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Director: Dr. Diana L. Six P  / ■->

White pine blister rust is a tree disease caused by an introduced fungal pathogen (Cronartium ribicola) 
that has resulted in devastating impacts in many coniferous forests of North America. The pathogen 
alternates between white pine hosts and currant and gooseberry hosts (members of the genus Ribes). In 
western North America, regional differences in disease intensities within and among species of white pine 
are recognized. Whitebark pine is an ecologically valuable, high-elevation pine host that commonly 
occurs in relatively pristine habitats including portions of the Greater Yellowstone Area. Chapter 1 
presents a study that was aimed at detecting and describing spatial patterns, or associations, between 
white pine blister rust disease severity in whitebark pine hosts and landscape features related to the Ribes 
host species distributions. No previous studies have related the spatial, landscape distribution of Ribes 
species to the variation in rust severity in whitebark pine stands. In order to relate variation in rust 
severity to such landscape features, it was necessary to address the fact that whitebark pine trees vary 
considerably in growth form and size both among and within stands. Host trees from site to site present 
very different targets to the pathogen. Consequently, a comparison of rust severity among stands with 
different size distributions requires adjustment for canker capacity (maximum number of cankers 
expected for trees of a particular size) with a relative severity index. Significant relationships between 
disease severity and distances to landscape features that relate to Ribes species distributions and 
susceptibilities were found in this study, showing that a spatial pattern of disease severity exists. 
Moreover, it is possible that the pattern of blister rust disease severities among whitebark pine stands 
relates to proximities between pine and Ribes hosts.

Given the possible role of Ribes species proximities in explaining current blister rust disease severities 
in whitebark pine of the GY A, Chapter 2 addresses the information gap resulting from the fact that recent 
research programs have generally neglected the role of the Ribes hosts. The ecology of Ribes hosts in the 
Greater Yellowstone Area is characterized, initiating the development of a more comprehensive approach 
to the white pine blister rust pathosystem that considers both host groups. Each Ribes species is a unique 
host that exhibits a distinct spatial association with the pine hosts and a distinct genotypic and phenotypic 
susceptibility to infection by Cronartium ribicola. An overview of nine Ribes taxa known to occur in the 
GYA is presented, with discussion of the ecology and pathology of each.
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CHAPTER ONE:

Patterns of White Pine Blister Rust Severity Among Whitebark Pine Stands of the Greater 
Yellowstone Area: Relationships with Landscape Features and Site Factors

ABSTRACT

White pine blister rust is a tree disease caused by an introduced fungal pathogen (Cronartium ribicola) 
that has resulted in devastating impacts in many coniferous forests of North America. The pathogen 
alternates between white pine hosts and currant and gooseberry hosts (members of the genus Ribes). 
Regional differences in disease intensities within and among species of white pine are recognized. 
Whitebark pine is an ecologically valuable, high-elevation pine host that commonly occurs in relatively 
pristine habitats including portions of the Greater Yellowstone Area (GYA). Surveys of whitebark pine 
have found that disease intensities vary greatly across its range. It is known that the pathogen has been 
present in white pines of the GYA since at least 1945. At present it remains unknown whether ecological 
conditions in some portions of the GYA are such that whitebark pine populations will remain sustainable 
even in the continued presence of the pathogen. This study was aimed at detecting and describing spatial 
patterns, or associations, of white pine blister rust disease severity in whitebark pine hosts and landscape 
features related to the ecology of the Ribes host species. Meeting this objective requires both the 
determination of a means of quantitatively assessing blister rust disease severity in whitebark pine that 
enables examination of the variation in disease severity among sites, and the determination of an 
appropriate spatial scale for investigation.
Field data on tree characteristics and disease severity were collected at 45 sites in whitebark pine stands 

throughout portions of the GYA over the summers of 2001 and 2002. Additional variables were measured 
for all these sites using topographic maps of the GYA. A relative index of disease severity was derived to 
account for problematic differences in tree sizes among sites. This GYA Relative Severity Index was used 
as the dependent variable in correlation and linear regression analyses of disease severity on independent 
variables of site factors and distances to landscape features. The landscape features that were considered 
were selected based on information on the alternate Ribes hosts, at the species-level, gained from 
observations during both field seasons. Significant relationships were found between the GYA Relative 
Severity Index and two variables that show autocorrelation: distances to 5th order streams and distances to 
nearest streams at or below 2621 m, a common upper-elevational limit for Ribes hudsonianum and R. 
lacustre. Additionally, a possible threshold extended forest cover metric value was detected such that sites 
with extended forest cover metrics greater than 0.65 all were associated with low estimated disease 
severities, consistent with findings of other studies. When the GYA Relative Severity Index was only used 
for sites with extended forest cover metrics less than 0.65, linear regression analysis of disease severity on 
the mean total and forested distances to streams at or below 2621 m showed that 61 percent of the 
variability in disease severity was explained by the mean total and forested distances to streams at or below 
2621 m. The significant relationships between disease severity and distances to landscape features found in 
this study show that a spatial pattern of disease severity exists, implying that predictive abilities related to 
disease progression in this system may be possible.
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INTRODUCTION

Research motivation: Rapid global transport of organisms across natural geographic barriers has 

resulted in considerable ecological, evolutionary, and economic consequences. Many of the exotic species 

that are introduced are plant pathogens, some of which have resulted in severe ecological and evolutionary 

impacts (Haack and Byler 1993, Liebhold et al. 1995, Chapin et al. 2000, Palumbi 2001). Several case 

studies have demonstrated that introduced pathogens can cause catastrophic impacts on forest ecosystem 

diversity and function (Haack and Byler 1993) and may result in dramatic alterations of evolutionary 

patterns (Palumbi 2001). For example, the introduced causal agent of Chestnut blight, Cryphonectria 

parasitica (Murrill) Barr, has led to the near elimination of American chestnuts from eastern North 

American forests. The causal agent of Dutch elm disease, Ophiostoma ulmi (Buisman) Nannf., has had 

devastating impacts on American elms, with only a small proportion of the original population that exhibit 

genetic resistance or tolerance to the disease still remaining (Kendrick 1992, Schlarbaum et al. 1997, Allen 

and Humble 2002).

White pine blister rust is a tree disease caused by an introduced fungal pathogen (Cronartium 

ribicola) that has resulted in severe economic and ecological damage in many coniferous forests of North 

America (Haack and Byler 1993). All North American white pine species (members of the subgenus 

Strobus) are highly susceptible to the pathogen. Because of catastrophic losses in three commercially 

valuable white pine species [eastern white pine (Pinus strobus L.), western white pine (P. monticola 

Dougl.), and sugar pine (P. lambertiana Dougl.)], white pine blister rust is recognized as the most 

damaging conifer disease in North American forests (Maloy 1997, Neuenschwander et al. 1999, Geils

2001). The significance of damage to ecologically valuable tree species in western North America such as 

whitebark pine {Pinus albicaulis Engelm.) (Zeglen 2002), limber pine {Pinus flexilis James), foxtail pine 

(P. balfouriana Grev. and Balf.), and southw estern  w hite pine (P. strobiformis) has also recently 

been recognized (Tomback 2003). As the research emphasis on white pine blister rust expands to include 

not only the economically important species but the ecologically valuable white pines as well, there has 

also been a corresponding shift in perspective from one focused strictly on protection of economic interests 

to one that considers ecological impacts of biological invasions. The fact that white pine blister rust is not
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restricted to managed forests but also impacts relatively pristine and otherwise intact ecosystems 

demonstrates that the detrimental impacts from this pathogen in these environments fits within the broader 

category of global change concerns. This study was broadly aimed at increasing our understanding of 

impacts from introduced pathogens to relatively unmanaged ecosystems, and more specifically impacts to 

whitebark pine within the Greater Yellowstone Area (GYA).

The GYA is one of the few largely intact ecosystems remaining in temperate regions (Patten 1991, 

Noss et al. 2002). It is comprised of about 23,000 square kilometers spanning seven national forests, two 

national parks, three federal refuges, and Bureau of Land Management and state lands in Wyoming,

Montana, and Idaho (Craighead 1994, Reinhart et al. 2001). Relatively few direct anthropogenic-driven 

changes are evident in whitebark pine forests of the GYA, with the presence of exotic species being a 

notable exception (Reinhart et al. 2001). Because these whitebark pine forests remain relatively pristine 

and un-managed, they present researchers with an exceptional model to assess how natural ecosystems 

might be altered by biological invasions and other global-scale anthropogenic stresses (Keiter 1991).

Disease Cycle: Characteristics of the fungal pathogen, in part, explain the pathogen’s ability to 

invade remote forests such as those of the GYA. The white pine blister rust disease system is an interaction 

among three groups of organisms. The pathogen, C. ribicola, alternates between white pine hosts 

(subgenus Strobus) and gooseberry and currant hosts (Ribes spp.). Cronartium ribicola is a Basidiomycete 

in the order Uredinales (rust fungi). Rust fungi are obligate biotrophs, meaning they can only grow within 

living hosts (Kendrick 1992). They are associated with major leaf and stem diseases in agricultural and 

forest systems (Manion 1981). Cronartium ribicola is a macrocyclic heteroecious rust (Kendrick 1992) 

and must successfully infect and alternate between both host plants to complete its life cycle. Thus, pine 

hosts can only be infected by spores from Ribes hosts (Mielke 1943, Kendrick 1992).

Cronartium ribicola has a three- to six-year life cycle, with two spore stages developing on white pines 

and three on Ribes plants. Aeciospores are thick walled (2.0-5.5 pm) and durable (Peterson 1967). These 

relatively large spores (19 x 25 pm) (Peterson 1967) travel from pine to Ribes hosts via air currents, remaining 

viable for distances up to 500 km or more (Mielke 1943). This step in the life cycle allows for long-distance 

disease transmission. Aeciospores are predominantly released in early to mid-summer, but can be released even
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in late summer and fall (Smith et al. 2000, m. newcomb, personal observation). For successful infection of a 

Ribes leaf, specific moisture and temperature conditions are required (Van Arsdel et al. 1956, McDonald et al. 

1981) coupled with compatible genetic interactions of the host plants (V an Arsdel 1972, McDonald and 

Andrews 1981). Fungal penetration of the Ribes leaves occurs through stomata that are located on lower leaf 

surfaces (Woo and Martin 1981).

Once a Ribes plant is infected, uredia develop on the under-side of infected leaves after an incubation 

period of 13 to 30 days (Mielke 1943), depending, in part, upon temperature (Mielke 1943, Van Arsdel et al. 

1956). Throughout summer, urediniospores are produced clonally on the undersides of Ribes leaves and can 

spread infection from Ribes plant to Ribes plant several times within a season (McDonald et al. 1981, Agrios 

1997). The number of uredial generations that develop during a summer depends on the occurrence and timing 

of favorable meteorlogical conditions. In different locales and years in western North America, generations of 

uredia have been observed to range in number from 1 to more than 7 (Mielke 1943).

In late summer or early fall, with the onset of shorter day lengths and cooler temperatures, 

urediniospore production is replaced by teleiospore production on the infected Ribes leaves. Teliospores 

germinate in place on the leaves during periods of saturated air and low temperatures (Bega 1959, McDonald 

and Andrews 1980) to produce haploid basidiospores, the products of meiosis (Gitzendanner et al. 1996). 

Basidiospores are wind dispersed from Ribes leaves to needles of white pines from July to October (Agrios

1997). Basidiospores are small (5 to 10 pm in diameter), thin-walled, and ephemeral (they are readily 

destroyed by ultraviolet light and dessication). It is believed that production and survival of these spores is 

restricted to a limited range of environmental conditions and that dispersal distances are generally short 

(Kinloch et al. 1998, McDonald and Hoff 2001). Processes of basidiospore germination on the needles and 

subsequent infection of pines are affected by the temperature and moisture conditions on the needle (Hanson 

and Patton 1977). Germination and infection occurs in the presence of free water or very high (above 97%) 

relative humidities (Van Arsdel et al. 1956). Infection by basidiospores occurs when germ tubes grow into 

stomatal pits of the needle and penetrate between guard cells (Patton and Johnson 1970). The resulting 

mycelium then grows through the conducting tissue of the needle to the living bark tissue of the stem where it 

persists as a perennial infection, eventually producing a canker (Mielke 1943, Agrios 1997).
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For pine infection to occur, it is believed that wet conditions with saturated air are required for 

cumulative time periods that allow for the production, release, and transport of basidiospores, germination of 

the spores on needles, and penetration of the needle by germ tubes. The time required for these processes is 

estimated to be 48 hours (Van Arsdel et al. 1956). Prolonged rain events have been considered to be most 

important for providing conditions favorable for pine infection (Hirt 1942). Fog has also been considered as a 

source of moisture that allows for successful pine infection (Flirt 1942). Yet the spatial and time scales 

involved throughout the entire spore processes that lead to and include needle infection make it difficult to 

pinpoint the specific atmospheric conditions that are involved.

The pycniospore (spermatia) stage occurs within cankers two to four years following needle infection 

(Agrios 1997). These spores are produced in a nectar-like secretion (Buller 1950). The mating system of 

C. ribicola is highly outcrossing, with haploid pycniospores presumably involved in cross-fertilization 

(Gitzendanner et al. 1996). It is believed that insects are attracted to the nectar-like medium in which 

pycniospores are released, and may facilitate transport of the spores to other pycnia (Hunt 1985, Kinloch et al.

1998). If the pycnia are compatible, fusion and fertilization may occur (Gitzendanner et al. 1996). Generally, 

aeciospores are first produced within the cankers during the spring or summer months three to six years after the 

initial needle infection. Haploid fungal mycelium is maintained on the periphery of the cankers and continues 

to produce pycnia and haploid pycniospores every summer (Agrios 1997, Hunt 1997). Aecia form under living 

tree bark surrounding the canker. When these aecia push through the bark and aeciospores are dispersed, the 

bark in that region is ruptured and dies. Fungal mycelium then moves to the surrounding healthy bark. This 

results in annual canker expansion and the eventual girdling of the tree or branch as the fungus continues to 

spread. In general, the location of a canker within the tree dictates the degree and type of damage that occurs to 

the tree (Mielke 1943). Bole cankers, and branch cankers that originate near and subsequently move into the 

bole, are eventually lethal if the foliage between the girdled portion of the stem and the roots cannot sustain the 

tree (Moss 1953). In small-diameter trees, death can occur relatively rapidly and often results from girdling. 

Larger trees may persist with infections for 40 years or more, depending in part on the number and location of 

cankers (Mielke 1943, McDonald et al. 1981).
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The complicated life cycle of C. ribicola spans vastly different spatial scales, from microscopic (spore 

development and interactions with host plants), to macroscopic (long dispersal distances). Thus, studies of the 

fungus and its life history under natural conditions are inherently difficult. To date, knowledge of the etiology 

of this fungal pathogen has largely been based on circumstantial evidence, and much remains unknown about 

the environmental limits and requirements of the different spore types (Hamelin et al. 1998). Studies on the life 

cycle and conditions affecting production of the different spore stages have been conducted primarily in 

controlled settings with a limited number of host groups. Information from these studies has then been 

generalized to field conditions and other hosts (Van Arsdel et al. 1956, Bega 1959, Hanson and Patton 1977, 

McDonald and Andrews 1980, Hunt 1985).

Disease distribution: White pine blister mst is present throughout the entire geographic range of 

some host pines, particularly western white pine and sugar pine (Neuenschwander et al. 1999, Tomback 

2003). However, regional differences in disease intensities (defined here as the amount of disease present 

in a host population, (Nutter et al. 1991)) within and among species of white pine are recognized (Smith 

and Hoffman 2000, Kendall and Keane 2001). Some host species (bristlecone pines: Pinus aristata 

Engelm. and P. longaeva D.K. Bailey and Mexican white pine: P. ayacahuite Ehrenberg ex.

Schlechtendahl.) that exhibited susceptibility when artificially inoculated with C. ribicola have not been 

observed to be infected in their native ranges (Schoettle 2003, Geils 2003). For some other host species, 

including whitebark and limber pines, disease intensities vary across their ranges.

Surveys of whitebark pine have documented that disease intensities vary across its range (Zeglen 

2002, Tomback 2003). Average incidence of infection in living trees is as high as 83% in the Bob Marshall 

Wilderness Complex in Montana (Keane et al. 1994), with more recent studies of that region reporting 

close to 100% infection and mortality in some stands (Tomback 2003). Yet recent surveys in some other 

areas show lower incidences of infection and demonstrate high variability in disease intensities across 

geographic areas. For example, surveys have found an average of 71% of host trees infected at four sites in 

the Selkirk Mountains (Kegley et al. 2001), 46% in southwestern Oregon (Goheen et al. 2002), and 31% 

(Zeglen 2002), 30% (Stuart-Smith 1998), and 27% (Campbell and Antos 2000) across the Canadian 

Rockies and British Columbia, repectively. Across eastern Idaho and western Wyoming, 31% of trees
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were found to be infected (Smith and Hoffman 2000), 20% in Crater Lake National Park (Murray and 

Rasmussen 2000), and 7.6% in central Idaho (Smith and Hoffman 1998).

Pine host -  pathogen interaction: Disease results from complex interactions between host, 

pathogen, and environment that relate, in part, to the following factors: phenotypic and genotypic 

characteristics of both host and pathogen (Et-touil et al. 1999, Roy and Kirchner 2000, Hovmoller 2001, 

Thrall and Burdon 2003) edaphic and site factors that determine host condition (Zufa, floor discussion in 

Var Arsdel 1972, Maxwell et al. 1997, Wennstrom and Hagner 1999, Stanosz et al. 2001), macro- and 

micro-climatic factors (Van Arsdel 1965, Chellemi and Britton 1992), and host densities and arrangements 

relative to topography (Jacobi et al. 1993, Geils et al. 1999). Across the western United States the 

ecological setting is highly heterogeneous. The interaction between whitebark pine hosts and C. ribicola 

may exhibit conditionality relative to this heterogeneity. As defined by Bronstein (1994), interactions are 

conditional when the outcomes, or net costs and benefits, vary in space and time as they are affected in 

predictable ways by current ecological conditions. Recent surveys across western North America suggest 

that C. ribicola infection in whitebark pine may exhibit conditionality, allowing for the possibility that an 

ecological context exists in which whitebark pine and C. ribicola can coexist in a dynamic equilibrium.

The concept of C. ribicola and whitebark pine conditionality can be framed by what is known 

about the role of plant pathogens in wild systems. Pathogens influence plant populations (Thrall and 

Burdon 2003). Yet evaluating the role of pathogens in wild systems is difficult because of the multiplicity 

of interactions (Lenne et al. 1994) and the often long period of time required for examining their full effects 

(Kranz 1990). Accounts of the functions of pathogens in such complex ecosystems are largely based on 

observed host-pathogen interactions, and causal pathogen influences on host population dynamics are 

inferred (Burdon and Shattock 1980, Dinoor and Eshed 1984, Augspurger 1988, Lenne et al. 1994). 

Observations of pathogens on an ecosystem scale rarely find extensive damage, and discemable impacts on 

host population structure and function are generally limited (Dinoor and Eshed 1984, Augspurger 1988, 

Kranz 1990, Garcia-Guzman and Dirzo 2001). Yet it is also commonly observed that frequencies of 

resistant hosts across geographical space varies (Wahl 1970, Hunt and Van Sickle 1984, Ericson et al.
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2002), implying that pathogens may be influential in defining host population composition and/or 

distribution, even if such influences have rarely been detected.

Increasing evidence supports the hypothesis that pathogens can influence plant distributions, both 

locally and geographically. Local patterns in host distributions may result from influences of pathogens 

through the following processes: prohibition of host-plant regeneration near parental hosts (Augspurger 

1984, Gilbert et al. 1994); restriction of host plants to patches of limited sizes such that host densities are 

maximized while pathogen densities are limited (Burdon and Shattock 1980, Jennersten et al. 1983); 

restriction of hosts to microsite refuges (Rochow 1970, Jarosz and Burdon 1988), and spatially patterned 

limitations on host phenologies (Dinoor 1970). It has also been hypothesized that pathogens may limit the 

broader geographic distributions of hosts (Wilde and White 1939, Weltzien 1972). Factors that may 

interact with pathogens to influence geographic ranges of hosts include climate (Weltzien 1972), soil 

conditions (Wilde and White 1939), and for some host-pathogen interactions the distribution of alternate 

hosts is an additional ecological factor (Weltzien 1972).

While it is inherently difficult to determine causal effects of pathogens on hosts in wild systems, 

which exhibit numerous intricate species-environment interactions, natural experiments exist in the form of 

deliberately-introduced bio-control, and accidentally-introduced, exotic pathogens. These examples 

demonstrate the ability of pathogens, in particular contexts, to dramatically impact host populations 

(Burdon et al. 1981, Hiers and Evans 1997). White pine blister rust disease development in western North 

America is a similar natural experiment. The outcome of the introduction of C. ribicola could ultimately 

result in either of the following situations: complete devastation throughout the range of white pines such 

that only genetically resistant pines persist, or a conditional host-pathogen interaction such that only 

resistant pine hosts persist in regions with ecological conditions favorable to pathogen infection, while pine 

hosts in regions with less favorable ecological contexts may include both resistant individuals and 

susceptible ones that persist through escape or avoidance mechanisms (Lenne et al. 1994).

Evidence supporting a possible conditional host-pathogen outcome for North American white 

pines may be found in the form of detectable patterns in disease intensities relative to some ecological 

factor or factors. Detection of patterns in disease intensities requires the use of both a meaningful and
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effective metric for quantifying disease intensity and an appropriate spatial scale for examination (Levin 

1992). For blister rust in whitebark pine, both of these requirements are challenging and have not yet been 

adequately defined. Standard measures used in disease assessments (incidence of infection, or the 

proportion of surveyed trees infected; and severity ratings, or assigned numerical or descriptive values 

representative of the proportion of area or volume affected by disease) (Nutter et al. 1991) that are 

appropriate for purposes of monitoring may not be equally appropriate for comparisons among sites and 

detection of patterns across complex landscapes. Despite a recent increase in disease surveys within 

whitebark pine (Zeglen 2002, Tomback 2003), no methods or metrics have been developed that facilitate 

among-stand examinations of disease intensity relative to specific ecological factors. This may, in part, 

explain why few clear or consistent patterns have emerged relating standard measures of white pine blister 

mst infection to predictive factors (Campbell and Antos 2000, Schwandt 2001, Smith and Hoffman 2001, 

Zeglen 2002).

Defining an index of disease severity: In many systems, appropriately describing disease 

intensities in a manner that allows for analysis and prediction of disease progression is a challenging task 

(Seem 1984, Waggoner and Aylor 2000). This is especially so for complex pathosystems such as blister 

rust in whitebark pine. In such natural systems, interactions which occur between hosts and pathogens are 

influence by the diverse climatic and edaphic conditions which hosts encounter, as well as the diverse host 

ages and conditions which the pathogens encounter. Standard methods for studying the effect of plant 

diseases were developed within agricultural systems which exhibit more uniformity among hosts and their 

environments. Effective methodologies and measures for use in complex forest systems are generally 

lacking (Lenne et al. 1994). Most estimates of white pine blister rust in field sites are reported as incidence 

of infection measured as the proportion of trees infected (Keane et al. 1994, Harris 1999, Campbell and 

Antos 2000, Smith and Hoffman 2001, Murray and Rasumussen 2000, Zeglen 2002), or disease severity 

measured as a percentage or category of damage (Keane et al. 1994, Goheen et al. 2002), or as the average 

number of cankers per tree (Keane et al. 1994, Stuart-Smith 1998). These measures have been useful for 

providing valuable information about the status of whitebark pine hosts, but may not adequately allow for 

studies of factors related to predictions of disease progression.
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For all of the above measures, the unit of investigation is a single tree. Whitebark pine trees differ 

substantially in growth form and size potential. They can exhibit remarkably variable crown shapes and 

sizes, and can occur as single trees or multi-stemmed clusters with straight and tall or short and contorted 

stems (Weaver 2001). From the perspective of pathogen infection, this variability in tree size and shape 

and in the related factors of tree age and condition, results in highly diverse host targets. Tree form can 

differ within a site, but the most striking differences occur among sites. Therefore, detection of patterns in 

disease intensities necessitates development of a measure that removes tree-level differences in host target 

characteristics to allow for comparisons of disease levels among pine stands.

Probability of infection of any single tree most likely relates to several interacting factors, 

including canopy or foliage target size (Buchanan 1936), tree height within the canopy (McDonald et al. 

1981, Stuart-Smith 1998), position within the stand, and relative susceptibility that may be related to tree 

age (Stuart-Smith 1998) and vigor, which is affected by site quality and competing vegetation (Posey and 

Ford 1924, Snell 1928, Mielke 1943). Tree diameter is correlated, to varying degrees, with all of these 

factors. Studies on whitebark pine have reported that tree diameters were associated with differences in 

infection incidences or severities (Stuart-Smith 1998, Campbell and Antos 2000, Murray and Rasmussen 

2000, Smith and Hoffman 2001, Zeglen 2002, and Goheen et al. 2002). A similar correlation has been 

reported for western white pine (Hunt 1983). Diameter is a factor that is easy to measure. Therefore, a 

useful metric of disease severity may be one that accounts for tree diameter. For the purposes of this study, 

an index of disease severity was devised that relates the measured disease severity of each surveyed tree to 

a calculated expected capacity disease severity for a tree of that size. This index of disease severity allows 

stand-to-stand comparisons of disease severity to the factors of interest.

Disease patterns and spatial scale: Pattern and scale are tightly linked (Levin 1992). Therefore, 

in addition to determining an effective metric for disease intensity, detection of pattern in the whitebark 

pine blister rust pathosystem is challenged by the need to recognize the appropriate spatial scale for 

examination. Primarily because research on the epidemiology of blister rust in whitebark pine is in a 

relative stage of infancy, consideration of potential pattern in disease levels in recent studies has been a 

secondary priority to surveys of pathogen distribution and intensity across geographical regions. When
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relationships between blister mst levels and other variables have been examined, the following factors were 

considered: elevation, slope, aspect, latitude, longitude, west-east distribution across mountain ranges, 

topographic position, mean summer precipitation, mean temperature of warmest month, mean number and 

average duration of frost-free days, tree canopy cover, density and basal area, whitebark pine density and 

basal area, average whitebark pine diameter, canopy structure, stand age, plant community and habitat 

types, and presence/absence of on-site Ribes plants (see Stuart-Smith 1998, Campbell and Antos 2000, 

Smith and Hoffman 2001, Zeglen 2002). Few strong associations were discovered. Campbell and Antos 

(2000) reported significant, but weak, associations with tree canopy cover and presence/absence of Ribes 

species. Smith and Hoffman (2001) found elevation, mean summer precipitation, and average diameter to 

be important explanatory factors. Finally, Zeglen (2002) found an association with transect location within 

the west to east mountain range locations. In summary, results that suggest patterns of infection levels 

remain inconclusive.

Review of the available information on whitebark pine forests and blister rust dynamics illustrate 

that there has been a nearly complete lack of attention given to the alternate hosts in surveys of white pine 

blister rust (Schwandt 2001). No studies have been conducted to look at the relationships between Ribes 

species distributions and abundances and whitebark pine infection level. Considering that for nearly a 

century there has been an interest and investment in protecting commercially valuable white pines from 

white pine blister rust in North America, and furthermore, that it has been recognized throughout that time 

that Ribes species play at least some role in the disease system as the obligate intermediate host for the 

pathogen, it is somewhat surprising that there is at present a general lack of consensus regarding how and if 

Ribes patterns influence pine infection patterns. The relative neglect of this essential component of the 

disease cycle may be at least partly based in history. Present white pine blister rust studies remain 

influenced by a forestry perspective with emphasis on the pine hosts (Vogler 1999). Moreover, any 

examination of patterns between pine and Ribes hosts is a study o f an indirect interaction (mediated by 

another species group -  the pathogen). These higher order interactions present problems during 

investigation and statistical analysis since common research and statistical methods typically strive to 

reduce interdependence (Laska and Wootton 1998, Wootton 1994a and 1994b). With few recent
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exceptions, indirect interactions in complex terrestrial systems have not been effectively investigated 

(Wootton 1994a).

An investigation of patterns of blister rust disease levels relative to Ribes host factors requires 

recognition that distinct Ribes species cannot effectively be amalgamated into a single category of “Ribes 

sp.” and that the spatial scale of analysis must be expanded beyond that of the associated whitebark pine 

stand (Newcomb and Six, in press). With few exceptions, there has been little recognition that each Ribes 

species is a distinct host with its own relationship with the pathogen, and thereby, its own distinct role in 

the disease system. The important correlative to this fact is that one model or explanation for the 

pathogen’s distribution cannot be generalized across regions with different Ribes species compositions. 

Recognizing that the composition of Ribes species is important, and that the relationship between pine and 

Ribes species is an indirect interaction, provides a starting point for selecting an appropriate spatial scale 

for detecting patterns. The concept of pattern in natural systems is inseparable from that of scale (Levin 

1992). If patterns are undetectable at one scale, it may be that there is another scale (either spatial or 

temporal) that is more appropriate for examination. For white pine blister rust, the area examined should 

be inclusive enough to allow for processes of basidiospore dispersal from Ribes to pine (a phenomenon that 

is still poorly understood in natural conditions), but not so inclusive to extend into an area with different 

Ribes species compositions.

White pine blister rust in the Greater Yellowstone Area: White pine species that inhabit the 

GYA include whitebark and limber pines. Both are hardy trees that can sometimes grow in harsh areas 

where other tree species cannot. Whitebark pine is a slow-growing, long-lived tree that grows in high 

elevation forests up to timberline. The species is a critical component of high mountain ecosystems, 

providing watershed protection and wildlife habitat (Kendall and Amo 1989). The large seeds have a high 

lipid and protein content (Lanner 1996) and are a nutritious, year-round food source for animals. In 

particular, federally protected grizzly bears (Ursus arctos) make use of the seed cones for food, as well as 

red squirrels (Tamiasciurus hudsonicus), Clark’s nutcrackers (Nucifraga columbiana), and black bears 

(Ursus americanus) (Kendall and Amo 1989, Mattson and Reinhart 1997). Limber pine covers less area
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within the Greater Yellowstone Area than whitebark pine and often occurs in small stands or groups of 

scattered individuals. Both white pine species are considered critical components of the ecosystem.

At least nine Ribes species occur in the GYA, and seven species are listed in the Flora of 

Yellowstone National Park (Despain 1975). Observations (m. newcomb) revealed the following species to 

be common in the GYA. As hosts to C. ribicola, they may have minor to important roles in the blister rust 

pathosystem:

♦ Ribes cereum -  grows on dry montane slopes, forest edges, and rocky areas; generally 
observed growing as single plants;

♦ R. hudsonianum -  a riparian species, limited to moist soil, often observed in patches;
♦ R. inerme -  present on stream banks, swamps and floodplains, often associated with willows;
♦ R. lacustre -  consistently (although sometimes sparsely) found in moist woods and slopes, 

most abundantly along stream banks;
♦ R. montigenum -  primarily limited to subalpine and alpine areas, observed growing in patches 

or as single plants;
♦ R. oxyacanthoides ssp. setosum -  (synonymous with R. setosum) present on open slopes and 

valley bottoms;
♦ R. viscosissimum -  present in moist or mesic open forests, observed growing as single plants, 

often in recently disurbed areas.
(Dorn 1984, Sinnott 1985, Lackschewitz 1991)

While the ecological role of native Ribes has received less research attention than that of the white pine 

hosts, the genus is a common component of coniferous forests. In the presence of C. ribicola, the 

ecological role of Ribes species is critical because of the indirect detrimental impacts (via the pathogen) on 

white pines.

Consideration of patterns in blister rust disease intensities, and the implications for pine host- 

pathogen conditionality, is especially pertinent in the GYA. The data that are available on blister rust 

levels show wide variation in infection incidences among sites (Kendall et al. 1996, Harris 1999, Smith and 

Hoffman 2000). While some areas contain sites with as high as 88% infection level (Smith and Hoffman 

2000), other sites exhibit very low incidences of infection (Kendall et al. 1996, Harris 1999, Smith and 

Hoffman 2000). It is known that the disease has been established in pine hosts within the GYA since the 

1940s (Krebill 1969). The fact that the pathogen has had a long-term presence in the area but still occurs in 

variable intensities could be explained by conditionality of the host-pathogen interaction across the diverse 

topography of the GYA.
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Moreover, understanding the potential for conditionality may help increase predictive abilities 

related to the extent of future damage to pine stands by the pathogen. The GYA is often described as one 

of the largest remaining temperate, reasonably intact, ecosystems (Patten 1991), and there is great interest 

in conserving this status and maintaining native species populations (Noss et al. 2002). Unfortunately, little 

is known about white pine blister rust disease dynamics in the GYA. When there is a strong interest in 

obtaining information for use in management and conservation efforts, vacuums in available data tend to be 

filled with unsubstantiated generalizations. While a careful analysis of the present status of blister rust 

throughout the GYA seems to illustrate that the extent of future damage to white pines is as yet unknown, 

statements regarding the future of GYA whitebark pine stands have claimed there is “little room for 

optimism” (Koteen 2002), and predicted an “inevitable spread of the disease and, along with it, eventual 

loss of most whitebark pine” (Reinhart et al. 2001). However, such statements are mostly unsubstantiated 

with data. Thus there is a critical need to increase both our knowledge of disease dynamics and our ability 

to predict future damage within this ecologically valuable area.

Project objectives: This work is broadly aimed at increasing our understanding of impacts from 

exotic pathogens to natural ecosystems. Prediction of impacts to ecosystems, such as the extent of blister 

rust damage in whitebark pine forests, requires determining a measure of impact (disease), detecting and 

describing patterns of impact (disease), and finally discovering the drivers of pattern (Levin 1992). While 

it is beyond the scope of this work to determine causal factors of patterns within this system, the theoretical 

framework for the study is based on reducing knowledge gaps that must be filled prior to prediction of 

future impacts. The immediate goal of the project was therefore to better understand spatial patterns (and 

thus conditionality) of white pine blister rust disease intensity in whitebark hosts within the GYA.

Specific objectives of the project were the following:

• To determine a means of quantitatively assessing blister mst disease severity in whitebark 

pine that enables examination of the variation in disease severity among sites relative to 

ecological factors that may be suggestive of conditionality between the pathogen and pine 

hosts.
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• To use this metric of disease severity to determine associations, or patterns, between 

disease intensity and landscape features related to the ecology of the Ribes host species. 

By examining which landscape features may be useful in explaining variation in disease severity, 

this study is unique among white pine blister rust research projects in its consideration of a spatial scale and 

landscape context that is large enough to incorporate processes of pathogen dispersion and proximities of 

whitebark pine and Ribes populations (but see Jacobi et al. 1993 in comandra blister rust system). 

MATERIALS AND METHODS

Field Methods 2001: Disease measures and host plant factors were investigated in 17

whitebark pine stands throughout portions of the Gallatin, Bridger Teton, and Targhee National Forests, as 

well as Yellowstone and Grand Teton National Parks. Study site locations and characteristics are 

summarized in Table 1. Stands were selected, as much as possible, such that whitebark pine was the major 

tree species. Site selection attempted to include a wide range of blister rust disease intensities among 

stands. In each stand, 28 live trees or trees obviously killed by blister rust (which were rarely encountered 

in the sites surveyed) were inspected for disease symptoms. Disease intensity was assessed using two 

methods. The first method involved counting, with aid of binoculars, all discemable active and old cankers 

(on branches and the main stem) in the upper, middle and lower thirds of the tree canopy. For the few trees 

(10 total from both years) for which blister rust was recognized as the cause of mortality, detection of 

cankers was too difficult to accomplish reliably and therefore only live trees were considered. Yet because 

these rarely occurring trees (present in only a few sites) are important as evidence for the site disease 

intensity, their presence was recorded. The second method of disease assessment provided a numerical 

disease severity rating, based on the percentage of visible disease-related damage on the main stem (bole) 

and in the canopy of examined trees (Six, in prep.). This method requires visually dividing the foliage and 

the bole into thirds and designating a rating of zero to three (zero representing no infection and three 

representing more than 50 percent impacted by infection) for each third (see Figure 1). Since trees that die 

due to blister rust are important in describing disease intensity, these trees were included in this second 

method of assessment and were assigned a maximum severity rating of 18 (maximum possible percentage 

of disease-related damage).
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The stem diameter at a height of 1.4 m (DBH, diameter at breast height) and canopy position 

relative to neighboring trees (open, overstory, subdominant, or overtopped) were recorded for each sample 

tree assessed for infection. The area immediately surrounding sample trees was used to measure whitebark 

pine density, spatial association between whitebark trees and on-site Ribes, and percent tree canopy cover. 

Whitebark pine density was estimated using a wandering-quarter transect method (Catana 1963) oriented to 

remain within a fairly homogeneous forest stand. At each whitebark pine tree encountered along the 

wandering quarter transect, distance was also measured from the tree to the nearest Ribes shmb (if Ribes 

were present within 25 m in any direction). A line transect was then established along the general midline 

of the wandering transect. At stratified random points along the line percent tree canopy cover was 

measured (using a convex densiometer) and the distance from the point of measurement to the nearest 

Ribes shrub was recorded (if Ribes were present within 25 m in any direction). Ribes species were present 

at fewer than half of the sites that were characterized. When Ribes plants were present, a variable-area 

transect (Parker 1979) was established perpendicular to the line transect at every fourth stratified random 

point to estimate Ribes densities by species. The direction of the variable-area transect alternated between 

upslope and downslope directions. Additional variables recorded at each site included elevation, slope, and 

aspect.

Field methods 2002: A total of 32 whitebark pine stands were sampled across much of the

GYA between June and September, 2002 (site location and characteristics summarized in Table 1). Plots 

were located throughout portions of the GYA to fill in areas that had not been sampled previously. Many 

of the sample locations were fairly remote, and therefore, data were not biased towards easily-accessible 

sites. Again, plots were generally located so that whitebark pine was the dominant tree species. Transect 

positions within stands were arbitrarily selected to best represent the stand, and transect direction was 

determined to follow the countour. The first 50 trees (live or dead) encountered within variable-length belt 

transects, 4.57 m in width, were assessed. Disease level was assessed in the same manner as in 2001 with 

one exception. In 2001 the number of cankers, number of stems, and diameter of each stem were reported 

for each tree cluster, while in 2002 numbers of cankers and diameter were reported per stem and tree 

clusters were not noted. This difference in methodology does not interfere with calculation of total cankers
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per stem or total cankers per diameter of sampled trees. Another difference in methods between years was 

the use of different types of transects (wandering quarter in 2001 and variable-length belt in 2002). Other 

variables recorded at each site included elevation, slope, aspect, slope position (valley bottom, toeslope, 

footslope, backslope, shoulder, or ridge) (USDA Soil Conservation Service 1993), slope configuration 

(undulating, linear, convex, concave, or broken), stand structure (closed canopy single-storied, closed 

canopy multi-storied, open canopy scattered individuals, or open canopy scattered clumps). Variables 

recorded for each sampled tree (stem) included diameter, tree status (healthy, declining, dying, recent dead, 

or old dead), crown class (open-grown, dominant, codominant, intermediate, suppressed, or remnant), a 

crown ratio estimate (to the nearest five percent), and other damage. (Definitions of all codes except slope 

position were taken from current Forest Service Natural Resources Information System Field Sampled 

Vegetation Module (NRIS FSVeg) codes).

Landscape feature analysis: Field observations from 2001 and 2002 showed that Ribes species 

compositions and abundances tended to change with increasing stream orders. Also, it was observed that 

disease levels in pines varied with large-scale topographic position (edge versus interior of a mountain 

range). Relationships of disease intensity to spatial factors such as stream order, position within mountain 

ranges, and distances that potentially are involved in spore dispersion can be assessed using topographical 

maps. Therefore, in the fall of 2002 the following variables were measured for all sites visited in 2001 and 

2002 using maps of the GYA: distances from sampled plots to the nearest 3rd, 4th, and 5th order streams 

(with stream orders being assessed at the map scale of 1:327,360 using National Geographic Topo! 

Interactive Map software); distances to the nearest perennial stream; distances to the nearest perennial 

stream at or below 2621 m (an elevation commonly observed as the upper elevation of many Ribes species, 

including the most susceptible Ribes hudsonianum); and the forested distances (distance through forested 

cover) to the nearest perennial stream and the nearest perennial stream at or below 2621 m (the zone 

containing the riparian Ribes species recognized as being highly susceptible). Distance to 3rd order streams 

was considered as a variable since Ribes species abundances and compositions were observed to change 

between 2nd and 3rd order streams. Distances to 4th and 5th order streams, which occur in larger river 

valleys, were considered to represent relative topographic position within mountain ranges. Additionally,
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because both the total distance and the distance through forest cover may be important for processes of 

spore dispersal, the mean of the total and forested distances to streams and streams at or below 2621 m 

were recorded. Taking the mean of the total and forested distances essentially weights the forested 

distance, since the total distance is comprised of both forested and non-forested components. The mean of 

the total and forested distances, therefore, doubles the importance of the forested components which may 

be reasonable for spore dispersal processes. The final map-level variable assessed was the percentage of 

adjacent forest cover on the map using a rectangular 32-grid overlay, covering 0.18 square kilometers 

extending downslope from the survey site. The number of grids overlaying forested cover was counted and 

recorded as a proportion of the total number of grids (32). A metric of extended forest cover for each site 

was then defined as the product of the adjacent (downslope) forest cover and the on-site canopy cover 

estimated in the field. Selection of all of the above factors incorporated information on species-level Ribes 

ecology gained from observations during both field seasons, as well as understandings of spore dispersal 

processes.

Data analyses: All statistical analyses were performed using STATISTICA (StatSoft, 1998). 

Data from 45 sites surveyed were included in most analyses. Wilcoxon matched pairs tests were used to 

examine relationships between tree-diameter sizes and standard measures of disease intensities (estimated 

infection incidences, numbers of cankers per stem, and the disease severity rating (Figure 1)) for trees 

surveyed in 2002. Assumptions of the Wilcoxon matched-pairs test, that the variables were measured on a 

scale that allows rank ordering of observations and that differences between variables also allow for rank 

ordering (StatSoft 1998), were met by these data.

In order to devise an index of disease severity (B.W. Geils, US Forest Service Rocky Mountain 

Research Station plant pathologist, personal communication), numbers of cankers on stems with infection 

(single-stemmed trees examined in 2001 and all stems examined in 2002) were plotted against stem 

diameter. Bins (or intervals) of data points were established for variable-width classes of diameter sizes, 

such that the count for each bin was 40 points, or 45 in the case of the bin for the upper diameter sizes. The 

relationship between the mean stem diameter for each bin, and the values of the 90th percentiles for 

numbers of cankers were used to derive a formula for the expected capacity number of cankers for any tree
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of a particular size. A linear trend was detected for the lower nine of ten bins when the 90th percentile 

numbers of cankers were plotted against the mean stem diameter for each bin. The tenth bin showed a 

decrease in the 90th percentile value. Different equations were derived for trees with diameter less than 45 

cm and those with diameter greater than or equal to 45 cm. For tree diameters less than 45 cm, simple 

linear regression was used to evaluate the relationship between numbers of cankers and stem diameter. For 

tree diameters greater than or equal to 45 cm a linear relationship was calculated from the inflection point 

(diameter=45 cm) to the 90th percentile value for that bin, which was established as the minimum value for 

the expected infection capacity of trees with diameters above 45 cm. Several different alternative functions 

were tested for large-diameter trees, which demonstrated that the results that make use of these calculations 

are not sensitive to the particular function(s) used for large diameter trees. The three designated linear 

functions were used to calculate a representative value for expected infection capacities for trees of a 

particular stem diameter at surveyed sites.

An index of severity (the GYA Relative Severity Index) was defined as the ratio of the number of 

observed cankers at a site to the sum of the reference infection capacity numbers of cankers for trees by 

diameter size. The GYA Relative Severity Index for each of the 45 surveyed sites was calculated. 

Relationships between the GYA Relative Severity Index as the dependent variable and site factors and 

distances to landscape features as independent variables were first assessed using Spearman’s rank order 

correlations and scatter plots. Spearman’s rank order is a non-parametric method of correlation. The 

assumptions of this method are that the individual observations of the measured variables can be ranked 

into two ordered series, which are met for all variables used in the analysis. Variables were determined to 

be unrelated using three criteria: the Spearman-R level of significance (p > 0.1), visual assessments of 

possible non-linear trends, and the biological importance of the variable. Regression analysis was used to 

investigate relationships between the GYA Relative Severity Index and independent variables of distances 

to landscape features, subsequent to log-log transformation of the data to increase linearity and meet 

assumptions of linear regression. The assumptions include that the error terms are independent, have 

constant variances, and are normally distributed (StatSoft 1998). Assumptions were determined to be met
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through examinations of plots of the residuals against the independent variables. Significantly related (p < 

0.05) independent variables were tested for autocorrelation using Pearson product-moment correlations.

A possible threshold value was detected for the extended forest cover metric from descriptive 

assessments, again taking into account the biological importance and meaning of the variable from 

accounts in the literature. Thus regression analysis was used to relate the GYA Relative Severity Index and 

distances to landscape features for only those stands with extended forest cover metrics less than or equal to 

0.65 (subsequent to the removal of five sites with extended forest cover metrics greater than 0.65). 

Relationships among proportions of cankers in different thirds (by height) of the canopy of individual trees 

were investigated using Pearson product-moment correlations. Pearson correlation analysis assumes that 

the data pairs are randomly selected and that the variables are measured on at least interval scales, which 

holds true for these data sets.

RESULTS

Locations, characteristics, and the GYA Relative Severity Index for 45 sites in 10 mountain ranges 

sampled over the summers of 2001 and 2002 are shown in Table 1. Sites typically had a southerly aspect, 

with an average aspect of 200°. Site elevations ranged between 2746 and 3261 m, and averaged 2919 m.

A summary of the GYA Relative Severity Index values by mountain range, a natural geographic range for 

this high elevation pine (Zeglen 2002), is presented in Table 2.

Data collected in 2002 were used in Wilcoxon matched pairs tests to compare means of three 

measures of infection; percent of infected trees, number of cankers per stem, and the disease severity rating 

(Figure 1), for small and large trees. 2001 data considered tree clusters to be tree units for canker counts 

and severity ratings and thus could not be pooled with 2002 data. Small and large trees were categorized as 

having stem diameters less than or equal to 15.24 cm and greater than 15.24 cm, respectively.

Comparisons of the small and large tree classes illustrate significant differences in means for small and 

large trees for all three measures (percent of trees infected, p=0.00018; numbers of cankers per stem, 

p=0.000072, and disease severity rating, p=0.0058) (Figure 2).

Numbers of cankers by stem diameter for stems with detected infection (single-stem trees from 

2001 and all stems from 2002) are plotted in Figure 3. Two outliers [(101.6, 3) and (139.7, 0)] with very
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large diameters were removed. Both these data points met the following condition to be characterized as 

extreme values: the data point values are greater than the 75th percentile value plus 3*(the 75th percentile 

value minus the 25th percentile value). As extreme values, they are considered members of a different 

population of rare and very large-diameter trees. Ten bins of equal counts of points (nearly equal for the 

upper bin) were created and 90th percentile values determined for each bin (Figure 4) to represent an 

expected upper-value infection “capacity” number of cankers for trees of a particular stem diameter, in 

current GYA conditions. Values for the first 9 of 10 bins, plotted against mean stem-diameter for the bin, 

show strong Unear relationship (Figure 4). The regression equation and the linear equation connecting the 

90th percentile of the 10th bin (the largest trees) as a minimum value for large-diameter trees are presented 

in Figure 4 as a formula for calculation of the expected capacity number of cankers for a given size of tree 

(infection capacity). A relative disease severity index for whitebark pine trees in present conditions in the 

GYA is then defined as the ratio of the number of observed cankers at a site to the sum of the “capacity” 

values of live trees assessed at the site. Comparisons of values of the GYA Relative Severity Index and 

other disease metrics are shown in Figure 5 with the GYA Relative Severity Index values plotted by 

ascending rank order with standard metrics of disease (proportion of trees infected, mean number of 

cankers per stem, and the value assigned by the disease severity rating (Figure 1)) for 28 sites surveyed in 

2002.

Potential predictors of disease severity were initially investigated, using the GYA Relative 

Severity Index by site as the dependent variable, with Spearman’s rank order correlations and scatter plots. 

Figure 6 presents results for two site factors (extended forest cover metric and elevation) as independent 

variables. Figures 7 and 8 present results for independent variables of distances to landscape features. 

Elevation (Figure 6), and distances to 3rd and 4th order streams (Figure 7) did not exhibit a detectable 

relationship with the dependant variable (p—0.13, p=0.49, p=0.54 respectively), while all others were 

further assessed for relationships with disease severity.

Univariate linear regression analysis of log-log transformed data was used to investigate straight- 

line relationships between the remaining distance-to-landscape-feature variables and the GYA Relative 

Severity Index. Data was log-log transformed to meet assumptions of linear regressions (as tested by
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examinations of the residuals). Regression equations, correlation coefficients, and levels of significance for 

these analyses are presented in Figures 9-11. Distances to the nearest 5th order stream, as well as the total, 

forested, and the mean of total and forested, distances to the nearest stream at or below 2621 m are all 

significantly related to the GYA Relative Severity Index (p < 0.0003). Pearson product-moment 

correlation coefficients indicate that distances to the nearest 5th order stream are significantly related to all 

versions of distances (total, forested, and the mean of the total and forested) to the nearest stream at or 

below 2621 meters (Table 3). This degree of autocorrelation among these factors prohibits their use in a 

multiple regression analysis.

Log-transformed GYA Relative Severity Index values plotted against transformed distances to 

nearest streams at or below 2621 m are shown in Figure 11. It is possible that some other factor accounts 

for low disease severities at sites with severities notably less than predicted by the regression equation. In 

fact, some of the sites with low disease severities that fall distinctly below the regression line are associated 

with high extended forest cover metric values. The extended forest cover metric may be associated with 

low disease severities above a certain threshold value (Figure 3). All sites with extended forest cover 

metrics above 65 percent are associated with consistently low disease levels. This fact, in addition to 

accounts in the literature relating high vegetative densities with reduced potential for white pine blister rust 

impacts (in conditions of relatively low spore loads as exhibited throughout much of the GYA) support the 

use of the GYA Relative Severity Index limited to stands with moderate and low extended forest cover 

metrics. Stands with high extended forest cover metrics may have predictably low severities that preclude 

the use of the severity index.

Figure 12 depicts linear regression equations (of log-log transformed data) for GYA Relative 

Severity Index values on distances (total, forested, and mean of forested and total) to the landscape feature 

of a stream at or below 2621 meter, for sites with extended forest cover metrics less than or equal to 0.65 

(excluding five sites with metrics greater than 0.65). The R-squared values obtained by these regressions 

(0.57, 0.52, and 0.61) indicate that within the GYA a large amount of the variation in blister rust disease 

severities in whitebark stands with extended forest cover metrics less than or equal to 0.65 can be 

accounted for by these distances to the nearest stream at 2621 m.
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In addition to comparisons of the GYA Relative Severity Index values, indicative of quantities of 

cankers, comparisons of the relative distributions of cankers within tree canopies among sites may also be 

informative. Table 4 presents results of Pearson product-moment correlations between the distances to the 

nearest stream at or below 2621 m and relative proportions of cankers in the lower, middle, and upper 

thirds of tree canopies. A significant (p<0.005) inverse relationship was found between versions of 

distances (total, forested, and mean of total and forested) to streams at 2621 m and the proportion of 

cankers in the lower third of the canopy.

DISCUSSION

Metric of disease severity: For the purposes of this study, a relative disease severity index was 

derived for comparisons of whitebark pine stands under the present conditions occurring in the GYA. The 

value of this severity index is that, by definition, it is directly applicable to a specific place and time. The 

specific formula presented here is not expected to be applied in other forests, although the concept could be 

widely applicable. It is also expected that the derived index will need adjustment as disease conditions 

change over time in the GYA. There is a remarkably rich and extensive, century-long history of white pine 

blister rust research on the commercially important white pine hosts (Maloy 1997) which can be drawn 

upon to understand blister rust in whitebark pine stands. However, the use of information from other 

systems presents simultaneously both a benefit and a risk. It remains a challenge to make use of pertinent 

knowledge about disease dynamics without making inappropriate generalizations. The relative severity 

index used here borrowed from concepts relating probabilities of infection with tree size that were first 

developed back in the early 1900s in eastern and western white pine, but translated them to present GYA 

whitebark pine stands.

The few data that exist for whitebark pine relating percent infection with tree size classes (based 

on diameter) show a general, rough agreement with trends found in this study (Campbell and Antos 2000, 

Murray and Rasmussen 2000, Smith and Hoffman 2001, Zeglen 2002, Goheen et al. 2002). Assessment of 

the upper values, or capacities, for recorded numbers of cankers by diameter size clearly shows an increase 

in infection capacity up to a diameter size (DBH) of roughly 40 to 50 cm. The trend for trees with larger 

diameters is not as consistent. The 90th percentile for the upper diameter-size bin (Figure 4) is less than for
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the adjacent 2 bins (with smaller diameters). It is possible that the infection capacity does not simply level 

off but actually decreases for these larger-diameter trees.

Potential causes for a decreasing capacity for infection can only be speculated. It is possible that 

trends observed in this study are simply artifacts of a sampler’s ability to detect cankers in small trees 

(where infections quickly kill branches or stems and then appear similar to other types of tree stress or 

damage) or in large trees (where cankers are difficult to see). It is also likely that target size and target 

location are important causal factors related to infection capacities (Buchanan 1936, Mielke 1943, 

McDonald et al. 1981, Stuart-Smith 1998). Induced defenses, known in other pines (Paine and Stephen 

1987, Davis et al. 2002), may be more important for larger, older trees. Finally, it is recognized that host

age affects susceptibility to infection by other pine-stem rust pathogens, such as pine twisting rust in Scots 

pine (Mattila et al. 2001). Age-related (and associated vigor-related) effects on susceptibility to white pine 

blister rust in pine hosts have also been conjectured for a long time (Posey and Ford 1924, Snell 1928, 

Mielke 1943).

Patterns of disease severity: For seven of the 45 sites surveyed in this study, no infection was 

observed on the sample-trees. Yet at all seven of these sites, signs of infection were observed on host trees 

in the vicinity. Moreover, observations in stands that were not quantitatively surveyed demonstrate that the 

pathogen is widely present, at least at low levels, throughout much of the GYA. The pathogen is well 

established in the area, and the potential for future disease intensification and associated negative impacts 

to whitebark pine exists. However, whether the disease will increase to high levels in all locations is 

questionable. The disease has been present in many areas of the GYA for at least half a century (Brown 

and Graham 1969), yet considerable differences still exist in disease intensities among sites (Harris 1999, 

Smith and Hoffman 2000, Tables 1 and 2). Furthermore, results of this study suggest a pattern of disease 

severity relative to landscape features that is unlikely to be due to chance alone. The pattern detected in 

this study indicates an association with two factors, distance to a landscape feature (the nearest stream at or 

below 2621 m) related to expected habitat for the susceptible riparian Ribes hudsonianum and the common 

R. lacustre, and distance to a feature (the nearest 5th order stream) that serves as a descriptor for large-scale 

topographic position.
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The possible trend detected in this study for stands associated with high extended forest cover 

metrics to exhibit low disease severities is consistent with numerous accounts in the literature (Spaulding 

1929, Kimmey and Wagener 1961, Hunt 1998, Campbell and Antos 2000). The trend is often explained as 

the result of vegetative barriers trapping or impeding spore dispersal (Spaulding 1929, Kimmey and 

Wagener 1961, Hunt 1998, Campbell and Antos 2000). Vegetative density is a difficult factor to 

characterize accurately. The description of extended forest cover used in this study could likely be 

improved upon in future work, perhaps through use of aerial photography or remote sensing assessments. 

This study made use of a calculated metric that includes an on-site estimation of forest canopy cover and a 

map-level estimation of the percent forest cover in a 0.18 square km rectangle extending out in the down

slope direction from the survey site. The concept behind the calculation is that vegetative density at both 

the spore source and the host target, as well as at the ground between the two, all potentially affects the 

probability of infection (as a trap or hindrance for dispersing spores). If canopy cover is dense immediately 

above Ribes hosts, principles of spore dispersion imply that a high percentage of dispersing spores would 

be trapped and removed from air currents at that site (Aylor 1999). Canopy cover above potentially 

important spore sources (Ribes hosts) was not assessed. However, all sites with high forest cover in the 

near-proximity of the pine host targets showed consistently low disease levels. Consideration of vegetative 

density, or forest cover, in the near-proximity of spore-source Ribes plants may be worthy of future 

investigation.

Two factors show significant associations with the relative disease severity in whitebark pine 

stands. Both distances to 5th order streams and distances to the nearest stream at 2621 m are correlated with 

disease severity, but are also correlated with each other. A biologically meaningful interpretation of the 

autocorrelation between the two variables is that sites that are distant from 5th order streams (major river 

valleys of the Yellowstone and Snake rivers) tend to be more within the interior of mountain ranges and 

also tend to be distant from streams at elevations below 2621 m. These tend to be sites on high-elevation 

plateaus, or where the base-level relief (upper stream valleys) is at high elevations.

For investigating relationships between landscape features within the near vicinity and disease 

levels, distances to streams at 2621 m are more meaningful and descriptive. Yet the variable of distance to
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5th order streams may include more features associated with disease level distributions. Distances to 5th 

order streams could include components of large-scale meteorological processes that are important for 

explanations of disease severity, perhaps including influences of long-distance spore dispersal. It is also 

possible that the relationship detected with 5th order streams is more appropriately described as being strong 

above a particular threshold distance, and weak for lesser distances. Additional surveys to increase the 

sample of whitebark stands would clarify the trend with distances to 5th order streams.

Differences in disease severities in whitebark pine across the GYA were found to be linked with 

distances to streams at or below 2621 m. This variable was considered in the analysis because it is a 

riparian feature at the general upper-elevational limit of riparian Ribes species (m  newcomb, personal 

observations, Rocky Mountain Herbarium collection reports, 2001), recognized as being highly susceptible. 

The elevation 2621 m was selected primarily because of observed (m. newcomb) distributions and infection 

tendencies of Ribes hudsonianum and R. lacustre. This landmark is particularly pertinent for R. 

hudsonianum, which requires perennially wet soils such as those associated with streams and seeps 

(Lackschewitz 1991). While this species may sometimes occur above this elevation it was observed below 

this elevation much more commonly. This species is widely recognized as the most susceptible of those 

found in the GYA (Kimmey 1938, Maloy 1997). The range of R. hudsonianum covers the entire GYA 

(Hitchcock and Cronquist 1973) although its occurrence is locally patchy and its abundance can vary 

greatly from place to place. It was not observed in the lower drainages of many sites visited during this 

study.

In contrast, R. lacustre has a relatively consistent occurrence across the GYA. It is a common, 

although sometimes sparse, member of the shrub component of forests up to roughly 2621 m. Again, while 

this species occurs sporadically in transition zone forests above 2621 m, it occurs much more commonly at 

elevations below 2621 m. When R. lacustre does occur at higher elevations it is restricted to rock outcrops 

or talus slopes. In these rocky exposed microsites it typically exhibits a distinctive growth form that is 

stunted and highly branched, with small leathery, dark green leaves. This growth form appears to be rather 

resistant (m. newcomb, personal observations) and is unlikely to play much of a role in disease progression. 

With the exception of this growth form, R. lacustre is recognized as being moderately susceptible (Kimmey
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1938, Maloy 1997). This species occurs throughout mesic and moist forested slopes but tends to be more 

common in drainages and stream bottoms and in some areas may be restricted to those sites (m. newcomb, 

personal observations, Lackschewitz 1991).

Factors not related to disease severities: Site elevation, distances to 3rd and 4th order streams, 

and straight distance and forested distance to the nearest perennial streams were all factors with very little 

or no detectable association with differences in disease severities. Results from this study demonstrate that 

high elevation conditions are not limiting for pine infection, and in fact one of the two highest-elevation 

sites (at 3139 m) was found to have a relative index of disease severity among the top five severities 

recorded (Table 1). Moreover, all five spore stages were observed at these high elevations (m. newcomb, 

personal observations).

There are several possible reasons why no relationships were detected between 3rd and 4th order 

streams and the GYA Relative Severity Index values. Third-order streams are numerous across the 

landscape. Any relationship with a distance to a particular 3rd order stream is likely to be confounded by 

another nearby 3rd order stream. Fourth-order streams are less frequent and include streams such as the 

Lamar, the Buffalo Fork, the Gros Ventre, and the Snake (above the confluence with the Gros Ventre) 

Rivers. These are all waterways associated with fairly broad and non-forested valleys and often bordered 

by patches of Ribes inerme (m. newcomb, personal observations). The 4th order segments of these rivers 

vary in length, so that distances from pine stands to these segments may have little descriptive meaning. If 

there is a correlation with disease level it is hidden by other complicating factors and is difficult to detect. 

This holds true for the factors of total and forested distances to the nearest perennial stream as well.

It is informative that distances to nearest streams are not correlated with disease while distances to 

streams at or below 2621 m are. The fact that distances to the two landmarks differ significantly in 

explanatory importance implies that the important correlative factor of 2621 m -  elevation streams is absent 

in the nearest streams. Thus it does not appear that the isolated features of perennial water, or 

topographical draws, are the correlative features since these are also characteristics of the nearest streams, 

which are not related to disease severities. Furthermore, it does show support for the explanation that spore 

source Ribes may be limited to the streams and associated forests at or below 2621 m.
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The potential role of Ribes species: Additional inferences can be made in support of Ribes 

species being an important component of the landscape feature of streams at or below 2621 m. The relative 

height-position of cankers within pine canopies provides some information about distances from spore 

source Ribes to the infected pine hosts. Knowledge of spore dispersal processes indicates that spores that 

travel longer distances can be in higher air currents than those that travel shorter distances (Aylor 1999). 

Cankers that are located in the upper portions of pine canopies may result from spores that originate from 

sources more distant than those associated with cankers in the lower portions of the canopies. Moreover, 

spores that travel longer distances are likely to be trapped by various obstacles in lower air currents such 

that cankers in the lower portions of pine canopies may result primarily from short-distance dispersal. It 

might be expected therefore that percentages of cankers in the lower third of canopies would be negatively 

correlated with distances to susceptible Ribes species. Thus the significant negative correlation found in 

the assessment of the proportions of cankers in the lower canopy third relative to the distances to streams as 

2621 m (Table 4) indicates that it is possible that when the distance to streams at 2621 m is greater, the 

spores involved in pine infection are also coming from a greater distance, resulting in fewer cankers in the 

lower canopy third. This suggests that Ribes species present at or near the streams at or below 2621 may be 

involved in the infection process of the assessed pines.

The site factors that were selected for this analysis relate to observed trends in distributions of the 

Ribes species believed to be more highly susceptible in the GYA. However, the Ribes species that most 

commonly occurs in close proximity to whitebark pine stands is Ribes montigenum, a high-elevation 

species. While it does not appear that R. montigenum is strongly associated with present blister rust disease 

level patterns in the GYA, its role in the disease system should not be discounted. Two distinct steps 

leading to present disease levels are those of pathogen establishment and pathogen intensification. It may 

be that R. montigenum is only involved in the intensification stage. If so, then pines near an abundance of 

R. montigenum but distant from the more susceptible Ribes may remain at low levels of infection, while 

pines in areas with synergistic proximities of R. montigenum and more susceptible Ribes may show higher 

disease levels than pines that are near only the more susceptible Ribes. Ribes montigenum was present at
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only 11 of 45 sites surveyed in this study, and a larger sample size is necessary for meaningful comparisons 

of trends between sites with and without R. montigenum. The topic is worthy of further study.

A descriptive assessment of the untransformed data for the GYA Relative Severity Index values 

plotted against the distance to streams at or below 2621 m (Figure 8) fits the shape of an inverse power law 

function. This function is also a commonly accepted basis for diffusion models (Okubo and Levin 1989, 

2001). The physical phenomenon of diffusion has been used as the framework for modeling spatial 

movement of biological organisms and populations (Andow et al. 1990, Okubo 2001). Atmospheric 

diffusion theory has been the basis for investigations of spore, pollen, and diaspore (seed and fruit) 

dispersion (Okubo and Levin 1989, Okubo et al. 2001). Use of diffusion models has allowed for 

calculations of the expected extent of spore dispersal for various values of diffusivity, settling velocity 

(related to particle size), and wind velocity. These mathematical interpretations have been useful in rough 

analyses of real-world processes (Okubo et al. 2001).

Various diffusion models have been empirically tested and generally support the idea that some 

quantities of spores (and other small particles) can be expected to disperse relatively long distances. For 

example, in a study of ragweed (Ambrosia spp.) pollen dispersal, it was estimated that approximately 1 % of 

dispersed pollen grains would remain airborne at a distance of 1 km from the pollen source. Considering 

the enormous quantities of both pollen and spores that are typically released, even 1% can be a significant 

quantity (Okubo et al. 2001). Moreover, in a study specific to spore dispersal, it was found through spore- 

trapping methods that basidiospores of a white-rotting fungus (Phlebia centrifuga P. Karst) in natural old- 

growth forest conditions continued to settle at distances of 1 km from the source at an estimated rate of 

28.5 spores per square meter (Norden and Larsson 2000). These authors reviewed their results and those 

from other studies of wood-decaying fungi as evidence that spore dispersal over distances of 1 km and 

greater may be a frequent event. Results of this study indicate that it may be valuable in the future to 

consider white pine blister rust in the context of diffusion models. Consideration of processes that may 

drive the statistically significant pattern between disease level and distance to particular landmarks will be 

useful for developing further investigations within this system.
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Concluding remarks: This study is only an initial step toward detecting and describing patterns 

within this complex pathosystem. Results presented here suggest a simplified spatial pattern that supports a 

link between relative blister rust disease severities in whitebark pine and distances to expected habitat for 

susceptible Ribes species. The significant relationships between disease severity and distances to landscape 

features (the nearest stream at 2621 m and the nearest 5th order stream) found in this study imply that 

predictive abilities related to disease progression in this system are possible. Further research may increase 

our understanding of disease dynamics in whitebark pine forests and thereby support management and 

conservation efforts within the GYA. Ultimately such research, as initiated in this project, will also 

increase our understanding of impacts of introduced pathogens in natural systems.
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TABLES AND FIGURES

Table 1. Locations, characteristics, and the Greater Yellowstone Area (GYA) Relative Severity Index 
values (see Results section) of sites in the GYA where whitebark pine trees were assessed for white pine 
blister rust.

Site Name Severity Elevation (m) Aspect UTM coordinates Ribes species present (4.57 m)
Ski Lake 0.88 2947 220 12T 0505986 4819682 R. montigenum
Teewinot 0.71 2880 100 12T 0519399 4844512 None
Ramshom Peak 2001 0.71 2810 160 12T 0492327 4998691 None
Upper Hoback 0.48 3139 275 12T 0537126 4767449 R. montigenum
Elephanthead Mtn. 0.47 2804 270 12T 0545020 5043607 None
25-Short 0.36 2982 70 12T 0517239 4838083 None
Swift Creek 0.25 3005 205 12T 05489604803717 None
South Fork Deep Creek 0.25 2944 195 12T 0543238 5039781 None
Ramshom Peak 2002 0.24 2947 165 12T 0492588 4999699 None
Rock Creek 0.22 2829 110 12T 0491445 5003238 None
Surprise/Ampitheater Lakes 0.16 2932 190 12T 0518099 4841836 None
Flat Creek 0.16 2984 290 12T 0533073 4808440 None
North Fork Bear Creek 0.16 2707 150 12T 0528063 4996969 R. lacustre
Horse Creek Divide 0.13 2941 230 12T 0535094 4997979 None
Jackson Peak 0.12 2890 290 12T 0530602 4813500 R. montigenum
Sheep Mtn (Sleeping 0.094 2900 160 12T 0535996 4822526 R. montigenum and R. cereum
Elbow Lake 0.076 2746 225 12T 0540669 5024803 R. lacustre
Fish Lake 0.066 2752 130 12T 0529390 4999893 None
Sheep Mountain-Lulu Pass 0.060 2941 220 12T 0584448 4990595 R. montigenum
Palmer Mountain 0.055 2835 270 12T 0532674 4989140 R. lacustre and R. viscosissimum
Lady of the Lake 0.055 2800 150 12T 0587911 4990692 None
Pine/Crevice Creeks 0.053 2807 290 12T 0533888 4991797 None
Shedhom Ridge 0.052 2853 75 12T 0466690 4992812 None
Lambert/Colley Divide 0.045 2800 210 12T 0544836 5008875 None
Blue Miner Lake 0.042 3050 110 12T 0539555 4823662 R. montigenum
Wolverine Pass 0.035 2880 225 12T 0577234 4990654 None
Mt. Leidy 0.032 2950 145 12T 0548037 4841129 R. montigenum
Upper Thorofare Creek 0.028 2883 270 12T 0594825 4875555 R. montigenum
Lower Open Creek 0.023 3043 170 12T 0581748 4889624 None
Sentinel Creek 0.015 2903 170 12T 0464886 4979387 None
Bald Knoll 0.012 2954 290 12T 0541516 4693797 R. montigenum
Red Mountain 0.012 2804 155 12T 0489602 4975895 None
Upper Open Creek 0.012 2926 195 12T 0591042 4900111 R. montigenum
Lookout Mountain 0.0096 2934 195 12T 0561881 4993737 None
Hayden Creek 0.0093 2917 190 12T 0586761 4982841 None
Edmond Lake 0.0056 3078 335 12T 0618616 4752943 R. lacustre
Rainbow Lake 0.0046 3261 180 12T 0593938 4775089 None
Island Lake 0.0027 2978 185 12T 0615999 4978710 None
Camp Creek 0 2984 260 12T 0586817 4878873 R. montigenum
Surprise Lake Beartooths 0 2975 220 12T 0608088 4983320 None
Deer Creek Pass 0 3139 195 12T 0598698 4888230 None
Mt. Washburn 0 2813 265 12T 05440814960450 R. montigenum
Fawn Lake 0 2730 230 12T 0536195 4991446 R. lacustre
Beauty and Night Lakes 0 3050 140 12T 0613093 4979793 None
Avalanche Peak 0 2920 225 12T 0568814 4925354 None
Mean (SE) 2919 (17.0) 200 (9.2)
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Table 2. Summary of white pine blister rust severity (see Results section) by mountain range for 45 
whitebark pine stands of the Greater Yellowstone Area (GYA) surveyed during 2001 and 2002. (North and 
South Absaroka Mountains divided at headwaters of the Lamar River.)

Mountain Range Number of Mean GYA Relative Standard E rror of
transects Severity Index Severity Index

Teton 4 0.53 0.16
South Gallatin 3 0.39 0.16
Wyoming 2 0.25 0.23
Gros Ventre 5 0.13 0.036
North Absaroka 13 0.10 0.036
Mt. Leidy Highlands 1 0.032 -

Madison 3 0.026 0.013
Beartooth 5 0.024 0.014
South Absaroka 6 0.011 0.0054
Wind River 2 0.0051 0.00052
Washburn 1 0 -

Totals 45

Table 3. Pearson product-moment correlation coefficients between independent variables (distance to 
nearest 5th order stream and total, forested, and mean of total and forested, distances to nearest stream at or 
below 2621 m). N=45 sites within whitebark pine sites.

“  " T — ‘ ■■■ ■ ■ ........... ...........

Distance to nearest 5 order stream 
related to the following variables:

Coefficient of 
Correlation (r)

Level of significance 
(P)

Distance to nearest stream at 2621 m 0.73 <0.000001
Forested distance to stream at 2621 m 0.70 <0.000001
Mean total & forested distance to stream at 2621 m 0.73 <0.000001

Table 4. Results of Pearson product-moment correlation analysis between distance variables to the nearest 
stream at or below 2621 m and relative canopy positions (by tree crown height thirds) of white pine blister 
rust cankers in whitebark pine trees. N= 37 sites with observed cankers.

Distance variable (to 
nearest stream at or below 

2621 m) (km)

Relative tree 
crown height 

(by thirds)

Proportion of 
cankers within 

height class

Coefficient of 
correlation (r)

Level of 
significance (p)

0.0047Total
Lower 0.22

-0.45
Forested -0.48 0.0028
Mean total & forested -0.47 0.0033
Total

Middle 0.32
0.017 0.44

Forested 0.0080 0.96
Mean total & forested 0.081 0.63
Total

Upper 0.46
0.20 0.24

Forested 0.30 0.067
Mean total & forested 0.25 0.14

1-31



Step 1: Divide tree into foliage and 
bole categories. Rate each
category separately. F O L IA G E  / \  B O L E

Step 2: Divide foliage /  bole into thirds

Step 3: Rate each third separately.
The rating should be 0 , 1 ,  2 or 3 
(see below).

0 = no visible infection
1 = < 25% infected
2 = 25-50% infected
3 = > 50% infected

Step 4: Add ratings of thirds 
to obtain total foliage and 
total bole ratings.

Step 5: Add total foliage and 
bole ratings together for a total 
tree rating.

Figure 1. Numerical disease severity rating, from Six in prep., for use in assessing white pine blister rust in 
whitebark pine trees. Each of six visually-determined divisions of the tree (three within the foliage and 
three within the bole) is rated separately with a rating of zero, one, two, or three such that a minimum tree 
severity rating is represented by zero (no visible infection), and a maximum rating is represented by 18 
(more than 50 percent of each of the six divisions is impacted by infection).

TOP THIRD /  \  TOP THIRD

MIDDLE THIRD

BOTTOM THIRD

MIDDLE THIRD

BOTTOM THIRD
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Figure 2. Comparisons of means of small and large trees, for standard measures of disease intensity (a. 
percent trees infected, b. number of cankers per stem, c. disease severity rating (see Figure 1)). Small and 
large trees are defined as those with diameter (dbh) less than or equal to 15.24 cm and greater than 15.24 
cm respectively. N=24 sites with infection visited in 2002. Test statistics (T and Z) and levels of 
significance (p) from Wilcoxon matched pairs test (paired by means of small and large stems by site) are 
shown.
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Figure 3. Number of white pine blister rust cankers by tree diameter (cm). N=405 stems with infection 
(includes all stems with infection surveyed in 2002, and single-stem trees with infection surveyed in 2001).
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Figure 4. Expected infection capacity number of white pine blister rust cankers for whitebark pine trees in 
the Greater Yellowstone Area based on data collected during 2001-2002 grouped in 10 bins with counts of 
40 or 45 per bin. Capacity numbers derived by the regression equation (p=0.000006, R2=0.93) for 90th 
percentile values (number of cankers) against mean diameter (cm) for the lower 9 bins. The 90th percentile 
value for the 10th bin is shown in a straight-line relation with the inflection point at (45.0, 15.72). A 
straight-line relationship is shown with no slope for diameter values above the 90th percentile break-point 
diameter (49.45, 9.0).

Expected capacity -  an upper value for the number of cankers per stem by tree diameter.
Expected capacity = 0.723 + 0.333(x) if diameter < 45 cm 
Expected capacity = 83.615-1.509(x) if 45 <= diameter < 49.45 cm 
Expected capacity = 9 + 0(x) if diameter >= 49.45 cm

1-35



4.5

3.5

2.5

D  □0.5

-0.5
26 30■2 6 10 14 18 222

* INDEX 
□ INC
♦ CANKERS 

a RATING

Rank (in ascending order by GYA Relative Severity Index)

Figure 5. Four measures of disease intensity plotted against the derived GYA Relative Severity Index 
(N=28 sites surveyed in 2002). INDEX=GYA Relative Severity Index, INC = proportion of trees infected, 
CANKERS=mean number of cankers per stem, RATING=disease severity rating (see Figure 1).
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Figure 6. Spearman’s rank order correlation coefficient (r) and level of significance (p) from correlation 
analysis comparing the index of white pine blister rust disease severity (N=45 whitebark pine sites) and the 
site factors of a metric of extended forest cover (calculated as the on-site canopy cover multiplied by the 
percent forest cover in the downslope, 0.18 square km) and elevation.
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Figure 7. Spearman’s rank order correlation coefficient (r) and level of significance (p) from correlation 
analysis comparing the white pine blister rust GYA Relative Severity Index (N=45 whitebark pine sites) 
and distances to the landscape features of the nearest 3rd, 4th, and 5th order streams.
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Figure 8. Spearman’s rank order correlation coefficients (r) and levels of significance (p) from correlation 
analysis comparing the white pine blister rust GYA Relative Severity Index (N=45 whitebark pine sites) 
and distances to the landscape features of total, forested, and mean of the total and forested, distances to the 
nearest stream and the nearest stream at or below 2621 m.
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Figure 9. Correlation coefficient (r), level of significance (p), and regression equation from univariate 
regression of log-log transformed data relating the white pine blister rust GYA Relative Severity Index 
against distance to nearest 5th order stream. (N=45 sites surveyed in whitebark pine stands)
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Figure 10. Correlation coefficients (r), levels of significance (p), and regression equation from univariate 
regression of log-log transformed data relating the white pine blister rust GYA Relative Severity Index 
(N=45 sites surveyed in whitebark pine stands) against total, forested, and mean total and forested, 
distances to nearest perennial stream.
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Figure 11. Correlation coefficients (r), levels of significance (p), and regression equation from univariate 
regression of log-log transformed data relating the white pine blister rust disease GYA Relative Severity 
Index (N=45 sites surveyed in whitebark pine stands) against total, forested, and mean total and forested, 
distances to nearest perennial stream at or below 2621 m.
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Figure 12. Coefficients of determination (R-squared), levels of significance (p), and regression equations 
from simple linear regressions of log-log transformed data relating the white pine blister rust GYA Relative 
Severity Index against total, forested, and mean total and forested, distances to nearest perennial stream at 
or below 2621 m. for sites with extended forest cover metrics less than or equal to 0.65.
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CHAPTER TWO:

The Ecology of the Ribes species of the Greater Yellowstone Area in Relation to White Pine Blister 
Rust in Whitebark Pine

ABSTRACT

Cronartium ribicola, the causal fungus of white pine blister rust, is an introduced pathogen that alternates 
between white pine hosts and currant and gooseberry hosts (members of the genus Ribes). The pathogen 
has had devastating impacts on white pine hosts in some areas. Recent research programs related to white 
pine blister rust have emphasized molecular and controlled-environment studies of the pine hosts while 
neglecting the role of the Ribes hosts and ecological aspects of the disease in general. Whitebark pine, one 
of two pine host species within the Greater Yellowstone Area (GY A), is an ecologically important high- 
elevation tree species. The role of the GYA Ribes species and Ribes -  pine hosts proximities in disease 
dynamics within whitebark pine stands remains poorly understood. This paper characterizes the ecology of 
Ribes hosts in the GYA and initiates the development of a more comprehensive approach to the white pine 
blister rust pathosystem. Each Ribes species is a unique host group that exhibits a distinct spatial 
association with the pine hosts and a distinct genotypic and phenotypic susceptibility to infection by 
Cronartium ribicola. An overview of nine Ribes taxa known to occur in the GYA is presented, with 
discussion of the ecology and pathology of each.
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INTRODUCTION

White pine blister rust is a disease caused by an introduced fimgal pathogen (Cronartium 

ribicola). The disease system is a complex cross-Kingdom interaction between three groups of organisms 

(white pines, Ribes, and a fungus). The pathogen alternates between white pine hosts (members of the 

Pinus subgenus Strobus) where it persists as a perennial and often lethal infection, and currant and 

gooseberry hosts (members of the genus Ribes) where it infects only the deciduous leaves and results in 

relatively minor impacts. In many areas of North America, white pines are severely threatened by the 

disease, which is often recognized as the most devastating disease of conifers (Klinkowski 1970). Since 

the early 1900s when the pathogen first arrived in North America, forest managers have been challenged by 

the difficulties of blister rust control and prediction of damage and spread.

Two white pine species occur within the Greater Yellowstone Area (GYA): whitebark pine (Pinus 

albicaulis) and limber pine {Pinus flexilis). Whitebark pine inhabits more acreage in the GYA than limber 

pine. It is a slow-growing, high-elevation species that provides valuable watershed protection near 

headwaters, wildlife cover, and an important food source for birds, small mammals, and bears, including 

the federally protected grizzly bear (Tomback 2003). At least eight Ribes species are found in the GYA 

(Dorn 2001, m. newcomb, personal observation). These host plants and their interactions with the fungal 

pathogen are influenced by the climatic conditions and meteorological events of the GYA. Claims have 

been made that ecological conditions in the GYA generally limit the spread and intensification of the blister 

mst pathogen (Carlson 1978). White pine blister mst has been present in white pines of the GYA since the 

1940s (Krebill 1969), and at present, disease intensities among whitebark pine stands are known to be 

highly variable, ranging from barely detectable incidences of infection to relatively high percentages of 

infected trees within a stand (Harris 1999, Smith and Hoffman 2000, m. newcomb, unpublished data). The 

fact that the disease still occurs in variable intensities after such a long presence leaves unanswered the 

question of whether the pathogen will threaten the existence of whitebark pine hosts within the GYA, or 

whether the ecological context in at least some portions of the GYA are such that whitebark pine hosts may 

be sustainable even in the presence of this exotic pathogen.
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The objective of this paper is to address gaps in current knowledge of dynamics of white pine 

blister rust in the GYA. Information on the ecology of local Ribes species presented herein addresses an 

aspect of the disease that is vitally important, but which has generally been neglected in recent research 

programs. An extensive history of white pine blister rust research exists, dating back to the early 1900s 

when the introduction of the pathogen to North America led to the first active program to control an exotic 

disease outbreak within the developing forestry programs (Geils 2001). White pine blister rust research 

efforts have persisted to present times in various forms (Maloy 1997), resulting in a large library of 

literature on the topic. However, our present understanding of white pine blister rust disease dynamics 

could benefit greatly from a more comprehensive perspective that includes the Ribes hosts. Recent 

research has often disregarded the role of the Ribes hosts, and ecological aspects of the disease in general. 

An ecological perspective considers relationships between organisms and their environment, and all the 

associated inherent complexities of the affected ecosystem (Kendrick 1992).

The general lack of attention to the Ribes alternate hosts is evident when searching existing 

literature on this pathosystem. For the purposes of this paper, a search was conducted using the Cambridge 

Scientific Abstracts Plant Science and Biological Sciences databases (inclusive of 250 primary research 

journals and approximately 5700 serials). Categorical results (by host group and study setting) of a 

keyword search using “white pine blister rust” or “Cronartium ribicola'1'’ from 1995 to present are shown in 

Table 1. Only 4 of 44 published works have considered Ribes species relative to white pine blister rust 

disease. These studies (Zurawicz et al. 1996, Hummer 1997, Pedersen 1997; 1998) were all based on 

improving, in part through disease resistance, Ribes cultivars, as horticultural crops. Only one of the four 

studies (Hummer 1997) included Ribes species native to North America. Furthermore, only 5 of 44 papers 

(reporting results from 4 studies) considered pine hosts in forested habitats while 32 considered pine hosts 

and/or the pathogen only under artificial conditions (either laboratory or controlled greenhouse or nursery 

environments). Thus, recent (published in 1995-2003) white pine blister rust studies conducted under 

natural conditions (forest and plantation) comprised only 27% of all studies. Moreover, studies of native 

Ribes species that occur in North American forests comprise only 2% of all recently published works, and 

no studies have been published during that time period on Ribes species occurring in natural conditions.
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Results from the above studies show a consistent trend toward use of molecular approaches in 

research both within forest pathology (Lundquist and Klopfenstein 2001) and general plant population 

studies (Jelinski 1997). There has also been a considerable number of mechanistic experiments carried out 

under controlled conditions designed to reduce the tremendous complexity that exists in forest systems. 

Molecular and mechanistic studies are incontrovertibly important for understanding many aspects of die 

disease. However, without corresponding studies that further test these results under natural conditions, 

and characterize the natural field conditions in which the small-scale processes occur, some level of doubt 

will accompany their conclusions (Innes 1993, Brown et al. 2001, Harvey 2001). Comprehensive 

knowledge of this and other pathosystems requires that ecological and ecosystem studies keep pace with 

controlled-environment and molecular studies (Zadoks 1999, Hatcher and Paul 2000, Bergelson et al. 2001, 

Harvey 2001).

Manipulations of plant communities (Miller 1994, Callaway et al. 2002), natural enemy-host 

systems (Bjomstad et al. 2001), intertidal food-web systems (Berlow 1999), and desert shrubland and 

pinyon-juniper woodland ecosystems (Brown et al. 2001) have all documented the importance of intricate 

interactions between community members and that indirect effects can sometimes be stronger than direct 

effects on population and community functions. Weak interactions can ultimately act as strong community 

stabilizers, and disparate taxa from diverse trophic levels can be tightly linked through cascading 

interactions. Most, if not all of these effects and interactions would be eliminated in simplified 

experimental systems. Additionally, long-term ecological studies have shown that episodic abiotic events 

can cause significant shifts in species interactions (Brown et al. 2001). The important community-level 

impacts that result from such episodic events are not only undetectable in controlled-environment studies, 

but also in short-term field studies. Finally, the importance of considering ecological contexts is well 

illustrated by the fact that even host plants of the same species occurring in variable environments can 

relate to pathogens as dissimilarly as separate species (Loomis and Adams 1983). Thus, biological insights 

into complex systems generally arise through a process that combines analyses of simplified, isolated 

factors, with analyses of real-world contexts and consideration and knowledge of the ecological context.
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This characterization of the ecology of Ribes hosts in the GYA can, therefore, serve as a beginning step in 

developing a more comprehensive approach to the white pine blister rust pathosystem.

THE GREATER YELLOWSTONE AREA

Among all the North American white pines, whitebark pine forests are unique in that they 

typically occupy vast, contiguous expanses of lands that have experienced little direct human-impact. The 

GYA has been referred to as the largest expanse of connected wild areas in the lower forty-eight states and 

is viewed as a national, even global, treasure (Keiter 1991, Patten 1991, Noss et al. 2002). It is comprised 

of about 23,000 square kilometers, encompassing significant natural resources and the headwaters of three 

major watersheds (the Snake-Columbia, the Green-Colorado, and the Yellowstone-Missouri Rivers) (Keiter 

1991). By jurisdiction, the area spans seven national forests, two national parks, three federal refuges, and 

Bureau of Land Management and state lands in Wyoming, Montana, and Idaho (Craighead 1994, Reinhart 

et al. 2001). This relatively pristine and un-manipulated character of GYA whitebark pine forests defines 

the nature and importance of potential impacts from white pine blister rust to these pine hosts as an 

environmental problem in the category of global-change issues.

HISTORICAL PERSPECTIVE

In contrast to the recent lack of focus on the role of the Ribes hosts in white pine blister rust 

management and research efforts, Ribes species were the center of focus during a massive historical blister 

mst control program conducted from to 1909 to 1967 (Maloy 1997). Management for control of the 

disease began shortly after discovery of the disease in North America in the early 1900s. Under the blister 

mst control program, the restriction of cultivated, and the destruction of wild, Ribes, was seen as the best 

means of disease control. As part of this program, an extensive Ribes eradication program was conducted 

in the United States. Eradication efforts focused on manually, mechanically, and chemically destroying 

wild Ribes shrubs. The program cost millions of dollars, caused undetermined ecological consequences, 

and employed as many as 11,000 workers at one time during its peak (Maloy 1997).

Numerous records were made of the extensive blister mst control activities in Yellowstone 

National Park which occurred over more than 20 years (Galusha, no date). Throughout the Yellowstone 

program, Ribes removals occurred only within designated control areas, totaling 115,470 acres
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(Hendrickson 1967). Concern for Yellowstone’s white pine hosts increased in 1937, when C. ribicola was 

found on Ribes hudsonianum, in an area 19 miles northwest of the park boundary (Galusha, no date). The 

first significant scouting effort for signs of the pathogen within and adjacent to the park occurred in 1940 

when several thousand Ribes and approximately 1,000 white pines were surveyed, all with negative results 

(Joy 1940). By 1944, momentum for the Ribes eradication program was building. A ten-day disease 

survey in early September of that year revealed 20 infected leaves on two R. hudsonianum plants within the 

park. The first efforts to remove Ribes in the park occurred in 1945 (Riley and Chapman 1945, Galusha, no 

date). By 1947, blister rust control work crews were an organized and hard-working battalion. The 1947 

section of H.D. Galusha’s undated summary of blister rust control work in Yellowstone National Park 

includes words of respect for the war veterans who dominated the work crews of the time, and who 

“established a degree of excellence that is unparalleled in easier times -  undoubtedly at the expense of 

much blood, sweat, and tears, the phenomenal figures of ribes eradication pay silent tribute to what was 

probably a very colorful era marked by very dedicated leaders and hard-working men.”.

An infected pine was found within Yellowstone National Park for the first time in 1950 (Gynn and 

Chapman 1950), and by 1956 infected limber pine and Ribes viscosissimum were discovered in nearby 

Grand Teton National Park. Ribes removal work continued, and between 1945 and 1952, a total of 

1,785,000 shrubs had been destroyed (Galusha no date). Cronartium ribicola was continuing to spread and 

was found in southeastern parts of Wyoming in 1952 and 1956 (White Pine Blister Rust Control Annual 

Report 1956).

In 1966, Region 1 (Idaho, Montana, and Wyoming) of the Forest Service began a study to evaluate 

the results of the Ribes eradication program that had been in place for over 30 years. Results showed a 

similar average infection rate in pines whether Ribes had been removed or not (Toko et al. 1967).

Therefore, the Region 1 Ribes eradication program was halted. In Yellowstone National Park, a similar 

study in 1975 also found that the removal of Ribes did not appear to affect the level of pine infection and it 

was recommended that the eradication program in force in the park also cease (Berg et al. 1975). Surveys 

completed from 1968-1971 throughout portions of the park reported 959 (0.3%) infected trees out of
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325,641 examined. Because of the generally low infection levels observed, the authors concluded that 

“blister rust will never eradicate the white pine type in Yellowstone” (Berg et al. 1975).

Yet, more than 25 years after that proclamation, it is now known that disease intensification has 

occurred in some areas within and adjacent to the park (Smith and Hoffman 2000, Chapter 1 of this thesis) 

indicating that over time white pine blister mst may result in impacts to whitebark pine in at least some 

localized areas of the GYA. The same questions that were of concern in 1975 (Berg et al. 1975) remain 

unanswered: (1) Do the conditions within Yellowstone National Park limit mst spread, and (2) what roles 

do Ribes species play in mst spread and intensification? Results reported in Chapter 1 of this thesis show a 

pattern of pine infection related to the distance to the nearest stream at or below 2621 m, a landmark 

selected for consideration because of its association with the upper-elevational limit of most Ribes species 

occurring in the GYA. Thus, while reduction of Ribes abundance in localized areas during eradication 

efforts did not appear to lead to a reduction in overall infection level, it is possible that Ribes distributions 

may still be an important factor in the observed pattern of white pine blister mst infection. The 

characterization of the Ribes species of the GYA can provide an additional layer of information to facilitate 

better understanding of the dynamics of this disease.

OVERVIEW OF RIBES

The genus Ribes L. (Grossulariaceae) is a large taxon that includes 120 to 150 species of wild and 

cultivated currants and gooseberries. Ribes species are found across much of the temperate regions of the 

Northern Hemisphere, as well as in western North Africa, in the Andes of South America, and at high 

elevations in Central America creating a nearly continuous distribution from Alaska to Tierra del Fuego 

(Messinger et al. 1999, Sinnott 1985). Members of the genus are shrubs with alternate or clustered, simple 

leaves, and that produce fruits that are succulent berries.

Ribes plants are obligate alternate hosts for two species of mst fungi (Cronartium ribicola and 

C. occidentale) that can cause considerable damage to pines while causing relatively little damage to Ribes. 

In North America, C. occidentale is a native mst and is less damaging ecologically than the introduced 

C. ribicola (Hahn 1930). The life cycles of the two species of Cronartium are similar except that 

C. occidentale infects pinyon pines while C. ribicola infects white (five-needle) pine hosts (Van Arsdel and
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Krebill 1995). The spore stages that occur on Ribes leaves are similar in appearance for these two species, 

and are difficult to distinguish visually (Hahn 1930). Both have been reported to occur in the GYA (White 

Pine Blister Rust Annual Report 1964, Graham 1966), although C. ribicola is much more commonly found.

There are historical references to human use of gooseberries and currants that extend at least back 

to an herbal printed in 1578 (Sinnott 1985). More recently, a large commercial market for products from 

cultivated Ribes has developed, including ornamentals, medicinal extracts, and edibles such as juices, jams, 

jellies and dessert berries. Most commercial Ribes production is in northern Europe (Brennan 1996). In 

North America, the popularity of Ribes species as commercial and ornamental plants has been impacted by 

their role as alternate hosts in forest diseases (Newman 2002). However, there has been a recent increase 

in the appeal of Ribes as commercial plants in North America (Brennan 1996, Newman 2002).

Blackcurrant reversion disease continues to impact Ribes production outside the Americas. Blackcurrant 

reversion disease is caused by a virus (genus Nepovirus), and results in severe crop losses (Jones 2000). 

American production of currants and gooseberries may, therefore, fill an increasing demand as European 

crops decline. However, increased plantings of Ribes in North America may negatively impact native 

white pine populations if these Ribes are susceptible to white pine blister rust and can act to intensify the 

disease. For these reasons, the emphasis of recent research has been rust disease resistance in commercial 

Ribes cultivars (Hummer 1997) and has generally excluded wild, native Ribes species. Thus, little is 

known of the ecology or pathology of C. ribicola in wild Ribes.

RIBES SPECIES OF THE GYA

The following nine Ribes taxa are known to occur in the GYA (Despain 1975, Dorn 2001, 

Craighead 1994, m. newcomb, personal observation):

* Ribes aureum Pursh
* Ribes cereum Dougl.
* Ribes hudsonianum Richards, (previously reported as R. petiolare)
* Ribes inerme Rydb.
* Ribes lacustre (Pers.) Poir.
* Ribes montigenum McClatchie
* Ribes oxyacanthoides ssp.hendersonii (C.L. Hitchc.) Sinnott (previously reported as R. hendersonii)
* Ribes oxyacanthoides ssp. setosum (Lindl.) Sinnott (previously reported as R. setosum)
* Ribes viscosissimum Pursh
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Each of the above taxa occur in distinct habitats, resulting in a unique relationship with the abiotic 

environment (relative humidity; exposure to wind, sun, and frost; topography- and canopy-determined 

temperature influences; etc.) and a distinctive spatial association with pine hosts. Moreover, it is 

recognized that taxon-specific variation exists in genetically-based biochemical and morphological plant 

defenses, with wide variation in disease resistance exhibited among species, and among individuals within 

a species (Mielke 1937). Each taxon is a unique host whose relationship with the pathogen can vary within 

and among habitats. Therefore, it is critical to consider the role of Ribes in disease intensification at a 

species-level taxonomic resolution (or even at the subspecies-level in the case of R. oxyacanthoides). A 

general overview of the biology of each species, its occurrence in the GYA, and what is known of its 

relative susceptibility to infection by C. ribicola follows.

Ribes lacustre: Ribes lacustre is widely distributed and occurs in both eastern Asia and North 

America (Messinger et al. 1999). This species is the only Yellowstone area Ribes whose geographic range 

extends beyond North America (Messinger et al. 1999). In North America it ranges from Alaska south to 

California and east to Newfoundland, with occurrences in the Dakotas, Michigan, Pennsylvania, Colorado 

and Utah (Hitchcock and Cronquist 1973, Lackschewitz 1991). The broad distribution of this species, 

along with its production of edible fruits that are utilized by chipmunks, other small mammals, birds and 

bears, suggest that R. lacustre has great ecological value in the forested areas where it is found (Martin et 

al. 1951, Hamer et al. 1991).

Ribes lacustre can be found throughout the GYA in most woods, on forested slopes, and along 

stream banks at elevations up to approximately 2650 m, and in some rocky sites above that elevation 

(Hitchcock and Cronquist 1973, Lackschewitz 1991, m. newcomb, personal observation). Rocky Mountain 

Herbarium records of R. lacustre collection locations within Wyoming (data request April 2001) support 

this distributional range with 93 of 98 collections reported either from below 2650 m in elevation, or from 

rock outcrops at elevations above 2650 m. While herbarium records are not necessarily a representative 

sample of a population, they can contribute to collective information on a species distribution Although 

the distribution of R. lacustre is characterized by high constancy (presence in a high proportion of stands) 

(Steele et al. 1983), it often only exhibits low cover values in the stands where it occurs (Oosting and Reed
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1952, Coates et al. 1990). Ribes lacustre is commonly associated with wet or moist areas (Despain 1973, 

McLean 1970, Applegate 1939, St. John and Warren 1937). In the Alberta Rockies, R. lacustre has been 

classified as hygro-mesic, with a rating of four in a five-point scale (one being associated with xeric sites 

and five with moist sites) (La Roi and Hnatiuk 1980). However, it appears to be a fairly tolerant species 

that is not restricted only to wet areas but is also observed in open forests and openings (Mielke 1937). It 

has a low- to moderate-shade tolerance and is the most shade tolerant of the Ribes species that occur in 

western intermountain forests (Oosting and Reed 1952, Coates et al. 1990, Moss 1953).

The ability to do well in disturbed areas and when subjected to stress is typical of Ribes species in 

general. Ribes lacustre appears to fit these characteristics well. In northwestern Oregon, R. lacustre was 

present at a frequency of 4% in a burned area while not observed in adjacent undisturbed forest (Neiland 

1958). A post-logging recolonization study in central Canada led to classification of R. lacustre as a 

facultative stress tolerator, implying an ability to grow rapidly following a disturbance that increases 

available light and nutrients, as well as an ability to persist under low light and nutrient conditions 

(Brumelis and Carleton 1989).

Many shrubs, including R. lacustre, produce adventitious roots in response to damage and stress.

A study of plants buried by volcanic tephra after the Mount Saint Helens eruption showed that R. lacustre 

produced 2 to 5 adventitious roots per centimeter of stem (Antos and Zobel 1985). This is an effective 

adaptive response to many disturbances, although apparently not to highly intense bums that may destroy 

roots. Ribes lacustre was found to decrease significantly in frequency following slash bums that created 

high soil temperatures in the Mission Mountains of Montana (Vogl and Ryder 1969). Thus R. lacustre’§ 

ability to respond to an increase in resources following a disturbance is variable, depending upon the type 

and intensity of damage.

Moreover, evidence suggests that this species is also adapted to stress that does not directly 

increase available resources. A comparison of vegetation in and out of deer yards showed a tendency for R. 

lacustre to be a “moderate increasei”, meaning it can tolerate, and even benefit from, deer browsing (and/or 

associated presence) (Habeck 1960). Additionally, Mielke (1937) reported that R. lacustre tolerates some 

level of chemical herbicide stress and responds to mechanical damage by vegetative layering. It is likely
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that R. lacustre has evolved under browsing pressure. It is known to be a food source for browsers such as 

deer (Wallmo et al. 1972, Singer 1979), elk (Edge et al. 1988), and mountain goats (Saunders 1955). It is 

plausible that R. lacustre exemplifies most species in the genus in its ability to respond positively to 

disturbance and tolerate different forms of stress.

Studies conducted in the 1930s found that R. lacustre generally exibits low susceptibility to white 

pine blister rust (measured as percent of leaves infected and percent of leaf-area supporting infection) 

(Kimmey 1938). However, additional studies suggested that the species was none-the-less important as a 

source of spores for pine infection (Mielke 1937, Buchanan and Kimmey 1938). Thus, the amount of 

infection supported per leaf or per shrub may not translate directly to the amount of pine infection that 

occurs. This may indicate that some componenet of the ecological context, such as the consistent 

distribution of R. lacustre, its proximity to white pines, features of the microsites it tends to inhabit, or 

some other related factor, may ultimately play a critical role in disease dynamics.

Ribes viscosissimum: Ribes viscosissimum ranges from British Columbia, south along the east 

side of the Cascade Range to the Sierra Nevada Mountains in California. The species is found in northern 

Arizona, and its range extends east to include Montana, western Wyoming, and northwestern Colorado 

(Hitchcock and Cronquist 1973, Lackschewitz 1991). In the Yellowstone area, the distribution of R. 

viscosissimum overlaps somewhat with that of R. lacustre. Like R. lacustre, R. viscosissimum is more 

commonly found at elevations below 2600 m, and generally occurs above that elevation only in specific 

microsites (m. newcomb, personal observation). Both species are commonly found where soils are 

generally moist (Applegate 1939, Daubenmire and Slipp 1943). However, R. viscosissimum has a deeper 

taproot than/?, lacustre, and can grow in drier areas. Ribes viscosissimum has a low tolerance for shade 

and cannot persist under closed canopies (Moss 1953). A study in a red fir forest of the Sierra Nevada 

found that R. viscosissimum shrubs were short and spindly when occurring in closed canopy conditions, 

while in more open conditions they were robust and flourishing (Oosting and Billings 1943). Ribes 

viscosissimum has often been observed thriving after canopy removal events (fire, logging, blow-downs) in 

association with reproducing pines (Pack 1934). In areas where light is not limiting, the distribution of R. 

viscosissimum has been measured as intermediate between a random and a contagious distribution pattern.
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This could be explained by initial seed dispersal (most likely by birds) being fairly random, and then over 

time the plants that establish become centers of localized reproduction (Fracker and Brischle 1944).

Even though R. viscosissimum does not tolerate low-light conditions as a shrub, it can persist 

under these conditions in the seed bank. Fruits of R. viscosissimum have plentiful seeds. A small sample 

of berries from southeast Washington showed an average of 71 seeds peri?, viscosissimum fruit (Piper 

1986). In central Idaho, samples from soil layers of three forest types were analyzed for seed content. A 

total of 91 viable seeds from R. lacustre and/or R. viscosissimum were found, for a maximum density of 

567 viable seeds per square meter (Kramer and Johnson 1987). Some data suggest that the seeds may not 

only be abundant in forest soils, but also remain viable in these soils for a long period of time. The seeds 

are generally not windbom, but may be dispersed by birds and mammals. A study of seedling emergence 

from soil samples collected from mixed conifer forests showed that samples of soils from areas where R  

viscosissimum and R. cereum plants were absent produced seedlings of both species, implying a seed-bank 

or animal-dispersed source (Strickler and Edgerton 1976). This inidicates adaptive means by this plant of 

persisting through unfavorable conditions, and thriving from disturbance.

The susceptibility of R. viscosissimum to C. ribicola is generally believed to be similar to that of 

R. lacustre (Kimmey 1938). Moreover, results of an experiment conducted in forested conditions showed 

both R. viscosissimum and R. lacustre to be similarly capable of facilitating disease progression in nearby 

pines (Buchanan and Kimmey 1938). Thus, even with a relatively low susceptibility rating, the role of/?. 

viscosissimum in disease dynamics cannot be discounted. An additional factor to consider is the proclivity 

of this species for establishment and increasing productivity following disturbances. Disturbance is a 

fundamental process for both host groups (Ribes and whitebark pine), and thereby, for the pathogen as well. 

It appears that disturbance may be particularly significant for R. viscosissimum since it thrives as an early- 

successional shrub in reproducing stands (Pack 1934, Lackschewitz 1991, m. newcomb, personal 

observation).

Ribes hudsonianum: This riparian species ranges from Alaska to northern California, east to 

Hudson’s Bay and is found in Minnesota, Wyoming, and Utah (Hitchcock and Cronquist 1973, 

Lackschewitz 1991). While R. lacustre and R. viscosissimum are sometimes found growing in moderately
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mesic conditions, R. hudsonianum requires a wet rooting medium to persist (Davis 1952, Lackschewitz 

1991) and is often seen growing in running water (m. newcomb, personal observation). This species has a 

national wetland indicator status of facultative obligate-wetland (USDA, NRCS 2001) meaning that it is at 

least as likely to occur within a designated wetland as not, and in some areas it occurs almost exclusively in 

wetlands. While R. hudsonianum shrubs generally occur in narrow belts along streams or seeps, they can 

also occur in dense thickets as a dominant component of the riparian vegetation. There is some historic 

evidence suggesting that R. hudsonianum is of intermediate importance as a summer browse plant for 

Yellowstone deer (Russell 1932) and browsed stems are common (m. newcomb, personal observation).

The distribution of R. hudsonianum within the GYA is more variable that that of R. lacustre and 

R. viscosissimum. Drainages within some regions support very dense patches, while other drainages have 

either no apparent occurrences, or support only a few small or scattered patches (m. newcomb, personal 

observation). While there are regional trends in distribution, even adjacent drainages can differ in relative 

abundance of R. hudsonianum. This distributional variability is notable enough that R. hudsonianum was 

not selected as a habitat type indicator species for use in a system of forest-type classifications developed 

from vegetation composition patterns (Pfister et al. 1977, Steele et al. 1983). Like R. lacustre, this species 

was rarely observed above an elevation of 2650 m (m. newcomb, personal observation). Rocky Mountain 

Herbarium collection locations are again consistent with my observations, with only 2 of 40 collections 

were reported from elevations above 2650 m (data request April 2001).

Ribes hudsonianum is widely recognized as the most susceptible of the Ribes that inhabit the GYA 

(Lachmund 1934, Kimmey 1938, Pierson and Buchanan 1938, Moss 1953). Yet the role this species plays 

in disease progression in whitebark pine is still largely unknown since the high susceptibility of this species 

may be ameliorated some by the fact that the shrub is limited to wet habitats, often at elevations lower than 

where whitebark pine stands occur, and therefore, frequently occurs at some distance from whitebark pine 

stands.

Ribes inerme: The range of R. inerme extends from British Columbia south along the eastern side 

of the Cascade Range to the Sierra-Nevada Mountains in California and Nevada east to Montana,

Wyoming, Colorado and New Mexico from 1200 to 3000 m (Hitchcock and Cronquist 1973, Sinnott 1985,
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Lackschewitz 1991). In the GYA, the species is most commonly found below about 2550 m, along streams 

and in wet bottomlands, and is frequently associated with willows (Rocky Mountain Herbarium collections, 

m. newcomb, personal observation). In many sites in the GYA, R. inerme growth is essentially restricted to 

willow patches, but can still be quite abundant in large willow bottoms.

Ribes inerme and R. oxyacanthoides ssp. setosum co-occur in geographic range and habitat (Dom 

2001) and when not in flower are challenging to distinguish (J. Whipple, Yellowstone National Park 

botanist and B.W. Geils, US Forest Service Rocky Mountain Research Station plant pathologist, personal 

communications; m. newcomb, personal observation). In fact, where both taxa are known to overlap, 

population studies have revealed apparent hybrids with intergraded morphological features (Sinnott 1985). 

In many contexts they are distinguishable; however, R. inerme is more restricted to wet sites, it tends to 

grow in a more sprawling form, and is often less defended with spines than R. oxyacanthoides ssp. setosum 

(m. newcomb, personal observation).

Ribes inerme is thought to be a relatively highly susceptible species, although somewhat less than 

R. hudsonianum (Kimmey 1938). It also is generally more distant in its proximity to whitebark pines since 

it inhabits wetter areas, often at lower elevations than whitebark pine stands.

Ribes oxyacanthoides ssp. setosum and ssp. hendersonii: Currently there are five accepted 

subspecies of R. oxyacanthoides (Sinnott 1985). Two subspecies occur in the GYA. These are R. 

oxyacanthoides ssp. setosum and ssp. hendersonii. Many floras distinguish these taxa at the species-level 

as R. setosum and R. hendersonii (Lackschewitz 1991). The two subspecies are allopatric and occupy 

distinct localized areas, as do all five subspecies of R. oxyacanthoides across North America (Sinnott 

1985). They also differ significantly in morphology. Ecologically, they also merit consideration as distinct 

taxa. Ribes oxyacanthoides ssp. setosum is found at elevations between 1500 and 2700 m in the Rocky 

Mountains of central and southern Montana, eastern Idaho, northern Utah and Wyoming (Sinnott 1985).

The more northerly R. oxyacanthoides ssp. oxyacanthoides is not a montane species, and while it is 

unlikely that it occurs in the GYA, it may occur in some valley bottoms within the area (Sinnott 1985). In 

the GYA, R. oxyacanthoides ssp. setosum is found along stream bottoms and open wooded slopes 

(m. newcomb, personal observation). It thrives in disturbed sites, and a White Pine Blister Rust Control
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Annual Report for Yellowstone National Park (1967) stated that R. setosum seedlings flourished in 

disturbed and wet areas.

Ribes oxyacanthoides ssp. hendersonii is primarily a subalpine and alpine shrub that occurs in 

rocky areas up to and beyond treeline in mountain ranges of eastern Idaho, Montana, and places in Nevada 

and Wyoming (Sinnott 1985, Lackschewitz 1991, m. newcomb, personal observation). In the GYA, R. 

oxyacanthoides ssp. hendersonii appears to be relatively uncommon, although it can be locally abundant on 

some slopes (m. newcomb, personal observation).

Kimmey (1938) reported R. oxyacanthoides ssp. setosum as exhibiting relatively low- 

susceptibility to C. ribicola. However, shrubs supporting moderate levels of infection in sites in the GYA 

have been observed, along with many shrubs with no infection (m. newcomb, personal observation). While 

there is not enough available information to dismiss R. oxyacanthoides ssp. setosum as unimportant in 

disease intensification, it is likely that it plays a lesser role than some other GYA Ribes species. There are 

no reports on the relative susceptibility of R. oxyacanthoides ssp. hendersonii to C. ribicola. Infection has 

not been observed on this species in the GYA (m. newcomb, personal observation). The tendency of this 

species to grow in open, dry, exposed sites makes it less likely that this species will commonly be infected 

as it is generally recognized that Ribes plants in open, high-light conditions show decreased tendencies for 

infection (Kimmey 1938, m. newcomb, personal observation).

Ribes aureum: The only species in the GYA with yellow flowers, R. aureum, is restricted to the 

lower elevations of the GYA. Its range extends along the east slopes of the Rocky Mountains from Alberta 

to New Mexico and eastward, and it is found in the eastern slopes of the Cascade Range and from north- 

central Washington south to California (Hitchcock and Cronquist 1973, Lackschewitz 1991). Common 

habitats for R. aureum include valley floodplains and stream banks of valleys and foothills (Lackschewitz 

1991). The relative susceptibility oiR. aureum has been reported as moderate to high (Maloy 1997). 

However, the fact that the species is typically limited to lower elevations in the GYA makes it an unlikely 

factor in whitebark pine infection processes.

Ribes cereum: The geographic and elevational range of R. cereum is remarkably broad. This 

species ranges from dry foothills to rocky and exposed alpine sites (1500 to 4000 m in elevation) from
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British Columbia, on the east side of the Cascade Range to the Sierra Nevadas and east and south to 

Nebraska, Colorado, and New Mexico (Hitchcock and Cronquist 1973, Lackschewitz 1991, Hickman 

1993). Ribes cereum is widespread throughout the GYA, although it is rarely observed in high densities. It 

exhibits a great deal of morphological variability across different environments. A study in the northern 

Sierra Nevadas showed R. cereum to be resistant to a post-fire herbicide treatment applied to limit shrub 

growth and allow pine establishment. Instead, R. cereum was significantly more abundant in the herbicide 

treatment than in the control (Bock et al. 1978). These findings are congruent with the general adaptive 

trend of high stress tolerance exhibited by a number of Ribes species.

In general, R. cereum is considered to have very low susceptibility to C. ribicola (Kimmey 1938). 

However, this highly variable and wide-ranging species has also demonstrated population-level variability 

in susceptibility. Kimmey and Mielke (1944) found that R. cereum originating from the southern Sierra 

Nevadas, or from Lassen Park to the north, differed in relative amounts of infection when inoculated under 

identical conditions. The high variability in this species, and its wide distribution over much of the GY A, 

indicates a need for further research to understand its role in disease intensification.

Ribes montieenum. This high-elevation (montigenum is derived from “mountain-born”) species 

ranges geographically from southern British Columbia south along the eastern slopes of the Cascade Range 

to the Sierra Nevadas and mountains of southern California, and east to the Rocky Mountains in Montana 

and New Mexico (Hitchcock and Cronquist 1973). Across this broad latitudinal gradient range, R. 

montigenum grows within different elevational ranges (Allen et al. 1991). Within the GYA, R. montigenum 

tends to thrive at higher elevations, generally above 2600 m. Of all the GYA Ribes, it has the closest 

spatial and ecological association with whitebark pine. It often grows predominantly beneath patches of 

trees that include whitebark pines. These tree “islands” can establish unique microenvironments (Marr 

1977), and in some conditions R. montigenum is limited to these sites (Marr 1977, Cox 1933). Particularly 

near the upper treeline where conditions are harsh, R. montigenum often exists only beneath or at the edge 

of these tree islands (Holtmeier and Broil 1992). Moreover, a study of subalpine vegetation in Utah 

showed that R. montigenum may in turn create a special microenvironment that favors the establishment of 

a number of herbaceous species. Ribes montigenum can exhibit vegetative layering when winter pocket
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gopher soil mounds cover the drooping outer shrub branches which then form adventitious roots (Ellison 

1954). In this process, the species can expand its shrub “island” and associated microenvironment.

Research conducted in the GYA over 2001 and 2002 also found evidence for tree-shrub island 

patterns under some contexts. Data collection efforts in 2001 were, in part, directed at testing the 

hypothesis that R. montigenum shrubs and whitebark pine occur in a positive, non-random spatial 

association. Six sites surveyed in whitebark pine stands supported notable amounts of R. montigenum. In 

three of these sites R. montigenum was located significantly (p<0.05) closer to a whitebark pine tree than to 

a random point (Figure 1). The two sites that clearly showed a non-significant association between 

whitebark pines and R. montigenum had high tree canopy cover estimations, exhibiting a relatively closed, 

and thus sheltering, canopy that may have altered environmental conditions affecting Ribes distributions. 

The fact that there is a positive relationship between whitebark pine and R. montigenum when sites consist 

of exposed open stands suggests that there could be a facilitative association between the two host groups at 

these sites. It is intriguing to contemplate the long-term consequences of such an association, 

conceptualized in the context of co-evolutionary theory (Burdon and Thrall 1999). The historic positive 

association between these species prior to the interaction with the introduced blister rust pathogen, may 

now drive an indirect negative interaction between the pine and shrub. This close spatial association 

increases the need for consideration of the relationship between R. montigenum and the pathogen and how 

this interaction fits into larger disease dynamics.

Ribes montigenum has been classified as moderately susceptible (Kimmey and Mielke 1944).

This general category fits with observations from the GYA (m. newcomb, personal observation). This 

species was frequently observed with infection by C. ribicola in 2001 and 2002 when near infected pines 

(inoculum sources). Yet it was rarely observed with infection when no infected pines were within sight of 

the shrubs. It may be that R. montigenum plays a significant role in local intensification but not initial 

establishment (see Chapter 1). This species merits additional research consideration because of its close 

proximity to whitebark pine hosts throughout much of the GYA.
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FUTURE DIRECTIONS

There has been a century-long interest in improving our understanding of white pine blister rust in 

North American white pines. While much has been learned, there remains much that is unknown about the 

dynamic effects of C. ribicola in white pine forests. In recent times, considerable work has focused on the 

molecular aspects of the white pine hosts (Kinloch and Dupper 2002), the pathogen (Et-touil et al. 1999, 

Hamelin et al. 2000), and pine host-pathogen interactions (Yu et al. 2002). However, research that 

addresses the ecological contexts of the hosts and their environment in relation to the distribution and 

intensification of the pathogen is needed.

Using the GYA as a model system, this paper characterizes the local Ribes species in relation to 

their role in white pine blister rust in whitebark pine stands of the area. The GYA provides a useful setting 

for investigations of the dynamics of interactions between the pathogen and its hosts because of the 

variability in disease intensities that exists among different host pine stands, allowing for natural 

experiments across the variable conditions. Additionally, the GYA is an important setting for studies of 

white pine blister mst host dynamics because of its ecological importance and the associated impelling 

need to understand threats to the whitebark pine forests of the area. These forests are critical components 

of this valuable ecological treasure.

Thus the GYA can provide a model study system for addressing future research needs. Data 

describing the distributions and abundances of the Ribes species and their proximities to white pine hosts 

are needed. Investigations of the relative susceptibilities of the Ribes hosts to C. ribicola are needed 

through intra-specific, spatial and temporal comparisons. Moreover, very little is known about Ribes 

species’ phenologies and the timing of rust development on the Ribes hosts. Information on these topics 

would be a valuable contribution to current knowledge of the white pine blister rust pathosystem. 

Additionally, such studies would provide essential data from an ecological context to accompany the 

important accomplishments on the molecular front of host-pathogen research.
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TABLES AND FIGURES

Table 1. Results of a March, 2003 keyword search for “white pine blister rust” or “Cronartium ribicola” 
using the Cambridge Scientific Abstracts Plant Science and Biological Sciences databases. Conference 
proceedings, review articles, and articles that only incidentally mention the disease were not included.

Host group(s) considered

Artificial 
conditions 

(Lab, greenhouse, 
or nursery)

Plantation 
or C’rop Forest TOTAL

Major focus on white pine alone 9 3 5 17
Mai or focus on white pine and Cronartium ribicola 9 0 0 9
Major focus on Cronartium ribicola alone 14 0 0 14
Major focus on Ribes spp. alone 0 4 0 4
TOTAL 32 7 5 44

7.00
p=0.02

.2? 5.00
>«•

as 1.00

p=0.25 p=0 11

p=0.00009

p=0.000004

p=0.07

42% 58% 62% 68% 76% 90%

Sites with R montigenum by percent tree canopy cover
□  Distance from WBP to RsMO 
■  Distance from a random point to RiMO

Figure 1. Spatial associations between whitebark pine (WBP) and Ribes montigenum (RIMO) shrubs at six 
sites with differing estimated percent tree canopy cover. Error bars equal one standard error. P-values 
represent levels of significance from student’s t-tests comparing mean distances at a site from a w hitebark 
pine tree to the nearest Ribes montigenum shrub, and from a random point to the nearest Ribes montigenum 
shmb.
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APPENDIX: TREE-LEVEL DATA

Table A-l. White pine blister rust disease metrics and crown ratios for whitebark pine trees assessed 
at 25 sites, by crown class. Metrics include the GYA Relative Severity Index (see Results section for 
description); numbers of cankers in lower, middle, and upper canopy thirds; and severity rating (see 
Figure 1) by relative stem and canopy thirds. SE = one standard error.

Suppressed Intermediate Codominant Dominant Open Remnant
Mean GYA 
Relative Severity 
Index (SE)

0.044
(0.018)

0.11
(0.014)

.11
(0.011)

0.13
(0.048)

0.25
(0.096)

0.28
(0.056)

Mean Cankers in 
Lower Third (SE)

0.029
(0.018)

0.16
(0.023)

0.21
(0.034)

0.18
(0.10)

0.46
(0.22)

0.5
(0.5)

Mean Cankers in 
Middle Third
(SE)

0.022
(0.013)

0.17
(0.025)

0.27
(0.031)

0.45
(0.19)

0.41
(0.16)

1.5
(0.5)

Mean Cankers in 
Upper Third (SE)

0.044
(0.018)

0.15
(0.025)

0.34
(0.042)

0.33
(0.11)

0.16
(0.073)

0.5
(0.5)

Mean Total 
Cankers (SE)

0.066
(0.024)

0.38
(0.047)

0.64
(0.065)

0.91
(0.30)

0.92
(0.36)

2.5
(0.5)

Mean Severity 
Rating in Lower 
Canopy Third 
(SE)

0.029
(0.015)

0.12
(0.017)

0.12
(0.016)

0.12
(0.058)

0.27
(0.11)

0.5
(0.5)

Mean Severity 
Rating in Middle 
Canopy Third 
(SE)

0.022
(0.016)

0.15
(0.021)

0.18
(0.019)

0.21
(0.084)

0.22
(0.079)

1.0
(0)

Mean Severity 
Rating in Upper 
Canopy Third 
(SE)

0.051
(0.022)

0.14
(0.023)

0.21
(0.023)

0.24
(0.076)

0.22
(0.10)

0.5
(0.5)

Mean Severity 
Rating in Lower 
Stem Third (SE)

0.0074
(0.0074)

0.0091
(0.0045)

0.0078
(0.0039) 0(0) 0.081

(0.081) 0(0)

Mean Severity 
Rating in Middle 
Stem Third (SE)

0.022
(0.016)

0.034
(0.012)

0.039
(0.011)

0.061
(0.042)

0.27
(0.27) 0(0)

Mean Severity 
Rating in Upper 
Stem Third (SE)

0.015
(0.015)

0.088
(0.021)

0.055
(0.015)

0.061
(0.042)

0.22
(0.12) 0(0)

Mean Severity 
Rating (SE)

0.14
(0.064)

0.54
(0.071)

0.57
(0.058)

0.70
(0.20)

0.92
(0.32)

2.0
(1.0)

Mean Crown 
Ratio (SE)

31.9
(1.4)

49.5
(0.72)

53.6
(0.66)

67.0
(2.1)

67.2
(2.9)

27.5
(2.5)

Count (N) 136 441 510 33 37 2
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Table A-2. White pine blister rust disease metrics for whitebark pine trees assessed at 25 sites, by 
crown ratio classes. Metrics include the GYA Relative Severity Index (see Results section for 
description); numbers of cankers in lower, middle, and upper canopy thirds; and severity rating (see 
Figure 1) by relative stem and canopy thirds. SE = one standard error.

Crown
Ratio

5-30%

Crown
Ratio

35 & 40%

Crown 
Ratio 

45 & 50%
0.080

(0.016)

Crown
Ratio

55 & 60%

Crown 
Ratio 

65 & 70%

Crown
Ratio

75 -  95%
Mean GYA Relative 
Severity Index (SE)

0.059
(0.012)

0.11
(0.020)

0.12
(0.017)

0.13
(0.024)

0.18
(0.039)

Mean Cankers in 
Lower Third (SE)

0.053
(0.018)

0.12
(0.028)

0.088
(0.022)

0.24
(0.043)

0.28
(0.079)

0.35
(0.097)

Mean Cankers in 
Middle Third (SE)

0.10
(0.026)

0.18
(0.040)

0.14
(0.023)

0.27
(0.044)

0.32
(0.063)

0.38
(0.088)

Mean Cankers in 
Upper Third (SE)

0.12
(0.027)

0.26
(0.055)

0.18
(0.032)

0.28
(0.055)

0.33
(0.087)

0.17
(0.042)

Mean Total Cankers per 
Stem (SE)

0.24
(0.045)

0.47
(0.084)

0.35
(0.051)

0.57
(0.088)

0.68
(0.14)

0.80
(0.17)

Mean Severity Rating in 
Lower Canopy Third 
(SE)

0.080
(0.024)

0.10
(0.025)

0.064
(0.016)

0.14
(0.023)

0.14
(0.029)

0.21
(0.050)

Mean Severity Rating in 
Middle Canopy Third 
(SE)

0.14
(0.039)

0.13
(0.027)

0.12
(0.021)

0.16
(0.025)

0.20
(0.033)

0.22
(0.047)

Mean Severity Rating in 
Upper Canopy Third 
(SE)

0.20
(0.046)

0.19
(0.037)

0.15
(0.028)

0.17
(0.032)

0.14
(0.029)

0.14
(0.35)

Mean Severity Rating in 
Lower Stem Third (SE) 0(0) 0.01

(0.0071)
0.012

(0.0069)
0.0044

(0.0044)
0.0056

(0.0056)
0.045

(0.030)
Mean Severity Rating in 
Middle Stem Third (SE)

0.085
(0.031)

0.01
(0.01)

0.020
(0.010)

0.044
(0.015)

0.011
(0.0079)

0.054
(0.022)

Mean Severity Rating in 
Upper Stem Third (SE)

0.15
(0.044)

0.075
(0.026)

0.044
(0.020)

0.049
(0.024)

0.050
(0.024)

0.036
(0.022)

Mean Severity Rating 
(SE)

0.63
(0.16)

0.47
(0.086)

0.40
(0.068)

0.54
(0.069)

0.52
(0.080)

0.69
(0.12)

Count (N) 188 200 251 225 179 111
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