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Slater, Lee S. M.S., April 2003 Computer Science

An Object-Oriented Design and Implementation of the Genetic Ensemble Feature 
Selection Method

Director: David Opitz

A goal of modem machine learning research is to find computational classification and 
regression methods which generalize well. The Genetic Ensemble Feature Selection 
(GEFS) method uses a genetic algorithm to evolve feature sets that produce predictors 
that are accurate yet diverse which when combined, produce a concept which generalizes 
well. Herein an object-oriented design of the GEFS method is modeled in the Unified 
Modeling Language (UML) and implemented in C++. The system embedding the GEFS 
method, named the Machine Learning System, provides a platform to conduct various 
machine learning experiments. As implemented, the system performs the percentage 
train/test and n-fold cross-validation experiments using GEFS and single predictor 
learning methods with neural network predictors. The test set errors of the GEFS and 
single predictor learning methods with the 10-fold cross-validation experiment were 
computed over a sample of datasets with encouraging results.
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I. Introduction

The main goal of modem machine learning research is to create learning methods 

with high generalization accuracy. In the early 1990’s ensemble learning methods were 

developed that had better generalization than single predictors. These methods produced 

a collection of predictors each separately trained by an inductive learning algorithm 

whose output was combined to form the prediction (Figure 1). It was shown that for 

learned ensembles to generalize well, the predictors of the ensemble need to be both 

accurate and diverse (i.e. make their errors over different subspaces of the example 

space).

X, x 2 XN

i  r

Combine output

Predictor 2Predictor 1 Predictor N

o

Figure 1. A predictor ensemble.

Also of interest to the machine learning community and statistical data modelers 

are feature selection methods. Given a set of examples, these methods determine a subset 

of the features that is sufficient to accurately predict a regression or classification of other 

instances having structure similar to the examples. These techniques can be successful in 

eliminating redundant or irrelevant attributes (features) or in finding transformations of 

the attributes of the data sets being modeled. Irrelevant features in a dataset can lead to
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poor generalization and computational inefficiency when inducing a predictor. Feature 

selection methods have predominately been applied with single predictor models where 

the goal was to find the optimal feature set relevant to both the learning task and selected 

inductive learning algorithm. This type of selection method is termed a wrapper method. 

Another type of selection method, termed a filtering method, acts as a preprocessor of the 

dataset by determining a feature set without directly attempting to optimize a learning 

method. By producing a good feature set, improvements in predictor performance and a 

better understanding of the underlying concept generating the instances can be achieved.

The union of these two ideas forms the concept of ensemble feature selection - the 

selection of feature sets, each set representing the inputs for a predictor of the ensemble, 

that produce accurate yet diverse predictors over the example space (1). This task is 

more difficult than traditional feature selection in that the feature sets must in also 

promote diversity among the ensemble’s predictors. The Genetic Ensemble Feature 

Selection (GEFS) method (1) is a machine learning technique that determines feature sets 

that produce accurate but diverse predictors within an ensemble. The unique approach of 

GEFS is that this is accomplished by evolving the feature sets to optimality with a genetic 

algorithm (GA). GAs are known to effectively search large search spaces and the search 

space of the required feature sets is large for non-trivial problems. The GEFS algorithm 

is detailed in the next section.

The GEFS method is showing great utility in many machine learning applications 

such as image analysis problems (2). The initial implementation of the GEFS method 

provided a successful prototype and much was learned about the behavior of the method 

in different machine learning contexts (3). However, the initial design was constructed
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using a structured programming paradigm and resulted from the extension of a research 

code consisting of 5 separate machine learning systems that had evolved over 10 years. 

Thus, the maintenance of this code was difficult. To efficiently further develop the GEFS 

method in a stable, maintainable manner, the need to adopt the object-oriented paradigm 

was recognized. The objective of this project is to develop an object oriented design and 

implementation for the GEFS method which could be easily maintained yet largely retain 

the efficiency of the original implementation written in C.

II. The GEFS Method

The main intent of the GEFS method is to select sets of features where each set of 

features are the inputs to a predictor of an ensemble such that the predictors, once trained, 

are accurate yet diverse. Since the search space of the feature sets satisfying this property 

is large, a GA, having been shown to be an effective global optimization technique, is a 

logical choice to accomplish this. A hill-climbing strategy is better suited to refine an 

already near optimal solution and thus is not as appropriate here since the search space 

should be sufficiently explored before being exploited. To this end, the main structure of 

the GEFS algorithm follows a GA formalism where the population to be optimized are 

sets of features having a 1:1 correspondence to the predictors of the ensemble. The 

GEFS algorithm is summarized in Figure 2.

In the initial implementation of GEFS, neural networks were used as predictors.

In this object-oriented implementation, the type of predictors allowed are very general 

and an ensemble can comprise a mixture of different predictor types. The requirements 

of a predictor (learner) will be discussed in the implementation section.
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GOAL: Find a set o f features (inputs) to create an accurate yet diverse predictor ensemble.

1. Using varying inputs, create and train the initial population (ensemble) o f  N predictors.

2. Until a termination criterion is met

a) Apply genetic operators to create new predictors, adding them to the population.

b) Assess the accuracy o f  each predictor over the training examples.

c) Assess the diversity o f  each predictor with respect to the current population.

d) Normalize the accuracy and diversity scores o f  all predictors in the population.

e) Calculate the fitness o f  each population member.

f) Prune the population to the N fittest predictors forming the new ensemble.

g) Adjust 1.- the weight o f  the diversity term within the fitness.

Figure 2. The GEFS Algorithm

The GEFS method creates an initial population (ensemble) of predictors such that 

the inputs of each predictor are generated by randomly selecting a subset of the features. 

First, the number of features (inputs), N ,, for each predictor is randomly selected. This is 

chosen, independently and uniformly for each predictor, to be between 1 and twice the 

number of the original features in the dataset. Then the Nj features are randomly chosen 

with replacement. Consequently, some features may have multiple occurrences while 

others may not exist within a feature set. This allows for certain features to better survive 

during evolution and may reinforce the influence of the feature within certain types of 

predictors. The initial ensemble is then trained using the learning method characteristic of 

the predictor type. A validation set can be used during training if desired but this is 

defined within the scope of the predictor learning method and is independent of GEFS. 

The accuracy, diversity, and fitness (defined below) are computed for each predictor of 

the initial population before the ensemble evolution begins.
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During ensemble evolution, new predictors are continually added to the existing 

population. These are created by applying the crossover and mutation operators to feature 

sets of selected members of the population. These members can be selected at random or 

proportional to fitness. The type of the new predictor(s) created is determined by the type 

of their parent predictor(s) and are trained with their respective learning method. The 

crossover operator defined for GEFS uses dynamic-length, uniform crossover but a 

single-point crossover has also been implemented. Each feature in both parent’s subset is 

randomly placed in the feature set of one of the two children. This give the offspring 

feature sets dynamic length and may be larger or smaller than the selected parent’s 

feature set size. However, each child is required to have at least one feature which is 

randomly transferred from the other child if necessary. The GEFS mutation operator is 

defined traditionally as randomly selecting a small percentage of features to change to 

distinct, randomly chosen features.

After new predictors are trained and added to the population, GEFS is defined to 

compute the predictor’s accuracy score over the training set. Accuracy could also be 

scored over a validation set but this has not been implemented. Additionally, GEFS 

computes the predictor’s diversity score with respect to the current, expanded population. 

The accuracy and diversity scores are individually normalized and GEFS computes each 

predictor’s fitness as:

Fitness; = Accuracy, + X Diversity! 

where the parameter X defines the tradeoff between the accuracy and diversity. The 

accuracy of each predictor is implemented as one minus the predictor error where the 

predictor error is defined according to the predictor type. The diversity of each predictor
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is defined to be the average difference between the predictor output and the expanded 

ensemble output corresponding to the current population. Normalizing the accuracy and 

diversity individually so that the predictor’s scores range between 0 and 1 allows X to 

have the same meaning across domains.

It is not clear to what value X should be set and its value may vary during the 

course of ensemble evolution to achieve the goal of accurate yet diverse predictors. As 

implemented, X is automatically adjusted based on approximate derivatives (finite 

differences) of the ensemble error E, the average population error E, and the average 

diversity D within the ensemble. The condition for adjusting X is the following: while E is 

decreasing, X remains unchanged; otherwise a) if E is not increasing and the population 

diversity D is decreasing then increase X; or b) if E is increasing and D is not decreasing 

then decrease X. The default initial value of X, is .1.0 and changes by 10% of its current 

value.

Although the population expands temporarily as new predictors are evolved and 

included in the population, at the end of each iteration of GEFS, the population is pruned 

to the N fittest population members. This pruned population then forms the current 

ensemble. At this point, the current ensemble can be evaluated on a set of test examples 

or output to inspect predictor structure. Because GEFS continually considers new 

predictors to include in the ensemble during its operation and at anytime during its 

operation (at the end of an iteration), the GEFS ensemble represents the “best” ensemble 

evolved so far, it is termed an “anytime” learning algorithm. Such a learning algorithm 

should produce a good concept quickly then continue to search concept space for better 

concepts. This behavior is observed in GEFS and will be discussed in the results section.
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In common GA operation, the GA usually terminates when the population fitness does 

not change over time. As currently implemented, the termination condition of GEFS is 

whether the number of new predictors to be searched (a user-defined parameter) has been 

reached. This allows further searching for a global optimum even when the presence of a 

local optimum has been detected. It also gives the user more control as when to terminate 

the algorithm and test or output the current ensemble.

III. Object Oriented Design and Implementation

In addition to the GEFS method, a complete system was designed and 

implemented to provide a platform to perform various machine learning experiments.

The implementation language for the system is C++, chosen for its object-oriented 

expressiveness and efficient executable code. The collection of developed C++ classes in 

this project is referred to as the Machine Learning System. To document the object 

structure and sequence of operation using the UML (Unified Modeling Language), the 

system was reversed-engineered with the software suite Rational Rose (4).

A class diagram (5) shown in Figure 3 provides the static view of the class 

structure of the system at a high level of abstraction. The five main classes of the system 

are experiment, learningMethod, Patterns, commands, and learner. The classes 

learningMethod, experiment, and learner are abstract base classes and form key 

interfaces for the system design. As illustrated for the GEFS class in Figure 3, derivation 

from these interfaces allows the development of many different classes giving the system 

inherent flexibility for modification.
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Figure 3. Class Diagram for Machine Learning System Highlighting the GEFS Class
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A. The commands Class

The commands class is responsible for scanning the command file and initializing 

the objects of the system with the parameters set in the command file. The command file 

(given a .cmd extension) specifies the machine learning experiment to perform. The 

operation of the commands object processes the command file in one pass. A 

corresponding method of commands scans for and processes the following sections of the 

command file: seed, Patterns, experiment, learningMethod, and learners. The central 

feature of the implementation of these methods is the use of map<string,fnptr> STL 

(standard template library) containers to hold function pointers to external methods 

(nonmember functions). Each allowable class of the system has a corresponding external 

method defined. The initial string encountered in a section of the command file triggers 

the appropriate external method to execute. The execution of this external method 

initializes a function pointer to a constructor of the corresponding class. It also initializes 

another map containing function pointers to external methods that set parameters on an 

instantiated object of the class. The assigned constructor is executed with the specified 

object instantiated. Each subsequent parameter string read from the command file triggers 

the execution of the appropriate method within the parameter map to assign the parameter 

to the instantiated object. When one develops a new experiment, learning method, or 

learner for the system, the proper external methods and constructor must be coded. This 

is easily done by analogy to the existing external methods and constructors.
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B. The Patterns/patterns Class

The Patterns class is a base class for a more functional patterns class that 

internally represents and manipulates the patterns or examples (stored in a file having a 

.pat extension) representing known instances of a classification or regression problem. 

The base class Patterns, contains the data structures which hold the complete set of X 

attributes and T attributes read from the .pat file, adopting the instance notation of 

Mitchell (6). The derived class patterns implements a scheme to designate which 

patterns, X attributes, and T attributes are “active.” The active set of patterns, X 

attributes, or T attributes are a subset of the complete set of patterns, X attributes, or T 

attributes that can be accessed by a particular object. This convention allows the 

implementation of the learners and learning methods that don’t have to perform their own 

partitioning of the patterns, X attributes or T attributes. With this convention, it is not 

necessary to create a separate object containing the subset either. In this system, active 

patterns and active X attributes are used. For example, when a learner receives a message 

to train itself, the patterns object is passed to the learner with the training set patterns 

previously set as active. The learner only “sees” these patterns during training and does 

not have to internally partition the patterns itself. Notice that this doesn’t preclude the use 

of a validation set selected from the training patterns by the learner. Likewise, when a 

GEFS learning method object directs its ensemble learners to train, the X attributes of the 

patterns corresponding to input feature set of the learner are selected as active.
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C. The experiment Class

The experiment class is an interface for the machine learning experiment to 

perform. This provides the developer the opportunity to use new types of machine 

learning experiments. The experiments that derive from the experiment abstract class 

must implement the following functionality through virtual methods: 

void initExpt( learningMethod* lm, Patterns* p )

- create or read train/test sets from patterns, initialize output objects 

void conductExpt( learningMethod* lm, Patterns* p )

- initialize, refine, and output the results from the computed hypothesis 

void finalizeExpt{ learningMethod* lm, Patterns* p)

- write the experiment parameters, train/test sets 

istream& read( istream& i s )

- code to reconstruct the experiment object reading from an input stream 

ostream& write( ostream& os)

- code to write the experiment object to a output stream

There are two classes derived from the experiment class, the CV class and the PTT class. 

The C V class and the PTT class implement the n-fold cross-validation and percentage 

train and test experiments, respectively. In the PTT class, initExptQ is defined to 

randomly select the specified percentage of training patterns, the remaining being 

designated test patterns. These two sets of pattern indices are stored in two arrays of 

integers with the number of training patterns retained in an integer. The conductExptQ 

method of PTT is defined to perform a single hypothesis initialization, refinement, 

finalization, and results output. The hypothesis computation is dictated by the virtual
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implementation of the dynamically bound learningMethod object discussed in the next 

section. Whereas in the CV class, initExptQ is defined to create a random partition of the 

patterns. Each subset of this partition is the test set of a fold of the cross-validation. The 

remaining subsets are combined and randomized to form the training set for the fold. The 

test set partition of pattern indices is stored in a single integer array and the training set 

pattern indices for all folds are stored in another integer array. The number of test set and 

training set indices for each fold are stored in two integer arrays. For the CV class, 

conductExptQ is defined to perform n iterations (one iteration for each fold) of the 

hypothesis initialization, refinement, finalization, and results output. The other methods 

of the interface are defined appropriately to write and read the differing train/test sets and 

associated parameters. These differences in operation are reflected in different 

implementations of the virtual methods of the experiment interface while the mainQ 

function, which calls some of these methods, remains unchanged. Additional subclasses 

that derive from CV and PTT have been defined. CVevaluate and PTTevaluate are classes 

which have slightly modified conductExptQ methods in that they do no hypothesis 

refinement, only initialization (i.e. read from file) and then output the results of the 

evaluation of the initial hypothesis on selected training/test sets of patterns.

D. The learningMethod Class

The learningMethod class is the interface for a learning method that a user may 

implement. In developing a learning method for this system, the developer must 

implement the following functionality through virtual methods:

void initHypothesis( Patterns* p)

12



- initialize the learning method, construct the initial ensemble 

void refine Hypothesis^ Patterns* p )

- refine the hypothesis, evolve the ensemble 

void evaluateHypothesis{ Patterns* p, double2D& o )

- evaluate the hypothesis over the patterns, store output 

void finalizeHypothesis{ Patterns* p )

- write hypothesis to file

void appendLearners( int numL, learner** L )

- append instantiated learner object pointers to learning method 

istream& read( istream& is )

- code to reconstruct the learningMethod object from an input stream 

ostream& write( ostream& os)

- code to write the learningMethod object to a output stream

In this project, the GEFS class and the singleLearner class are derived from the 

learningMethod interface. The virtual method implementations of the GEFS class are 

more complicated than the singleLearner definitions. The initHypothesisQ method of the 

GEFS class is defined to compute otreadQ the initial ensemble. This involves the 

generation of learners having random number of inputs (as described in the GEFS 

method section), training these learners, computing the outputs of the ensemble over the 

training patterns, and computing the fitness of each member of the ensemble. Within the 

singleLearner class, the initHypothesisQ initializes or readQs the individual learner 

object. In GEFS, refineHypothesisQ must evolve the ensemble which is simply handled 

by a method invocation but the outputs over the training patterns must be computed prior

13



to evolution in the event that the hypothesis has been readQ from a file. In singleLearner, 

the learner invokes trainQ to refine the hypothesis (see below for interface definitions of 

the learner class). The finalizeHypothesisQ method is similar in both GEFS and 

singleLearner but the actually writeQ of the GEFS object to file is more involved since 

both the GA<inputFeatures> object and the ensemble object must be written (see the 

GEFS structure described next). The former involves writing each inputFeatures object 

and the latter involves writing each learner object. A similar level of complexity is 

involved in reconstructing the GEFS object through readQ. In appendLearnersQ, the 

GEFS method must append the learner to the ensemble but also instantiate a new 

inputFeatures object to be appended to the GA population while the singleLearner object 

only needs to assign a pointer.

E. The GEFS Class

The high-level architecture of the GEFS class is also shown in Figure 3. The 

composite objects inputGA and learners are the two main components. These objects are 

instantiated by value from the classes GA<inputFeatures> and ensemble. The 

GA<inputFeatures> class binds the GA<Indiv> class and the inputFeatures class. The 

GA<Indiv> template class is a genetic algorithm class that implements a variation of the 

steady-state (incremental) algorithm for population evolution. The minimum number of 

evolved individuals it adds to the population at each iteration of the GEFS algorithm is 

parameter controlled. The default is to add a minimum of one individual ensuring that 

only a mutated individual or two crossover progeny are added. Once the minimum 

number of individuals are added, the iteration terminates. This algorithm probabilistically
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chooses to perform a mutation or crossover operation based on a mutation probability 

parameter. Population individuals can be selected for genetic operations randomly or by 

fitness proportionality. A generational algorithm has also been implemented but not 

tested. The instantiation of GA<inputFeatures> then contains a population of 

inputFeatures objects (by reference). The inputFeatures class (or any class that binds to 

GA<Indiv>) must implement the genetic operators - mutateO, crossoverQ, and the 

input/output operators - operator«Q, and operator»Q. The mutate operator must 

mutate the calling object and the crossover operator takes an individual object as an 

argument and produces the progeny within the calling and argument objects. The 

inputFeatures class implements the feature set as an array of integers where the integers 

correspond to the numbering of the X attributes within the original pattern file read. The 

other main, composite object in the GEFS class, learners, is an instantiation of the 

ensemble class. The ensemble object contains (by reference) the ensemble component 

learner objects. In this implementation, pointers to learner base class objects can address 

any object of a class that derives from learner and thus various learners, in addition to 

stdNN, can be implemented for use in the system. The learner class is discussed below. 

Note from the class diagram association that the inputFeatures objects are in a 1:1 

correspondence with the learner objects. In the singleLearner class only a single pointer 

to a learner object is contained.

F. The learner Class

The learner class is an abstract base class acting as an interface for various 

learners or predictors. This class gives the GEFS class the flexibility to use other learners
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(or mixtures of learners) within its ensemble though dynamic binding of the derived 

objects. For a learner to be developed for the system, it must implement the following 

functionality through virtual functions: 

learner* createNewLearnerQ)

- create an new instantiation of the object with default constructor 

void initLearner{ int numlnputs, int numOutputs)

- initialize a learner to have the specified number of inputs and outputs 

void train( Patterns* p )

- train the learner using the corresponding learning procedure 

void test{ Patterns* p, double2D& o )

- compute and store output of the learner on the patterns 

double error{ Patterns* p, double2D& o )

- compute appropriate error of the learner given outputs and T attributes 

istream& read( istream& is )

- code to reconstruct the learner object from an input stream 

ostream& write{ ostream& os)

- code to write the learner object to a output stream 

~learner()

- virtual destructor for the learner

The stdNN class derives from the learner interface and implements a standard 1 or 2 

layer neural network. In this implementation, the network is represented by two arrays -  

one of network weights and one for network bias. The weights can be indexed in the 

array by knowing the number of input units, hidden units, and output units. The
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createNewLearnerQ method instantiates a new stdNN object returning a learner pointer 

to the object. The initLearnerQ method allocates the required array storage for the 

network and initializes the number of input units and output units -  quantities common to 

all learner types. The number of hidden units can be specified in the command file or a 

default value used. The trainQ method performs the backpropagation algorithm given in 

Mitchell (6) and the testQ method evaluates the network in a feedforward manner. The 

error0 method computes the sum of squared errors of the computed outputs and targets 

given as the T attributes in the patterns object.

IV. Object Interaction and System Operation

While class diagrams provide a static, structural view of a system, interaction 

diagrams provide a dynamic view of the object interaction during system execution (5). 

There are two types of interaction diagrams commonly used to model object-oriented 

behavior -  sequence diagrams and collaboration diagrams. Sequence diagrams highlight 

the time ordering of message passing between objects during execution while 

collaboration diagrams better exhibit the object organization in message passing during 

execution. Multiple interaction diagrams can be used to model and document different 

parts of the system execution and at differing levels of abstraction. To demonstrate the 

execution of the Machine Learning System, a sequence diagram to describe the high-level 

behavior of mainQ and separate sequence diagrams to further detail the actions of mainQ 

are employed.
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A. System Operation of mainQ

Figure 4 shows the sequence diagram for the mainQ function at the highest level 

of abstraction. Two actions are performed by mainQ-. 1) processing the command file 

wherein the objects of the system are instantiated and 2) performing the machine learning 

experiment using the instantiated system objects. The first seven actions performed 

within mainQ are responsible for processing the command file and instantiating the 

system objects while the last three actions direct the experiment object to perform the 

specified machine learning experiment. Initially, mainQ instantiates a commands object, 

c. Then, mainQ directs c, through passed messages to c, to process each section of the 

command file. Some sections of the command file are necessary while others are 

optional. The methods of commands can detect the presence of the necessary sections and 

error messages followed by system termination result if absent. The actions performed by 

the methods are evident from their names. Each method generally scans the command file 

for the appropriate section heading, instantiates the corresponding object(s) of the section 

being processed and assigns any parameters specified in the section to the instantiated 

object. The implementation of these methods was discussed in the previous section. The 

operation of these methods is further detailed in the sequence diagram in Figure 5. While 

all messages received by c instantiate objects of the system (except 

assignRandNumSeedQ), only the experiment object instantiation is depicted in Figure 4 

since its methods are directly invoked within mainQ. The experiment virtual methods 

perform the machine learning experiment. Their operation is dictated by the 

implementation of dynamically bound object but generally consists of initializing the 

experiment, conducting the experiment, and finalizing the experiment. The specific
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implementation of these methods for the CV and PTT classes were previously described 

and their general operation is further detailed in the sequence diagram given in Figure 6.

1: « c r e a t e »

2:ass ign R and N u m S eed ()

3: readPatterns( p )

4: assignExperim ent( e )
5: « c r e a t e »

6: assignLearningMethod( lm )

.7: assignLearners( lm )

8: initExpt( lm , p

9: conductExpt( lm, p

10 :fin a lize E x p t(lm ,p )

c : com m ands

main

e : experiment

Figure 4. Sequence Diagram for mainQ

B. System Object Instantiation and Parameter Assignment

Another sequence diagram that details command file processing is shown in 

Figure 5. After the commands object c, has been created and the command file scanned 

for an optional random number generator seed, mainQ sends a message to the commands 

object to readPatternsQ. This method then creates a Patterns object,/?. As implemented,
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a patterns object (instantiated from a subclass of Patterns) is always specified in the 

command file but other classes can be derived from Patterns and used in the system.

After p  is instantiated, any parameters are read from the command file and assigned to the 

object. A list of the permissible Patterns parameters are: 

patternsFile <string>: required

- the name of the patterns file, must include the .pat extension 

numPatterns <int> : required

- total number of patterns in .pat file to read, assumed positive 

numXAttribs <int> : required

- total number of X attributes in .pat file, assumed positive 

numTAttribs <int> : required

- total number of T attributes in .pat file, assumed positive 

continuous Output <bool> : default 0

- are outputs (scalar or vector) continuous? (1 = yes, 0 = no)

There are no parameters specific to the patterns class. With the parameters assigned, c 

directs p  to allocPatternsQ and readPatternFileQ. The first action allocates the storage 

needed to store the patterns having the specified dimensions. The second action reads the 

patterns from the specified .pat file. This fully initializes the patterns object for the 

machine learning experiment.

20



1 : r e a d P a t t e r n s ( p )

c : c o m m a n d s

6: ass ignE xper im en t(  e )

9 :a s s ig n L ea rn in g M e th o d ( lm  ;

12: a s s ig n L e a rn e r s (  Im ;

2: « c r e a t e »

3: * read  p a ra m e te r  from file, a s s ig n  to object

p : Patterns

4 :a l lo c P a t te rn s ( )

5: readPa t te rnF ile ( )

7: « c r e a t e »

8: * read  p a ra m e te r  from file, a s s ig n  to object

10: < < c r e a t e »

11: * read  p a ram e te r  from file, a s s ig n  to object

13: * « c r e a t e »

14: * read  p a ra m e te r  from file, a s s ig n  to object

1 5 : a p p e n d t e a r n e r s ( l )

e  : e x p e r i m e n t

I m  : l e a r n i n a M e t h o d

I : l e a r n e r

Figure 5. Sequence Diagram for Object Instantiation and Parameter Assignment
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Next, mainQ directs c to assignExperimentQ. The operation of this method 

instantiates the experiment object and assigns any parameters specified in the command 

file. The type of experiments currently defined in the system are:

P T T -  performs a percentage train and test experiment.

PTTevaluate -  performs a PTT experiment but no hypothesis refinement.

CV— performs an n-fold cross-validation.

CVevaluate -  performs a CV experiment but no hypothesis refinement.

Some parameters are common to all experiments while other parameters are dependent 

on the experiment specified. The permissible parameters common to all experiments are: 

evallnitHypothOnTrainPatts <bool> : default 0

- evaluates initial hypothesis on the training patterns, outputs error 

evallnitHypothOnTestPatts <bool> : default 0

- evaluates initial hypothesis on the test patterns, outputs error 

evalRefinedHypothOnTrainPatts* <bool> : default 0

- evaluate refined hypothesis on training patterns, outputs error 

evalRefinedHypothOnTestPatts* <bool> : default 0

- evaluate refined hypothesis on test patterns, outputs error 

outputlnitHypothOnTrainPatts <bool> : default 0

- performed if evallnitHypothOnTrainPatts = 1, outputs predictions 

outputlnitHypothOnTestPatts <bool> : default 0

- performed if evallnitHypothOnTestPatts = 1, outputs predictions 

outputRefinedHypothOnTrainPatts* <bool> : default 0

- performed if evalRefinedHypothOnTrainPatts = 1, outputs predictions
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outputRefinedHypothOnTestPatts* <bool> : default 0

- performed if evalRefmedHypothOnTestPatts = 1, outputs predictions 

readExptFromFile <bool> : default 0

- read experiment object from file 

writeExptToFile <bool> : default 0

- write experiment object to file 

inputFilename <string> : default “defaultlnput”

- input filename to use if readExptFromFile -  1, appends .exp extension 

outputFilename <string>: default “defaultOutput”

- output filename to use if writeExptToFile = 1, appends .exp extension 

Note that “RefmedHypoth” parameters (denoted by an asterisk) are not defined for the 

PTTevaluate and CVevaluate experiments. The additional permissible parameter for the 

CV and CVevaluate experiment is:

numFolds <int> : default 10

- number of folds to perform in the n-fold cross validation experiment 

The additional permissible parameter for the PTT and PTTevaluate experiment is:

percentTrain <double> : default 0.5

- percentage of patterns to use in training set

Next, c receives the message to assignLearningMethodQ. This method of the 

commands object instantiates a learningMethod object, Im, and assigns any specified 

parameters to Im. The learning methods defined in the system are:

GEFS -  Genetic Ensemble Feature Selection 

singleLearner -  a single learner of specified type

23



As with the experiment class, some parameters are common to all learning methods while 

others are applicable to the learning method specified. The parameters common to all 

learning methods are:

readLearnMethFromFile <bool> : default 0

- reads learningMethod object from file 

writeLearnMethToFile <bool> : default 0

- writes learningMethod object to file 

readParamsFromFile <bool> : default 1

- reads learningMethod parameters into object previously written to file

-  will overwrite any new parameters specified in command file 

multiplelnputFiles <bool> : default 0

- specifies that multiple learningMethod input files will be read

- used if performing CV experiment with a learningMethod read

- appends integer file extension 

multipleOutputFiles <bool> : default 0

- specifies that multiple learningMethod output files will be written

- used if performing CV experiment with a learningMethod write

- appends integer file extension 

inputFilename <string> : default “defaultlnput”

- filename to use if readLearnMethFromFile = 1, appends .lm extension 

outputFilename <string> : default “defaultOutput”

- filename to use if writeLearnMethToFile = 1, appends dm extension
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There are no parameters exclusive to the singleLearner learning method. The parameters 

specific to the GEFS learning method are:

minSearchLength <int> : default 100

-  minimum number of learners to add to initial ensemble during 

evolution.

minLearnersEvolved <int> : default 1

minimum number of learners to add to ensemble each GEFS iteration 

lambda <double> : default 1.0

weight of diversity in fitness computation 

dLambda <double> : default 0.1

- fraction of current lambda to add to lambda during lambda change 

dLambdaFreq <int> : default 1

- number of GEFS iterations before test for lambda change 

inFtMaxNumRandomlnputs <int> : default 2 * number of X attributes

maximum number of features (learner inputs) to include in set 

inFt PercentMutatedlnputs <double> : default 0.075

percent of mutated features in set if mutation performed 

inFt CrossoverProb <double> : default 0.5

- probability that a feature will be crossed over in progeny 

GA MutationProb <double> : default 0.5

- probability evolution will perform a mutation instead of crossover 

GA SelectFitnessProp <bool> : default 0

leamer(s) to evolve is selected by proportionality to fitness
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Finally, the c object is directed to assignLearnersQ. As denoted on the sequence 

diagram, multiple learner object instantiations are possible and this occurs if GEFS is the 

specified learningMethod object. Parameters also need to be read from the file and 

assigned to the multiple learners. The most efficient way of assigning parameters to 

multiple learners of a single type is to use a template learner. A template learner object of 

the corresponding type is instantiated and the parameters are read from the file and 

assigned to the template object. Then, copies of this template object are constructed and 

appended to a transient array of learner objects. Each learner type is processed in this 

manner (if a mixed ensemble of different learner types is specified) and the complete 

array is constructed. Then the commands object directs the learningMethod object to 

appendLearnersQ to the learning method using the complete array of learners as an 

argument. The stdNN learner class has been derived from learner for use with the 

system. In the class definition of learner, there are no parameters common to all learners, 

only parameters specific to the derived learner stdNN. The parameters specific to the 

stdNN learner are:

numEpochs <int> : default 100

- number of epochs to perform in backpropagation 

learnRate <double> : default 0.1

- learning rate, q = step size in gradient descent optimization 

momentum <double> : default 0.9

- momentum constant, a 

randWtMag <double> : default 0.5

- magnitude of the random weight initialization
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numEpochRand <int> : default = numEpochs, no randomization

- number of epochs to perform before randomizing the patterns 

numlnputUnits <int> : default = number of X attributes in patterns object

- number of input units in network

numHiddenUnits <int> : default max(5,max(numOutputUnits,numlnputUnits/10))

- number of hidden units in network

numOutputUnits <int> : default = number of T attributes in patterns object

- number of output units in network

C. - System Operation When Performing Experiments

Figure 6 provides a view into the operation of how the system performs a machine 

learning experiment. When mainQ passes a message to the experiment object e to 

initExptO, e computes the train/test sets appropriate to the experiment. This can be done 

randomly or with the use of a random number generator seed to ensure a partition of the 

patterns into invariant train/test sets. Alternatively, the train/test sets may be read when 

the experiment is read from a file if the parameter readExptFromFile is set. This allows 

the saving and reusing of a particular partition of train/test set patterns within other 

machine learning computations. This also allows one to examine the behavior of a 

learning method on a particular partition of the patterns by creating the experiment file 

manually and reading it into the system. Also depicted on the sequence diagram, e 

instantiates some minor objects used to hold output predictions.
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m a i n e : e x o e r i m e n t I m  : l e a r n i n o M e t h o d : l e a r n e r

1 :  i n i t E x p t f  I m ,  p  )

4 :  c o n d u c t E x p t (  I m , p  )
< -

- >

1 7 : f i n a l i z e E x p t ( l m ,  p )

2 :  c r e a t e  o u t p u t  o b j e c t s

3 :  c o m p u t e  o r  r e a d  t r a i n / t e s t  s e t s
3

5 :  * i n i t H y p o t h e s i s (  p )

7 :  * e v a l u a t e H y p o t h e s i s {  p ,  o u t p u t ) >
9 :  * o u t p u t i n i t H y p o t t i e s i s  r e s u l t s

1 0 :  * r e f i n e H y p o t h e s i s (  p )

1 2 :  * e v a l u a t e H y p o t h e s i s ( p , o u t p u t )

1 4 :  •  o u t p u t  r e t i n e d H y p o t h e s i s  r e s u l t s

< 3

1 5 :  * f i n a l i z e H y p o t h e s i s (  p )

1 8 :  w r i t e  e x p t t r a i n / t e s t  s e t s

<

6 : '  i n i t i a l i z e  o r  r e a d  l e a r n e r

8 :  * t e s t  i n i t i a l  l e a r n e r

1 1 : *  t r a i n  l e a r n e r

1 3 : "  t e s t  l e a r n e r

1 6 :  * w r i t e  l e a r n e r  t o  f i l e

Figure 6. Sequence Diagram for experiment Operation

With the experiment initialized, mainQ directs e to conduct the experiment with 

the message conductExptQ. The operations performed within conductExptQ may be 

performed multiple times if a CV experiment is being conducted (one iteration per fold) 

or just a single time with a PTT experiment. The initial action is for e to pass a message 

to the learningMethod, Im, directing Im to initHypothesisQ. Upon receiving this message,
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Im initializes its hypothesis by preparing the initial learner objects as follows. If the 

GEFS learning method has been specified, multiple learner objects may be readQ or 

trainQed. In this case, it is the GEFS ensemble that is initialized (but not evolved) and 

this requires that the learner objects of the ensemble be trained or read from a file. If a 

singleLearner learning method is specified, the referenced learner object is only 

initialized, but not trained. With an initial hypothesis constructed, it may be evaluated on 

the training and/or test set patterns. This action is performed through a message, 

evaluateEfypothesisO, from the experiment e to learning method Im. Which patterns the 

hypothesis is evaluated on is specified during the command file processing by assigning 

the appropriate parameters of experiment (see above listing of parameters). To 

accomplish the hypothesis evaluation, the learning method Im instructs the composite 

initial leamer(s) to testQ on the selected patterns. The correctness of the initial hypothesis 

on the selected patterns is output and the actual predictions of the hypothesis may be 

output if specified. During the conductExpt() phase, the hypothesis is refined by e 

directing Im to refineHypothesisQ. Note that this action is only performed during the CV 

and PTT experiments but not the CVevaluate and PTTevaluate experiments. This is 

accomplished in both singleLearner and GEFS by Im directing its composite leamer(s) to 

trainQ. Previously, when the initial hypothesis was being computed, GEFS would train 

the learners but the not evolve the ensemble. During refinement, however, the GEFS 

ensemble evolves and during the course of evolution, new learners are continually being 

trained to refine the hypothesis. As previously discussed, the refined hypothesis is 

evaluated on the selected patterns by lm directing each of its learners to testQ. The 

hypothesis correctness can be output as well as the predictions if specified. During the
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last phase of the conductExptQ, the hypothesis is finalized by e directing Im to 

fmalizeHypothesisQ. This involves writing the hypothesis to file which is accomplished 

by Im writing each learner object to file. This is useful if one wishes to read in a refined 

hypothesis and evaluate it on another set of patterns or perform further refinement.

In finalizing the experiment, main directs e to finalizeExptQ. This involves 

writing some of experiment parameters and train/test sets to a separate file if the 

writeExptToFile parameter has been set. The experiment file can be read into another 

machine learning computation if one wants to use identical parameters and train/test sets.

V. Results and Discussion

The Machine Learning System was tested on the datasets listed in Table 1. These 

were originally obtained from the UCI Machine Learning Data Repository at the 

University of California at Irvine (7). The Repository represents a diverse set of machine 

learning problems and is commonly used to evaluate the efficacy of newly developed 

machine learning algorithms. The datasets used in this study represent a sampling of the 

Repository and were selected because the original implementation of GEFS was tested 

with them. All datasets used in this study represent only classification problems although 

the Machine Learning System is flexible enough to be easily modified to solve regression 

problems. There is a wide range in the number of cases or instances in the datasets and 

the number of inputs and outputs varies substantially among the datasets. Every dataset 

in Table 1 has no missing attributes and several datasets have vector-valued features 

composed of multiple continuous or discrete attributes. A discrete vector feature of N 

classes is represented by N binary attributes. When mapping to a neural network, each
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attribute corresponds to an input of the network. The details of the feature structure can 

be obtained at the UCI Repository. The number of network units and the number of 

training epochs used in the study are also given in Table 1 and are identical to those used 

in testing the original implementation of GEFS.

Table 1. Selected Datasets and the Associated Network Parameters Used In the Study

Dataset
Cases Classes

Features 
Continuous Discrete Inputs

Network 
Outputs Hidden Epochs

credit-a 690 2 6 9 47 1 10 35
credit-g 1000 2 7 13 63 1 10 30
Diabetes 768 2 9 - 8 1 5 30
Glass 214 6 9 - 9 6 10 80
heart-Cleveland 303 2 8 5 13 1 5 40
Hepatitis 155 2 6 13 32 1 10 60
house-votes-84 435 2 - 16 16 1 5 40
Hypo 3772 5 7 22 55 5 15 40
Ionosphere 351 2 34 - 34 1 10 40
Iris 159 3 4 - 4 3 5 80
kr-vs-kp 3196 2 - 36 74 1 15 20
Labor 57 2 8 8 29 1 10 80
Letters 20000 26 16 - 16 26 40 30
promoters-936 936 2 - 57 228 1 20 30
ribosome-bind 1877 2 - 49 196 1 20 35
Satellite 6435 6 36 - 36 6 15 30
Segmentation 2310 7 19 - 19 7 15 20
Sick 3772 2 7 22 55 1 10 40
Sonar 208 2 60 - 60 1 10 60
Soybean 683 19 - 35 134 19 25 40
Vehicle 846 4 18 - 18 4 10 40

The computational experiments consisted of 10 trials where each trial consisted of 

a randomly determined 10-fold cross-validation experiment. With cross-validation, the 

patterns are randomly partitioned into 10 nearly equal sized sets. Each set forms a test set 

for a fold of the experiment. Given a test set, the remaining sets are combined and 

randomized to form the training set for the fold. Each training set of patterns is used to 

induce a newly created learningMethod object at each fold of the experiment. The
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correctness of the trial is the sum of the correct predictions of the test set patterns over all 

folds divided by the number of patterns. The reported mean error is 1 minus the sample 

mean of the correctness of the 10 trials obtained with singleLearner and GEFS learning 

methods using stdNN neural network leamer(s). The GEFS learning method correctness 

was computed with the initial and refined hypotheses and singleLearner correctness 

using only the refined hypothesis. This results in the initial and refined (evolved) GEFS 

hypotheses evaluated on the same test set for each trial but a different test set for the 

singleLearner hypothesis. The neural network parameters used in the experiments are: 

learning rate = 0.15, momentum = 0.9, and a magnitude of 0.5 for randomly assigned 

weights having positive or negative sign. The same network parameters were used for 

both the singleLearner and GEFS ensemble experiments. The parameters for the GEFS 

learning method are: initial lambda = 1.0, a change of lambda of 0.6 when a change is 

warranted and a determination of whether to change lambda occurring at a frequency of 

every 5 iterations of the GEFS algorithm (see Figure 2). The GEFS parameters were 

fixed for all datasets considered.

The test set errors of the singleLearner and GEFS learning methods on the 

datasets are provided in Table 2. The average test set error and 95% confidence interval 

over 10 trials is reported for the single neural network predictor, the initial GEFS 

ensemble of 20 neural networks, and after searching 230 additional networks (for a total 

of 250 networks). In addition, the p-values from two different t-tests were reported. Of 

interest in this study is whether there is a statistically significant difference in mean test 

set error between the single learner and the GEFS method. The GEFS mean error used in 

the t-test is chosen to be the minimum error of the initial ensemble or after 250 networks
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have been considered. This convention is adopted since it is observed that further 

evolution may not always produce a hypothesis with a better mean test set error. The t- 

test used in this case is a standard two-population test for a difference in population 

means (2-tailed) assuming unequal variance. This significance test is appropriate because 

the GEFS and singleLearner trials are evaluated on different test sets. The second 

question of interest is whether successful evolution has occurred to produce a hypothesis 

giving a different test set error than the initial ensemble. In this case, a paired difference 

test (two-tailed) is used and is appropriate since identical test sets are used for the initial 

and evolved hypotheses.

‘ Table 2. Computed Test Set Errors (in %) for the Machine Learning System on Selected UCI Datasets

Dataset
Single Learner 

Mean 95% C l
Initial Pop 

Mean 95% C l

GEFS Ensemble 
250 Networks 

mean 95% C l
SL Diff 

P
Evolution

P
Credit-a 15.3 (14.7,15.9) 13.9 (13.6,14.2) 14.1 (13.9,14.2) 7.90e-04 .257
Credit-g 28.8 (28.2,29.4) 24.9 (24.3,25.5) 24.3 (23.9,24.8) 1.36e-09 .041
Diabetes 24.3 (23.3,25.3) 24.8 (23.9,25.8) 24.4 (23.6,25.0) .896 .426
Glass 39.8 (38.0,41.6) 41.0 (38.9,43.1) 34.9 (33.8,35.9) 3.65e-04 ].14e-04
Heart-Cleveland 19.5 (19.1,19.9) 17.5 (16.7,18.4) 18.5 (17.6,19.2) .001 .019
Hepatitis 18.3 (17.0,19.5) 17.2 (16.3,18.0) 19.0 (18.0,19.9) .174 6.84e-04
House-votes-84 4.8 (4.6,5.1) 4.4 (4.1,5.0) 4.6 (4.1,5.0) .048 .509
Hypo 6.7 (6.4,6.9) 6.9 (6.8,6.9) 5.1 (4.9,5.4) 1.1 le-07 1.36e-06
Ionosphere 11.2 (10.3,12.1) 7.0 (6.5,7.4) 6.6 (6.4,6.9) 2.84e-06 .081
Iris 4.1 (3.0,5.2) 4.9 (4.3,5.4) 4.4 (3.6,5.2) .640 .354
kr-vs-kp 2.6 (2.4,2.8) 3.0 (2.9,3.2) 0.99 (.62,1.4) 3.59e-06 4.55e-06
Labor 2.6 (1-9,3.4) 3.5 (2.6,4.4) 3.2 (2.5,3.8) .331 .343
Letters 18.3 (18.0,18.5) 14.5 (14.4,14.7) 12.5 (12.4,12.7) 2.39e-16 3.74e-08
Promoters-936 5.3 (4.9,5.6) 4.1 (4.0,4.3) 5.1 (4.8,5.3) 5.75e-05 4.16e-04
ribosome-bind 9.4 (9.1,9.6) 8.1 (7.9,8.3) 8.3 (8.1,8.4) 5.25e-07 .306
Satellite 13.4 (13.2,13.5) 13.1 (12.8,13.4) 11.4 (11.2,11.6) 6.68e-12 6.13e-08
Segmentation 6.7 (6.5,6.9) 6.4 (6.0,6.7) 4.2 (4.0,4.3) 5.61e-13 6.83e-08
Sick 5.9 (5.7,6.1) 6.0 (5.9,6.1) 3.4 (3.1,3.8) 7.92e-09 1.40e-07
Sonar 18.7 (17.3,20.0) 16.7 (15.7,17.8) 16.0 (15.2,16.9) .006 .304
Soybean 8.7 (8.2,9.1) 6.5 (6.2,6.8) 6.7 (6.4,7.1) 8.46e-07 .349
Vehicle 24.9 (24.1,25.6) 25.2 (24.8,25.6) 21.3 (20.9,21.8) 6.17e-07 1.57e-06
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Examining the test set errors in Table 2, demonstrates a few trends. Using a 

neural network predictor with the GEFS learning method produced a lower mean test set 

error than the singleLearner in a majority of the datasets. In considering the p-values for 

the difference between the GEFS and single learner, 17 of 21 datasets show statistically 

significant differences having p < a  = 0.05. In all 17 cases, either the initial GEFS mean 

test error or the refined mean test error was less than the single learner mean test error.

A statistically significant difference between the initial ensemble and the refined 

ensemble having considered 250 networks over the same test set is demonstrated in 12 of 

the 21 datasets. The case of the refined mean test set error being less than the initial 

mean test set error provides strong evidence that evolution was successful in generating a 

more accurate hypothesis, capable of better generalization. This occurs in 9 of the 12 

datasets and demonstrates successful anytime learning -  the method produces a good 

initial concept and through evolution determines a concept possessing better 

generalization. In all nine cases, the refined mean test set error is less than the single 

learner mean test set error. In six of the nine cases, successful evolution occurred in the 

seven multi-class datasets. Although further experimentation is necessary, this suggests 

that successful GEFS evolution with these parameter settings may work better for multi­

class datasets. The three cases for which the mean test set error of the evolved GEFS 

ensemble is greater than the initial ensemble suggests that further evolution didn’t 

improve upon the initial hypothesis and may have found a less accurate hypothesis. This 

minor finding is most likely caused by inappropriately selected GEFS parameters for 

these datasets. It may indicate that the presumably high diversity of the random initial 

feature sets is important and the inappropriate GEFS parameters may decrease diversity
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during evolution. It is probably not an initial ensemble dependent phenomenon for it 

occurs in most of the trials having random initial ensemble feature sets. Even in these 

cases, the initial mean test set error is still less than the single learner mean test set error.

VI. Conclusions

The development of the Machine Learning System provided a rewarding and 

educational experience in object-oriented design and implementation. In making 

modifications to the system during development, the true beauty of object-oriented 

systems emerged -  the ability to modify and maintain a large software system by the 

reduction of complexity through encapsulation, and the increased code abstraction and 

reuse through inheritance and dynamic binding. Although the results over the datasets 

tested suggest that further exploration of the GEFS parameters is warranted, the system 

shows much potential for further development and now exists in a form that is flexible 

and maintainable.
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