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CHAPTER 1
Linear Spaces, Metric Spaces, and Normed Linear Spaces
We begin with some basic definitions.

Definition 1.1. A linear space (or vector space)

ls an abelian group X with a function .t F x X -» X, where
F is either the reals or the complexes, satisfying the
following conditions for all a, B in F and all x, x' in
X:

(1) a<(x + xX') = X + a-x"',

(2) a-(B-x) = (aB)-x.

(3) 1.x = x.

(4) (a + B)*x = a-x + B-X.
The elements of F are called scalars; those of X are
called vectors.

Definition 1.2. A nonempty subset M of a linear

space X is called a linear manifold in X if ax + By is

in M whenever x and y are in M and a, B are arbitrary
elements of F.

Definltion 1.3. Let X and Y be linear spaces over

th% same fleld F., If A igs a function with domain X and

range contained in ¥, then A is called a linear operator

if the following conditions are satisfled for arbitrary
a in F and arbitrary Xy X5, X in X:

(1) A(x1 + xz) = AX, + AX

1 2°

(2) A(ax) = aAx,
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Definition 1.4, Let A be a linear operator on X in-
to ¥, where X and Y are llnear spaces over the same field,.
The null manifold of A is the set of all x in X such that
AX = 0, We denote this set by N(A).

Definition 1.5. A linear operator P with domain X
and range in X is called a projection (of X) if P2 = P,
If M 1s the range of P, then P 1s called a projection of
X onto M.

Definition 1.6, Let Mys oees M, (n > 2) be linear
manifolds in a linear space X. We say that this set of
linear manifolds 1s linearly independent if Xy in M, and

i
Xy + ... +a x =0 implies that x, = 0 if a, # 0.
The linear manifold generated by the elements of
MI}J...Lan is denoted by Ml$ cee @ Mn and 1s called

the direct sum of Ml’ ceey Mn' Elements of the direct

sum are representable uniquely in the form x = x.+ ... + X

1 n'

with x, in M..

i i

Definition 1.7. Two linear spaces X and Y (over
the same fleld) are sald to be isomorphic if there is a
linear operator T whose domain is X, whose range is all
of ¥, and whose inverse 71 exists.

Definition 1.8. A metric space is a set X with a
function d ¢+ X x X - R, where R 1s the real number field,
satisfying the following conditons for all X9 Xy x3 in
X:

(1) d(xy, x;) = d(x,, x,).
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3
(2) d(xl, x3) < d(xq, x,) + d(x,, xj)a
(3) d(xl, x2) = Q if and only if X, = X,
(4) d(xy, x,) 2 0.
The function 4 is called a distance function (or metric)
on X.

Definition 1.9. A sequence {xﬁ} in a metric

space X 1s called a Cauchy sequence if d(xn, xm) -~ 0

as m, n - o,

Definition 1,10, A sequence ixni in a metric
space X 1s called convergent if there is a point x in X
such_that d(xn, X) 0 as n->®. We then write X, >x
and call x the limlit of the sequence.

Definition 1.11. A metric space X 1s said to be
complete 1f every Cauchy sequence in X has a limit in X,

Definlition 1.12. A metric space X is said to be
totally bounded if for each € > O there 1s a finite sub-
set X9 Xp9 eeey X of X such that, if x is an arbi-
trary element of X, then d(x, xi) < ¢ for some
1i=1,2, ..., N,

Definition 1.13., A subset S of a metric space X

is called open if, given x_ 1in S, there is an ¢ > 0

0
such that x 1s in S whenever 4(x, xo) < €,

Definition 1.14, Let S be a subspace of a metric
space X, If F is a famlly of subsets of X such that
each polnt of S belongs to at least one member of F,

then F 1s sald to cover S. If all the sets in F are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



n

open, F is called an open coverlng of S,
Definition 1.15. A subset S of a metric space X

1s called compact if every open covering of S includes
a finite subfamily which covers S,

The following well=known results are stated with-
out proof:

Theorem 1.16, A metric space X is compact if and
only if it is both totally bounded and complete. (L&),
p. 142),

Theorem 1,17, In a metric space, a set S is com-
pact 1f and only if every sequence in S contains a con-
vergent subsequence with 1limit in s. ([5], p. 72).

Definlition 1,18, Let X and Y be metric spaces,
and let f be a function with domain X and range Y. £
is saild to be continuous at the point X, in X if to each
neighborhood V of f(xo) in Y there corresponds a neigh-
borhood U of X, in X such that f{U)CV.

Theorem 1.19, Suppose f 1s a function with domain
X and range Y, where X and Y are metric spaces. Then
f is continuous on X if and only if f”l(V) is an open
set in X whenever V 1s an open set in Y.

Proof: Suppose f"l(v) 1s open whenever V is open.
Let x, be any point in X and V any neighborhood of f(xo).
Then f-l(V) is open and contains X,y SO there is a neigh-

borhood U of x such that f(U)C V. Hence f is continuous

at > S Conversely, suppose [ 1is continuous on X, and let
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5
V be an open set in Y. Then, if x is in f“l(v), V is a
neighborhood of f(x), and hence fnl(v) must include a
neighborhood of x. This lmplies that f“l(V) 1s open,

Theorem 1.20., The continuous image of a compact
set 1s compact,

Proof: Let f be a continuous function which maps
the compact set K onto a metric space Y. If F is an
open cover for Y, then the collection of sets f‘l(o)
for all O Iin F is an open covering of K. By the com~-
pactness of K, there is a finite number Ol’ coey On of
sets of F such that the sets f 1(0,) cover K., Since f

is onto ¥, the sets 01, eeey O cover Y, whence Y 1s

n
compact,

Theorem 1.21., A closed subset of a compact space
i1s compact,

Proof: Let X be compact, S a closed subset of X,
and F an open covering for S, Then FU[\Sf is an open
covering for X and so must have a finlite subcovering

i\S, 01’ coey Oni « Then the sets Ol, seey On cover
S, so 8 is compact, ([4], p. 137).

Definition 1.22., Two metric spaces X and Y are
sald to be isometric if there 1s a function f with do-
main X and range Y such that d(xl, x2) = d(f(xl), f(xz))
for every palr of points X9 X, in X,

Definitions 1.23, 1.24. A norm on a linear space

X is a real-valued function || - || with the properties:
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(1) Nxy + =0l =gl + N =l

(2) laxll = laf I =]l .

(3) I =ll = o.

(&) |l x|] # 0 if x # O.

A linear space on which a norm is defined becomes
a metric space if we define d(xy, X,) = I X, - X2” .
A linear space which is a metric space in this way 1is
called a normed linear space.

We have

Hxyll= Ml xy - x + 3,0l < I xy - %0+ [l %,
Izl = =yl < 1l %y =
similarly, || x|/l - |l x;ll < Il x, = x|l . Therefore
|l xl" - |l x2H | < || X, - xzﬂ, and it follows that || x|
is a continuous function of x,

Definition 1.25. Two normed linear spaces are sald

to be isometrically isomorphic, or congruent, if there

i1s a one-to-one correspondence between the elements of
X and Y which makes the spaces both isomorphic as vec-
tor spaces and isometric as metric spaces.

Two normed linear spaces X and Y are congruent 1f

and only 1f there is a linear operator T with domain X

and range Y such that 71 exists and such that
Irx|l = llx]l for every x in X. For, |Irx|| = |x|| for every
X in X implies that ”Tx1 - Tx, || = Ile(xy = ) = llx; - =, 1l

for arbitrary X1y X, in X, Conversely, if

lrx; - Tx,ll = llx; - x|l for x;, x, in X, then
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7
ezl = lIp(x+xt-x") || = lIo(x+x*)-T(x") ]| = |[(x+x*)-x']| = |Ix|
for every x in X, x' is arbitrary in X.
Definition 1,26, Two normed linear spaces X and Y

are sald to be topologically isomorphic 1f there is a

linear operator T which establishes an isomorphism of
X and Y and which has the property that T and Tul are
continuous,

We now derlve some results which will be used later,

Theorem 1.27, Let X and Y be normed linear spaces
and T a linear operator on X into ¥Y. Then T is continu-~
ous elther at every polnt of X or at no point of X, T
is continuous on X if and only i1f there i1s a constant M
such that [ITx|] < Mllx|| for every x in X.

Proof: Let > 3 and x4 be any polnts of X, and
suppose T is contlnuous at Xqye Then to each € > 0
corresponds a 6 > O such that |[rx - Tx || < ¢ if
llx - x|l < 8. Now suppose |lx - Xl” < 6. Then
Iz + X, = Xq) - x|l < 8, so |lr(x + x - x,) - Tx || < e.
But by the linearity of T, T(x + X, = xl) - Txo =
TX - TX;, SO llrx - Tle < €. Thus T is continuous at X,
and the flrst assertion 1s proved.

1t |Irx|| < M|x[] for all x, then |jrx - T(0)] = lltx]| < ¢
for arbitrary ¢ > O whenever |jx|| < ﬁ , so T is continuous
at 0, By the first part of the proof 1t follows that T

is continuous on X. Conversely, 1f T is continuous at

0, there is a 6 > 0 such that [IPx]| < 1 if ||| < 8. Now,
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1f x # 0, let x_ = 6x/2|kx]l, so that ”xo" = §/2 < §.
Then |lrx || < 1. But Tx_ = T(sx/2|x]}) = (6/2]x|l)rx, so
lIrx|| = gﬂ%ﬂ— flex Il < 2/8]lxjl. Thus, taking M = 2/6, we
have J|tx|| < M|lx]| if x # 0, and this inequality 1is true
as well when x = O, The proof is thus complete.
Definition 1.28, Let X and Y be normed linear
spaces and T a continuous linear operator on X into Y.
Then the smallest admissible value of M in the inequality
"Tx" < M“x" 1s called the norm of T and is denoted by “T”.
It follows from Definition 1.28 that

(1.28-a) |ll = su Hiﬁﬂ-
g o T

= su X-)
" IIipfo "T(TE"— I

(1.28-B) = sup |Irxll
Ix|l=1

(1.28-C) = sup [irx]l.
[2q]5st

The step from {B) to (C) is Jjustified since 1if |x|| < 1,
then [It() Il = e lexll > lexll.  Also, 1t is clear
from (A) that |[Tx|| < lltil lixll.

If X and Y are linear spaces over the same field,
the set of all linear operators on X into ¥ is a linear
space 1f we defline addition of operators and multiplica-
tion of operators by scalars in the followlng way:

(A+B)x = AX + Bx, (aA)x = a(AX).
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If X and Y are normed linear spaces, those linear
operators on X into Y which are continuous on X form a
subspace of the space of all linear operators on X into
Y. We denote this space by [X, Y].

Now let X be a normed linear space and let F be the
assoclated scalar field. A linear operator on X lnto F

1s called a linear functional. We call the linear space

of all linear functionals on X the algebraic conjugate

of X, and denote it by Xf. A continuous linear func=-
tional on X is an element of the space [X, FJ], which we
denote by X'. X' 1s a subspace of Xf.

Definition 1,29, Let X and Y be normed linear
spaces, and suppose A is in [X, Y]. If y' is in Y', the
linear functional x' defined on X by x'(x) = y*'(AXx) is
in X', We write x' = A'y'. The operator A® maps Y'

Into X' and is called. the conjugate of A. The defini-

tion of A' i1s expressed by the formula
(1.29-A) (A'y') (x) = y'(Ax), x In X, y' in X",
Theorem 1.30. Let T be a linear operator on X to
Y, where X and Y are normed linear spaces., Then the in-

1

verse T — exlists and 1s continuous if and only if there

1s a constant m > O such that
(1.30-4) mlix|l < |frx]|
for every x in X.
Proof: If (1.30-A) holds and Tx = 0, it follows

that x = 0. This implies that Tul exlsts, Now y = Tx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

is equivalent to x = T“ly. Hence (1.30«A) is equivalent

to mllt™ yll < lrT™2yll, or lr™ vl < lyll for all y in the

1 1

range of T, which is the domain of T ~., Hence T — is

continuous by Theorem 1.27.

1

Conversely, if T — exists and is continuous, by

Theorem 1,27 there is a constant M such that

”T_ly" <M |lyll for 211 y in the domain of 771, Ssince

-1 exists, T—ly = X 1s equivalent to y = Tx. Also,

T
the range of T % is all of X. This implies that
Ixll < M |ltx|| for 211 x in X, which 1is equivalent to
(1.30-4).

Corollary 1l.31l. Two normed linear spaces X and ¥

are topologically isomorphic if and only if there is a
linear operator T with domaln X and range Y, and positive.
constants m, M such that

(1.31-4) milz]l < lirx|l < M|
for every x in X,

We are ready now to prove that two normed linear
spaces of the same finite dimension n over the same
field are topologically isomorphic, We begin by stating
without proof the Bolzano-Welerstrass theorem for JLZ(n),
the normed linear space of all n=tuples (al, cooy an)
of real numbers (or all n-tuples of complex numbers),

If x = (al, ceey ) 18 in A 2(n), then the norm of x

n
n > 1/2
1s defined to be |[[x]| = (129 lail ) . (If the norm of
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n
x 1s defined to be |x|| =&, la then this space 1s

1' 9
called £ '(n).)

Theorem 1,32, (Bolzano-Welerstrass), Every bounded
sequence in /Lz(n) has at least one cluster peoint. ([1],
p. 49).

OQur next step 1s to establish the following lemma:

Lemma 1.33. The surface of the unit sphere in

L'(n) (the set S for which |al' + ... + Iunl = 1) is

compact.

Proof: By Theorem 1l.32 every sequence in the unit

- n » 1/2
sphere of {“(n) (the set S,.for which (igllail ) <1)

has a convergent subsequence, and it follows from Theorem
1.17 that S, 1is compact, Consider the mapping f(x) = x

from S into X 2(n)o Then f‘"l

exists and has range S,
-1 n
eand £ ~(x) = x. 8Since igl]ail = 1 implies Iail < 1 for

n P
1 =1, ..., n, 1t follows that ,& |a,|% < 1. Therefore

the domaln of f T is a subset of S,, which we denote by
K.

Suppose now that x = (al, cousy an) and
x!' = (ai, ccey aﬁ) are elements of K such that

n > 1/2
Ix - x'lhz = (yZ;lay = a'; %) < e/n for arbitrary

€ >0, Then

,IZ 2

2, 2 2, 2
1§1'“1 -a'y|® <e“/n%, so la1 - a'il < ¢“/n

n
for 1 =1, ..., n. Therefore |jx - x'”ﬂ,: iglla1~a'i| < €,
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and 1t follows that f T+

1

is a continuous map from 52 onto
S. Since f ~ 1s continuous, K is a closed subset of S,,
so K 1s compact by Theorem 1.21. The desired result now
follows from Theorem 1,20,
Theorem 1.34, Let Xl and X, be two normed linear
spaces of the same finite dimension n over the same
field. Then xl and x2 are topologically isomorphic,
Proof: The case n = 0 1s trivial, and we assume
n >1. Since the relation of topological isomorphism
1s transitive, it will suffice to prove that if X 1s an
n-dimensional normed linear space, then X 1s topologically
isomorphic to A *(n). Suppose that X1y eeey Xy is a

basis for X. If x = a,x is the represen-

+ * 0 O +
1 anx

tation of an arbitrary x in X, the correspondence

n

:x<—>(al, ooy an) defines an isomorphism of X and
A'(n). By Corollary 1.31, all we have to prove is
that there are positive constants m and M such that
(103“’_A) 'hlxl + e T anxn” SM (Iall T eee T lanl)
and
(1.34-B) m(lag| + oo + layl) < llagxy + oot + apx |l
for all possible sets of values (al, ooy an). Now
(1.34-4) 1s true 1f we choose M = max {”Xl"’ cees “xnﬂi ,
since

boyxy + eee + o xll < logxyll + ove + lRx |l

= Iall ”x]_” t ..t 'anl “Xn”.
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To prove (1,34-B) it suffices to show there 1s a con-
stant m such that m < ”alxl + oeee +a x|l 1f
lall + v, + lanl =1, for (1.34-B) holds if
@y = ... =a, =0, and 1f C = Iall + e.e + Ianl > 0,
we can define M, = ¢t a;. Then lqll + ... +-]$\nJ =1
and H‘qlxl + eee +*\nxn” = ¢ Halxl + ... + “nxn”’ s0
(1L.34-B) holds if m < ||v\1x1 + ve. + qnxnug

Now let f(ay, ..., a)) = nalxl + ee. + anxn".
since | x|l - llyll | 2 lk-yll, we have

lf(al, vony an) - f( }111 ""th)l = ”(al-y\l)xl

t o eee T (an—“\n)xn“

< M(lag-m4|
+ ... t lan-’\nl),

and it follows that f is continuous on AL'(n). By

Lemma 1.33, S 1s compact, Hence f, being continuous on
S, attains a minimum value m > 0 on S. But m > 0, for

m = 0 would imply that Xq1s +eey X, are linearly dependent,
contrary to the fact that they form a basis for X. The
proof of (1.34-B) and of Theorem 1.34 i1s now complete.

If X and Y are topologlically isomorphic normed
linear spaces under the mapping T and ixés is a Cauchy
sequence in X, then by Corollary 1,31 there 1s a positive
constant M such that (IT(x, - x )|l = |lrx, - 7= ||
< M”xn - xm", whence iTxég is a Cauchy sequence in Y,

Conversely, if iy#} is a Cauchy sequence in Y, there
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is a posltive constant m such that
mlie ™Yy, - Ty N < Ty ) - Ty = v, - vl
whence iT-ly;S is a Cauchy sequence in X. It follows
from the continuity of T and T ! that if X is complete,
then Y is complete, and conversely. Now A'(n) is com-
plete as a consequence of the completeness of the real
numbers, Thus we have!

Theorem 1.35. A finite-dimensional normed llnear
space 1s complete.

Corollary 1.36. Any finite~dimensional subspace
of a normed llinear space 1s closed,

Proof: This result follows from the well-known
fact that a complete subset of a metric space is closed.
([21, p. 51).

Theorem 1,37. If X is a finilte-dimensional
normed llnear space, then each closed and bounded set
in X 1s compact,

Proof: This result 1s true by classical analysis
for L '(n). It then follows from Theorem 1l.34 that the
theorem is true for any finlte-dimensional space X, for
the properties of being bounded and closed are trans-

ferred from a set S to its image S, in ,ﬂ!(n) by the

1
topological lsomorphlsm, and the compactness 1s then

carried back from S, to S,

1
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CHAPTER 2
Inner-Product Spaces

Definlition 2.1, A complex linear space X is called

an inner-product space if there is defined on X x X a

complex-valued function (xl, xz) (called the inner
product of Xy and xz) with the following properties for

arbltrary x, s X5y X in X:

3

(1) (%, + x,, x3) = (Xq, 13) + (%5, x3).

(2) (xy, x,) = (X,, % ).

(3) (axl, xz) = a(xq, xz).

(4) (%, x) >0 and (x, x} # 0 1f x # 0 ( (x,x) is

real by (2) ).

A real linear space X is called an inner-product space
if there is defined on X x X a real-valued function with
the properties (1)-(4), except that (2) is written with-
out the bar over (XZ’ xl).

It follows from (2) and (3) that (xl, axz)
= (m) =a ('x"z’:'?{) = a (x,, %,), where the bar
over a i1s omitted for a real space. Also, from (1) and

(2) we obtain

(le x2 + 13) = (xz + X39 xl) = (x29 Xl) + (x3s Xl)
= (xl, x2) + (xl, XB)'
Theorem 2,2, If X is an lnner-product space, then

(2.2-4) ' (xl’ xZ) l _S/(xl’ xl) |/(x2’ xz) .

15
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Proof: For any a and B we have
(ax + By, ax + By) = aa(x,x) + aB(x,y) + Bu(y,x)
+ B8B(¥,¥y) 2 0.

We choose a = t, where t is real, and define

_ X
B = T%§T§%T if (x,y) # 0,

B = 1 otherwise.

Then B(x,y) = T%%f%%T (x,y) = | (x,¥)] if (x,y) # O, and

this equality also holds if (x,y) = 0. Also,

- _ X X _
BB = T%;f%%T T%;f%%T 1 if (x,y) # O, and agaln this

equality holds if (x,y) = 0. Therefore
t2(x,x) + tl (x| + eEle (59) + (v,9)
.
= tz(x,X) + 2t|(x,y)] + (y,¥) > O for all real t,.

If (x,x) = 0, (2,2-A) is trivially true. If (x,x) # O,

t2(x,x)% - 2t(x,x)[ (x,3)| + (x,%)(y,¥y) > O,
and letting t = - l%%*%%L we obtain
I(x,y)12 -‘2|(x,y)I2 + (x,x)(y,y) =2 0O,

or
2

(x,x)(¥,¥) 2z I(X,Y)l ’
which is equivalent to (2.2-4).

Theorem 2,3, If X is an inner-product space, then
v (x,X) has the properties of a norm,

Proof: We write [|x|] = ,/(x,x). Then by the defini-
tion of inner product we have immediately that |[lx|| > 0,

Il = 0 1f and only if x = 0, and
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x|l = /Tax,ax) = Ja?(x,x) = |a] {l|. Also we have
e + 7l = (x + y, x + 5) = (x,%) + (x,5) + (y,%)
+ (¥,¥).
For complex A we write Re A = % (A+A) = real part of A,
since |Re A| < |A|, we have
Il + 311 = lIxl® + 2 Re (x,3) + Iyl
< =IF + 2l | + sl
With (2.2-A) thils gives
I + 31 < W=l + 20l Iyl + Myl = Clill + liyD?, so
lx + 3l < M=l + llyll.
This completes the proof.
In the following theorem the norm on X x X is de=-
fined to bve [[(x;, x )|l = (lIx, I + IIx,I%)2/2,
Theorem 2.4, The inner product (Xl’ x2) is a con-
tinuous function on X x X.
Proof: Let x

= Uy = Vg, X, - Uy =V, where

1

X1y X5y Uy, U, are arbitrary and u;, u, are fixed. Then

2
(x93, %) - (ug, uy) = (uy + vlf u, + vy) = (ug, uy)
= (ul’ Vz)‘ + (Vly u2) + (Vl’ v2)0
Hence by (2.2~A) we have

IA

[(xy, 25) = (uy, uy)| = [ (ug, vo)l Hvy, ux) i+ (vy,v,) ]

A

< Tyl Theymuyll + Ty I Tha
* ”xl"u]_” ”XZ‘"UZH-
1f 5 = max {hayll, Iyl and 36 > ¢ > 0, then

"(xl, x,) = (uqy, u2)” < %% implies that ”xl- ulH < g% and
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sz- uz" < §%° Therefore
[(xs xp) = (g, )| < Iyl + 5o il + F55
< €/3+€/3 + €/3= €,

and the theorem 1s proved,

™
It follows from Theorem 2.4 that if 1Z Xy = x',
n n
then (x,x') = 1lim (x, iglxl) = 1lim i_E_gl(x,xi).

n-=>o n--<>om

Definition 2.5. Two vectors x and y are orthogonal

if (x, ¥) = 0. If (x, y) = O we write x | y.

Definition 2.6, A set S of vectors is called an

orthogonal set if (x, y) = 0 for every pair x, y in S

such that x # y. If in addition ||x|| = 1 for every x in

S, the set is called an orthonormal set.

Definition 2.7. Two linear manifolds M, N in the

Inner-product space X are said to be orthogonal if
(x, ¥y) = O whenever x 1s in M and y is in N, A family

of linear manifolds is called an orthogonal family if

each pair of distinct manifolds from the family is

orthogonal.

Definition 2,8, If S is a nonempty subset of X,

the set of all x such that (x, y) = 0 if y is in S is

called the orthogonal complement of S, and 1s denoted by

4 &
S . IfXx is in 8™, we write xli S.

In the proof of the next theorem we require the
following well-known inequality, a proof of which is

given in the book Inequalities, by Hardy, Littlewood,
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and Polya?

Cauchy's Inequality. Let {_aig and ibiﬁ be non-

negative convergent sequences of real numbers, Then
@ w @
2,1/2 2,1/2

181 24P S (42 2y (12, by)

Theorem 2.9. Let S be an orthonormal set in X.

It Upy eees U is any finlte collection of distinct

elements of 38, then

n 2 2

The set of those u in S such that (x, u) # 0, where x

for all x in X.

is any fixed element of X, is either finite or countably
infinite, If X, ¥ are in X, then

(2.9-B) = J(x, W(y, W) < =l vl
ues

where the sum on the left includes 211 u in S for which

(x, ¥y) (y, u) # 0.

~Proof: We write a, = (X, u;). Then

n i r
0 < (x - 38 oy, T = 4% 0yly)
rn n
= (X,X) - (1§laiui’ X) - (xaiglaiui)
14} I
n +n(1§1“1ui’1§1“1u1)
_ 2 _ _ ot
= =l -ygpoy (uyy =) -yEyay ()
n n _
toyEqpE, oy ok(ug, up)

2 o= no_ no_
= =l - yZyeyoy = Zyegey + gEjeaa

_ 2 n 2
- ”X” = 1.§1'G1’ .

2 B 2 _ W 2
Therefore |x||© > igllail = igl!(x. ul)l .
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It follows from (2,9-A) that, if x is in X and n is

a positive integer, then the number of elements u of S

such that |(x, u)] > % cannot exceed nZ||x||°. Since

I(x, u)| > % for some n if (x, u) # 0, the set of those

u in S such that (x, u) # 0 is a countable union of
finite sets and is, therefore, either finite or coun-

tably infinite. 1If Ugps eeey U, is a finite collection

of distinct elements of S, then by (2,9~A) and Cauchy's

inequality we have

1/2 1/2

n n 2 n >
15 (xu) (oup ] 2 GE I xy u) ) GE Ty, [9)

< =l ligll.

This completes the proof.

A\

Theorem 2,10. Let Uiy eowy Uy be a finite ortho-

normal set in the space X, and let M be the subspace of

X generated by u,, ..., u,. Then u,, ..., u 1is a basis

for M, and the coefficients in a representation

X = Q + ... +t au of an element of M are related to

1ul nn

X by the formulas a, = (x,u,).

Proof: If x = aqug + L. t At then

(X, ui) = al(ul’ ui) + ... t al’l (ul’l’ ui) = G-is by

the orthonormality relations., If x = O it follows that
al = .. = a, = 0. Hence the ui's form a linearly inde-
pendent set, and therefore form a basls for the subspace

M which they generate,

Theorem 2.11. Suppose X is complete, and let ’iuhi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

be a countably infinite orthonormal set in X. Then a

w
serles of the form nzl a U, is convergent 1if and only if
1§1 Ianl < @, and in that case we have the relations
@ 2 _ @ 2
%n = (x, un)’ x = n§1 “nn? lixll” = n§1 lOLnl

between the coefficients an and the element x defined
by the series.
Proof: Let Sp = GqUg + ... F o . Then by the

orthonormality relations we have (if m < n)
n n

2 n 2 _
lsp= spll® = Ui g1 @3us 7 = (B iaos¥yss e aiy)
n n _
Zy=fie1 a=el O30 (Bpy)

o 2
=y=fe1 104l

Since X 1s complete, it is now clear that the sequence
@
d 2
isng is convergent if and only if igllail <o, If

this latter condition 1s satisfied, and if x = 1lim S,

X % o
we prove that o, = (x, ui) as follows: By Theorem 2.10
we know that oy = (sn, ui) if1 <1< n. But s, > X,

so (Sn’ ui) - (x, ui) by the continuity of the inner

product. Therefore ay = (x, ui). Finally,

Il = | I L £, ou,)
X E ayu = 1im (.Z, a,U,, ,Z, .U
i= i n = o iZ1 1L 3Bl 37
m
= 1lim ,Z, .Z a,(uy, u,)
0 _>®1—1 3B 340 3
2 2
= 1lim 1;1 Ia | = 1§1 Iail .

m > o
This completes the proof.

Theorem 2.12. Let S be an orthonormal set in the
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space X. If S is Infinite, assume further that X 1s
complete, For each X 1n X there i1s an element of X un-

amblguously defined by X, = I (x, u)u, Let M be the
unesS

closeq manifold generated by S. Then X is in M if and
only if x = Xg. In any case, Xg is in M and x - Xq is
in MJ'.
Proof: If x 1s in X, we know by Theorem 2.9 that

(x, u) # 0 for at most a countably infinite number of
elements u in S, If we index the u's for which (x, u) # 0
in some arbitrary order, say Ups Ugy eees then the serles
o5

z.(x, u_)u_, if infinite, is convergent by Theorems 2.9
n=1 n’ n ®
and 2,11 since n;l(x, un)l2 < ”x”z. Moreover, the
series remains convergent, no matter how its terms are
rearranged, as may be seen by the flrst part of the
proof of Theorem 2.11, using the fact that the seriles

(o5}

Tl (x, u )l2 is absolutely convergent. We may then
n=1 n o

show that the series ngl(x, un)un converges to the

same element, no matter how the terms are rearranged.
For, if {v g is a rearrangement of {u § , and

a n @ n

x, = n§1(x, un)un, X, = ngl(x, vn)vn, we have

(xl, un) = (x, un) and (xz, vn) = (x, vn) by Theorem

2.11., Thus, if u, = Vm(n)’ we have

(xl" X5 un) = (xl’ un) - (12, un) (x, un)"'(xz, Vm(n))

(x, un)- (x, Vv )=0.

m(n)

Similarly, (xl— X5, V ) = 0, and setting a

= (x, uy),

n n
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Bn = (x, Vv ), we obtain
@ e »)
2
"x - x l = (x - xz’ nglanun - le v )
’ e s)

Z1OL (%)= %3 Up) = Ly Bn(x = X, Vy)
whence xl = X, These conslderations show that the nota-

tion I (x, u)u has an unambiguous meaning and defines
uesS

an element which we denote by x Evidently x_, is in M.

S* S
To prove (x ~- xS)J,M it suffices to prove (x - xs)l.S.

Let v be an arbitrary element of S. Then

(X - Xss V) = (xs V) - z (X, u)(u, V)
ues
(x, v) - (x, v) =0,

and hence (x - xS)J.S.

Since xs is in M, it remains only to prove that

Xg = X if x 1s in M. Now, if x is in M, then x =- Xg is

in M and since (x - xS)J.M, we have

IIx - xsﬂz = (X = Xgqy X - X

s’ s)

= (x, X - xs) - (xs, X - X = 0,

g)
whence x = Xg- It is clear from an examination of the
proof that we need not assume the completeness of X if

S is a finlite set, for in that case no convergence ques-
tions arise, and the linear manifold generated by S,
being finite dimensional, is closed by Corollary 1.36.

Definition 2.13. An orthonormal set S in the space

X i1s called complete if there exlists no orthonormal set
of which S 1s a proper subset.

Theorem 2.14, Every inner-product space X having
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a nonzero element contains a complete orthonormal set.
Moreover, if S is any orthonormal set 1n X, there 1is a
complete orthonormal set containing S as a subset.
Proof: Let S be an orthonormal set in X, Such

sets exist; for instance, 1f x # O, then the set -ﬂﬁﬂ—
1s orthonormal., Let P be the class of all orthonormal
sets having S as a subset, The set inclusion relation

partially orders P. Suppose N = iNa is a completely

acl
ordered subset of P. Then Ne 1s an upper bound of

g

N, and contains S since S is‘g.subset of No for every a

in A.. If x and y are vectors in agj\ Ne¢ Such that x # vy,

then x is in Ngg and y is in Na" where a, a' are 1nA.

Since N 1s completely ordered, either NogC N,+ or

Ny C N,. Suppose for definiteness that N @ N , .

Then x, y are in Nyvs whence (x, y) = 0. Hence &é\Nl

is an orthonormal set, and it follows that &émmm is =

member of P. Therefore by Zorn's lemma P contains a

maximal element S'. Since S' 1s maximal, there exists

no orthonormal set of which S' is a proper subset. Hence

S' i1s a complete orthonormal set containing S as a subset.
Theorem 2.15. Let S be an orthonormal set in X,

and let M be the closed linear manifold generated by S.

If M = X, 1t follows that S is complete, If the space

X 1s complete and the set S ls complete (maximal),

then M = X,

Proof: If S is not complete, then there is an x # O
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such that xl 8, and hence also xi M. Now, if M = X,
we have xlx, which implies x = 0, This proves the
first part of the theorem. Assume now that X 1s complete,
Then, if M # X, suppose X 1s in XN\M and construct Xg as

X-X
in Theorem 2.12. Then let y = Tﬁt—-—x§ﬂ_ . By Theoren
S

2,12 yl. M, so the set consisting of S and y is ortho-
normal, But y i1s not in S, whence S is not complete,
This completes the proof.

Definition 2,16. An inner-product space which 1is

infinite dimensional and complete 1s called a Hilbert
space.

Theorem 2,17, Let X be an inner-product space
and M a complete vector subspace of X. For any x in X,
there 1s one and only one point y = PM(x) in M such that

lIx-y|| = 4(x,M) = inf|jx-m||l. The point y = Py(x) 1s also
meM

the only point z In M such that x - z 1s orthogonal to
M. The mapping x 9»PM(x) of X onto M is linear; its
kernel M' = Pgl(o) 1s the subspace orthogonal to M, and
X is the direct sum of M and M'. Flnally, M 1s the sub-
space orthogonal to M°',

Proof: Let a = d(x, M). By definition, there 1is

a sequence {yn% of points of M such that 1im le-ynll = a.
n-—=>uo

For any two poilnts u, v of X we have

(2.17-4) | + v"z + | - v”z =(u+v, u+v)+ (u-v, u-v)

(uy, u) + (u, v) + (v,u)+(v,v)
+(u,u)~-(u,v)-(v,u)+(v,v)
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= 2(u,u) + 2(v,v)

2(]l?+ |IWI%); hence

2 2 2 2
ly -, 2= 2y I+ Ny ) - llox-y+v, I
2 2 2
= 2(x-y_IF+ lx-5 1) - #lx - 3 (v +v ) II°
But 1/2(y, + v,) is in M, so lIx - %—(ym+yn)||2 > a.
Since |lx - ynH =, glven ¢ > O there is an n_ such that

n > n_ implies ||x - ynﬂz < a® + ¢/b, Then if m > n

o e}

and n > n, we have

”ym - yn”2 < 2(a2 +oe/b + al + e/4) - hal = €, SO
{yn} is a Cauchy sequence. 'Since M is complete, the
sequence iyé& has a limit y in M, for which
Ix - ¥|| = 4(x, M). Suppose y' in M also satisfies
Ix - y'|| = d(x, M). Then using (2.17-A) again, we
obtain

12
ly-v'Il

2(llx-y I° + lx=y* IP)-2llx - L(y+y ") I
= 4a® - ullx - 2z, ¥
But %(y +y') is in M, so |jx - %(y + y")|l > o, and it
follows that |y - y‘”254q‘-4d‘= 0. Therefore y' =y
and y = PM(X) is uniquely defined.
Now let z # O be any point of M. Then
llx - (¥ +fhz)H2 > a? for any real scalar A # 0; this gives
Ix - (v +n2)|F = (x -y +Az, x -y +Az)
= (x-y, x-y) + (x-y, Az) + ( Nz, x-y)
+ ( Nz, Nz)
= |-yl + 2ARe(x-y, z) + A? Hz]]2

= a2 + 2?\Re(x-y, z) +>\2 ”2”2 > a2,
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This implies that 2 ARe(x-y, z) + N |lz|I°
=Al2 Re(x-y, z) + AllzlP] > 0. But 1r N= 2Be(X¥.2)

HI5

then N[2 Re(x-y, z) + ?\"2”2] = 0, so the above in-

equality 1s true only if Re(x-y, z) = 0. Replacing z by
iz (if X is a complex inner-product space) shows that
Im(x-y, z) = 0; hence (x-y, z) = O in every case, so
X~y 1s orthogonal to M, Let y' in M be such that x-y'
is orthogonal to M. Then, for any z # O in M, we have
(since (x-y', y'-z) = 0)

-zl = l(x-3*) + (v'-2) 7 = le=y* 17 + lly*-2l,
so |x-y° ll2 < Hx-zl[2 for all z in M, This implies that
lIz-y*]| = d(x, M), and it follows that y' = y by the
uniqueness of PM(x). Hence the point y = PM(x) 1s the
only point z in M such that (x-z)L M.

Now if X - y and x' ~ y' are orthogonal to M,
then 7\x-7\y-\-M, as 1s (x+x') - (y+y') = (x-y) + (x'-y"').
Since y + y*' and 7\y are in M, thls shows that
PM(x+x') =y +y' = PM(x) + PM(x') and PM(7\x)=7\y=7\PM(x).

Hence P,, is linear.

M
If PM(x) = 0, then x - 0O = x is orthogonal to M.

Hence M' = Pﬁl(o) consists of the vectors x orthogonal

to M. Thus x - PM(x) is in M', and since

X = PM(x) + (x - P,(x)) for any x in X, we have X = M + M*,

M
Further, if x is in MAM', then (x, x) = 0 which implies

that x = 0, Hence X =M & M'.
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Finally, if x is in X and x is orthogonal to M',
we have in particular that (x, x - PM(x)) = 0, But
(PM(x), X - PM(x)) = 0 since M'L M; hence

0 = (x, x-PM(x)) - (PM(x), x-PM(x))

= (x-P(x), x-Py(x)) = [l-Py(x) %,
SO X = PM(X) and x 1s in M. Therefore M is the sub-
space orthogonal to M', The proof is now complete,
(L2], p. 115).

Theorem 2,18, Let H be a Hilbert space. Then H
is isometrically (conjugate) isomorphic to the linear
space H' of all bounded linear functionals of H under
the mapping o: H > H' defined by [o(x))(y) = (y, %),
X, ¥ in H.

Proof: Let X, = Xy where x4 and X, are in H. Then
0 = (y,0) = (¥, %-%,) = (¥, X) = (¥, %)
Lo(z)(y) - Lolx,) Uy)
for 211 ¥y in H. Hence o(xl) = c(xz) and o 1s well-

defined.
Conversely, suppose o(xl) = 0(x,), so that

[o(xl)](y) = [c(xz)](y) for 211 y in H. Then

(¥, xl) = (y, x2) and (y, Xy - x2) = 0 for a2all y in

H. In particular, (x1 - X5, Xy - XZ)

X, = Xx,. Hence o is one-to-one and o

= 0, whence
1 exists,
We have

[c(alxl + azxz)](y) = (¥, ap %, + a,X,)

= (y, ay x7) + (¥, a; X;)
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= a'—l(y’ Xl) + az(ya Xz)

= a;lo(x) ) Wy) + a,lo(x,)1(y).
Hence o 1s (conjugate) linear,

Also, |(y, x)| < lI¥ll lIxll b¥ (2.2-a4), so

lo(x) | = sup™ |Loflx))(¥)] = sup |(y, x)|
' Iy [[<2 Iy <1
< sup |lyll x|l < |l
lly If<1
But [o(x)](x) = (x, x) = Hx”z, so
lotx) ] = sup |Lo(x)1(y)] > |lo(x) (&)
Iy ll<1 | T
= Trxln-lcmmxn = k]l
Hence |lo(x)]|] = |kl|.

It remains to be shown that o i1s an onto mapping.
{erIx'(x) = O}

is a closed linear subspace since x' is continuous,

Then by Theorem 2,17, H=M & M . Let X, be in Ml',

%, # 0, and let P ¢ H a’M'L be a projection., For any

i

Let x' be arbitrary in H'. M = N(x')

y in H,
X.
- [)
X (xl)

X'

X'(xl) ) = Q,

x'(y - %) = x'(y) xt(xy

xl

soy - x'(xl) X4 is in M. By Theorem 2.17,

(I-P)H + P(H) = M & Ml'. Thus

-y - X¥) _ziiz%
y y I'(xl) xl + X'(Xl xl implies that

H

1 4 e —— -
P(y) = x?(xl) X,. Set x = X'(x]) ”11” 2 X;. Then x is
inM ' and
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(v, x) = (v, T(x) lIx 7% x;)
= = (x5 7% (v, x;)
= x' (x5 7% (B(y) + ¥ - P(3), x)
= x' (x) %, 7% TR(y), x)) - (v = B(y), xp)]
= x'(x) I, % (B(y), x;)
= x*(xp) lIx, ("2 (;."Xl , %)
X

= x' (x| 7% 2 ¥ (%10 %) = X',

But y was arbitrary, so [o(x))(y) = (y, x)

x'(y) for
all y in H, whence o maps H onto H'. Thls completes the
proof,

Definition 2.19. Let X and Y be arbltrary complete
inner-product spaces. Suppose Yo is fixed in Y. Let
x'(x) = (A%, y,), where A is in [X, Y]. Then x' is in
X', and hence by Theorem 2,18 there is a unigue X, in X
such that x'(x) = (x, xo). We write X, = A*yo, thus de-
fining an operator A¥ on ¥ into X. The definition of A#*
is fully expressed by the equation

(2.19-4) (Ax, y) = (x, A¥y), x In X, ¥ in Y. The
operator A¥* 1s called the adjoint of A,

If X'# (0) is a complete inner-product space and
if A is in [X, X], then A% is in [X, X] also. If A¥ = A

we say that A is self-adjoint,.

Definltion 2.20, Let X be an inner-product space.

A scalar-valued function ¢ on X x X is called a bilinear
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form if ¢(x, y) is linear in x for each y, and §(x, y)

is linear in y for each x,
With ¢ we associate the function § on X defined by

@(x) = ¢(x, x), and we call ¢ the quadratic form corres-

ponding to ¢.

We have
P - $(5h) = ¢, HY) - ¢ (5E, HY)
= 0(x,x) + § 6(x,7) + F 0(5,x)
+ 1 0(y,y)
- % 0(x,x) + § (x,3) + £ b(y,x)
- % ®(y,y), or

(2.21) $(ZE) - 9EY) = 3 {oxm + dv.of .

Theorem 2.22, Let § be a bilinear form on X x X.
Then ¢ ils continuous on X x X 1f and only if it is con-
tinuous at (0, 0). ¢ is continuous Jointly in its two

variables if and only if sup |P(x,y)| 1s finite,
X<l

lly ll<1
Proof: Flrst, we note that _9((31, yl), (xz, yz))
= (”x1 - x2”2 + ”yl - y2”2)1/2 is a metric on X x X.
If ¢ is continuous on X x X it is continuous at
(0, 0). Conversely, if ¢ is continuous at (0, 0) there
1s a 6 > 0 such that if P((x, y), (0, 0))

= (l=I? + WIP)Y/? < 5, then |$(x, y)| < 1.

Let (x_, v,) = OT%E: ﬂﬁﬂ’ Tﬁg: ﬂ%ﬂ)’ Then

5%.1/2
=)

2
Pz, ¥o), (0, 0)) = (55 + = 8/2 < s,
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2
& o) _ &
S0 M)(—.E T[J%"’ F -ﬂh)l = BRI [o(x, ¥)| < 1.
thus [9(x, y)| < ElELIl opg

52
s = sup |b(x, ¥)] < sup §ﬂ£ﬂ§ﬂlﬂ < j% .
Ix <1 lx <1 6 8
Y'Ei vl
Also, if x # 0, y # 0, then |O(rfm, 1P| = TR < S

so |[d(x, )| < s Izl ligll.
Consider (xl, yl) inX x X, If X = 0 and y, = 0, then
¢ is continuous at (xl, yl). Suppose now that X, ¥ 0.
- Then ‘f((xl, yl), (XZ"yZ)) < 1 implies
2
(lxy = x,01° + vy - yzlﬂ/2 < 1, It follows that
I, - yoll <1, and since [ly,ll - Hyyll = lly, - v Il we nave
”y2” <1+ |lly,ll. Let ¢ >0 ve given, and let
Mo=max {slyll, slvgll + DY L o0 = min {1, &) .

Then if 9((xl, yl), (xz, yz)) < §' it follows that

€ € € >
lixy-x, 0l < 25 < 25 (Tl IFL) and |y -v,ll < 25 =< 25 1%, 11’

whence

[b(xy57) = 0(x,,5,) ] = d(x,5))-0(xy,¥,)+0(x;,¥5)
~0(x,5,5,) |
S I9xy 7 ) =0 (xq ¥ ) [+ 0(xy,7,)
~0(x,,5,) |
= 1(x) ¥ -y ) [+ b(xy-%5,5,) |
< Slix I lyy -y, ll+slixy -z, v, |l

< slbey I M-y, s lbey -x, i1+ lly, 1D
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€

=e/2 + €¢/2 = ¢,
Therefore § is continuous on X x X, and the first asser-
tion of the theorem 1is proved.
If ¢ is continuous on X x X, then it is continuous
at (0, 0) and 8 = sup |$(x,y)]| is bounded by the first
[l= [l<1 |

part of the proof. Conversely, if there is a constant

h that , , th X,
M suc a iﬁgl [¢(x,y)] <M en '¢(ﬂ§ﬂ ﬂ%ﬂ)'
Iy ll<1

= T <M so 0=, = v izl llyll. Let e >0 De

given. Then {$((x,y), (0, 0)) < ,/e/M implies that
lIZ)l < /e/M and |lyll < /e/M. Hence
[6(x,7)| <M (/eM) (JeM) = ¢,
so ¢ is continuous at (0, 0). It follows from the first
part of the proof that ¢ is continuous on X x X.

Definition 2.23. Let ¢ be a continuous bilinear

form on X x X, where X is an inner-product space, Then
the norm of ¢, denoted by [|p]|, is defined as follows:

(2.23-A) |0l = sup |d(x,¥)]
Ixll<1

Iy ll<1

sup |$(x,y)]
Ix|l=1

l
Iy lI=1

(2.23-B)
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X
liﬁ§o|¢(ﬂ§ﬂ’ ﬂ§n)!
Il l|#0

X
j&oh%ﬁ—hﬁﬁl *
l#0

s
19
Iz |

It follows from (2.23-C) that |¢(x,y)] < |0l lxll llvll for

(2.23-C) =

all x and y in X.
For the quadratic form ¢ corresponding to the bi-

linear form ¢ we define

u = = su X s X
il = iRy NI SR, [¢¢x,x) | ||xn§o'¢(ﬂ§ﬂ =
- sup 10 o LU
ki el Ielio Il

Definition 2.24, A bilinear form ¢ is called
symmetric if ¢(x,y) = P(¥y,X).
Theorem 2.25., Let X be an inner-product space,
If ¢ is a symmetric bilinear form on X x X and § is
the corresponding quadratic form, then ||§|| = [[{}l.
| Proof: Since {¢(x, x| lixll = i} E-{¢(x,y)|
Il = Iyl = 1§, we nave IIpll < Woll. a1so,
|re d(x,7)| = [% {d(x, v) + B(x, 0§ .
Since ¢ is symmetric this gives |Re ¢(x, y)|=l% {¢(x, y)

+ d(y, x); |, and from 2,21 it follows that

Ire d(x, »)| = [P(EE) - p(&D)|
~ < P+ JpED |

< Il IEEEIE + il IESEN
= WL ey 1?2 + -3 1.
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Applying 2.17-A, we obtain
lre 0(x, v = WL (P + livii?))

= ﬂ%ﬂ— ("x”2 + "y”z). (The Re symbol, for the "real
part" is superfluous if ¢ s a real-valued function,)
For fixed x and y with [|x]| = |ly]] = 1 we can choose a
so that |a| = 1 and af(x, ¥y) = |P(x, ¥)|. If ¢ is real-
valued we choose a = =1 if $(x, y) <0, a =1 if

¢(x, y) > 0. If b is complex~valued we choose

= 1/2
a = ( (z’y)) . Then
- 1/2 _ d(x 1/2
16(x, )| = (6(x,FTEINY2 = dix,3) (G
= a (b(x,Y).
since |9(x,3)| = [BEHI), lal = 1(EEILVZ) - ([ Bz,
Therefore
|6(x,3)] = d(ax,y) = |Re d(ax,y)| < (x| Iy 1H)=p 1,
so [Ibll = “s1ﬁplld>(x,y>| < Ill. Hence lIbll = IWIl and the
X|= ‘
lyll=1

proof 1is complete,

Theorem 2.26, Let X be an 1nner-pr9duct space,
Suppose §(x, y) = (4x, y), where A is linear on X into
X. Then ¢ is continuous 1f and only if A is continuous,
and in that case |[ja]l = [I¢ll.

Proof: If A is continuous, then [lax]| < |lall lIxll
for all x in X. Hence by (2.2-A) we have
| (ax, 3) 1 = dlaxll Wiyl < lall =l iy ll, and so
sup |0(x, y)| = sup |all lixll llyll < Ilall.

x|t = [l
yll1 lly ll<1
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Therefore ¢ is continuous by Theorem 2.22, and [|p]] < |lall.
Conversely, if ¢ is continuous, then

6=, ¥)1 < Wbl IIxll Hlyll, and we nhave
llaxil® = (ax, ax) < |6l Iixll llax]].

If ||ax]] = 0, A is the zero operator and is continuous,

I1f |lax]| # 0, then |lax]] < |l llxll, whence A is continuous

by Theorem 1.27. Also,

lall = suo lami < oup LAl - o,
lIxl#0 [lxl#o
and together wlth the first part of the proof this implies

lall = li§1i.

Definition 2.27. A linear operator A with domain

and range in the inner-product space X is called symmetric

if (Ax, y) = (x, Ay) for every x, y in D(a).

We see that a self-adjoint operator is symmetric.
Conversely, a symmetric operator whose domain 1s all of
X, with X complete, is self-adjoint. 1In the next section
we conslider only operators whose domains are the whole
space on which they are defined, so 1n this case we
make no distinction between symmetric operators and selif-

adjoint operators,
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CHAPTER 3
Compact Operators in Hilbert Space

Definition 3.1. Let X and ¥ be normed linear spaces,

Suppose T is a linear operator with domain X and range
In ¥, We say that T is compact if, for each bounded se-
quence 'izgg in X, the sequence g;Txﬁi contains a sub-
sequence converging to some limit in Y.

Theorem 3.2. Let H1 and H2 be Hilbert spaces, A an
operator from Hl to HZ’ and B an operator from H2 to Hl‘

If A is compact with D(A) = H and if B 1s defined and

1°
bounded everywhere in Hz, then the operators AB and BA
are compact,

Proof: Suppose {xa} 1s a bounded sequence 1in
Hl' Since A is compact, {xnl contains a subsequence
ixﬂni such that {Ax'ﬁi converges, Suppose Ax'n - X.
Then since B is bounded (and hence continuous),
BA x'n = B(Ax'n) - Bx, whence BA 1s compact. Furthér,
the sequence {Bxgi is bounded, so the sequence
iA(an)z = {AB Xni contalns a convergent subsequence,
Therefore AB is compact, ([3], p. 101).
and H

Theorem 3.3, Let H be Hilbert spaces,

1 2

and A a bounded linear operator from H, to H If A is

1 2°
defined everywhere in Hl’ then A 1s compact if and only

i1f A*A 1s compact, where A% 1s the adjoint of A.
37
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Proof: If A 1s compact, then A¥A 1s compact from
Theorem 3.2 since A* is bounded,.
Conversely, suppose the operator A¥A 1s compact and

let ixé‘ be a bounded sequence of elements in H, such

1
that "xn” < C for some constant ¢ and all n. From i_xgg
we can select a subsequence {x'n} such that {A*A x'ég
converges, But then

“Ax'n - Ax'mll2 = (A(x', - x°

n )

- x! #* R '
x' s A A X n A¥A X m)

' - '
), A(x n X'

(x',

1% - x'_Il lla*ax' - a=ax’ ||

< 2c |la*ax' - a*ax' ||

1A

Given an ¢ > 0, there 1s a positive integer N such that
2
€

n, m > N implies |[[a*a x' - a*a x' || < 55 . Hence

n, m > N implies [Jax' - Ax'm" < ¢, so the sequence

n
{Ax'ﬁ} converges., Therefore A is compact., {([3],
p. 106).

Theorem 3,4, Let H

and H, be Hilbert spaces, A

1 2
a linear operator from Hl into H2 defined everywhere in
Hl' If A 1s compact, then A% is also compact,

Proof: Glven x, y 1in Hl’ we have

(v, ax) = (Ax,y) = (X,A%y) = (A*y,x) = (y,A%¥x),
where A#*#% = (A%)#%, Hence 0 = (y,Ax) - (y,A**X) = (y,Ax-A%¥x),
Since x and y were arbitrary, this implies that
AX - A¥%%x = 0 for all x in Hl’ or A = A*¥, From Theorem

3.2, if A is compact, then AA¥*¥ is compact, But

AA¥ = (A*)* A% g0 A% is compact by Theorem 3.3. This
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completes the proof. ([3], p. 106).

Theorem 3.5, Let Hl’ H, be Hilbert spaces, {Aﬁ%
a sequence of compact linear operators in [Hl, H2] such
that ”An - A|] 0. Then A is compact.

Proof: Let S ={x 1in B, | x)l = 1§ . we wina
show that A(S) 1s compact; first we show that A(S) is
totally bounded, Since ”An - A}l =0, given ¢ > 0 there
is‘a positive integer N such that, if n > N, then
”Anx - Ax]l = |[(a - A)x|| < ¢/3 for all x in S. Since
An is compact, every sequence in An(S) has a convergent
subsequence, whence K;T§T 1s compact by Theorem 1.17.
Then A _(S)is totally bounded by Theorem 1.16, so A (S)
is totally bounded. (If G is totally bounded, then G
ls totally bounded. Fér, given € > O there is a finite
subset {xl, cees xﬁg of G such that, if x is in G,
then d(x, Xi) < ¢/2 for some 1. But there is an x'1
in G such that d(xi, x'i) < ¢/2, so d(x, x{ ) = d(x, xi)
+ d(xi, x'i) < e, Hence {x'l, oo x'éﬁ CG is a
finite e-net, and G 1s totally bounded.) Hence given
n > N there is a finite subset {An Xqs seey Anxm of
A,(8) such that for any x in S, ”Anx - Anxi” < ¢/3 for
some 1, 1 <1 < m, Then givenn >N and x 1n S, there
is an i1, 1 <1 < m such that

lax - ax, || < llax - a x|l + llagx - a x|l + lla x, - ax, ||

<e/3+¢e/3+ /3 =c¢c.

Hence A(S) is totally bounded, so A(S) is totally bounded.
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(If G is totally bounded, then G is totally bounded.
For, let X be in G and let ¢ > O be given, Then there
is an x' in G such that d(x, x') < ¢/2. Also, there is
a subset ixl, ceey xrfg of G such that 4d(x*, x,) < e/2
for some i, 1 < i < n, Then d(x, xi) < d(x, x')
+ da(x"', Xi)-< €, whence ixl, ceos XA% is an e¢-net
for G, and G is totally bounded.,) Since H
A(S) is compact,

Now let ixgg be a sequence in Hi such that

> is complete,

"Xn” < C for all n, where C is a positive constant.

x
Then i;??} is in 8, and since A(S) is compact, the se-

I -,
n — 1 o
quence {A(Trig = {C A xn} has a convergent subse-
1 ' 1 '
quence i_c A X n% . Suppose c A X n - X, where X
is in A(S). Then Ax'n - CX, whence A is compact.

Definitions 3.6, 3.7, 3.8, 3.9, 3.10. Let X be a

normed linear space, T a linear operator whose domain
D(T) and range R(T) lie in X. Consider the operator
NI-T, where WNis a scalar and I is the identity
operator., We write N-T in place of NI-T. 1If N
1s such that R( A-T) = X and if A -T has a continuous

inverse, we say that N is in the resolvent set of T,

All scalar values of N not in the resolvent set comprise
the set called the spectrum of T.
If A is a scalar such that A -T has no inverse,

then there is at least one nonzero vector x such that
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Tx = AN x, In this case /A 1s called an elgenvalue

of T, and x 1s a corresponding eigenvector.

The null manifold of MN-T is called the eigen-
manifold corresponding to N ,

Suppose A 1s a linear operator with domain and
rangé‘in the inner-product space X, If we regard D(A)
by itself as an inner-product space, then ®(x, y)= (AX,Y¥)
s a bilinear form on D(A) x D(A), and ¢ is symmetric
if and only if A is symmetric. The corresponding
quadratic form, defined on D(A), 1s (Ax, x).

We assume now that A is symmetric and that D(A) # 0.

Then (Ax, X) is real since (Ax, x) = (x, Ax) = (Ax, X).

We define
(3.11) m(A) = inf (Ax, x), M(A) = sup (Ax, x).
I [l=1 lixll=1
The possibilities m(A) = - o, M(A) = + ® are not excluded.

Theorem 3,12, If A is a symmetric operator on an

inner-product space X and A is an elgenvalue of A,

then A is real and m(A) <N < M(A). Also, eigen-

vectors corresponding to distinct elgenvalues are orthogonal,
Proof: Suppose AX = N X, and assume without loss

of generality that |x|| = 1. Then (Ax, x) = ( Ax, X)

= A(x, x) = 7\, so N is real and m(A) < \ < M(a).

If Ax = ?\1x and Ay = 7\2y where 7\1 # N, then

Ni(x, 3) = (N % ¥) = (4%, 7) = (%, A7) = (2, N,¥)
= NAo(x, ¥). Hence ( 7N];- 7\2) (x, y) = 0, and it follows
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that (x, y)

Theorem 3.13, Let A be a symmetric operator on the
inner-product space X with D(A) = X, Then A is continu-
ous 1f and only if m(A) and M(A) are both finite, and in
that case |JA|| = max ilm(A)l, |M(A)|§

Proof: By Theorem 2.26, A is continuous if and
only if ¢(x, ¥) = (Ax, y) is continuous, and then
lall = li®ll. By Theorem 2.22, $(x, y) is continuous if

and only if ||p]Jl = sup |(ax, y)|] < @ . Since ¢ is

ll=|l=1

Iy |l=1

symmetric if A is symmetric, we have from Theorem 2.25

that [I9ll = W)l = sup |¥(x)] = s, |(ax, x)|. Hence A
M= lix|

i1s continuous if and only if sup |(Ax, x)| is finite.

Ixll=1
But this implies that m{A) and M(A) are finite, Further,
Af A is continuous, then |jall = |Bll = sup |(ax, x)|

lIx =1

= max {Im(A)l, IM(A)IK . The proof is now complete,

For the remaining theorems we assume that A is in
[X, X], where X is a real or complex inner-product space,

Theorem 3.14. Let A # O be a compact, symmetric
operator. Then either ||a]] or ~||A]] is an eigenvalue of
A, and there 1s a corresponding elgenvector x such that
x|l = 1 and |(ax, x)| = Jlall.

Proof: Since A is compact it 1s continuous. For,

discontinulty of A would, by Theorem 1.27, imply the
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existence of a sequence ixnvg such that len” =1 for
2ll n and Ilen" = @ j this cannot occur if A is compact.
Since A 1s contlnuous, we have by Theorem 3.13 that
|m(a)] < @, |M(A)] < o, and [Ja]] = max {Im(A)I, IM(A)IR .
This lmplles that there is a sequence ixn% such that
llx,ll = 1 for 21l n and (ax_, x_) - A , where N is real

and |N\] = [la]l. Now

il

0 < |lax, - ?\xnllz (Ax, - 7\xn, AX, - AX,)

(Ax,, Ax,) - (Ax,, Ax )-(Ax , Ax )
+ (A x, 7\xn) = IIAxnl|2-2 ?\(Axn,xn)
+ D2 P < Al ey IDZ-2 N (Ax,x))
+ Nl P = Al - 2 Dax,x) + W,

) > N, glven ¢ > O there is a positive

Since (Axn, X,

€
integer N such that n > N implies |(Ax , x) - N < T

or?\_-éT%\_T< (Ax,, x.) <?\+§T§X—T. If N> 0 we
have

lax,- Nx IF < Al - 2NCA- 575 + A°

n n 2IAT
= NZ-2n%+ e+ n? =g,
and 1f N< o0,
2

lax, = Axyl? < Il = 2NCA+ 575 * N Z
= N -27%+e+n?=c.
Therefore ”Axn— 7\xn|| - 0, which implies that
Ax - 7\xn -0 since |[x|| = 0 if and only if x = O,
Since A is compact, EAAxr& contains a convergent sub-
sequence which we denote by iAyk-g , Where iygis a

subsequence of ixnz . Suppose Ay, > x. Then glven
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€ > 0 there is a positive integer K, such thmet k > Kl
implies |lay, - x| < ¢/2. Also, there is a K, such that
k > K, tmplies [lay, - Ay, ll > €/2. Let K = max {Ky, K. .
Then k > K implles

”x “?\yk” < Ik - Ayk” + "Ayk —7\ykll < e/2 + e/2 = €.

Therefore 7\yk - x and Yy @—%since N # 0. Then
X X 1

"7\'” =1 and (A-N) v, > (A-A) X = AX - X

Since Ax_ - \X, 0, this implies that —%—Ax - x =0,

or Ax - Nx = 0. Thus A= Jja]l or N = -|a]] 1s an
elgenvalue of A. Also,

[, = TG, Bl = IVIEIPL = IAT = Dl
This completes the proof.

We now apply Theorem 3.14 repeatedly. Denote the
elgenvalue and eigenvector of Theorem 3.14 by 7\ 1 and
X, respectively. Let X; =X and X, = {xl (x, xl) = 01 .
Then X, 1is closed. For, if {yni ls a sequeflce in X,
such that Yn -y, then given ¢ > O there is a positive

€

integer N such that n > N implies [ly - y | < Tﬁ-l—“— .
Hence |(y, x)| = (v + vy, - v, x| = [y - vy %)

+ (yns xl)' = l(y - yns xl)' =< ”y = yn” "xl”‘ €.
But since ¢ was arbitrary, it follows that (3, X,) =0
and y 1s in X,. Hence XZ is closed, Also, A(XZ)CXZ;
1f x is in X,, then (Ax, x,) = (x, Ax%)) = (%, 7\1 x;)
= 7\l(x, xl) = 0, whence AX is in X,. Now let {xk-(

be a bounded sequence in X2. Then S(Axk'( has a con-

vergent subsequence which converges to a point in x2
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since Xz is closed. Thus the restrictiocn of A to X2

ls compact and symmetric. If thlis restriction i1s not
the zero operator, then by Theorem 3.14 we can assert

the existence of ‘h 5 and X, such that x, is in X?,

2 2
=, Il = 1, ax, = 7\2x2, and |7\2l is the norm of the

restriction of A to X,. Since X,< Xy, l?\zl < |7\1| .
Continuing in this way we obtaln the nonzero eigenvalues
7\1, 7\2, sy ?\n with corresponding eigenvectors

xl, oy ey X of unit norm, We also obtain

Xl, XZ’ eeey X with xk+l the set of elements of X

n+l? k
which are orthogonal to Xis Xy cees Ky that is, if x

s in X then (x, xi) =0 for 1 =1, 2, ..., k. At

k+1?

each step x, is in X, and '7\k| is the norm of the re-

striction of A to X,, so l?\ll L I P - e N P INE

The process stops with 7\n, X and Xn+1 if and only

n’

if the restriction of A to Xn+ is the zero operator.

1
In that case the range of A lies in the linear manifold

m
S =ii§1 aixilm < n‘i generated DY X;, X,y ...y Xp.

For, 1f x is in X, let
n

(3.15) v, = x - I (X, X)X,

Then
n
(¥ %) = (x - L& (x, X)X, X,)

n
= (19 Xi) - kgl(x’ xk)(xk’ Xi)

= (I, X - (X, Xi) = O, 1 = l, 2, o0 0y n,

1)

and Ay, = O since A|X is the zero

Hence Yn is in Xn+ n+l

1
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operator, Thus

n
(3.16) Ax = Ay, + Iy (x, x)x)
. ,

= Ay, t Iy (x, xk)Axk
n h rn
= kB (B0 X)) ALx = LB D (x, x)x.

Thls situation may occur even if X is infinite dimen-
sional, It will certainly occur if X is finite dimen-
sional since a linear space with finite dimension m can
have at most m llnearly independent vectors.

The foregoing considerations lead us to the state-
ment of the following fundamental theorem:

Theorem 3,17, Suppose A is a compact symmetric
operator, and A # 0. The procedure described in the
foregoing discussion ylelds a possibly terminating se-
quence of nonzero eigenvalues 7\1, ‘hz’ cee. and a
corresponding orthonormal set of elgenvectors
Xys Zps eee o If the sequences do not terminate, then
l?\nl = 0. The expansion

(3.17-A) Ax = & (Ax, xk)xk = 27\k(x, xk)xk
is valid for each x in X, the summation being extended
over the entire sequence, whether finite or infinite,
Each nonzero eigenvalue of A occurs in the sequence
{7\n§ . The eigenmanifold corresponding to a particular
}H_is finite dimensional and its dimension 1s exactly
the number of times this particular elgenvalue 1is re-

peated in the sequence {“n\ .
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Prooft Since I?\kl > I7\k+ll’ we either have
?\n'a»o or I?\nl > ¢ > 0 for some ¢ and all n., Suppose

the latter and suppose that the sequence is infinite.

X X X
Then [=2-|f < IPall -1 0o { 2 33 is a bounded
n

n

sequence, But A(-2—) = - AX_ = _;‘_;\nxn = X

n An n An

1o} { XAI must contain a convergent subsequence since

n’

A is compact. Thils is impossible, for the orthogonality

of the xi's yvlelds
2 _
=, - = II° = (x, - %, x, - %)
= (X, X,) = (%, x ) =~ (xp, x) + (x,x)
= ”Xn”2 + ”xmﬂz = 2 for all m, n such

that m # n,
Therefore {xn% contalns no Cauchy subsequence, so ixn‘ls
has no convergent subsequence, It follows that ?\n -0
when the sequence i)\r& is infinite,
If the sequence of 7\k's terminates with 7\n,
(3.17-A) is equivalent to 3,16, 1In the nonterminating
case we deflne Y by 3.15 and obtain

n n
P = (x = (2 (x, %) ®, % = 4 Eq (%, xX,)

n n
= (x, x) - kf{.}l(x, Xk)(ka x) - kgl(X, xk)(x’xk)

n n
n n
= (x, x) - Ly (%, ¥ (X, X )=  Z(x, ) (%, x)
n n
v B (x, (6 = kP - g x| < kP,

Since n ls in Xn+1 and l>\n+1| is the norm of the
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restriction of A to Xn+1, we have
lay Il < Hall Il < TN el Ivgll < TN g ! (I
But I?\nl - 0, so glven ¢ > O there is a positive
integer N such that n > N implies |7\n| < ﬂ%ﬂ—w Hence
n > N implies [lay |l < e, and |lay || > 0. It follows
that Ayn - 0, Also,

n n
Ay, = A{x - kgl(x, xk)xk) = AX - kgl(xi xk)Axk,

Ax = nlqu>kgl (x, Xk)Axk = 2{x, xk)Axk
= Z(x, xk)?\kxk
= S(X,kak)xk
= T(x, Axk)xk
= E(AX, xk)xk.

This proves 3.17=A.

If Nis a nonzero eigenvalue cf A which is not
in the sequence {‘hki , then by Theorem 3.14 there is a
corresponding eigenvector x of unit norm, and x nust be

orthogonal to x_ for every n by Theorem 3,12, Then

n
Ax = 0 by 3.17-A. This contradicts AX = >\x # 0, Hence
each nonzero elgenvalue of A occurs 1in the sequence {7\#& .
An elgenvalue cannct be repeated infinitely often
in the sequence {;\ki , because P\, > 0. Suppose that
7\k occurs p times, Then the corresponding eigen-
manifold contalins an orthonormal set of p eigenvectors,

and 1s therefore at least p=-dimensional. It cannot be

of dimension greater than p, for this would entall the
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exlstence of an x such that Ax = >\kx 0, lxll = 1,
and (x, xn) = 0 for every n, But this is impossible,
for then Ax = O by 3.17-A. The proof is now complete,

Theorem 3.18. Suppose X is ccmplete. Let { xﬁi
be an orthonormal set, and let {?\A‘ be any sequence
of real numbers such that ?\n 20, Let A be defined
by AX = ;21?\k(x, xk)xk° Then A is self-adjoint and
compact.

Proof: First of all we show that Ax 1s defined
for all x in X, By Theorem 2,11, ;217\k(x, zk)xk con-
verges if and only if EI?\k(x, xk)lz = ZI?\klzl(x,xk)|2< ® .
But £|(x, xk)l2 < nxll2 by Theorem 2.9, and since 7\n -0
there is a constant M > O such that | ) | < M for'all n.
Therefore 2|7\k|2|(x,xk)|2 < 12 |x|P, so EA (X, X )%,
converges for all x in X, whence AX 1is defined for all
x in X,

To prove A self-adjoint we must show that

(Ax, ¥y) = (x, Ay) for all x, y in X. We have, by the

continuity of the inner product,
n
(A%, y) = 1im ( Z, A (X, X, )%, ¥)
’ némk—lk’kk

i

n
1im %, A (x, x.)(x,., ¥)
it SR S S %

i

. n A
nliﬁa;x’ e | k(v, xp) Xk> = (x, Ay)
Hence A 1is self-adjoint.
n
Now let A X = k§17\k(x, x, )x, . Then A  1is compact

by Theorem 1.37 since R(A ) 1is finite-dimensional (R(A,)
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1s closed by Corollary 1.36.). We have

(e 0
Hag- )P = llagx = AllP = Iz N (xx)x (P

@ 2
= g=fien | A (x 1)1
Since ?\k >0, glven a integer n > 0 there is a real
number N (n) such that ?\(n) = sup {I>\n+1l’|)&ﬁz|’°"z‘

Hence
> ®
”(An“‘ A)(X)Hz = I?\(n)l k=§+1'(xs Xk)lz
< I A@IZ [xIP.
But >\(n) - 0, so given ¢ > 0 there is a positive

integer N such that n > N implies | 7\(n)| < ¢, Hence

1f n > N we have

lla- all = iRy lea,- a) (0l < o | Ay ] il
= | NMn)| < e.

Hence ||o - Al >0, and it follows from Theorem 3.5
that A 1s compact.

Theorem 3,19, Let.A,{?\rS s {Xni be as in
Theorem 3.17. Then, if N # 0 and ?\ifhk:for each k,
A -A has a continuous inverse defined on all of X and

glven by x = (7\-A)“1y, where
1 (y,%,)

(3:19-0) x = T ¥ + % Ehye JToy e
Proof: Suppose x and y are given such that
ﬁhx-Ax = y¥y. Then Ax = ?\x - ¥y, and so from 3,17=A

we have

Nx - y = z?\k(x, xk)xk.
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We form the inner product with Xy and obtain
(Nx, x,) - (7, x) = (Nx -7, x,)
(ZAL(x, x )%, X,)

= E?\k(x, Xk)(Xk, xi) = ?\i(x,xi)
Thus
(7,%;)
(x, x4) = T':Ti ’
and so
x=y+27\k(x, xk)xk=y+27\k%}%x,

which glves 3.19-A, This shows that the solution of
(?\-A)x = ¥y 1s unique, if 1t exists, On the other hand,
if the serlies in 3.19-A 1s convergent, the element x de-
fined by 3.19-A satisfies ( A=A) x = yz for)then

A

(N-8) % = (N-B)(F 7+ 5 BAy S &)

(y,x
‘y‘“z?\k)\}i{k -
(¥y,x,)
1zhk-7:%;Ax

We put Ax, = 7\kxk in the last sum and use 3.17-A with

¥ in place of x; then

(A-A)x =y + 27\k "7'\':—7-\; X, - % th(y, X )%,

ANk Ak v.x)
~>\ = >\ )>\k )‘kak—y°

We now show that the series in 3.19-A converges,

y + (1l -

no matter how y is chosen, Let a = sup l '9
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n (¥, xk)

8= S IR U kB Nk Ry

n (y,x k)

Vi kzl ST 7\ e @ and B are finite. Now, if m < n,

2 n v,z n ,x,)
lhay= vl = Gefion N N-hg K 1=F1 Ve N N Xy )

n n (y,x.,) (YQXk)
= g k=B O T:—)\l;)')\k gt Tk

_n , 1 yx )2
k=f+1 Nk T

n
= k=ﬁ+1 I'T\?\:}SXI_:‘Z l(y, Xk)lz

<o = I(y, x,.)]%

S 07 e 1Y X )1

Therefore {lﬁi is a Cauchy sequence, because Z|(y, xk)l2
is convergent by Theorem 2.9, If X 1s complete, this
implies that u, - u, where u is in X, If X 1s not

complete we continue the argument as follows:

2
2 _ | (7,x,) | > B 2 _ 2 pon2
v I = 2 < 8% Il x| 8% Ivll®,
1'>\ 7\|2 k=1 k
no(¥,x,)
S0 { vgi is bounded., Now Av, = kzl 7K:*X; Ax,
| no(y,x,)

= xE 'X-7\k7\kk Uy
Hence, the compactness of A implies that {1&3‘ contains
a convergent subsequence, Since {1%3 is Cauchy, it

must then be convergent to the same 1limit as the subse-

quence, Hence the series in 3.19-A converges, We see
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from 3,19-A that

(7,x,)
el = v+ 5 28 oo = |
(y,x,)

= vl + 15 2y o5 = |

1
75T Wi+ TlTT a |l (v, x) x.
But [|I2(y,x)x [ = Iyl by Theorems 2.9 end 2.11, so

ell < 7o Wil + tp o vl

Hence

-1
I(h-2)"1f = A -4 - o fEF
| b= o, T ko ¥

1 1l

< +

STXT " TRT
so (N-A)"1 1s continuous and defined on all of X.

Theorem 3.20. Let A, {?\nl , {xhz be as in

Theorem 3.17. ITf 7\= '?H for some j, then the range
of "h -A consists of all vectors orthogonal to the
elgenmanifold Ej corresponding to 7\3. For such a

vector y the general solution of (7\-A) X =y 1is
1

1 X,X) )
(3.20-8) x = 57 + 5 NFp N Th, Tk T
where W 1s an arbitrary element of Ej.
Proof: Let x be in X, and let zj be an arbltrary

vector in E Then

3° |
((n-)x, 2,) = (hx=ax, z))
= (7\}{, Zj) - (AXQ zj)

(>\xs ZJ) - (xs AZJ)
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= (}\X, ZJ) - (X, >\ZJ)

Hence if y 1s in R(A\ -A), then yLE,.

Now suppose y 1is given, and that ?\X-Ax =Y.
Then from 3,17-A we have

\f\x-y = Ax =T A k(x, xk)xk.

Forming the inner product with Xy gives

(7\I, xi) - (ys Xi) = >\i(xs xi)
Thus, if N # 7\1’ we have

(y,%4)

%) = J=%7
and so
(¥,x, )
Nx =3 FngN N Ay 7\ B N (T B )Ty
But by Theorem 2,12, P(x) =7‘k§)\ (x, xk)xk 1s the
orthogonal projection of x onto the linear manifold

generated by Ej. Hence

(y’
x:—])'-\-y +%7\k§>\?\k '3" 7 +P(X), or
1 (y,x,)

1
- T e + ———
(I-P)x = 5 7 + =5 Ny Dy ERW
If W is an arbitrary element of EJ, then (I-P)(x+W)

= (I-P)x + (I~P)w = (I—-I(’)x. )Therefore, given y in
¥,X
k
R(A=-A), = 7 + N, — is a solution of
’ My Mk Ny Tk

(y,%,)
_ 2
(7\-A)x-—y,as1s>\y+>\k;7\7\>‘_’ X, t W. We
(y X, )
have shown in Theorem 3.19 that & ?\k STy X, converges,
k
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no matter how y 1s chosen, If y is orthogonal to E

J’
the element x defined by 3.20-A then satisfles (A -A) x=y,
for
NEBE =T BN Sy Tk W T R
(y )
1 s Xy
- TM{?%“R -——--—>\_ ?‘k Axk = ALJ
(y,x,) 1
=y + [N&)\?‘k W X, - T\k;@)?\k(y,xk)xk

(y,x,)
l ) ]
N A >l\ck A%y ]

(y’x ) >\ ">\ >\
k k k
= + ——— 1l = ————
T O e g T »
1 -
+ (7\"A)u - 7 >\k§>\ >\k(yi xk)xk =Y.
Therefore the range of 7\ <A consists of all vectors
orthogonal to EJ, and for such a vector y the general
solution of (A-A) X =y is given by 3.20~A.
We round out the foregoing discussion by consider-
ing the null manifold and range of A when X 1s a Hilbert
space,
Theorem 3.21. (a) Let A, {A n} , {xt ve as in
3.17, and let M be the closed linear manifold generated
by the eigenvectors x,, X,, ... . Then MJ‘ = N(A).
Hence the orthonormal set { xni is complete if and

only if O is not an eigenvalue of A, When X is complete

we have X = M & N(A).
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(b) Suppose X is complete., Then the range of A

1s composed of those elements in M which are such that

the series
(v,%,)
(3.21-A) £ —=—x
Nk k&
1s convergent.

Proof:t (a) Let x be in Ml‘ . Then (x, xk) = 0

for all k, so AXx = O by 3.,17-A. Hence x is in N(A)
and M+ C N(A). Conversely, if x is in N(A), thén for
any k, (x, 1) = At (x5, Nx) = ARt (x, axy)
= ?\;cl (Ax, xk) = 0, 80 X is in MJ' . Hence M“L = N(A).
The orthonormal set {Xn§ is complete if and only if
‘MJ' = (0), which means that if x # O, then Ax # 0. It
follows that Aif ixn& is complete, then O is not an
elgenvalue of A, If X is complete, we have X = M & N(A)
by Theorem 2,17.
(b) Suppose Ax =y, Then from 3.,17-A, ¥y = AX
= Z?\k(x, xk)xk, so y is in M. From the orthonormality
and continulty of the ilnner pro@uct we obtain
(¥, %) = (EN(x, 5 )%, %) = DA(X, %) (X, X,;)
= N, (x, x4).
Since X = M @ N(A) we can write x = u + v, where u 1is

in M and v is in N(A). Then (x, xk) = (u, xk) + (v, xk)

= (u, xk) since N(A) = Ml' , and by Theorem 2,12 we have
(Ry Ny %)
u = £(u, xk)xk = E(x,xk)xk = 7;; X,
(stxk) (AX,Xk) (stk)

=z —s;;——— X, = T ~7T£_—— X, = T —TKE—— X the seriles
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necessarily being convergent if it is infinite. Con-

versely, suppose ¥ 1s 1n M and that the series 3.21-A

is convergent, with u as its sum, Then

(y,x,) (y,%,)
Au = I —-7-\—;—]’5— AX, = I _TEL Wi = L, 1 )x =7y,

so ¥ 1s in R(A). This completes the proof,
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