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Groen, Amy H. M.S., May 2006 Forestry

The Effectiveness of Post-Fire Erosion Control Techniques in Western Montana 

Committee Chair: Scott Woods

Soil erosion rates in undisturbed forested watersheds are typically very low. However, 
substantial increases in erosion have been observed following forest fires due to the loss 
of vegetation and duff, and altered soil physical properties. This study used two 
experiments to evaluate the effectiveness of three commonly used post-fire erosion 
control treatments: aerial seeding, straw wattles, and straw mulch. The first experiment 
compared erosion rates from hillslope scale plots treated with straw wattles or straw 
mulch to untreated control plots in an area burned by the 2001 Moose Fire in western 
Montana. Silt fences were used to measure the sediment yield from three replicates of 
each treatment and the untreated control. Total sediment yield nine months following 
installation ranged from 3.1 kg ha'1 to 7.9 kg ha'1, with mulched plots producing the least 
and straw wattle sites the greatest amount of sediment. Thirteen months later, control, 
wattle, and mulched sites had produced 46%, 16%, and 19% less sediment per unit of 
rainfall received compared to previous measurements, indicating a trend toward baseline 
erosion rates. High yields from the wattle sites were likely due to soil disturbance during 
installation.

The second experiment used a rainfall simulator to compare erosion and runoff rates
from 0.5 m2 plots in an area burned by the 2002 Fox Creek Fire in western Montana. In
the first year after the fire, rainfall was applied to ten replicates each of aerial seeded,
mulched and control plots at an intensity of ~80 mm/hr for one hour. Mean values for
total runoff from the seeded and mulched plots were 30 and 28 mm, respectively,
compared to 44 mm for the controls. Peak runoff rates from the seeded and mulched plots
had mean values of 41 mm/hr and 40 mm/hr, respectively, compared to 59 mm/hr for the
controls. The mass of sediment lost from the seeded and mulched plots averaged 0.59 

2 2 2 
kg/m and 0.10 kg/m , respectively, compared to 0.79 kg/m for the controls. Limited
additional work at the same plots in the following year indicated a decline in runoff and
erosion from seeded and control plots but an increase in erosion from mulched plots. The
results indicate that while both aerial seeding and straw mulch reduce surface runoff and
erosion in the first year after a fire, straw mulch is greater than three times more effective
in reducing surface erosion rates. Seeding becomes increasingly effective in the second
year, when ground cover exceeds a critical threshold for reducing erosion.
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INTRODUCTION

Wildfires are natural disturbances that play a key role in shaping the forested 

ecosystems of the western U.S. However, there is considerable debate over the best 

approach to managing fire in these ecosystems. The Transfer Act of 1905 entrusted 

immense forest reserves to the U.S.D.A. Forest Service (USFS) for administration 

purposes (Pyne, 1995). Soon after, the firestorms of 1910 burned over 2 million hectares 

of national forest lands. The political furor these fires created has led to the development 

of fire protection systems intended to reduce the risk of future fires and consequent 

property damage and loss of life (Pyne, 1982). A key component of fire protection was 

the practice of fire suppression, which involved extinguishing new fires as soon as 

possible. As a result of continuing concerns over the risk to life and property, fire 

suppression has remained a cornerstone of USFS fire management policy for almost 100 

years.

Due to the long-term effects of fire suppression on forest structure, fuel loads in 

the northwest have increased over time. This has led to a dramatic shift in the outcome of 

forest fire events, allowing landscapes that historically endured low and moderate 

severity fire effects to experience an increasing rate of fuel consumption and higher 

severity bums (Walstad, Radosevish, and Sandberg, 1990). With higher severity fires 

comes an increased risk of debris flows and downstream sedimentation, reduced soil 

productivity, and risks to life and property (Robichaud et al., 2001). The effects can also 

extend to riparian systems and isolated fish populations (Rieman et al., 2003).

The consumption of soil organic matter after a high-severity wildfire can lead to a 

reduction in both the aggregate stability and the number of large pore spaces (Benavides-
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Solorio and MacDonald, 2001) while increasing soil water repellency (DeBano, 1981; 

Letey, 2001). When coupled with the loss of vegetation, the result is increased runoff and 

erosion and elevated peak flows that are capable of transporting increased quantities of 

bedload and suspended sediment (Robichaud et al., 2000). When burned areas retain less 

than 10% of their ground cover, erosion rates can increase several orders of magnitude 

(Robichaud et al., 2000; Benavides-Solorio and MacDonald, 2001) and take years to 

recover to background levels (Martin and Moody, 2001; Benavides-Solorio and 

MacDonald, 2001).

In 1974, in an effort to mitigate the risks posed from wildfire, the Forest Service 

created the Burned Area Emergency Rehabilitation (BAER) authority. Today, BAER 

team leaders are trained to perform immediate assessments after a wildfire and to 

recommend treatments aimed at reducing the risk to human life and property and 

minimizing adverse impacts to water quality and soil productivity. Some of the most 

commonly used treatments include broadcast seeding, mulching, straw wattles, contour 

trenching and contour-felled logs (Robichaud et al., 2000).

Broadcast seeding with grasses is one of the most commonly recommended post

bum erosion control treatments (Beyers, 2004; Robichaud et al., 2000). Seed can be 

distributed over large areas in a short amount of time and at a relatively low cost. Grasses 

provide protection from soil surface sealing by preventing raindrop splash (Wells et al.,

1979) and allow for increased slope stability with their extensive root systems, but the 

benefits are often not recognized until the second year following a bum (Robichaud et al., 

2000; pc Bruce Simms, 2004).

*
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A report on the effectiveness of BAER treatment applications conducted by the 

USFS found that personnel who used seeding as a treatment were divided over the 

success of the approach; 52% of respondents reported either “excellent” or “good” results 

and the remaining 48% reported “fair” or “poor” results. Higher success rates of seeded 

grass were reported on slopes of less than 40% (Robichaud et al., 2000). Most studies did 

not include control plot erosion rates for comparison with seeded areas, making it 

difficult to evaluate the treatment’s effectiveness (Wagenbrenner, 2003).

Mulch, although rated “excellent” in effectiveness by 66% of resource specialists, 

is labor intensive and costly to apply (Robichaud et al., 2000). In the BAER handbook 

(USFS, 1995), mulch is recognized as an immediate source of ground cover capable of 

retaining moisture and eliminating extreme soil surface temperatures. It offers protection 

for seeded and regenerating species necessary for long-term site stability.

Mulch is not often applied to steep slopes or areas where high winds are likely to 

arise due to the ease with which the material is moved offsite or redistributed into thick 

mats prone to inhibit seed germination (Robichaud et al., 2000). However, when applied 

under appropriate conditions mulch can be a highly effective erosion control treatment. 

Mulch applications on slopes of 19 to 69% reduced sediment loads by 95 and 99%, 

respectively, in the first and second year after the Colorado fires of 2000 (Wagenbrenner, 

2003).

Straw wattles are applied to slopes to reduce effective slope length by providing a 

barrier to continued flow (Figure 1). Surface runoff is captured by the wattles placed 

horizontally across the length of the slope, backing up sediment laden flow and, in 

addition, providing conditions favorable to seed germination. Wattles can be used on
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slopes of greater than 40%, however, installation is difficult and labor intensive, resulting 

in high costs to land managers. Their effectiveness has been rated as “fair” to “excellent” 

depending on the conditions and care with which they were installed (Robichaud et al., 

2000).

Figure 1: Straw wattles installed on a burned hillslope.

After the fires of 2000 and 2001, the Forest Service and Department of Interior 

had collectively allocated $310 million for BAER treatments intended to provide 

emergency rehabilitation and stabilization. A review by the General Accounting Office 

(GAO) found that despite monitoring requirements for treatment applications, it was 

indeterminable whether or not anticipated results were being achieved. A national 

interagency system was recommended in order to streamline the acquisition of data and 

consolidate burned area recovery monitoring information (USGAO, 2003).

Recent large wildfires and accompanying hydrologic events have driven 

researchers and agencies to stress the need for additional quantitative data regarding the 

effectiveness of post-burn erosion control treatments. Physical characteristics such as 

geology, vegetation and slope are frequently factors which influence erosion severity and
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should be considered along with treatment type and application procedures. The ability of 

a site to respond to various treatment types may be more accurately predicted with an 

improved quantitative database. The information could then be utilized by land managers 

faced with the task of post-bum treatment prescription.

The objective of this study was to determine the effectiveness of three post-bum 

treatment methods: aerial seeding, straw mulch and straw wattles, in reducing runoff and 

erosion in areas of moderate to high bum severity. Due to the difficulties inherent in 

relying on natural rainfall events, a rainfall simulator was used in one set of studies to 

measure runoff and erosion from treatment and control plots. Simulated rainfall events 

have seldom been utilized to report conditions resulting from high severity fires 

(Johansen, Hakonson, and Breshears, 2001). Hillslope scale plots exposed to natural 

rainfall events were used as a baseline with which to compare data from simulated 

rainfall plots.

STUDY AREAS

Two wildfires in northwestern Montana, the Moose Fire and Fox Creek Fire, were 

used for this study. The Moose Fire, which burned 28,500 hectares in the summer and fall 

of 2001, was located in the North Fork Flathead river basin with land ownership divided 

among Glacier National Park, Flathead National Forest, Coal Creek State Forest and 

private lands (Figure 2). The Fox Creek Fire burned 2,600 hectares in the summer of 

2002 (pc Andrea Gillam, 2004) and was located in the St. Mary river basin east of 

Glacier National Park on the Blackfoot Indian Reservation, which is under the 

administration of the Bureau of Indian Affairs (BIA) (Figure 3).
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Moose Fire

The Moose Fire was started by lightning and burned in a mosaic pattern across the 

landscape. The areas utilized for the study were primarily ponderosa pine (Pinus 

ponderosa var. scopulorum) and Rocky Mountain Douglas-fir (Pseudotsuga menziesii 

var. glauca) overstory and had an average elevation of 1,500 meters. The mean slope was 

47% with a range of 40 to 60%. Soils in the study area are well-drained glacial tills with a 

high percentage of angular rock (USDA, 1999). Fires within the immediate study area 

were classified by the Flathead National Forest as high severity, resulting in complete 

consumption of overstory and understory vegetation and protective duff layers. Ground 

cover was not assessed, but natural re-growth was evident during treatment application 1 

year postfire and at the time of silt fence collections, 2 and 3 years postfire.

The research plots for the Moose Fire were located above and below Forest Road 

1693 within the Deadhorse Creek drainage, immediately south of the boundary between 

the Flathead National Forest and the Coal Creek State Forest (Figure 2). The first study 

area, Moose-1, was located above the road while the second and third study areas, 

Moose-2 and Moose-3 were both located below. No hillslope treatments were 

recommended for these areas under the initial BAER team report. Precipitation data for 

the Moose Fire study sites was obtained from the Olney, Montana climate station, 24 

kilometers southwest of the research site (Appendix B). Mean annual precipitation at 

Olney is 57 cm, and mean monthly temperatures range from -6°C in January to 17°C in 

July.
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Fox Creek Fire

The Fox Creek Fire, also ignited by lightning, started near St. Mary’s Lake and 

burned up to the crest of St. Mary’s ridge at an elevation of 1800 meters. Rocky 

Mountain Douglas-fir is the dominant tree species in this area and soils are 

predominantly clayey-skeletal, mixed Typic Cryoboralfs of the Oberg Series (USDA,

1980). They were formed from glacial till and contain 30 to 60% rock fragments. The 

area was subject to moderate and high bum severities that resulted in complete removal 

of the overstory canopy and nearly complete duff consumption.

Research sites on the Fox Creek Fire were located in three areas where fire 

severity and access with a vehicle provided favorable conditions for rainfall simulations 

(Figure 3). The sites were located immediately below the crest of St.Mary’s ridge on 21 

to 29% slopes with a west-facing aspect. Precipitation data for the Fox Creek site was 

obtained from the Babb, Montana climate station, 12 kilometers to the northwest 

(Appendix B). Mean annual precipitation at Babb is 46 cm, and mean monthly 

temperatures range from -14.2 °C in January to 24.4 °C in August.

7



Moose Fire

Montana

TGFO! mop pnnrea on  12 /1 6 /0 4  from "MONTANA.TPO" <mfi "UnUOtd.tpg’ 
iociwumfc. i 9 P2u-™g. Nm027 Zone U U  »«">£.

MOOSE

- MOO SE- 2

MOOSE -1

J / /  K ' &£. ~S£ZrA' ~ ~ -
' • t s f f i  ■;:■■■ ■§-
/-  /  J  ■r"yi\kA £ J L  llLJSH

6 99306m £.  ̂^

*r*
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Figure 2: Site map for Moose Fire silt fence locations. 3 fences were located at each of 
the study sites; Moosc-1, Moose-2 and Moose-3.
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Fox Creek Fire

Montana
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METHODS

The effectiveness of grass seeding, straw mulch and straw wattles for reducing 

post fire erosion was assessed by measuring runoff and erosion from 0.5 m2 treated and 

control plots during rainfall simulation experiments at the Fox Creek Fire site. In 

addition, silt fences were used to measure the erosion rates from treated and untreated 

hillslope plots at the Moose and Fox Creek fire sites.

Silt Fences

Thirteen silt fences measuring approximately 9 m in width were installed on the 

Moose and Fox Creek Fires to measure hillslope erosion under natural rainfall conditions. 

The fences were installed according to methods outlined by Robichaud and Brown 

(2002). Four fences were placed on the Fox Creek Fire in early September, 2002; 1 each 

at the central and south sites and 2 at the north site. These fences were in place 

immediately after the fire was fully contained, prior to the aerial seeding operation in late 

May of 2003, and measured the erosion rate in areas treated with aerial seeding. Due to 

the size of the area treated with grass seed, no suitable control sites for silt fence 

measurements could be identified for comparison.

Nine silt fences were placed on the Moose Fire in late August, 2002, 1 year after 

the fire. The fences were installed at 3 locations with one control, straw mulch, and straw 

wattle treatment plot at each location. Both of the erosion control treatments were 

installed in accordance with BAER recommendations (USFS, 1995). No BAER 

treatments were prescribed for this area, and due to the age of the fire at the time of silt 

fence installation, natural regeneration of the sites had already begun. Contributing area
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to the fences was defined by slope breaks, such as a ridge line or road bed, and the flow 

lines perpendicular to the slope breaks.

The first samples from the Fox Creek Fire silt fences were collected on May 29, 

2003 and returned to the lab for processing. They were weighed on a scale and split with 

a sample splitter at the Lolo National Forest soils lab. Sub-samples were then re-weighed 

and baked at 440°C for a period of 4 hours to remove moisture and organic material. The 

remaining sediment was weighed on a scale and a ratio of dry weight to wet weight was 

applied to the entire sample in order to obtain total sediment collection weights. These 

totals were then correlated to precipitation recorded at the Babb climate station.

The second collection of samples from the Fox Creek Fire was conducted on July 

7, 2003. These samples were weighed in the field with a 5-gallon bucket and hand-held 

scale with sub-samples returned to the lab for moisture content analysis and removal of 

organic material. The ratios of dry weight to wet weight were applied to the silt fence 

data obtained in the field to determine the total amount of sediment delivered to the 

fences. These amounts were also correlated to rainfall at Babb, MT.

Moose Fire silt fence collections were made on May 20, 2003 and June 24, 2004 

and the samples were small enough that subsampling for moisture content analysis was 

unnecessary. Due to the nature of the parent material, samples were divided into 2 

fractions; > 2mm and < 2mm, once they were removed from the oven. Sediment collected 

from these locations was correlated to rainfall rates at Olney, MT. No particle size 

analysis was performed on these samples due to the limited amount of material collected 

from the fences. After the data were normalized for precipitation, there was no significant 

difference in sediment collected between treatment types (P > 0.05).
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Rainfall Simulations

Rainfall simulations were conducted in three areas burned in the Fox Creek Fire 

that had burned at moderate to high severity, that were accessible by road, and which lay 

within the area where grass seeding was conducted following the fire. The three areas 

were not chosen for any assumed degree of hydrophobicity. In May of 2003, 

approximately 1670 kilograms of grass seed was dropped by helicopter over 190 hectares 

of the steepest slopes within the burned area, beginning at the north end of the fire and 

working south until the seed was gone. The mix consisted of 25% Rough Fescue 

(Festuca campestris), 20% Slender Wheatgrass (Agropyron trachycaulum), 15% Green 

Needlegrass (Stipa viridula), and 10% of the remaining species: Idaho Fescue (Festuca 

idahoensis), Bluebunch Wheatgrass (Agropyron spicatum), Western Wheatgrass 

(Agropyron smithii), and Needle and Thread (Stipa comata). To measure the density of 

seeds at each site, pans lined with Tanglefoot and mounted on wooden stakes were 

erected; however, ungulates rendered these ineffective after damaging the posts.

In order to provide control sites and areas where the effect of straw mulch could 

be evaluated, 3 m x 3 m tarpaulin sheets were placed in several areas prior to the seeding 

operation. These areas were selected for their proximity to the road. An object tossed 

blindly into the air determined the exact location of the tarps. Due to the delay in seeding 

operations, these tarps remained on the ground until after the snow had melted. Multiple 

areas contained under the tarps provided an excellent environment for seed germination 

and several were utilized for seeded plots.
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Thirty 0.5m2 plot frames were installed within the 3 study areas to a depth of 

approximately 6 centimeters in late June and early July of 2003. Seeded plots were 

installed either where grass seed had been applied but tarps were not present or where 

seed had washed under the tarps and germination had begun. Straw mulch and control 

plots were located in areas that had been covered by the tarpaulins. Straw mulch was 

applied to 10 plots and was secured from high winds and foraging animals with garden 

netting and staples. Following simulations in 2003, the netting was again secured over the 

plots in order to retain the treatment for simulations in 2004. Both seeding and mulch 

treatments were conducted in accordance with BAER recommendations (USFS, 1995). 

The plots were left in place for a month or more before rainfall simulations began to 

allow for settling of the disturbed sediment.

Due to the location of the Fox Creek Fire study sites, consideration of wind effect 

was necessary for both treatment applications and silt fence data. Frequent high winds 

required mulch be secured to the ground and affected the outcome of least 1 silt fence 

collection. Windy conditions attributed to the topography of the area may have been 

considered when treatment recommendations were being proposed and was likely a 

reason that mulch wasn’t considered a viable alternative in the BAER assessment.

An oscillating head Norton-type rainfall simulator was utilized in this study in 

order to control for raindrop size and rainfall intensity. Initial calibration of the simulator 

was conducted before field work was started on the Fox Creek Fire. A i m  board was 

situated directly below the simulator with soil cans placed in 10x10 rows for collection. 

The goal was to determine the rainfall intensity settings required for field application, and 

the maximum plot size over which rainfall intensity would be reasonably uniform. The
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average rate of rainfall application during these sample runs was 36 mm h"1 and ranged 

from 33 to 38 mm h'1. The distribution of rainfall during the four simulated events was 

plotted in Mathematica in order to visually assess the distribution of rainfall application 

(Figure 4) and was deemed acceptable for the intended purposes.
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Figure 4: Rainfall distribution from hour-long calibration runs.
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Rainfall simulations were run on each of the 30 plots from July 30 to August 27, 

2003 and were repeated on 4 controls, 3 mulched, and 2 seeded plots from July 16 to July 

27, 2004. Prior to each rainfall simulation, a 5 minute calibration was conducted to 

determine the rainfall rate. A calibration pan was fitted directly over the plot to capture 

the rainfall which was then collected and measured using a graduated cylinder. If any 

adjustments were made to the simulator, the calibration was run again prior to the 

simulation experiment.

Each simulation was 60 minutes in length. All of the runoff and sediment from 

the plot were collected every minute for the first 10 minutes and every 2 minutes for the 

remainder of the hour. Tarps were placed around the simulator to ensure that wind and/or 

light rains did not affect the rainfall intensity. Runoff rates occasionally exceeded the 

capacity of the 1 liter container during a 2-minute measurement period. If this happened, 

the runoff during the second minute of the period was collected, and the calculated runoff 

rate was assumed to represent the mean runoff rate for the 2-minute period. At the end of 

each simulation, any sediment remaining in the headwall (a device attached to the plot 

perimeter pans to collect runoff and sediment) was collected and analyzed with the other 

samples to provide the total sediment yield for each plot.

Water used for the simulations was obtained from Lower St. Mary’s lake using a 

hand pump and drawing from a depth of approximately 0.5 meters and was not filtered. 

The tank was refilled each day and any leftover water at the end of each day was pumped 

out, allowing any debris that had settled to be removed. A small amount of bleach was 

occasionally added to maintain the purity of water being fed through the simulator by 

discouraging growth of organic material in the holding tank.
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Soil samples were collected adjacent to each of the plots and returned to the 

laboratory for textural analysis (Gee and Bauder, 1986). Soil moisture contents were 

taken at three points within the plot before and immediately after the simulation using a 

Hydrosense soil moisture probe (Campbell Scientific Inc., Logan, Utah). The probes 

were placed in the upper left and right-hand comers as well as the lower right-hand 

comer. Visual assessments of the plots were recorded on the data sheets and included any 

disturbances, natural or otherwise. Vegetation was determined using a 100-point 

vegetation grid placed over each plot perimeter pan. Soil profiles were taken immediately 

adjacent to the pan once the simulation was complete. Areas of wet, moist, and dry soil, 

as well as large root structures and rocks, were recorded on a grid sheet to assist in 

determining whether soil hydrophobicity affected the runoff rate (Figure 8). Percent of 

dry soil was compared between treatment types and by site to give a general indication of 

the degree to which hydrophobic layers may have modified mnoff. These profiles, 50 cm 

long and 20 cm deep, were thought to be sufficiently large enough to capture general 

trends in hydrophobic layer development.

Runoff and sediment samples collected during each simulation were taken back to 

the lab for analysis. The volumetric yield for each collection interval was measured using 

a graduated cylinder. These data were used to determine the total mnoff (mm), peak 

mnoff rate (mm/hr), and runoff rate over time (mm/hr). The samples were then filtered 

through a pre-weighed 8 pm filter paper, and the sediment and paper were then oven dried 

at 105°C for 24 hours. The dry weight of sediment from each sample was recorded and 

total sediment yield for each plot was calculated. Soil samples were collected from each
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plot as the soil profiles were excavated and a particle size analysis was done on each 

sample using the hydrometer method (Gee and Bauder, 1986).

Statistical Analysis o f  Rainfall Simulator Data

A one-way analysis of variance (ANOVA) was used to determine whether there 

were significant differences in total runoff, peak runoff rates and total mass of sediment 

eroded between treatment types. If there was a significant difference (p < 0.05), multiple 

comparisons (Bonferroni) were used to verify which treatment types were significantly 

different. Boxplots were used as a visual tool to compare total runoff, peak runoff rates 

and total sediment eroded. Statistical analyses were completed using SPSS (SPSS 

Version 11.0,1999).

RESULTS

Fox Creek Fire - Site Variables

Soils at the Fox Creek Fire site are predominantly sandy loam. When grouped by 

treatment type, average sand-silt-clay percentages for control plots were 66%-24%-9%, 

aerial seeded plots were 68%-23%-8%, and mulched plots were 66%-26%-8% (Figure 5). 

There was no significant difference (p > 0.05) in soil texture between treatment types. 

When plots were grouped by location, the sand-silt-clay average was 60%-28%-12% for 

the north site (BIAN), 69%-23%-8% for the central site (BIAC), and 72%-22%-6% for 

the south site (BIAS) (Figure 6). Sand, silt, and clay percentages as measured at the north 

site were significantly different than the south and central sites (P < 0.05), but all sites
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have soils that are classified as sandy loam, with similar erodibility factors. Percentages 

obtained from the south site were not significantly different than the north or central sites 

(p > 0.05).
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Figure 5: Percent sand, silt and clay in control, seed and mulch plots at the Fox Creek 
fire study area. Percentages for each treatment are the mean of 10 samples. Error bars 
represent 1 standard error.
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Figure 6: Percent sand, silt and clay in north, central and south sites at Fox Creek fire 
study area. Percentages for each site are the mean of 10 samples. Error bars represent 1 
standard error.

Mean slope for the 3 study sites at the Fox Creek fire was 24.7%, with a range of 

21% to 29%. Pan slope varied from 9% to 20% with an average of 15% and was not 

significantly different (P = 0.636) between treatment types. Ground cover within the 

plots, excluding mulch, varied from 0% to 12% with an average of 7% during the 2003 

field season. In the 6 plots where ground cover measurements were taken in 2004, the 

mean coverage was 39%, with a range of 29% to 51%, indicating a significant increase 

since 2003 (P < 0.05) (Appendix A).

Rainfall simulation -  plot soil characteristics

Soil profiles excavated adjacent to each of the plots directly after each simulation 

helped to determine patterns of infiltration and the presence or absence of hydrophobic 

layers (Figure 7). The average percent of dry soil was highest on the central site (10.1%)
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and fairly similar between the north (7.0%) and south (6.9%) sites. All 3 sites displayed 

comparable ranges in the percentage of soil saturation observed, with a minimum of 0.0% 

on all sites to a maximum of 28.0% on the central and south sites and 27.4% on the 

central site.
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Figure 7: Example of soil profile taken after simulated rainfall event. White boxes 
indicate dry soil, dark gray indicate soil saturated from the rainfall simulation and light 
gray indicate soil not likely affected by the rainfall simulation.

When averaging the percentage of dry soil by treatment type, control plots had the 

highest percentage of dry soil (9.8%). Aerial seeded and mulched plots were similar with 

7.6% and 7.2% dry soil, respectively. The range of dry soil percentages for all 3 sites was 

0.0% to 28% with no significant differences between them (p = 0.786). There was no 

correlation between the percentage of dry soil measured at each plot and the percentage 

of total runoff measured during rainfall simulations, suggesting that differences in 

hydrophobicity had little or no effect on the measured runoff and erosion rates (Figure 8).
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Figure 8: Scatter plot of the percentage of dry soil blocks observed in post-simulation 
excavated soil profiles versus total runoff from the 30 plots (10 controls, 10 mulched, and 
10 aerially seeded).

Both control and mulched plots displayed similar patterns of soil saturation, 

experiencing a lower percentage of saturated soil at depths up to 6 cm and then leveling 

out. Aerial seeding tended to have a higher percentage of saturated soil in the first 6 cm to 

7 cm of soil profile and a lower percentage after 8 cm of depth (Figure 9). There was no 

statistically significant difference in soil saturation across treatment types (P > 0.05).
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Figure 9: Average percent saturated soil after 1-hour simulated rainfall: Fox Creek Fire, 
2003. Data is based on 10 plots for each treatment type.

Volumetric water content was measured pre- and post-simulation for each plot. 

The average water content pre-simulation was 6.6% with a low of 5.0% and a high of 

10.0%. Post-simulation water content measurements averaged 34.6% with a low of 

21.0% and a high of 48.0% (Appendix A). Neither pre- nor post-simulation water 

contents were significantly different across treatment types (p > 0.05). Pan slope was also 

not significantly different across treatment types (p = 0.636).

Rainfall simulations -  runoff and sediment yield

In 2003, rainfall intensities measured prior to each simulation ranged from 69 mm 

hr'1 to 94 mm hr’1 with a mean of 83mm hr'1. Mean rainfall intensities in the aerial 

seeded, straw mulch and control plots were 82, 84 and 83 mm hr'1, respectively, and were 

not significantly different (p = 0.720).
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In all 30 plots on which rainfall simulations were performed, runoff began 

between 1 and 4 minutes after the start of rainfall. Runoff rates then increased to a peak 

and then leveled off, indicating that steady state infiltration was occurring (Figure 10). 

Higher runoff rates throughout the simulations in the control plots may be due to soil 

surface sealing due to raindrop impacts. Time to peak runoff varied between treatment 

types, but was not statistically significantly different (P > 0.05). Control and seeded plots 

averaged approximately 21 and 23 minutes to peak runoff, respectively, and mulched 

plots averaged approximately 30 minutes. Gradual declines in the runoff rates following 

the peak indicate a break down of hydrophobic layers within the plots due to wetting of 

the soil (Figure 10).
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Figure 10: Average runoff rate vs. time for control, mulched, and seeded plots during the 
2003 Fox Creek fire rainfall simulations. Seeded grass had not germinated on many of 
the plots at the time the simulations were conducted.
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Total runoff from the 30 plots on which rainfall simulations were conducted in 

2003 ranged from 1.4 mm to 63.5 mm with a mean of 34.1 mm. The control plots had the 

highest total runoff with a mean of 44.1 mm and a range of 11.7 mm to 63.5mm (Figure 

11). The mean total runoff was lower for both the mulched (28.0 mm) and the seeded 

(30.1 mm) plots. The range of values was wider and the minimum total runoff was lower 

on the mulched plots than on the seeded plots. The mean runoff-to-rainfall ratio for the 

control, mulched and seeded plots was 0.53, 0.36 and 0.37, respectively. Total runoff was 

not statistically significant between any of the 3 treatments (p = 0.090).
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Figure 11: Total runoff by treatment types for 1-hour simulated rainfall events conducted 
in 2003. The box corresponds to the middle 50% of values and whiskers represent the 
highest and lowest values not including outliers. Median values are represented by a bar 
within the box.
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Control plots had the highest peak runoff rates with a mean of 59 mm h"1 and a 

range of 18 mm h"1 to 79 mm h'1 (Figure 13). The mean peak runoff rates for mulched 

(40 mm h'1) and seeded (41 mm h'1) plots were similar to each other, although peak 

runoff rates from the mulched plots were more variable, ranging from 4 mm h 1 to 75 

mm h"1. Peak runoff rates between the two treatment types and controls were not 

significantly different in 2003 (p = 0.093). The average time to peak runoff for control, 

seeded and mulched plots was 21, 23 and 30 minutes, respectively, mak ng the time to 

peak runoff for mulched plots 43% longer than control plots (Figure 12).
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Figure 12: Peak runoff by treatment types for 1-hour simulated rainfall events conducted 
in 2003. The box corresponds to the middle 50% of values and whiskers represent the 
highest and lowest values not including outliers. Median values are represented by a bar 
within the box.
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Control plots had a large spike in sediment production within the first 15 minutes 

(Figure 13), corresponding to the rise in runoff during that same time (Figure 10). A 

nearly continuous decline in sediment followed for the remainder of the simulation. 

Seeded plots saw a steady rise in erosion rates in the first 20 minutes followed by 

comparatively constant erosion rate during the remainder of the simulation. Mulched 

plots saw an increase in sediment for approximately 12 minutes, after which erosion rates 

steadily declined.
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Figure 13: Average sediment yield vs. time for control, mulched, and seeded plots during 
the 2003 Fox Creek fire rainfall simulations.

Total sediment yield from the 30 plots ranged from 0.01 kg m'2 to 1.75 kg m'2 in 

2003. With the exception of the extreme value obtained from a seeded plot (1.75 kg m2), 

the highest values were from control plots, where total sediment yield ranged from 0.04 

kg m'2 to 1.22 kg m'2 with a mean of 0.79 kg m'2 (Figure 14). Mulched plots had the
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lowest average sediment yield (0.01 kg m'2), two orders of magnitude less than from the 

control plots. Sediment yields from the mulched plots were significantly less than from 

both the control plots (p = 0.001) and the seeded plots (p = 0.021). Sediment yields from 

the seeded plots ranged from 0.01 to 1.75 kg m2, with a mean of 0.59 kg m2, which is 

0.19 kg m less than from the control plots but considerably higher than from the 

mulched plots. The difference between the amount of sediment obtained from control and 

seeded plots was not significant (p = 0.804) (Figure 14).
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Figure 14: Total sediment by treatment types for 1-hour simulated rainfall events 
conducted in 2003. The box corresponds to the middle 50% of values and whiskers 
represent the highest and lowest values. Median values are represented by a bar within 
the box. The open circle indicates an outlier. The asterisk indicates that the sediment 
yield in the mulch plots was significantly lower than in the control and seeded plots.
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When normalized by runoff rate, the sediment yield (kg/m ) for each of the 

treatment types varied greatly. Aerial seeded plots generally experienced the highest rates 

of sediment per unit of runoff for the first 9 minutes (Figure 15). At its peak, aerial 

seeding produced more than twice the rate of sediment per unit of runoff than that 

observed on control plots. Both control and seeded plots spiked within the first 5 minutes 

of the simulated rainfall events while mulched plots reached their highest peak at 12 

minutes. This high point for mulched plots was considerably less than the lowest points 

observed for the other treatment types and sediment per unit of runoff for mulched plots 

was consistently lower throughout the 1-hour simulation.
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Figure 15: Total sediment yield per unit of total runoff over time on the Fox Creek Fire, 
2003. Data are an average of the treatment types; 10 control, 10 straw mulch, and 10 
aerial seeded plots.

In 2004, rainfall simulations were conducted on 2 seeded, 3 mulched, and 4 

control plots. Simulations could not be conducted on all of the plots because of an
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equipment failure that could not be resolved before winter snowfall made the site 

inaccessible. Plot perimeter pans utilized for the simulations in 2003 were reused in 2004, 

subjecting the plots to a second round of rainfall. Mean rainfall intensities for the 

simulations in 2003 were approximately 15% lower than in 2003, averaging 66, 68 and 

69 mm h'1, for the control, seeded, and mulched plots respectively. Rainfall rates were 

not significantly different (p=0.836) across treatment types. Runoff on all plots began 

within the first 2 minutes (Figure 16). Aerial seeded plots maintained a higher level of 

runoff than mulched or control plots until approximately 45 minutes into the simulations. 

Runoff was generally lower across all of the treatment types than in 2003. Infiltration 

capacity was generally reached within the first 10 minutes of the simulation. As in 2003, 

declining runoff rates after the peak indicate that soil hydrophobicity was still present, but 

dissipated as the soil wetted up during the simulation.
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Figure 16: Runoff rate vs. time for the 2004 rainfall simulations on the Fox Creek fire. 
Graph is based on replicates of 4 controls, 3 mulched, and 2 seeded plots.
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Control plots displayed the widest range of variability in total runoff with a range 

of 0.3 mm to 40.2 mm and a mean of 16.8 mm in 2004. Mean total runoff was lowest on 

the mulched plots (13.1 mm) and highest on the seeded plots (20.9 mm). Runoff to 

rainfall ratios were 0.25, 0.19 and 0.31 for the control, mulched and seeded plots 

respectively, indicating a ~50% reduction in runoff from the control and mulch plots and 

a 15% reduction in runoff from the seeded plots relative to 2003.

In addition to having the lowest total runoff, mulched plots also had the lowest 

mean peak runoff rate (20.2 mm h'1), which is approximately half that observed in 2003. 

The peak runoff rate from the control plots also declined by approximately 50% relative 

to 2003, with a mean of 28.9 mm h'1. The peak runoff rate from the seeded plots was only 

slightly lower than in 2003, averaging 39.5 mm h*1 compared to 41.3 mm h'1 in 2003.

Mean sediment yields from the treatment and control plots were less variable in 

2004 than in 2003, and the treatment effects were not as distinct (Appendix A). In the 

control plots, the mean sediment yield of 0.21 kg m' indicates a more than 70% decrease 

in erosion from the previous year. Sediment yield from the seeded plots had a mean of 

0.18 kg m ', indicating a 50% decline in erosion relative to the previous year. The 

sediment yield from the mulched plots increased relative to 2003, to a mean of 0.11 kg 

m'2, but was still more than 50% lower than in the control plots.

Sediment from silt fences

The first collection of sediment from the four silt fences installed on the Fox 

Creek fire occurred approximately 9 months after the fire, on May 29, 2003. The 

northeastern (BIAN-E), northwestern (BIAN-W), central (BIAC) and south (BIAS)
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fences yielded 145, 183, 339 and 287 kg ha'1, respectively. Precipitation at the Babb 

climate station was 81% of average in the period between fence installation and the first 

sediment collection. Sediment per unit of rainfall yielded 0.91,1.14, 2.12, and 1.85 kg ha 

mm'1 for the BIAC-E, BIAC-W, BIAC, and BIAS sites, respectively (Figure 18).

The second silt fence sediment collection took place on July 7, 2003, less than 2 

months after the first collection. The sediment yields from the 4 fences, BIAN-E, BIAN- 

W, BIAC, and BIAS, were 8, 205, 317 and 508 kg ha'1 respectively. Even when 

normalized for the difference in total precipitation, this means that the erosion rate (kg 

ha'1 yr'1) in June and July 2003 in 3 of the 4 plots was 5 to 8 times higher than the erosion 

rate over the 9 month period prior to the first sampling event (Figure 17). This is likely 

because precipitation in the period prior to the first sampling event occurred mostly as 

snowfall, while precipitation in June and July typically occurs as high intensity 

thunderstorms that have much higher erosivity. The low sediment yield from BIAN-E 

may be due to the fact that the plot was highly exposed to wind, so that most of the 

accumulating sediment was blown from behind the fence before it could be collected. 

Sediment per unit of rainfall for the BIAC-E, BIAC-W, BIAC, and BIAS sites was 0.16, 

3.80, 5.87, and 9.41 kg ha'1 mm"2, respectively (Figure 18). Total sediment yield from the 

fences in the 11 months postfire period ranged from 8 to 5.1 x 102 kg ha'1. During a third 

visit to the site in late July, further accumulation of sediment behind the fences was 

observed. However, the sediment was not collected because the silt fences had 

deteriorated significantly due to the high winds at the study site.
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Figure 17: Total mass of sediment eroded per unit of rainfall from the Fox Creek Fire silt 
fences, 2003. Collections were taken prior to seed germination and do not reflect any 
treatment effects.

The Moose Fire study plots yielded considerably less sediment than the Fox 

Creek Fire. In the first collection, on May 20, 2003 approximately 9 months after the 

fences were installed the fences produced a combined total of 4.8 kg ha'1 of sed-ment 

from the 3 control plots. Particles < 2mm in diameter made up 77% of this total. Sites 

treated with straw wattles produced the most sediment, 7.9 kg ha'1 with 53% < 2mm in 

diameter. The sediment yield from the straw wattle sites was 61% higher than for the 

control plots. Mulched sites produced the least amount of sediment, totaling 3.1 kg ha'1 

with 34% < 2mm in diameter. Precipitation at Olney MT was 270 mm (62% of average) 

in the period between fence installation and the first sediment collection. Sediment yield 

per unit of rainfall amounted to 0.017, 0.028, and 0.011 kg ha mm'1 for the control, 

wattle, and mulched sites, respectively (Figure 18).
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The second Moose Fire silt fence collections, on June 24, 2004, also produced 

relatively little sediment, Control plots totaled 5.1 kg ha’1 with 43% < 2mm in diameter. 

As in the previous year, the straw wattle sites produced the greatest amount of sediment 

at 13.0 kg ha*1 with 26% < 2mm in diameter. Mulched plots produced the least amount of 

sediment, totaling 4,9 kg ha'1, with only 11% < 2mm in diameter. The Olney, MT climate 

station recorded 530 mm of precipitation (80% of average) for this time period, almost 

twice the amount recorded prior to the first collection. Sediment yield per unit of rainfall 

for the control, wattle, and mulched sites was 0.010, 0.025, and 0.009 kg ha’1 mm'1, 

respectively, This amounts to reductions in sediment yield of 46%, 16% and 19% for the 

control sites, straw wattle sites, and mulch sites, respectively (Figure 18), The total 

amount of sediment collected was not significantly different across years (P = 0.547).
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Figure 18: Total mass of sediment eroded per unit of rainfall from the Moose fire silt 
fences in 2003 and 2004. Total sediment collected was not statistically significant across 
years (P = 0.547).

■ 2003

B'2004

33



DISCUSSION

Hydrologic and geomorphic response to wildfire

Considerable increases in surface erosion and runoff have been observed after 

wildfires (Robichaud et al., 2001; Moody and Martin, 2001). The magnitude of the 

increase varies considerably depending on the severity of the fire, the soil characteristics, 

and the magnitude of precipitation events, particularly in the first year after the fire when 

ground cover is minimal (Bisson et. al., 2003). In our study, sediment yields from the 

seeded hillslope plots at the Fox Creek fire site averaged 5 x 102 kg ha'1 in the first 11 

months following the fire. Ground cover in the small plots averaged just 1.7% in the first 

year, suggesting that similar erosion rates would have occurred on untreated slopes. The 

first year erosion rates from the Fox Creek hillslope plots are much lower than those 

recorded in many other burned areas. For example, on the Wallowa-Whitman National 

Forest in eastern Oregon, erosion rates from burned hillslopes with 20%, 30%, and 60% 

slope were 2.1 x 104, 4.4 x 104, and 4.9 x 104 kg ha ' \  respectively (Robichaud and 

Brown, 1999).

Even when corrected for differences in total precipitation, the erosion rate (kg ha'1 

yr'1) on 3 of the 4 hillslope plots at the Fox Creek fire in June and July 2003 was 5 to 8 

times higher than the erosion rate over the first 9 months after the fire. This is likely 

because much of the precipitation in the first 9 months, which included the winter period, 

occurred as snowfall. In contrast, precipitation in June and July typically occurs as high 

intensity thunderstorms that have much higher erosivity. The implication is that burned 

sites in the Rocky Mountain region are most vulnerable to erosion in the first 2 or 3 large
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storms in the spring and early summer of the following year. The low sediment yield 

from the fourth site (BIAN-E) may be due to the fact that the plot was highly exposed to 

wind, so that most of the accumulating sediment was blown from behind the fence before 

it could be collected.

Comparisons between erosion rates from the small plots used for rainfall 

simulations at the Fox Creek and larger hillslope scale plots are inappropriate because 

small plots do not account for hillslope water storage and because rainfall simulations 

typically use rainfall rates that are much higher than what would occur during natural 

rainfall events. However, comparisons can be made with other studies that used small 

plots and rainfall simulators to assess erosion rates after fire. One such study was 

conducted following the 2000 Cerro Grande Fire in New Mexico. For 2 burned sites in 

ponderosa pine forest supporting 31 % and 20% ground cover, the average sediment yield 

was 76 kg ha'1 mm'1 (Johansen, Hakonson, and Breshears, 2001). This is more than 2 

orders of magnitude greater than the erosion rate from the control plots at the Fox Creek 

Fire when normalized by rainfall amount. Taken in combination, the data from the seeded 

hillslope plots and the untreated rainfall simulation plots at the Fox Creek fire indicate a 

much lower erosion rate than has been measured after fires in other environments. The 

low erosion rates on the Fox Creek plots occurred despite the fact that ground cover was 

very low, suggesting that soils in the area have an inherently low erodibility.

Sediment yields from the control plots at the Moose Fire site were 1 to 2 orders of 

magnitude less than those recorded at the Fox Creek site. This is likely due to the fact that 

the data were collected 2 and 3 years after the Moose Fire, whereas the Fox Creek fire 

site data were collected in the first year after the fire. Surface erosion rates from burned
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areas are typically at their highest in the first year after the fire, when ground cover is at a 

minimum and soil water repellency, if  present, is strongest. Surface erosion rates 

typically decline rapidly in subsequent years as new vegetation covers the ground surface 

and hydrophobicity breaks down (Benavidos-Solorio and MacDonald, 2001). Ground 

cover of more than 30% typically halves the surface erosion rate relative to a site with 

zero cover and greater than 60% ground cover reduces the erosion rate to near

background levels (Robichaud et al., 2000). However, in areas where mass movements 

are an important soil erosion mechanism, the post-fire erosion response can be entirely 

different. Large scale tree mortality after higher severity fire can lead to the decay of 

roots that provide soil cohesion and increase the risk of mass failure 5 to 10 years after 

the fire (Wondzell and King, 2003) and require alternate methods of remediation.

Increases in overland flow and soil erosion from burned areas are often attributed 

to the presence of water repellent (hydrophobic) soils. Although water repellency is often 

found in unbumed soils, fire increases its effect on infiltration by concentrating the 

hydrophobic compounds in a discrete layer at or near the soil surface (Brady, Robichaud, 

and Pierson, 2001). The strength of the hydrophobicity depends on factors such as soil 

moisture content at the time of the bum, particle size, vegetation type and fire severity 

(DeBano, 1981). In our study, the percentage and pattern of dry soil observed after 

rainfall simulations conducted on the Fox Creek Fire in 2003 suggest that hydrophobic 

layers were present, although water resistant layers that may have been present prior to 

fire were not recorded. Most of the 2003 runoff hydrographs exhibited a declining mnoff 

rate after the initial peak, indicating gradual wetting of a hydrophobic soil layer and a 

resultant increase in the infiltration rate. This increase in infiltration with time is the
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opposite of what is typically observed in unsaturated hydrophytic soils (Dingman, 2002), 

but it is consistent with the hydrologic response from hydrophobic soils observed in other 

areas (e.g. Robichaud, 2000; Benavides-Solorio and Mac Donald, 2001). The 2004 runoff 

rates were substantially lower than those observed in 2003, indicating that the 

hydrophobic layer was at least partially broken down. In most cases, hydrophobic soils 

tend to disappear within 1 to 2 years after a fire, although the rate of breakdown varies 

with the initial fire intensity and the amount of precipitation.

Effectiveness o f  Erosion Control Treatments

This study considered the effectiveness of 3 of the most commonly used post fire 

erosion control treatments: straw mulch, grass seeding and straw wattles. Straw mulching 

was highly effective in reducing erosion at both of the study sites, and was considerably 

more effective than grass seeding in reducing erosion rates in the first year after the Fox 

Creek fire. Erosion rates from the mulched plots in the Fox Creek fire site were reduced 

by 88% and 51% relative to the control in the first and second years post-fire, 

respectively. Similarly, at the Moose Fire site, erosion rates from mulched hillslope plots 

were 35% and 10% lower than the control in the second and third years after the fire. 

These results are consistent with the limited number of similar studies that included an 

untreated control. For example, in a semiarid ecosystem on the southeastern coast of 

Spain, soil loss from mulched plots was 2 to 16 times less than from untreated plots 

(Bautista et al., 1996). Wheat straw mulch applied to fill slopes adjacent to perennial 

streams, firelines and areas of high erosion hazard reduced erosion rates by 11 to 19 m3 

ac"1 compared to untreated sites (Miles et al., 1989). Edwards et al., (1995) noted
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significant reductions in soil loss on sites where mulch was applied at rates of 2 and 4 Mg 

ha'1 on slopes ranging from 5 to 9 percent.

The effectiveness of the mulching treatment can be attributed primarily to the 

immediate increase in ground cover that it provides, and the consequent decrease in 

rainsplash erosion as observed in the low sediment per unit of runoff ratios. However, the 

mulch treatment also reduced the total runoff and the peak runoff from the plots at the 

Fox Creek site, indicating that mulching may also have reduced the rate of overland flow. 

Presumably the mulch layer acts much like the duff layer in an undisturbed forest soil 

profile, providing a temporary storage reservoir for rainfall which then infiltrates the 

ground over a longer time period.

Although the erosion rate from the mulched plots at the Fox Creek fire was lower 

than in the control in both years, sediment yield from the mulched plots increased in the 

second year by almost 200%. This was largely due to a decrease in ground cover as straw 

mulch was either blown off the sites, decomposed, or was eaten by ungulates. Many areas 

that were mulched in late May 2003 were completely bare by early August of the same 

year. In a comprehensive study of treatment effectiveness in burned areas in Colorado, 

Wagenbrenner (2003) also found a decrease in the effectiveness of straw mulch in the 

second year after fire due to a loss of ground cover. In that study, sites that were retreated 

with mulch in the second year produced only 4% of the sediment produced by mulch 

sites that were not retreated.

Loss of the mulch due to wind may be less of a problem where a larger area is 

treated because mulch may simply be redistributed rather than being blown out of the 

area completely. However, periodic maintenance is needed to ensure that the mulch
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remains effective during the first summer after a fire, when vegetation cover is at a 

minimum. Soil loss rates from the mulched plots were reduced by spreading nylon 

netting across the plots, and a similar approach could be employed in areas treated on a 

larger scale. An additional concern related to the use of mulch is the potential for 

introducing weeds into treated areas. Burned areas are already vulnerable to weed 

invasion due to the large scale disturbance of the soil and loss of the existing vegetation 

cover. Use of weed-free straw is essential in treated areas if  weed problems are to be 

minimized.

Erosion rates from grass seeded rainfall simulation plots at the Fox Creek fire site 

were lower than from the control plots, but the treatment was not nearly as effective as 

mulching in reducing post-fire erosion. The effectiveness of aerial seeding in reducing 

erosion is largely dependent on the amount of additional ground cover that the treatment 

produces. At the Fox Creek fire site, the mean vegetation cover in the seeded plots was 

not significantly greater than in the control plots at the time of the 2003 simulations, and 

this is largely why the seeding treatment had such a limited effect in reducing erosion. 

The limited ground cover was largely due to the fact that seeding was not conducted until 

nearly 9 months after the fire because of logistical and climatic limitations, so that there 

was only a 3 month period between the application of the grass seed and the rainfall 

simulations. In addition, due to the timing of application in the late spring months, much 

of the seed may have been lost to snowmelt creep and early spring storm events, or 

washed off the plots during simulated rainfall events. Application of the seeding 

treatment prior to snowfall in the same year as the fire may have increased its 

effectiveness in reducing erosion the following year. The limited additional ground cover
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created by the aerial grass seeding in 2003 may also have been partly due to the 

exceptionally dry conditions; total precipitation at Babb, Montana for 1 June -  31 July 

2003 was just 42% of average. Greater success might be expected in a wetter year, 

although the effect of increased ground cover might be offset by the increased rainfall 

erosivity.

The results of the present study are generally consistent with other studies that 

have examined the effectiveness of grass seeding. In order to determine the effectiveness 

of seeding following a high severity fire that burned through a clearcut and adjoining 

forested areas in the Siskiyou Mountains of southwestern Oregon, 27 kg ha*1 of Italian 

rye grass (Lolium multiflorum) and 260 kg ha"1 of ammonium phosphate fertilizer were 

applied. Mineral soil was exposed on 85% to 95% of the study site immediately after the 

fire. Despite the fact that seeding reduced the amount of bare soil by 42% within 8 

months, the treatment was ineffective at reducing surface erosion because most of the 

erosion occurred in the first 3 months, when the seeding had produced very little ground 

cover (Amaranthus, 1989). The limited ground cover produced by seeding in the first few 

months represents a serious limitation in its effectiveness for reducing post fire erosion. 

Grass seeding may not be an appropriate treatment in many burned areas.

Erosion rates from the plots treated with straw wattles at the Moose Fire site were 

actually greater than the control plots, suggesting that ground disturbance associated with 

wattle installation increased the amount of available sediment. Straw wattle sites 

accounted for 50% of all sediment produced from the Moose Fire plots in 2003, and 57% 

in 2004. Since the wattles were not installed until almost a year after the fire, erosion 

rates had likely declined substantially relative to the period immediately following the
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fire. Straw wattles may have had a positive effect in reducing erosion immediately after 

the fire, when the wattles would have been able to trap considerably more sediment than 

was created by their installation. Straw wattles have been found to be effective in 

reducing erosion in other areas, although the amount of sediment storage is often not 

sufficient for them to be effective during very large rainfall events.

CONCLUSIONS AND RECOMMENDATIONS

This study used simulated rainfall events on small plots and silt fences below 

larger hillslope plots to assess the effectiveness of 3 commonly prescribed post-bum 

erosion controls: mulching, grass seeding and straw wattles. Significant reductions in 

total sediment yield were observed in mulched plots relative to control plots, while grass 

seeding was relatively ineffective and straw wattles actually increased the erosion rate.

Taken in combination, the results of this study indicate that mulching is an 

excellent post-bum treatment because of its effectiveness at providing immediate ground 

cover when percentage of bare mineral soil and accompanying threat of sedimentation is 

highest (Robichaud et al., 2000; Faust, 1998). Mulching shields the soil from rain splash 

erosion and by reducing surface sealing it also limits overland flow and rill erosion. 

However, due to the high costs and intensive labor required to apply this treatment, 

mulching is often not the favored approach when considering treatment options, despite 

the fact that it has proven effective at reducing total sediment in this and several other 

studies (e.g. Wagenbrenner, 2003; Robichaud et al., 2000; Bautista et al., 1996).

Grass seeding is commonly used as a post fire erosion control treatment because 

of the ease of application and relatively low cost. However, consistent with other studies,
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post bum seeding had very little effect in reducing erosion rates in areas included in the 

present study. The benefits of seeding are likely limited to the growth which occurs prior 

to the return of native vegetation, which will vary depending on the amount of seed 

applied and the climatic conditions (Beyers, 2004; Robichaud et al., 2000). Seeding may 

be helpful in situations where natural revegetation is slow and grass cover can be quickly 

established. Under these circumstances, Simms (2004) suggests that land managers may 

gain a year of slope stability with the application of grass seed.

The greatest benefit of seed and mulch applications occurs primarily in areas that 

are exposed to overland flow (MacDonald, 1989). By allowing for a reduction in flow 

velocity through the use o f soil surface protection, the likelihood of rill and gully erosion 

is decreased and opportunities for revegetation are improved. In order to effectively 

mitigate for potential impacts arising from post-bum environments, BAER treatment 

recommendations should focus on sites with characteristics that make them more 

susceptible to erosion. Treatments should be prescribed with a complete understanding of 

both positive and potential negative effects that may ensue. Given the likelihood of large 

fires in the future, there is a continued need to develop new post-fire erosion control 

treatments and to refine existing treatments.

42



APPENDIX A: Rainfall simulation data for Fox Creek Fire rainfall simulations, 2003 and 2004

2003 Fox Creek Fire Rainfall Simulation Data
Plot

# Treatment Date of 
Simulation

Total
Runoff
(mm)

Total
Sediment
(kg/m2)

Peak
runoff

(mm/hr)

Ground
Cover
(%)*

Average Soil 
Moisture (%) 

pre-simulation

Average Soil 
Moisture (%) 

post-simulation

Pan
Slope

(%)

Measured 
mm/hr from 
calibration

Measured ml 
for 

calibration 
run

1 control 9-Aug-03 36.74 0.974 48.36 1% 7.3% 33.0% 15.0% 86.9 3620
2 seed 9-Aug-03 27.02 0.475 39.36 8% 5.3% 33.0% 17.0% 85.9 3580
3 seed 10-Aug-03 38.37 0.800 45.18 10% 9.0% 36.7% 12.5% 83.0 3460
4 seed 10-Aug-03 22.32 0.340 61.56 3% 8.0% 38.3% 16.0% 82.0 3415
5 mulch 10-Aug-03 31.26 0.198 53.64 0% 7.0% 38.3% 16.5% 79.2 3300
6 control 11-Aug-03 26.80 0.287 46.40 0% 10.0% 37.3% 16.0% 89.0 3710
7 control 11-Aug-03 51.30 0.820 68.80 0% 8.7% 31.7% 13.5% 84.7 3530
8 mulch 11-Aug-03 3.40 0.014 5.80 0% 9.0% 46.3% 11.5% 93.6 3900
9 mulch 11-Aug-03 2.80 0.016 9.80 0% 7.0% 45.0% 12.0%
10 control 30-Jul-03 11.70 0.037 18.00 0% 8.3% 48.0% 15.0% 68.6 2860
11 seed 30-Jul-03 14.90 0.196 24.80 12% 5.0% 37.0% 16.0% 74.4 3100
12 mulch 31-Jul-03 35.60 0.023 54.60 2% 35.7% 85.2 3550
13 control 1-Aug-03 63.50 1.219 78.50 0% 5.0% 25.7% 20.0% 75.6 3150
14 seed 1-Aug-03 35.10 0.375 41.60 2% 5.7% 34.7% 15.0% 78.0 3250
15 mulch 1-Aug-03 29.90 0.082 37.90 0% 5.3% 35.3% 17.0% 84.7 3530
16 control 2-Aug-03 34.30 1.141 51.10 0% 8.0% 33.3% 18.0% 85.2 3550
17 mulch 2-Aug-03 1.40 0.009 3.60 0% 6.0% 34.7% 17.0% 89.8 3740
18 seed 3-Aug-03 51.80 0.990 61.80 1% 24.3% 17.0% 86.2 3590
19 control 3-Aug-03 36.80 0.264 55.90 0% 6.7% 38.3% 12.5% 90.2 3760
20 seed 24-Aug-03 36.40 0.529 45.10 2% 5.0% 41.7% 15.0% 83.6 3485
21 mulch 24-Aug-03 39.00 0.097 46.70 0% 5.0% 29.3% 12.5% 80.3 3345
22 control 25-Aug-03 60.40 1.143 77.00 0% 6.7% 21.0% 14.0% 82.0 3415
23 mulch 25-Aug-03 48.90 0.120 63.40 0% 6.3% 26.0% 16.0% 78.8 3283
24 seed 24-Aug-03 7.10 0.006 11.90 4% 6.3% 40.3% 13.0% 81.2 3385
25 seed 26-Aug-03 45.80 1.752 53.10 6% 6.3% 34.7% 11.0% 83.0 3460
26 control 26-Aug-03 58.60 1.076 68.60 0% 6.0% 22.3% 14.0% 81.4 3393
27 mulch 26-Aug-03 32.00 0.255 51.10 0% 5.3% 34.3% 16.0% 82.8 3451
28 control 26-Aug-03 60.70 0.908 73.60 0% 6.7% 30.3% 14.0% 88.6 3693
29 mulch 27-Aug-03 55.60 0.148 74.60 0% 6.7% 32.3% 9.0% 84.2 3510
30 seed 27-Auq-03 21.90 0.481 28.70 0% 6.3% 38.0% 11.5% 85.8 3575



2004 Fox Creek Fire Rainfall Simulation Data

Plot
# Treatment Date of 

Simulation
Total

Runoff
(mm)

Total
Sediment
(kg/m2)

Peak
runoff

(mm/hr)

Ground
Cover
<%)*

Average Soil 
Moisture (%) 

pre-simulation

Average Soil 
Moisture (%) 

post- 
simulation

Pan
Slope

(%)

Measured 
mm/hr from 
calibration

Measured mi 
for 

calibration 
run

1 control 17-Jul-04 40.25 0.522 63.60 8.0% 32.3% 15.0% 74.9 3120
2 seed 17-Jul-04 11.78 0.289 34.80 6.7% 33.0% 17.0% 69.0 2875
6 control 16-Jul-04 0.26 0.001 0.66 10.0% 37.3% 16.0% 60.0 2500
7 control 16-Jul-04 6.87 0.189 21.00 8.3% 38.3% 13.5% 68.3 2845
8 mulch 16-Jul-04 1.61 0.000 3.27 9.0% 42.7% 11.5% 75.7 3155
9 mulch 17-Jul-04 5.02 0.025 15.36 9.7% 39.7% 12.0% 66.5 2770

28 control 27-Jul-04 19.59 0.129 30.30 10.7% 34.7% 14.0% 60.8 2535
29 mulch 27-Jul-04 32.79 0.298 41.94 6.7% 29.3% 9.0% 63.7 2655
30 seed 27-Jui-04 29.93 0.072 44.16 8.3% 32.3% 11.5% 67.6 2815

* all vegetation readings taken on 08-24-03; plots 1-19 had undergone simulations at this point



APPENDIX B: Climate station data for Babb and Olney, Montana

Climate Summary: Babb, MT
Jan Feb Mar April May June July Aufl Sept Oct Nov Dec Annual

Average Max Temp (°C) -0.2 2.4 5.5 10.5 15.9 20.6 24.3 24.3 18.8 13.4 4.8 0.2 11.8

Average Min Temp (aC) -13.5 -10.9 -7.3 -2.8 1.5 5.0 6.7 6.2 2.2 -1.2 -7.3 -12.4 -11.1

Average Precipitation 
(mm) 19.1 18.0 22.4 33.8 65.8 76.5 44.7 48.8 48.3 22.9 19.1 19.3 438.9

2002 Precipitation (mm) 18.8 33.0 32.8 34.3 116.1 144.0 22.9 55.4 57.4 16.5 0.0 17.5 548.6

2003 Precipitation (mm) 7.6 16.8 45.5 27.4 44.2 54.1 2.5 0.0 33.8 17.8 31.2 6.6 270.8

Jan

Average Max Temp (°C)
1.6

Average Min Temp (°C) 10.9

Average Precipitation 62.0(mm)

2002 Precipitation (mm) 64.3

2003 Precipitation (mm) 27.7

2004 Precipitation (mm)
78.5

Feb Mar April May

2.4 7.4 13.4 18.7

9.4 5.9 2.7 1.4

51.3 37.3 36.1 58.9

45.7 47.8 25.4 54.9

19.3 70.9 24.1 30.2

3.8 25.7 50.0 52.3

Climate Summary: Olney, MT
June July Aug Sept

22.7 26.7 26.8 20.7

4.8 6.3 5.5 1.2

68.8 50.3 37.1 31.8

54.9 12.4 10.7 22.1

54.1 1.3 17.3 51.3

37.1 61.5 83.1 56.1

Oct Nov Dec Annual

12.4 2.2 -2.3 12.6

-2.8 -6.4 -10.2 -2.4

39.9 59.9 58.9 592.1

3.8 39.9 32.8 414.5

47.8 67.6 40.1 451.6

38.6 40.9 39.4 566.9
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