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CHAPTER 1
Linear Spaces, Metric Spaces, and Normed Linear Spaces

We begin with some basic definitions.
Definition I d .  A linear space (or vector space) 

is an abelian group X with a function : F x X ->X, where 
F is either the reals or the complexes, satisfying the 
following conditions for all a, 9 in F and all x, x' in 
Xî

(1) a*(x + X*) = a*x + a-x'.
(2) a-(9'x) = (a9)*x.
(3) I'X = X.
(4) (a + 9)'z = a*x + 9*x.

The elements of F are called scalars; those of X are
called vectors.

Definition 1.2. A nonempty subset M of a linear 
space X is called a linear manifold in X if ax + gy is
in M whenever x and y are in M and a, 9 are arbitrary
elements of P.

Definition 1.3. Let X and Y be linear spaces over 
ttfe same field F. If A is a function with domain X and
range contained in Y, then A is called a linear operator
if the following conditions are satisfied for arbitrary 
a in F and arbitrary x^, Xg, x in X:

(1) A(x^ + Xg) = Ax^ + AXg.
(2) A(ax) = aAx.
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2
Definition 1.4, Let A be a linear operator on X in­

to Ï, where X and Y are linear spaces over the same field. 
The null manifold of A is the set of all x in X such that 
Ax = 0. We denote this set by N(A).

Definition 1.5. A linear operator P with domain X
and range in X is called a pro.iection {of X) if P^ = P.
If M is the range of P, then P is called a projection of 
X onto M.

Definition 1.6. Let ..., (n > 2) be linear
manifolds in a linear space X. We say that this set of 
linear manifolds is linearly independent if x̂  ̂ in and 
a^x^ + ... + a^x^ = 0 implies that x^ = 0 if ^ 0.
The linear manifold generated by the elements of

. . .U is denoted by M^® ... ® and is called 
the direct sum of ..., M^. Elements of the direct
sum are representable uniquely in the form x =. x^+ ... + x^, 
with x^ in M^.

Definition 1.7. Two linear spaces X and Y (over 
the same field) are said to be isomorphic if there is a
linear operator T whose domain is X, whose range is all
of Y, and whose inverse T exists.

Definition 1.8. A metric space is a set X with a 
function d : X x X -^R, where R is the real number field, 
satisfying the following conditons for all x^, Xg, x^ in 
X:

(1) d(x^, Xg) = d(Xg, x^).
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3
(2) d(x^, x^) < d(x^, Xg) + d(x2 » x^)o
(3) d(x^, Xg) = 0 if and only if x^ = Xg,
(4) d(x^, x^) > Oc

The function d is called a distance function (or metric) 
on X.

Definition 1.9. A sequence ^ x ^  in a metric 
space X is called a Cauchy sequence iC d(x^, x^) -> 0 
as m, n -> CD .

Definition 1.10. A sequence ^x^^ in a metric 
space X is called convergent if there is a point x in X 
such that d(x^, x) ->0 as n->OD. We then write x^ -> x 
and call x the limit of the sequence.

Definition 1.11. A metric space X is said to be 
complete if every Cauchy sequence in X has a limit in X.

Definition 1.12. A metric space X is said to be 
totally bounded if for each e > 0 there is a finite sub­
set x^, Xg, ..., of X such that, if x is an arbi­
trary element of X, then d(x, x^) < e for some 
i ~ 1, 2, ..., n.

Definition 1.13. A subset S of a metric space X 
is called open if, given x^ in S, there is an e > 0 
such that X is in S whenever d(x, x^) < e.

Definition 1.14. Let S be a subspace of a metric 
space X. If F is a family of subsets of X such that 
each point of S belongs to at least one member of P, 
then P is said to cover S. If all the sets in P are
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open, F is called an open ooirerlnK of S,
Definition 1.15. A subset S of a metric space X 

is called compact if every open covering of S includes 
a finite subfamily which covers S,

The following well-known results are stated with­
out proof:

Theorem I.I6. A metric space X is compact if and 
only if it is both totally bounded and complete. ([4], 
p. 142).

Theorem I.17. In a metric space, a set S is com­
pact if and only if every sequence in S contains a con­
vergent subsequence with limit in S. ([5], P. 72).

Definition I.I8, Let X and Y be metric spaces, 
and let f be a function with domain X and range Y. f 
is said to be continuous at the point in X if to each 
neighborhood V of f(x^) in Y there corresponds a neigh­
borhood U of x^ in X such that f(U)CV.

Theorem 1.19. Suppose f is a function with domain 
X and range Y, where X and Y are metric spaces. Then 
f is continuous on X if and only if f”^(V) is an open 
set in X whenever V is an open set in Y.

Proof: Suppose f”^(V) is open whenever V is open.
Let x^ be any point in X and V any neighborhood of f(x^). 
Then f“^(V) is open and contains x^, so there is a neigh­
borhood U of X such that f(U)CV. Hence f is continuous 
at x^. Conversely, suppose f is continuous on X, and let
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V be an open set in Y. Then, if x is in f“^(V), V is a 
neighborhood of f(x), and hence f”^(V) must include a 
neighborhood of x. This implies that f“^(V) is open.

Theorem 1,20. The continuous image of a compact 
set is compact.

Proof: Let f be a continuous function which maps
the compact set K onto a metric space Y . If F is an 
open cover for Y, then the collection of sets f"^^(0) 
for all 0 in F is an open covering of K. By the com­
pactness of K, there is a finite number 0^, 0^ of
sets of F such that the sets f”^(0^) cover K. Since f 
is onto Y, the sets 0^, .,,, 0^ cover Y, whence Y is 
compact.

Theorem 1,21, A closed subset of a compact space 
is compact.

Proof: Let X be compact, S a closed subset of X,
and F an open covering for S, Then FU[^s| is an open 
covering for X and so must have a finite subcovering 
^\S, O^, 0^1 , Then the sets 0^, 0^ cover
S, so S is compact. ([4], p. 137),

Definition 1,22, Two metric spaces X and Y are 
said to be isometric if there is a function f with do­
main X and range Y such that d(x^, x^) = d(f(x^), ffXg)) 
for every pair of points x^, Xg in X.

Definitions 1,23, 1,24. A norm on a linear space 
X is a real-valued function || • |j with the properties :
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( 1 )  Il +  Z g l l  -  Il % l l l  +  Il ^ 2
(2) Il ax|| = |a| Il x|| .
(3) Il x|| > 0.
(4) Il x|| 0 if X 0.
A linear space on which a norm is defined becomes 

a metric space if we define d(x^, Xg ) = || x^ - x^H .
A linear space which is a metric space in this way is
called a normed linear space^

We have
II %ill = II - X^ + Xgll < II X^ - Xgll + II x̂ ll

II ẑ ll - II Xgll £ II X^ - Xgll
Similarly, || Xgll - || x̂ || £ || Xg - x̂ || . Therefore
I II x^ II - II Xgll I £ II x^ - Xgll, and it follows that || x
is a continuous function of x.

Definition 1.25. Two normed linear spaces are said
to be isometrically isomorphic. or congruent, if there 
is a one-to-one correspondence between the elements of 
X and Y which makes the spaces both isomorphic as vec­
tor spaces and isometric as metric spaces*

Two normed linear spaces X and Y are congruent if
and only if there is a linear operator T with domain X

—1and range Y such that T exists and such that
||Tx || = ||x|| for every x in X, For, ||Tx|| = ||x|| for every
X in X implies that ||t x ^ - TXg || = ||T(x ^ - Xg)|| = ||x̂  -  XgH
for arbitrary x^, x^ in X, Conversely, if
||Tx ^ - TXg II = ||x̂  - Xgll for x^, x^ in X, then
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7
||Tx || = ||t (x +x *~x * ) Il = ||T(x +x * )-T(x* ) Il = ||(x+x* )-x* II = ||x||
for every x in X, x* is arbitrary in X,

Definition 1,26. Two normed linear spaces X and Y
are said to be topologically isomorphic if there is a
linear operator T which establishes an isomorphism of

“1X and Y and which has the property that T and T are 
continuous.

We now derive some results which will be used later. 
Theorem 1.27, Let X and Y be normed linear spaces 

and T a linear operator on X into Y. Then T is continu­
ous either at every point of X or at no point of X, T 
is continuous on X if and only if there is a constant M 
such that ||Tx || < m ||x || for every x in X.

ProofÎ Let x^ and x^ be any points of X, and 
suppose T is continuous at x^. Then to each e > 0 
corresponds a 6 > 0 such that ||Tx - Tx^jj < e if 
||x - X q II < 6. Now suppose ||x - x̂ || < 6. Then 
||(x + x^ - x^) - x̂ ll < Ô, so ||t (x + Xq - x^) - TXq II < e. 
But by the linearity of T, T(x + x^ - x^) - Tx^ =
Tx - Tx^, so ||Tx  “ Tx^ll < e. Thus T is continuous at x^, 
and the first assertion is proved.

If ||Tx || < m ||x |I for all x, then ||Tx  - T(0)|| = ||Tx|| < e 
for arbitrary e > 0 whenever ||x|| < g , so T is continuous 
at 0. By the first part of the proof it follows that T 
is continuous on X. Conversely, if T is continuous at 
0, there is a 6 > 0 such that ||Tx (| < 1 if ||x|| < 6, Now,

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



8
If X 0, let = 6x/2||x||, so that ||x̂ || = 6/2 < 6.
Then ||Tx ^ || < 1. But Tx^ = T(6x/2||x||) = ( 6/2 ||x||)Tx, so
||Tx || = IITXqII < 2/6||x||. Thus, taking M = 2/6, we
have ||T x || < M||x|| if x / 0, and this inequality is true 
as well when x = 0. The proof is thus complete.

Definition 1,28. Let X and Y be normed linear
spaces and T a continuous linear operator on X into Y.
Then the smallest admissible value of M in the inequality 
||Tx |( <  m |)x || is called the norm of T and is denoted by )|t ||, 

It follows from Definition 1.28 that
(1.28-A) |(r|| = sup

Ikllki ¥\

= 1 1 %  ' ^ ' T P T >  II
(1.28-B) = sup IIt x II

11*11=1

(1.28-C) = sup ||t x | | .
IklBi

The step from (B) to (C) is justified since if |(x|| < 1, 
then I|t (-|]^)|| = ||Tx|| > |(Tx ||. Also, it is clear
from (A) that ||Tx|| < ||t|| ||x ||.

If X and Y are linear spaces over the same field, 
the set of all linear operators on X into Y is a linear 
space if we define addition of operators and multiplica­
tion of operators by scalars in the following way*

(A+B)x = Ax + Bx, (aA)x = a (A x ).
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9
If X and Y are normed linear spaces, those linear 

operators on X into Y which are continuous on X form a 
subspace of the space of all linear operators on X into 
Y. We denote this space by [X, y 3.

Now let X be a normed linear space and let F be the 
associated scalar field. A linear operator on X into F 
is called a linear functional. We call the linear space 
of all linear functionals on X the algebraic conjugate

fof X, and denote it by X . A continuous linear func­
tional on X is an element of the space [X, F], which we

fdenote by X', X* is a subspace of X ,
Definition 1,29. Let X and Y be normed linear 

spaces, and suppose A is in [Î, Y ] . If y' is in Y', the 
linear functional x* defined on X by x*(x) = y*(Ax) is 
in X'. We write x* = A'y'. The operator A ’ maps Y* 
into X* and is called the conjugate of A. The defini­
tion of A' is expressed by the formula

(1.29-A) (A*y') (x) = y'(Ax), X in X, y ' in Y*.
Theorem I.30. Let T be a linear operator on X to

Y , where X and Y are normed linear spaces. Then the in- 
-1verse T exists and is continuous if and only if there 

is a constant m > 0 such that 
(I.30-A) m||x|| < |(Tx|| 

for every x in X,
Proof: If (1.30-A) holds and Tx = 0, it follows

that X = 0. This implies that T~^ exists. Now y - Tx
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Is equivalent to x = T~^y. Hence (I.30-A) is equivalent 
to m||T“ ŷ|| < ||TT“V||» or ||T“ ŷj| < g |)y|| for all y in the 
range of T, which is the domain of Hence is
continuous by Theorem 1.2?.

Conversely, if exists and is continuous, by
Theorem 1.2? there is a constant M such that
||T” ŷ|| < M ||y|| for all y in the domain of T”^. Since
-1 -1T exists, T y = X is equivalent to y = Tx. Also,

the range of T~^ is all of X. This Implies that
x|| < M ||Tx|| for all x in X, which is equivalent to 
(I.30-A).

Corollary I.3I. Two normed linear spaces X and Y 
are topologically isomorphic if and only if there is a 
linear operator T with domain X and range Y, and positive 
constants m, M such that

(1.31-A) m||x|| < ||Tx|| < m||xJ| 
for every x in X.

We are ready now to prove that two normed linear
spaces of the same finite dimension n over the same
field are topologically isomorphic. We begin by stating
without proof the Bolzano-Weierstrass theorem for jL^(n),
the normed linear space of all n-tuples (a^, ..., a^)
of real numbers (or all n~tuples of complex numbers),

2If X = (a^, ..., a^) is in M  (n), then the norm of x
n p 1/2

is defined to be ||x|| = (^2^ |a^| ) . (If the norm of
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X is defined to be ||x|| |a^|, then this space is
called JL *{n).)

Theorem 1.32. (Bolzano-Weierstrass). Every bounded 
sequence in {n) has at least one cluster point. ([l],
p. 49).

Our next step is to establish the following lemma: 
Lemma 1.33. The surface of the unit sphere in 

jl* (n) (the set S for which |a^( + ... + |a^j = 1) is 
compact.

Proof: By Theorem 1.32 every sequence in the unit
P n p 1/2

sphere of %  (n) (the set Sg,for which ) < 1)
has a convergent subsequence, and it follows from Theorem
1.17 that Sg is compact. Consider the mapping f(x) = x
from S into X^(n), Then f~^ exists and has range S,

and f" (x) = X. Since I = 1 implies |a^| < 1  for
n , -.., 2i = 1, .. ., n, it follows that I I — Therefore

-1the domain of f is a subset of 8p, which we denote by 
K.

Suppose now that x = (a^, ..., a^) and
X* = ...» ct̂ ) are elements of K such that

n p 1/2
||x - X* - a*^| ) < e/n for arbitrary
e > 0. Then

< e^/n^, so |a^ - < e^/n^
n

for i = 1, . .., n. Therefore ||x - x ' ||̂ ,= < e ,
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and it follows that Is a continuous map from onto
S, Since f”^ is continuous, K is a closed subset of Sg, 
so K is compact by Theorem 1.21. The desired result now 
follows from Theorem 1,20.

Theorem 1.34. Let and Xg be two normed linear 
spaces of the same finite dimension n over the same 
field. Then X^ and Xg are topologically isomorphic.

Proof: The case n = 0 is trivial, and we assume
n > 1, Since the relation of topological isomorphism 
is transitive, it will suffice to prove that if X is an 
n-dimensional normed linear space, then X is topologically 
isomorphic to >i.*{n). Suppose that ..., is a
basis for X, If x = a^x^ + ... + a^x^ is the represen­
tation of an arbitrary x in X, the correspondence 
x<*“> (a^, ..., a^) defines an isomorphism of X and 
Jt'(n). By Corollary 1.31, all we have to prove is 
that there are positive constants m and M such that

(1.34-A) ^ (l^il + ••• + !&%!)
and

(1.3^-B) m(|aj + ... + |a^|) < ||â x^ + ... + a^x^|| 
for all possible sets of values (a^, ..., . Now
(1.3^-A) is true if we choose M = max |̂ |)x̂ ||, ..., ||x̂ ||̂  , 
since

= l%ll 11x̂ 11 + ••• + l%l
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To prove (1.34— B) it suffices to show there is a con­
stant m such that m < ||a^x^ + .., + if
|a^| + ... + |a^| = 1, for (1.34-B) holds if

= ... = (1̂1 " arid.' if C = |a^| + ... + |a^| > 0,
we can define H  = C“^ . Then |-*̂ |̂ + ... + = 1
and + ... + • • * so
(1.3^-B) holds if m < + ... +

Now let f(a^, ..., a^) = ||a^x^ + ... + a^x^||.
Since | ||x|| - ||y|| | < ||x-y||, we have

|f(a^y .. ., OL̂ ) — f ( — IK  ̂ 2.” 1 )^i

+ ... + ( % - A n ) * n  

< Mdaj^-TXj^l
+ ... + l“„-n.„l),

and it follows that f is continuous on X' (n). By
Lemma 1.33» S is compact. Hence f, being continuous on 
S, attains a minimum value m > 0 on S. But m > 0, for 
m = 0 would imply that x^, ..., x^ are linearly dependent, 
contrary to the fact that they form a basis for X, The 
proof of (1.3^-B) and of Theorem 1.3^ is now complete.

If X and Y are topologically isomorphic normed 
linear spaces under the mapping T and ^ x ^  is a Cauchy 
sequence in X, then by Corollary 1.31 there is a positive 
constant M such that ||T(x^ - x^) || = ||Tx^ - Tx^||
< M jjxĵ - x̂ l), whence "^1x^ is a Cauchy sequence in Y. 
Conversely, if ^ y ^  is a Cauchy sequence in Y, there
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Is a positive constant m such that
- T ' % 1 1  < ||T(T-%) - T(T'%)|| = ||ŷ  - ŷ ||, 

whence Is a Cauchy sequence In X. It follows
from the continuity of T and T~^ that If X Is complete, 
then Y Is complete, and conversely. Now A*{n) Is com­
plete as a consequence of the completeness of the real 
numbers. Thus we have:

Theorem 1.3 5. A fInlte-dlmenslonal normed linear 
space Is complete.

Corollary I.36. Any flnlte-dlmenslonal subspace 
of a normed linear space Is closed.

Proof: This result follows from the well-known
fact that a complete subset of a metric space Is closed.
([2], p. 51).

Theorem 1.37* If X Is a fInlte-dlmenslonal 
normed linear space, then each closed and bounded set 
In X Is compact.

Proof: This result Is true by classical analysis
for JL*{n). It then follows from Theorem 1.34 that the 
theorem Is true for any flnlte-dlmenslonal space X, for 
the properties of being bounded and closed are trans­
ferred from a set S to Its Image In jL' (n) by the 
topological Isomorphism, and the compactness Is then 
carried back from to S.
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CHAPTER 2 
Inner-Product Spaces

Definition 2,1. A complex linear space X Is called 
an Inner-product space If there Is defined on X x X a 
complex-valued function (x^, Xg) (called the Inner 
product of x^ and Xg) with the following properties for 
arbitrary x, x^, x^, In X:

(1) (x^ + Xg, x^) = (x^, x^) + (Xg, x^).
(2) (x^, Xg) = (x'̂ , x^ ).
(3) (ax^, Xg) = a(x^, Xg).
(4) (x, x) > 0 and (x, x) / 0 If x 0 ( (x,x) Is

real by (2) ).
A real linear space X Is called an Inner-product space 
If there Is defined on X x X a real-valued function with 
the properties (l)-(4), except that (2) Is written with­
out the bar over (Xg, x^).

It follows from (2) and (3) that (x^, axg)
= (aXg, x^) = a (Xg, x^) = a (x^, Xg), where the bar 
over a Is omitted for a real space. Also, from (1) and
(2) we obtain

(x^, Xg + x^) = (Xg + x^, x^) = (Xg, x^) + (x^, x^)
= (x^, Xg) + (x^, x^).

Theorem 2.2. If X Is an inner-product space, then 
(2.2-A) I (x^, Xg) I < /(Xj^, x^) ,/(Xg, Xg) .

15
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Proofs For any a and 0 we have
(ax + py, ax + gy) = aa(x,x) + ap(x,y) + pa(y,x)

+ PP(y,y) > 0
We choose a = t, where t is real, and define

® = rlxly! I ^

P = 1 otherwise.

Then F(x,y) = (x,y) = | (x,y) | if (x,y) 0, and

this equality also holds if (x,y) = 0. Also,

03 = I = 1 if (x,y) / 0, and again this
equality holds if (x,y) = 0. Therefore

t^(x,x) + t|(x,y)| + ]t (x7y) + (y,y)
= t^(x,x) + 2tI(x,y)I + (y,y) > 0 for all real t.

If (x,x) = 0, (2,2-A) is trivially true. If (x,x) ^ 0, 
t^(x,x)^ - 2t(x,x)I(x,y)I + (x,x)(y,y) > 0 ,

and letting t = - I  ̂we obtainX 9 X ;
I(x,y)I^ - 2|(x,y)I^ + (x,x)(y,y) > 0 ,

or
(x,x.) (y,y) > I (x,y ) | ̂ , 

which is equivalent to (2.2-A).
Theorem 2.3. If X is an inner-product space, then

/(x,x) has the properties of a norm.
Proof: We write )(x|| = ,/(x ,x ). Then by the defini­

tion of inner product we have immediately that ||x(| > 0,
|(x(| = 0 if and only if x = O, and
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||ax|| = /(ax,ax) = ,/a^(x,x) = |a| ||x||. Also we have 

l|x + y||̂  = (x + y, X + y) = (x,x) + (x,y) + (y,x)
+ (y,y).

For complex A we write Re A = ^ (A+A) = real part of A.
Since |Re a| < |A|, we have

||x + y||̂  = ||x||̂  + 2 Re (x,y) + ||y|ĵ
1 l|x||̂  + 2} (x,y) I + ||y||̂ .

With (2,2-A) this gives
Ik + yjĵ  <  Ikll̂  + 2||xJ| |)y|| + I|y||̂  = (|(x|| + ||y||)̂ , so
||x + y II < Ijxjl + ||y||.

This completes the proof.
In the following theorem the norm on X x X is de­

fined to be ||(x̂ , Xg) II = (llx^lP + llxgll^)^^^.
Theorem 2.4. The inner product (x^, Xg) is a con­

tinuous function on X x X,
Proof: Let x^ - u^ = v^, Xg - Ug = Vg where

x^, Xg, u^, Ug are arbitrary and û ,̂ Ug are fixed. Then
(Xi, Xg) - (u^, Ug) = (u^ + v^, Ug + Vg) - (u^, Ug)

= (U^, Vg) + (V^, Ug) + (v^, Vg).

Hence by (2.2-A) we have
|(x^, Xg) - (u^, Ug) I < I (u^, Vg) I +|(v^, Ug) i+| (v^,Vg) I

5 Ikill Ik2-^2l( + lki-^% II 11̂ 2 II
+ Ik̂ ĵ -û l̂l ||Xg-Ugj|.

If Ô = max |||û ||, Ifuglll and 36 > e > 0, then
||(x̂ , Xg) - (u^, Ug) II < ^  implies that ||x̂ - û || < ^  and
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llxg- Ugll < Therefore

I (Xi, Xg) - (û , Ug)| < ||û||*-ĵ + ' 11̂2  ̂̂ * 36̂
< e/3 + e/3 + e/3 = e,

and the theorem Is proved.
00

It follows from Theorem 2.4 that if x^ = x*,
n n

then (x,x*) - 11m (x, .2.x.) = 11m .Z.(x,x.).
n ^ o D  1 1 1  n ^  OD  ̂ ^ ^

Definition ,2.5- Two vectors x and y are orthogonal 
If (x, y) = 0. If (x, y) = 0 we write x J_ y.

Definition 2,6, A set S of vectors Is called an 
orthogonal set if (x, y) = 0 for every pair x, y In S 
such that X / y. If In addition j|x|| = 1 for every x In 
S, the set Is called an orthonormal set.

Definition 2,7. Two linear manifolds M, N In the 
Inner-product space X are said to be orthogonal If
(x, y) = 0  whenever x Is In M and y Is In N. A family
of linear manifolds Is called an orthogonal family If 
each pair of distinct manifolds from the family Is 
orthogonal.

Definition 2,8, If S Is a nonempty subset of X, 
the set of all x such that (x, y ) = 0 If y Is In S Is
called the orthogonal complement of S, and Is denoted by
X  iS , If X Is In S , we write xXS,

In the proof of the next theorem we require the 
following well-known Inequality, a proof of which Is 
given In the book Inequalities, by Hardy, Llttlewood,
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and Polya:

Cauchy* s Inequality. Let ^ and be non-
negative convergent sequences of real numbers. Then

00 CD p , /p 00 p i  /piSi =ih ̂ (iSi A )  (ill ■

Theorem 2.9. Let S be an orthonormal set in X.
If u^, ..., u^ is any finite collection of distinct
elements of S, then

(2.9-A) ^g^|(x,u^)|^ < ||x||̂  for all x in X.
The set of those u in S such that (x, u) 7̂ 0, where x
is any fixed element of X, is either finite or countably
infinite. If x, y are in X, then

(2.9-B) L |(x, u) (ÿ, u) I < ||x|| |[y||,
ueS

where the sum on the left includes all u in S for which
(x, y) (y, u) 5̂ 0.

Proof: We write a, = (x, u.). Then
n n

0 < (x - a^u^, X - ^Z^ ^1^ 15
n n

= (x,x) - (^S^a^u^, x) -
n n

^  +^( iilO-iUi, ̂ SlUiU^)
= l|x||̂  x^} ~iS]_â^(x3_Uĵ )

n n _
i=lk=l *̂ i 

2 n _ n _ n _
l|x|| -

= I k f  - iliU^I^.

Therefore ||x|p >
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It follows from (2,9-A) that, If z is In X and n is 

a positive integer, then the number of elements u of S 
such that |(x, u)| > ^ cannot exceed n̂ |)x||̂ . Since 
I(x, u)| > ^ for some n if (x, u) ^ 0 , the set of those
u in S such that (x, u) 0 is a countable union of
finite sets and is, therefore, either finite or coun- 
tably infinite. If u^, is a finite collection
of distinct elements of S, then by (2.9-A) and Cauchy's
inequality we have

n ______ n p 1/2 n p 1/2I < ) (̂ ĝ l (y,û ) | )
£ Ik II ijyil.

This completes the proof.
Theorem 2.10. Let u^, ..., u^ be a finite ortho­

normal set in the space X, and let M be the subspace of 
X generated by u^, ..., u^. Then u^, ..., u^ is a basis 
for M, and the coefficients in a representation 
z = + ... + u^u^ of an element of M are related to
X  by the formulas = (x,u^).

ProofÎ If X = a^u^ + ... + a^u^, then
(x, u^) = a^(u^, u^) + ... + (u^, u^) = a^, by

the orthonormality relations. If x = 0 it follows that 
= ... = = 0. Hence the u^'s form a linearly inde­

pendent set, and therefore form a basis for the subspace 
M which they generate.

Theorem 2.11. Suppose X is complete, and let [ u ^
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be a countably infinite orthonormal set in X. Then a

oo
series of the form a is convergent if and only ifxi— j. ii n2.Si I I  < CD , and in that case we have the relations

00 2 oo
“n = % ) '  = nil V n '  = nSl

between the coefficients and the element x defined
by the series.

Proof: Let s^ = ^1^1 Then by the
orthonormality relations we have (if m < n)

ll®n‘ ®mll ^ ((i=5+l ^i^iH ^ ^i=S+l°-i^i’i=S+l^i^i^

^j=S+l i=&fl

=i=S+l
Since X is complete, it is now clear that the sequenceS' •> 00 2
 ̂ is convergent if and only if < od . If

this latter condition is satisfied, and if x = lim s ,
X  CD ^

we prove that = (x, u^) as follows: By Theorem 2.10
we know that a. = (s^, u , ) if 1 < i < n. But s„ x,1 n 1 —  —  Yi

so (8^, u^) -> (x, u^) by the continuity of the inner
product. Therefore a. = (x, u.). Finally,

2 00 2 m m
11=̂11 = l l i i i  a ^ u j l  = J  i S i  a^u^, a j U j )

m m  __

m 2 00 2
= lim ,£, |o,r = iSi |a,r.m -> CD

This completes the proof.
Theorem 2.12. Let S be an orthonormal set in the
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space X. If S is infinite, assume further that X is 
complete. For each x in X there is an element of X un­
ambiguously defined by x = Z (x, u)u. Let M be the

® ueS
closed manifold generated by S, Then x is in M if and 
only if X = Xg, In any case, Xg is in M and x - Xg is 
in M"*" .

Proof: If X is in X, we know by Theorem 2.9 that
(X, u) 0 for at most a countably infinite number of 
elements u in S. If we index the u's for which (x, u) Q 

in some arbitrary order, say u, , Up, then the series
OD

(x, u^)u^, if infinite, is convergent by Theorems 2.9 n—-L n n 00 p
and 2.11 since ^§^|(x, û )̂ | < ||x|| . Moreover, the
series remains convergent, no matter how its terms are 
rearranged, as may be seen by the first part of the
proof of Theorem 2.11, using the fact that the series
00 2

I (x, u ) I is absolutely convergent. We may then
00

show that the series _ZL(x, u_)u^ converges to thexi—j- n n
same element, no matter how the terms are rearranged.
For, if  ̂v ^  is a rearrangement of ^u^^ , and

^2 = nSl( = '
(x^, u^) = (x, u^) and (Xg, v^) = (x, v^) by Theorem 
2.11. Thus, if u^ = have

(=1- =̂ 2- “n> = (=!' "n> - (=2' "n> = "n>-<*2’ %(n)>
= (X. u^)- (X,

Similarly, (x^- Xg, v^) = 0, and setting = (x, u^),
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0n = (%, we obtain

2 GO 00
11*1 - Xgll = (=1- *2. - n?l®n’'n>

00 _ 00 _
= nSl^n'^'l- ^2* % )  - n£l8n(*i- *2> ’n> " ° *

whence = Xg. These considerations show that the nota­
tion E (x, u)u has an unambiguous meaning and defines 

ueS
an element which we denote by Xg. Evidently Xg is in M,
To prove (x - X g ) X M  it suffices to prove (x - Xg)i. S.
Let V be an arbitrary element of S. Then

(x - Xg, v) = (x, v) - E (x, u)(u, v)
ueS

= (x, v) - (x, v) = 0, 
and hence (x - Xg)Xs.

Since Xg is in M, it remains only to prove that 
Xg = X if X is in M. Now, if x is in M, then x - Xg is 
in M and since (x - %g)_L M, we have

,2

= (X, X - Xq) - (Xq, X - Xq) = 0,
||x - Xgll = (X - Xg, X - Xg)

.gy V-g, - -g,
whence x = Xg. It is clear from an examination of the 
proof that we need not assume the completeness of X if 
S is a finite set, for in that case no convergence ques­
tions arise, and the linear manifold generated by S, 
being finite dimensional, is closed by Corollary I.36,

Definition 2,13. An orthonormal set S in the space 
X is called complete if there exists no orthonormal set 
of which S is a proper subset.

Theorem 2.14. Every inner-product space X having
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a nonzero element contains a complete orthonormal set. 
Moreover, if S is any orthonormal set in X, there is a 
complete orthonormal set containing S as a subset.

Proof: Let S be an orthonormal set in X, Such
sets exist; for instance, if x 7̂ O, then the set
is orthononnal. Let P be the class of all orthonormal
sets having S as a subset. The set inclusion relation
partially orders P. Suppose N = aeZL ̂ ^ ^ completely
ordered subset of P. Then U  is an upper bound ofacA ^
N, and contains 8 since S is a subset of ]Ŝ  for every a 
in / V _ .  If X and y are vectors in Ngg such that x y, 
then X is in and y is in N^,, where a, a' are in Y V . 
Since N is completely ordered, either Nq^Ç. , or 
N , C  N . Suppose for definiteness that N C  , .OL — Cl 01 OL
Then x, y are in N^,, whence (x, y ) = 0. Hence
is an orthonormal set, and it follows that U  Nqj, is acte/̂
member of P. Therefore by Zorn*s lemma P contains a 
maximal element S*. Since S* is maximal, there exists 
no orthonormal set of which S* is a proper subset. Hence 
S' is a complete orthonormal set containing S as a subset.

Theorem 2.15. Let S be an orthonormal set in X, 
and let M be the closed linear manifold generated by S.
If M = X, it follows that S is complete. If the space 
X is complete and the set S is complete (maximal), 
then M = X,

Proof; If S is not complete, then there is an x 7̂ 0
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such that x Xs, and hence also xX.M* Now, if M = X, 
we have xJLx, which implies x = 0. This proves the 
first part of the theorem. Assume now that X is complete. 
Then, if N / X, suppose x is in X'^M and construct x„ as

X-Xg
in Theorem 2,12. Then let y = * By Theorem

2.12 yA.M, so the set consisting of S and y is ortho­
normal. But y is not in S, whence S is not complete.
This completes the proof.

Definition 2.l6. An inner-produot space which is 
infinite dimensional and complete is called a Hilbert 
space.

Theorem 2.17. Let X be an inner-product space
and M a complete vector subspace of X. For any x in X,
there is one and only one point y = in M such that
(|x-y|| = d(x,M) = inf||x-m||. The point y = P»(x) is also

meM
the only point z in M such that x - z is orthogonal to
M. The mapping x -»Ppj(x) of X onto M is linear; its 

“1kernel M* = P^ (0) is the subspace orthogonal to M, and 
X is the direct sum of M and M*. Finally, M is the sub­
space orthogonal to M '.

Proof; Let a = d(x, M ) . By definition, there is
a sequence [ y 1 of points of M such that lim ||x-y |) = a.

n 00
For any two points u, v of X we have
(2.17-A) |(u + v|Î  + |)u - V 11̂  = (u + V, u + v) + (u-v, u-v)

= (u, u) + (u, v) + (v,u)+(v,v) 
+(u,u)-(ü,v)-{v,u)+(v,v)
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= 2(u,u) + 2(v,v)
= 2(||u|p+ ||v||̂ ); hence 

2( ||x-yml|^+ ||x-y^|p) - ||2x-y^+y^||^
= 2( ||x-yjjj|p+ llx-ŷ ll̂ ) - 4||x - - (ŷ j+ŷ )̂ ||̂ .

But 1/2(y^ + y^) is in M, so ||x - ^(y^^+y^) )|̂ > a^.
Since ||x - ŷ JI -> a, given e > 0 there is an n^ such that 
n > n^ implies ||x - y^||^ < + e/4. Then if m > n^
and n > n^ we have — o

llyjĵ - y^ll^ < 2(a^ + e/^ + + e/4) - 4a^ = e, so
^y^^ is a Cauchy sequence. Since M is complete, the 
sequence ^ y ^  has a limit y in M, for which 
||x - y II = d(x, M), Suppose y' in M also satisfies 
||x - y *11 = d(x, M), Then using (2.17-A) again, we 
obtain

l|y-y'll̂  = 2(||x-y||^ + ||x-y* ||̂ )-4||x - |(y+y*)|p

= 4a^ - 4||x - |(y, y' ) |1̂ .
But ^(y + y*) is in M, so ||x - ^(y + y*)|| > a, and it
follows that ||y - y * O. Therefore y* = y
and y = P^(x) is uniquely defined.

Now let z / 0 be any point of M. Then 
|jx - (y +"Az)|p > for any real scalar / 0; this gives

jjx - (y +>\z)||^ = (x - y +/\z, x - y +^z)
= (x-y, x-y) + (x-y, >vz) + ( Az, x-y)

+ ( Az, A  z) 
= ||x-y||̂  + 27\He(x-y, z) + ||z||̂
= + 2ARe(x-y, z) + ||z|p > a^,
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This implies that 2 z) + ||z||̂
= A [ 2 Re(x-y, z) + ^||z||^3 > 0. But if 7\ = k

llzlr
then T\[2 Re (x-y, z) + ?\||zj|̂ ] = 0 ,  so the above in­
equality is true only if Re(x-y, z) = 0 .  Replacing z by
iz (if X is a complex inner-product space) shows that
Im(x-y, z) = 0 ; hence (x-y, z) = 0 in every case, so 
x-y is orthogonal to M. Let y ' in M be such that x-y*
is orthogonal to M. Then, for any z 0 in M, we have
(since (x-y*, y'-z) = 0 )

= ll(x-y’) + (y'-z) 11̂ = |lx-y*||̂  + ||y'-z||̂ ,
so ||x-y* Ip < |(x-z|p for all z in M, This implies that
||x-y*|| = d(x, M ), and it follows that y* = y by the
uniqueness of (x ). Hence the point y = P^(x) is the
only point z in M such that (x-z )X M .

Now if X - y and x * - y ' are orthogonal to M, 
then Az- 7\y j_M, as is (x+x* ) - (y+y*) = (x-y) + (x'-y*).
Since y + y* and are in M, this shows that
P^(x+x* ) = y + y* = P^^(x) + P^(x') and P^( Ax)=)\y=)\p^(x) 
Hence Pĵ  is linear.

If P^(x) = 0 ,  then x - 0 = x is orthogonal to M.
Hence M* = P^^(O) consists of the vectors x orthogonal 
to M. Thus X - P^(x) is in M ', and since
X = P^(x) + (x - P^(X )) for any x in X, we have X = M + M*
Further, if x is in Mf\M *, then (x, x) = 0 which implies
that X = 0. Hence X = M ® M*.
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Finally, if x is in X and x is orthogonal to M*, 
we have in particular that (x, x - P^(x)) = 0. But 
(P^(x), X - P^(x)) = 0 since M'X M| hence

0 = (x, x-Ppj(x)) - (Pj^(x), x-P^(x) )
= (x-Pj^(x), x-P^(x) ) = ||x”Pj^(x) [p, 

so X =. P^(x) and x is in M. Therefore M is the sub­
space orthogonal to M*. The proof is now complete.
([2], p. 115).

Theorem 2.18, Let H be a Hilbert space. Then H 
is isometrically (conjugate) isomorphic to the linear 
space H* of all bounded linear functionals of H under 
the mapping ox S defined by [o(x)](y) = (y, x),
X, y in H.

Proof: Let x^ = Xg, where x^ and x^ are in H. Then
0 = (y,0 ) = (y, x^-Xg) = (y, x^) - (y, x^)

= [a(x^)](y) - [o(Xg)](y) 
for all y in H. Hence a(x^) = afxg) and a is well- 
defined.

Conversely, suppose o(x^) = c(Xg), so that 
Ca(x^)](y) = [o(Xg)](y) for all y in H. Then 
(y, x^) = (y, Xg) and (y, x^ - Xg) = 0 for all y in
H. In particular, (x^ - Xg, x^ - Xg) = 0 ,  whence 
Xi = Xg. Hence a is one-to-one and exists.

We have
[a(a^x^ + UgXg)] (y) = (y, x^ + UgXg)

= (y, x^) + (y, ttg Xg)
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= â^(y, x^) + âgCy, x^)
= a^Ca(x^)](y) + â^La(Xg}1(y). 

Hence a is (conjugate) linear.
Also, I (y, x)| < |)y|J ||x|| by (2.2-A), so 
lk(x)||=sup- |Lblx)](y)| = sup I (y, x) I

l|y|l<i llyllii
5 sup ||y|| }(x|| < ||x||.
Ilyfci

But [a(x)](x) = (x, x) = ||x|p, so
lk(x) II =||Su^^I [a(x)](y)| > |[a(x)

= T T^I Ca(x)](x) I = ||x||.

Hence ||a(x)|| = ||x||.
It remains to be shown that a is an onto mapping. 

Let X* be arbitrary inH*. M = N ( x ' ) =  ^xeH|x'(x) = 0^ 
is a closed linear subspace since x' is continuous.
Then by Theorem 2.17, H = M ® M . Let x^ be in , 
x^ 7̂ 0, and let P : H -> be a projection. For any 
y in H,

- # 4 ^  = %'(y) - °
so y -  ̂y is in M. By Theorem 2.17,

H = (I-P)H + P(H) = M ® M'*“ . Thus
that

p(y) = ^ j  x^. Set X = X ' (x^) ||x^ir^ x^. Then x is
in and
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(y, x) = (y, x»(x^) llx̂ ir̂  x^)

= X' (x^)

= X» (x^) ||x̂
= X*(x^)||x^

= X* (x^) ||x̂

= x*(x^)|lx^

= x ’ (x^) ||x̂

-2
-2

-2

(y, x^)

(P(y) + y - P(y), x^)
C(P(y), x^) - (y - P(y), x^)]

(P(y), x^)

But y was arbitrary, so [o(x)](y) = (y, x) = x*(y) for 
ail y in H, whence a maps H onto H*. This completes the 
proof.

Definition 2,19. Let X and Y be arbitrary complete 
inner-product spaces. Suppose y^ is fixed in Y. Let 
x*(x) = (Ax, Yq ), where A is in [X, Y ] . Then x' is in 
X*, and hence by Theorem 2.18 there is a unique x^ in X 
such that x*(x) = (x, x^). We write x^ = A*y^, thus de­
fining an operator A* on Y into X. The definition of A* 
is fully expressed by the equation

(2.19-A) (Ax , y) = (x, A*y), x in X, y in Y. The
operator A* is called the ad .joint of A.

If X (0) is a complete inner-product space and
if A is in Cx, X ] , then A* is in [X, X] also. If A* = A
we say that A is self-ad.joint.

Definition 2.20, Let X be an inner-product space.
A scalar-valued function (j) on X x X is called a bilinear
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form If ^(%, y) is linear In x for each y, and (p(x, y) 
is linear in y for each x.

With <j) we associate the function ijj on X defined by 
$(x) = (|)(x, x) , and we call $ the quadratic form corres­
ponding to (().

We have
- 1 ( ^ )  = - 4) ( ^ ,

= 5 4>(x,x) + ^ 4)(x,y) + ^ 4>{y,x)
+ J  4>(y,y)

- ^ 4>(x,x} + ^ (|)(x,y) + Ç 4)(y,x)
- Ç 4)(y,y), or 

(2.21) ^ |4»(x,y) + 4>(y,x)| .
Theorem 2.22. Let $ be a bilinear form on X x X.

Then (() is continuous on X x X if and only if it is con­
tinuous at (0, 0). 4) is continuous Jointly in its two
variables if and only if sup J4>(x,y)| is finite.

llxibi
l|y|ti

Proofs First, we note that y^), (Xg* yg))
= ( ||x̂  - Xgll^ + l|ŷ  - is a metric on X x X.

If 4) is continuous on X x X it is continuous at
(0, 0). Conversely, if 4> is continuous at (0, 0) there
is a 6 > 0 such that if f((x, y ) , (0 , 0 ))

=  ( l|x|p + < 6, then I^Cx, y)| < 1 .
Let (I*, y^) = ( - ^  IHI' - j f

2 2
y^), (0 , 0 )) = (-^ + = Ô/2 < 6,
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#11’ # n ’i = s F r w n  " •̂
Thus |^(x, y)| < Ĵlsil—lkJl̂  and

6
S = sup I <1) ( X , y ) I < sup Ml? !!- itz lj < Æ

X K 1 llxIRl 6̂
y il ilylii

Also, If X / O. y ^ 0. then |(|)(-,̂ , 1,^)1 = -|]|}fî|^ < S,
SO |(|)(x, y) I < S ||x|| ||y||.
Consider (x^, y^) in X x X, If x^ = 0 and y^ = 0, then 
(|) is continuous at (x^, y^). Suppose now that x^ =f= 0*
Then ( (x^, y^), (Xg, yv,)) < 1 implies
( j|x̂  - Xgll^ + l|ŷ  - < 1. It follows that
11̂ 2 " 3̂ 1 II ^ and since \\ŷ \\ - ||ŷ || < \\ŷ  - ŷ || we have
llygll < 1 + )|ŷ ||. Let e > 0 he given, and let
M = max [s 11x̂ 11, S(||ŷ || + 1)"( , 6' = min | 1, .
Then if p((x^, y^), (Xg, yg)) < 6* it follows that

l l ^ i - ^ a l l  m  - 2s(  | | y ^ | |+ i )   ̂m  - 2s | |x^  ||*

whence
!<t>(Xi,yi) - (|)(x2,y2)| = <|)(x^,y^)-(|)(x^,y2)+(|)(x^,y2)

< .|<|)(x^,y^)-(()(x^,y2)|+I<t)(x^,y2)
-«(Xxgiyg) I

= |4)(x̂ ,ŷ -y2) |+|(|)(x̂ -X2,y2) I
< S||x̂ || ||y^-y2 l|+s||x -̂X2 l| IkgU

< s||x̂lt llŷ -y2!M Iki-̂ g ||(i+ llŷ  ̂II)
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^^2S(fly^H+l) ̂ (IlyiH +

= e/2 + e/2 = e .
Therefore <|) is continuous on X x X, and the first asser­
tion of the theorem is proved.

If ^ is continuous on X x X, then it is continuous 
at (0, 0) and S = sup |<|)(x,y)| is bounded by the first

I k l l i i
part of the proof. Conversely, if there is a constant 
M such that  ̂su^^ |(t)(x,y)| < M, then I4j(]|f||» -|]̂ ) I

llyllli
= ||tj|̂||yj|̂ - M, so |<|)(x,y)| < M ||x|| ||y||. Let e > 0 be

given. Then ^ ( (x,y), (0, 0)) < ,/e/M implies that 
||x|| < /eTw and ||y(| < /e/M. Hence

|(}){x,y)| < M ( / U n )  ( ,/I7m) = e, 
so is continuous at (0, 0). It follows from the first 
part of the proof that ^ is continuous on X x X.

Def inition 2,23. Let <j) be a continuous bilinear 
form on X x X, where X is an inner-product space. Then 
the norm of ((), denoted by ||(|)||, is defined as follows: 

(2.23-A) IN)II = sup |((l(x,y)|
IMII<1
l|y|ti

(2.23-B) = sup |l|)(x,y)|
l|x||=l
l|y|K
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= A '
IlylMo

I W -(2 .23-C) = supIN I Mo I Ml Mo
It follows from (2 .23-C ) that |(|)(x,y)| < ||(|)|| ||xj| ||y|| for 
all X and y in X.

For the quadratic form ifr corresponding to the bi­
linear form (|) we define

W||=

= sup . sup i t i j ç i i  .
IklKo 11%f  iNIMo ilxlp

Definition 2.24. A bilinear form (|) is called 
symmetric if (|)(x,y) = (|)(y,x).

Theorem 2.25. Let X be an inner-product space.
If (j) is a symmetric bilinear form on X x X and l|j is 
the corresponding quadratic form, then jl̂f) jj = INj||.

Proof! Since x) | ||x|| = l] Ç  [0(x,y)|
INII = INII = l| , we have ||l|T|| < #||, Also,

I Re 4)(x,y) I = 1“ {(|)(x, y) + ^(x, y)] | .
Since (() is symmetric this gives |Re ^(x, y ) | =|^ {̂ (()(x, y) 
+ (|)(y, x) ̂  I, and from 2.21 it follows that 

I Re (|)(x, y) I = |l|j(~^) - I
5 I4l(^)| + l t ( ^ ) l  
< #11 IP̂ IÎ  + 11$II i P f f  

= (||x+y|P + IN-y||̂ ).
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Applying 2.17-A, we obtain

I Re 4)(X. y)l = ^  (2(|k||2 + ||y||2))
_ Jl| |j ( 11% 11̂ + ||y||̂ ), (The Re symbol, for the "real 
part” is superfluous if (() is a real-valued, function.)
For fixed x and y with ||x|| = ||y|| = 1 we can choose a 
so that )a| = 1  and a(()(x, y) = |<|>(x, y)|. If <() is real­
valued we choose a = -1 if (|)(x, y) < 0 ,  a = 1 if 
(|)(x, y) > 0. If <j) is complex-valued we choose

I4)(x,y) I = ((l)(x,y)<j){x,y) = ({){x,y)
= a (j)(x,y).

Since |<^(x,y) | = |^Tx77T| , |a| = I = ( |('x*y
Therefore

|(|)(x,y)| = (j)(ax,y) = | Re <|>(ax,y)| 1 l|x||̂ +||y |1̂ ) =
so ||(|)|| = sup |<j)(x,y)| < #||. Hence ||(|)|| = |jljj[) and the

Ik 11=1
)|y||=i

proof is complete.
Theorem 2.26, Let X be an inner-product space. 

Suppose (|){x, y) = (Ax, y), where A is linear on X into 
X. Then <|) is continuous if and only if A is continuous, 
and in that case ||a || = ||<t)||.

Proof: If A is continuous, then ||a x || < ||a || ||x||
for all X in X. Hence by (2.2-A) we have

I (Ax, y) I < (|a x || Ijyjl < ||a || ||x || ||y||, and so
sup |(|)(x, y)| <
6i sup ||a|| IkII ||y|| 1 ||a||.

<1
<1

)=i.
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Therefore (() Is continuous by Theorem 2.22, and j|(})|I < ||a||. 

Conversely, if (|) is continuous, then 
y) I < ||(|)|| ||x|| ||y||, and we have 
llAxil̂  = (AX, Ax) < ||x|| ||ax||.

If ||Ax || = 0, A is the zero operator and is continuous.
If |jAx|( ^ 0, then |(Ax () < ||(j)|| ||x|j, whence A is continuous 
by Theorem 1.27. Also,

= ii:#o %  - ii:#o
and together with the first part of the proof this implies
llAll = 11* 11.

Definition 2.27. A linear operator A with domain 
and range in the inner-product space X is called symmetric 
if (Ax, y) = (x. Ay) for every x, y in D(A).

We see that a self-adjoint operator is symmetric. 
Conversely, a symmetric operator whose domain is all of 
X, with X complete, is self-adjoint. In the next section 
we consider only operators whose domains are the whole 
space on which they are defined, so in this case we 
make no distinction between symmetric operators and self- 
adjoint operators.
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CHAPTER 3 
Compact Operators In Hilbert Space

Definition 3*1• Let X and Ï be normed linear spaces.
Suppose T is a linear operator with domain X and range 
in Y. We say that T is compact if, for each bounded se­
quence ^ in X, the sequence iTx^^ contains a sub­
sequence converging to some limit in Y.

Theorem 3*2. Let H^ and Hg be Hilbert spaces, A an 
operator from H^ to Hg, and B an operator from Hg to H^.
If A is compact with D{A) = H^, and if B is defined and
bounded everywhere in Hg, then the operators AB and BA
are compact.

Proof: Suppose  ̂x ^  is a bounded sequence in
H^. Since A is compact,  ̂x^^ contains a subsequence 
\^'nl such that [ a x '̂ ^ converges. Suppose Ax*^ -?*x. 
Then since B is bounded (and hence continuous),
BA x*^ = B(Ax’̂ ) Bx, whence BA is compact. Further, 
the sequence ( is bounded, so the sequence
1 a (Bx ^)^ = |a B x^^ contains a convergent subsequence.
Therefore AB is compact. ([3], p. 101),

Theorem 3.3. Let H^ and Hg be Hilbert spaces, 
and A a bounded linear operator from H^ to Hg. If A is 
defined everywhere in H^, then A is compact if and only 
if A*A is compact, where A* is the adjoint of A.

37
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Proof: If A Is compact, then A*A is compact from 

Theorem 3.2 since A* is bounded.
Conversely, suppose the operator A*A is compact and 

let be a bounded sequence of elements in such
that 11%^II < C for some constant G and all n. From ^ 
we can select a subsequence  ̂ such that [a *A x ' ^
converges. But then

Ik^'n - - x'm). A d ' n  ‘ >
= A*A x'^ - A*A x'^)
- I|a*a x 'jj - A*Ax’̂ ||
< 2C ||a *Ax *^ - A»Ax»^||,

Given an e > O, there is a positive integer N such that
%

n, m > N implies ||a*A x ’̂  - A*A x'^|| < ^  . Hence 
n, m > N implies ||Ax'^ - Ax'^jj < e, so the sequence 
Cax* 1 converges. Therefore A is compact, ([3],il

p. 106).
Theorem 3.4, Let and be Hilbert spaces, A 

a linear operator from H^ into Hg defined everywhere in 
H^. If A is compact, then A* is also compact.

Proof: Given x, y in H^, we have
(y, Ax) = (Ax,y) = (x,A*y) = (A*y,x) = (y,A**x), 

where A** = (A*)*. Hence 0 = (y ,Ax) - (y,A**x) = (y,Ax-A**x) 
Since x and y were arbitrary, this implies that 
Ax - A**x = 0 for all x in H ^ , or A = A**, From Theorem 
3.2, if A is compact, then AA* is compact. But 
AA* = (A*)* A*, so A* is compact by Theorem 3.3. This
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completes the proof, ([3], p. I0 6 ),

Theorem 3*5. Let Hg be Hilbert spaces,  ̂
a sequence of compact linear operators In Lh ^, Hg] such 
that ||a ^ - a || -^0, Then A is compact.

Proof; Let S = in H^ | ||x|| < 1^ . We will
show that ArS j is compact ; first we show that A(S) is 
totally bounded. Since |(Â  - a || -> 0, given e > 0 there 
is a positive integer N such that, if n > N, then 
||Â x - Ax (I = II (A^- A)x|l < e/3 for all x in S. Since 
A^ is compact, every sequence in A^(S) has a convergent
subsequence, whence A^(S) is compact by Theorem 1.17.
Then A^(8 )is totally bounded by Theorem I.I6, so A^(S) 
is totally bounded. (If G is totally bounded, then G
is totally bounded. For, given e > 0 there is a finite
subset (x^, ..., x ^  of G such that, if x is in G, 
then d(X, x^) < e/2 for some i. But there is an x'^ 
in G such that d(x^, x ' ^  e/2, so d(x^ x]_ ) < d(x, x^)
+ d(Xj^, < c. Hence ^x*^, ..., x Ç  g is a
finite e-net, and G is totally bounded.) Hence given 
n > N there is a finite subset {a^ x^, ..., A^x^ of 
A^(S) such that for any x in S, ||Â x - A^x^ || < e/3 for 
some i, 1 < i < m. Then given n > N and x in S, there 
is an i, 1 < i < m such that

||a x  - Ax^ll < 1|Ax - A^xll + IIa ^x - A^x^ll + ||A^x  ̂ - Ax̂ ĵj
< e/3 + e/3 + e/3 = e.

Hence A(S) is totally bounded, so A(S) is totally bounded.
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(If G is totally bounded, then G is totally bounded.
For, let X be in G and let e > 0 be given. Then there 
is an X* in G such that d(x, x') < e/2. Also, there is 
a subset ^x^, x ^  of G such that d(x*, x^) < e/2
for some i, 1 < i < n. Then d(x, x^) < d(x, x')
+ d(x', Xĵ  ) < e , whence ^ x^, .,,, x ^  is an e-net 
for G, and G is totally bounded.), Since Hg is complete, 
A(S) is compact.

Now let ^ x ^  be a sequence in h' such that 
||x̂ || < C for all n, where C is a positive constant.

Then ^ is in S , and since A (S ) is compact, the se­
quence A x^l has a convergent subse-"
quence A x*^^ . Suppose ^ A x'^ x, where x
is in A(sy, Then Ax*^ Cx, whence A is compact.

Definitions 3.6, 3.7, 3,8, 3.9, 3.10. Let X be a 
normed linear space, T a linear operator whose domain 
D(T) and range R(T) lie in X. Consider the operator 
}%I-T, where is a scalar and I is the identity 
operator. We write 7\-T in place of 7\ I-T, If 7\ 
is such that H( 7\-T) = X and if -T has a continuous 
inverse, we say that ?N is in the resolvent set of T.
All scalar values of not in the resolvent set comprise 
the set called the spectrum of T.

If is a scalar such that 7) -T has no inverse,
then there is at least one nonzero vector x such that
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Tx = 7\ X. In this case 7\ Is called an eigenvalue 
of T, and x is a corresponding eigenvector.

The null manifold of ^ - T  Is called the elgen- 
manlfold corresponding to *A ,

Suppose A Is a linear operator with domain and 
range In the Inner-product space X. If we regard D(A) 
by Itself as an Inner-product space, then (|)(x, y)= (Ax,y) 
Is a bilinear form on D(A) x D(A), and <() Is symmetric 
If and only If A Is symmetric. The corresponding 
quadratic form, defined on D(A), Is (Ax, x).

We assume now that A Is symmetric and that D(A) ^ 0 .
Then (Ax, x) Is real since (Ax, x) = (x, Ax) = (Ax, x).
We define

(3.11) m(A) = Inf (Ax, x), M(A) = sup (Ax, x).I k  11=1 I k  11=1
The possibilities m(A) = - od, M(A) = + od are not excluded.

Theorem 3,12. If A Is a symmetric operator on an
Inner-product space X and ?\ Is an eigenvalue of A, 
then 7\ Is real and m(A) < 7\ 5 M(A). Also, eigen­
vectors corresponding to distinct eigenvalues are orthogonal, 

Proof: Suppose Ax = ̂  x, and assume without loss
of generality that ||x|| = 1. Then (Ax, x) = (?\x, x)
= (x, x) = , so 7s Is real and m(A) < — h(A).
If Ax = 7\ ̂ x and Ay = TXgy where ^ 7\ 2*
7X]^(x, y) = ( 7n 1 X, y ) = (AX, y) = (x. Ay) = (x, ^y)

= y ). Hence ( 7x 1“ 7\2 ) Y ) = 0» It follows
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that (x, y) = 0.
Theorem 3.13. Let A be a symmetric operator on the 

inner-product space X with D(A) = X. Then A Is continu­
ous If and only If m(A) and M(A) are both finite, and In 
that case ||a || = max |(m(A)j, |M(A)|^ .

Proof* By Theorem 2.26, A Is continuous If and 
only If <t>(x, y) = (Ax, y ) Is continuous, and then 
I|a|1 = ||<|>||. By Theorem 2,22, <|)(x, y) Is continuous If 
and only If ||(|)|( = sup j (Ax, y)| < od . Since (|) Is

=1
=1

symmetric If A Is symmetric, we have from Theorem 2.25
that ||i(l|| = #11 = sup #(x)| = sup I (Ax, x)|. Hence A

||x||=l ||x||=l
Is continuous If and only If sup |(Ax, x)| is finite.

Ik 11=1
But this Implies that m(A) and M(A) are finite. Further, 
If A Is continuous, then j|A|j = ||<j)|| = sup ) (Ax, x) |

Ik 11=1
= max [|m(A)|, |m (A)|( . The proof Is now complete.

For the remaining theorems we assume that A Is In 
[X, X ] , where X Is a real or complex Inner-product space. 

Theorem 3.14, Let A 5̂ 0 be a compact, symmetric 
operator. Then either ||a|| or -||a |J is an eigenvalue of 
A, and there Is a corresponding eigenvector x such that 
||x|| = 1 and I (AX, x) | = (|a||.

Proof* Since A Is compact It Is continuous. For, 
discontinuity of A would, by Theorem 1.2?, Imply the
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existence of a sequence l[x^ such that ||x̂ || = 1 for 
all n and ||Ax̂ || -> od ; this cannot occur if A is compact. 
Since A is continuous, we have by Theorem 3.13 that 
|m(A)| <  OD , |m(A}| <  OD, and ||a|| =  max ^|m(A) | , |m(A)|^ .

This implies that there is a sequence ^ x ^  such that 
||x̂ || = 1 for all n and (Ax^, x^) - > ^  , where is real
and IA I - ||a||. N o w

0 1 llÂ n - Ax^ - }\x^)

= (Ax^, Ax^) - (7\x^, Ax^)-(Ax^,>\x^) 
+ ( = IIaXĵ IP-2 7n(Ax^,x^)
+ < (IIa II I|x^||)^-2?\(Kx^.x^)
+ 11x^11̂ = \ k f  - 2 h(Ax^,x^) +)\^.

Since (Ax^, x^) -> 7s » given e > 0 there is a positive 
integer N such that n > N implies |(Ax^, x^) - A  |<

°"' ^  - z n r r  " -= A + z r ^ -  >\ > o «e
have

l|A%n- llA|l̂  - z'AC 2T ^ >  +
= ^ - 27\^ + e + ^  ̂  = e,
and If 7\ < 0 ,

l|A%n - A^nlP < I|a |P - 2?\( A  + Z T ^ >  + 1\ ^
= = e.
Therefore l|Ax̂ - ^  x̂ || -> 0, which implies that 
Ax^ - 7\ -^0 since |Jx|( = 0 if and only if x = 0 .
Since A is compact,  ̂A x ^  contains a convergent sub­
sequence which we denote by ^Ay^^ , where &
subsequence of ^ x ^  . Suppose Ay^ -> x. Then given
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e > 0 there is a positive integer K-ĵ such that k > 
implies ||Ayĵ  - i|| < e/2. Also, there is a Kg such that 
k > K 2 implies IIasTĵ ^ e/2. Let K = max^K^, .
Then k > K implies

||x < ||x - Ay^ll + IIa J ĵ < e/2 + e/2 = e.
Therefore ^  ^ and. y^ -> -^since 7\ / 0. Then
Iĥ ll “ 1 and (A-7v ) y^ -> (A- = -^Ax - x.
Since Ax^ - ^ x ^  -> 0, this implies that ■=^Ax - x = 0, 
or Ax - 7\x = 0. Thus 7\ = ||a || or ^  = -||a (| is an 
eigenvalue of A. Also,

l(A(-̂ ), -̂ ) I = |(7\(-̂ )f -̂ ) I = I ̂  = I 7\ I = ||A|
This completes the proof.

We now apply Theorem 3.14 repeatedly. Denote the 
eigenvalue and eigenvector of Theorem 3,14 by 7\ ̂  and 
x^ respectively. Let = X and Xg = [ x| (x, x^) = 0^ . 
Then Xg is closed. For, if ^y^^ is a sequence in Xg 
such that y^ -> y , then given e > 0 there is a positive 
integer N such that n > N implies ||y - ŷ || < || ,
Hence ((y, x^)| = |(y + y^ - y^, x^)| = |(y - y^, x^)

+ ( y ^ *  ^ i ) l  = I ( y  -  y ^ ,  x ^ ) l  < lly -  y^H I N i l l - ^  e.

But since e was arbitrary, it follows that (^, x^) = O 
and y is in Xg. Hence Xg is closed. Also, A(Xg)C  Xg; 
if X is in Xg, then (Ax, x^) = (x, Ax^) = (x, A  ̂  ^1)
= 7\^(x, x^) = 0, whence Ax is in Xg, Now let  ̂x ^  
be a bounded sequence in Xg. Then ^ Ax^^ has a con­
vergent subsequence which converges to a point in Xg
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since Xg is closed. Thus the restriction of A to Xg 
is compact and symmetric. If this restriction is not 
the zero operator, then by Theorem 3.14 we can assert 
the existence of  ̂ and Xg such that Xg is in Xg,
Ijxgd = 1 , AXg = gXg, and | }\g| is the norm of the 
restriction of A to Xg. Since Xg Ç  x^, | ?\ g| < | .
Continuing in this way we obtain the nonzero eigenvalues 
"^1’ ̂ 2' •••’ n corresponding eigenvectors
x^, Xg, x^ of unit norm. We also obtain

which are orthogonal to x^, Xg, ..., x^, that is, if x 
is in then (x, x^) = 0 for i = 1, 2, ..., k. At
each step x̂  ̂ is in X^ and is the norm of the re­
striction of A to X^, so I 2 I )\2  ̂ - * • * - I '
The process stops with x^, and X^^^ if and only
if the restriction of A to X^_^^ is the zero operator.
In that case the range of A lies in the linear manifold 
S = ̂  a^x^lm < n ^  generated by x^, Xg, ..., x^.
For, if X is in X, let

(3.15) y„ = X - (X, x^)x^.
Then

(y„, X^) = (X - J^g^(x, Xĵ )Xĵ , x p
n

= (x, x^) - ^g^(x, X^)(x^, x^)

= (x, x^) - (x, x^) = 0 , 1 = 1, 2, ..., n. 
Hence y^ is in X^^^ and Ay^ = 0 since a|x^^^ is the zero
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operator. Thus

n
(3.16) Ax = A(y^ + (x, x^)x^)

n
= + k:l

k§l ^k'^k^k " k§l ^k(^' ^k)^k"
This situation may occur even if X is infinite dimen­
sional, It will certainly occur if X is finite dimen­
sional since a linear space with finite dimension m can 
have at most m linearly independent vectors.

The foregoing considerations lead us to the state­
ment of the following fundamental theorem:

Theorem 3.17. Suppose A is a compact symmetric 
operator, and A 7̂ 0. The procedure described in the 
foregoing discussion yields a possibly terminating se­
quence of nonzero eigenvalues ^ 1 * , ... and a
corresponding orthonormal set of eigenvectors 
x^, Xg, .... If the sequences do not terminate, then 
I 0. The expansion

(3.17-A) Ax = E (Ax, x^)x^ = e A ^ ( x , x^)x^ 
is valid for each x in X, the summation being extended 
over the entire sequence, whether finite or infinite. 
Each nonzero eigenvalue of A occurs in the sequence

, The eigenmanifold corresponding to a particular 
is finite dimensional and its dimension is exactly 

the number of times this particular eigenvalue is re­
peated in the sequence *
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Proof* Since I ^ l ^ k +1 *̂ either have 
0 or I 7\^| > e > 0 for some e and all n. Suppose 

the latter and suppose that the sequence Is Infinite.
|X„ii , r X

Then 1| < = ~ , so ^ i s  a boundedAn G ^ e I 7\n )
sequence. But A(-r-^) = —  Ax = >\„x = x ,

An An A n  * % ^
so I x ^  must contain a convergent subsequence since 
A is compact. This is impossible, for the orthogonality 
of the x^’s yields

K  - = <^n - ’'m'
= (ï„, x„) - (%n. - (=%'
= Ijx̂ ll̂  + Ijx̂ ll̂  = 2 for all m, n such

that m 5̂ n.
Therefore ^ x ^  contains no Cauchy subsequence, so ^ x ^  
has no convergent subsequence. It follotfs that 7\ ̂  0
when the sequence ( is infinite.

If the sequence of ^  ̂ 's terminates with 
(3,17-A) is equivalent to 3.16. In the nonterminating 
case we define y^ by 3«15 and obtain

I K  If = - kSi(=. ^k> ^k’ ^ - kSi(%' ='k>’'k>
n n

n n

= (x, x) - X^)(x, x^)- X^) (x, x^)

+ %Si(x, x̂ )(x, x̂ ) = I|x||̂ “ k̂ ql f IkII
Since y^ is in and | is the norm of the
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restriction of A to we have

l l A y „ l l 5  IIAII Ihr^ll < l A » + i l  l l y „ l l <  l ? \ „ + i l  l lx l l .

But “̂ 0, so given e > 0 there is a positive
integer N such that n > N implies | A Hence
n > N implies |(Aŷ || < e, and ||Aŷ )| -> 0. It follows
that Ay 0. Also,

n n
Ay^ = A{x - x^)x^) = Ax - ^g^(x, Xj I Ax,

so
Ax = 1 ^  ^2^ (x, x^)Ax^ = E(x, x^)Ax^

= E(x, Xj^)Aj^X|^
=

= 2(x, AX^)Xj^
= E(Ax, x^)Xj^.

This proves 3.17-A.
If 7\ is a nonzero eigenvalue of A which Is not 

in the sequence  ̂ » then by Theorem 3«14 there is a
corresponding eigenvector x of unit norm, and x must be 
orthogonal to x^ for every n by Theorem 3.12, Then 
Ax = 0 by 3.17-A, This contradicts Ax = A  z / O. Hence 
each nonzero eigenvalue of A occurs In the sequence [ A  

An eigenvalue cannot be repeated infinitely often 
in the sequence , because ^  ̂  0. Suppose that

occurs p times. Then the corresponding elgen- 
manifold contains an orthonormal set of p eigenvectors, 
and is therefore at least p-dlmenslonal^ It cannot be 
of dimension greater than p, for this would entail the
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existence of an x such that Ax = ^ 0, ||x|| = 1,
and (x, x^) = 0 for every n. But this is impossible,
for then Ax = 0 by 3,17-A. The proof is now complete.

Theorem 3.18. Suppose X is complete. Let { x ^
be an orthonormal set, and let ^  be any sequence
of real numbers such that 0. Let A be defined

00 .
by Ax = ;|^£iA^(x, x^)x^. Then A is self-adjoint and 
compact.

Proof; First of all we show that Ax is defined
00

for all X in Xo By Theorem 2,11, z^)x^ con­
verges if and only if Z| ^(x, x^) | ̂  = l| >\ (x,x^^) | ̂ < c®
But z| (x, x^) I ̂  < ||x(P by Theorem 2,9, and since ?\^ 0
there is a constant M > 0 such that 1 /\ni — ^ for all n. 
Therefore z| )\^|^| (x,x^) | ̂  ||x|P, so zAj^(x, x^)x^
converges for all x in X, whence Ax is defined for all 
X in X,

To prove A self-adjoint we must show that
(Ax, y) = (x, Ay) for all x, y in X, We have, by the
continuity of the inner product,

(Ax, y) = lim ( 
n -> OD

= lim 
n CD

= liiu V-V , T-tr* j / I
n ^  CD ^

Hence A is self-adjoint,
n

Now let A^x = x^)x^. Then A^ is compact
by Theorem 1,37 since R(A^) is finite-dimensional (R(A^)

n
kSi
n

k^l k^)(X

,.<y, :
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Is closed by Corollary 1,36,)» We have 

||(A^- A)(x)|p = IIâ x - A^ll^ =
CD p

= k=5+il^k<’'> =%)I •

Since A  ̂  ->0, given a integer n > 0 there Is a real 
number ?\ (n) such that Tn (n) = sup { I ^+1  ̂* ̂ ^n+2 I * * "1 
Hence

||(A„- A)(x)|p < I A  (n)|2 i,=S+il(x, %%)|Z

< |7\(n)|2 llxip.
But A(n) -> 0, so given e > 0 there Is a positive
Integer N such that n > N Implies | % (n)| < e. Hence 
If n > N we have

||a  - All = sup ||(A - A)(x)|| < sup |>\(n)| ||x||
IN 11=1 IN 11=1

= I 7\(n) I < G,
Hence ||a^- a || -> 0, and It follows from Theorem 3.5
that A Is compact «

Theorem 3.19. Let A, [ 7\ » [x^^ be as In
Theorem 3.17. Then, If 'h ^ 0 and for each k,
7s-A has a continuous Inverse defined on all of X and
given by X = ( }\-A)°°^y, where

1 1 (y»x, )
(3 .1 9-a) X = -^ y + -y E A k

Proof: Suppose x and y are given such that
7\x -Ax  = y . Then Ax = }\ x - y , and so from 3.17-A 

we have
X x  - y = 2 Xj^(x, x^)x^.
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We form the inner product with and obtain 

( "Nx, x^) - (y, x^) = ( )\x - y, x^)
= (Z )\^(x, x^)x^, x^)
= z7\jj.(x, x^) (x̂ ,̂ x^) = A^(x,x^)

Thus
(y,x.)

and so
X = y + sTn, (x, X, )x, = y + Z \k'""' ^k^^k ' ' " ''k ^k*

which gives 3.19-A. This shows that the solution of
( A-A) x = y is unique, if it exists. On the other hand,
if the series in 3.19-A is convergent, the element x de­
fined by 3.19-A satisfies ( -A) x = y, for then

( A - a ) X = ( A - a )(-^ y + -X- ''k)
(y.xjj) 1

1 \ (y,3^)
- - ^ > ' k

We put AXĵ  = '/x^x^ in the last sum and use 3,17-A with 
y in place of x| then

(y,x ) .
(>v-A)x = y + z A k

V k

= y + E d  - A k  ^k = ^

We now show that the series in 3.19-A converges,
no matter how y is chosen. Let a = sup | 1 ,

k ^ ^k
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1 ̂  ""ri - k S l ^ k  X-)\k ^k'
n (y,x, )

^n ~ k~l   O' and 3 are finite. Now, If m < n,
II ii2 , ^ \ (y,3L ) n . (y,x )

“ ^k=£+l k X “ >\ir k=5+l k X -  Xjj ̂ k^

j=fi+i k=fi+i x - x  j ̂ k  x - X k ^ ^ r  ^k)

n . 2 I(y,3L)
= k=fi+l>^fe ( > v - V 2

= k X i  I<y> ^k>l^

< a 2 J + , | ( y .  V I  2.

Therefore  ̂ Is a Cauchy sequence, because E|(y, x^)|
Is convergent by Theorem 2.9. If X Is complete, this 
Implies that u^ -> u, where u Is In X. If X Is not 
complete we continue the argument as follows:

K f  = kSi i  2̂ %^)|^ < i|y||2,

 ̂ y n (y,x. )
so I v^^ Is bounded. Now Av^ = "JÇZ  .

n (y,x )
= kSl I F K  ^k^'k = "n-

Hence, the compactness of A Implies that | u^^ contains 
a convergent subsequence. Since ^ u ^  Is Cauchy, It 
must then be convergent to the same limit as the subse­
quence. Hence the series In 3.19-A converges. We see
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from 3.19-A that
I H I =

- II T^ll + II t" ^ ^ k  '̂k II

- TXT ll̂ll ■" TXT “ II ̂  ""k' %kW-
But ||r(y,Xjj)X]j|| = l|y|| by Theorems 2.9 and 2 .11, so 

l | k | | < f ^  Ibrll t j \ j a  Ibrll,
Hence

igffe

-  T ^  ■" T ^
SO is continuous and defined on all of X, .

Theorem 3.20. Let A, ^  be as in
Theorem 3.17. If %  = for some j, then the range 
of ^  -A consists of all vectors orthogonal to the 
eigenmanifold corresponding to Foi" such a
vector y the general solution of (}\ -A) x = y is 

(3.20-A) r = ^  h- ^  ),k;x^k ^k »

where w  is an arbitrary element of E^,
Proof: Let x be in X, and let Zj be an arbitrary

vector in E^. Then
((>\-A)x,. Zj) = (>\x-Ax, Zj)

= (>\x, Zj) - (Ax, Zj) 
= ()\x, Zj) - (x, AZj)
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= ( X x ,  z j ) - (x, Z j )

= ^ ( X ,  Zj) - 7 n(x, zj) = 0 .
Hence If y is in R ( X - A ) ,  then yJ-Ej.

N ow suppose y is given, and that A x - A x  = y.
T hen from 3 .I7-A we  have

= Ax = Z: )\ %(x, x ^ )x ^ .
Forming the inner product w i t h  x^ gives

()\x, x^) - (y, x^) = %  j^(x, x^).

Thus, if we have
( y , x . )

*i> = TFTq ’
and so

= y +>VkPx>'k ^  >'k§7s>'k(^'
But by Theorem 2 ,1 2 , P(x) = (x, x^)x^ is the

orthogonal proj e c t i o n  of x onto the linear manifold 

generated by E^, Hence
1 1 (y»x, )

1 1 . (y,ik( I _ p ) ^ = ^ y  ^ ^ > ^ k P X  ^ k C y , V
k

If W  is an arbitrary element of E j , then (I - P )( x + W ) 

= (I-P)x + ( I - P ) ^  = (I-P)x, Therefore, given y in

'k
H ( X - A ) ,  - L  y «  solution of

(y,x, )
+ W  . We( A - A )  X  = y, as is i  y + A k p ^ ^ K V ^ ^  ^

.t'W ^ “
(y»x )

have shown in Theorem 3.19 that 2 ^  j x^ converges,
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no matter how y Is chosen. If y Is orthogonal to ,
the element z defined by 3.20-A then satisfies (7\-A) x=y,
for

)\x-Ai = y + )\w - ^ A y
'k

1 {y,x. )

= y '•VPx^k ■ y>'k?X^k'y ’̂ k**k

-  y x k P x ^ k  ^ k ’̂ k̂

+ > w  -Auj - -A)^ (y,

+ (7\-a )ui - - ^ X k S x  ~^k‘y ’ ^k'^'k = y-
Therefore the range of 7\ -A consists of all vectors 
orthogonal to E^, and for such a vector y the general 
solution of -A) X = y Is given by 3.20-A.

We round out the foregoing discussion by consider­
ing the null manifold and range of A when X Is a Hilbert 
space.

Theorem 3.21. (a) Let A, {'X ̂ "1 ’  ̂̂ n\
3.17, and let M be the closed linear manifold generated 
by the eigenvectors x^, x^, ... . Then = N(A).
Hence the orthonormal set \ x^^ Is complete If and 
only If 0 Is not an eigenvalue of A. When X Is complete 
we have X = M 0 N (A ),
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(b) Suppose X is complete. Then the range of A 

is composed of those elements in M which are such that 
the series

(3.21-A) 2 ---^
A k ^

is convergent.
Proof: (a) Let x be in , Then (x, x̂ )̂ = 0

for all k, so Ax = 0 by 3.17-A. Hence x is in N(A) 
and Ç  N(A). Conversely, if x is in N(A), then for 
any k, (x, (x, = X  (x, Ax^)
= (Ax, x^) = 0, so X is in , Hence = N(A).
The orthonormal set  ̂x^^ is complete if and only if 

= (0), which means that if x ^ 0, then Ax ^ 0. It 
follows that if  ̂x^^ is complete, then 0 is not an 
eigenvalue of A. If X is complete, we have X = M ® N(A) 
by Theorem 2,17.

(b) Suppose Ax = y. Then from 3.17-A, y = Ax 
= e X ^ ( x » x^)x^, so y is in M. From the orthonormality 
and continuity of the inner product we obtain

(y, x^) = (e X jj.(x , x^)x^, x^) = e A jj.(x , %^) (x̂ ,̂ x^)
= X  ̂ (x, x^).

Since X = M © N(A) we can write x = u + v, where u is 
in M and v is in N(A). Then (x, x^) = (u, x^) + (v, x^) 
= (u, X, ) since N(A) = , and by Theorem 2.12 we have

(x,>S^X )
u = E(u, = Z{x,x^)x^ = E --- ^ \

(x,Ax. ) (Ax,x, ) (y,x, )
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necessarily being convergent if it is infinite. Con­
versely, suppose y is in M and that the series 3.21-A 
is convergent, with u as its sum. Then 

(y,3C^) ^

so y is in R(A). This completes the proof.
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