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Cuixiu Zheng, M.S., May 2000 Computer Science

Using Markov Chain Model to Compare A Steady-state and A Generational GAs

Director: Alden H. Wrig:

Genetic algorithms were invented by Holland in 1960s and were developed and 
used through several decades. Genetic algorithms are methods for searching 
optimal or high quality solutions to a problem by applied genetic operators such 
as selection, crossover and mutation. Markov chain model o f a GA is an intuitive 
method in simulating the process o f a GA. In this paper, the Random heuristic 
Search model is reviewed. The steady-state and generational GAs are defined and 
their Markov chain models are constructed based on the Random Heuristic Search 
model. Some experimental results o f running Markov chain simulations on both 
steady-state and generational GAs are compared in terms o f the probability o f 
obtaining at least one copy of the optimum by each generation and the expected 
waiting time to obtain one optimum.
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CHAPTER I 

INTRODUCTION

Genetic algorithms were invented by John Holland in 1960s and were developed 

and used through several decades. Genetic algorithms are methods for searching 

for optimal or high quality solutions to a problem. When searching a space of 

candidate solutions, a genetic algorithm only examines a small fraction o f the 

possible candidate solutions. Although there are different implementations of 

genetic algorithms, they all have similar structure; Patterned after biological 

evolution, beginning with an initial population, the algorithm generates a 

sequence of populations. The next population is generated from the current 

population by means o f genetic operators, which include selection according to 

fitness, crossover and mutation. At each step the better-fit individuals are selected 

from the current population as seeds for replacing a fraction of the current 

population to produce the next generation.

By modeling the evolutionary process as a mathematical model, we think about it 

as a computational process. Modeling a GA as a Markov chain provides a set o f 

tools for describing the behavior of the GA. Measures of GA behavior include the 

probability of finding an optimal solution within a given number o f steps as well 

as the time to convergence. Generally, different GAs combine exploitation and 

exploration in different ways. A GA that emphasizes exploitation rapidly 

converges toward high fitness individuals. A GA that emphasizes exploration will
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maintain a diverse population for a longer time. Selection adds exploitation to GA 

behavior. Mutation and crossover add exploration to GA behavior. The pressure 

o f mutation and crossover balances the pressure o f selection. Different genetic 

algorithms have different searching strategies. For example, in a steady-state GA, 

only a few elements o f the population are replaced in every time step. The 

difference between parent generation and child generation is small. In the 

generational GA, a large number o f elements o f the population are replaced 

during every time step; the difference between parent generation and child 

generation is significant. How these factors affect the GA behavior is o f great 

interest.

Following are two interesting and important attributes of GA behavior:

(1) The probability that the GA population will contain at least one copy of an 

optimum at generation k , where k  = 0,1,2,...

(2) Expected waiting time to a population first containing a copy of the 

optimum.

This project is based on the context o f previous work done by Dr. Wright and 

Yong Zhao [Zhao]. Beginning with understanding the Random Heuristic Search 

model algorithm and the Markov chain model o f genetic algorithms, this project 

compared generational and steady-state GAs by running Markov chain 

simulations. Experiments were run on generational GA and steady-state GA 

algorithms, with various fitness functions and various genetic operators. The
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purpose is to better understand the behavior o f the Markov chain model o f GAs 

and gain insight into how genetic algorithms and GA operators affect the 

probability o f finding an optimum and the expected time to converge. In this 

project, we defined steady-state and generational genetic algorithms and construct 

the Markov chain model for them based on Random Heuristic Search model. 

After running experiments for the performance of steady-state and generational 

GA on their Markov chain models, we verified and justified our hypothesis on the 

performance of steady-state and generational GA.

In order to be able to run larger models, the code to run the Markov chain 

simulation was implemented in C and tested using the GNU development system.
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CHAPTER II  

BACKGROUND

§2.1 N otation

A GA is a learning method by a set of GA operators that repeatedly recombine 

and mutate selected elements of the current population. Most commonly, 

members of a GA’s population are encoded as bit strings. The advantage o f bit 

string encoding is GA operators can easily manipulate populations.

We assume that members of a GA’s population are encoded as binary strings. Let 

I be the length of the binary strings. Then « = 2̂  is the total number of possible 

strings. Let Q be the set o f length-1 binary strings. We identify Q with the set of 

integers in the interval [0,«). In this paper, Z denotes the set of nonnegative 

integers, and R denotes the set o f real numbers. A denotes the set of

Pj,  w h e r e e R,  0 < p, < 1, ^ p ,  = 1. If  y  e Ü , then y is  the bitwise
ieQ

EXCLUS!VE-OR of x  and y , x ® y is the bitwise AND of x  and y , and x  is 

the one’s complement of x .

Let r be the size of the population. In the incidence vector representation o f a 

population, X  =< X q , X i , X 2 , ...,X„_i > , its nonnegative entry Xj  is the number 

o f times i e Q occurs in the population. The size of the population, r , is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n - I

/=0

The corresponding probability vector representation x o f  X , denoted as

......

So Xj is the probability that i is selected in population X.

§2.2 GA operators

There are many GA operators that have been used in GA applications. The most 

commonly used are selection, crossover and mutation. Selection is performed 

before crossover and mutation.

§2.2.1 Selection

Selection defines the strategy of how to choose elements in the current population 

for inclusion in the next generation. In order to evaluate the elements o f a 

population, a fitness function f  : Q ^  R* is assumed. The fitness vector 

( /o > / iv > /n - i )  is defined by f  = / ( / )  for all z g Q .  The fitter element has a 

higher fitness value.

A selection scheme F  : A -»  A is a heuristic function where denotes the

probability that i e Q will be selected for the population after selection is applied 

to the population probability vector x . In a proportional selection scheme, the 

probability that an individual element i is selected is the ratio o f its fitness to the
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total fitness of all elements o f the current population. This defines the heuristic 

function F  by

H f j ^ j
Jen

For a size- r  population X , denotes the selection probability over a set o f

populations X X , whose population size can be any of Ar, where X e Z .

For example:

A population vector: X  =< 1,2,0,0 > .

A fitness vector: /  =< 3,5,2,1 > ,

The size o f population: r = 3.

The probability distribution of X  : x = =< ^ , ^ , 0 , 0  > .

The result of the proportional selection scheme: =< ^ 3 , ^ % 3>0,0 > .

§2.2.2 Crossover

Applying the crossover operator to two selected parent strings means copying 

selected bits from each parent string to produce two new strings. The choice o f 

bits selected to produce new strings is determined by another bit string i , called a 

crossover mask. Let x, y  be two selected parent strings. Applying / to x, y  will 

produce two new strings:
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According the number of block o f continuous I ’s in i ,  we name three types o f 

crossover operation as one-point, two-point or uniform crossover. The crossover 

rate c determines the probability of a nontrivial crossover. The probability that 

/ e Q  is chosen as the crossover mask.Xi,  is defined based on the type of 

crossover as follows:

For one - point crossover, Xi = / - I  
1 - c

if  / = 2“ -1 , for I < w < / 

if i -  0.

For two - point crossover, X\ =

^  if  / = (2"-^ - 1) © ( 2" - ' - 1) ,w here0 < v < u < l

1 - c i f /  = 0.

For uniform crossover, X\
i f  i ^ O

1 — c H— Y if  i — 0.

For example:

rM = 11101001 , ^
Let be two selected parent strings.

lv = 00001010

Crossover type

One-point

crossover mask

00000111 =  2 - 1

new strings

f l l lOlOlO

[00001001
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/ , \ / , \ fllOOlOll
Two-point 00111110 = (2 - l ) © ( 2  - l )  joOlOlOOO

_______  fl 0001000
Uniform 10011010 i

[01101011

A crossover scheme C : A A is a heuristic function. C{x), denotes the 

probability that i will be produced from the population probability vector x  by 

crossover operation. This was shown in [Vose] to be:

u,v,keCl

k { u 0 k ) @ v @ k

where [expr] = 0 if  expr isfalse; [expr] = 1 if  expr is true.

§2.2.3 M u tation

Mutation insures that the population does not converge to a fixed string pattern. It 

adds diversity into the new generation. The mutation operator produces a new 

string from a single selected parent string by randomly flipping some bits o f the 

parent string. The mutation rate, u , denotes the probability of each bit being 

flipped. The probability of a string i e  Q being chosen as a mutation mask, 

denoted as / i ; , is:

jLii = (w)l'l(1 -  « y “t'l where i e  Q, and |i| denotes the number of I 's i n i .
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A mutation scheme U : A -» A is a heuristic function. U(%), denotes the 

probability that / e Q will be produced from the population probability vector x 

by the mutation operation. It has been shown to be [Vose]:

U(%), = ■

§2.3 Random Heuristic Search Model

Let F  define the fitness heuristic scheme, let M  = U °C  be the mixing scheme 

that depends on the mutation rate u , the crossover rate c , as well as the type of 

the crossover. The random heuristic scheme G of a simple GA is the composition 

of a mixing scheme M and a selection scheme F  :

G = Mo F  = U°C<^F.

For a size- r  population X , the function gives the next generation

probability distribution over Q , based on the current population , as:

§2.4 Description of steady-state G A and generational GA

Here we provide pseudocode describing the two types o f GA’s we’ll be 

considering.
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§2.4.1 The generational GA

1. Given an initial population X  o f size r;

2. Let f  be empty population;

3. For integer ^ 1 to r  do

3.1 Select y  eO . based on the probability distribution G (^

3.2 Add element y  to population Y  ;

Endfor

4. Replace X  with Y  ;

5. Go to step 2;

§2.4.2 The steady-state GA

1. Given an initial population X  of s iz e r ;

2. Select y  g Q  based on the probability distribution g ( ^ ) ;

3. Let 7  be a population consisting of a single element y .  That is

y  =
^ [O if i * y ,

4. Delete the worst element o f X  + F  to form Z ;

5. Replace X  with Z ;

6 . Go to step 2;

§2.5 M arkov chain model

A Markov chain is a model o f a stochastic system that moves from state to state, 

and which satisfies the Markov property. A process satisfies the Markov property

10
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i f  the probability o f  being in a given state o f  the process at the time step 

t +1 depends only on the state at time step t and not on the state at time steps 

12 / - I

Most genetic algorithms satisfy the Markov property. A GA that satisfies the 

Markov property can be modeled as a Markov chain process, where the states are 

the populations [Nix & Vose]. The genetic algorithm moves from one population 

to another. The population of the genetic algorithm at any time step is dependent 

only on the immediately preceding population. The selection, crossover and 

mutation schemes used determine the probabilities for the next population. The 

Markov chain model can be used to evaluate alternative ways of doing selection, 

crossover and mutation.

For a GA, the number V of all possible size- r  populations drawn from Q , 

corresponding to the number of possible states in the Markov chain is: [Nix & 

Vose]

^n + r — \^
N  =

In other words, for a GA, which has V  possible populations, the transition 

probability is N  x N  . Notice that N  is simply the number of multiset o f size- r 

population chosen from Q .

We assume an ordering of the populations, and we identify them with the integers 

[0 ,V ).

11
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In an N  x N  Markov chain transition matrix P , the X Y  entry Pxy o f P  is the 

transition probability that the system goes from state X  into state Y , where 

€ {0,1,2,...,TV-1}. For any given X  e {0,1,2 , . 1}, 

Pxo + fy , +... + Px(N-]) = 1 • This reflects the fact that the system in a given state 

X  will be in one of the possible N  states at the next time step.

One of the special classes of Markov Chains is the class of absorbing chains. Let 

P = {Pxy ) be an N  x N  transition probability matrix. A state X  of the Markov 

chain is an absorbing state if Pxx = 1 • The Markov chain represented by P is an 

absorbing chain if: (1) it contains at least one absorbing state, and (2) from every 

state it is possible to reach an absorbing state. Let m be the number of absorbing 

states, and then, by rearranging rows and columns, P  can be written as

7  0
R Q_transient

where /  is the m x m  identity matrix, R is the (N  ~ m ) x m  transition matrix 

from transient states to absorbing states, and Q _transient is the 

{N  - m ) x ( N  -  m)  transition matrix between transient states.

Using the next theorem, we can predict all future probability distributions over all 

possible N  populations at each time step determined by the initial probability 

distribution over all possible N  populations drawn from Q .

12
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Theorem I Let P be the transition matrix o f  a Markov process, let be the 

initial probability distribution row vector over all states o f  the Markov process,

and let denote the probability distribution vector at time step t. Then the 

probability distribution vector at time step r +1 is: [Isaacson & Madsen]

§2.6 Selection of an initial population

Assume that the GA population is initialized uniformly at random. By the 

multinomial theorem, the probability of GA population X  at the time step 0, 

denoted by P (X @ 0) is:

f ( z @ o ) = -------------- ----------------
^  y .,1 F.i Y V n tXoiXiiX2i...x„_ii

Let X ^ , X ^ , X ^ , . . . , X ^ ~ ^  be the set o f all possible populations. Then the initial 

probability distribution over populations is:

@o)p(x^ @o)..„ @oJ.

§2.7 Probability of obtaining at least one copy of an optimum at time step t

Let g  be a transition matrix. The X Y  entry o f Q is the transition probability that 

the GA will be in state Y  at time t given that it was in state X  at time step 

f - 1 .  Then the probability of the GA being in state Y  at time t , denoted by 

p { Y @t ) ,  is:

13
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p { Y @ t ) = Y .  @ c -  i ) te « -  = E  @ 0 ) ^ '  L  ■
% X

Let J  be the set of populations that contains at least one copy of an optimal 

element (with highest fitness value). Then the probability that the GA is in one of 

the states in J  at time step t , is:

j^J

§2.8 Probability of obtaining at least an optim um  by each time step

Suppose 2̂ ®̂  is the initial probability distribution over all possible populations

and 2^'^ is the probability distribution at time step t . Let us arrange the set of all 

possible populations into two subsets J  and K . Let J  be the set o f populations 

that contain an optimum, and let K  be the set of populations that do not contain 

an optimum.

We can arrange the initial probability distribution in the form 2^”  ̂ = | 2^^),

where is the probability distribution over the population set J  of 2^® ,̂ and 

Zf^  is the probability distribution over the population set K  o f 2^^^. If 1 denotes 

the all ones vector, then starting from 2^® ,̂ the probability that we are in J at time 

step 0 is Z f h  , and the probability that we are in J  for the first time at time step 

t is Z^^^Q‘'^R\.  [where 1 is all ones vector].

14
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Thus the probability that we have obtained at least an optimum by time step t is:

( z f  + zfR + + Z%"jg +... + Z f

=  1 z f + z [ “̂
r i - \  \  \

t e '  «
V'=o /  ,

§2.9 T ransition probability

(1) Generational G A

Let X  and Y  be populations of size r . We now show how to compute the 

transition probability P{X,Y) .  Recall that 7, is the number of copies o f element 

j € Q in Y. Let p, be the probability that / € Q is selected in the next generation,

which is encapsulated in the G function via = g ( ^ ^ ]  . The probability of

T r l  y
selecting the first element 0 o f Q Yq times is . The probability of

selecting the second element 1 of Q T] times is P j ’ and so on until

finally which we have probability of selecting the last element n -1  of Q

times:
r - Y q - Y y ~ Y 2 -  Y„ _ 2  ^

« - 1
P n ' - \  ■ So given the probability distribution

p  =< PQ P\ ,P 2 , - ,Pn- \>   ̂ the probability from X  to 7  after r  independent 

samples is:

15
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r r Y r - Y n Y r - Y n - V , " '  - v

\ ^0J

= r i n

r - Ï Q

K ;

f e f -

'0 -^ 1  
5̂ 2 y

r - Y Q - Y i  -Y„_2  

Yn-l

/eQ

Because />, = g ( " ^ )  , P{X ,Y ) ,  the probability o f forming a size- r  population

Y  from X ,  is:

( c ( y  ) f

(2) Steady-state GA:

Let A he a size- r population, B be a size- k  subpopulation o f A . Then (b ) 

denotes the probability o f choosing B from A without replacement and without 

regard fitness, which is given by the multiple hypergeometric probability 

distribution:

Pa (b )=
n ,yeQ

where Aj  is the number o f times that y € Q is chosen in A and Bj  is 

number of times that y e  Q is chosen in B .

the

Let Y  be the population consisting of the single element y . In other words.

1, if i = y
' 10, if i #  y.

16
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In step 2 and 3 of the steady-state GA paradigm (§2.4.2), the transition probability 

from X  to Y , P{ X , y ) i s  described by the Random Heuristic Search model. That 

is defined as:

P(X,Y)

iV r l

Y,\

r^y

In step 4 of the steady-state GA paradigm (§2.4.2), a population of Z is formed 

by deleting the worst element o f  X  + Y  based on fitness value. Z could have 

multiple choices if  the fitness function is not an injective function. Let ^ ^ { X  + Y)  

be the set of subpopulations consisting of the best r elements o f X  + Y . The 

conditional probability o f choosing Z from X ,  given that population Y  was 

chosen at step 2 and Z e >9̂  (X + T) , is

Px +y {^)
Px ^r i f i r iX +  Y)Y

Consider all the possible choices o f 7  ; the Markov chain transition probability 

from ^  to Z is;

P(x,z )=  Y^[z ^ p , (x * y )\p (x ,y )-----
y^çi P X+ Y \P r \ ^  -^^})

where [expr] = 0 if expr isfalse; [expr] = 1 if expr is true.

17
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§2.10 Expected W aiting Time to obtain one copy of optim al element

Another question addressed in this project is the expected waiting time until a 

population first contains a copy of the optimum. To answer this question, let us 

treat each state whose population has at least one optimal element as an absorbing 

state. In other words, we redefine the transition probabilities so that P{X,Y )  -  0 

if  X  contains one copy o f the optimum and X  7  ; F (X ,Y )= 1  if  X  contains 

one copy of the optimum and X  = Y . Obviously, if  the population starts with an 

absorbing state, the desired expected waiting time is 0. Now let us consider the 

situation in which the GA starts from a transient state. For an absorbing Markov 

chain, let Q be the transition matrix between transient states; then the ij entry of

Q” denotes the probability that the GA goes from transient state / to transient 

state j  in exactly n steps.

We need a definition and two facts from [Isaacson & Madsen]

Definition 1 A matrix Q with elements is called substochastic i f  > 0 fo r

all i and j , and i f  ̂  Qy < 1 fo r  all i.

Lem m a 1 Let Q be the substochastic matrix corresponding to transitions 

among the transient states o f  a finite Markov chain. Then

I  + Q + +.... — i j  — exists.
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Lem m a 2 I f  1 denotes a column vector o f  ones, then {l - Q )  4  is a column

vector, in which the ith entry is the expected absorption time given 

that the GA starts from  transient state i .
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CHAPTER III 

HYPOTHESES and METHODOLOGY

§3.1 Experim ental param eters

Experiments were set up with the following choices o f parameters for both the 

steady-state and generational GA:

(1) Fitness function alternatives:

• The counting-one fitness function, defined by

F(i)  =1 i I for i e Q ,  | i | denotes the number of 1' s in i .

This is an example of an easy fitness function,

• The deceptive function, defined by

{/ I z  I  if  I /  /
f or / €  Q, 111 denotes the numbers o f r  s in 1.

/ + 1 i f | / | = /
This is an example of a hard fitness function.

(2) Type of crossover alternatives:

One point crossover vs. uniform crossover.

(3) Crossover rate alternatives:

The crossover rate varied from 0 to 1.0.

§3.2 Experim ental hypotheses

In this project, the GA performance is measured by the probability o f obtaining at 

least one copy of an optimum by each generation (i.e. accumulative probability, 

as described in §2.8), and the expected waiting time to obtain one copy of an
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optimum (as described in §2.10). In the generational GA, at each time step, after 

r fitness evaluations the current population (i.e. current generation) will switch to 

the next population (i.e. next generation). But in the steady-state GA, at each time 

step, there is only one fitness evaluation, that is one generation means one fitness 

evaluation. The objective of the experiments is to assess the difference between 

the performance o f a steady-state GA and a generational GA. We run experiments 

under same experimental parameters to compare the performance o f steady-state 

GA and generational GA. Also we run experiments by varying one of the 

parameters (§3.2) to get insight into the effects o f type o f fitness function, the type 

of crossover and increasing crossover rate on the performance of each GA.

We believe the following hypotheses:

(I) The steady-state GA has a higher probability o f containing one copy o f the 

optimum than the generational GA by each generation. (Note that the Markov 

chain used here is modified to make populations containing the optimum into 

absorbing states.)

(II) The steady-state GA has a shorter expected waiting time to find the 

optimum than the generational GA. (Note that the Markov chain used here is 

modified to make populations containing the optimum into absorbing states, i.e. 

we use transition matrix between transient states.)
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In other words, the steady-state GA has better performance than the generational 

GA on both an easy problem and a hard problem.

(III) Uniform crossover as opposed to one-point crossover should result in a 

shorter average waiting time to find a population containing an optimum.

(IV) Increasing the crossover rate will result in a shorter average waiting time 

to find a population containing an optimum.

Our experiments are designed to test these hypotheses.

§3.3 Experim ental methodology

All experiments will start with the same initial probability distribution over 

populations (§2.6.1). The same fitness, proportional selection, crossover and 

mutation schemes will be used for both the steady-state and generational GAs 

(§2.4) at every run.

To test hypothesis (I) and (II), the experimental settings are:

(a) The counting-ones fitness function 

Uniform crossover

Crossover rate: 0.8

(b) The deceptive fitness function 

Uniform crossover
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Crossover rate: 0.8

The deletion step in the steady-state GA always deletes the worst element before 

the new generation is formed. In other words, the process always keeps the best 

and better elements. So the probability of obtaining one copy of an optimum in 

the steady-state GA at each time step is equal to the probability of obtaining one 

copy of an optimum by each time step.

But in the generational GA, forming a new generation is performed by Random 

Heuristic Search, which does not guarantee that the optimum in the current 

generation is kept in the next generation. So in order to get the probability of 

obtaining one copy o f an optimum by each time step, we can modify the original 

transition matrix P  by: for any population X  that contains an optimum, 

= \ ,P ^  = 0 , i î  X  -, otherwise P ^  remains unchanged.

To test hypothesis (III), the experimental settings are:

(a) The counting-ones fitness function 

Uniform crossover

Crossover rate: 0.8

(b) The counting-ones fitness function 

One-point crossover 

Crossover rate: 0.8
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To test hypothesis (IV), the experimental settings are;

(a) The counting-ones fitness function 

Uniform crossover

Crossover rate: from 0 to 1.0 in steps of 0.1

(b) The deceptive fitness function 

Uniform crossover

Crossover rate: from 0 to 1.0 with 0.1 difference every run

§3.4 M aple vs. C

Maple is a general-purpose symbolic language. It has a set of rich procedures to 

complete computational tasks. Also Maple is an interpreted language, which can 

have dynamic value and type binding. Maple program cans be run using either 

numerical or symbolic parameters. It is relatively easy to write a program with a 

large amount o f computations in Maple.

Under dynamic binding, type checking is done during run-time by inserting extra 

code into the program to detect impending errors, which takes up time and space 

and is inefficient. So, Maple programs turn out to be slow.

Compiled languages use a type system, where type checking is done during 

compile time. A compiler can infer from the source code that a function /  should 

be applied to a correctly typed operand a each time the expression / ( a )  is
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executed. In this case, the program is checked and data layout is done statically as 

far as possible during compilation.

The Markov Chain model involves a large amount o f matrix computation. The 

dimension of a matrix, in particular a transition probability matrix, grows 

exponentially with the length o f the binary strings. Using a compiled language to 

do this computation work will speed processing and make simulations o f the 

Markov Chain model more practical.
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CHAPTER IV 

RESULTS

1. The result of testing hypothesis (I)

We set / = 4, r = 2, w = 0.1 and c = 0.8.

1.1 The probability of obtaining at least one copy of an optimum by the

given generation using counting-ones fitness function 

Table 1.1:

Generation Steady-state
GA

generational 
GA (by each 
generation)

1 0.152475 0.181734
2 0.186533 0.234430
3 0.222386 0.282879
4 0.259154 0.328306
5 0.296237 0.371085
6 0.333195 0.411358
7 0.369687 0.449218
8 0.405446 0.484762
9 0.440256 0.518094
10 0.473951 0.549324

Figure 1.1
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S S E * :
| . . | 0 . 4 -  
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(cumulative)
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1.2 The probability of obtaining at least one copy of an optimum 

by the given generation using deceptive fitness function 

Table 1.2:

Generation Steady-state
GA

Generational 
GA (by each 
generation)

1 0.141902 0.161437
2 0.15242 0.188301
3 0.158911 0.21001
4 0.163428 0.229196
5 0.166805 0.246863
6 0.169447 0.26348
7 0.171577 0.279305
8 0.173333 0.294497
9 0.174803 0.309163
10 0.176052 0.323378

5 D)

îl>
Ou

0.35 
0.3 

1 0.25 
E 0.2 
Q. 0 .15 

0.1 
0.05 

0

Figure 1.2

■"■'"ii!.. . PM

<
:

'4
4 5 6 7

generation

. steady-state GA j
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Figure 1.1 and Figure 1.2 show that the steady-state GA has a lower probability of 

containing one copy of an optimum than the generational GA on both easy and 

hard problems, which is in conflict with our hypothesis (I). We now think it is 

because the generational GA is more explorative than the steady-state GA, which 

retains more diversity than the steady-state GA. When the GA starts with a
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transient state, the steady-state GA is more likely to remain in the given transient 

state; but the generational GA is more likely to change to different states 

(including the states containing an optimum). So starting from the same initial 

population distribution, in generational GA, the probability that we have seen an 

optimum by each time step is higher opposed to the steady-state GA.

2. The result of testing hypothesis II, the average expected waiting time 

of obtaining one copy of an optim um  

Table 2: we set / = 4, r  = 2, w = 0.1 and c = 0.8.

GA Average EWT / 
counting-ones fitness

average EWT / 
deceptive fitness

steady-state 8.5 4631.4
Generational 15.5 47.2

Table 2 shows the steady-state GA has shorter expected waiting time than the 

generational GA on the easy problem, which consistent with our hypothesis (II).

But table 2 also shows the steady-state GA has a longer expected waiting time 

than the generational GA on the hard problem, which is again in conflict with our 

hypothesis (II). The deceptive fitness function creates a hard situation for GAs. So 

generally, the average expected waiting time is longer when the deceptive 

function is applied compared with applying the counting-one fitness function. 

When deceptive fitness function and low mutation rate are applied, generational 

GA’s more exploration retains larger diversity of populations. So the generational 

GA is easier to recover from local optimum than the steady-state GA, which
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results that generational GA has shorter average waiting time until containing the 

first optimum. When string length increases, this result is likely to be more 

significant.

3. The result of testing hypothesis III  on easy problem , the average

expected waiting time of obtaining one copy of an optim um

Table 3: We set / = 3, r  = 3, w = 0.001, c = 0.8.

GA average EWT/uniform average EWT/one-
crossover point crossover

steady-state 325.6 315.6
generational 365.7 357.4

Theoretically, the uniform crossover has no position bias, which makes larger 

changes easier than one-point crossover. This higher changing rate would seem to 

results in higher probability of producing the first population containing an 

optimum. But Table 3 is in conflict with our hypothesis (III). The reason remains 

unclear.

4. The result of testing hypothesis IV on easy problem , the average 

expected waiting tim e of obtaining one copy of an optimum 

Table 4: We s e t / = 3, r = 3, w = 0.1.

crossover rate average EWT / 
steady-state GA

average EWT / 
generational GA

0.0 375.3 425.8
0.1 367.7 414.3
0.2 360.6 404.4
0.3 353.9 395.9
0.4 347.6 388.4
0.5 341.7 381.7
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0.6 336.0 375.8
0.7 330.7 370.5
0.8 325.6 365.7
0.9 320.8 361.3
1.0 316.2 357.3

Table 4 shows the effects o f increasing crossover rate. Crossover adds exploration 

to GAs, which results in higher probability o f making a transition from one state 

to a different state. Larger crossover rate means larger changes more easily, so 

increasing crossover rate speeds up the conversion to an optimum. Table 4 

confirms our hypothesis (IV).
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CHARPTER V 

CONCLUSIONS

In this paper, the Random Heuristic Search model is reviewed. The steady-state 

GA and the generational GA are defined. The Random Heuristic Search model is 

extended to both steady-state and generational GAs. The Markov chain models of 

both steady-state and generational GAs are described and applied to evaluate their 

performance in terms of the probability of obtaining an optimum at each 

generation and expected time to obtain at least one copy o f an optimum. The 

effect o f the crossover operator is investigated. Some experimental results are 

presented on a simple fitness function and a hard fitness function.

The experimental results o f Markov chain simulation on GAs show that the 

generational GA has higher probability to obtain the optimum by each generation 

than the steady state GA. We think that this shows the importance o f retaining the 

diversity of populations. The results verify that a higher crossover rate will result 

in a shorter expected waiting time. The results also show that deceptive fitness 

function is difficult for a GA to optimize.

It would be nice to see what the effects of other GA operators (e.g. mutation) and 

parameters (e.g. population size, n ; the length of binary string; I ) have on the 

GA performance. The experiment on whether the steady-state GA with a high 

mutation rate and a high crossover rate is equivalent to the generational GA with a
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lower mutation rate and a lower crossover rate could be run. The size o f the 

Markov chain matrix grows exponentially with the length of the binary strings. 

Further work is needed in order to scale up to more realistic values o f « a n d / .  

One solution could be to reduce the size o f Markov chain matrix of a GA by 

lumping the states containing the optimum into one single state and/or lumping 

the similar states no containing the optimum into one single state without 

significant loss of accuracy.
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