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Genman, W illiam  A., M.A., March 1991 Zoology

Sex Linkage o f Two Enzyme Loci in Rainbow Trout (33 pp.)

D irec to r: Dr. Fred W. A llendorf

The ob jective  o f th is  study was to detect sex-linked enzyme lo c i in 
the rainbow tro u t fOncorhvnchus mvkiss) . Previous cy to log ica l and 
breeding experiments have demonstrated an XX/XY sex determining system 
in  th is  and other salmonid species. In sp ite  o f a large amount o f 
linkage inform ation from th is  species, no known cases o f sex-1inkage o f 
any lo c i had been reported before th is  study.

I i n i t i a l l y  examined the jo in t  segregation o f nine enzyme encoding 
lo c i and sex in  the Arlee hatchery s tra in  o f rainbow tro u t. Two lo c i 
encoding the enzymes hexosaminidase (HEX-21 and superoxide dismutase 
( sSOD-ll demonstrated s ta t is t ic a l ly  s ig n ific a n t non-random associations 
in  progeny from heterozygous fa thers. A series o f more extensive 
matings were then performed to  te s t fo r  the linkage o f these two lo c i 
and sex.

Linkage information from fathers indicates tha t the average distance 
from HEX-2 to  SEX is  8.1 map un its  ( i . e . ,  8.1% recombination). The 
average distance from HEX-2 to sSOD-1 in fathers is  23.6 map u n its . No
evidence o f non-random segregation o f HEX-2 and sSOD-1 was found in 
mothers. This contrast between recombination rates in  males and 
females is  in  agreement w ith previous linkage studies w ith  rainbow tro u t 
and other salmonid species.

These resu lts  ind icate  tha t both HEX-2 and sSOD-1 are on a chromosome 
th a t also carries a region involved in primary sex determination (the 
SEX locus). However, unlike the extreme XX/XY heterogamety in 
mammalian species, functional a lle le s  fo r  these lo c i are found on both 
the X and Y-chromosomes. Previous studies have reported th a t these same 
enzyme lo c i are linked to  each other in salmonid fishes from the genus 
S a lve linus; however, these lo c i are not linked to  SEX in  S a lve linus.
The sex-1inkage o f these lo c i in  rainbow tro u t is  apparently the re s u lt 
o f a ce n tr ic  fusion between the autosome bearing HEX-2 and sSOD-1 and 
the sex chromosome in  the rainbow tro u t lineage a fte r  divergence from a 
common ancestor w ith  the Salvelinus species. Previous gene-centromere 
mapping data v ia  gynogenesis combined w ith the data from th is  study 
suggest a gene order o f (SEX)-centromere-(HEX-21- ( sSOD-11.

i i
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INTRODUCTION

M uller (1914) proposed th a t the evolution o f heteromorphic sex chromosomes 

involved the suppression o f crossing over between a proto-X and p ro to -Y. 

Crossover suppression can occur through the action o f m od ifie r lo c i tha t 

reduce recombination between the sex-determining regions on the X and Y 

and syntenic lo c i w ith opposing se lective  forces in  males and females (Nel 

1969). As a re s u lt,  the Y chromosome may degenerate due to  an 

accumulation o f le th a l mutations tha t are shielded from homozygosity by 

th e ir  counterparts on the X chromosome, w ithout the remedying e ffec ts  o f 

X-Y recombination (Chariesworth 1978). Complete crossover suppression 

between sex chromosomes, however, is  not advantageous because some pa iring  

is  required fo r  precise d is junc tion  during male meiosis (K o lle r and 

Darlington 1934). This necessity fo r  X-Y pa iring  accounts fo r  the 

presence o f a homologous segment between the human X and Y th a t derives 

i t s  name from a mode o f inheritance caused by ob liga te  X/Y exchange - the 

"pseudoautosomal" region (Burgoyne 1982, 1986).

The extreme X-Y divergence in  humans and other mammals appears to be 

the exception among vertebrates (Bull 1983). Both male and female 

heterogamety is  common in  fishes (reviewed in  Gold 1979; Bull 1983; Price 

1986). In some instances both forms, male (XX/XY) and female (ZW/ZZ), 

e x is t in  the same species (Bull 1983). Amphibians possess a s im ila r 

d iv e rs ity  o f sex determining mechanisms, w ith  widespread occurrence o f 

both male and female heterogamety (Bull 1983). Reptiles d i f fe r  somewhat 

in  th a t a large proportion o f liz a rd s , tu r t le s ,  and crocodilians determine 

sex by incubation temperature during embryogenesis (Bull 1980, 1983).
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Conservation o f a s ing le  tw o-facto r sex determining system occurs only 

among b irds (female heterogametic) and mammals (male heterogametic).

In fishes o f the fam ily Salmonidae, cy to log ica l d ifferences ind icate  

th a t males are the heterogametic sex (Thorgaard 1977, 1978, 1983; P h illip s  

and Ihssen 1985). These observations are supported by gynogenetically 

produced progeny and sex-reversal experiments (Johnstone e t a l. 1979; 

Okada e t a l . 1979; Donaldson and Hunter 1982; R efstie  e t a l.  1982). 

However, there is  l i t t l e  information on sex linkage in these f is h . 

X-1inked lo c i are hemizygous in  mammals because the degenerate Y 

chromosome lacks functional a lle le s ; th is  is  l ik e ly  not the case in 

salmonids because o f the v ia b i l i t y  o f YY ind iv idua ls  produced in 

sex-reversal studies. No lo c i have been reported in  salmonids th a t show 

d if fe re n t ia l gene copy number in males and females.

The purpose o f th is  investiga tion  was to  detect lo c i th a t are linked 

to  the sex-determining fa c to r in rainbow tro u t (Oncorhvnchus mvkissl .  The 

genetics o f sex-1 inked lo c i in  salmonid fishes is  especia lly  in te res tin g  

because o f th e ir  po lyp lo id  ancestry (see A llendorf and Thorgaard 1984). 

M uller (1925) proposed tha t heterogamety is  a major deterrent to  the 

evolu tion  o f po lyp lo idy among vertebrates because the asymmetry o f sex 

determining facto rs in  an aneuploid genome frequently causes s t e r i l i t y  or 

reduced v ia b i l i t y .  In th is  paper, I describe the inheritance in  rainbow 

tro u t o f two enzyme lo c i,  HEX-2 and sSOD-l. th a t are linked to  a region 

th a t contains the major sex determining locus.



METHODS

Sampling and electrophoresis

Fish used In th is  study are from the Arlee s tra in  o f rainbow tro u t, 

maintained at the Jocko River State Trout Hatchery, Arlee, Montana. The 

h is to ry  o f the s tra in  is  presented by Leary e t a l. (1983). Fish used as 

parents had th e ir  gametes removed at the hatchery and th e ir  tissues 

immediately sampled and electrophoresed in  the lab to  determine th e ir  

genotypes at several enzyme lo c i .

Progeny were reared u n t il an age when sex could be determined by 

examining the gonads under low power m agnification (Lincoln and Scott 

1983; Malison e t a l.  1986). This was possible s ix  months a fte r  hatching, 

when the f is h  were more than 100 mm in length. Fish were stored frozen at 

-80 C u n t il d issection .

Horizontal starch gel e lectrophoresis was used to  id e n tify  the 

p ro te in  products fo r  a ll  gene lo c i.  Gel preparation, bu ffe rs , and 

s ta in ing  procedures are those o f Harris and Hopkinson (1976) and A llendorf 

e t a l.  (1977). I have adopted the genetic nomenclature recently  described 

fo r  the id e n tif ic a t io n  o f isozymes and isozyme lo c i in  fishes (Shaklee et 

a l.  1990).

Four fam ilies  i n i t i a l l y  were examined to  detect the presence o f a 

sex-linked locus. The male parent o f each fam ily  was chosen to be

heterozygous fo r  as many enzyme lo c i as possible. Since males are the 

heterogametic sex, we expected to  detect sex-1inkage only when the male 

parent is  heterozygous.
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During the in i t ia l  screening two isozyme lo c i,  HEX-2 and sSOD-1. out 

o f nine surveyed, showed s ta t is t ic a l ly  s ig n if ic a n t associations w ith 

phenotypic sex. The fo llow ing  lo c i,  w ith  enzyme name and number in 

parentheses, were also surveyed during the pre lim inary screening: EST-l 

(esterase, 3 .1 .1 . - ) ;  sIDDH (L - id ito l dehydrogenase, 1 .1 .1 .14); mIDHP-2 and 

sIDHP-1 ( is o c itra te  dehydrogenase, 1 .1 .1 .42); LDH-B2 (L -lac ta te  

dehydrogenase, 1 .1 .1 .27); sMDH-Bl.2 (malate dehydrogenase, 1 .1 .1 .37); 

PGM-lr (regu la tory locus fo r  phosphoglucomutase (A llendorf e t a l.  1983), 

5 .4 .2 .2 ).

Hexosaminidase

Hexosaminidase (HEX) has been in tens ive ly  studied in  humans because 

ind iv id u a ls  w ith  Tay-Sachs disease lack a c t iv ity  fo r  one form o f th is  

enzyme. M u ltip le  lo c i code fo r  d if fe re n t forms o f HEX (EC 3.2.1.52) in 

humans (Mahuran et a l . 1985).

1 used two bu ffe r systems to  detect genetic va ria tio n  at lo c i 

encoding HEX in  rainbow tro u t:  an am ine-citra te bu ffe r (pH 6.1) described 

by Clayton and T re tiak  (1972), and the pH 8.5 bu ffe r o f Ridgway et a l. 

(1970). I used the p o s itive , g lucose-specific  HEX s ta in  described by 

H arris and Hopkinson (1976) w ith one a lte ra tio n : a small amount o f 

dimethyl su lfoxide (less than 1 ml) was used as the substrate solvent 

ra the r than ethyl a lcohol. HEX a c t iv ity  was detected w ith  both 

glucose-derived and galactose-derived sta in ing  substrates. This is  

in d ic a tiv e  o f beta-N-acetylhexosaminidase a c t iv ity  (EC 3 .2 .1 .52; Calvo et 

a l.  1978).
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Superoxide Dismutase

Genetic va ria tio n  fo r  cy to so lic  superoxide dismutase (EC 1.15.1.1; 

sSOD-11 was f i r s t  described in rainbow tro u t by U tte r (1971). Cytosolic 

sSOD-1 a c t iv ity  predominates in  l iv e r  tissue , although a c t iv ity  is  present 

in  several other tissues (A llendorf e t a l. 1977). The products o f a 

second locus ( sSOD-21 fo r  th is  enzyme is  present in  homogenate from eye. 

Two common sSOD-1 electromorphs e x is t in  rainbow tro u t and are present in 

the Arlee population ( 100 and 1501. The inheritance o f th is  va ria tio n  in 

rainbow tro u t was f i r s t  described by U tte r e t a l.  (1973).



RESULTS

Hexosaminidase

Results ind ica te  th a t two lo c i encode HEX in  rainbow tro u t. 

Evidence fo r  the products o f only a s ing le  locus (HEX-21 was found in f is h  

large enough to  be c la s s ifie d  as male or female (greater than 100 mm). 

The strongest a c t iv ity  fo r  HEX-2 occurs in l iv e r  tissue , although a c t iv ity  

fo r  the HEX-2 Isozyme was also observed in  tissue  homogenate from g i l l ,  

f in ,  and kidney. L i t t le  or no HEX-2 a c t iv ity  was found in  the other 

tissues th a t were examined (eye, muscle, heart, stomach, and b ra in ).

Another more cathodal zone o f HEX a c t iv ity  was detected in 

homogenate from whole f r y  tha t had not ye t absorbed th e ir  yo lk  sac (R. 

Danzmann, unpublished re s u lts ) . A ll ind iv idua ls  examined had a single 

band o f a c t iv ity  fo r  th is  form o f the enzyme regardless o f th e ir  genotype 

at HEX-2; thus, th is  zone is  apparently encoded by a d is t in c t  locus 

(HEX-11. No a c t iv ity  fo r  the enzyme produced by th is  locus was detected 

in  f is h  a fte r  absorption o f the yo lk  sac.

Three HEX-2 a lle le s  were found in  the Arlee population. 

Heterozygotes at th is  locus show a three-banded pattern typ ica l o f a 

dimeric enzyme (Figure 1). On the basis o f re la tiv e  e lectrophore tic  

m o b ility  re la t iv e  to  the most common a lle le , which is  designated as 100 

(Shaklee e t a l. 1990), the other two HEX-2 a lle le s  are designated as 75 

and 80. The d iffe rence  in m o b ility  between these two a lle le s  was not 

recognized in  e a r lie r  studies in th is  labora tory; in add ition , 75/80 

heterozygotes were not used to  te s t inheritance in  th is  study because o f 

the d i f f ic u l t y  in  d is tingu ish ing  the re su ltin g  progeny phenotypes (e .g ..
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80/100 versus 75/100) . Thus, in order to  present genotypes more c le a rly  

in  the tab les , I have used A and £ ’ to  designate a lte rn a tive  a lle le s  at 

HEX-2; A always re fe rs  to  the 100 a lle le ,  but A’ re fe rs  to  e ith e r the 75 

or go a lle le .  S im ila r ly , S and g* have been used to  designate the 100 

and 150 a lle le s  at sSOD-1.

Pairwise Segregation

HEX-2 phenotypes o f progeny were cons is ten tly  associated w ith  sex 

when the male parent was heterozygous (Table 1 ). The less frequent 

linkage class was assumed to be the recombinants i f  the n u ll hypothesis o f 

independent assortment between HEX-2 and sex in the progeny was rejected 

using a chi-square te s t (Bailey 1961); fo r  example, in  fam ily  Ml i t  is  

assumed th a t the A a lle le  was on the paternal Y-chromosome and the A’ 

a lle le  was on the paternal X-chromosome. See Nordheim e t a l.  (1983) fo r  

a discussion o f detecting linkage when the parental linkage phases are not 

known. A s ig n if ic a n t association between HEX-2 and sex was found in  one 

o f four fam ilies  in  which only the maternal parent was heterozygous at 

HEX-2 (M2). However, th is  deviation is  not s ta t is t ic a l ly  s ig n if ic a n t i f  

corrected fo r  the four independent tests  o f th is  association (Cooper 

1968).

In fam ily  L25 both parents were heterozygous at HEX-2. The 

s ig n if ic a n t association between HEX-2 and sex in  these progeny was assumed 

to  be caused by linkage in  the male parent. Progeny heterozygous at HEX-2 

were ignored in  the c la s s if ic a tio n  as parental or recombinant type in  the
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progeny because o f the ambiguity o f determining which a lle le  was inherited  

from which parent.

The sSOD-1 phenotypes o f progeny tended to  be associated w ith sex 

when the male parent was heterozygous in  those fam ilies  th a t allowed

pairw ise analysis o f sex and sSOD-1 (Table 2 ). A ll analyses were

performed as described above fo r  associations between HEX-2 and sex. 

This association between sSOD-l and sex was confirmed in  the th ree-po in t 

testcrosses th a t are presented la te r .

A series o f crosses was made to estimate the ra te  o f recombination 

between HEX-2 and sSOD-1 in  both males and females. These progeny were 

sampled before they were large enough to  determine th e ir  sex. The nu ll 

hypothesis o f independent assortment can be rejected in  three out o f four 

fa m ilies  in  which the male parent was heterozygous fo r  both HEX-2 and

sSOD-l (Table 3 ). However, there is  no ind ica tion  o f non-independent

assortment when the female parent was doubly-heterozygous.

Some jo in t-seg rega tion  resu lts  in  salmonids have shown an excess o f 

recombinant over parental types. The process responsible fo r  th is  re s u lt, 

known as pseudolinkage, resu lts  from m eiotic abnormalities due to the 

residual te tra p lo id y  th a t ex is ts  among salmonid species (Wright e t a l.  

1983; A llendorf and Thorgaard 1984).

We tested fo r  pseudolinkage by mating two males heterozygous at 

HEX-2 and sSOD-l w ith known linkage phase fA B /A*B^ : Figure 2) to 

doubly-homozygous females. These progeny were sampled before th e ir  sex 

could be determined. A s ig n if ic a n t excess o f parental types at HEX-2 and 

sSOD-1 occurred in  both fam ilies  (Table 4 ).
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Three-point testcrosses

Males heterozygous fo r  HEX-2 and sSOD-1 were used to  construct f iv e  

th ree -po in t testcrosses to  determine gene order (Table 5). There are four 

recombinant classes, each w ith  two gamete types, re su ltin g  from these 

th ree -po in t crosses: parental c lass, two sing le  crossover classes, and the 

double crossover class. The most frequent recombinant class was assumed 

to  represent the parental type ( i . e . ,  the re s u lt o f no crossovers). The 

parental gamete types were designated as X A B and Y a b to  reduce the 

number o f d if fe re n t genotypes represented in  the tab le . That is ,  the 

a lle le  on the paternal X-chromosome is  designated as A or B regardless o f 

i t s  e lec trophore tic  m o b ility ; s im ila r ly , the a lle le  on the Y-chromosome is  

designated as a or b.

Gametic d isequilibria

A substantia l set o f data is  ava ilab le  to  te s t fo r  non-random 

associations among genotypes at HEX-2. sSOD-l. and sex in  the Arlee s tra in  

o f rainbow tro u t. Sexually mature males and females are co llected each 

year fo r  experimental matings and examined at some 15 polymorphic enzyme 

lo c i.  The males and females th a t are used in these matings are often o f 

d if fe re n t ages (e .g ., 2 year-o ld males and 3 year-old females).

Therefore, males and females o f each cohort have not been examined. For 

example, data from only males a ris ing  from 1985 matings are ava ilab le , 

while only females are ava ilab le  from 1986.

Gamete frequencies and the c o e ff ic ie n t o f gametic d isequ ilib rium  (D) 

were estimated using the algorithm  o f H i l l  (1974). The s ign ificance  o f
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devia tions were tested by the Q s ta t is t ic  th a t is  d is tr ib u te d  as a 

chi-square w ith  one degree o f freedom.

The strongest evidence fo r  non-random association was found between 

HEX-2 and sex (Table 6 -8 ). S ig n ifica n t p o s itive  values o f D were found in 

2 o f the fou r samples (1982 and 1984 cohorts). S ig n ifica n t associations 

between HEX-2 and sSOD-1 as well as sSOD-1 and sex are present in  the 1982 

cohort.



DISCUSSION

Sex-1Inkage of HEX-2 and sSDD-1

S ig n ifica n t non-random associations between HEX-2 and sSOD-l were 

found in  9 o f the 11 fam ilies  fo r  which the male parent was doubly 

heterozygous (Table 9 ); the p ro b a b ility  o f the d is tr ib u tio n s  observed in 

the other two fam ilies  (N7 and Q5) is  less than 0.07. I f  we include these 

two fa m ilie s  in  our ca lcu la tions , the average recombination ra te  between 

HEX-2 and sSOD-1 in  males is  0.236. May and Johnson (1990) have reported 

th a t these lo c i are also linked in salmonid f is h  o f the genus Sa lve linus: 

they report recombination rates o f 0.15 and 0.27 in  crosses using 

in te rs p e c if ic  hybrids between brook tro u t (S. fo n t in a lis l . lake tro u t (S. 

namavcush) . and A rc tic  char (S. a lo inus) .

There is  no evidence o f non-random association between HEX-2 and 

sSQD-1 from female parents (Table 3 ). Previous salmonid linkage studies 

have shown th a t recombination rates are generally greater in  females than 

males (May e t a l.  1979; Johnson e t a l. 1987; May and Johnson 1990). The 

reduction o f autosomal recombination in  the heterogametic sex is  expected 

because o f se lection fo r  X-Y crossover suppression (Haldane 1922; Huxley 

1928; reviewed in  Bull 1983; T rivers 1988). Thus, sex d ifferences in 

recombination ra te  can evolve by the p le io tro p ic  e ffe c ts  o f recombination 

m odifiers acting upon the X and Y (Nei 1969).

These data ind ica te  th a t HEX-2 and sSOD-l are both on the chromosome 

carry ing  the major sex-determining locus (SEX) in  rainbow tro u t. 

S ig n ific a n t non-random association between HEX-2 and sex was found in 

every fam ily  fo r  which the male parent was heterozygous at HEX-2 (Table

11
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9 ). The average recombination ra te  between these lo c i in 10 fam ilies  is  

0.081.

The th ree -po in t testcrosses resu lts  alone do not allow us to 

determine the gene order. Double crossovers are expected to  be less 

frequent than e ith e r o f the sing le crossover classes. However, two o f the 

crossover classes are approximately equally frequent in  the f iv e  

th ree -po in t fam ilies  (Table 5 ). Thus, HEX-2 and the sex determining locus 

are very near each other, and both o f these lo c i are somewhat d is ta n t from 

sSOD-1. A consideration o f other information suggests a gene order o f 

(SEX) - (HEX-2) - ( sSOD-1) .

May e t a l.  (1989) have reported sex-1inkage o f three t ig h t ly  linked 

enzyme lo c i (LDH-1. AAT-5. and 6PI-3) in  second generation hybrids between 

brook tro u t and A rc tic  char backcrossed to  brook tro u t.  These lo c i are 

not associated w ith  sex in hybrids between brook tro u t and lake tro u t; 

th is  is  in  contrast to  the general pattern o f strong conservation o f 

linkages among salmonids. On th is  basis, these authors conclude tha t the 

sex linkage o f these three lo c i is  caused by a chromosomal rearrangement 

( i . e . ,  ce n tric  fusion) th a t is  unique to the A rc tic  char. That is ,  a 

chromosomal arm responsible fo r  sex determination has fused w ith an 

autosome containing the three enzyme lo c i.

May e t a l.  (1990) also report tha t the lo c i encoding hexosaminidase 

and superoxide dismutase are not linked to  sex in  crosses o f hybrids 

between brook tro u t and lake tro u t.  This suggests tha t the association 

between HEX-2 and sex resu lts  from a ce n tric  fusion in  rainbow tro u t tha t
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is  not present in  S a lve linus. I f  th is  is  tru e , then SEX would be across 

the centromere from the HEX-2 sSOD-1 chromosome arm.

Gene-centromere mapping v ia  gynogenesis (A llendo rf e t a l.  1986) has 

ind icated th a t HEX-2 in  rainbow tro u t is  very near the centromere (0.017 

recombination in  females) and th a t sSOD-1 is  d is ta l (0.497 recombination 

in  females). The most l ik e ly  gene order based on th is  analysis is  shown 

in  Figure 3. The proxim ity o f S£X to  the centromere in  rainbow tro u t is  

in  agreement w ith  cytogenetic resu lts  (Thorgaard 1977) and w ith  evidence 

from other species (reviewed in  Gold, 1979).

Gametic disequilibrium

The association between HEX-2 and sex (Table 6) is  l ik e ly  due to  the 

o r ig in  o f the Arlee s tra in  o f rainbow tro u t. This s tra in  was created in 

1955 by mating males from the U n ivers ity  o f Washington s tra in  w ith females 

from a s tra in  maintained by the Missouri Department o f Fish and Game 

(personal communication from George Holton, Montana Department o f Fish, 

W ild life  and Parks). The number o f parents involved in  these in i t ia l  

crosses is  not known. We would expect in i t ia l  non-random association 

between sex and any locus fo r  which these two founding parents had 

d if fe re n t a lle le  frequencies. These associations are expected to  decay at 

a ra te  o f one minus the recombination ra te  ( i . e . ,  1 -r) per generation. 

Thus, fo r  lo c i unlinked to  SEX, th is  association should be reduced by h a lf 

each generation. However, th is  process w i l l  be considerably delayed fo r  

HEX-2 which is  c lose ly  linked to  SEX.



14

This s tra in  has been maintained la rg e ly  by mating two year-o ld  males 

w ith  three year-o ld  females. Thus, there were approximately ten 

generations between 1955 and 1980, the f i r s t  year fo r  which we have data 

(Table 6 ). There is  a tendency fo r  males to  have a lower frequency o f 

HEX-2*100. These data are therefore compatible w ith  the males from the 

U n ive rs ity  o f Washington s tra in  having a lower frequency o f th is  a lle le  

than the females from the Missouri s tra in .

Sex chromosome evolution

Centric fusions between sex-chromosomes and autosomes have 

apparently occurred many times in  salmonid evo lu tion . May e t a l.  (1989) 

describe such a fusion in A rc tic  char tha t is  not shared by the congeneric 

re la ted  brook and lake tro u t.  As discussed above, the apparent fusion o f 

the chromosome arm containing HEX-2 and sSOD-1 and the sex-chromosome in 

rainbow tro u t is  also not shared by the brook and lake tro u t. In 

add ition , Thorgaard (1978) has described a ce n tr ic  fusion between the 

Y-chromosome and an autosome in sockeye salmon (Oncorhvnchus nerka).

Several instances o f isozymes e xh ib itin g  sex linkage are found in 

amphibians (Elinson 1983; P errie r e t a l.  1983; Wright and Richards 1983, 

1984; Graf 1989a). Both male and female heterogamety was found, and in 

a l l  species both sexes expressed the same number o f a lle le s , ind ica ting  

presence o f functiona l lo c i on both the X and Y.

In te re s tin g ly , the locus encoding the cy to so lic  form o f SOD is  

sex-linked in  Rana oioiens (Wright and Richards 1983) and resides in a
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linkage group o f Xenoous laev is  known to  contain the sex determining 

region (Graf 1989b).

In re p tile s , Goux and Pasteur (1986); S a lv id io  e t a i.  (1990) found 

an unusual association o f mannose phosphate isomerase (MPI) phenotypes 

w ith  sex in  several populations o f the common liz a rd  f Lacerta v iv io a ra l . 

A lle le s  are expressed on both the Z and W chromosomes - use o f the ZW 

nomenclature denotes female heterogamety - but the absence o f one 

electromorph on the W implies th a t crossing over is  rare or absent in 

females. These resu lts  would seem to place th is  species at an 

intermediate stage o f X-Y divergence, w ith  the presence o f d ia l le l ic  

expression in  both sexes, but an absence or reduction o f recombination 

between the sex chromosomes.

Female heterogamety is  well known from cyto log ica l studies o f b irds, 

but scant inheritance data ex is ts  concerning Z or W-1inked lo c i.  

Baverstock e t a l.  (1982) reported a sex-linked locus encoding the 

cy to so lic  form o f aconitase in  several avian species. No heterozygous 

females were found and aconitase a c t iv ity  was approximately tw ice as great 

in  males as females. These resu lts  ind ica te  Z linkage w ith  no functional 

a l le l ic  counterpart on the W-chromosome. Morizot e t a l. (1987) report a 

sex-linked locus fo r  creatine kinase in  H a rris ’ hawk (Parabuteo 

un ic inc tus l . D iffe re n t electromorphs were expressed on the Z and 

W-chromosomes. These resu lts  are s im ila r to  the previously discussed

re s u lt w ith  a l iz a rd  species ( i . e . ,  intermediate divergence w ith  d ia l le l ic  

expression in  both sexes, but an absence o f recombination between the sex 

chromosomes).
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Somewhat divergent paths fo r  sex chromosome evolu tion have occurred 

among mammals, w ith  the paternal-X being inactiva ted  in  female marsupials 

and monotremes, ra ther than random X -ina c tiva tion  observed in  placental 

species (VandeBerg e t a l.  1987). Despite these d ifferences in 

X -ac tiva tion  mechanisms, only recently  has a sex-linked locus in  placental 

mammals been found to  be autosomal in marsupials and monotremes (S in c la ir  

e t a l.  1987). A large number o f genes e x h ib it a consistent pattern o f 

X-1 inkage among mammalian species due to  X/Y recombination suppression and 

concomitant Y degeneration (Ohno 1967, 1973; O’ Brien and Nash 1982; 

Roderick e t a l.  1984; Womack and Moll 1986).

The genetic mechanisms th a t determine the sex o f rainbow tro u t may 

represent an early  stage toward complete X/Y divergence. The existence o f 

sex-linked genes in rainbow tro u t, along w ith  d ia l le l ic  expression and 

suppression o f recombination in  the heterogametic sex, suggests th a t th is  

species is  in  the in te rim  stages o f a tw o-facto r mechanism fo r  chromosomal 

sex determ ination.
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TABLE 1

Jo in t inheritance o f HEX-2 and sex

22

Parental genotypes Progeny genotypes

Family femal e mal e AA AA' A'A' r*

125 M ’ AA' male 2 7 9 0.118**
femal e 6 8 0

L26 AA AA' male 15 2 0.103***
female 1 11 -

129 AA' A 'A ' male 3 2 NS
female - 7 5

L30 AA' A'A' male _ 8 4 NS
female - 6 7

Ml A 'A ' AA' male 23 5 0.136***
female - 3 28

M2 AA' A'A' male 43 27 0.407*
female - 23 30

M4 AA’ A'A ' male 21 31 NS
femal e - 20 19

MS A'A' AA' male 1 25 0.038***
female - 26 1

M6 A&' AA male 3 8 NS
female 3 1 -

M7 A’ A' AA' male 5 32 0.135***
female 32 5

NS - not s ig n if ic a n t; *  P < .05; .  * * P < .01; * * * P < 0.001.

• estimated ra te  o f recombination.

Heterozygous parental genotypes are underlined.



TABLE 2

Jo in t inheritance o f sSOD-1 and sex

23

Parental genotypes Progeny genotypes

Family femal e male BB BB’ B’ B’ r '

125 SB' BB’ male 4 9 5 NS
female 4 7 3

126 B'B' BE’ male - 3 13 0.192**
female - 8 2

129 BB BE’ male 1 4 NS
female 2 7 -

130 BB BE’ male 8 4 • 0.231**
- female 2 12 -

M7 BB’ BE’ male 13 20 4 0.250*
female 4 20 11

NS = not s ig n if ic a n t; *  P < .05 . * *  » P < .01 .

* estimated ra te  o f recombination.

Heterozygous parental genotypes are underlined.



TABLE 3

Jo in t inheritance o f HEX-2 (A) and sSOD-l (B)

24

Parental genotypes Progeny genotypes

Family femal e male AA
BB

AA’
BB

A'A’
BB

AA
BB'

AA'
BB'

A 'A '
BB' r*

N1 A'A'BB AA'BB' - 53 22 - 27 52 0.318***

N2 AA'BB' AA BB 46 54 - 45 38 - NS

N3 A'A'BB AA'BB' - 28 71 - 71 20 0.253***

N4 AA'PB' AA BB 41 38 - 47 54 - NS

N5 A'A'BB AA'BB' - 57 13 - 9 65 0.153***

N6 AA'Bp’ AA BB 50 45 - 40 44 - NS

N7 A'A'BB AA'BB' - 15 16 - 10 26 NS

N8 AA'BB' AA BB 49 33 - 46 52 - NS

NS * not s ig n if ic a n t; * * *  P < 0.001.

* estimated ra te  o f recombination.

Doubly-heterozygous parental genotypes are underlined.
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TABLE 4

J o in t Inheritance o f HEX-2 (A) and sSOD-1 (8) w ith  known linkage phase

Parental genotypes Progeny genotypes

Family female male AA
BB

AA’
BB

AA
BB’

AA’
BB’ r*

Q104
A B 

A B

A’ B' 

A B
16 7 6 11 0.325*

Q106
A B A’ B’

17 6 5 9 0.297*
A B A B

*  P < .05

• estimated ra te  o f recombination.
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TABLE 5

Three-point te s t crosses fo r  sex (X;Y), HEX-2 (A ;a), and sSOD-1 (B;b)

using males as the segregating parent

Family

Crossover
Region*

Paternal
Gamete PI PS Q2 Q4 Q5 Total

None X A B 35 30 19 36 23 301

Y a b 33 29 35 36 25

I X a b 2 0 0 0 0 12

Y A B 1 3 5 1 0

I I X A b 4 14 10 6 13 94

Y a B 12 10 10 0 15

I ,  I I X a B 1 3 0 0 2 12

Y A b 0 2 1 1 2

88 91 80 80 80 417

• See Figure 3.
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TABLE 6

Gametic d isequ ilib rium  between sex and HEX-2 in  Arlee rainbow tro u t

Cohort sex

HEX-2 genotype 

AA AA’ A’ A’ freq(A) F* D"

1980 female 19 26 5 0.640 -0.13

1981 female 18 29 13 0.542 0.03
male 36 38 13 0.632 0.06

54 67 26 0.595 0.05 -0.031 25.8

1982 female 11 69 17 0.469 -0.43
male 17 69 101 0.275 0.07

28 138 118 0.032 -0.08 0.056 49.7***

1984 female 36 35 9 0.669 0.01
male 35 61 19 0.569 -0.08

71 96 28 0.610 -0.03 0.045 24.8**

1985 male 13 63 67 0.311 -0.03

1986 female 8 10 2 0.650 -0.10

1987 female 12 16 2 0.666 -0.20
male 9 8 2 0.684 0.03

21 24 4 0.673 -0.11 -0.005 8.3

1988 male 4 9 7 0,425 0.08

* *  P < .01 ; * * * P < . 001
* F ixa tion  index 
** C oe ffic ie n t o f gametic equ ilib irum  
' D/D«,



28

TABLE 7

Gametic d ise q u ilib riu m  between sex and sSOD-1 in cohorts o f Arlee tro u t

sSOD-1 genotype

Cohort sex BB BB B'B' freq(A) F* D* D'(%) =

1980 femal e 24 25 5 0.675 -0.06
male 59 34 7 0.760 0.07

83 59 12 0.730 0.03 -0.028 32.4

1981 female 39 20 1 0.816 -0.11
male 61 26 3 0.822 0.01

100 46 4 0.820 -0.04 -0.002 4.2

1982 female 63 35 2 0.805 -0.11
male 107 78 19 0.716 0.06

170 113 21 0.745 0.02 0.032 19.2**

1984 femal e 47 28 5 0.762 0.03
male 84 32 4 0.833 0.04

131 60 9 0.805 0.04 -0.025 42.0

1985 male 81 55 4 0.775 -0.13

1986 female 8 10 2 0.650 -0.10

1987 female 16 13 1 0.750 -0.15
male 11 8 1 0.750 -0.07

27 21 2 0.750 -0.12 0.000 0.0

1988 male 9 9 2 0.675 -0.03

* *  P < .01
* F ixa tion  index
" C o e ffic ie n t o f gametic equ ilib irum  
' D/D„,
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TABLE 8

Gametic d ise q u ilib riu m  between HEX-2 and sSOD-1 among cohorts o f

the Arlee rainbow tro u t.

HEX-2 genotype

Cohort sSOD-1 AA AA' A'A' D" D'(%)"

1980 88 9 10 1
88' 9 11 4 0.029 12.9

8 '8 ’ 1 4 0

1981 88 42 41 20
88’ 18 25 6 -0.011 15.4

8’ 8' 2 2 0

1982 ' 88 15 73 77
88' 7 58 40 -0.045 21.4***

8’ 8' 20 76 22

1984 88 43 64 21
88' 24 28 7 -0.020 26.3

8’ 8' 4 5 0

1985 88 6 30 40
88' 5 24 22 -0.006 4.1

8 '8 ' 0 1 3

1986 88 3 4 1
88' 4 5 1 -0.026 20.9

8’ 8' 1 1 0

1987 88 11 13 2
88' 9 9 3 0.002 1.1

8 '8 ' 1 1 0

1988 88 2 3 4
88' 2 5 2 0.001 1.1

8 '8 ' 0 1 1

* * *  P < .001
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TABLE 9

Summary o f recombination rates in males

■amily
Total

Ind iv idua ls HEX-2:sex sSOD-l:sex HEX-2:sSOD-l

L25 32 0.118*** NS —

126 26 O .llS *** 0.192** —

L29 14 — NS —

L30 26 -  — 0.231*** —

Ml 59 0.136*** — — * —

M5 S3 0.038*** -  * - —

M7 74 0.13S*** 0.2S0* —

N1 1S4 — --- 0.318***

N3 192 — - • - 0.2S3***

NS 144 - - - ---- 0.1S3***

N7 67 - - - ---- NS

PI 88 0.04S*** 0.216*** 0.193***

PS 91 0.088*** 0.297*** 0.319***

Q2 80 0.07S*** 0.313*** 0.263***

Q4 80 0.02S*** 0.088*** 0.088***

Q5 80 O.OSO*** 0.3S0** NS

Q104 40 - - — . . . 0.32S*

Q106 37 — — — - 0.297*

NS = not s ig n if ic a n t; *  P < .OS; * *  P < .01; * * * P < 0.001.



FIGURE 1. HEX-2 phenotypes in  a fam ily segregating 1:1 fo r  

* 100/100 (1) and *100/75 (2 ).
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FIGURE 2. Breeding scheme to  te s t fo r  pseudolinkage.
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(XX) AA BB X  (XY) AA' BB'

i
majority of females AA BB 

and males AA' BB'

i
A' B' A B ^Chose male   ^  ------- homozygous

phenotype AA' BB' Â B A B female

i
A' B' A B A' B A B'

A B A B  A B A B

parentals recombinants



FIGURE 3. Genetic map o f the rainbow tro u t sex chromosome.

Gene-centromere map distances from females are above 

(A llendo rf e t. a l.  1986), and average recombination rates in 

males from th is  study are below.
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