock surfaces separate along these hydrocarbon boundaries, 

producing r e l i e f  faces o f  f o s s i l  forms.

Coarsely c r y s t a l l i n e ,  b locky ,  twinned c a l c i t e  is  the l a t e s t  major 

cement a d d i t io n ,

b. Discussion:

At Boulder R iver  the d iagene t ic  sequence was:

1) Aragon ite  s h e l ls  d isso lved ,  fo l lowed or accompanied by 

d o lo m i t i z a t io n  o f  m a t r ix  carbonate and growth o f  euhedral dolomite cement 

l i n i n g  mold w a l l s ;  most molds co l lapsed.

2) Petroleum flowed through the rock and l e f t  a residue in  

many pore spaces.
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3) C a lc i te  was in troduced as a l a s t  event and f i l l s  some re ­

maining vo ids .

Summary and I n t e r p r e ta t io n

The sequence o f  d iagene t ic  events is  s im i la r  a t  a l l  l o c a l i t i e s  

(Table 9 ) :

1) E a r ly  and ub iqu i tous  d is s o lu t io n  o f  a ragoni te  she l ls  formed 

molds w i t h in  a s t i f f e n e d  o r  p a r t i a l l y  cemented sediment.

2) Molds were p a r t i a l l y  o r  complete ly  f i l l e d  w i th  cement and/or 

d e t r i t a l  m a te r ia l  w i th  v a r ia t io n s  t h a t  cha rac te r ize  the in d iv id u a l  

l o c a l i t i e s .

3) Carbonate in  the rocks was do lom it ized  and euhedral dolomite 

grew around open spaces in  an event th a t  fo l lowed and/or accompanied 

mold fo rmat ion  and f i l l i n g .

4) Blocky, tw inned, u su a l ly  coarse-grained c a l c i t e  cement was 

in troduced a f t e r  1i t h i f i c a t i o n .

The r e p e t i t i o n  o f  t h i s  d iag en e t ic  sequence a t  the f i v e  l o c a l i t i e s  

is  p a r t i c u l a r l y  s t r i k i n g  because o f  the d i f fe rences  in o r ig in a l  sed i ­

ments and in fe r re d  d e p o s i t io n a l  environments. A c lose r  look a t  some o f  

these events helps exp la in  the common d iagene t ic  o v e rp r in t  as wel l  as 

some o f  i t s  v a r i a t i o n s .

1. Mold Formation

Shell  molds present two quest ions :  Why did the o r ig in a l  she l ls

d isso lve  and how d id  the molds remain open in  u n l i t h i f i e d  sediments 

long enough f o r  the var ious f i l l i n g s  to  preserve t h e i r  d e ta i ls ?
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SUMMARY OF DIAGENETIC EVENTS

Locality

Fossil
Mold
Formation

Early
Calcite
Cement

S i lt  or
Sand
Casts

Silica
Cement Dolomite

Petrol. 
Migration

Blocky
Calcite
Cement

CC X X X X. X X X

SC X X X X X

LG X ? X X X

DS X ? X X X X

BR X ? X X X

LO
CNJ

Table 9. Summary of diagenetic events at individual loca lit ies , listed in interpreted chronological 
order from le f t  to right, except timing of dolomite growth, which is ambiguous at most localities  
and probably multiphase at some.



The o r i g i n a l  carbonate in  these rocks was undoubtedly a com­

b in a t io n  o f  a ragon i te  mol lusc s h e l l s ,  a lga l  fragments and mud; high-Mg 

c a l c i t e  and/or  a ragon i te  bryzoans; high-Mg echinoderm she l ls  and low- 

Mg c a l c i t e .  This mineral assemblage is  meta-stable in  warm shallow sea 

water which i s  supersaturated f o r  a l l  th ree forms. With t ime, aragonite 

and high-Mg c a l c i t e  in  marine sediments normal ly  re v e r t  to  low-Mg c a l ­

c i t e  (S te h l i  and Hower, 1961), o f te n  preserv ing in te rn a l  she l l  s t ruc tu res  

by d i r e c t  replacement.  However, in  these Permian rocks, cement te x tu re s ,  

co l lapsed she l l  forms and loss o f  in te rn a l  she l l  s t ruc tu re s  demonstrate 

th a t  a ragon i te  s h e l l  m a te r ia l  was complete ly  d isso lved very e a r ly  in  the 

d iagene t ic  sequence. Therefore the re leva n t  quest ions are ,  "what d ia ­

genet ic  environments are charac te r ized  by CaCO^ undersaturated waters 

which would d isso lve  a ra go n i te ,  and which one operated here?

Whereas warm shallow marine waters are CaCO  ̂ sa tu ra ted ,  cold shallow 

seas may not be. Alexandersson (1978) documented d is s o lu t io n  tex tures  

on carbonate g ra ins  in  the North Sea, but h is  example o f  marine d i s ­

s o lu t io n  cannot apply  to the rocks o f  t h i s  study because: 1) Alexandersson

noted d i s s o lu t io n  tex tu re s  on a l 1 carbonate gra ins regardless o f  phase and

2) paleogeographic reco n s t ru c t io n s  based on faunal and paleomagnetic 

data in d ic a te  t h a t  t h i s  area occupied a warm, lo w - la t i t u d e  p o s i t io n  

dur ing the Permian (F ig .  2 ) .

Undersaturated meteor ic waters a lso d isso lve  carbonate. According 

to  a model f i r s t  developed by Land (1966) and Land, Mackenzie and Gould 

(1967),  dur ing f resh  water diagenesis o f  a l ime sediment aragoni te  is

s e l e c t i v e l y  leached and low-Mg c a l c i t e  p re c ip i t a te d  contemporaneously.
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In a rock composed o f  both aragon i te  and c a l c i t e  polymorphs, so lu t ions  

tend toward s a tu ra t io n  f o r  the more so lub le  aragoni te  and become super­

sa tu ra ted  f o r  the less so lub le  c a l c i t e ,  thus d is s o lv in g  aragonite  and 

p r e c ip i t a t i n g  c a l c i t e  (see work by Garre ls e t  jil^, 1949 ; Garrels and 

Dreyer,  1952). Sometimes most o f  the d isso lved carbonate is  p r e c ip i ­

ta ted  l o c a l l y  (H a r r is  and Matthews, 1968) q u ic k ly  developing a r i g i d  

framework th a t  prevents mold co l lapse  (Matthews, 1968; Semeniuk, 1971).

In o th e r  cases molds co l lapse  e i t h e r  because there is  not enough aragonite 

o r i g i n a l l y  present to  prov ide s u f f i c i e n t  carbonate f o r  l i t h i f i c a t i o n , 

or  because carbonate is  washed out o f  the system. Although l a t e r  do lo ­

m i t i z a t i o n  makes t h i s  event d i f f i c u l t  to  t ra c e ,  a t  le a s t  two l o c a l i t i e s  

con ta in  remnant evidence o f  minor e a r ly  c a l c i t e  cementation. Exposure 

to  meteor ic  water could th e re fo re  both exp la in  the p re fe re n t ia l  d i s ­

s o lu t io n  o f  a ragon i te  s h e l ls  and p a r t i a l l y  account f o r  mold s t a b i l i t y .

M ic r i t e  envelopes, which su rv ive  aragon i te  she l l  d is s o lu t io n  and 

have enough mechanical s t reng th  to  hold molds open in  an u n l i t h i f i e d  

sediment (B a r th u rs t ,  1964), a lso must have con t r ibu ted  to  mold s t a b i l i t y .  

Bathurs t  (1976) summarized research which shows th a t  m ic r i t e  rims r e s u l t  

from t i n y  dense borings o f  e n d o l i t h i c  a lgae, fungi and perhaps ba c te r ia .  

Since a lga l  bor ings are r e s t r i c t e d  to  the pho t ic  zone, and since the 

abundance o f  m ic r i te - r im m ed s h e l ls  has been seen to  reduce w i th  depth 

(Sw incha t t ,  1969), these rims have been used as in d ic a to rs  o f  sha l low, 

sediment-water in te r f a c e  a l t e r a t i o n .  However, non-algal e n d o l i th ic  

a c t i v i t y  has now been documented to  as much as 160 cm below the sediment 

sur face (May and Perk ins ,  1979). Since i t  i s  impossible to  i d e n t i f y  the
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type o f  bor ings in  these r e c r y s t a l l i z e d  Permian rocks,  m ic r i t e  rims 

can be used as sugges t ive ,  but not conc lus ive  evidence th a t  the she l ls  

spent some t ime in  sha l low water.

2. Mold F i l l i n g

Once open molds formed, the spaces were a v a i la b le  to  be f i l l e d  by 

c l a s t i c  m a te r ia l  and var ious  cements. F i l l i n g s  a t  each l o c a l i t y  provide 

a unique d e ta i le d  account o f  changing chemical and physical cond i t ions  

w i t h in  the sediments and f u r t h e r  ref inement o f  environmental i n t e r ­

p re ta t io n s .

Sandstone casts o f  a ragon i te  s h e l ls  l i k e  those a t  Cedar Creek and 

Dev i ls  S l id e  have been i d e n t i f i e d  in  Permian carbonates in  Wyoming 

(Boyd and Newell ,  1972) and in  Ordovic ian rocks o f  Norway (Hanken, 1979). 

This apparen t ly  ra re  (o r  perhaps unrecognized) form o f  p reserva t ion  is  

a s t rong in d i c a t o r  o f  e a r l y  diagenesis in  the meteoric  vadose zone 

(Hanken, 1979). She l ls  which were o r i g i n a l l y  in  g ra in  support formed 

a connected network o f  open molds dur ing aragon i te  d i s s o lu t io n .  Burrows, 

bor ings and loca l  m a t r ix  d i s s o lu t io n  a lso con tr ibu ted  to  the network. 

Where open vugs were exposed a t  the bed surface they trapped w e l l - s o r te d  

f in e  sand, and the sand g ra d u a l ly  f i l l e d  up a l l  o f  the connected spaces. 

Only downward-percolat ing water cu r ren ts  in  the vadose zone would have 

been f o r c e fu l  enough to  move sand gra ins  l a t e r a l l y  through rock p o ro s i ty  

in to  the molds, o f te n  comple te ly  f i l l i n g  them (Dunham, 1969; Hanken, 

1979). At D ev i ls  S l id e ,  t runcated sand casts a t  the bed surface provide 

a d d i t io n a l  evidence o f  exposure.
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At La Marche Gulch North ,  c lean equ ig ranu la r  do lom ite ,  o r  the ca r ­

bonate i t  rep laced ,  s e le c t i v e l y  f i l l s  on ly  la rge  pore spaces. I t  must 

have a r r i v e d  a f t e r  she l l  d i s s o lu t io n  and before the d o lo m i t iz a t io n  event 

t h a t  l e f t  rhombohedral cement l i n i n g s  on remaining c a c i t i e s .  There is  

no t e x tu r a l  evidence th a t  the un iform dolomite grew as a cement and i t  

cannot have formed by d i r e c t  replacement o f  she l l  m ate r ia l  s ince i t  con­

ta in s  f l o a t i n g  fragments o f  m a t r ix - ty p e  do lom ite .  Probably the dolomite 

entered connected secondary pore spaces as s i l t -  o r  sand-sized ca r­

bonate g ra ins  which were too la rge  to  move in to  the smal le r  vo ids.

Dunham (1969) descr ibed an in te rn a l  c a l c i t e  s i l t  in  a Permian carbonate 

re e f  which could be analogous, although the m ate r ia l  he described is  

undo lom it ized .  He assigned a vadose o r i g i n  to  the s i l t  f i l l i n g  p a r t l y  

because o f  the need f o r  an ene rge t ic  t ra n s p o r t  mechanism as discussed 

above. Dunham (1969) be l ieved th a t  the s i l t  he s tud ied formed i n t e r n a l l y  

by mechanical and chemical ac t io n  o f  vadose water on the primary sediment. 

Since the type o f  do lom ite  which f i l l s  the la rge  pores a t  La Marche 

Gulch occurs nowhere e lse  in  surrounding and nearby rocks,  i t  was probably 

a lso  der ived i n t e r n a l l y .  R e c r y s ta l l i z a t io n  apparen t ly  o b l i t e ra te d  

o r i g in a l  d e t r i t a l  te x tu re s .  Smaller molds were f i l l e d  l a t e r  w i th  a f i n e  

do lomite c r y s ta l  l i n i n g  and b locky c a l c i t e  cement.

A l l  the mineral cements could be in te rp re te d  as meteoric or mixed 

marine-meteoric  p r e c ip i t a t e s .  At Sappington Canyon and Devi ls  S l ide  

s i l i c a  cement in  the f o s s i l s  appears to  r e f l e c t  p r e c ip i t a t i o n  in  the 

vadose zone, where c a v i t i e s  were not w a t e r - f i l l e d  a t  a l l  t imes. This is  

p a r t i c u l a r l y  obvious a t  Sappington Canyon where s i l i c a  f i l l s  the small
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ends o f  f o s s i l s ,  o n ly  one o r  two s ides ,  o r  a corner (F igs .  43, 44) ,  

leav ing  the impression o f  meniscus cement (Dunham, j j i  Ba thurs t ,  1975, 

p. 326, descr ibed s im i l a r  meniscus tex tu re s  in  c a l c i t e  cement). The 

very sporad ic  d i s t r i b u t i o n  o f  chalcedony-nodule cement in  molds a t  

Dev i ls  S l id e  a lso suggests uneven d i s t r i b u t i o n  o f  the f l u i d s .

The type o f  coa rse ly  c r y s t a l l i n e ,  euhedral dolomite th a t  l in e s  

molds a t  these l o c a l i t i e s  has been l inke d  by many authors to  slow growth 

in  d i l u t e  m e te o r ic - in f lu e n ce d  waters (eg. Land e t  , 1975).

Coarsely c r y s t a l l i n e ,  twinned, sometimes p o i k o l i t i c  b locky c a l c i t e  

w i th  s t r a i g h t  i n t r a c r y s t a l  1i ne boundaries i s  in te rp re te d  to  have formed 

in  a meteor ic  p h re a t ic  environment (Fo lk  and Siedlecka, 1974; Land,

1970; Randazzo _et ^ . , 1977; Longeman, 1980). Because t h i s  c a l c i t e  

postdates a l l  o the r  d iag en e t ic  events in c lu d in g  complete l i t h i f i c a t i o n ,  

the environment in  which i t  formed is  not re leva n t  to the e a r ly  h is to r y  

o f  the rock.

3. Shel l  Deformation

Although s h e l l  deformation is  not s t r i c t l y  pa r t  o f  d iagenesis ,  cross­

c u t t in g  r e la t io n s h ip s  w i th  d iag en e t ic  events helped reveal r e l a t i v e  

t im in g  o f  both types o f  a l t e r a t i o n  episodes. P r e l i t h i f i c a t i o n  com­

pact ion  breakage, documented a t  most l o c a l i t i e s ,  i s  rare in  carbonate 

rocks (Pray, 1960; Zankle,  1969) and i t s  presence i s  s i g n i f i c a n t .  Barker, 

Bhattacharyya and Chanda (1980) have re c e n t ly  recognized deformed 

allochems in  carbonate rocks as a s igna l  f o r  the presence o f  hardgrounds 

or emersion sur faces.  They suggest t h a t  cemented surfaces and nodules 

created dur ing  e a r ly  p a r t i a l  l i t h i f i c a t i o n  o f  the sediment could am pl i fy
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stresses du r ing  compaction, l o c a l l y  reaching the y ie ld  p o in t  o f  al lochems 

and causing c h a r a c t e r i s t i c  e a r ly  breakage. Hanken (1979) c i t e s  f rac tu re d  

f o s s i l s  in  Norwegian l imestones as evidence o f  subaer ia l  exposure, sug­

ges t ing  t h a t  d i f f e r e n t i a l  compaction o f  sediments o r  g ra v i t a t io n a l  i n ­

s t a b i l i t y  o f  a semi-conso l ida ted exposed sediment could have caused 

breakage.

4. D o lo m i t iz a t io n

Except f o r  la te -s ta g e  b locky c a l c i t e  cement, dolomite is  v i r t u a l l y  

the on ly  carbonate in  the rocks a t  a l l  l o c a l i t i e s .  R e c ry s ta l l i z a t io n  

te x tu re s  ranging from the we l l -p rese rved  ooids a t  Sappington Canyon 

to the gh o s t ly  remains o f  p e l l e t s  and f o s s i l s  a t  o ther  l o c a l i t i e s  show 

th a t  much o f  the do lomite o r ig in a te d  by replacement o f  c a l c i t e  or 

a ragon i te .  Euhedral do lomite cement l i n i n g  c a v i t y  w a l ls  is  the o ther  

im portan t  occurrence and i t  i s  a lso c le a r l y  p o s t -d e p o s i t io n a l . There 

are a t  le a s t  two models f o r  the format ion of-sedimentary  dolomite by 

replacement o f  pr imary carbonate.

1) Evaporat ive Reflux (Adams and Rhodes, 1960; Deffeyes e t  a l . ,

1969; Murray, 1969).

2) Dorag d o lo m i t i z a t io n  (Hanshaw, 1971; Land, 1973; Badiozamani, 

1973; Land ^  , 1971).

Suggestions o f  r e l i c t  evapor i tes  in  the s t r a ta  a t  La Marche Gulch 

North and D ev i ls  S l ide  make these two l o c a l i t i e s  l i k e l y  candidates f o r  

d o lo m i t i z a t io n  by hypersa l ine  br ines  v ia  the evaporat ive r e f lu x  model. 

Meteor ic  waters in f luenced  d iagenesis a t  a l l  l o c a l i t i e s  and the absence o f

132



evapor i tes  and evapo r i te - re1a ted  fac iè s  a t  Cedar Creek, Sappington 

Canyon and Boulder R iver  makes them poss ib le  candidates f o r  Dorag 

d o lo m i t i z a t io n .

Environmental Summary

Subaeria l exposure and a l t e r a t i o n  by meteoric or mixed marine- 

meteoric  water can exp la in  many o f  the d iagene t ic  events recorded in  

the f o s s i l i f e r o u s  zones. The best evidence f o r  e a r ly  non-marine d ia ­

genesis inc ludes :

1) S e lec t ive  d i s s o lu t io n  o f  aragon i te  s h e l l s ;

2) Mold f i l l i n g s  c h a r a c t e r i s t i c  o f  the meteoric vadose zone;

3) P re -d is s o lu t io n  breakage o f  s h e l l s  in  carbonate sediments.

Ear ly  f resh -w a te r  diagenesis very conven ien t ly  compliments the

developing i n t e r p r e t a t i o n  o f  these rocks which conta in  independent 

evidence o f  depo s i t io n  near s h o re l in e ,  in c lu d in g  a shallow-water 

molluscan fauna, coasta l  sedimentary fac ie s  and r e l i c t  evapor i tes .  I t  

i s  very  l i k e l y  t h a t  even s l i g h t  sea le v e l  changes would have exposed 

the sediments to  subaer ia l  c o n d i t io n s ,  or  th a t  some depos i ts ,  e s p e c ia l ly  

the f o s s i l  coquina a t  Cedar Creek, were o r i g i n a l l y  deposited sub­

a e r ia l  l y .
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SUMMARY OF CONCLUSIONS

Table 10 summarizes some o f  the key re la t io n s h ip s  between the 

s t r a t i g r a p h ie ,  pé trograph ie  and pa leon to log iea l  data. This study makes 

the fo l l o w in g  e o n t r i bu t ions  toward understanding the seaphopod- 

bellerophontaeean gastropod f o s s i l s  and the s t ra ta  in  whieh they are 

found ;

1) The mol luse f o s s i l s  eannot be stud ied as an in  s i t u  eommunity 

in  these southwestern Montana deposits  beeause e u r ren t -  and wave-formed 

s t ru e tu re s  in  the enelos ing sediments and wear, breakage and p re fe re n t ia l  

o r i e n ta t i o n  o f  s h e l l s  in d ic a te  an undetermined amount o f  t ra n sp o r t  be­

fo re  d e p o s i t io n .

2) The f o s s i l s  can be s tud ied  in  the context  o f  t h e i r  depos i t iona l  

s e t t in g s .  Combined s t r a t i g r a p h ie ,  p e t ro lo g ic  and pa léonto log ie  data 

re in fo rc e  previous suggestions t h a t  the environments where the mol uses 

l i v e d  and were deposited were charac te r ized  by p h y s ic a l ly  r e s t r i c t i v e  

co n d i t io n s .  These inc lude  s u s c e p t i b i l i t y  to  storm d is ru p t io n ,  shallow 

wate r ,  poss ib le  increased water s a l i n i t y  and perhaps even poisonous 

water in  ad jacent phosphogenic systems.

3) The s p e c i f i c  paleoenvironments o f  depos i t ion  in te rp re te d  in 

t h i s  s tudy are g e n e ra l ly  c o n s is te n t  w i th  previous broader-scaled i n t e r ­

p re ta t io n s  o f  the area. New, d e ta i le d  data presented here helps b e t te r  

de f ine  some major coasta l  environments preserved in  Permian rocks o f  

t h i s  area: sha l low submarine te r r igenous  sand bars and t i d a l  channels; 

lagoonal o r  shallow s h e l f  carbonate environments which d isp lay  v a r ia t io n s  

on a common shallowing-upward prograda t iona l  theme; i n t e r t i d a l  and

134



MAJOR 
SITE MOLLUSCS

FOSSIL-
BEARING
STRATIGRAPHIC
INTERVAL

ENCLOSING
LITHOLOGY

MECHANISM
OF
DEPOSITION

POSTULATED
DEPOSITIONAL
ENVIRONMENT

FOSSIL
MOLD
FILLINGS

CC P,B,S Franson Mbr. Molluscan
Packstone
Dolomite

Storm wave 
transport 
and mixing

Storm beach Collapsed or f i l ­
led with vadose 
sand or s il ic a ,  
dolomite and/or 
calcite cement

LG P,B,S Park City 
carbonate, 
(Franson 
Mbr ?)

Molluscan
Packstone
Dolomite

Current 
and/or wave 
transport

Tidal chan­
nels or 
storm lag in 
a carbonate 
lagoon

Vadose s i l t ;  
dolomite and 
calcite cement

SC P,B,S U. Shedhorn 
Sandstone

Molluscan
Sandstone
Conglom­
erate

Transported Barrier bar 
system, 
channel lag

Dolomite, vadose 
silica cement, 
calcite cement

DS 1) B 
2) B, 
rare 
P,S

1)Ervay Mbr?
2) L. Shedhorn 
Sandstone

1)Calcite 
& Quartz 
Nodular 
Dolomite
2) Congl. 
Sandstone

1)In situ?
2)Trans- 
ported

1)Intertidal 
zone
2) ?

1)Vadose silica  
cement
2)Vadose sand 
f i l l , calcite  
cement

BR B,S,P ? in and above 
basal Permian 
conglomerate

Conglom.S
Molluscan
Packstone
Dolomite

Transported ? Most molds col - 
lapsed, some dolo­
mite & calcite  
cement

P=Pe1ecypods 
B=Belerophontaceans

Table 10. Summary of Rock-fossil Relationships S=Scaphopods

LD
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s u p ra t id a l  f l a t s  which l o c a l l y  developed in to  coastal sabhkas.

4) This  s tudy extends the areal d i s t r i b u t i o n  o f  Permian e v a p o r i t i c  

sediments in  the carbonates westward to  inc lude the Devi ls  S l ide  and

La Marche Gulch North l o c a l i t i e s  where evapor i tes  were replaced by 

s i l i c a  and c a l c i t e .  S im i la r  s i l i c a  and c a l c i t e  nodules reported by 

o the r  workers in  t h i s  reg ion may a lso  be replaced evapor i tes .

5) E a r ly  d iagenesis in  the meteor ic  o r  mixed marine-meteoric 

vadose zone i s  p r im a r i l y  respons ib le  f o r  the form o f  preserva t ion  o f  

mol lusc f o s s i l s .  Although the sediments which enclosed the mollusc 

s h e l l s  were o r i g i n a l l y  very d ive rse ,  ranging from near ly  pure carbonate 

mud and s h e l l s  to  ne a r ly  pure te r r igenous  sandstone, the powerful vadose 

d iagene t ic  environment ove rp r in ted  a very s im i la r  ser ies  o f  events at  

a l l  l o c a l i t i e s .
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APPENDIX I ,  MEASURED SECTIONS 

A l l  lo c a t io n s  are in  southwestern Montana.

a. Cedar Creek
a t t i t u d e :  no r th  sec t ion  -  N25W, 55W, middle and south sections-N15E, 45W 
lo c a t io n :  na tu ra l  exposures on the east l imb o f  Cedar Creek sync l ine ,  
sec. 26-T9S-R11W. Locat ion in  Cressman and Swanson (1964, p. 470) which
con ta ins  a measured sec t ion  o f  the Retor t  phosphatic shale beds only !

b. LaMarche Gulch North
a t t i t u d e :  va r ies  from N30W, 35S to  N55W, 55S
lo c a t io n :  composite sec t ion  measured a t  the extreme NE corner sec. 31
and NW corner sec. 32-T1S-R9W, na tu ra l  exposures west o f  the Big Hole 
R iver .  Locat ion and sect ion  probably measured south o f  mine in Cressman 
and Swanson (1964, p. 553-555).

c. Sappington Canyon
a t t i t u d e :  (sec t io n  1) N80E, 52N
lo c a t io n ;  4 sec t ions  measured along s t r i k e  on r idge east o f  Jef ferson 
R iver ,  sec. 25-T1N-R2W. Locat ion and o r i g in a l  measured sect ion in 
Cressman and Swanson (1964, p. 534-537).

d. Dev i ls  S l ide  
a t t i t u d e :  N50W, 75S
lo c a t io n :  e x c e l le n t  hogback exposures east o f  Cinnabar Mountain, NE%,
SW%, sec. 32-T8S-R8E. Locat ion and measured sect ion near mine ca l led  
Cinnabar Mountain in  Cressman and Swanson (1964, p. 547-547).

e. Boulder R iver  
a t t i t u d e :  N55E, 18W
lo c a t io n :  exposures NW o f  the road, cen ter  S^, sec. 23 and NE^, NW%, sec. 
25-T3S-R12E. Permian f o s s i l  l o c a l i t y  o r i g i n a l l y  noted in  Yochelson (1968, 
p. 648) as an unmeasured Big Timber l o c a l i t y .

151



KEY TO ALL MEASURED SECTIONS
LITHOLOGIES

Sandstone 

Dolomite 

Shale/Si 1ts tone  

Chert 

Breccia

P Phosphatic

C Gal c i te

^ Pebbles, usua l ly  che r t
^  and/or phosphorite

Conglomerate

STRUCTURES

Smal l-sca le  burrows, u su a l ly  less than 1 cm. diameter

I ) ] Large burrows, u su a l ly  g re a te r  than 4 cm, mostly v e r t i c a l

R ipp le -sca le  crossbeds 
Large-sca le  crossbeds

Hor izon ta l  beds o r  lam inat ions

In t r a c la s t s

Nodules, mineralogy o r  l i t h o l o g y  shown ins ide  

S t y l o l i t e s

FOSSILS

® Scaphopods 
g) (g Bel lerophontacean gastropods

to Small gastropods and gastropod s te inkerns  

JU Pelecypods

Types o f  Preserva t ion
S a n d - f i l l e d  molds

Cal c i  t e ,  s i l i c a  o r  d o lo m i t e - f i l l e d  molds 

^ " Collapsed molds
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la .  CEDAR CREEK, North S ection

P r o f i l e ,  StructuresLithol Description

Phosphatic c h e r t -q tz  SANDSTONE, I t  (gy )tan , f  grn, 
well s r td ,  qtz about 90%, calc cmt, wthrs in plates  
a few cm th ic k ,  pocky surfaces

Cherty, sdy DOLOMITE s im ila r  to south section 7 .7 -  
8m and 4 - 4 . 8m.

F lo a t  includes: DOLOMITE, I t  gy -b u ff ,  a p h a n it ic , w/ 
sm s a n d - f i l le d  burrows;Dolomit e , I t  brn, sdy, w /lg  
mollusc fo s s i ls  as sand molds and also s i l i c a - f i l l e d  
molds as below

Mol Tuscan Packstone DOLOMITE, sdy I t  b r n - l t  gy v f  
x l in e  m atrix  w/discontinuous lenses o f  molluscs 
(whole shells  and shell d eb r is ) ,  mostly grain sup­
ported, s i l i c a - f i l l e d  molds, matrix lo c a l ly  si 1 ic i  - 
f i e d .  no s i l ic a  f o s s i l  ̂ in lower 10
Burrowed, F inely  Interbedded SANDSTONE and DOLOMITE 
Sandstone : 1t-med brn, f - c r s ,  sorting good-poor,about 
30% ch e rt ,  5% phos, 65% q tz ,  calc & qtz cmt; occurs 
in th in  s tr ingers  (few mm) ,  beds (less than 10 cm), 
burrow f i l l i n g s  ( . 5 c m  diam, v e r t .  & h o r i z . ) ,  some 
r ip p le  x-beds, rare graded beds.
Dolomite : 1t-med (brn) gy, s lty -sd y ,  aphani t i c , prob.
V b i o t u r b a t e d ,  v r a r e  f  l a m ,  b u r r o w s  a s  a b o v e ,  o c c u r s  
a s  V t h i n  d i s c o n t i n u o u s  b e d s

Sample #
8 -2 9 -4 ,5

8 -3 -9 -1

F loat:
8 -3 -9 -2 ,3 ,

4,5,1

8 -3 -9 -7

S-2 -9 -3

8 -2 -9 -2

8 -2 -9 -1
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l a .  CEDAR CREEK, North Sectio n

P r o f i l e ,  StructuresLithol . Description -Sample ^
As Above. Sed Structures include sm r ip p le  x-lam in 
ss, s a n d - f i l l e d  scour s tructures in to  dolom (2-8cm 
w id e ),  graded beds less than 10cm thick w/crs ss- 
dolomdst v a r ia t io n ,  f la s e r  beds, wavy and planar 
beds, prob. flame s tructures.

Interbedded L en t ic u la r  SANDSTONE and CHERT 
Sandstone: 1t-med brn, about 70-90% q tz ,  10-25% 
c h e r t ,  5% phos, varies from f-med grn & well srcd to 
f -c r s  grn & poorly s r td ,  crs grains becoming more 
common upward in section, phos also inc upward, cmt 
dom s i l ic e o u s ,  w/ some ss-chert lens contacts grada­
t io n a l ,  lensoid beds 2 -20cm th ick  & a few m long, 
r ip p le  & med-scale x-beds appear f a in t ly  on some 
surfaces, some trough x-beds dip 12-20 degrees, best 
preserved where cherty , bed tops commonly v uneven 
burrowed (?) surfaces
C hert: a) I t  (brn) gy-med (b l )g y ,  sdy & b)wh-carmel, 
f a i r l y  pure, sdy cherts frequently  preserve sed. 
structures including h o riz .  lam, x-beds, burrows, 
gen occur as discontinuous lenses w/in ss 2-lOcm 
th ic k ,  30-300cm long, contacts w/ss often wavy, 
poss load s truc tures , also occurs as s i l i c i f i e d ( ? )  
carbonate mud in t ra c la s ts .

a -1 -9 -5
8 -1 -9 -4

Several 
Cherts : 
8 -4 -9 -1

Thin bedded CHERT s im ila r  to middle section

B-1-9-3

8 -1 -9 -1

8 -1 -9 -2
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l a .  CEDAR CREEK, M iddle  S ection

L i th o l .  P r o f i l e ,  S tructures Description Sample 4

%

W \

\

Sdy, dolo CHERT, grading l a t e r a l l y  to sdy, s iliceous  
DOLOMITE, frac tu red

8-11-9-10

As above w/ss interbeds

Sdy, cherty  b ioturbated DOLOMITE 8 -11 -9 -9

8 -11 -9 -8

SS, f  grn, sorted, calc cmt, 1t-med brn 8-12-9-1

Mol Tuscan Packstone DOLOMITE, s im i la r  to north and 
south sections; zonation of fo s s i l  mollusc-mold 
f i l l i n g s  evident here with s a n d - f i l le d  molds in 
upper recessive part o f bed, s i l i c a - f i l l e d  molds in 
middle o f  bed w/local s i l i c i f i c a t i o n  o f matrix near 
some fo s s i l  lenses,prob. some mol die porosity near 
base of bed, but also collapsed molds can be seen 
there . Rock is  very poorly sorted, chaotic mixture  
of she lls  and shell hash, dom grain support where 
preservation of she lls  is good--some b e t te r  sorting  
lo c a l ly  in lenses

Burrowed, F inely  Interbedded SANDSTONE and DOLOMITE 
as in north section 4-5m

8-11-9 -7

8 -11 -9 -6

8-11-9 -5

8 -11-9 -3

8 -11-9 -4
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l a .  CEDAR CREEK, M iddle Section
Descriptionp r o f i l e .  Structures Sample ^Lithol
Interbedded L en t ic u la r  SANDSTONE and CHERT s im ila r  
to south section 2.6-4m, but less chert

Interbedded L en t ic u la r  SANDSTONE and CHERT s im ila r  
to north section , 0-3m.

2m
.5m Trough x-bed sand

 3m

8-11-9 -2

CHERT, sdy, s p i c u l i t ic ,g y ,  brn, some w/wh m ottles,
V th in  wavy-planar beds, discontinuous over several 
tens o f  cm, upper contact is  uneven w/up to Im of  
r e l i e f  on ss troughs which truncate or attenuate  
some chert  beds--looks l ik e  scour and load casts.
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l a .  CEDAR CREEK, South S ection
P r o f i l e ,  StructuresM L ithol

\

V V . \

2. 5cm

Description

Sdy, cherty  DOLOMITE; aphanitic  I t  tan-gy DOLOMITE 
which lo c a l ly  grades(?) to dolomitic CHERT, v th in  
bedded, burrowed

SANDSTONE, dom qtz w/chert & phos, med brn, massive, 
burrowed (?) surface includes a few v-shaped 
burrows(?) up to 8cm deep, 6cm max diam.

Molluscan Packstone DOLOMITE as in middle and north 
sections, sand f o s s i l - s i l i c a  fo s s il  t ra n s it io n  well 
exposed near g u lly

Sample #

8-29-9-9

V Ig
bl ock

Burrowed, F inely  Interbedded SANDSTONE and Dolomite 
as in north section 4-5m. some p la ty  bedding (about 
5cm), a few ss lenses up to 10 cm th ic k ,  gen v th in  
beds.

SANDSTONE, f  grn, well s r td ,  calc cmt, f a in t  r ip p le  
x-beds, otherwise massive

Chert as below 0-4 m

9 -2 5 -9 -6 ,7
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l a .  CEDAR CREEK, South S ection

P r o f i l e .  Structures DescriptionL i t h o l . Sample -

V sdy, cherty DOLOMITE, uneven, knobby-shaped sdy- 
cherty  masses wthr out in r e l i e f ,  burrowed

9-25-9-6

9-29-9-5

Interbedded, L en t ic u la r  SANDSTONE and CHERT s im ila r  
to  north section. Cmt is  mostly ca lc ,  wthrs punky 
& p la ty  where calc cmt dom over q tz , poorly-preserv­
ed low-angle x-beds (about 5 degrees).

9 -29-9-4
9 -29-9-3

CHERT w / l t  ( y e l ) gy s i l i c l f i e d  dolomite? in trac las ts

Chert lens w/imbricated in t ra c la s ts  1 - 2 . 5cm long in 
cherty ss bed

Ripple x-beds 3cm high

h o riz .  and v e r t ,  burrows about .5cm diam, seen on 
bed surface

Sdy CHERT, sd in whispy Ism (less than .5cm) and 
burrows

Chert
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Ib .  LA MARCHE GULCH NORTH

P r o f i l e .  StructuresLi_thQl. Descri p t i  on

PHOSPHORITE sands and mudstones

Qtz sdy, s l t y ,  (m ic ),  (a rg ) ,  phosphorite p e l le ta i  & 
in t r a c la s t ic  CONGLOMERATE, in trac la s ts  dom p e l le ta i  
phosphorite & qtz ss, phos & chert cmt, b lk ,  rnd- 
(ang), f la t te n e d ,  up to several cm diam, lo c a l ly  
im bricated , f lo a t  in matrix or define grn-to -grn  
contact lenses, matrix srtd qtz ss and phos p e l le ts ,  
some graded bedding, shaley layers

Sample ^

LG17-2

Qtz and p e l le ta i  phosphorite SANDSTONE, blk-dk brn, 
mic, s r td ,  v f - f  grn, qtz 30%, phos. 70%, phos & 
chert cmt, v th in  beds, wavy-horizontal, foss il frags 
also V wthrd th in  interoeds of mic, s l t y ,  sdy, phos 
MUDSTONE,

CONGLOMERATE, c las ts  dolo and p e l l e t a i , foss il  f rag ,  
qtz sdy phosphorite to 10 cm, most 1cm, ang- (rnd).  
matrix qtz ss, phos p e l le ts ,  foss il  frags , spines.

Molluscan b io c la s t ic  packstone DOLOMITE and wacke- 
stone DOLOMITE.(dk) med gy, th ick  bedded-massive, 
dense, hard, mnr qtz ss & s i t .  1 g (to several cm 
diam )foss ils  dom scaphopods, gastropods, pelecypods 
occur in grn-supported lenses .25m-.5m long & f lo a t  
in m atr ix ,  Scaphs a ll igned  p a ra l le l  to beds, common­
ly  nested, preserved I t  gy microXline dolo (wthrs 
wh). sm fo s s i ls  ( less than . 5cm) molluscs, ostracods 
( ? ) ,  f rags , preserved Xline dolo & c a lc i te .  t r  blk  
petro l (? ) .

As above

As above

LG17-1

LG15.6
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Ib .  LA MARCHE GULCH NORTH

P r o f i l e ,  StructuresL ithol

\

cio

Descri ption

As Above

S i l t y  black CHERT, v tk  lumpy bed, curdled, mottled 
blk-wh te x tu re ,  frac tu re d ,  qtz veins

Sample

10-7-9-23

5-8-80-3

B io c las t ic  wackestone DOLOMITE as above but mostly 
med gy wackestone & some packstone, fo s s ils  v sm 
(less  than ,5 cm) 10-7-9-19

SILTSTONE, sdy, mic, pyr, dom q tz . blk when fresh, 
crudely planar lam less than 1 mm, wavy anastomosing 
s t y l o ! i tes

DOLOMITE as above

SILTSTONE w/blk chert nodules less than .5cm diam

P e l le ta i  wackestone DOLOMITE, sdy -s lty ,  mic, pry, 
mottled ( I t )  med gy w/(orng) red wavy d ig i ta te  s ty lo ­
l i t e s ,  n o n -fo s s i l i fe ro u s ,  si t i e r  upper 10 cm.

BRECCIA, I t  gy, ang dol c la s ts , dom grain suoport in
f  g r n  r a i r  Qt.7 SS

S tro m a to li te (? )  zone, (y e l )  gy v f  ss caps slty-sdy  
dolomite w/hemispheroidal shapes, s t y lo l i t e s ,  basal 
gy cad-dolom i t i  c s s -s l t s t  ____

LG 10.85

Brecciated DOLOMITE, s l t y ,  v sparsely foss il  f rag , dk| 
gy, massive w/ f in e  qtz & c a l c i t e - f i 1 led f r a c t .  j

10-7-9-17  

10-7-9-16

10-7-9-15

10-7-9-13
10-7-9-12
10-7-9-14
10-7-9-11
10-7-9-18

10-7-9-10

P e l le ta i  wackestone DOLOMITE, mottled I t -d k  gy, Qtz 
s l t y ,  massive, phos in t ra c la s ts  and p e l le ts  s ca tte r­
ed throughout and concentrated in s lty  zones separ­
a ting  beds, elongate chert nodules esp in s lty  befl 
p artin g s , no fo s s i ls  observed.
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Ib .  LA MARCHE GULCH NORTH ( c o n t . )

P r o f i l e .  StructuresLi t h o l . Description Sample ^

As above

10-7-9-9
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Ib .  LA MARCHE GULCH NORTH

M L i t h o l . P r o f i l e ,  Structures Descri ption Sample =
3

\  \ As Above

\  \

\  \

\  \ J 10-7-9-6
(g> ■ • A-

1
SILTSTONE, dolo, sdy, pyr, cherty , phos, mic,chert  
nodules Im-lcm in lenses b e d -p a ra l le l ,  s ty lo l i te s 5-8-80-2

\  \  , DOLOMITE as above, phos content increases in lower
\  \ 2 m.

CHERT b lk , mottled gy-wh-blk, nodular (up to 10x25cm) 
many brecciated w/qtz veins, assoc w/concentrations2

\
\  \ of pyr, s t y lo l i t e s ,  phos frags

\  \

C 3 c : ^ < Q

\  \ 5-8-80-1
\  \

T
10-7-9-5

\  ^

• \ -  \ DOLOMITE as above but w/sm burrows, grades downward 10-7-9-3
to dolo ss and congl.

10-7-9-1

• . '
. •

* O ' r-—- o  cz2r> I

Conglomeratic SANDSTONE & DOLOMITE; c las ts  blk,phos, 
s p i c u l i t i c ,  chert and gy dolo, ang, max 5 cm; matrix  
pyr, phos qtz ss. Burrowed sdy dolomdst w/ burrows 
,5cm diam, s d - f i l l e d .  Sandstone q tz ,  chert ,  f  grn

“ Ü"

I 1 Nodular si 1 ic i  f ied  DOLOMITE, I t  gy w/mottled dk gy 
s i l i c i f i e d  zones, sp icu la r ,  s t y l o l i t i c ,  pyr

10-7-9-0
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l e .  SAPPINGTON CANYON. S ection  1

L ithol . P r o f i le .  Structures Descri ption

Burrowed Interbedded SANDSTONE and CHERT, interbeds  
of tb - tk b ,  u n fo s s i l i f .  ss as below, cherty ss, sdy 
chert u chert w/cherty rx gen thinner bedded than ss, 
often discontinuous lenses, nodular, commonly bur- I 
rowed at bed surfaces w/smal1-seale  burrows, lo c a l ly  
Ig -sc a le  v e r t ic a l  burrows.

~ \i— V

burrowed sdy dolomite, burrows f i l l e d  w/ 
wthr much more re s is te n t ly  than dolomite

in tensely  
cherty ss 
matri x

7-26-9-12

crossbedded clean f  grn ss

cherty v e r t ic a l  6cm diameter

Interbedded Lensy Molluscan B ioclastic  CONGLOltERATE 
and SANDSTONE
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l e .  SAPPINGTON CANYON, Section  1

1 thaï P r n f i i p -  s f  r u r f  l iroq Descri ption Sano '
As above. Sandstone : vf-m grn, 11 brn, wthrs m brr^ T
well s r td ,  dom qtz + 5-10% chert & Phos, calc cnc. j
truncating  trough-shaped beds often defined by basal I 
lag of dolomite in t ra c la s ts  (mm-9cm long), low-mod ; 
angle x-beds, bed thickness 10-40 cm, chert & phos
pbls in lower 20 cm , rare foss il  frags.

Crossbedded Conglomeratic SANDSTONE as below Q -,in  ,7-26-9-10
(Sec. 1 horizonta l beds to low angle x-beds) |

Marker Zone. 0-18cm vf lam, yel wthr, aphanitic , 
s i l i ceous dolom ite , gradat i onal l ower contact  ___  j
Tosi Chert, v tb -d is c o n t inuous bedded, g y - b r n  chert, I
some horiz lam, rare r ip p le  x-beds, mnr lensy s i l i -
c e o u s  d o l o m i t e _______________________ _________________________________________

About 5 meters westward, lower sands become fo s s i1i fe r o u s :

Burrowed Interbedded SANDSTONE and CHERT as above 

r ip p le -s c a le  x-beds, 15cm scale x-beds.

Interbedded Lensy Molluscan B ioclastic  CONGLOMERATE 
and SANDSTONE. Conglomerate lenses gen 20cm-lm tk ,  
contaiii oartl. '^-si 1 ic i  f ied  f l a t  dolo in trac lasts ,tnos  
pbls, chert l i th o c la s ts  to 1cm diam, fo s s ils  & foss. 
frags of scaphopods, pelecypods, bel 1eroohontaceans, 
bryzoans (mostly as ca1 ci t e - f i 1 led molds)

I SC2 . 1

S C I .  9

lower 10cm fo s s i l  hash, bottom surface of bed shows 
molds o f  pectins, o rb icu lo id ea ( ? ), other pelecypods

X - B e d .  C o n g l . " sS ,  v t b - T b ,  v f - f  g r n  ss ,  c h e r t - p h o s  pol  S C I . 2

Marker Zone
Tosi Chert as above, red-stn upper surface
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l e .  SAPPINGTON CANYON, S ection  2

P r o f i l e ,  StructuresM L itho l Descri p t i  on Sample #

W'- . - .  <ït--

à“

Burrowed Interbedded SANDSTONE and CHERT as in 
Section 1

7—25-9-8  
7-25-9 -9

Bioturbated Marker Zone, as Sec. 1

Interbedded Lensy Molluscan B ioclastic  CONGLOMERATE 
and SANDSTONE.

massive, brn wthr, vf-m grn qtz + mnr chert & phos 
ss, a few th in  lenses of v poorly preserved mollusc 
f o s s i ls ,  crs blocky c a lc i te  pods

Pocky wthr ss, (y e l )  gy-(brn) gy, as above w/more 
abundant c a lc i te  casts of molluscs, gen poor 
preservation

7-25-9-10

Sandstone w/interbedded lenses (few cm-lm x 10cm- 
few m) of s i l ic a  and/or c a lc i t e - f i 11ed mollusc molds, 
grain-supported in sandstone, lo c a l ly  abundant 
dolomite f l a t  mud in t ra c la s ts ,  pbls.
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l e .  SAPPINGTON CANYON, S ection  2

Li thol . P r o f i le ,  Structures Description Sample «

As above, wthr color becomes more (red) brn

7-25-9-11

borings preserved on some she lls ,  occasional 
a r t ic u la te d  pelecypod 7-25-9-12

O  c = ,c := '.

7-25-9-7

becomes sparsely fo s s i l i f e r o u s ,  pbly
7-25-9-6

Crossbedded Conglomeratic SANDSTONE, f  grn, qtz 955 
5% blk & red chert & phos grns, crs c a lc i te  pods to 
several cm diam

7-25-9-515 cm-high x-beds

7-25-9-4

contains ripped-up c las ts .
7-25-9-1

Tosi Chert, wavy-planar, discontinuous v tb , (brn) qy-j 
I t  (pk) gy, m o tt led -v f  lam, most beds have I t -c o lo r  j 
wth rind j
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l e .  SAPPINGTON CANYON, S ection  3

P r o f i l e .  Structures Descri ptionL i t h o l . Sample ^

Burrowed, Interbedded SANDSTONE and CHERT, interbed  
sandstone,chert, dolomite. SS dom: brn, v f - f  grn, 
rare  carbonate mud in t ra c la s ts ,  r ipp le  and larger  
x-beds lo c a l ly  + massive or horiz lam beds. Chert: 
brn-gy, usu sdy, v tb - tb .  Dolomite: yel wthr, burrow­
ed, laced w/sand tha t  is  prob. also burrow traces, 
s i l ic e o u s ,  sometimes vtb. Truncating or undulating 
bed surfaces common, lo c a l ly  crossed by 1 g cherty 
v e r t ic a l  burrows.

Bioturbated Marker Zone

Interbedded Lensy Molluscan B ioclastic  CONGLOMERATE 
and SANDSTONE. Here only sandstone: brn wthr, 
massive, v f - f  grn, well srtd except fo r  rare local 
pbly zones, bedding in d is t in c t
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l e .  SAPPÎiVGTüN CANYON. S ection  3

LithoU .l| p T Q j f Structures Descri ption Sample -

Sari.icto:ne a i above
7-26-9-1

lowest 20cm contains scattered chert and phos pbls

Marker Zone
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le .  SAPPINGTON CANYON, Section 4 

L i th o l .  P r o f i le .  Structures Descri ption Sample 4

Burrowed Interbedded SANDSTONE and CHERT

Bioturbated Marker Zone

Interbedded Lensy Mol Tuscan B ioclastic  CONGLOMERATE 
and SANDSTONE.

Sandstone, brn, massive vf-m grn
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l e .  SAPPINGTON CANYON, S ection  4

L ith o l . P ro fi le ,  S tructures Description Sample 4

Massive brn Sandstone as above

Pocky wthr SS, ers pbl lag lo c a l ly ,  gen poorly s r td ,  
some V in d is t in c t  probable x-beds, bed surfaces 
display  imprints o f Schizodus, Nucula, L ingula , 
O rbiculo idea, mnr gastropods and scaphopods which 
are only ra re ly  seen as c a l c i t e - f i 1 led molds

7 -2 6 -9 -3 ,4

7-26-9-2

8-26-9 -4

Crossbedded Conglomeratic SANDSTONE, brn-gy, calc & 
s i l ic a  cmt, well s r td , f-m grn w / f la t  carb mud pbls 
to 6cm long, dk chert & phos pbls lo c a l ly ,  festooned, 
m u lt i -d i r e c t io n a 1 crossbeds 10-2Gcm thick  and some 
horizontal 1 am beds, some fossil imprints as above.

7-26-9-5

Marker Zone of yel wthr s iliceous dolomite and 
bedded chert

Tosi Chert
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Id .  DEVILS SLIDE

P r o f i le ,  StructuresI 1 t h n i Description

C alc ite -n o d ular  DOLOMITE, 1t-med gy, microcrystal 1i ne 
to s i l t - s i z e d  c rys ta ls ,m o tt led  & burrowed, qtz s l t y ,  
pyr, phos; nodules dom c a lc i te  w/mnr q tz ,  less than 
1mm to g reater than 20 cm, tend to occur in concen­
t ra t io n s  p a r a l le l  to bedding, crs,twinned c a lc i te ,  
some euhedral qtz x ls ,  nodules wh-blk.

C a lc ite  nodules fewer & smaller than above, scattered  
q t z - f i 1 led fo s s i l  frag molds, ang phos in trac las ts  
to 1cm, gen less than 1mm, phos microgastropod molds.

S i l i c a - f i l l e d  molds o f  bellerophontacean gastropods, 
phos microgastropod molds,'dolo as above

C a lc ite  nodular DOLOMITE grading downward to 
dolomitic chert.

Very sdy CHERT, w/chert sandstone, wthrs to poorly-  
exposed low jagged ridge , prob. v thin bedded

Phos, dolo,nodular CHERT. DK (b l)gy  chert ,  nodules 
dom blky c a lc i t e  w/ blk in te rx l in e  mat, local euhed­
ral q tz ,  chaotic tex ture , dk (red) brn-blk phos frags 
& microgastropod steinkerns occur in dolomite

Sample -

DS19.3

DS18.7

DS18.5

DS13.3

DS18.1
DS18
0517.9
DS17.8
DS17.7
DS17.5
DS17.5

DS17.4

DS17

D S 1 6 . 3
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DEVILS SLIDE ( c o n t . )

L i t h o l . P r o f i le ,  Structures

Cover

Description

C a lc ite  and qtz nodules in DOLOMITE, dolo "matrix" 
I t  gn-gy tan , microXline occurs in th in  layers and 
s tr ing ers  between nodules and chert ,  grades lo ca lly  
to chert ,  c h e rt ,  bl-gn gy, carmel, rough nodules 
and c y l in d r ic a l  shapes (1-10 cm) intergrown to 
massive chaotic te x tu re ,  riddled w/few cm diam q tz -  
c a lc i t e  geodes.

C a lc ite  and qtz nodules and chert as above, but 
w/out m atr ix ,  which has apparently weathered away, 
center 40cm contains (y e l )  gy- (red) brn, s l ty ,  calc 
unconsol, mat. between chenty masses, upper and 
lower zones contain open vugs, gradational lower 
contact, sharp uneven upper contact.

Phosphate qtz SANDSTONE, med g y - l t  (gy) brn, s rtd ,  
f - v f ,  c a lc ,  lo c a l ly  cherty. 30-50% phos. cherty ss 
columns and nodules, phos. in ss 10%.

C a lc ite  nodular DOLOMITE, (y e l )  gy. massive, crs 
c a lc i t e  nodules are dk, o i ly -sm ell ing

Sample -

DS14

0511
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Id .  DEVILS SLIDE ( c o n t . )

Descri ptionP r o f i le ,  Structures Sample sL i t h o l .

As Above

Qtz SANDSTONE, I t  (brn) gy, v f  grn, s r td ,  w/cherty  
columnar structures & i n t e r b  th in  discontinuous 
lenses o f v poorly srtd  phos foss il  frags & qtz pbls 
(gen 2-5mm).

Phos fo s s i l  frag and chert pbl CONGLOMERATE 
SANDSTONE,It (gy) brn, f-med grn, dom qtz w/ lo ca lly  
s ig n i f ic a n t  chert pbls & sm phos foss il frags^ CHERT 
columns, sdy, phos in upper bed esp, med 
diam, up to Im or more long, at about 7m 
culumns bend and increase from less than 
than 60% of rock.

40% to more
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Id .  DEVILS SLIDE ( c o n t . )

L i th o l .  P r o f i le .  Structures

—  —  p  _
__

P.

. P

—  Ÿ

n
\ j

0
2 - -  -

a ?

Description

Sdy, phos, CHERT columns and phos MUDSTONE, contorted 
blk chert columns (almost 90% of rock) in matrix of  
dk brn-b lk  sdy , phos mudstone, columns are several 
cm diam, prob tens of m long.

SANDSTONE, I t  (gy) brn, f -c rs  qtz ss w/local phos 
fo s s i l  frag congl lenses, contains cherty, sdy, 
phos column as above, gradational upper and lower 
contacts.

Sample =

DS4

Interbedded phos SANDSTONE and MUDSTONE, w/ cherty 
columns lo c a l ly ,  much of phos is shell frags, wthrs 
recess ive ly .

CONGLOMERATE,crs ss-pbl sized phos shell hash and 
qtz ss, Ig columnar chert-phos structures  
CONGLOMERATE, chert & dolo c lasts  up to 10 cm in 
dolo -q tz  ss matrix at base grades up to smaller 
c las ts  ( less than 1 cm) in phos-qtz ss matrix,  
scattered fo s s i l  frags.

CONGLOMERATE in t r a c la s t ic  sdy dolo, chert pbls & 
boulders, fo s s i l  frags (phos. & c a lc i t e ) ,  matrix  
(y e l )  gy dolo qtz ss. __________________________ _

Dolo qtz SANDSTONE grading (?) upward to sdy 
DOLOMITE, s a n d - f i l le d  foss il  molds at upper erosionai 
boundary (gastropod, scaphopod(? ) , frag s ). c a lc i te -  
f i 1 led bellerophontacean and frags in mid-bed.

CONGLOMERATE 5cm, q tz ,c h e r t ,  d o lo ^ c ja ^ ts ^ c ^ ? ^  

SANDSTONE f  grn, s r td ,  qtz

DS.9
DS.8
DS.7
DS.Ô
DS.5

DS.4 
OS. 3 
OS.2 
DS. 1 
DSO
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l e -  BOULDER RIVER

T

*r

Li t h o l .

X
\ \\ _

\ \
\ \
\ \

P r o f i l e ,  Structures

K f
Cover ,3m

o.

Cover ,5m

DescriDtion

Covered swale bottom

P e t ro l iferous molluscan b io c las t ic  packstone DOLOMITE 
mottled med-dk gy & blk w/ scattered wh c a l c i t e - f i l -  
led vugs< cm diam, whtrs I t  gy-wh. dom. foss ils  Ig 
scaphopods (5cm), sm gastropods (2mm) also ostracods, 
pelecypods, f is h  tee th , most deformed, much BPM

As above, in tensely  a lte red  & reX lized , mottled tan, 
I t - d k  gy. I t  (pk) gy, darkest where black p e t r o l i f e r ­
ous m ateria l (BPM) lines  pores, wthrs I t  gy. fossils  
dom. Ig scaphopods w/ some Ig b e l lerophontaceans, 
pelecypods, sm gastropods, f ish  teeth, most foss ils  
in both beds collapsed, deformed molds p a r t ia l ly  f i l ­
led w/dolomite rim cmt and c a lc i te  & BPM.

Phos., V qtz sdy, burrowed DOLOMITE, phos. up to 10" 
clean ang (y e l )  brn frags & paleaoniscold f ish  teeth, 
sand f-med grn to 40%.

CONGLOMERATE, matrix dolo ss-sdy dolo .chert clasts  
ang-(rnd) av .5cm (to  2cm). bioclasts dom. bellero-  
phontaceans, scaphopods, pelecypods w/ramose bryzoans 
& f is h  te e th ,  scattered s i l .  in ternal molds.1 t  (pk) 
tan w/ local concentrations of BPM.
Conglomeratic SANDSTONE, chert clasts to 4Qcm._
CONGLOMERATE and Conglomeratic SANDSTONE. SS med grn, 
s r td , calc  cmt w/BPM. clasts  m icrofossi1iferous chert  
and (dolo) f  grn qtz ss^^_^^

SANDSTONE, f  g r ,  s r td , qtz sand w/ dolo cmt, some 
V sdy dolo, w e l 1-developed x-beds.

Sample ^

BR4-1
BR4-2

BRÎ-1
BR3-2

BR2-1

BRI- 6 , a-e  
BRI-5

BRl-4
BRl-3
BRl-2,1-1
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APPENDIX

Location
Cedar
Creek

Sappington
Canyon

La Marche 
Gulch N.

Devi 1s 
SI i de

Eoulder 
Ri ver

Taxon 
Mol 1usca

Pelecypoda
Schizodus x X X
Pseudopermophorus X
Permophorous X?
Nuculopsi s X X
Polidevci a X
Acanthopecten X
Pelecypod indet. X X X X X
Permophorid indet X
Nucula X

Scaphopoda
Prodentalium canna X
scaphopod in d e t . X X X X X

Gastropoda
Bellerophon deflectus X X
Bellerophon in d e t. X X X X X
Knightites  eximia X
Euphemi topsi s X
Euphemites crenulatus X X
Wotheni a X X? X
Bellerophontacean indet . X X X X X
Microgastropods X X X X X
Gastropod in d e t . X X X X X

Brachiopoda
In a r t ic u la ta

Lingula X X
Orbiculoidea X X X

A rt ic u la te
Chonetes X
Wel1 e re 1 la X

Bryzoa
Fenestrate X
Ramose X X X

Pori fera
Sponge spicules X X X

Echinodermata
Crinoid ossicles X -

Vertebrate
Palaeoniscoid f is h  teeth X X X X
bone fragments X X X X X

Trace Fossils
Thalassinoides X X
P lan o l1 tes X
Skoli thos X X
O ip locra terion X
Large v e r t ic a l  burrows X X X X

Barnacle borings X X X

Plants
Algae

Dasycladacean X X
Phyllo id X
Algal mat chips (?) X X

Strom ato lites  (?) X
Other

Ribbed le a f X -------- --------------------------------------------

This l i s t  was compiled from a l i s t  used in the pub lica tion  of Yochelson (1968) 
and from my own observations. I t  was not intended to be an exhaustive f in a l  
study but is  suggestive of the types and v a r ia b l i t y  o f fo s s i ls  a t these lo c a l i t ie s  
Systematic sampling was not employed in th is  study.
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