University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

2001

Spatial and temporal variations in the geochemistry of several western Montana streams and rivers

Sonia Anita Nagorski The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Nagorski, Sonia Anita, "Spatial and temporal variations in the geochemistry of several western Montana streams and rivers" (2001). *Graduate Student Theses, Dissertations, & Professional Papers*. 9408. https://scholarworks.umt.edu/etd/9408

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 804-521-0600

UMI®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

•

.

•

NOTE TO USERS

.

١

.

This reproduction is the best copy available.

UMI

.

.

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

•

.

.

.

Maureen and Mike MANSFIELD LIBRARY

The University of

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission
No, I do not grant permission
Author's Signature: Sh M.A.
Date: $6/22/01$

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

MSThesis/Mansfield Library Permission

SPATIAL AND TEMPORAL VARIATIONS IN THE GEOCHEMISTRY OF SEVERAL WESTERN MONTANA STREAMS AND RIVERS

by

Sonia Anita Nagorski

M.S., The University of Montana, 1997

B.A., Amherst College, 1994

Presented in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

The University of Montana

May, 2001

Approved airperson Dean, Graduate School

6-25-01

Date

UMI Number: 3015541

UMI®

UMI Microform 3015541

Copyright 2001 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

Geology

Spatial and temporal variations in the geochemistry of several western Montana streams and rivers.

Director: Johnnie N. Moore

f. f. for

Clean sampling methods were used to examine the solute (operationally defined as <0.2 μ m) and total recoverable geochemistry of the Blackfoot River and Clark Fork River watersheds. The purpose of the first study, conducted in the upper Blackfoot River watershed near a proposed gold mine site, was to measure pre-mining water quality conditions and to characterize the physical relationships between surface water and ground water. Other than for the major elements, most solutes were not well correlated with streamflow. The chemical variations appeared to be a product of the complex interactions among the timing and magnitude of meltwater and rainwater contributions. shifting proportions of the ground water component of the streamflow, and contaminant mobilization in the headwaters of the Blackfoot.

The second study measured both the solute phase and bed sediment in a one-time sampling event of the entire Blackfoot River watershed. The highest metal concentrations were located in the vicinity of the historic mining complex in the headwaters, and these concentrations declined sharply as tributaries joined the mainstem. Comparison of sediment samples with those collected in 1989 and 1995 do not show evidence for basin-scale long-term changes, despite remediation work begun in 1993.

The third project investigated the geochemical responses of the solute and suspended phases to streamflow on bi-hourly, daily, and seasonal timescales. The study was conducted on two rivers and two mountain streams in the Blackfoot and Clark Fork River basins. Generally, the trace element (Al, As, Cu, Fe, Mn, and Zn) patterns were more complicated than those of the major elements (e.g. Ca, K, Mg, Na), which were better correlated with discharge. Suspended sediment, total recoverable trace metals, and some dissolved elements exhibited short-term flushing effects at the onset of high flow conditions associated with spring runoff and a late summer precipitation event. Diel cycling was observed for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and total recoverable metals at some or all sites. For many parameters, short-term variations were small compared with long-term variations. However, the short-term variability of some parameters covered large portions of or exceeded the seasonal variability. These results have important implications for the future design of studies that aim to monitor and characterize the surface water geochemistry of contaminated and pristine watersheds.

Acknowledgments

I am very grateful to numerous people whose guidance, advice, and assistance were critical to the completion of this project. I thank Johnnie Moore, my mentor of 7 years, for generously guiding me through each project with great enthusiasm, insight, and encouragement. The other members of my dissertation committee, Bill Woessner, Ian Lange, Dave Patterson, and Garon Smith, also contributed many great ideas, and I thank them very much for the time and energy they put into my projects.

David Smith of the U.S. Geological Survey in Denver provided the funding that supported all of the work in this dissertation. For this I thank him tremendously. I am also very grateful for his ideas about the various projects and for entrusting me with a large degree of independence in designing and implementing the research.

Numerous folks helped out in the field and in the lab, and I greatly appreciate their hard work and our good times together. They include David Beale, Lynn Biegelsen, Anna Breuninger, Dan Cole, Sarah Day, Justin Harris, Matthew Hiro, Nick Kujawa, Beth Nichols, Jan Shifflett, Nate Stevens, Clara Wheeler, and Amanda Yates. Special thanks goes to Temple McKinnon, who generously shared with me her enthusiastic energy, time, ideas, and friendship while working on most of this dissertation with me in the field and in the lab.

TABLE OF CONTENTS

Abstract	ii
Acknowledgments	iii
Chapter 1: Introduction	1
Chapter 2: Seasonal variability in the solute geochemistry of the upper Blackfoot	
River watershed, Montana	
Abstract	
Introduction	
Methods	
1. Sampling location and frequencies	
2. Streamflow measurements	10
3. Water sampling	10
4. Lab methods	11
5. Quality assurance/ Quality control	13
Results	14
1. Streamflow	14
2. Surface water geochemistry	15
a) Landers Fork	16
b) Blackoot River	20
Discussion	
1. Hysteresis	24
2. High flow increases in trace metals	26
3. Spring flushing	28
Summary and Conclusions	30
Appendix Chapter 2: All data for water samples collected in the Upper Blackfoot	
River Basin: July 1997- December, 1998.	47
Chapter 3: Geochemical dispersion trains of the solute and bed sediment trace	
elements in the Blackfoot River, Montana	57
Abstract	57
Introduction	57
Site description and history	
Methods	
1. Sampling design	
2. Streamflow measurements	
3. Water sampling	
4. Bed sediment sampling.	
5. Laboratory analysis	
6. Quality assurance/ quality control	
7. Dissolved load calculations	
8. Average tributary calculations	
Results	

•

1. Water chemistry	68
a. Mainstem	68
b. Tributaries	69
c. Reactive solutes	70
d. Evaluation of tributary load contributions to the BFR	71
2. Bed sediment	
a. Mainstem	72
b. Tributaries	72
c. Comparisons with 1989 and 1995 bed sediment data	74
Discussion	74
1. Water chemistry	74
2. Bed sediment.	76
3. Differences between trends in water sediment dispersion trains	77
Summary and conclusions.	78
Appendix Chapter 3	88
Blackfoot basin-wide project: Water analysis results	
Blackfoot basin-wide project: Sediment data results	
Chapter 4: Temporal variations of the geochemistry in the Blackfoot and Clark For	K
River basins	
Abstract	
Introduction	92
Methods	
I. Sampling design	
a) Spatial design	
b) Temporal design	
2. Streamflow measurement	
3. Sampling protocol	99
4. Laboratory protocol	
5. Laboratory QA/QC	
6. Data analysis	
Results and Discussion	
I. Seasonal variations	
1. Streamflow variation	103
2. Among-site comparisons of dissolved and total concentrations	103
3. Differences in the dissolved and total concentrations	
4. Was streamflow a good predictor of concentrations	
5. Relationships between TSS and total recoverable elements	
6. Seasonal hysteresis at BFB, LF, and BH	
7. Discharge-concentration relationships at CFBM	
8. Is there evidence of spring flushing?	
9. By what extent to concentrations change during high flow	
compared to low flow?	112
II. Diel cycling.	
III. Rain-storm repsonse	
1. Precipitation	
Primotionionionionionionionionionionionionioni	

2. Streamflow variation during storm	116
3. Water quality response to September rain events	116
IV. Comparison of seasonal, rain-event, and diel scale variabilities	
1. How do diel variations compare with seasonal variations?	
2. How does the September rain event geochemistry compare	
with the diel and seasonal-scale variations?	120
Summary and Conclusions	121
Appendix Chapter 4:	
All filtered samples collected for the diel studies at each site	165
All total recoverable samples collected for the diel studies at each site	167
Data table of all filtered seasonal and September rain event samples	
Data table of all total recoverable concentrations from seasonal and	
September rain event samples	178
References	

List of Tables

Chapter 2 Tables:	
1. PQLs, precision results, and spike recovery results for analysis of water sample	es32
2. Results of paired t-tests comparing Landers Fork to Blackfoot River	32
Chapter 3 Tables:	
1. Mean concentrations of filtered (<0.2µm) water samples	80
2. Mean concentrations of bed sediment (<63µm) samples	81
Chapter 4 Tables:	
1. Laboratory and field blanks	124
2. Digested field blanks and digest blanks	125
3. Summary of standards measured on ICAPES during sample analysis	126
4. Summary of standards digested with TRM samples	127
5. External and internal standards measurements	128
6. Precision results on all instruments	129
7. Summary of spike recoveries measured on all instruments	
8. Summary of results of non-parametric multiple comparisons among sites	
9. Summary of Wilcoxon Signed Rank Test results	
10. Dissolved vs. total metal concentrations: correlation coefficients	
11. Moderate to good correlations between Q and TSS, dissolved elements and	
total recoverable elements at all sites	133
12. TSS vs. total metal concentrations: correlation coefficients	

List of Figures

Chapter 2 Figures:	
1. Simplified hydrograph and hysteresis cycles	3
2. Site locations	
3. Streamflow at sites C, LA, LB, LC, and LD on the sample dates	5
4. Streamflow at sites BH, BB, BC, and HC on the sample dates	
5. Streamflow vs. Ca at site C	7
6. Streamflow vs. Li at site LA	
7. Streamflow vs. Ca at site LB	
8. Streamflow vs. K at site LB	8
9. Streamflow vs. S at site LC	8
10. Date vs. Fe at site LB	8
11. Date vs. Mn at site LC	9
12. Date vs. As at site LC	9
13. Streamflow vs. pH at site LC	9
14. Date vs. a) Ca and b) S at site LB4	
15. Date vs. a) Ca and b) Mg at site LC	
16. Streamflow vs. Li at site BH4	
17. Streamflow vs. Mg at site BH4	1
18. Streamflow vs. Li at site BC	1
19. Streamflow vs. Mn at site BH4	
20. Streamflow vs. As at site BH4	2
21. Date vs. a) Zn concentration and b) S concentration at site BH4	3
22. Streamflow vs. Fe at site BB4	
23. Date vs. Cu at site BB4	4
24. Date vs. Fe at site BC4	4
25. Streamflow vs. Mn at site BC	4
26. Date vs. a) S and b) Zn at site BC4	
27. Streamflow vs. Fe at site HC4	
28. Date vs. a) S and Si loads and b) Zn and Mn loads at site BH4	6
Chapter 3 Figures:	
1. Basin map	32
2. River kilometer vs. surface water a) Cu, b) Zn, c) sulfate, d)pH, e) Fe, and g) Ca	
concentrations	
3. Tributary discharge vs tributary a) Ca, b) Mn, and c)sulfate loads	5
4. River Km vs. bed sediment concentrations of a) As, b) Fe, c) Mn, d) Ni, e) K,	
and f) Ca	6
5. River Km vs. mainstem bed sediment a) As, b) Cu, c) Fe, and d) Zn	
concentrations in 1989, 1995, and 1998	7
· · · · · · · · · · · · · · · · · · ·	
Chapter 4 Figures:	
	15

1.	Site location map	.135
2.	Hydrographs at the four study sites	136
	Streamflow vs. Fe at BFB	
4.	Streamflow vs. Ca at a) BFB, b) CFBM, c) LF, and d) BH	137

5. Streamflow vs. a) As and b) Cu at CFBM	138
6. Streamflow vs. a) pH at BFB and b)water temperature at LF	138
7. Streamflow vs. a) TSS at BFB; b) dissolved K at LF, c) dissolved and total Fe	
at BH, and d) dissolved and total S at BFB	139
8. Date vs. Cu at CFBM	
9. Streamflow vs. a) dissolved As and b) Sr at BFB	.140
10. Date vs. a) As, b) S, c) Fe, and d) Mn at BFB	
11. Streamflow vs. a) TSS, b) total Fe, and c) total Sr at LF	141
12. Streamflow vs. a) K and b) S at site BH	141
13. Diel variations of a)pH at CFBM, b) D.O. at BFB, c) water temperature at BH,	
d) DIC at BFB, e) dissolved and total K at BH, f) TSS at CFBM, g) total Cu	
at CFBM, h) total Mn at CFBM, and i) TSS at BFB	142
14. Streamflow during the first 2 weeks of September at the 4 sites	145
15. a) Dissolved Mn and b) Dissolved S at site BFB during the first 2 weeks of	
September	145
16. a) TSS, b) Cu, c) Ba, and d) Sr at CFBM during the first 2 weeks of September	146
17. Dissolved S at site LF during the first two weeks of September	146
18. Dissolved and total S at site BH during the first two weeks of September	146
19. Boxplots of diel, seasonal, and September rain event variability at site BFB	147
20. Boxplots of diel, seasonal, and September rain event variability at site CFBM	151
21. Boxplots of diel, seasonal, and September rain event variability at site LF	156
22. Boxplots of diel, seasonal, and September rain event variability at site BH	160

Chapter 1: Introduction

The mineral extraction industry is a major anthropogenic source of metal and metalloid contamination to waters, soils, and biota. At last report, the metal mining industry was the largest source of toxic releases to the environment in the United States, accounting for 3.5 billion pounds of releases in 1998 alone (EPA, 2000). Some of the consequences of mineral extraction include surface water and ground water quality degradation, aquatic benthos toxification, hydrological and landscape alterations, and air pollution (Honeyman and Santschi, 1988; Moore and Luoma, 1990; Luoma and Carter, 1991; Helgen and Moore, 1996; EPA, 2000). The environmental impacts of resource extraction have become important areas of study in the fields of geochemistry, hydrology and biology.

Due to rising human populations and growing demands for the world's natural resources, environmental problems associated with mining and ore processing will draw increasing regulatory and scientific focus in the future. Though widespread and of great concern to human and environmental health, the impacts by mining activities on water quality have not been well characterized and quantified. Additionally, very limited work has been done to characterize the aqueous geochemistry of pristine systems to which impacted areas need to be compared.

The research to date is so limited largely because the science of freshwater aqueous geochemistry is a relatively young field. Few current and historic mines have adequate records of pre-mining water quality conditions. Historically, pre-impact characterization of watersheds was not required, and early mineral prospectors found metal concentrations in surface water to be of limited use in locating ore deposits due to their fluctuating, low, or undetectable concentrations (Hosking, 1970; Hoffman and Fletcher, 1972; Rose et al., 1979; Runnells et al., 1992). At present, there is little consistency in the sampling designs of water quality studies. Sample processing and analytical methods are continually being revised and are typically incompatible among datasets. In the past decade, several studies have effectively invalidated much of trace metal work done for much of the last century due to the discovery of major contamination problems associated with standard sampling protocols (Benoit, 1994;

1

Windom et al., 1991; Horowitz et al., 1994; Taylor and Shiller, 1995). These studies have demonstrated that by following meticulous "clean" (or "ultra-clean") sampling, processing, and analytical techniques, trace metal contamination of water samples can be drastically reduced. The conversion to the use of these new techniques is ongoing, but numerous papers are still being published based on data collected using the problematic older methods.

Based on both conventional and clean data, scientists still have a poor understanding of the spatial distribution and temporal dynamics of the geochemistry of trace metals in surface waters. Most studies examine either spatial or temporal aspects of trace metal geochemistry, but not both, and many of these studies focus only on heavily contaminated areas. In particular, a relatively large amount of work has been done on defining the spatial geochemical trends in streams impacted by acid mine drainage (e.g. Filipek et al., 1987; Moore et al., 1991; Kimball et al., 1994; Schemel et al., 2000). Few such studies have incorporated a temporal dimension to their research. Additionally, there is a lack of research examining the surface water geochemistry at similarly tight spatial and temporal resolutions in uncontaminated systems.

The geochemistry of rivers can vary within short distances due to both physical and chemical dynamics in the watershed. Microbially-mediated, redox and pHdependent dissolution- precipitation, and sorption-desorption reactions are thought to be the major controls on partitioning of metals and metalloids among the dissolved, colloidal, suspended sediment, and bed sediment fractions (Nordstrom and Ball, 1986; Filipek et al., 1987; Rampe and Runnells, 1989; McKnight and Bencala, 1990; Moore et al., 1991; Smith et al., 1992; Broshears et al., 1996). Metals transported away from a source become physically diluted by tributaries and ground water, while changing chemical conditions continue to rearrange the partitioning between the water column and particulate phases [Chapman et al., 1983; Bencala et al., 1990; Davis et al., 1991; Kimball et al., 1994; Gurrieri, 1998].

In pristine areas, the major controls on the physical and chemical changes to the stream geochemistry include variable contributions from soil zones and vegetation, interactions with groundwater and hyporheic zones, atmospheric deposition of acidic anions, the natural buffering capacity of the local geology, differential weathering rates within the basin, and the organic carbon concentration in the stream (Campbell et al., 1991; Pinol et al., 1992; Shafer et al., 1997; Meixner et al., 1998; Clow et al., 2000). In a stream impacted by acid mine drainage, additional factors influence the dispersion of the mining contaminants in the watershed. These include the type, size, and grade of the mineral deposit, the mining and ore processing methods, the grain size of the contaminated sediments in the system, the availability of sorption surfaces in the water column, and interactions between the metals and sulfate released from the mine drainage sources (Ficklin et al., 1992; Plumlee et al., 1992, Helgen and Moore, 1996; Schemel et al., 2000).

While the study of seasonal variations in the major element geochemistry of freshwater systems has received a moderate amount of research attention, few studies have included trace metals in their analyses. Even fewer have used clean methods to collect those data. From the available data, little agreement has emerged in terms of the temporal patterns of trace metal concentrations in both contaminated and pristine streams and rivers. In contrast, numerous papers have reported generally consistent inverse relationships between discharge and major ion concentrations (e.g. Hem, 1970; Cossa, 1990; Pinol et al., 1992; Williams et al., 1993).

One type of temporal variation that has increasingly been recognized is that of hysteresis patterns. Hysteresis describes a loop pattern in streamflow vs. concentration plots in which concentrations differ along the rising limb from the falling limb of a pulse of increased streamflow (Whitfield and Schreier, 1981; Johnson and East, 1982; Stottlemyer and Troendle, 1992; Evans and Davies, 1998.) Yet only a handful of papers have described hysteresis patterns in dissolved or total trace metals (e.g. Whitfield and Clark, 1982; Weatherbee and Kimball, 1991 Sokolov and Black, 1996; Bhangu and Whitfield, 1997). Because trace metals are more reactive in surface waters than are major ions, they are more susceptible to changing conditions in their source areas and to instream chemical dynamics (Van der Weijden et al., 1989; Shiller, 1997, Sherrel and Ross, 1999). Hence, their hysteresis patterns are less predictable and more difficult to interpret than those for major ions such as Ca, Mg, and Na.

An adequate collection of reliable water quality research is clearly lacking, despite the vast environmental and economic implications. There are many unanswered questions regarding the spatial and temporal variation of surface water geochemistry that are of scientific, environmental health, and regulatory importance. In this dissertation I try to answer some of these questions, at least in terms of how they relate to the Blackfoot River and Clark Fork River watersheds in western Montana.

In Chapter 2, I present the results of a temporal and spatial investigation of the geochemistry of a several kilometer-long stretch of the contaminated upper Blackfoot River and one of its pristine tributaries, the Landers Fork. Studying the seasonal variation at sites spaced at approximately 1 km intervals, I found a large degree of physical and chemical variation among sites, over time, and between streams. I discuss hysteresis patterns which emerged for many of the major elements and try to explain some of the differences between the responses of trace elements and major elements to high flow events. The Blackfoot River and Landers Fork come together at the site of a proposed large scale open pit gold mine, and it is for this reason that they were chosen for study by the Mineral Resources Program (MRP) of the U.S. Geological Survey (USGS). This project is part of a larger scale effort by the MRP to investigate geochemical baselines in mineralized, unmined watersheds. The results of this project have been previously reported in the form of two USGS Open File Reports: Nagorski et al. (2001).

I present a synoptic study of the water and sediment geochemistry of the Blackfoot River basin in Chapter 3. The purpose of this study was to put into context the geochemistry of the study area in chapter 2 into the Blackfoot River basin as a whole, and to characterize the downstream extent of metals contamination originating from the historic Heddleston Mining District in the headwaters. I examine the role of tributaries in influencing the geochemistry of the mainstem, and I identify differences between the water and sediment dispersion patterns for metals of environmental concern. In addition, I compare streambed sediment data from the watershed collected by Moore et al. (1991) in 1989 and Menges (1997) in 1995 with those I collected in 1998. While the historic mining district has been undergoing remediation since 1993, I found almost no differences among metal concentrations in 1989, 1995, and 1998. The data from this research have been published in a U.S.G.S. Open File Report as well (Nagorski et al., 2000).

In Chapter 4, I report the results of a twelve month study on the spatial and temporal variations of the inorganic geochemistry at four sites in western Montana. For this study, I sampled two large rivers and two high elevation streams; two of which were impacted by mining and two not. The smaller streams were the Landers Fork (pristine) and upper Blackfoot River (mining-impacted), which were the focus of the study in chapter 2. Hence, another year of data at two of the sites in the chapter 2 project was added, allowing for multiple year examination of temporal patterns in the watersheds. The two large river sites were the Clark Fork River near Drummond (mining-impacted) and the lower Blackfoot River near Bonner (minimally-impacted). However, unlike the projects in chapters 2 and 3, in this study I analyzed the total recoverable phase in addition to the dissolved phase of the water samples. Because water quality standards are set for the total recoverable content in waters, I monitored the water quality according to aquatic life regulations. In addition to examining the seasonal variations of the geochemistry of these rivers, I conducted two 24 hour studies at each site in the summer, in which I took samples every 2 hours. The purpose of this portion of the project was to compare the diurnal variation to the seasonal variation. A third type of temporal scale examined was that of daily sampling for almost two weeks following the first significant rainfall in September at the end of the summer drought. From these data, I found that short term variations in some parameters captured much of the variation found on much longer time scales. I also report that major ions behaved differently from the trace metals, that clear hysteresis patterns were present for many constituents, and that streamflow values alone were inadequate predictors of the surface water geochemistry in those systems.

The findings from these projects underscore the superiority of the newly developed clean techniques for sampling water, demonstrate that some of the greatest geochemical changes of a water year may occur during the early stages of runoff, and show that the widely held generalization regarding the inverse relationship between streamflow and solute concentrations is largely invalid in these rivers. The results should have significant implications for the sampling design of future monitoring studies and will contribute to the understanding of the chemical dynamics of surface waters in western Montana.

<u>Chapter 2:</u> <u>Seasonal variations in the solute geochemistry of the upper</u> <u>Blackfoot River watershed, Montana.</u>

<u>Abstract</u>

Clean sampling methods were used to study the solute (operationally defined as $<0.2 \,\mu\text{m}$) geochemistry of mining impacted and pristine surface waters in the upper Blackfoot watershed. Five sites along the Upper Blackfoot River and four sites along the Landers Fork were sampled, some more regularly than others, over the course of 18 months in 1997-1998. Samples were also collected from a tributary to the Blackfoot (Hogum Creek) and a tributary to the Landers Fork (Copper Creek). The Upper Blackfoot River, which drains historic mines ca. 20 km upstream of the study area, had higher trace metal concentrations than did the Landers Fork, which drains the pristine Scapegoat Wilderness area. In both rivers, many of the major elements show a seasonal hysteresis effect in which the concentrations were lower on the rising limb of the hydrograph than on the falling limb. However, elements such as As, Cu, Fe, Mn, S, and Zn exhibited more irregular temporal patterns, which included periods of almost no response to changes in streamflow, concentration elevation following a summer storm, concentration surges at the start of snowmelt in the spring, and/or elevation throughout the course of spring runoff. Streamflow values alone were poor predictors of the solute concentrations in the streams, and complex interactions between the timing and magnitude of streamflow appeared to account for the geochemical trends in the study area.

Introduction

In order to characterize baseline conditions in pristine watersheds and to obtain accurate data in contaminated watersheds, ultra-clean sampling, processing, and analytical methods are necessary (Benoit, 1994; Horowitz et al., 1994). In the past decade, the importance of these methods has been highlighted by studies that cast doubt on the validity of much of the trace metal data collected using standard protocols (Windom et al., 1991; Taylor and Shiller, 1995). Still, only a small number of published research to date has reported on both spatial and temporal trends within river basins using clean sampling techniques (e.g. Hurley et al., 1996; Shafer et al., 1997; Sherrell and Ross, 1999). Although major USGS water quality programs (NAWQA and NASQAN) have adopted clean sampling and analytical methods (Horowitz et al., 1994; Shelton, 1994; Alexander et al. 1996), they have not focussed on defining geochemical trends at dense spatial and temporal resolutions within individual watersheds.

Based on both clean and conventional studies, little is known about seasonal variations of the inorganic geochemistry of freshwater systems. Storm-scale or seasonal-scale hysteresis, defined as a loop pattern in plots of concentration vs. discharge caused by elemental concentrations differing along the falling limb from the rising limb of a hydrograph, have been reported for decades (e.g. Johnson and East, 1982; Wetherbee and Kimball, 1991; Piñol et al., 1992; Campbell et al., 1995; Droppo and Jaskot, 1995; Sokolov and Black, 1996; Bhangu and Whitfield, 1997). However, the studies present little consistency in the hysteresis patterns and very few provide data on trace elements. Identifying hysteresis cycles is important because their presence violates the assumption that the geochemical variation in rivers is generally based on an inverse, linear relationship between streamflow and chemical concentration (Hem, 1970; Whitfield and Schreier, 1981). Hence, the identification of hysteresis cycles is critical for the accurate monitoring of trace element loads in surface waters. Additionally, hysteresis patterns can help identify which geochemically distinct sources and processes in the watershed are dominating stream chemistry at different times (Hooper et al., 1990; Evans and Davies, 1998).

Much of the hysteresis research has come from regions where seasonal streamflow variations are not dominated by the springtime melting of snowpacks, but by rain events. Such research has generally documented hysteresis patterns with clockwise rotations (concentrations higher along the rising limb than along the falling limb, Figure 1a). This clockwise pattern is typically attributed to flushing effects at the onset of higher flow conditions, when precipitation in a catchment leads to the displacement of ionically concentrated soil and ground water into the stream channel (Piñol et al, 1992; Sokolov and Black, 1996).

In the few studies coming from cold, mountainous regions in North America (Colorado Rocky Mountains; Sierra Nevadas, and Canada), both clockwise and counterclockwise hysteresis (Figure 1b) rotations have been reported (e.g. Whitfield and Whitley, 1986; Campbell et al., 1995; Bhangu and Whitfield, 1997). Clockwise hysteresis patterns in snowmelt-dominated watersheds have been explained by ionic pulses from the snow itself at the start of the melt period that create surges in stream water ionic concentrations (Williams et al., 1993; Campbell et al., 1995) and/ or a piston-effect by meltwater which increases the soil and groundwater contribution to streamflow (Stottlemyer and Toczydlowski, 1990). Counter-clockwise rotation can occur in high elevation watersheds because when thawed in the spring, the snowpack produces overland flow of relatively unaltered meltwater which produces dilute stream water conditions during early runoff (Stoddard, 1987; Stottlemyer and Troendle, 1992; Bhangu and Whitfield, 1997). Following the initial, usually rapid influx of meltwater, soil water and ground water gain larger roles in contributing to flow, as more snowmelt travels through the subsurface before entering the channel.

Almost no work known to the authors has been done on investigating geochemical seasonal hysteresis in the Rocky Mountains, a region where much of the annual streamflow occurs during the spring snowmelt (Campbell et al., 1995). In this report we present the results of a temporal and spatial investigation of the geochemistry of a several kilometer-long stretch of the upper Blackfoot River and the Landers Fork, which are moderately high elevation streams in western Montana (Figure 2). The purpose of the project is to document seasonal geochemical trends along short reaches of a mining-impacted river and its uncontaminated tributary using clean sampling and processing methods. By identifying hysteresis patterns, we establish the usefulness of streamflow as a valid predictor of surface water geochemistry in the two rivers. By comparing and contrasting the hysteresis patterns, we make inferences about the varying sources driving the geochemical seasonal variability in the contrasting drainages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

Several historic mines, which have been linked to water and bed sediment contamination in the watershed, are located in the headwaters of the Blackfoot River, 20 km upstream of this project's study area (Moore et al., 1991; Menges, 1997; Nagorski et al., 2000). In contrast, the Landers Fork largely drains a pristine area, a portion of the rugged Scapegoat Wilderness area. The upper Blackfoot River and the Landers Fork flow adjacent to an undeveloped ore deposit proposed for open-pit gold mining (the McDonald Gold Project area) before joining together to the southwest of the deposit (Figure 2). The elevation at the sampling sites is ca. 1400 m, and the streams drain areas with elevations of up to 2400 m; therefore, the annual hydrologic variability is dominated by snowmelt dynamics in the spring and early summer. Downstream of the study area, the Blackfoot River flows for another 186 km before joining the Clark Fork River, a major tributary to the Columbia River. The complete dataset from this project has been documented in two USGS Open File Reports (Nagorski et al., 1998 and Nagorski et al., 2001). The first Open File Report (OFR) contains data collected from July, 1997 until March, 1998, while the second focuses on data collected between April and December, 1998.

<u>Methods</u>

1. Sampling locations and frequencies:

We selected sites upstream, adjacent to, and downstream of the proposed mine area (Figure 2). The sites were spaced as evenly as possible, considering access limitations in the area, covering approximately 7 km of each river. Between July, 1997, and August, 1998 we sampled at four sites along the Landers Fork (LA, LB, LC, and LD), three sites along the Blackfoot River (BH, BB, and BC), one site at Copper Creek (C) and one at Hogum Creek (HC) 6 to13 times (Figure 2). We continued sampling at two of the Landers Fork sites (LB and LC) and two of the Blackfoot River sites (BB and BC) monthly through December, 1998 (although sites LB and BC could not be accessed due to heavy snow in December, 1998). An additional two sites (sites BA and BD) were sampled only from

9

July to September, 1997. We collected samples of seep water emerging from the streambanks near sites LB and LC when possible—in 1/98 and 4/98 near LB, and in 11/97, 1/98, 3/98, 4/98, 10/98, 11/98, and 12/98 at site LC. During the other times, the seeps near LB were not accessed and the seeps at LC were submerged by channel flow.

2. Streamflow measurement:

We measured streamflow at each sampling site using a Price AA current meter connected to an Aqua Calc 5000 calculator (Rickly Hydrological Co.) according to standard USGS protocol (Rantz et al. 1982). During the majority of the sampling events, we measured streamflow twice at each site in order to define the measurement precision. Replicate measurements at sites with less than 142 L/s, between 142-991 L/s, and >991 L/s were within 14%, 9%, and 7%, respectively. At sites where we took only one streamflow measurement, the error assigned to the measurement was the maximum precision error found in the appropriate streamflow bracket.

3. Water sampling

Two people were present for each sampling event. While one person measured streamflow, the other took measurements of pH, dissolved oxygen (D.O.), conductivity, and air and water temperature in situ, using an Orion model 230A pH meter, an Orion model 820 dissolved oxygen meter, a Hach Conductivity/TDS meter, and a Barnant 100 Thermocouple Thermometer, respectively. The pH and D.O. meter were calibrated at least once per day, and their calibrations were checked and usually redone at each sampling site.

We used clean sampling and processing methods in order to minimize the chances of contaminating the samples. Each sample bottle was stored in double zip-close bags, from which it was removed only moments before sampling. The sampler contacted each bottle wearing new latex or nitrile gloves. With the help of the other person, the sampler wearing the clean gloves contacted nothing but the sample bottle and the inner storage bag. After rinsing the sample bottle with one volume of stream water, the sampler filled each bottle by width and depth integrating over an area upstream of where we had disturbed the site by measuring streamflow and the other in situ parameters and took three samples per site. In addition, we always collected samples upstream of bridges in order to limit additional sources of contamination. We immediately returned the sample bottles to their zipped double bags and stored them on ice until return to the laboratory.

We extensively pre-cleaned all collection materials (bottles, syringes, etc.) that came into contact with the water samples. One exception to this was the amber glass bottles used for anion and carbon samples; these bottles were washed only by repeated rinsing with Milli-Q water. All other materials were made of LDPE or HDPE plastic or teflon. Their cleaning procedure consisted of a regular wash with warm water and soap, several rinses in deionized water, soaking in 6N HCl for 2 hours, three rinses in Milli-Q deionized water, soaking in a 1 % trace-metal grade HNO₃ bath for 24 hours, another three rinses in Milli-Q, and drying and storing into clean plastic bags under a Class 100 laminar flow hood. At least one field blank was carried through the acid washing stage, transport into the field and exposure to the ambient air, filtration, preservation, and analysis for each sampling event.

4. Lab Methods

We removed the samples from their double bags and filtered them under a Class 100 laminar flow hood at the University of Montana Murdock Environmental Biogeochemistry Laboratory within 30 hours of collection. Studies have shown that standard methods of field filtration can result in high risks of introduction of trace metal contamination into bottles, and that lab filtration, even if not done immediately, does not cause significant sorption onto sample bottles prior to filtration (Struempler, 1973; Benoit, 1994; Taylor and Shiller, 1995). In addition, we conducted an experiment for this project to test whether sorption onto bottles before filtration was a problem with these samples. Five replicate samples taken from the Blackfoot River were stored on ice for 2, 12, 41, 65,

11

and 160 hours before being filtered for analysis. Results show that there was no measurable change in elemental concentrations for most constituents over the 160 hours. The only exceptions were Fe and Mn, whose concentration dropped significantly after 65 hours, a time period longer than the holding times used in this project.

We wore clean nitrile or latex gloves whenever handling the sample bottles and any other sample storage or processing materials. We filtered the samples through 0.2 μ m syringe filters with glass prefilters (Gelman Sciences Serum Acrodiscs). At least 50 mL of sample material was used to rinse the syringe, filter, and bottle and to reduce the effective pore size (and as a result, the passage of colloidal material) of the filters (Taylor and Shiller, 1995; Horowitz et al., 1996). Following the purging by the 50 mL of sample,we filled a 60 mL amber glass bottle with filtered sample for the purposes of carbon and anion analysis. Finally, we filled a 125 mL plastic bottle with filtered sample material for cation and arsenic analysis, still using the same filter. We stored the amber bottles in a 4°C refrigerator before analysis, whereas we acidified the samples in the plastic bottles to pH<2 with ultrapure, double distilled from quartz Optima (FisherScientific) HCl.

We used a Thermo Jarrel-Ash ICP (IRIS) with ultrasonic nebulization (Cetac, U-5000AT+) to measure trace element and major cation concentrations in the water samples according to EPA Method 200.15 (Martin et al., 1994). This method was modified slightly in that we did not add nitric acid or hydrogen peroxide to the samples. Nitric acid was previously determined by the laboratory not to improve analytical performance, and hydrogen peroxide was not necessary because arsenic was not being analyzed by ICAPES.

Using a Shimadzu Carbon analyzer, we measured inorganic carbon concentrations within one week of sample collection according to Standard Method 505A (Franson, 1985a). However, due to technical problems with the Shimadzu Carbon analyzer in the summer and fall of 1998, we were unable to analyze all samples collected in that time period for inorganic carbon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Arsenic analysis was done using atomic absorption spectroscopy with hydride generation (HGAAS) according to Standard Method 303A (Franson, 1985b). This method was modified by the Murdock Environmental Biogeochemistry Laboratory to optimize analytical performace (Mickey, written communication, 1997). The modifications consisted of adding KI and HCl to the samples and standards to achieve final concentrations of 2% KI and 1 M HCl and of running solutions of 0.35% NaBH₄ (stabilized with 0.5% NaOH) and 6N HCl through the hydride generation during analysis.

5. Quality Assurance/ Quality Control

We conducted sample analysis according to a strict quality assurance/ quality control program. We calibrated each instrument at the start of each day and checked for accuracy and precision with the analysis of every 10 samples. Accuracy was measured through the analysis of internal and external standards, spikes, and blanks. Precision was evaluated by running replicate samples and standards within individual and over multiple analytical events. The practical quantification limit (PQL) was determined as the threshold at which a sample can be reproduced within a maximum variability of 30% (Table 1).

Six different external standards were analyzed 47 times on the HGAAS with the arsenic samples, and each measured within the reported acceptable range. On the ICP, three types of USGS standards (USGS T-107, USGS T-143, and USGS T-145) were run a total of 150 times during sample analyses, and the average measured concentrations of all elements fell within the reported acceptable range except for Sr, which measured up to 4% low on all three standards, and Ag, which was 12% high on USGS T-143. The mean percent difference between known and measured values of internal standards measured on the HGAAS, and carbon analyzer was less than 7.1%. On average, sample duplicates run on all instruments were less than 8% different from one another (Table 1). Mean percent spike recoveries for all measurable elements were between 86 and 112% (Table 1).

Laboratory reagent blanks were all below the PQL on all instruments. Field collected blanks were mostly below the PQL for all elements as well. Exceptions are for Ca, Mg, Na, S, Si, and Zn, which were detectable in up to 23 of the 31 field blanks. The concentrations of Ca, Mg, S, and Si in the blanks were inconsequential, as they were at least an order of magnitude lower than concentrations fcund in environmental samples. However, the highest Na concentration (0.42 mg/L) detected in the field blanks could explain the noisiness of much of the Na data. The appearance of $3.7 \,\mu g/L$ of Zn in one of the field blanks unfortunately calls into question much of the Zn data. Zinc is one of the most easily contaminating elements due to its presence in many plastics and materials. However, it should be noted that 24 of the 31 field blanks did not have quantifiable Zn (<0.3 $\mu g/L$), and the vast majority of samples from the Landers Fork did not have detectable Zn either.

<u>Results</u>

1. Streamflow

Streamflow levels and surface water - ground water dynamics varied seasonally along the studied reaches of the Landers Fork and Blackfoot River. Streamflow decreased between July, 1997 and March, 1998. Between April and December, 1998, there was a more variable streamflow pattern, as would be expected due to the occurrence of spring runoff in this time period. At most sites, streamflow started to rise in April, and runoff lasted through July (Figures 3 and 4).

Streamflow between LA and LB (accounting for Copper Creek, which joins the Landers Fork between LA and LB) either stayed constant or increased during the summer months. However, it was disconnected during the low flow winter period, when LA was dry and C's flow was lost to the subsurface before reaching LB. Streamflow generated from seeps sustained ice-free flow at LB and LC at all times of the year sampled. The reach between LB and LC was gaining flow during all 17 times that both sites were measured. The reach between LC and LD had no measurable gain or loss on 3 of the 8 times it was measured; otherwise it was losing.

At the Blackfoot River sites, streamflow was present at all sites every time they were visited over the course of the study. The one exception to this is site BB, where the river was frozen on 1/6/98. The ice-free status at sites BH and BC during the cold winter months indicates an important role by ground water in sustaining streamflows in the area. Although the stretch between BH and BB (accounting for Hogum Creek) was a losing reach 5 of the 6 times it was measured, the stretch of river between sites BB and BC was gaining streamflow the majority (10 of 15) of the times the sites were gauged. The reach upstream of site BD, below the confluence of the Landers Fork and Blackfoot River, was at a steady state flow condition 3 of the 5 times measured, and a losing reach in early 7/97 and 8/97.

2. Surface Water Geochemistry

The solute chemistry of the Landers Fork was different from the Blackfoot for most of the constituents measured. Comparisons of mean concentrations show the Blackfoot samples had higher concentrations of Fe, K, Mn, Na, S, Si, Sr, and Zn and lower concentrations of inorganic carbon, As, Ca, and Mg than the Landers Fork, during the study period (based on paired t-tests with p-values<0.01) (Table 2). The rivers had similar pH values, water temperatures, and dissolved oxygen, Ba, and Li concentrations. Elements that were below the detection limits in some samples (Fe, Mn, and Zn in the Landers Fork only) were assigned a value of one-half the element-specific PQL. Both Cr and Cu were usually but not always below their PQLs in both rivers, and so mean concentration comparisons could not be made. No samples from any sites had detectable concentrations of Ag (<1 μg/L), Be (<0.05 μg/L), Cd (<0.5 μg/L), Co (<0.5 μg/L), Mo (<1 μg/L), Ni (<2 μg/L), Pb (<6 μg/L), Ti (<2 μg/L), and V (<2 μg/L).

Most solute concentrations increased as discharge decreased in the both the Landers Fork and the Blackfoot River sites through the summer and fall of 1997. Following the start of spring runoff in April, 1998, most of the major ions decreased in concentration and subsequently rose throughout the rest of study period through summer and fall conditions. Few generalizations can be made about the behavior of the trace elements in the Blackfoot River, and they were largely below detection in the Landers Fork. Specific results follow.

a) Landers Fork

Major elements, Ba, Li, and Sr:

Hysteresis loops with counter-clockwise rotation were present for inorganic carbon, Ba, Ca, K (site LA only), Li, Mg, and Sr at sites C and LA (Figure 5). That is, these elements had lower concentrations along the rising limb than on the falling limb of the hydrograph. At C, these elements (as well as Si) were inversely correlated with streamflow (r<-0.85, p<0.01) overall, while at LA only Ba, K, and Sr were (r<-0.74, p<0.04). The other elements at LA were inversely related to discharge considering the falling limbs alone, but a single low concentration rising limb datapoint is responsible for much of the loop formation and the lack of good linear correlation (Figure 6).

At LB and LC, the hysteresis loops are not nearly as clear as those seen upstream at C and LA, despite the additional 5-6 months of sampling at the sites (Figure 7). Although inorganic carbon, Ba, Ca, K, Li, Mg, Si, and Sr show an inverse, approximately linear correlation (r < -0.64, p < 0.01) with streamflow at the sites, hysteresis loops are weakly apparent due to multiple crossovers. At LD, which was not sampled as regularly as LB and LC, the aforementioned elements also have negatively sloping correlations with streamflow (r < -0.69, p < 0.04), and overall, the geochemistry at LD was very similar to that of LC. At LB and LC, there were wider ranges of solute concentrations during low flow compared to

high flow periods. In fact, once streamflow exceeded baseflow levels by a factor of about 10, concentrations of many major elements reached relatively steady levels (Figures 7 and 8).

An anomalous major element in the Landers Fork was S, which exhibited different patterns at almost every site. At site C, its concentration was higher during runoff in 1998 than during the falling limb of the 1997 streamflow, an opposite trend to those seen for the other major elements. In contrast, S at LA generally followed the counter-clockwise hysteresis loop characteristic of the other major elements, although its concentration failed to rise with the decrease in streamflow at the last sampling event, in July, 1998. At site LB, S concentrations increased with decreases in streamflow in the fall of 1997, and the highest concentration was found on the late April, 1998 sampling date, when streamflow had just begun to rise for spring runoff (Figure 14b). As runoff continued, S concentrations dropped again to levels found the previous summer. Sulfur concentration variation was comparatively small at LC, even during the dynamic streamflow conditions of 1998. The highest S there was found in September, 1997 (Figure 9).

Trace elements: Cu, Cr, Fe, Mn, Zn, and As:

The filterable trace metals Cu, Cr, Fe, Mn, and Zn were usually or always below quantifiable levels at Copper Creek and the Landers Fork sites. Copper was never detected, and Cr was found only rarely— at C on 1/6/98, and at LC during the winter (11/16/97, 1/6/98) and during the highest flow in 1998 (6/29/98). Iron was detected at all sites from July, 1997 to January, 1998. At sites LB and LC, which were sampled through the second fall season, Fe did not rise above the PQL (5 μ g/L) as it did in the fall of 1997 (Figure 10). At site C. Mn was at or above its PQL of 0.3 μ g/L only during the first several sampling events, through the summer of 1997. However, at LA, LB, LC, and LD, Mn was quantifiable during 1-2 high flow events in 1998 in addition to during the summer of 1997 (Figure 11). Zinc was mostly below the PQL as well, and it was always below the concentration found in the highest field blank.

Arsenic correlated poorly with streamflow at most sites in the Landers Fork, except for at C and LB, where they correlated reasonably well (r= 0.66-0.68, p< 0.03). The concentration of As wavered little over time at C and LA, except for some increases during high flows in July,1997. In contrast, As concentrations at LC and LD were highest during the winter low flow period, reaching a maximum of 1.0 μ g/L in early 1998, compared to the 0.4-0.6 μ g/L found during the rest of the year (Figure 12). During low flow periods, streamflow at LC was dominated by ground water input, and the seeps measured near the site had As concentrations of 0.9-1.0 μ g/L. However, during the last two sampling events (11/98 and 12/98), the seep As concentrations were only 0.5 μ g/L, and the surface water As concentration also dropped, to 0.4 μ g/L.

<u>рН:</u>

Although diel pH variations were not considered, as sites were not always measured at a consistent time of day, some general seasonal pH patterns are apparent at most sites. The pH at the site C exhibited counter-clockwise hysteresis, with pH lower (pH=8.0) at spring runoff compared to the previous fall and winter (pH=8.1-8.4) and to the post-runoff sample in July, 1998 (pH=8.4). At LA, pH did not have a clear relationship with streamflow, although measurements were lower (pH=8.0-8.1) during spring runoff in 1998 than they were in the late summers of 1997 and 1998. At LB, the pH was generally higher (pH=8.0-8.4) in the summers of 1997 and 1998 than during other times of the year (pH=7.6-7.9). At LC, pH also followed a counter-clockwise hysteresis pattern (Figure 13). It was generally lower in the winter of 1997 through spring runoff in 1998 (pH=7.7-8.0), than during the summers of 1997 and 1998, when pH levels were in the range of 7.9-8.3. During the winter, when the site was ground water dominated, the sceps at the site had pH levels that were lower than in the surface water (7.1 - 7.8

compared to 7.7 - 8.3), which could explain the lower winter pH levels at the site. Fall measurement of pH at the site were at levels similar to pre-runoff conditions.

Spring flushing:

An ionic pulse of some elements was detected prior to spring runoff at LB and LC. In April, 1998, when streamflow had just begun to rise for runoff at LB, concentrations of Ca and S also rose before being diluted by snowmelt in May and June (Figure 14). While Ca concentrations were 33-35 mg/L between November and March, they rose to 40 mg/L on 4/6/98, when streamflow remained unchanged since March, and to 43 mg/L by the end of April, when streamflow had increased 2-3 fold, to 100 L/s. Sulfur concentrations, which were between 1.0 and 1.1 mg/L from November- March, had increased to 1.2-1.3 mg/L in late April, when streamflow had begun rising for runoff. Barium, Li, and Mg also rose during early runoff, although not as convincingly. Barium's concentration was 265 $(\pm 4) \mu g/L$ on 4/26/98, compared with 250-250 $\mu g/L$ from November through early April. Lithium rose from 2.2-2.4 $\mu g/L$ in the winter to 2.6-2.7 $\mu g/L$ in early and late April. Magnesium, whose concentration stayed within the narrow range of 12.8-13.3 mg/L from September through early April, was at 14.0 $(\pm 0.2) mg/L$ in late April. The aforementined ions all dropped in concentration with the subsequent continuation of the rising hydrograph in May and June.

Similarly, a rise in Ca, and Mg is evident at LC in March and early April, 1998, just before spring runoff began at the site (Figure 15). Streamflow was essentially constant (between 610-740 L/s) from January through April at the site, before jumping up to 8100 L/s at the time of the 5/19/98 sampling. The flushing is seen in that Ca at the site was 34-37 mg/L during the two April sampling events, compared with 31-33 mg/L in January and March. Magnesium was not as consistent during the winter as was Ca, although its concentration of 13.2 ± 0.2 mg/L in late April is slightly higher than that in early April

 $(12.0 \pm 0.5 \text{ mg/L})$, and Mg concentrations did not rise above 13.0 mg/L on any of the prior sampling events. Unlike at site LB, no flushing effect for S was seen at LC.

b) Blackfoot River

Major elements, Ba, Li, Sr:

At site BH, counter-clockwise hysteresis loops with negative slopes (r< -0.60, p<0.05) to streamflow are seen for inorganic carbon, Ba, Ca, Li, and Si (Figure 16). Potassium and Mg also correlate inversely with streamflow (r< -0.78; p<0.01), but the falling and rising limbs are not distinct from one another (Figure 17). Similarly, inorganic carbon, Ba, Ca, Li, Mg, Si, and Sr correlate inversely with streamflow at site BB (r< - 0.64, p<0.02). These elements follow a counter-clockwise hysteresis pattern as well, except for Ca and Mg, which have cross-over falling and rising limbs. Likewise, inorganic carbon, Ba, K, Li, Si, and Sr exhibit counter-clockwise hysteresis at site BC (Figure 18). Again, they (and Ca and Mg) have an overall negative relationship (r < -0.52, p<0.05) to streamflow at the site. Hogum Creek, which was sampled only between November 1997 and August, 1998, had inverse correlations (r< -0.82, p<0.03) with streamflows for most detectable elements (Ba, Ca, K, Li, Mg, Mn, and Sr) as well. However, only 2 elements showed hysteresis loops—S, which had clockwise rotation, and Si, with counterclockwise rotation, and neither was linearly correlated with streamflow.

As was noted for sites LB and LC, there appears to be a stabilization of solute concentrations at BB and BC during high flow periods. This observation is based on only two of sampling events, when discharge increased from 1900 and 2800 L/s at sites BB and BC, respectively, on 6/5/98 to the highest flow measured over the study period (6000 L/s at BB and 7000 L/s at BC), on 6/28/98. During this high flow event, concentrations of most measured solutes were almost identical to those taken earlier that month (Figure 18).

This result may indicate that beyond a certain flow threshold, meltwater overwhelms baseflow contributions.

Trace elements:

Unlike in the Landers Fork, many of the trace metals in the Blackfoot were well above their detection limits, allowing for characterization of their trends with time. Although hysteresis patterns were not found, S and trace metals such as Cu, Fe, Mn, and Zn regularly were elevated during spring runoff in 1998, and they were also relatively high following a rainstorm the day before the 7/20/97 sampling event. Like at the Landers Fork sites, a haphazard relationship between streamflow and As is seen along the Blackfoot. Because trace metal seasonality varied from site to site, each site is considered separately.

Site BH: As, Cu, Fe, and Mn were the most highly concentrated on 7/20/97, the post-storm sampling date, than on any other over the 14 month study at the site. On the seasonal scale, Fe, Mn, and Zn concentrations were elevated during runoff compared to winter and late summer, although hysteresis loops are not apparent (Figure 19). On the contrary, As showed a counter-clockwise hysteresis cycle without a positive or negative trend (r= 0.12, p=0.72) with streamflow (Figure 20). Copper was not detected other than on the post-storm date and in one of the triplicate samples from each sampling date in July and August 1998. Chromium concentrations appeared above the PQL during a few of the low flow events, but not during spring runoff. Zinc concentrations were highest (31-33 μ g/L) in late April, 1998, at the early portion of spring runoff, and overall Zn correlated positively with streamflow (r=0.79, p<0.01) (Figure 21a). It was also relatively high (20-28 μ g/L) during the two July, 1997 sampling events. Sulfur behaved similarly to Zn, in that its highest value was in late April, 1998 as well (Figure 21b). In late April and May, 1998, its value (24-31 mg/L) was 2-4 times the concentrations found during the rest of the

study period. During the 6/5/98 and 7/20/98 sampling, when streamflow was still high due to runoff, S concentrations returned to levels similar to pre-runoff conditions.

Site BB: In late July, 1997, the samples at BB dropped in pH and increased in Cu and Fe the day after the large rain event. Iron was at its maximum on that event compared the whole study period (Figure 22). Overall, Fe correlated poorly with streamflow (r=0.05; p=0.86) although its lowest values were found in the 6/29/98 samples, when streamflow was the highest (Figure 22). Copper was detected above its PQL not only after the storm, but also in some of the late spring and summer samples of 1998 (Figure 23). In fact, its maximum concentration occurred during the highest flows measured, in late June, 1998. Manganese and streamflow had a positive relationship (r=0.48; p=0.02). Arsenic was higher in the late summers of 1997 and 1998 than during other times of the study, and it roughly followed a counter-clockwise hysteresis pattern as it did at BH.

Site BC: This site was first sampled on 7/20/97, the event that immediately followed the summer storm referred to before. These first samples at BC are relatively low in pH and high in As, Fe, Mn, and Zn compared with those collected through the rest of the study period (Figure 24). The highest Fe (46-49 μ g/L) found at the site over the study period was on the first sampling date, the post-storm event (Figure 24). Otherwise, Fe concentrations were approximately uniform during spring runoff, when they exceeded concentrations in the previous winter and subsequent fall. Like at the other sites, As at BC was variable (0.2-0.5 μ g/L) during low flow conditions and it did not have a negative or positive relationship to streamflow overall (r=0.04, p=0.88). Copper was detected only during the highest flow event at BC, on 6/29/98. Chromium was above its PQL only in the November 1997 and January 1998 samples, as well as in one of the triplicates from 6/29/98. Manganese correlated particularly well with streamflow at site BC (r= 0.91, p<0.01) (Figure 25). The most outlying point on the linear regression between streamflow and Mn was the July 1997 post-rainstorm sample. Concentrations of S and Zn were lower during the peak of runoff than at the start (Figure 26).

Site HC: Arsenic was peculiar in that its concentration went from $0.2 \mu g/L$ (the PQL) during November, 1997 and January, 1998, to increasing steadily through the end of the sampling period, when it measured 1.1 $\mu g/L$ on 8/17/98. Iron also did not follow the trends the major elements did. Although it had a negative relationship with discharge for most of the study period, the last sample collected (in August, 1998) was 3-4 times as high in Fe as all the other samples (Figure 27). Clearly, Hogum Creek would need to be sampled at a far finer temporal resolution and over a longer period of time in order to elucidate the details of its temporal variability.

<u>pH:</u>

Although diel variations were not determined when sampling the Blackfoot sites either, a few consistent observations were noted. At BH, the pH was always well above neutral (between 7.8 and 8.4), and the lowest pH values occurred on the post-rain storm sampling day (7/20/97), when pH measured 7.9, and during spring runoff in 1998, when the pH was ca. 7.8. The pH values at BB were not clearly correlated with streamflow either, although they were lower at the start of 1998's spring runoff (7.9 - 8.0) than they were before and after (8.1-8.3). The pH levels at BC were variable within the 7.7 to 8.3 range, and pH was clearly lower at the start of runoff than at the end. The pH at HC was between 7.3 and 7.6 from November 1997 to June, 1998, and between 8.0 and 7.8 at the last two sampling events, in July and August, 1998, indicating clockwise hysteresis.

Spring flushing:

Sulfur and Zn appeared to be mobilized primarily during the early stages of runoff at all Blackfoot sites. At BH, HC, BB, and BC, these elements peaked during the early stages of runoff and subsequently dropped during periods of higher flow. This flushing of S and Zn are evident in the load plots. While for all other solutes (e.g. Si and Mn), load trends followed streamflow trends almost exactly, S and Zn loads do not follow changes in

streamflow over the course of runoff (Figure 28). For example, at BH the S load did not increase with the second runoff peak sampled on 6/5/98 (Figure 4a). Because its concentration dropped so dramatically after the start of runoff, its load continued to drop as well despite the rise in streamflow (Figure 28a). This same phenomenon is visible for the Zn loads. While the second runoff peak is detectable via the rise in Zn loads, the second peak is not as high as the first one, even though the streamflow level had risen (Figure 28b). This indicates that factors other than discharge accounted for their load variations.

Discussion:

1. Hysteresis

Hysteresis patterns were observed for some elements at most of the study sites, indicating that factors other than the amount of streamflow need to be considered when predicting the solute geochemistry in these streams. The counter-clockwise seasonal hysteresis of many solutes in both the Landers Fork and Blackfoot River is an indication of the important role played by direct runoff of snowmelt into the streams during the early periods of the spring melt. Although snowmelt, soil, and ground water were not sampled in this study, other researchers have shown that shifting proportions of the relative contributions of these various water sources likely drive hysteresis patterns (Stottlemyer and Toczydłowski, 1990; Piñol et al., 1992; Campbell et al., 1995; Sokolov and Black, 1996).

Additionally, the differences in the widths of the loops are presumably an indication of greater or lesser chemical differences among the various water sources supplying streamflow during different periods along the hydrograph (Johnson and East, 1982; Evans and Davies, 1998). Hence, the lack of hysteresis loops for some major ions may be due to the sources supplying flow along the falling limb and rising limb having indistinguishable chemical signatures. For example, the lack of open hysteresis loops at LB and LC may have been due to the strong chemical dominance by the relatively large and steady ground water contributions at the sites. In contrast, the open hysteresis loops at sites C and LA, where groundwater played small to insignificant roles in contributing to surface flow, were likely controlled by more dynamic variations in the snowmelt runoff chemistry and the spatial routing of the meltwater,.

Presumably, snowmelt traveling to the stream channel with minimal interaction with ground surface produced a dilution effect during the earlier portion of runoff. Yet, considering that concentrations did not drop by the same factor by which discharge increased, the soil water and ground water must have been contributing a fair amount to flow as well, and/or there was a significant amount of routing of fresh meltwater through the subsurface. The most dramatic example of this is at LB, where flow increased by approximately 400-fold in the spring of 1998 compared to the preceding winter, although concentrations of most ions were diluted by less than 30%. Another example is at BC, where high flow in the spring was 17 times the winter flow levels, although ionic concentrations were still at 70-90% their baseflow levels (other than for the trace heavy metals, which varied more widely). In general, during high flow conditions at all the sites, concentrations of many ions were typically diluted by no more than one half despite the much larger proportional increases in streamflow. Hence, the diluting power of snowmelt was apparently mitigated by substantial contributions from a combination of adjacent soil water and ground water. During the summer and fall, after the snowpack had been depleted, soil and ground waters, with their higher solute concentrations, presumably took on the dominant role in supplying water to the stream channel. Although much of the original source for the soil and ground water may have been the earlier snowmelt, the dilute meltwater likely took up more ions when in contact with soil and aquifer materials on its subsurface journey to the stream channel (Stottlemyer and Toczydlowski, 1990; Campbell et al., 1995; Stottlemyer et al., 1997).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The lack of hysteresis patterns for many of the detectable trace metals is an indication that processes controlling metal loading are different from those controlling loading of major elements. Other studies in the literature have also found that discharge-concentration relationships for filterable trace metals are poorly defined (Wetherbee and Kimball, 1991; Shafer et al., 1997; Shiller, 1997). Because metals such as Fe, Cu, Mn, and Zn are more reactive than major ions such as Ca, Mg, and Na, their concentrations are more sensitive to changing conditions such as varying pH, redox, dissolved organic carbon, availability of sorption surfaces on colloids, and biologically-controlled processes in the watershed (McKnight and Bencala, 1988; Cossa et al., 1990; Kimball et al., 1992; Shafer et al., 1997; Ross and Sherrell, 1999).

2. High flow increases in trace metals:

The increase of several trace metals and arsenic in the Landers Fork basin (As at site C; Mn at LA; As and Mn at LB; and Mn and Cr at LC) and in the Blackfoot (Cu, Fe, Mn, S and Zn at BH, BB, and BC) during high flow events might be due to one or more of the following factors. For one, the higher solute concentrations may simply be an artifact of the sample processing. During high flows, total suspended particulate matter generally increases in rivers, and hence the presence of more colloidal particles may account for the apparent changes. Many recent papers have shown that even 0.2 μ m is not an adequate cut-off for separating colloidal material and truly dissolved particles (e.g. Horowitz et al, 1996; Pham and Garnier, 1998; Ross and Sherrell, 1999). With an increased colloidal abundance in the waters, the likelihood of collecting colloids in the filtrate likewise increases. It is well established in the literature that colloids, primarily colloidal iron, are major transport vectors for trace metals such as Cu, Mn, and Zn (Ross and Sherrell, 1999; Schemel et al, 2000).

Another explanation for the high flow increases in metal concentrations is that during the higher flows, water sources which normally do not significantly contribute to

the streamflow may be active. For example, groundwater from deeper or more distant and geochemically distinct portions of the aquifer may be supplying water to the high flows (Rice and Bricker, 1995). Research in other rivers suggest that during high flow events ground water can play dominant roles in influencing the geochemisty of surface waters (Whitfield et al., 1993; Campbell et al., 1995; Sherrell and Ross, 1999). Additionally, as mentioned earlier, the high reactivity of trace metals, both dissolved and colloidal, make them more prone to physical and chemical changes in the watershed that are more difficult to identify than for conservative major ions. The coupling of changes in both the physical and chemical conditions in the watershed makes it difficult to distinguish among the potential processes which may be accounting for the seasonal trace metal variations.

Lastly, the mining contamination in the Blackfoot watershed may help explain the trends in that river. Metals might be released from the upstream mining district or mining-contaminated marshes below the district. Physical and chemical sources could include higher water supplies from groundwater interacting with mine workings, overflowing treatment ponds, or flushing of reduced waters in the contaminated wetlands and soils upstream of the study area. Clearly, more extensive studies are needed to identify the role of colloids and the specific sources and mechanisms potentially supplying solute metals to the streams during high flow conditions.

The same possibilities discussed above to explain the seasonal rises in trace metals may explain the drop in pH and rise in high As, Cu, Fe, Mn, and Zn collected at one or more of the 3 main Blackfoot sites (BH, BB, and BC) following a rainstorm in late July, 1997. Other studies in the literature have reported trace metal surges and drops in pH in rivers during storm periods (Bird, 1987; Soulsby, 1995; Sherrell and Ross, 1999). The data presented here show that a single short term event may cause geochemical changes at least as great as those found over the course of an 18 month seasonal study in which samples were taken approximately once per month. This result has implications for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adequately designing monitoring studies that aim to capture the full range of temporal geochemical variation in streams.

3. Spring flushing

Flushing effects might explain the pre- and early- runoff rise in the concentrations of some solutes in the Landers Fork and Blackfoot River. With this mechanism, elements which have been accumulating on the periphery of snow crystals and in adjacent soil and ground water over the winter are suddenly pulsed into the surface water, creating a brief surge in concentrations, after which they are depleted (Johannessen and Henriksen, 1978; Harrington and Bales, 1998; Marsh and Pomeroy, 1999). Most research on spring ionic pulsing have focussed on the widespread flushing of sulfate and nitrate, which commonly are atmospherically-derived acidic anions. However, studies of cation flushing report more variable results. For example, while Williams et al. (1993) and Meixner et al. (1998) report little or no ionic pulse for cations in streams in the Sierra Nevada, Stottlemyer and Toczydlowski (1990) observed flushing for Ca, Mg, Na, K, and NH₄⁺ in a Michigan stream. These authors have attributed the patterns of variable cation responses to different biogeochemical processes by soils and vegetation which can both release and uptake pulses of ions, variable displacement of ground water by meltwater into the stream, and weathering-related processes in the watersheds.

Sulfur displayed the most prominent flushing at most sites in this study. A probable explanation for the early S surges is its presence in the snow itself. Extensive snow sampling in the basins would be required to determine its concentration distributions, since the geochemistry of snow varies considerably with depth and distance (Brimblecombe et al., 1985). Yet, it is widely recognized in the literature that atmospheric S accumulates in snow packs both near and far from industrial sources (Davies et al., 1984; Schemenauer et al., 1985; Campbell et al., 1991). Many researchers studying the flush of ions in snowmelt have repeatedly shown that sulfate is preferentially eluted from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

snowpack at the nascent stages of the melt period (Davies et al., 1982; Tsiouris et al., 1985; Williams et al., 1993). Additionally, the higher S concentration in the fall compared to the winter at several Landers Fork sites might be explained by fresh S supplies delivered by autumn precipitation events which contribute directly to the stream or which induced flushing of soil and ground waters in which S accumulated over the relatively dry summer period (Williams et al., 1993; Campbell et al., 1995),

The spring surge of S in the Blackfoot River was likely due to a combination of elution from the melting snow as well as to inputs from acid mine drainage processes upstream. While the pulse of S in the Landers Fork was on the scale of several hundred micrograms per liter, the surge in S in the Blackfoot River was on the order of several milligrams per liter. Unless markedly higher S surges in the Landers Fork were missed in the sampling, it is likely that the much larger increases in the Blackfoot S concentrations originated from sources in addition to the snow itself. The obvious candidate for such a source is the sulfide mining complex 20 km upstream of the study area. The increase of S (and trace metals Fe, Cu, Mn, and Zn) following the July rain storm in the Blackfoot River and not the Landers Fork is further evidence that S can be mobilized and transported downstream in anomalously high concentrations.

Possible reasons for the Zn flushing in the Blackfoot are less clear. Several other studies have noted increases in filterable Zn at the onset of high flow events as well (Weatherbee and Kimball, 1991; Sokolov and Black, 1996; Shafer et al., 1997). In general, Zn is thought to be more mobile than other trace elements because the sorption of Zn onto amorphous Fe oxyhydroxides is reportedly favored at higher pH levels than for many other metals (Benjamin and Leckie, 1981; Filipek et al, 1987; Rampe and Runnells, 1989; Schemel et al., 2000). Hence, any releases of Zn into the surface waters from more acidic sources upstream would more likely be captured further downstream than for the more reactive metals. The mining impacted tributaries and wetlands upstream of the

Blackfoot River sites are good candidates for sources of the filterable Zn and lower pH water (Moore et al., 1991; Nagorski et al., 2000).

The lack of ionic flushing at many sites is likely simply an aritifact of the sampling design, which tracked early runoff events at too crude of a temporal resolution to capture short-term changes in chemistry (Whitfield and Schreier, 1981; Robertson and Roerish, 1999). Most studies on ionic pulses in the literature are based on sampling designs in which chemical data are collected at least weekly, and often daily, during the melt period (e.g. Stottlemyer and Toczydlowski, 1990; Piñol et al., 1992; Campbell et al., 1995; Harrington and Bales, 1998). In this study, however, we rarely sampled more than once a month at the sites.

Summary and conclusions:

In summary, this report presents the results of up to 18 months of baseline geochemical studies in the upper Blackfoot and lower Landers Fork watersheds which show large seasonal variations in both physical and chemical characteristics of the sites. Streamflow values alone were poor predictors of the geochemistry of many solutes in the Landers Fork and upper Blackfoot River. The location on the side of the hydrograph appears to be at least as important as knowing the streamflow level for many solutes at the sites studied. Many cations exhibited counter-clockwise seasonal hysteresis, indicating that early meltwater produced a dilution effect on the surface water geochemistry, and that soil and ground water played more important roles in supplying water to the stream channel later in the season. Nonetheless, several ions also exhibited surges at the beginning of the melt period, which may be an indication of flushing from the snow itself or from displacement of soil or ground water by early meltwater.

Compared to the Landers Fork, the Blackfoot River had higher mean concentrations of dissolved organic carbon, sulfate, and most trace metals; lower mean concentrations of

inorganic carbon, As, and Ca; and similar pH, water temperature, dissolved oxygen, Ba, Li, and Mg. Within each watershed, the geochemical and physical variability among sites within a short distance of one another were substantial, with highly variable seasonal streamflow patterns, surface water - ground water interactions, and concentration discharge relationships. These results highlight the value of designing studies with tight spatial resolutions. As found by Whitfield and Schreier (1981), who observed more variable hysteresis patterns among stations within a single river basin in British Columbia than they did at each station over the course of 4 years, it appears that site specific differences in watersheds such as the Upper Blackfoot can be so great as to have important limitations on any generalizations made from monitoring studies about seasonal geochemical variability in the watershed as a whole.

The apparent mobilization of many trace metals during high flow events in the Blackfoot River may be a result of enhanced contributions of the reactive metals from the historic mining district upstream. These results also have implications for the importance of designing sampling and monitoring studies to adequately capture wide variations in streamflow levels. In the Landers Fork, the trace metals were below detection on most sampling events, indicating that more sensitive analysis (e.g. by ICP-Mass Spectrometer) is necessary to detect any ultra-low levels at this site. This result further justifies the use of clean sampling and handling techniques. More detailed temporal studies would be helpful to better understand issues of early spring runoff flushing, storm geochemistry versus spring runoff geochemistry (especially for the trace metals), and the perplexing haphazardness of arsenic concentrations in both watersheds.

Practical	Quantification	Instrument precision		Spike recoveries		
Limits		Number of	Mean (std. dev.)	Concentration	Number of spiked	Mean (Std. Dev.
		replicate sets	of % difference	of added	samples above PQL	percent
Analyte	POL	above PQL	btwn. duplicates	spike	prior to spike add'n	recovery
Inorg. C	1 mg/L	71	2.0 (2.7)	•	•	•
As	0.2 μ g/L	63 (<0.5 μg/L)	7.0 (6.1)	1.0	44	109.8 (7.0)
		39 (>0.5 μg/L)	3.6 (3.5)			
Ag	1 μg/L) 0	•	20	0	•
AI	5 μg/L	0	•	10	0	
Ba	1 μg/L	55	3.8 (4.0)	200	58	98.0 (9.5)
Be	0.05 µg/L	0	•	•	0	•
Ca	0.01 mg/L	55	3.6 (4.7)	10, 20, 30	40	102.5 (10.3)
Cd	0.5 µg/L	0	•	10	0	•
Co	0.5 μg/L	0	•	1 .	0	•
Cr	1 µg/L	12	7.4 (4.2)	10	18	100.7 (7.6)
Cu	0.8 μg/L	13	3.3 (4.0)	3, 10, 20	15	106.9 (6.7)
Fe	5 µg/L	36	7.8 (10.0)	20, 30, 50	43	106.0 (16.3)
κ	0.10 mg/L	54	4.1 (5.0)	1, 2, 2.5	58	101.3 (5.6)
Li	0.5 μg/L	55	3.4 (4.3)	5, 10	56	103 (6.0)
Mg	0.01 mg/L	55	2.9 (4.3)	5, 10	59	103.8 (6.4)
Mn	0.3 µg/L	31	3.8 (4.8)	10	23	92.0 (4.8)
Мо	1 µg/L	0	•	· ·	0	•
Na	0.15 mg/L	55	5.4 (6.7)	2.5, 5, 10	58	102.6 (7.5)
Ni	2 µg/L	0	•	20	0	•
Pb	6 µg/L	0	•	80	ō	
s	0.01 mg/L	55	5 (6.7)	2.5	55	111.8 (8.5)
Si	0.02 mg/L	55	3.3 (4.4)	2, 5	55	111.9 (8.7)
Sr	2 µg/L	55	4.0 (5.2)	50, 100	54	92.5 (8.6)
Ti	2 µg/L	0	•		0	•
v	2 µg/L	0	•	.	o	•
Zn	0.3 µg/L	28	7.8 (13.3)	10, 20	37	104.4 (8.1)

Table 1: PQLs, precision results, and spike recovery results for analysis of water samples.

	LANDERS FORK	BLACKFOOT RIVER	p-value from
		(Sites BA, BH, BB, BC, an	
		overall mean (std. dev.)	paired t-test
	of all sites on all dates	of all sites on all dates	*=significant
pH	8.05 (0.25)	8.02 (0.18)	0.912
D.O.	10.5 (2.0)	10.5 (2.1)	0.579
Water temp	7.9 (3.2)	8.3 (5.5)	0.680
Air temp	12.3 (10.3)	13.7 (9.4)	0.775
Inorg.C	32.1 (3.5)	25.1 (3.7)	0.000*
As	0.5 (0.1)	0.35 (.10)	0.000*
Ba	220 (42)	205 (33)	0.072
Ca	32.50 (3.00)	25.11 (3.11)	0.000*
Cr	0.6 (0.2)	0.6 (0.3)	(BPOL)
Cu	0.4 (0.0)	0.4 (0.2)	(BPQL)
Fe	4 (2)	21.4 (11.6)	0.000*
к	0.5 (0.1)	0.8 (1.0)	0.000*
Li	2.2 (0.3)	2.2 (0.4)	0.158
Mg	11.60 (1.10)	10.97 (1.28)	0.000*
Mn	0.2 (0.1)	3.0 (1.7)	0.000*
Na	1.05 (0.29)	2.31 (0.40)	0.000*
S	0.99 (0.17)	5.32 (2.91)	0.000*
S	3.60(0.61)	6.27 (0.68)	0.000*
Sr	19 (8)	114 (24)	0.000*
Zn	0.2 (0.2)	6.5 (7.0)	0.001*

 Table 2: Results of paired t-test companing means in the Landers Fork and Blackfoot River.

 Mean concentrations from all sites within the Landers Fork were paired by sampling date with the

mean concentrations from all sites within the Blackfoot River.

Concentrations below the PQL were assigned a value of one-half the element's PQL.

Overall mean values that are below the PQL (BPQL) are italicized in the table.

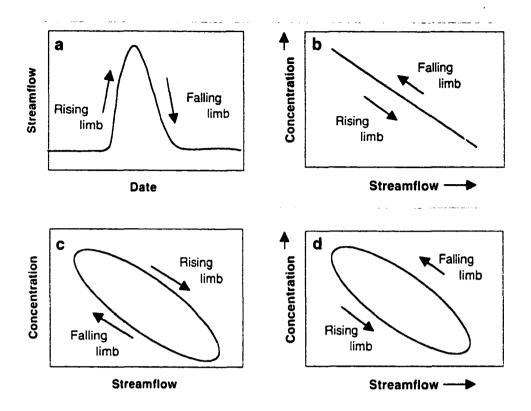


Figure 1: a) Simplified hydrograph; b) Simple linear relationship between Q and concentration; c) Idealized hysteresis cycle for clockwise rotation; and d) counter-clockwise rotation.

33

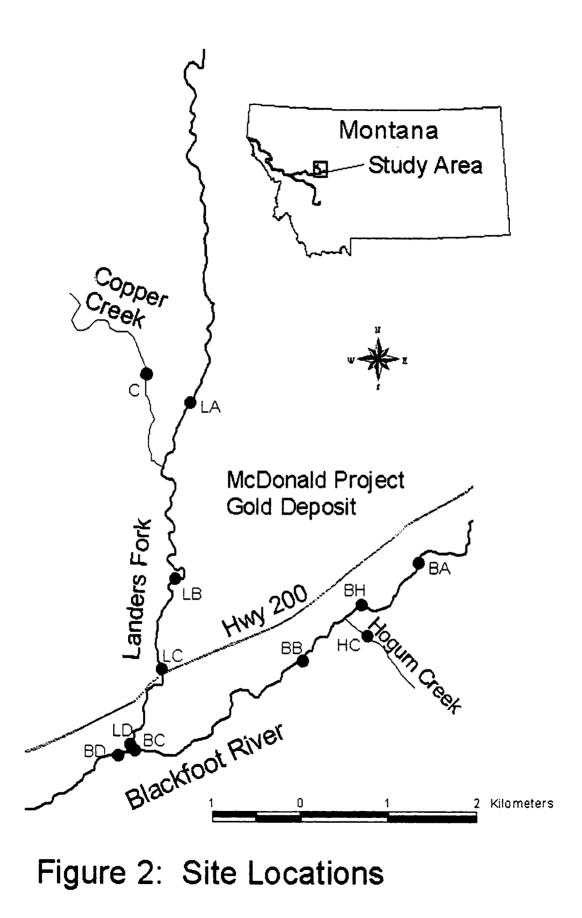
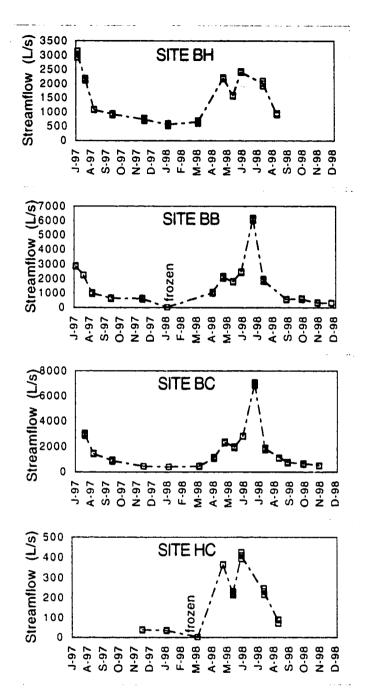
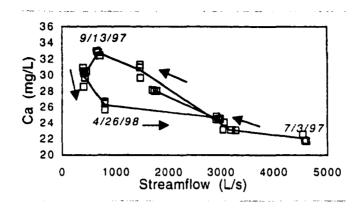




Figure 3: Steamflow at sites a)C, b)LA, c)LB, d)LC, and e)LD on the sample dates.

Figure 4: Streamflow at sites a)BH, b)BB, c)BC, and d)HC on the sample dates. Multiple squares per date indicate replicate streamflow measurements.

Figure 5: Streamflow vs. Ca concentration at Copper Creek (site C). Triplicate samples were taken on each sampling event, and each is represented by a square. The lines connect the mean concentrations at each sampling date. Similar hysteresis was seen for Ba, Li, Mg, and Sr.

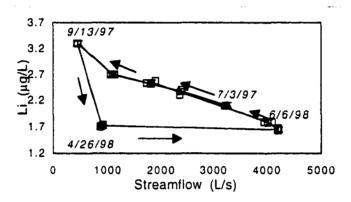
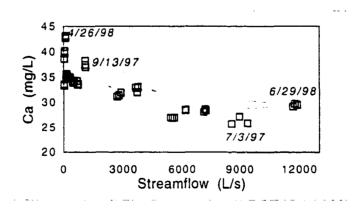



Figure 6: Streamflow vs. Li concentration at site LA. Similar hysteresis was seen for inorganic carbon, Ba, Ca, K, Mg, Si, and Sr.

Figure 7: Streamflow vs. Ca concentration at site LB. Similar patterns for Ba, K, Li, Mg, Na, Si, and Sr.

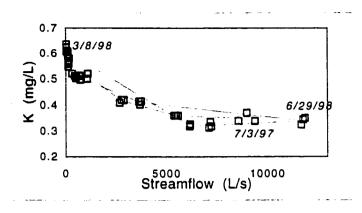


Figure 8: Streamflow vs. K concentration at site LB.

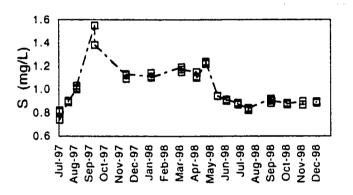


Figure 9: Date vs. S concentration at site LC.

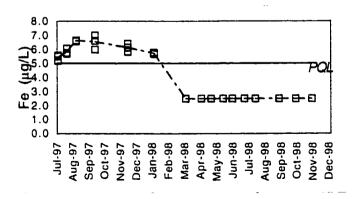


Figure 10: Date vs. Fe concentration at site LB.

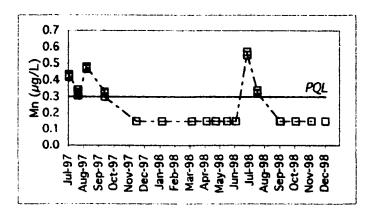


Figure 11: Date vs. Mn concentration at site LC

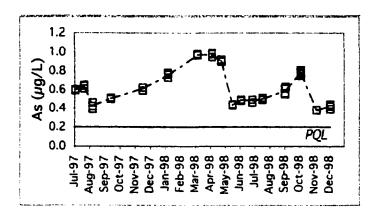


Figure 12: Date vs. As concentration at site LC

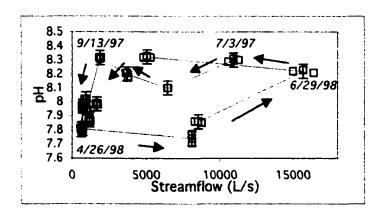


Figure 13: Streamflow vs pH at site LC

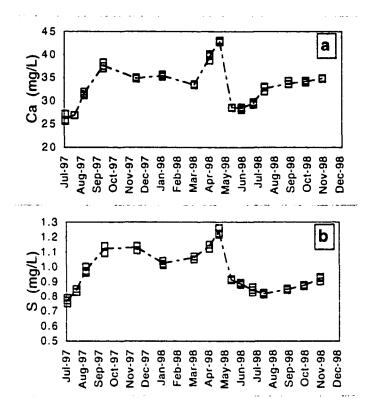


Figure 14: Date vs. (a) Ca, and (b) S at site LB. Compare timing of peaks with streamflow in Figure 3c.

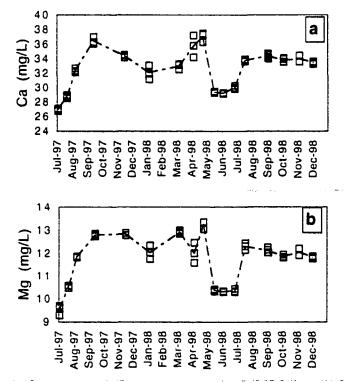


Figure 15: Date versus (a) Ca and (b) Mg at site LC. Compare timing of early runoff concentration peaks with streamflow peaks in Figure 3d.

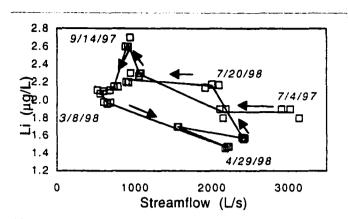


Figure 16: Streamflow vs. Li concentration at site BH. Similar patterns for Ba, Ca, and Si.

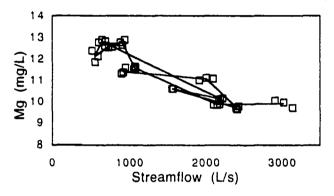


Figure 17: Streamflow vs. Mg concentration at site BH. Similar pattern for K.

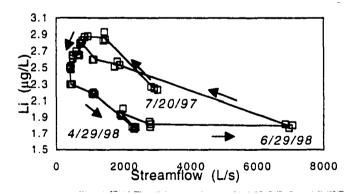


Figure 18: Streamflow vs. Li concentration at BC. Similar patterns for Ba, K, Si, and Sr.

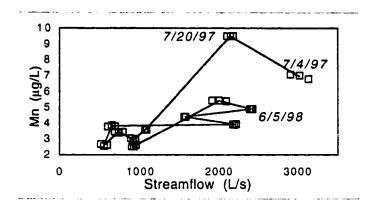


Figure 19: Streamflow vs. Mn concentration at site BH. Similar pattern for Fe.

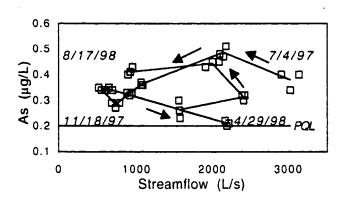


Figure 20: Streamflow vs. As at site BH.

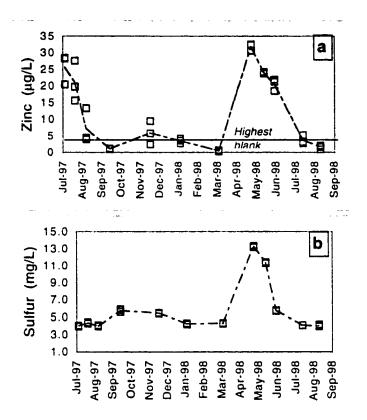


Figure 21: Date vs. (a) Zn concentration, and (b) S concentration at site BH. Compare with Figure 4a for timing of peaks.

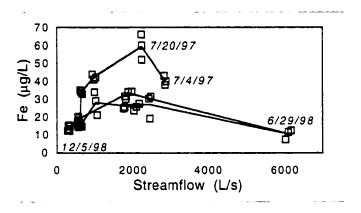


Figure 22: Streamflow vs. Fe concentration at site BB.

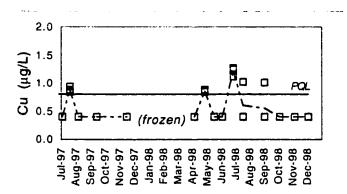


Figure 23: Date vs. Cu concentration at site BB.

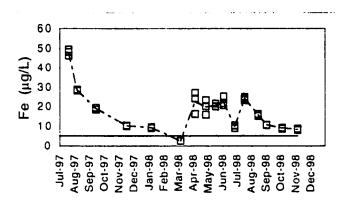


Figure 24: Date vs. Fe concentration at site BC.

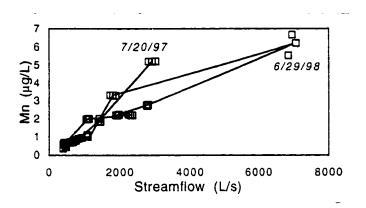
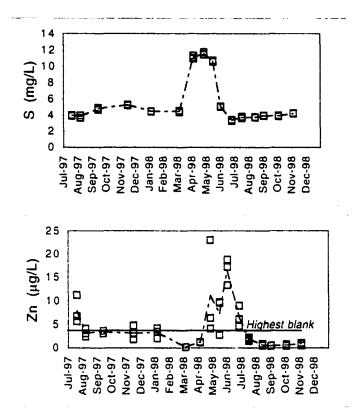



Figure 25: Streamflow vs. Mn concentrations at site BC.

Figure 26: Date vs. (a) S and (b) Zn concentrations at site BC. Compare with Figure 4c to note timing of peaks.

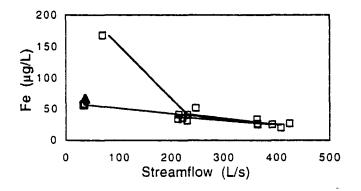
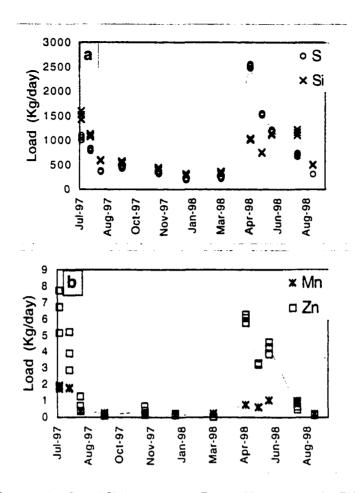
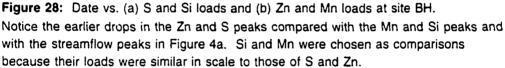




Figure 27: Streamflow vs. Fe concentrations at site HC.

46

All data All elemen	All data for water samples collected in the U All elements BPCL for. Al (-5 µgL), Cu. (-0.5 µgL), Co BOL sum to comparent because here to be and our	Sample: AI (-5)	s collec upt), Cu	ted in (-05 µ	un un	pper Blacl ο (<0 5 μg/L	Jpper Blackfoot Basin: 2ο (<05 μg/L), Νι (<2 μg/L).	Basin:		97-Dec 91). 14	July 1997-December 1998 Pb (-6 μ91), Γι(-2 μ91), and V	`	(-2 µ3.L)								• •				
SMME	SAMPE	SIFEAM	STREAM	Ξ	00		Viater Lemo	si Air Temp	Inorganic	Total	Sultate As		3	3	3	3	Б Ж	=	βM	μ. N	2	s,	ъ	ۍ	5
		(cls)	(1/8)	6w) (sjiun)		L) (mS/c		- 1		1 Sun J	('ODED	(1) (1)	(m3 () (h0(() (m3	m J L) (L) (µ9/L) (I	1) (1)61	(hg/L) (hg/L) (mg/L)		(h0,() (m0,()	54) (1/6	(H) (H)	(mg/L) (mg	(L) (mg	(mg/L) (mg/L) (pg/L)	(1/8/I) (
Copper Creek	reek 7/3/97	161	4559	7	8 6	-	1 01		5 61	VN				~	¥			a		.0	°	0	~		<0.2
C 2	19191	163	4616		96	0 18	1 0 1	20.9	19.9	42	181	90	171	·	_	< C 0 3	0	0	8			•	2 2	35	40.2 V
C-3	113197		-	¥ 8.	86	-	<u>.</u>		20 0	¥N.	1 85			a	۰. ج			°.		ġ.	°.	<u>.</u>	Ň,	5	0.9
ċ	7/20/97	. 108	3058		16	0 19		14.3	23 9	NA	2 05	9 0	193 2	•	<1 0,	-		. o	• •	.0	. - ,	0.69	.∾.	39	<0.2
25	1010011	22	0010	6 B	16	019	00	1	242	V A	10 x	101		₽.			0 0		980		0,0	ا م		6E	40.2 V
ר נ	I RINSII	2	0025		~	_				5				-	P.	- -		2	ò	Ś	5	5	ų	רי	20.0
Ŀ.	8/1/97	51	1444	8.3	115					NA	2 38	'n	245 2	ê5	•		0	-	.=			. •.	, m	61	1.2
205	B17197 B17197	52	1472		5 2	0 22	 6 4	5	27 O	Y N N	5 4 3	5 H		- FC 16		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	00		= =			•		5 5	0, 0 0, 0
י ב			-		-			-		5		•		2		- -	5	•	•	. .	·	·	.		, ,
ç ç	18/51/6	23	199		5.01	¥2	9.9	¥.	29.9	2	2 77		270 3	32.4	v. 1	203 203	• •		= :		. .	1.01		4. 4.	0, 0 0, 0
20	16/21/6	Q			9 O I	٤ź		£ £		22	2 57	n .n		n ao		-				io v N	• •	÷	n m	5	0.0
	901211		100		N N	16.0				414	,	4		4				-							
20	1/6/98	9	152		ž	0 24	5 0	Ţ	26.7	ž		 	258 3	, q		9 C O Y	00	 		9 9 7	 	ò			200
0	1/6/98	1		- -	MA	0.24				¥				ŝŝ				-	12.	ŝ		0	n	8	
-0	401714	11.86	101	A 26	A M			09	810	A M	N N	ų				5,	•	-		0. 0	-	101	٦	45	.0.1
20	86/1/4	14.58	514	8 30	¥2	0.21	5 B		280	ź	NA	n - n 0	250 3	• ••		, , , a			2	9	3 1 5	-	• •	; 7	-
6.0	4/7/98			8 2G	AN				27.A	¥.	¥N.	Ģ		•	×.	* 8	5 0	1 .1	3 10	•	-	٩.	n	.	<0.3
	4/26/98	28 22	199	01 H	N		62	15.2	26.2	٩N	٩N		211 2	~	. •	¢> 80×		- -		0,		•	'n	38	, c.3
C 2	4/26/98	28 25	800	80.8	NA	0 21			262	47	ЧA	6 5	214 2				۰5 0	-	1 92	9	•	0		38	<03
	4/26/98			8.06	٧				25 B	٩N	۲N	÷		265 4	÷			-	2 [.] 6.	0 7.		•	e	6E.	<0.3
-	5/18/98	105.59	•	1.97	Ξ		1) †	2.5	22.0	ž	NA	.s		9	. . .	40 B C >	•	0	. ••.	.°.	3 1.2	• • •	2	35	< 0 3
0 0	5/18/98	103.32	3926			0.18			219	¥ Z	¥N		194 2	24.6	·				8.8	ę,		0.0	22	96	E 0,
-	85/81/5			1 98	211					42	42	^		^	•		а -	oʻ,	₽.	, ,	 	·	Ň	9	5.02
Ū.	86/6/98	103.0	2112	1 98	٩N		/ 3	9 61	YZ	96	NA	•	188 2	-	_	8		•			. – .	. • <u>.</u>	~	35	<03
	6/6/9/9 6/6/98	109 67	9/00	9 09 7	A N	0 18 0 18			4 N N	00	42	9 0 0 0		· · · · · · · · · · · · · · · · · · ·		80,80,		00	7 8.5 7 8.6	9 9	0 9 	5, 0, 22	9 9 9 9 9 9	98	E 0 3
				•						¦ .		 1						. .						}	
	7/20/98	62.75	1111	8.39	5	0.21	5 0 - ^	503 503	¥,	011	ž	۰. د د		28.1	v. 1	809 5 4 5 4	0 0		2 9	0, 9 0, 9	-		n, i	9, 9	0,0
	86/02/1		5		ם ה.	021		20.2	E Z	601	ž	n vo	230						2, 2,	, 9 , 9	 	0.0	່ຕຸ	2	20
Landera Fo	Fork eite 'LA'			-								•	·	·	•	•	•	-	•••		••• ••	-		•	
	791017	Ē	3228	8 2		0 22	=	Ξ.		MA	2 47	 	•	27 33 <	. •. . •.		•	. ~					~	36	
2.4		116	3285	6.9	2 6	0 22	Ξ	0 =_:	24.3	¥2	2.49	90		69	•	03	0,0	N, I	2		0.0	0.86	2 2	96	-0.2 0.5
	161611			5		22.0		=		2	94 2	0	2 /21	8	v.		•	*	5 	٥.	•	•	v	ŝ	
	1/20/97		23/0					91		¥N.		-		52	•	 . en a	0	Ň	•	ہ م. س	0	.•.'	. ∾ (66	<u>40.2</u>
	1120/97	6	/042	ກຸຕ ສ	с т С С	0.22	821	1.61	28.9 28.9	e v	5 /4	+ 9 0 0		27 65 ×		9 9 7 9 9 7 0 7	50	* *	2 2	0 0 0 0		0.50	2 2	5 C	N 0.0
								5													 ,		•		, ,
LA-2	161110	9.9	9/01		2 2	0.26	9.61	5.0	8 16 9 16	ŚŻ		•		> IS</td <td> </td> <td>9 C O Y</td> <td>. 0</td> <td>N N</td> <td></td> <td>, 0 , 0</td> <td>.</td> <td>5</td> <td></td> <td>0 10 * *</td> <td></td>	 	9 C O Y	. 0	N N		, 0 , 0	.	5		0 10 * *	
	161118					0 26		2		¥.	5 2 E	-	166 3	1					2	•	i de n m		, en	46	0.2
																					']

Ę	(1/01)	2	0.2	0.2	- 60	C.0	6.0	0.3	6.0	6.0	5.3	6.0	0.3	0.3	0.3		0.2	0.0	0.5	0.2	0.2	N.	0.2	0.3	1 6	0.2	2 10	 N O	0.5	-	0.2	0.1		, ,	N 0	2.2		6.3	 				
5	١¢			9	•	Ŷ		9	2	₹.		å		• •	ê, ê					. 9	ů,	₹.	Ŷ				ô, d				ς.	•	•		Ş,	v , 1			·		â, ć	·	•
<i>ъ</i>	(T) (nd)		5	55		35	35	.e.		6	.5	93	33	. 4	4.4	••	.6	37	38	. 7	Ŧ	₹.	. 7.	4	e	Ę,	ŝ	.	<u>.</u>	E 9.	.		ŝŝ	. .	5	5		3	<u> </u>	• -	9 9 3		о
л	(ma/	-I-	. e	3.3		2.2		55				2.3			0.0 1.0			8.2	5 B	3.0	0.0						9.6		19 19				0 4 0 4		2.1				2		بر م		
s	1/bm)		1.35	1.31		0.86		0.90	0.90	0.90	0.03	0 92	0.92	0.86	0.88		0.75	0.77	0.79	0.83	0 85	0.85	16.0	0.96	1.00	1	* 3	60. L	1	-	=		87	5	5	20	<u>.</u>	21-15	<u> </u>		1.23		
1	(1/6m)	~ -	1.6			1.1	1.1	2	1.0	1.0	1.2	-	0.1	15	1.5 2.1			10			0.7		8.0	80		1.6	9.6		::		7 0	0.1	0.0	-		- a		16	0 10 		9 -		0
ų.	(1/6#)	603	¢0.3			90		503			, 6 3 ,	¢0.3		<0.3	0 0 0 0			•			•			•	•	E.O			¢03		6 .0	6.0 ⁵			Ģ						ç,		
βM	1/66		4 71	-	∾	_	~		~	~			5	~	12.9				~	0	0 01		ŝ		ø	-	13.1	n.	- •	_				·	12.9			- 1	 		~ ·		ņ
2	0.1.0					6 /	·	.6.				. – 	-	•	 9 9	•	•	5 9		~	~	~	-	_	-	s.		م	. . . 			•••	-, - -, -					•	 0 0		~ 4		•
2	a/l) (u			n .		-			-	-			-		~~~~	• •		-	•				. N.		•	• •	~ (N					-			N, N		∾ຸເ	•	
¥	1) (ma/		5.0	9. 9.	.0	• .	ð,	.0	0.3			0.3			00			0			•			•	0	0.5	0,0	5	\$ 0 P	0	0	0	90,0			0,0	,	0	9.9 0.0		9.9		
f.o	/0 FT (~	• •		ŝ		. ș.				ŝ	¥		พู _่ พู			ŝ			9	œ.ِ	.~.				م		. ھ		9	• •	ຜູຜ	• · ·	. v.				ŝŝ	• •	ŝ,		
J	1/0n) (÷03	¢0.3		< 0 8	€ 0 ×	€ 0 ¥	• 0	< 0.8	¢0.8	4 O A	€.0×			8.0	• •		¢0.3			03		¢0.3	6 0 ×	¢03	¢0.3	0,00		<03 2.03	0 1	¢0.3	¢03	<u></u>	, ,	Ę,		, ,		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9.9 9		
J	1:000	1		Ţ	Ţ	ī	÷	Ţ	Ţ	÷	Ţ	ī	Ţ	-	7 7			ĩ	Ţ	Ţ		2	1,	7	Ţ	ŗ	Ţ	Ţ	-	-	-	-		•	. .	5 7	-	7	5 7		7 ;	; ;	;
J	(mg t	17 96	19 54			267		275				28.9			7 10			25 81	E1 /2		26 92		61 1 6	16 IE	31 44		36.94		35		34.72	35 3		:	33 56			38.6			45 8 7 7		
æ	(tuart)	194	192	192	129	121	126	112	112	113	120	611	120	150	152		160	160	170	181	184	183	216	216	219	256	266	662	545	142	247	245	239	• •	539	212	5	862	5 F 2		264		n 0 4
÷	(1 C n)	0.0	10			• •		E 0	7			10			+ + 0 0			ç o			9 0			• 0					202										n n 0 0				
Sullale As	CaCO,)		3 5		٩N	YN.	٩N	NN.	٩N	٩N	YN	AN	٧N	¥1	4 4 2 2			2 28			25		2 83	2 86			2 96		90 C	66 2	5.96				ž		E.	VN	< N		¥2		5
	(mgt c	VN	VN	42	Š	٩N	۲,	NN	٩N	42	108	108	106	124	127		NN.	NA NA	41	۲N	ž	٩N	NN.	٨A	47	NN	ž	YZ.	¥N.	¥.	¥.	¥	۲, ۲		YN.		٤	¥2	žž		V N		٤.
Inorganic	(ma/L)	35.1	346			268		25 7		25.4	¥N	LIA	NA	Ň	¥ ¥			23.7			28 4		90°9				34.1		959		35 6		35.0 11.8		33.68		5		- 6.40		36 4		
All			Ň		•					.,	20.8			æ	22.7			NA NA		J.	5 21	6		ŝ	s.		ž					~	~ ~	•				+		•	591 91	•	•
Water A			5		99 99		•	5 0.7			89.2			3	11.9 2			V VN		0	1001	0	115 2	ŝ		e,	501	-	2.1	- -	-	_			0 +) 7		• •		- -		
							•	<u>،</u> ٥	-	_	_	_	_		•			_	_						•		•									•	• •				~		~ •
-	3m) (1/	¥2	ž	¥,		0 2 0		0.20	03	0 2		0.2		0.2	0.25	-	0.2	0 2	0 2	G	0 22	0	0 24			, M	ž	Ž	0 2/	0	0.2	1:0.2	0.27	5	ž	¥ 1	ξ.		0 27		0.28		
00	(units) (ma/	6	4	• 6	15.5			10.2			YN			60	ອີອ ເບີ		9.20	9.20	5 5	0 6	9.0	06	10.3	E 01	10.3	4.6	4 . G	*. 5	ž	ž	¥,	15.0		•···	ž	•	• •	=			120		
ā	funts	8 2	6 8	82	8.14	816	B. 14	H 04	8.04	8 02	8 08	8 09	8 09	8 52	8.51 8.51		. 8	•	8.4	6.7	5 2	6.1	8,		8.2		ອຸດ ຕຸດ		97		9 •	7.6	9.6		28,767	1.1.64	8	1.78	8/2		22 1	2.2	
STHEAM PH	15/11	45.1	153		925	H64		4224	4211		6014	3958		1826			0580	9401		60t <u></u>	2095		2690	2668		1076	1104		116	110		142	170					55	•		601	201	
STRE MA					32 68	15 OE		149 14				11.961		61 49			1.0	32		161	851		56			38	39		= :	2		ŝ			`-` (N 1		81	60.1		363	5	
SAMPLE		16/01/6		26/11/6			4/26/98	5/18/98		86/81/5	6/6/98			1120198	1/20/98		LB-1 7/3/97 3	161017	191611			1120/97		161118		19/11/0		16/61/6			11/16/97	1/6/98			3/8/98	86/8/6			86/2/1		4/26/98		
SAMPLE		1.4.1	LA 2	C-A-3	1.4.1	LA-2	E-V1	1-4-1	1 4.2	LA-3	1.4.1	L.A.2	LA-3	LA-1	LA-2 LA-3		Langers F LB-1	1.0-2	LD:S	(B-1	10.2	(B·3	LB-1	LB-2	LB-J	LB-1	1.8-2	[B-J	1-8-1		6-81	18-1	18.2	2	1.8.1	2.9	2	1.8.1	183		19-1		

	SWARE	SAMPLE	STREAM		Ξ	00	Con		Air	Inorganic		Sultate As		B S	3	3	2	¥	Ξ	Бм	Å	ž	s	ъ	æ	ភ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NAME	DAIE	HOW	NOM					lemp	Carbon		10.55														
6014 7/2 110 021 7/2 110 021 120 021 121 021 <td></td> <td></td> <td>(cls)</td> <td>(1./5)</td> <td>(sinuls)</td> <td></td> <td>I (mS/c</td> <td>- 1</td> <td>0</td> <td>(1/6m)</td> <td>ΞÍ</td> <td>4111</td> <td>3</td> <td>3</td> <td>긝</td> <td><u>111) (ng</u></td> <td>5</td> <td>5</td> <td>(1) (n)</td> <td>- 1</td> <td>- 4</td> <td>티</td> <td></td> <td></td> <td>(1,64)</td> <td></td>			(cls)	(1./5)	(sinuls)		I (mS/c	- 1	0	(1/6m)	ΞÍ	4111	3	3	긝	<u>111) (ng</u>	5	5	(1) (n)	- 1	- 4	티			(1,64)	
1/2 1	-	5/19/98	218	6174	1 72	12 0	0 21				٩N	42	-		4	Ŷ	۲		4.1			Ξ.	16.0	25	36	¢0.3
773 73 113 73 113 73 113 73 113 73 113 73 113 73 113 73 113 73 113 73 113 73 113 73 113 114	~	5/19/98	219	6202	1.15	12.1	0 21				۲N	٩N	-		ş	Ŷ			1.5						36	
7111 7111 711 711 <td< td=""><td>LB-3</td><td>86/61/5</td><td></td><td></td><td>1 72</td><td>11.9</td><td>0.21</td><td></td><td></td><td></td><td>N</td><td>٩N</td><td>- -</td><td></td><td></td><td>₽.</td><td>۰.</td><td></td><td>5.1.</td><td></td><td></td><td></td><td></td><td></td><td>36</td><td>¢0.3</td></td<>	LB-3	86/61/5			1 72	11.9	0.21				N	٩N	- -			₽.	۰.		5.1.						36	¢0.3
713 723 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td>:</td> <td></td>										:	:															
	- (06/0/0							-	2			•••	Ċ		Ş	•		- -						5,6	
111 111 <td></td> <td>86/9/9</td> <td>002</td> <td>067/</td> <td>20.0</td> <td>2</td> <td></td> <td>·</td> <td></td> <td>ź</td> <td>2</td> <td>٤.</td> <td></td> <td>•</td> <td></td> <td>ູ່</td> <td></td> <td></td> <td>- -</td> <td>Σ,</td> <td></td> <td>-</td> <td>0.0</td> <td></td> <td>2</td> <td>, , ,</td>		86/9/9	002	067/	20.0	2		·		ź	2	٤.		•		ູ່			- -	Σ,		-	0.0		2	, , ,
3 1	LB 3	6/6/98			1987	2112				¥z	116	¥N.			ø	Ŷ.	۷.		9			-	68.0		9E.	ç
1101 731		0010010						4									٠					. •			ļ	
111 1		05/62/0		05011				" (·										~ ~		
101 1	10.5	08/62/0											, .				•		-			-			5,2	
1101 3153 81 025 123 310 433 82 023 112 211 121 212 2	1.6-3	6/53/9R			86.7	0.21	0 2 0	-		~	901	<	+				۲.		-	5 01		-			F,	۲. ۲.
111 1111 111 111			00.0	C 3 3 1.				¢							5	9					•					
1 1		00/00/2			20.0							5			"	3.4										5
1 1	10.4	06/02/1						<u>م</u>				2	, ,			? . '	۷.					-		•	5.5	5
1 718 91 022 115 229 312 115 231 312 116 022 111 022 111 022 111 022 111 022 112 312 113 01 223 113 01 022 211 111 022 211 112 01 022 211 112 01 025 213 111 022 211 112 01 025 213 112 01<								•			•		•		5	\$	•								0	
1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1.0.1	9/4/08	25.91	134	7.86	. 7		2			125	YN	4		·c	. 07	. *	0.5			0,		0 84		.53	E 07
4 4	18.2	40/F/h	1770	691	/ HH			c			128	¥N.			~	Ū,		90			0.4		0.85	•		0.0
1 1 1 2	18.3	9/4/08			7.86			, o			128	ž		·	. 10	. 0					9	2.0	0.85	•	4	0.04
4 494 766 66 0.55 91 125 342 135 235 333 343 145			-															-								
768 96 026 90 312 140 01 231 214 310 11 025 233 313 110 751 230 233 313 110 751 230 23 231	LB-1	10/6/98	17 44		7.66		0 26				135		ŝ		đ		• *	0.5				_		· · ·	53	0.5
76/ 97 026 345 340 <1	1.0.2	10/6/98			7 68		0 26				140		م		-		•	0.5				0.7	0.87	3.9	54	¢0.3
110 72 111 027 40 132 M 132 M 122 M 133 M 02 247 348 51 125	LB 3	10/6/98			1.6.1		0.26				133		5		•		. *	0.5				_	0.68	66	53	<0.3
100 732 111 027 4.0 51 NA 132 NA 02 243 344 51 505 24 124 505 24 125 003 0 7 71 110 027 4.0 51 NA																										
7 7 11 027 40 MA	18-1	86/7/11	4 58	130	1.92	Ξ.	0.27		5 1	۲A	132	٧N	~		¢n.	ŝ.		9.0 ,				0.7	06 0	4.0	55	¢03
7 11 0	LB-2	86/2/11			167	Ē	0 27			A N	133	٩N	~		8	10°.		0.6		- C.					56	
N M M M 314 0.4 214 316 1 601 6 0.4 2 111 601 6 0.4 2 111 601 6 0.4 2 111 601 601 6 0.4 2 111 601 6 0.4 2 111 601 6 0.4 2 111 601 6 0.4 2 111 601 6 0.4 2 111 6 0.3 111 6 0.3 111 6 0.3 111 6 111 0.3 2 111 0.1 0.3 2 111 0.1 0.3 2 111 111 0.3 111 0.3 111 111 111 111 111 111 111 111 111 103 103 103 103 103 103 103 103 103 103 103 103 103 103 <th1< td=""><td></td><td>86///11</td><td></td><td></td><td>1.6.7</td><td>0.11</td><td>0 21</td><td></td><td></td><td>۲N</td><td>CC </td><td>٧N</td><td>~</td><td></td><td>ო</td><td>ş</td><td></td><td>9.0</td><td></td><td>- C</td><td></td><td></td><td></td><td>4.2</td><td>57</td><td></td></th1<>		86///11			1.6.7	0.11	0 21			۲N	CC	٧N	~		ო	ş		9.0		- C				4.2	57	
NM NM<																		•								
M M																•	•					•-				
744 6.7 026 5.0 8.0 35.6 NA NA 0.3 215 31.4 1 6.0 21 12 025 23 11.6 6.0 11.9 6.0 6.0 11.9 6.0 11.9 6.0 11.9 6.0 11.9 6.0 11.9 6.0 11.9		1/6/98			NN.	, M	NA	¥N.	NA		MN		4	.±			• •					6.0	1.07	34	50	8
745 72 27 51 91 35 NN NN 03 253 41 6 04 17 85 04 17 85 04 17 85 04 17 85 04 17 85 04 17 85 04 17 85 04 17 85 04 17 85 03 13 10 03 13 10 03 13 10 03 13 10 03 13 10 03 13 10 03 11 17 80 03 11 17 10 03 13 10 03 13 10 03 13 10 13 10 11 10 10 11 10 10 11 10 10 11 11 10 11 10 11 10 <t< td=""><td>10333</td><td>001611</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>	10333	001611	-										•													-
745 72 023 46 NA 03 23 416 416 416 416 416 416 416 416 413 403 767 767 028 46 NA 03 251 416 416 416 416 416 416 413 403 767 028 357 NA NA 03 251 410 41 403 27 113 403 113 403 113 403 113 403 113 403 113 403 114 41 414 41 414 414 416 41 403 414 <t< td=""><td>SFFP.3</td><td>80///P</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>s z</td><td></td><td></td><td></td><td>• •</td><td></td><td></td><td>•. •</td><td></td><td></td><td></td><td>• •</td><td>5 6</td><td></td><td></td><td>-</td></t<>	SFFP.3	80///P									s z				• •			•. •				• •	5 6			-
7 642 140 028 46 NA 357 NA 03 251 410 1 60 28 134 60 28 134 60 28 134 60 28 134 60 28 134 60 1 1 6 1 60 25 408 4 60 28 134 60 28 134 60 1 1 6 6 28 134 60 1 1 6 1 6 6 6 28 0 6 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 1 1 6 1 1 1 6 1 <td>SEEP.3</td> <td>4/7/98</td> <td></td> <td></td> <td>7 45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ž</td> <td></td> <td>, m</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i g</td> <td></td>	SEEP.3	4/7/98			7 45						ž		, m					0							i g	
7 65 110 028 45 NA 03 251 416 1 60 7 28 113 603 1 603 1 603 1 135 603 1 7 61 23 146 1 603 27 28 135 603 1 135 603 1 135 603 1 135 603 1 133 603 1 135 603 1 135 603 1 135 603 1 135 603 1 135 603 1 135 105 133 105 133 105 133 105 133 103 11 203 11 203 11 203 11 203 103 103 103 103 103 103 103 103 103 103 113 103 103 103 103 103 103 103 103 103																										
167 028 357 NA NA 03 251 410 <1	SEEP-1	4/26/98			1 69	110	0 28	9.4	Ň	9 6 4	٩v											1 .8	121	0 7	55	¢0.3
767 028 021 061 MA 03 252 408 c1 c08 c5 66 28 c03 c04 c03 c03 c04 c03 c04 c03 c03 c03 c04 c03 c03 c04 c03 c03 c13 c03 c13 c04 c03 c03 c13 c04 c03 c03 c13 c04 c03 c03 c13 c04 c03 c13 c13 c04 c03 c13 c13 c04 c13 c13 c13 c13 c13 c13 c03 c13 c13 c13 c13 c13 c13 c13 c13 c03 c13 <td>SEEP-2</td> <td>4/26/98</td> <td></td> <td></td> <td>1.67</td> <td></td> <td>0 28</td> <td></td> <td></td> <td>1 56</td> <td>٧N</td> <td></td> <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16</td> <td>81 -</td> <td>6 6</td> <td>5.5</td> <td>¢0.3</td>	SEEP-2	4/26/98			1.67		0 28			1 56	٧N		•		•							16	81 -	6 6	5.5	¢0.3
8 112/0 8.3 9.8 0.21 6.9 M 239 0.6 173 2701 <1	SEEP 3	4/26/98	-		7.67		0.28			36 1	¥Z		•		8							2.1.	8.		53	0.3
8 112/0 83 9.8 0.21 6.9 M 228 0.6 173 27.01 1 00.36 16 9.7 0.4 0 7 10562 8.3 9.8 0.21 6.9 M 239 M 231 0.6 1/3 27.05 0.35 1.6 9.7 0.4 0 7 6428 81 0.21 69 NA 240 NA 233 0.6 198 26.75 0.3 1.6 9.7 0.4 0 7 6438 81 NA 0.23 7.4 115 300 NA 2.73 0.6 198 28.5 0.4 10 10 10 10 0.3 0.4 0.3 6 631 81 NA 0.23 0.4 10.5 0.3 0.4 10 0.4 10 10 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.4	Landera Fo	vrk. Site "Li	.= ;.	•-												•		•••	•							
1 10562 8.3 9.8 0.21 6.9 M 2.3 0.6 168 26.76 0.36 16 9.7 0.4 0 7 6428 8.1 M 2.3 0.6 168 26.76 0.36 1.6 9.7 0.4 0.3 5 6371 8.1 M 0.23 7.4 115 300 M 2.83 0.6 198 28.52 0.4 1.9 105 0.3 0.4 0.3 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 <t< td=""><td>LC-1</td><td>713/97</td><td>8</td><td>11270</td><td>8 J</td><td>9.9</td><td></td><td>6</td><td></td><td></td><td>Ň</td><td>28</td><td></td><td></td><td></td><td>. 0 ×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6C</td><td></td></t<>	LC-1	713/97	8	11270	8 J	9.9		6			Ň	28				. 0 ×									6C	
8.3 9.8 0.21 6.9 NA 2.4 NA 2.4 NA 2.4 NA 2.9 0.6 16.8 26.76 0.3 1.6 9.3 0.4 1.6 9.3 0.4 1.6 9.3 0.4 0.3 0.4 1.6 9.3 0.4 1.6 9.3 0.4 1.9 105 0.3 0.4 1.9 105 0.3 0.4 1.9 105 0.3 0.4 1.9 106 0.3 0.4 1.9 106 0.3 0.4 1.9 106 0.3 0.4 1.9 105 0.3 0.4 1.9 106 0.3 0.3 0.4 1.9 106 0.3	LC-2	101017		10562	. 8 . 3	8.6		6			ž	31		•	30	0,	-						0.81		66	0.5
7/2/197 227 6428 8.1 NA 0.2 7 0.6 196 26.5 <1	LC:3	191611			6.9	86		5			۲N	-	ي		26	Ŷ			. –.			0.5	0.74	2 8	38	6
7/21/97 227 6478 81 MA 0.23 74 115 00.0 MA 278 0.6 198 285.2 1 10.4 19 106 0.3 0 7/21/97 225 6478 81 MA 023 74 115 30.0 MA 27.3 0.7 200 28.96 1 0.4 1.9 106 0.3 0 7/21/97 728 3655 8.2 101 025 72 115 30.2 29.95 1 0.3 0 1 9 106 0.3 0 8/7/97 128 3655 8.2 101 025 12.3 244 319 MA 298 04 243 119 05 0 0 23 23 118 05													•				•		•		'					
7/21/97 227 6428 8.1 NA 023 74 11.5 300 NA 276 06 200 2896 71 0.4 1.9 106 0.3 0. 7/21/97 227 6428 8.1 NA 023 74 11.5 300 NA 276 06 200 28.76 1 0.3 0 4 1.9 106 0.3 0 8/7/97 128 365 82 101 025 123 244 317 NA 293 04 233 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 7 7 1 7 1<	-	16/12/1		6428		٤.	0.23				ž	2		•	N	Ģ	-		6. C							
W17197 128 365 82 101 025 173 305 04 200 201 201 201 04 11.9 100 03 04 11.9 100 03 04 11.9 100 03 04 11.9 100 03 11.9 100 03 11.9 100 03 11.9 105 03 11.9 05 03 11.9 105 05 22 11.9 05 05 0 11.4 103 11.4 05 03 11.4 05 03 11.6 05 23 11.8 05 05 23 11.8 05 05 0 05 03 11.6 05 05 03 11.6 05 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03 11.6 05 03	-	7121197		6371		ž	0 23		ņ,		ž	2;	~ .	Ċ	9	9			6 -		0,0		0.89	N, O Fi, O		
B1/7197 128 3655 82 101 025 123 244 370 NA 306 04 236 3729 <1	-	1611711		0.4.0		£.	20	ę	ņ		£	e	0		ę	י ם.	٥.				n 5				;	e.
B/7/97 133 3/66 62 10.1 025 12.3 24.4 319 NA 293 0.4 235 32.14 0.5 23 11.6 05 0 8/7/97 18 192 10.1 025 12.3 24.4 31.7 NA 298 0.4 240 32.67 05 23 11.8 05 0.3 0.5 23 11.8 05 0.3 11.8 05 0.3 11 0.5 23 11.8 05 0.3 11.8 05 0.3 11 0.3 50 11.8 0.5 0.3 11.8 0.5 2.3 11.8 0.5 0.3 11.8 0.5 2.3 11.8 0.5 0.3 11.8 0.5 0.3 11.8 0.5 0.3 11.8 0.3 11.8 0.5 0.3 11.8 0.3 11.8 0.5 2.6 0.3 11.8 0.5 2.6 0.3 11.8 0.5 2.6 0.3 11.8 0.3 11.1 11.9 11.8 <		161718	128	3625	8.2	.01	0 25	e	+		ź	90	4		562	.0,									50	\$0,2
B/7/97 B/7/97 B/2 IO 025 12.3 24.4 JI<		8/7/97	133	3766	~	101	0 25	'n	4		Ň	60	-		1	0,							10 -	36	50	-
9/13/97 64 1812 83 94 NA 98 NA 342 NA 309 05 295 363 (1 (03 5 06 26 128 03 1) 0/13/97 68 1926 83 95 1A 98 NA 34.9 NA 315 05 299 36.05 (1 (03 5 06 26 128 03 1) 9/13/97 83 94 NA 98 NA 34.6 NA 314 05 291 36.99 (1 (03 6 0.6 26 127 03 1) 1/16/97 33 474 754 1251(027 60 04 346 NA 303 06 263 74.51 1 (01 6 05 27 129 (03 1)		817197			N	0	0 25	e	4		M	96	4		67	0.						6.0			. S.	4
9/12/97 64 1812 83 94 NA 96 NA 342 NA 309 05 293 363 41 403 5 06 26 128 03 1 9/12/97 68 1926 83 94 NA 349 NA 315 05 299 3699 1 403 6 06 26 128 03 1 9/13/97 83 94 NA 98 NA 346 NA 315 05 291 3699 1 403 6 06 26 127 03 1 11/16/97 33 474 754 1251027 60 04 346 NA 303 05 569 1451 1 403 6 05 21 129 403 1																										
U/13/97 68 1926 83 95 14 98 NA 34.9 NA 315 05 299 3605 41 403 5 06 26 128 03 1 9/13/97 83 94 NA 9.8 NA 34.6 NA 3.14 0.5 291 3699 41 403 6 0.6 26 127 03 1 11/16/97 33 474 7541257 60 0.4 34.6 NA 303 0.6 263 34.51 1 403 6 0.5 23 129 403 1		26/01/6	64	1812	ເມ		A S				۲.	8	<u>с</u> ,		م							-		~ ·	e j	
		14/51/8	50	9261				- 				2 3	. .		5 8				-				<u> </u>		<u>م</u>	ŝ
1 11/16/97 33 6/4 754 1251/027 60 04 346 NA 303 06 269 1451 1 403 6 05 21 129 4					7		£.				Ę	<u>.</u>	,				•							۷ •	n.	
		11/16/97	-	134	7 94		10.27		. 4 0	34.6	VN	. 69		69 34	- 13	503	9	0		12.9	6 0 Y	0		. 4	57	<0.2

۲۶ ۲۷	(1/07)	56 <0.2 56 <0.2	52 0.3 53 <0.2 55 <0.2	ୢୖୄ୰ଡ଼ୖଡ଼	55 × 03 50 × 03 50 × 03	-	38 403 38 403 38 403	38 ¢0.3 38 ¢0.3 38 ¢0.3	38 <0.3 39 <0.3 39 <0.3	54 <0.3 54 <0.3 54 <0.3	59 <0.3 58 <0.3 59 <0.3	57 <0.3 56 <0.3 57 <0.3	59 <0.3	59 <0.3 59 <0.3 58 <0.3	65 0.3
ō	() (wa/r)	• •	0 - N 4 4 4	, ei, ei, ei,	0 0 0 7 C C	0 0 0 + + +	~~~~	2.7	0 8 8 0 0 0		. - . - .		ы ч		
S	a/L) (ma/			0 1.15 9 1.17	6 1.15 6 1.15 5 1.10	6 1.22	0 0 0 94 94	0.00	0 68 3 0 67 4 0 67	0.82	0 6 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 8 0 6 8 8 0 8 8 0 8 8 8 0 8 8 8 8	8 0 0 8 0 8 0 8 0 8 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 8 0	8 0.90 7 0.90	5 0 5 0 5 0 5 0 6 0 5 0	1 25
Mn Na	(חמיך) (ש		0,00 0,00 1,1 -		603 603 150 150 150	603 603 603	40.3 1.1 40.3 1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	990	03 15	403 403 403 08		0.0 0.0 0.0		E O .
Бм	() (ma/L)	12.9	~ 0 0		12.5	13.4	4.00	0.01	0 0 0 0 0 0 0 0 0	12.1	- ~ 0	8 8 6 5 5 5	12.2	5 8 8 5 5 5	13.6
2	/on) (1/ou	~ ~	0 0 0 0 0 0	~ ~ ~	5 5 5 4 5 5 5 4 5 5 5 4	0.000 0.000	• • • • 	1991	• • • •	0 0 0 0 0 0 7 4 5	9 9 9 4 9 9 9 4 9 9 9 9	0 0 0		0 4 0 0 4 0	9 B 5 5 6 6
Fa K	m) (1/0m)	00	0 0 0 6 0 0		444 9 9 9 9	3 8 8 9 9 9	8 8 9 0 0 0	4 4 4 4 0 0 0	4 4 4 0 0 0	444 4	4 4 4 4 0 0 0			 	
3	(1,00) (1)	1	0,00,00	, , , , , , , , , , , , , , , , , , , ,	8 0 0 0 0 9 0 9 0 9	8 0 ¥ 8 0 ¥ 8 0 ¥	8 0 ¥	0,0,0 0,0,0 0,0,0	8 8 8 0,0,7	8 0 v 9 0 v 9 0 v	5 0 0 5 8 8	4 0 0 4 0 0	0, 0, 0, 0,	8 0 0 9 0 0 9 0 0	E 0 3
с З	(ma.c) (no,		31 16 1 31 97 1 31 97 1		37.2 41 35.8 41 34.2 41	363 - 374 _<1 374 _<1	29 4 41 29 3 1 1 29 2 41	29 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29.8 1 30.0 2 30.3 1	13 9 51 14 9 55 13 8 51	34 5 41 34 7 41 34 2 41	33.6 <1 33.5 <1 34.1 <1	34.4 12 - 41 33 6 - 41	33.6 <1 33.5 <1 33.3 <1	1 61 2
3 8) (na.r) (5.0	243 260 3 260 3		262 3 253 3 254 3	275 3 278 3 279 3	169 2 169 2 167 2	168 2 168 2 169 2	166 2 163 3 162 3	230 3 229 3 231 3	271 3 262 3 271 3	253 3 253 3 257 3	263 3	260 3 263 3 257 3	110
Sultale As	1011 (04 0 6	8 ~ 8 0 0 0		0 0 0 + = =		* * *	0 0 0 0 5 0 2 5 5	0 0 0 0 0 0	0 0 0 5 4 4	0 0 0 0 0 0 0	0,0,0,		. 0 , 0, 0	60
-	Aik (mj)1 CaCO,)		4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• •	<u> </u>	<u>z z z</u>	x x x Z Z Z	116 NA 112 NA 114 NA	108 NA NA NA	122 NA 118 NA 122 NA	NA 101 126 NA 122	123 30	101 101 102 102 102 102 102 102 102 102	NN 201 137 NN 139 NN 961	12 6
4	Carbon Aik (mg/L) (^m 9)	AN 1.46	33 0 NA 33 2 NA AN 22 5 NA	33 54 34 53 33 78	13 6 NA 23 6 NA 23 7 NA 23 7 NA	03 2 NA 13 8 NA 14 5 NA	26.0 NA 26.2 NA 26.0 NA		222	NA NA	34 4 12	00.9 00.9 00.5 12 12		- 00	VN 6 /E
N.	Temp (Cel.)		9 9 9 9 9 9 9 9 9 9 9		9 9 7 8 5	6 6 6 6	0 0 0 0 1	2 Z Z Z	27.1 N 27.0 N 27.1 N	26 7 N 26 7 N 26 A N	22 5 3 22 7 3 22 7 3				•
	vily Temp cmi (Cel)	- I	000 7 7 7	A A A N N N	6 2 6 2 7	9	3.2	52	865	9 C I 8 C I 8 C I		4 4 4 0 0 0	.*		29 66
	ductivit na/L) tmS/cm		19 0 27 0.26 0.26	, <u>,</u> , , , , , , , , , , , , , , , , ,	9 0 25 9 0 25 8 0 25		່ມ່າຍ		88 0.21 88 0.21 99 0.21	•••	1 0 27 1 0 27 1 0 27	9 0.26 8 0.26 0.26	6 0.27 6 0.27 6 0.27		0
p1 D0	(unuls) (ma/	1 94	80 80 15	NA NA NA NA NA	/ 9. 9. 9. 9 7. 9. 9. 9 7. 9. 8	7 80 17 7 80 18 7 82	7.74 10 7.77 7.71 10	/ 86 11. / 85 11. / 86 11	821 101	8.33 8.5 8.32 8.5 8.32 8.5	9 86.7 9 86.7 7 99 9	7.88 8.9 7.86 8.1 7.87 8.1	8 02 11.6 8 02 11.6 8 02 11.6	2 <u>2 2</u> 2	64.7
STREAM STREAM PH	11 (S)		/36 /36	566 680 623	682 701	719 694	8102	4277 8737	15689		8191	1 182	805	765	· • •
SHEAM	FLOW Iclsi	- i	26	555	24 0/ 24 75	25.39	286 08 284.82	292 28 308 52	554	117 69 5032	60 36 57 15	***	32.07	27.01	
SAUTE	DATE	11/16/97	1/6/98 1/6/98 1/6/98	3/8/58 3/8/58 3/8/66	4/7/98 4/7/98 4/7/98	4/26/98 4/26/98 4/26/98	5/19/98 5/19/98 5/19/98	8(6/98 6/6/98 8/6/98	6/29/98 6/29/98 6/29/98	7/20/48 7/20/98 7/20/98	9/4/98 9/4/98 9/4/98	10/6/98 10/6/98 10/6/98	11/7/98 11/7/98 11/7/98	12/5/98 12/5/98 12/5/98	LC Serge LC SEEP-1 11/16/97
SAMPLE	NAME	10.2	102		LC-1 LC-2 LC-3	103			200	100	103		- 2 - 5	103 103	LC SEEP-1

•

	SAMPLE S NAME D	SAMAE	FLOW	FLOW	i	۱ ۱	ductivity	du a	2	Carbon	AIK															
				(1/3)	(units)	, 1mg/L	(ms/cm)				-		Ξ	Ē	1) 1 : 5	÷		r) (mg/	-) (mg/L	(ייס,ר)		17/8	5	, J.	(1,61)
		86/8/			1.4	فا	1 0 26	7	0		NA		6	ł	5	Ŷ	•	•				0 1		~		
		86/8/			4.4	9	Ö	4	-	0	47		6		ç	Ŷ	۲.					0.1		ç		
		86/8/							e,	~	ž		0		2	9	•					1.0		م		
	EP-1	86727			1.49	.60	0.27		-	ŝ	٩N		5	-		.0,	. *					9.1	121	•		
1/1/10 1/1/10<	EP 2 4	96121			7 49	5.8	0 27			~	44		6			Ģ	. •.					8.1	123			
	EP 3 4	86/1/			7 50	5.9	0.27			-	44													•••		
	-	126/98			7 79	VIV.					47	•			.,		. '						1.29	·	•	
		126/98			1.75	Ň				. an	ş	•	0		. –	Ŷ	. *						5			0.3
100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000 1000000000 100000000000 10000000000000000 1000000000000000000000000000000000000		126/98			7 79	N.			. (7)	<u>م</u>	۲Z	-	. 0		•0	ŝ	•						52	-		0.0
100000 170 120<																										
1000000 100 200 500	н. На	0/6/98			7.39	6 2	0 29		, 1	6	601	-	_		•	0×.	۴.					-	5	م		6.03
11/1000 7 30 31 <th< td=""><td>EP-2 1</td><td>0/6/98</td><td></td><td></td><td>1 40</td><td>6.2</td><td>0 29</td><td></td><td><i>c1</i> '</td><td>an i</td><td>:</td><td>~</td><td>-</td><td></td><td>ņ,</td><td>Ŷ</td><td>۰.</td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>م</td><td></td><td>с. С. (</td></th<>	EP-2 1	0/6/98			1 40	6.2	0 29		<i>c1</i> '	an i	:	~	-		ņ,	Ŷ	۰.						5	م		с. С. (
11111100 746 63 61 74 63 61 74 63 61 74 63 61 74 63 61 63 61 63 61 63 61 63 61	EP-3	0/6/98			7.40	6.2	0.30			•	138	- 6			P	9	۲.					-	7	g		0.3
11/1/1000 7.40 0.20 0.31 M. M. <thm.< th=""> M. M.</thm.<>	. I. J.	86/2/1			7.48		0.30		2		145		,									0.1	56	~		0
11/1/108 7 7 6 0 5 1<	EP.2 1	1/1/98			7.48		00.0		. 2		2		,				2								•	
Na Via Via <thvia< th=""> Via <thva< th=""> <thva< th=""> <thva< th=""></thva<></thva<></thva<></thvia<>		1/7/98					0 30		. 4			Ň								• •			• •	• •		
N/1001 N/11 M N/11 M<11 M N/11 M<11 M<11 <thm<11< th=""> <thm<11< th=""> <thm<11< th=""></thm<11<></thm<11<></thm<11<>	- L-	H01310			2 13	Ň				•	061	•	ç				5						. 50	•		0.3
713/041 713 MA MARK LUC 7720047 230 6400 84 93 022 109 230 003 132 43 44 43 44 43 44 <td< td=""><td>EP.2</td><td>2/5/98</td><td>_</td><td></td><td>CI 2</td><td>ž</td><td></td><td></td><td>,</td><td></td><td>1</td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></td<>	EP.2	2/5/98	_		CI 2	ž			,		1		,												•	
2640 84 93 022 108 230 292 05 193 06 04 18 03 06 07 080 32 43 284 6456 84 10 026 108 230 301 NN 255 06 193 26 041 18 103 05 047 080 32 43 44 103 05 041 18 103 05 041 32 43 44 103 105 05 041 18 103 05 041 32 43 44 103 105 104 103 105 041 103 05 041 15 104 103 105 041 103 104 104 104 104 104 104 105 104 103 104 104 104 104 104 105 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104	EP3	215/98			1 13	YN.						AN											•		• · · •	
23 6400 81 93 022 108 232 03	-																						•			
220 613 64 6	1	120/97	226	6400		6	0 22	Ð	0	~	¥	- 26		~	5				18			_	. 88	~	• .	
228 6456 844 93 022 108 275 61 03 7 05 23 113 286 137 05 23 133	~		230	6139		5	0 22	-		-	ALT.	55	9		ĉ	0,			1 8			_	87	~		2.0
11/2 11/2	~.		228	9456		6.6	0.22	30	•		VN	61	9		30	₹.			1.8				68	~		0.2
7 226 101 026 139 226 139 226 139 226 139 226 139 226 139 239 230 231 232 110 05 00 000 00 <t< td=""><td>. 6</td><td>26/27</td><td></td><td>6716</td><td></td><td>. 01</td><td>0.26</td><td>đ</td><td></td><td></td><td>47</td><td></td><td></td><td></td><td>5</td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td>96</td><td>9</td><td>•</td><td>4</td></t<>	. 6	26/27		6716		. 01	0.26	đ			47				5		·						96	9	•	4
101 026 113 246 115 11 021 23 23 21 21 23 23 21 21 23 23 21 21 23 23 21 21 23 23 23 21 21 23 23 21 21 23 23 21 21 23 23 21 21 23 23 21 21 23	. 10	19101	911	3285		9	0.26				AM				-	0 *							. 96	. un		0.5
1 1313 1 M 1		16111				2	0 26	6		. vo	¥2	6	م ا		::	Ş	•						95			-
7 30 450 152 10 <t< td=""><td>· *</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td></t<>	· *															-	• •									6
7 20 906 80 M 30 0 2 2 2 0 1 1 2 0 1 1 1 2 0 1 <td>ື່</td> <td>-</td> <td></td> <td>1529</td> <td></td> <td>₹.</td> <td>× i</td> <td></td> <td></td> <td>• (</td> <td>Y I</td> <td>5 8</td> <td>. .</td> <td></td> <td>2</td> <td>Ċ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>6</td> <td>N (</td> <td></td> <td>N 0</td>	ື່	-		1529		₹.	× i			• (Y I	5 8	. .		2	Ċ,						-	6	N (N 0
7 30 950 80 NN 027 55 10 315 1 403 6 05 23 127 403 41 56 41 56 41 56 41 56 11 121 41 56 41 56 41 56 10 7 55 10 315 11 403 6 05 23 127 403 10 11 56 41 56 40 25 708 81 NN 027 NN 336 NN 323 121 403 6 05 23 121 10 41 56 40 </td <td>ອີດ</td> <td>14/97</td> <td></td> <td>1368</td> <td></td> <td>¥, ž</td> <td>< c</td> <td></td> <td></td> <td>o ~</td> <td><u>s</u> ș</td> <td></td> <td>م م</td> <td></td> <td>5 4</td> <td>ô ô</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23</td> <td>~ ~</td> <td></td> <td></td>	ອີດ	14/97		1368		¥, ž	< c			o ~	<u>s</u> ș		م م		5 4	ô ô							23	~ ~		
7 28 793 80 NA 0227 55 10 345 NA 301 07 265 3431 405 6 05 23 128 403 05 109 41 56 40 52 53 128 100 41 56 40 52 53 128 100 41 56 40 50 100 10 10 11 41 56 40 50 100 10 10 10 11 51 50 40 50 100 10 10 10 11 51 50 50 100 10 10 10 11 51 50 50 100 10						į.,							,													-
7 22 705 80 NA 006 50 NA 005 23 127 003 10 110 41 56 40 25 705 81 NA 027 55 10 347 NA 296 60 53 12 127 603 10 110 41 56 40 27 651 81 NA 027 NA NA 336 NA 23 127 603 12 10 111 41 56 40 27 655 81 NA NA NA NA 230 NA 23 127 603 12 113 41 56 40 41 56 40 41 56 41 56 41 56 41 56 41 56 40 56 41 56 41 56 41 56 41 56 41 56 41 56 41 56 56 51 12 12 10 110 11			30	850		٩N	0 27	ŝ	•	8	YZ.	5	~ '										1.09			2.0
25 709 81 M 027 335 M 34 07 261 32 12 12 03 10 113 41 55 27 765 81 M 027 M 336 M 33 07 261 32 12 12 03 10 113 41 55 27 765 81 M 027 M M 335 M 33 07 261 3283 12 100 113 41 55 60 23 12 100 113 31 11 31 11 11 11 10 11 21 10 45 12 10 11 31 10 11 31 10 11 31 10 11 31 10 11 31 10 11 31 10 11 31 11 31 10 11 31 10 11 31 10 11 31 10 11 10 11 10 10 </td <td></td> <td></td> <td>28</td> <td>193</td> <td></td> <td>¥ :</td> <td>0 28</td> <td>۰.</td> <td></td> <td></td> <td>Y Y</td> <td>5 3</td> <td>~ .</td> <td></td> <td></td> <td>ę (</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N (</td> <td>60.1</td> <td></td> <td></td> <td>0.0</td>			28	193		¥ :	0 28	۰.			Y Y	5 3	~ .			ę (N (60.1			0.0
25 708 81 M 027 M 336 M 34 07 262 321 1 605 22 120 603 10 113 41 55 27 651 81 M 027 M M 3356 M 33 07 261 126 63 12 113 51 12 63 12 113 12 12 63 12 12 63 12 113 12 113 12 12 12 63 12 11 12 <td></td> <td></td> <td>2</td> <td>906</td> <td></td> <td>¥.</td> <td>0.27</td> <td>n,</td> <td>0</td> <td></td> <td>4</td> <td>86</td> <td>0</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>0.</td> <td></td> <td>-</td> <td></td> <td>2.0</td>			2	906		¥.	0.27	n,	0		4	86	0				•					0.		-		2.0
27 651 81 NN 0.27 NN 34 0.8 200 32 120 <03				708	. 8	NN.	0.27			9		-	~			9	• •					0.		-	 	0.2
27 765 B1 MA 027 MA MA 333.6 MA 333.6 MA 333.6 MA MA <td>-</td> <td></td> <td></td> <td>651</td> <td></td> <td>ž</td> <td>0.27</td> <td>·</td> <td></td> <td>0</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td>ų.</td> <td></td> <td></td> <td></td> <td></td> <td>د 0ء</td> <td>0.1</td> <td></td> <td>-</td> <td>• • • •</td> <td>۵.</td>	-			651		ž	0.27	·		0	•	•				ų.					د 0ء	0.1		-	• • • •	۵.
11 311 11 311 11 101 11 311 11 201 23 12 0.0 12 11 31 31 31 31 31 31 31 31 31 31 31	.		27	765		ž.	0 27		•	0			~	·		9	<u>,</u>				, ¢0.3	- 5	•	_	•	0.2
13 425, M MA	-	18/98		110	Ž	2	AN A	••	•	89		ž		•	-		•			12.0		- -		~		
10 368 810 NA <	<u> </u>	86/8/		425	ž	AN.		•		3	•	2	đ	•	. n	9				12.8		9	•			
16.34 463 810 98 0.25 8.3 9/ 324 <1	Ū.	86/8/	2	368	¥2	ž	¥N.	• ·	 : .	S.	•••	ž	ത	• •		Ŷ	'. * .			12.8		50	• •	~		
17.85 506 8.08 9.8 0.25 8.4 331 1.4 NA 0.9 246 334 1 0.0 5 1 113 0.3 15 106 3.8 50 40 17.85 506 8.10 9.7 0.25 8.3 331 1.4 NA 0.9 246 334 1 40 45 0.5 21 113 40 4			2	463	. 4		, 1.25						c		-		. *					5			•	
13149 3809 630 97 025 63 332 NA 09 231 340 c1 c05 22 115 c03 15 110 346 51 c0 13449 3809 638 63 025 151 291 NA 122 NA 05 228 335 c1 c08 c5 04 21 122 03 18 54 c0 13503 3824 839 83 025 151 291 NA 117 NA 05 229 337 c1 c08 c5 04 21 122 034 316 c08 54 c0 13503 3824 839 83 025 151 291 NA 117 NA 05 224 337 c1 c08 c5 03 16 084 346 c0 13503 839 83 83 83 152 290 NA 119 NA 05 221 122 03 16 084 36 56 56 50 50 56 56 56 50 51 122 122 16 084	•		58	506	808		0 25	, , ,			.≤					ō	. •					5			-	
13449 3809 638 6.3 0.25 151 291 NA 122 NA 05 228 335 41 408 45 04 21 122 03 1.8 0.85 36 54 40 13503 3824 839 8.3 0.25 151 291 NA 117 NA 05 229 337 41 408 45 05 22 123 03 1.9 0.84 3.8 54 40 8.39 8.3 0.25 152 290 NA 119 NA 05 227 334 41 408 45 0.4 21 122 03 1.6 0.82 36 53 40	. • .				8.10	1.6	0.25			~~~	ş		. 6		0		v					- 2			•••	
135 01 3824 8 39 8 3 0 25 15.1 29.1 M 117 M 05 229 337 41 408 45 05 22 123 03 15 0 84 3.6 54 40 83 83 9 83 0 25 15 290 M 119 M 05 229 337 41 408 45 04 21 122 03 1.6 0.82 3.6 53 40			9	OUNL				-					4				. `					3	Ya	v		5
8.39 8.3 0.25 15.2 290 NA 119 NA 05 227 334 41 408 45 04 21 12.2 03 1.6 0.82 3.6 53 40		•	: 2	1824									. vr		· •·		· ·					0	3	. e		0
		•	3		60.8			- N	- 0					•	,	, ,	•. •						5 8	مب د		50
									,				,					i					•	·	•	

	SANTE	SAMPLE	STREAM	STHEAM	E	00	Can	Water	(-	12	Total	Sultate As	8	3	ũ	5	2	×	1.2	6r	5	Æ	s	5	2	5
(1/14) (mm1) (mm1) <t< th=""><th>NME</th><th>DATE</th><th>HOW</th><th>LOW</th><th></th><th></th><th>ductivi</th><th>lomp</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>·</th><th></th><th></th><th></th></t<>	NME	DATE	HOW	LOW			ductivi	lomp															·			
Total Total <tt< td=""><td></td><td></td><td></td><td>(1/2)</td><td>(units)</td><td>1/6m) (</td><td>.) (mS/cn</td><td>Cel</td><td>Э</td><td></td><td>- 1</td><td></td><td>5</td><td>58711</td><td>1/6#113</td><td>1 (1791)</td><td></td><td>(mg/L)</td><td>(1,61)</td><td>9</td><td></td><td>(mg/L)</td><td>17.6</td><td>(J/6m)</td><td>(1)(1)</td><td>(1/61)</td></tt<>				(1/2)	(units)	1/6m) (.) (mS/cn	Cel	Э		- 1		5	58711	1/6#113	1 (1791)		(mg/L)	(1,61)	9		(mg/L)	17.6	(J/6m)	(1)(1)	(1/61)
101 101 201 102 102 201 <td>1-0-1</td> <td>86/11/8</td> <td>i i</td> <td>2041</td> <td>8 31</td> <td>1 0</td> <td>0.26</td> <td>125</td> <td>6</td> <td></td> <td>50</td> <td>9 9</td> <td></td> <td>27</td> <td>Ţ</td> <td>¢08</td> <td>ŝ</td> <td></td> <td></td> <td>ŝ</td> <td>< 0 3</td> <td>•</td> <td>0.86</td> <td>6</td> <td>15</td> <td>E.05</td>	1-0-1	86/11/8	i i	2041	8 31	1 0	0.26	125	6		50	9 9		27	Ţ	¢08	ŝ			ŝ	< 0 3	•	0.86	6	1 5	E.05
8.2 9.1 0.21 15 233 335 11 400 22 111 400	10.2	8/11/98			16.8	1 6	0 26	9	0		45	0 6		66	÷	¢0.8	ŝ			~	<03	æ	i	6	55	٥ <u>،</u>
MM 110 27 0.5 244 111 444 110 27 0.5 244 111 446	10.3	86/11/8			8 32	9.7	0 27	s	6		20	0 6		8		¢0.8	5 .			•	603 0	•	68	~	56	6.0×
2013 712 013 23 015 244 013 24 013	10-4	8/17/98							Z		ê	0		6		< 0 8	Ŝ,			~	¢03		88	24	56	<u>.</u>
Nike 113 23 0.5 241 111 411 421 <td>10.5</td> <td>84/11/8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Z</td> <td></td> <td>6</td> <td>0_. 6</td> <td></td> <td>66</td> <td></td> <td><0.8</td> <td>ŝ,</td> <td></td> <td></td> <td>~</td> <td>۰0 ع</td> <td>о Ф</td> <td>88</td> <td>~</td> <td>55</td> <td>6.0 2</td>	10.5	84/11/8							Z		6	0 _. 6		66		<0.8	ŝ,			~	۰0 ع	о Ф	88	~	55	6.0 2
2003 871 971 71 72 92 92 92 92 92 92 92 91 91 92 91 91 92 91 91 92 91 <th< td=""><td>LD-6</td><td>8/17/98</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Z.</td><td></td><td>35</td><td>0_. 6</td><td></td><td>6</td><td></td><td>• 0 B</td><td>.¢</td><td></td><td></td><td>~</td><td>, 6 3</td><td>a</td><td>6</td><td>~</td><td>55</td><td>60.3</td></th<>	LD-6	8/17/98							Z.		35	0 _. 6		6		• 0 B	.¢			~	, 6 3	a	6	~	55	60.3
7003 871 871 871 871 871 972 973 <td>LD-7</td> <td>8/17/98</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ź.</td> <td></td> <td>90</td> <td>0. 6</td> <td></td> <td>8</td> <td>Ţ</td> <td>• O.B</td> <td>Ŝ.</td> <td></td> <td></td> <td>~</td> <td><03</td> <td>~</td> <td>6</td> <td>6</td> <td>22</td> <td>C.O</td>	LD-7	8/17/98	•						Ź.		90	0. 6		8	Ţ	• O.B	Ŝ.			~	<03	~	6	6	22	C.O
Num 135 23 031 211 401 135 23 031 411 401	LD-B	8417198							Z		52 52	0		5	5	8.0,	ŝ.			-	£03	æ	98	0	95	¢0.3
2163 81 0.2 111 22 23 21 41 05 22 111 40 52 211 40 52 211 40 52 211 41 05 71 41 05 71 41 05 71 11 22 22 211 41 11 22 22 211 41 11 22 22 213 22 213 22 213 22 214 11 22 22 214 11 22 22 214 214 214 22 214 214 214 22 214 214 22 214 214 22 214 214 22 214 214 214 22 224 214 214 214 214 22 214 214 214 214 214 22 214 214 214 214 214 214 214 214 214 214	10-9	8/17/98							Ż		35	0, 6,		66	Ş	¢0.8	÷.				¢0.3	ся.	88	~	55	ç,
2003 871 877 72 2003 72 877 72 <	LD-10	8/17/98	-				-		z		25		243	66	Ţ	¢0.8	ŝ,				¢ 0 3	~	85		55	6.0 ⁵
Zess B/1 B/1 O_2 131 Z <thz< th=""> Z <thz< th=""> Z <thz< th=""> <thz< th=""> <thz< th=""> Z<!--</td--><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thz<></thz<></thz<></thz<></thz<>						-																				
2005 201 21 21 20 2001 223 1 0 40 20 27 7 1 2005 72 11 27 202 211 27 0 1 92 7 1 1 96 10<	Blackfoot	River, alle	LAB-			•																				
2003 871 677 02 131 23 005 130 2023 1005 2305 11 04 05 11 91	84.1	7/4/97	40	2662	8 21	1 8		1 2		95 0		82	4 201	22			9		8 -			~	35	5.62	76	25.3
2015 72 101 2015 72 101 102 101 2015 711 111 2275 102 2015 711 111 2275 101 102 2015 711 111 2275 101 115 271 114 111 2275 101 115 2615 101 115 2615 101 115 2615 105 102 201 101 115 2615 101 115 2615 101 115 2615 105 102 201 101 110	84.2	714/97	66	2803	8.21	87		1 2		0 29		85	4 200	22			64		1.8			8	16 C	5.66	11	27.7
2015 762 817 02 114 117 2275 1075 02 2130 722 01 10 94 974	BA.3	714107			8 2 1	8 7		-		0.52		82	195	22			• •		9 6				67	5.58	75	29
770087 74 2005 76 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 74 100 24 101 115 268.9 106 24 100 24 101 24 101 24 101 101 244 101 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>						•																	-			
Nigoni Yi Sind Yes Nigoni Ye Sind Yes Nigoni Yes Sind Yes Sind Yes Sind Yes Sind Yes	BA.1	1120197	77	2005	7 62	. 4		11 4 11				78		21	-	1 0	5.8		1 0	9 74			38	5.85	84	29.4
Willing Willing <t< td=""><td></td><td></td><td></td><td>0010</td><td></td><td></td><td></td><td></td><td></td><td>3 76</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>90</td><td></td><td>20.7</td></t<>				0010						3 76		5					4						•	90		20.7
Multicality		100311										:;														
BEBUT 41 1161 B17 (MN) 024 101 115 26.8 1066 02 23 25.83 1 07 42 07 22 115 26.8 1 25.8 25.8 1 25.8 1 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8	E-VR	16/02/1	٤.	2012	20.7	P_		•				ę		2	•				•				,	0		
Biology 11 Ital BIJ MMA Dial Dial <thdial< th=""> <thdial< th=""> <thdial< th=""> <thdial< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>č</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ę</td><td></td><td></td></thdial<></thdial<></thdial<></thdial<>						-					•			č		•								ę		
Biology Itel Itel Biology Itel Biology Itel Biology Itel Biology Itel Biology	BA-1	8/8/07	- 7	1161	118	Ŷ.	0.24	10.1				5		ŝ	-		÷.						•	3 8		
Busing? Busing? Busing? Busing? Z S <td>BA:2</td> <td>8/8/97</td> <td>Ŧ.</td> <td>1161</td> <td>8 17</td> <td>(NA)</td> <td>0 24</td> <td>10.1</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>25</td> <td>-</td> <td></td> <td>₽.</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>- ·</td> <td>9 9 9 9</td> <td>96</td> <td>2</td>	BA:2	8/8/97	Ŧ.	1161	8 17	(NA)	0 24	10.1				5		25	-		₽.				-		- ·	9 9 9 9	96	2
VI 1307 Zi Fis D Vi D Zi Zi <th< td=""><td>BA-3</td><td>1.6/8/8</td><td></td><td></td><td>8 17</td><td>(VV)</td><td>0 24</td><td>10 1 01</td><td></td><td></td><td></td><td>66</td><td></td><td>25</td><td></td><td></td><td>9</td><td></td><td></td><td>115</td><td>-</td><td></td><td>59</td><td>6.29</td><td>96</td><td>8</td></th<>	BA-3	1.6/8/8			8 17	(VV)	0 24	10 1 01				66		25			9			115	-		59	6.29	96	8
VIJ307 27 755 63 70 73 53 51 75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></t<>																								•		
9/1997 28 793 9/1 793 71	BA-1	18/01/5		765	63	6	(NA)	e				ف		28			32		_	-	4	8	6.08		911	-
9/13/9/ 9/13/9/ 103 9/13/9/ 103 29/1 103 20/1 103 20/2 103 20/2 20/2 103 20/2 103 20/2 103 20/2 103 20/2 103 20/2 20/2 103 20/2 <th2< td=""><td>BA-2</td><td>26/01/6</td><td></td><td>667</td><td>8.3</td><td>9.8</td><td>INA</td><td>e,</td><td></td><td></td><td></td><td>~</td><td></td><td>52</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>•</td><td>2 2</td><td></td><td>7.02</td><td>118</td><td></td></th2<>	BA-2	26/01/6		667	8.3	9.8	INA	e,				~		52			1				•	2 2		7.02	118	
Mar. Jiu. Bit 2015 2017 2018 2012 1103 2020 1117 150 222 1003 2012 2113 2117 150 2201 1017 0017 2013 1117 150 2201 1017 0017 2013 1117 150 2201 1017 0017 2013 1117 150 2201 1017 0017 2011 1117 150 2201 1017 0017 2011 1111 <	BA-3	16/01/6			8.3	16	(NA)	6		1.1		~		29		• 0	33		_	12.8	4 S	2 7	5.91	7.02	116	~
Ideal Birk 2017 2016 2119 2010 2114 2016 2119 2010 2117 150 2265 1017 5016 2114 211 100 71 101 2016 1017 102 1017 102 1017 102 1017 102 1017 101 1017 101 1017<																						-				
Mont. Jint. BH: 201							•		•																	
7/1/107 103 2017 82 91 020 122 183 202 100 216 1 06 19 910 71 7/1/107 111 3143 22 91 020 122 183 202 1017 91 206 19 919 910 71 7/20197 74 2065 79 84 020 117 150 228 1017 05 204 714 0 917 91 910 91 910 915 91 910 91 910 91 910 91 910 91 910 910 91 910 91 910 91 91 910 91 910 91 910 91 910 91 910 91 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 <td>Blackfool</td> <td>River, sile</td> <td>BH.</td> <td></td> <td>• •</td> <td></td> <td></td> <td></td>	Blackfool	River, sile	BH.																				• •			
71/107 111 314.3 82 91 020 122 18.3 202 10.7 05 214 01 42 06 18 97.0 68 19 97.0 68 19 97.0 68 19 97.0 68 17 17 10 12 18.3 202 117 15.0 22.8 100.8 05 201 214.5 10 67 08 19 96 95 19 95 17 7/20097 R0 726 117 150 22.8 100.87 5 201 214 21 21 0.8 95 11 950 95 11 950 12 110 950 22 110 10 10 11 10 11 10 10 11 10 11 10 11 10 10 11 10 10 11 150 22 10 10 10 11 10<	BH-1	114197	103	2917	8 2	6	0.20	•				ទ		23			ļ		6	10.0		~ -	4.06	5.87	80	28 4
7/14/07 7/20/07/ 7/4 205 7/9 1/2 7/20/07/ 7/2	811-2	714197	Ξ	3143	8.2	6	0.20	~	e			52		22			.		8. I.	9 70		8	86	5.66	78	20.4
7/20/97 74 2055 79 84 0.20 117 150 202 213 11 10 67 08 19 986 95 11 7/20/077 86 79 88 020 117 150 228 10 17/20/07 69 08 19 986 95 11 9 96 95 15 1 1 1 1 0 69 08 19 966 95 11 9 95 95 11 9 11 9 9 9 10 10 10 15 26 10 16 16 0 10 16 16 0 19 9 9 11 16 10 16 10 16 10	C-HB	714197			8.2	6	0.20	~	e,			•		23			42		6. -	56.6	1.0	9	4.06	5.84	80	28.2
7/20/97 74 2005 79 88 0.20 117 150 228 107 65 214 11 10 67 08 19 965 95 11 7/20/97 79 88 0.20 117 150 228 10087 05 201 214.2 11 10 64 08 19 965 95 11 1720/97 38 1076 83 0.00 117 150 228 10087 05 201 214.2 11 150 23 260 1016 04 234 2571 10 07 23 116 36 36 31 36 31 16 07 23 116 36 30 36 31 36 31 16 31 36 31 36 31 36 31 36 31 31 30 32 32 32 36 31 31 31 </td <td></td> <td>•</td> <td></td> <td></td>																								•		
7/20/97 B0 2265 79 6.8 0.20 11 150 22.8 1082 0.5 201 21.42 1 10 69 0.8 19 985 95 11 7/20/97 38 10/6 6.3 (M/A) 0.24 10.9 15.3 26.0 10.87 0.5 201 21.42 1 10 64 0.7 2.3 116 36.5 11.6 36.5 10.6 40 0.7 2.3 116 36.5 201 21.4 207 2.3 116 36.5 116 36.5 10.6 40 0.7 2.3 116 36.5 207 116 36.5 207 116 36.5 216.5 104.6 0.4 207 2.3 116 36.5 216.5 114.5 0.3 207 2.3 216.5 216.5 216.5 216.5 216.5 216.5 216.5 216.5 216.5 216.5 216.5 216.5 <t< td=""><td>BH-1</td><td>10211</td><td>1</td><td>2095</td><td>6/</td><td>H H</td><td>0 20</td><td>~</td><td>•</td><td></td><td></td><td>2</td><td></td><td>21</td><td>5</td><td>1.0</td><td>67</td><td></td><td>19</td><td></td><td></td><td>6.1</td><td>4.42</td><td>5.95</td><td>96</td><td>1.61</td></t<>	BH-1	10211	1	2095	6/	H H	0 20	~	•			2		21	5	1.0	67		19			6.1	4.42	5.95	96	1.61
7120197 71 79 88 020 117 150 228 105 61 107 231 2587 10 61 027 216 105 61 027 231 2587 106 40 07 23 116 36 22 1056 61 07 23 116 36 2116 36 2116 367 116 367 2116 367 2116 367 2116 316 42 07 23 116 367 1166 42 07 23 116 367 2116 316 </td <td>BH-2</td> <td>1120197</td> <td>90</td> <td>2265</td> <td>7.9</td> <td>8.8</td> <td>0 20</td> <td>~</td> <td>•</td> <td></td> <td></td> <td>85</td> <td></td> <td>21</td> <td></td> <td>0 -</td> <td>69</td> <td></td> <td>61</td> <td></td> <td></td> <td>- 1</td> <td>10.4</td> <td>5.88</td> <td>85</td> <td>27.5</td>	BH-2	1120197	90	2265	7.9	8.8	0 20	~	•			85		21		0 -	69		61			- 1	10.4	5.88	85	27.5
B/B/97 38 1076 6.3 (M/) 0.24 109 15.3 26.0 106 4.0 0.7 2.3 116 36 2 2 116 36 2 107 2 116 36 2 </td <td>E-HB</td> <td>1120/97</td> <td></td> <td></td> <td>67</td> <td>88</td> <td>0 20</td> <td>~</td> <td>0</td> <td></td> <td></td> <td>87</td> <td>5 201</td> <td>51</td> <td>•••</td> <td>1.0</td> <td>19</td> <td></td> <td>18</td> <td></td> <td></td> <td>8.1</td> <td>1.32</td> <td>5.88</td> <td>85</td> <td>15.6</td>	E-HB	1120/97			67	88	0 20	~	0			87	5 201	51	•••	1.0	19		18			8.1	1.32	5.88	85	15.6
B/B/97 38 1076 6.3 (M/A) 0.24 10.9 15.3 26.1 10.64 0.4 271 25.82 1 0.6 40 0.7 23 116 36 23 26.1 10.44 0.4 231 25.2 116 36 23 26.1 10.44 0.4 27 23 116 36 23 26.1 10.44 0.4 27 23 116 36 23 26.1 116 36 23 26.1 116 36 23 26.1 116 36 23 26.1 116 36 23 26.1 116 36 23 26.1 123 23 26 23 26.1 123 23 23 23 24 23 26.1 124 23 26.1 123 23 23 23 24 23 26.1 123 23 24 23 24 23 24 23 24 2						•																				
B/B/B/7 36 1076 6.3 (MA) 0.24 109 15.3 26.0 1046 0.4 234 25.71 1 0.6 42 0.7 23 11.6 36 23 26.1 10.46 0.4 233 26.07 1 6.3 (MJ) 0.24 10.9 15.3 26.1 10.46 0.4 233 26.02 1 6.0 42 0.7 23 11.6 36 27 12.9 10.6 27 12.9 30 27 23 11.6 36 27 12.9 30 27 23 11.6 36 27 12.9 30 27 23 11.6 36 27 12.9 30 27 12.9 30 27 27 12.9 30 27 27 23 21.6 31 30 27 26 27 28 31 20 27 28 31 26 12.7 28 31 26 27 28 21 27 28 21 27 28 21 27 <td>BH-1</td> <td>8/8/97</td> <td>3.6</td> <td></td> <td>, E 9</td> <td>(NA)</td> <td>0 24</td> <td>a,</td> <td>e</td> <td>6 2</td> <td></td> <td>5</td> <td>1 23</td> <td>25</td> <td>-</td> <td></td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.09</td> <td>6.39</td> <td>66</td> <td>+ +</td>	BH-1	8/8/97	3.6		, E 9	(NA)	0 24	a,	e	6 2		5	1 23	25	-		9						4.09	6.39	66	+ +
8/8/97 9.3 (M/N) 0.24 10.9 15.3 26.1 10.46 0.4 233 2602 1 0.6 42 0.7 23 11.6 36 27 12.9 30 2 1 23 11.6 36 27 12.9 30 2 1 23 10.5 30 0.9 27 12.9 30 2 2 1 2 10.2 (M/N) 13.8 (M/N) 2.65 14.54 0.3 271 29.34 1 0.5 31 0.9 2 7 2.8 30 2 2 1 2 1 2 1 1 4 0.5 31 0.9 2 7 2 30 2 2 1 2 1 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <	BH-2	8/8/97	96		6.8	(NN)	0.24	•	•	6.0		48	1 234	25	-		ą						-	6.35	86	13.3
9/13/97 31 078 8.3 102 (MM) 138 (MJ) 267 1454 03 275 2938<	BH-3	8/8/97			6.9	(VN)	0.24					8	1 23	26	-		42						3.98	9.36	66	39
9/13/97 31 078 633 102 (M/M) 138 (M/M) 265 1454 03 273 293 1 0.5 30 09 27 129 30 20 27 129 30 20 27 129 30 20 27 129 30 20 27 129 30 20 27 129 30 20 26 17 27 129 30 20 26 12 8 20 21 29 26 26 12 8 26 12 8 26 12 8 21 28 26 26 26 26 26 26 26 26 26 26 26 26 27 28 26 26 26 26 27 28 26																										
9/13/97 33 934 82 103 (MA) 136 (MA) 267 145 0.3 271 2913 1 04 31 09 26 12.6 30 28 12.6 30 28 12.6 30 28 30 21 126 30 28 31 09 26 12.7 28 31 2 31 29 26 12.7 28 31 2 31 20 25 12.7 28 31 2 31 20 25 12.6 314.2 2 314.2	BH-1	19/11/6	ē.	878	6.9	10.2	(NA)	Ð				• •		29	<u>ک</u>	.0.Ś	ос _.						6.5	2.0	116	
9/13/97 24 640 80 10.1 (M/A) 138 (M/A) 26.9 14.57 0.3 28.3 28.36 1 0.5 31 0.9 26 12.7 28 31 2.9 26 1 0.5 31 1.7 2.6 31.4 27 21 1.2 5.8 31 0.9 2.6 1.2.7 2.8 31.4 27 21 1.2 5.8 31.4 2 1.1 1.1 27 31.5 0.3 1.6 0.8 21 1.2.6 31.4 2 31.4 2 1.4 27.3 15.34 0.3 26.91 1 0.3 1.6 0.8 21 12.6 31.4 2 2 1.4 2 2 1.4 2 2 1.4 2 2 1.4 2 2 2 1.1 2	BH-2	19/13/97	5.6		8.2	10.3	(NA)	æ				م		53		•	.						5	96.9	115	=
11/18/97 24 680 80 128 025 (MM) 14 27.6 1519 03 229 26.82 1 0.3 16 0.8 2.1 12.6 34.4 2 11/18/97 26 793 80 127 025 (MM) 14 27.3 15519 03 270 27 1 03 16 0.8 2.1 126 34.4 2 11/18/97 26 736 14 27.3 15.34 03 230 26.91 1 03 16 0.8 21 126 35.4 2 14.1 27.3 15.34 03 26.91 1 03 16 0.8 21 126 35.4 1 20 21 126 35.4 2 <td>C HB</td> <td>19/13/97</td> <td></td> <td></td> <td>8.3</td> <td>10.1</td> <td>(NA)</td> <td>ື</td> <td>•</td> <td></td> <td>•</td> <td>57 0.</td> <td></td> <td>58</td> <td>ŗ</td> <td>5 O .</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.6</td> <td>6.93</td> <td>107</td> <td></td>	C HB	19/13/97			8.3	10.1	(NA)	ື	•		•	57 0.		5 8	ŗ	5 O .	5						5.6	6.93	107	
11/16/97 24 680 80 128 025 (MA) 14 27 15/19 03 16 08 21 126 34 2 11/16/97 26 793 80 127 025 (MA) 14 27.3 15534 03 27 1 03 16 08 21 126 3434 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3134 2 3144 31 314 31 314												•														
11/16/97 28 793 60 12.7 025 (MA) 14 27.3 15.33 03 27 16 03 16 08 22 12.6 3434 2 12.6 3434 2 12.6 3434 2 12.6 3434 2 11/16/7 26 736 14 27.3 15.34 03 26.91 1 0.8 21 12.6 34.2 12.6 34.2 12.6 34.2 12.6 34.2 12.6 34.2 12.6 34.3 2 14.6 03 16 08 21 12.6 34.2 12.6 34.2 12.6 34.2 12.6 34.2 12.6 34.2 12.6 34.2 12.6 23 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 24 23 25 25 26 23 24 24 26 25 26 23 26 23 26 23 23 26 26 26	BH	11/18/97		680	8.0	12.8	0 25	7	•	16		19_0		26	-		91 .							6 55	106	9.5
11/16/01 26 736 90 12.5 025 (MJ) 14 27.3 15.34 03 26 16 08 21 126 35 2 1/16/98 18 510 81 180-11024 00 17 273 141 03 210 254 1 <03	BH-2	11/18/97		667	8 0	12.7	0 25	-	-	7.3		23 0.		~	-		16							6.57	106	5.7
1/6/98 18 510 B11 180-11024 00 17 273 141 03 210 254 1 <03	BH-3	11/18/97		7.36		12.5	0 25	1				÷.	23(26	-		18 1			12.6			ç	659.	106	2 4
1/6/98 18 510 81 180-1(0.24 0.0 17 27.3 141 0.3 210 25.4 1 <0.8			-																							
1/6/98 22 623 81 024 00 17 26.7 14 03 21/ 26.12 2 <03 11 08 2.1 12.1 26 2 1/6/98 20 566 81 025 00 17 26.7 141 04 222 26.66 1 <03 12 08 21 124 27 2 3/8/98 21 595 806 NA NA 0 32 27.76 NA NA 04 215 26.36 <1 <0.3 8 09 2.0 12.9 39 2 3/8/98 25 708 808 NA NA 01 33 28.17 NA NA 03 211 26.12 <1 <0.3 8 09 2.0 12.8 38 2	BH-1	1/6/94	81	510	1.8	18 0	110 24			13		• -		25	-	¢0.3	12						*	6.12	107	35
1/6/98 20 566 B1 025 0.0 17 26.7 141 0.4 222 256.66 1 40.3 12 0.8 21 12.4 27 27 27 3/6/98 21 56.5 56	BH 2	1/6/98	22	623	8		0 24					0		26	2	<03	=						- IE'F	6.23	110	
2/8/98 21 595 806 NA NA 0 32 27.76 NA NA 04 215 26.36 1 40.3 8 09 2.0 12.9 3.9 3/8/98 25 708 808 NA NA 01 3.3 28.12 NA NA 0.3 211 26.12 41 40.3 8 0.9 2.0 12.8 3.8	811-3	86/9/1	20	566	8.1		0 25		1 21	6.7		-	4 222	26	-		12	9 0	5-1				2	6.21	113	2.7
2/8/98 21 595 806 NA NA 0 32 2776 NA NA 04 215 2636 1 03 8 09 20 129 39 3/8/98 25 708 808 NA NA 01 33 2812 NA NA 03 211 2612 1 403 8 09 20 128 38																										
<u>3/8/98 25 708 808 NA NA 01 33 2817 NA NA 03 211 2612 41 403 8 09 20 128 38</u>	BH-1	96/8/6	51	595	8 06	¥.	٩N	Ţ.	~		•	•		26			€.					-	8 07	8.08	114	(BPOL)
	BH-2	3/8/98	25	208	<u>8 08</u>	٩N	¥	-	_			٥		ļ	Ĵ	<u>6</u> 03			20			-	8	6 02	1	5

<u> </u>						_							_		_		_	-								_				_						
5	(1/6r) (0.6	32.6	30.6	24.0	23.7	21.8	212	2.5	- ²		0.0 0.0	0 N.		55	11.2	18.9	15.1	16.3		•	•		8 -	.9	9.6	.∾.	1.5	1.7	-5.4	15.6	18.9		0.51	Ē	11.0
л	1/6/1/-	Ξ	13	۲	77	15	. ج	2 2	106	105		= =	108	ļ	, 4	88	101	102	E01	132	126	221	127	128	126	126	126	125	126	125	16	96 96		95 96	, 4	06
J.	1/6m) (,s.99	5 4					4 4 0,0		67 67		6.3			n 9.9		9.1			99		n D		7.2	0.7	7.0	7.0	5.9	9	9.9		ທີ່ທີ່ ທີ່ທີ່		ທີ່ແ ອີ່ອີ	່ ເ	5.7
s	1/6m) (6.7	13.2	13.3	1	Ξ	11 5	5.79 5.79		4 09		5 9 7 7	3.97		, e	3.6	4.08		4.04	3.74	3.82	19.5	4.97	5 07	5.67	5 59	5.48	-	2	<u>.</u>	5	6 C				5.08
Z	1/0m) (2.2	6.6	6.	5, 6 	6.		N 0	27	2.7		5.1	6	ہ • • • •		6.1	2.0				e, i	N. N		3.0		2.6	2.8		2.5		2.2	0,0		2.5	6.	2.5 2.6
ž	1 (101/1)	38	6 C 7 0		+ +		6 . • ·	5 6 7 7	4.5	5 4 5 4		0,0 0,0			0 0 0 0		8.1	7.5				9	1 6		9.6		35		•			~ ~ ~		4 C	, e , e	0 0 0 0
6M	l'ug/L	12.8	102		106		9 67	9 64	Ξ			9 11	-		10.6	9.34	6 43	50.6	9 36	10.8	6.01		12 0	12.1		- 61	13.2	Ē	215	-	9 42	6E 6 6		02 6 03 6	6	8.80 8.77
5	1/6n) (2 0	5 E	9. -		-	9.1	9 9 		2 - 2		N N		*	5.1	2.1	5.1	- 2	2.1		9,9 9,0			2.8	•	2.4	2.4		e,	5.0	<u>.</u>			- -	8	21
×.	(mg/L	80	1.0		200			9 9 0 0		80		0,0 0,0	8.0			0.6	0.8	2.0	0.8		80			0,0 0,0	6.0	60	60	6 0	6.0	6. 0	0.7	6.0			20	.0 0 0
. F	(1/6#)	ø.	.a.t.	6E		8	.e.	8.8	35	35 97		5.5	52		;;;	96	.99	60	52	.45	4	₹.	8	3	. 2	15	.=.	51	5	57.	5	27		8 X	32	.e_E
3	(hg/L)	E 0 Y	80,00	8 0 •	6 0 8 0	¢0.8	40 B	0, 0, 9, 0,	•08 •••	1 1 40 8		8 0 ×	40 B		2	0 1	6.0	6.0	0.8		9.0			o s o	.0	C 0		¢0.8	40 B	6 0,		3 0 0 0				8 0 8
з	1 (µ9/L	÷	. .	₹.	Ţ.	Ţ	Ţ	⊽ ,⊽	ţ	⊽,⊽		<u>,</u>	Ţ	• •	; ;			٦.		-,	-	-	•					.⊽.	Ţ.	<u>.</u>	.⊽	Ţ, Ţ	;	5 7	; ₹	. . .
3	1 (m)	26 34	21 3 21 0	-	21 B 21 B	-		21 6 21 6		25 0		26.8 26.2	26.1				20 85	20 é	20 ô1		25 04			29 64 29 35	28 07	28 05	28 52	25 0	24.7		20.3	202		202		19 8 19 9
æ	1.64)	511	11	1	F/1	5/1	163	163	229	226 225		240	223		061	178	161	190	151	226	229	520	254	258 253	233	202	228	168	170	1/2	135	135		162	158	150
à Ai	1641	F O	0 5 0 2		~ C 0			- 		5 0 4 0		• • • •	† 0		9 0 0	0	0 5	0	0		•			• •	्०		۰.	05	0.0	n 0	03	~ ~				
Sullate	CaCO,	¥N.	4 N N N N N N N N N N N N N N N N N N N	¥.	žž	٩X	NA N	žž	Ň	4 4 2 2					3 01		10 68			10 13		12 01		11 03		15 72	15 84	Ň	ž	¥.	MA	a a		Y Y	, ¥	AN NA
T otal Alk	(mgl (AN	NA	ž,	N N	¥2	99		16	16 C6		105	100															¥	¥2	ž.	ž	A N		žž	Ň	82 78
Inorganic Carbon	(1/6m)	27 37	18.9	18 2	20.2	20.2	¥ N	A A	M	¥ ¥		ŽŽ	¥2		20 0		22.6			25 33	25.28	66 62		275	0.62	29.5	28.5		22 6	21.8	18.2	175	. ,	18/		¥ X
A.ı Temp	(Cel)	13	*		18.2	• •	1.11			22.8 22.8		0.81	_	• •	. E 61		18.9	о	6 81	1 5 1	_	-		(VN)	 	'n	• ••			•	15.4	•	•		•••	18.2
Water Temp	(Cel)	•	95		7.6		2.11		0	0 81		5 6 = =	11.8				12 1	12.1	121		~ ,			ه د		_		· -	2 2		6 8	•		8	•••	6.11
Con- ductivity	(mS/cm)	YN	0 19 0.19	61 0	021	0 2 1	61.0	6 6 0		021		0.24	.24	ġ	050	20	0.20	20	20	0.23	53		(NA)	(NA)	26	26	56	ž	ĩ.	5	8			<u>5</u> 2		0 18
00	(,)	AN N		۲N و	200	. 60	Bje	0 0 2 1 2 1		18 0	•	* *	-					8.9 0						0 01 9 8 6	13.5.2 0		, o ,	~	~	10.6		O O			4	
l	m) (slinu)	8 06	-	4 67 1	7.86	• -		 5 8	32	22		8 18 8 20 9 0	£	,	היר	н 19-	0		0	25 g		6 GZ 9	-							8.12	• •	N 66 2	·	11 767		7 89 12 7 89 12
STREAM STREAM PH) (;			~.	15/9 7		•	2435 7	2008 8	80 60	•								8		1019 8	× .	-			•				₽.			•			
V FL	(1./5)	159	62 2227 87 2117						89 20			858 SS					2237	1622	• •	934	<u>.</u>		623	159	538	651	595			• -	• •	6 21/1		1 1820		6 2426 1 2475
SIH	(cls)	cz [.]	76.7	•	55.75		64.7	628	2			31.7		-88-	102			67	• ••	33	90		5		19			37 65	34.91		• •	16 66		64 27 62 0H		85 66 87 41
SAMPLE DATE		3/8/98	4/29/98	4/29/98	5/19/98	5/19/98	86/5/9	6/5/98 6/5/98	1/20/98	7/20/98		86/21/8	84/11/8	Blackfool River, site "BB"	16/11/2	114197	1120/97	16/02/1	1120197	811197	8/7/97	16//18	19/13/97	16/01/6	11/16/97	11/16/97	11/16/97	4/7/98	417198	11/98	4/29/98	4/29/98		H9/61/5	5/19/98	86/5/9
SAMPE		BH 3	BH-1 BH-2	BH 3	BH-1 BH-2	BH:3	I-HB	0113 0113	811.1	BH 2 BH 3			6H9	Blachfe	68.2	68.3	80-1	08·2	6.88	BB-1	08-2	5.99	88.1	68 3 68 3	88-1	88·2	66-3	BB-1	88.2	6-89	BB-1	88-2 HB-3		68-1 68-2	683	88-1 198-2

WA STREAM	M STREAM H.OW	I STREAM PH H.OW	đ.	1	00	Con- ductivity	Valer Femp		ų į	1 -	Suitate As					1 ·	-					S.	۵,	2	
(cfs) (L/s) (units) (mg·L) (mS/cm) (Cel) (Cel)	(1/s) (units) (mg/L) (mS/cm) (Cel.) (Cel.)	(units) (mg/L) (mS/cm) (Cel) (Cel)	L 1 (mS/cm) (Cel) (Cel)	L 1 (mS/cm) (Cel) (Cel)	Cel) (Cel)	Cel) (Cel)	_	2 ات	(mg/L)		-	1) (1)(1)	m) (1,64)		J	Ð.	2	mg/L) (µg)	5	ᅴ	5,	트) : 그	d/() (mg/	51	11 (µ9/L
81.0	81.0	81.0	81.0	81.0			Z.	£		08	2	•			₽ -		. .		0 0	.	N	ń _.	n, .	n n	
6/29/98 217.99 6173 7 80 101 016 150 25.1 NA 6/29/98 212 78 6026 7 75 101 016 150 252 NA 6/29/98	6173 7.80 101 016 150 251 6026 7.75 101 016 15.0 25.2 7.77 102 016 15.0 25.1	6173 7.80 101 016 150 251 6026 7.75 101 016 15.0 25.2 7.77 102 016 15.0 25.1	101 016 150 25.1 101 016 150 252 102 016 15.0 25.1	1 0 16 15 0 25 1 1 0 16 15 0 25 2 2 0 16 15 0 25 2	16 15.0 25.1 16 15.0 25.2 16 15.0 25.1	0 25.1	- ~ -	žž≯		77 77 85	5 5 5	 	157 19 159 19 156 19	 		с. - с. =	0,0,0	6 17	ອີອີອີ	0 0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 326 9 3.26 3 3.27	9 9 N 9 9 N 9 9 N	8,8,8, 8,8,8,	0.7
7/20/98 66 66 1888 6.3 6.3 6.9 0.21 16.8 23 17 77 77 20 98 34 6.9 0.21 16.9 24 17 27 21 15 24 16.9 0.21 16.9 28 34 16.9 0.21 16.7 24 10.3 27 21	1888 6 34 6 9 0 21 16 8 23 9 8 34 6 9 0 20 16 9 24 1 8 34 6 9 0 20 16 9 24 1 8 35 6 9 0 21 16.7 24 1	8 34 6.9 021 168 239 8 34 6.9 020 169 241 8 35 6.9 021 16.7 241	6.9 021 168 239 6.9 020 169 241 6.9 021 16.7 241	0 21 16 8 23 9 0 20 16 9 24 1 0 21 16 7 24 1	21 16.8 23.9 20 16.9 24.1 21 16.7 24.1	8 239 9 241 7 241	a	222		85	2222	05 2 2	212 23 216 23 214 24			0.8 34 34 34		5 7 7 5 7 7 6 7 7		. <u>च.चं.च.</u> च.च.ण		3 354 2 350	2 2 2	129	2.6
9/4/98 1H 83 533 789 85 024 102 159 28 9/4/98 203 575 786 85 024 102 159 28 9/4/98 203 575 786 85 024 102 159 28	83 533 7.89 85 024 102 159 3 575 786 85 024 102 159 7.88 85 024 102 157	7.89 85 0.24 10.2 15.9 7.86 85 0.24 10.2 15.9 7.88 85 0.24 10.2 15.9	85 024 102 159 85 024 102 159 85 024 102 159	024 102 159 024 102 159 024 103 157	24 102 159 24 102 159 24 103 157	2 15 9 2 15 9 3 15 7		~ ~ ~	~	201 201 201	£ £ £ £	5 5 5 5 5 7 5 6 7 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	229 27 228 27 243 27	5 5 5 C		0.8 17 0 18 0.8 20	, 0,0 - ,	9 2 8 0 2 7 0 2 8	.=.=.=.			2 2 48	0 - +	141	
10/6/98 20 87 591 7.76 92 0.23 7.0 105 2 10/6/98 7.71 9.2 0.22 7.2 10.5 2 10/6/98 7.71 9.2 0.22 7.2 10.5 2 10/6/98 7.78 9.3 0.22 7.0 10.4 2	87 591 7.76 92 023 70 105 7.77 92 022 7.2 105 7.78 9.3 0.22 7.0 104	7.76 92 023 70 105 7.77 92 022 7.2 105 7.78 9.3 0.22 7.0 104	92 023 70 105 92 022 72 105 93 022 70 104	0 23 7 0 105 0 22 7 2 105 0 22 7 0 104	23 7.0 105 22 7.2 105 22 7.0 104	105	 		27.6 27.5 27.5	104	125	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	222 222 22 223 22 223 22	70 21	000		، دە دە دە يە يە	9 2 7 8 2 6 8 2 6	===	 	5 5 5 3 5 5 5 5 6 5 7	386	- <u></u>	142	0.5
N 2.5 0 2.5 0 2.5 0 2.1 89/1/11 N 0.6 2.5 7 7.1 2.6 3.0 3.0 N 0.6 2.5 7.0 7.61 2.6 3.0 3.0 N 0.6 2.5 7.0 7.61 7.6 3.0 3.0	319 8.35 137 025 30 2.5 8.35 137 025 30 8.37 137 025 30	8.35 13 7 0 25 30 2.5 8 35 13 7 0 25 30 8 37 13 7 0 25 30	137 025 30 2.5 137 025 30 137 025 30	7 0 25 3 0 2.5 7 0 25 3 0 7.5 7 0 25 3 0	25 30 2.5 25 30 2.5 25 30	5.2 0 0 0		Z Z Z	222	102 102	222	2 2 2 2 2	221 27 217 27 226 27	22.5				6 5 6 5 7 8 6	===			4.07	1.13	84 1-5 1-5 1-5 1-5	0,0,0 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
12/5/98 10 / 303 8.1 / NA 0.24 0.0 28 12/5/98 10 / 0.2 8.1 / NA 0.2 28 12/5/98 8.1 / NA 0.2 27 27	00 24 0 0 24 0 0 24 0 0 26 0 0 11 0 0 25 0 0 11 0 0 25 0 18 0 18 0 0 26 0 20 0 20 0 20 0 20 0 20 0 20 0	8.1/ NA 024 00 8.1/ NA 025 8.18 NA 026	NA 024 00 NA 025 NA 026	0 24 0 0 0 25 0 26	24 0 0 25 26	0		N N N	0 4 5	101	X X X	0	223 28 214 26 221 28		, , , , , , , , , , , , , , , , , , ,	. -	000	69 5 1 6 5 7 8 6 8	2 = 2	~ - ~	0 0 0	4.07	2.7.9	147	• •
Blacktool River, sile "BC"		•	•				•					• •			••	• •	•		• •			•	• •	• •	•
7/20/97 100 2832 7.9 8.5 0.21 12.6 19.3 23 7/20/97 107 3030 7.9 8.5 0.21 12.6 19.3 23 7/20/97 70 107 3030 7.9 8.5 0.21 12.6 19.3 23	2832 7.9 8.5 021 12.6 193 2030 7.9 8.5 021 12.6 193 7.9 8.5 021 12.6 19.3	7.9 8.5 0.21 1.2.6 19.3 7.9 8.5 0.21 1.2.6 19.3 7.9 8.5 0.21 1.2.6 19.3	8.5 0.21 1.2.6 19.3 8.5 0.21 1.2.6 19.3 8.5 0.21 1.2.6 19.3	021 126 193 021 126 193 021 126 193 021 126 193	21 12.6 19.3 21 12.6 19.3 21 12.6 19.3 21 12.6 19.3	6 19 3 6 19 3 19 3		5253	e ~ 9		10 52 (10 62 (10 74 (192 21 194 21 193 21	1 46 <1 1 08 <1 1 29 <1	000	8 8 8 4 4 4	.•.•.•	88 553 88	ູດຊຸດຊຸ		, N N N N N N	2 3 9 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9		106	5.7 11.2 6.7
8/7/97 50 1416 8.1 9.2 0.23 14.8 16.1 26. 8/7/97 52 1472 8.1 9.2 0.23 14.8 16.1 26. 8/7/97 61 1472 8.1 9.2 0.23 14.8 16.1 25	1.416 8.1 9.2 0.23 1.416 8.1 1.61 8.1 1.61 8.1 1.61 1.412 1.41 1.61 1	8.1 9.2 0.23 14.8 16.1 8.1 9.2 0.23 14.8 16.1 8.1 9.2 0.23 14.8 16.1 8.1 9.2 0.23 14.8 16.1	9.2 0.23 14.8 16.1 9.2 0.23 14.8 16.1 9.2 0.23 14.8 16.1	0.23 14.8 16.1 0.23 14.8 16.1 0.23 14.8 16.1	14.8 16.1 14.8 16.1 14.8 16.1	8 8 8 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9		2.2.5	~ - 9		10 10	, 0, 0, 0, 7 7 7 0 0 0	233 26 230 25 248 27	6.23 1 5.58 1 7.77 1	0.0.0	, 5, 9 , 5, 5, 5 , 5, 5 , 5 , 5 , 5 , 5 , 5 ,	. o, o, o,	0 9 9 9 5 9 9 9 6 9	.=.=.	N 0 - N		5 3.93 4 3.93	8 6 6 6 6 7	133	4 4 6
9/14/197 29 821 7.9 NA NA 90 NA 2 9/14/197 33 934 7.9 NA NA 9.0 NA 2 9/14/197 29 821 7.9 NA NA 9.0 NA 2	821 7.9 NA NA 9.0 NA 934 7.9 NA NA 9.0 NA 821 7.9 NA NA 9.0 NA	7 9 NA NA 90 NA 7 9 NA NA 9.0 NA 7 9 NA NA 9.0 NA	NA 14A 9 0 NA NA NA 9 0 NA NA 14A 9 0 NA NA 14A 9 0 NA	NN 0 0 NN NN 0 0 NN NN 0 0 NN	K K K K C C C C C C C C			NNZ	2/6 289 NA		13 5/ 0 2.61 NA	NA 2 2	253 29 245 29 MA NA	9 65 <1 9.67 <1 A NA	E 0 V V	51 E	oož	8 2 8 N 8 6	N 12 12	_o_o_z _ o	NNŻ	8 4 9 7 4 66	NA 0.7	121 127 NA	
11/16/97 15 425 7.8 135-1025 0.4 3.1 2 11/16/97 15 425 7.8 0.25 0.4 3.1 2 11/16/97 7 15 425 7.8 0.25 0.4 3.1 2	15 425 7.8 135.1-0.25 0.4 3.1 15 425 7.8 0.25 0.4 3.1 15 425 7.8 0.25 0.4 3.1	7.8 1351-025 0.4 3.1 7.8 0.25 0.4 3.1 7.8 0.25 0.4 3.1	135 1-0 25 0 4 3.1 0.25 0 4 3.1 0.25 0 4 3.1	0.25 0.4 3.1 0.25 0.0 4 3.1 1.0 0.25 0.0 4 3.1 1.0 0.25 0.0 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 0 0 • • •			0.0.0	28.8 27.9 27.9		14.28 14.32 14.32	0 0 0 0 0 0	226 27 227 27 228 27	7 24 1	9 0 0 9 0 0	1000	0.0.0	6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~~~~	200 • • •	2 2 2	5.21	8 ~ 8 9 ~ 8	<u> </u>	- e +
1/16/98 14 396 7.8 16.0.1.0.25 1.6 2.7	396 7.8 160.10.25 16 2.7 398 7.8 0.25 16 2.7 398 7.8 0.25 16 2.7 398 7.8 0.25 16 2.7	7.8 160.10.25 1.6 2.7 7.8 0.25 1.6 2.7 7.8 0.25 1.6 2.7	16 0 1 0 2 5 1 6 2 7 0 2 5 1 6 2 7 0 2 5 1 6 2 7	0.1.0.25 1.6 2.7 0.25 1.6 2.7 0.25 1.6 2.7	25 1.6 2.7 25 1.6 2.7 25 1.6 2.7	272	~ ~ ~	N N N			15.1	0 0 0	222 27 220 27 220 27	27.23 1 27.16 1 27.46 1	0 0 0	<u></u>	000	8 8 8 5 2 2 1 2	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>		0 9 9 7 9 9	4 4 4 4 4 4 9 4 4	ອຸດີດ ຈຸດີດ ຈຸດີດ	137	
3/8/98 13 3/8/98 13 3/8 NA NA 24 2 <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<>	368 7.85 NA NA 0.4 2.2 481 7.83 NA NA 0.4 2.3 425 7.87 NA 1.4 0.3 2.2	7.85 NA NA 0.4.2.2 1.83 NA NA 0.4.2.2 1.87 NA NA 0.3 2.2 1.87 NA NA 0.3 2.2	NA NA 04 22 NA NA 04 23 NA NA 04 23 NA NA 04 23	2 2 4 0 VN 2 2 4 0 VN 2 2 4 0 VN	0 4 2 2 4 0 0 3 7 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 7 7 E	~ ~ ~	27	e 13	K K Z Z	X X X	0 7 5 5 0 7 5 0 7 5	208 26 215 26 209 26	5 33 <u>6</u> 5 45 61 5 15 7	• • • •		0,0,0	, 2 3 3 , 2 3 ,	2 2 2	0,0,0 n o n	9 9 9 N N N B B B B	89 89 39 E C E	5 6 0 6 6 2	9 1 7 1 1 1	0.2 (BPOL
4/7/98 40.33 1142 8.10 10.8 0.21 6.9 8.0 22 4/7/96 3/2/ 1055 8.08 10.8 0.21 6.9 2.3 4/7/98 8.09 10.8 0.21 6.9 22	1142 810 108 021 69 8.0 1055 8.06 108 021 6.9 809 108 021 6.9	810 108 021 69 8.0 8.08 108 021 6.9 8.09 108 021 6.9	108 021 69 8.0 108 021 6.9 108 021 6.9	8 021 69 80 8 021 69 80 8 021 6.9	21 6.9 8.0 21 6.9 8.0 21 6.9	ວ. ສ ສ	•		a co a	¥ ¥ ¥	5 5 5 5 5 5		186 26 175 25 179 25	- 77 - 96		.∾.÷.∾	000 000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.=		5.2		- 0	130	122

	-					-			-	-	-	-	-							_		_		-	-		-		_	_	-				-					-	_							
5	1/64) (23.1	6.9		5.1			13.4	18.8	17.2						- 0	, 	0,0	, o , o			0.5					9.0		» >_		₹.	0. I 9. I	8. D.	0.6	1.5	9	, e	, r 				0 5				2.3		
ð,) (ug/L	103	8	5	100	8	, ,	6	5	6.			6 6		6	<u>.</u>	• •		60			1		=			871	91	7 -		6	53	<u>.</u>	99	63	.99	.,		2		.8	11	51 [.]			. EC + .	436	135
z	1/6m) (Ψ.	່		8.9				5.7	5 7			, 9 , 9			0			0 0 0		, n			5, C 9, P			2.3	C			•	9.0	8) F)	3.8		4.2					5.2	5.1					8.7	
s.	(mg/L		5.1.5	n 	10.7	1.01			5.03	5 01			0.28		5.0	5 9 9 9 9 9			22			0.80	:	19 0			4.19	1	₹		1 25	2.1	1.76	1.64	1.83	1.94	1. 70				2.56	5.41	2 24			2.75	2.11	5 2
£	(mg/L)		2.0	, ,	5.3			2.6	2.5				, c			້					, n i n	5.5					5.3	5.3			0.8	-	Z.		1.0	0.		<u>, -</u>				2.0					5.6	
Mu	(1/64) (2.2	5 5 5 5	v v	2.2			2.8	2.8				9			່ພ					8 8			0.0			¥.0				• .	1.7	8	.1.7	<u>ہ</u> ہ	~					, † .0	ŧ.				20.6	20.6	20.7
6M) (mg/L		9.5		66			C.9	6	16			+ m		6 01	10.6			10.8					2.1				2				9 67	906	66 6	10.1	10.0					12.4	12.4				171	1 72	11
2	7/6#) (91	8.1	• •	2 0	.	-			8 1						n .n N 0			6 19 V N		9 G 9 G			~ ~				9 ~			11	81.	^		2.0	- - -		N, C			5 e	2.6					4	
×	1/6m) (~	2.0	5.	1.0			9.0	9 0				000	- •	80	5 0 0								8 0 0			9.0	8 0 0		• •		•		0.5	0.5	0.5		0 4 5 c		.		9.0					0.0	
Fe	1/611) (23	91	2.	21	50	R		25	51		2.0	, 2 ,		a,	5. 5.		9	<u>2</u>		:,=	2		a a	ם ָת	۱.	8	æ.	.		°	:	5	.=.	6	. ² .		2	.:	¥.	.2	=	=			68	65	99
3	1/6#1 (6 0 ×	8 Q X	2		8 0 °		< 0.8	×0.8	< 0 B		-			80°			9,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.8	1	9 9 9		, ,	80,	802	B.0.			•	•	0.0	4.0							C 0 2					£.0.3	
3	1,611,11	5	÷.	•	ŗ		.	. 7	Ţ	7		Ţ,			÷.	T . T		÷ .	5 5	•		7		Ţ	57	;	÷	٦,	.		••							•					÷			-	-	-
3	Du) (212			20.7		215	20 9	20.7		505	0 0 2			24.6		26.3	25 9		5 / 2			27.0				574			26 46		23 89	255	25.55	25 11		20.00	C3 0C		34.35	67 FC	35 20				22 01	
æ	1,64) (146	7F1	741	167	165	791	162	160	159		85	165		218	218		214	512		677	226		216	122		221	221	122		181	185	172	189	192	190					273	272	212			146	148	146
Sultate As	1.641		0.3			0			50	6.0						- 0 - 0		0			• •			+ . 0,0	o c	,		0 S				90			90	0.6	. •			٥.	.0	70				0	1 0 2	•
Sulta	CaCO	٩N	ž	2	٩N	ž	Š,	NA	ž	٩N		ž	žŽ		ž	v v			8.0	1	2 2	ž		12.8			٩N	¥2	¥2			5 12		5 54	5 82			20.0	3	1	6.85	6 34				1 99	8.077	
c Tolai Alk	(mgl	AN	ž	¥,	MA	۲į	¥N,	96	82	82		2.1	۲ <u>۵</u>		C6	6 06		- 6- -	<u>5</u>			103		5	5	h	108	103	FOL									•										
Inorganic Carbon	(mg/L)	187	18.6	n #	19.7	5 61		ž	ž	¥2		¥ z	žž		ž	žž		¥.	źź		275			27.4			٩N	¥2	ž			23.5		27.8	27.5	272		1.67			33.6	+ 00				£ £ 2	1 62	
Air Temp	(Cel)	17.0			22 6	•	•	9 01					202			• 90 •		52.0	22.1					911		•	1.0				AN	۲ <u>۷</u>	AN		~						-	ž				•	+	1
Water		8 0			10 0			11 0											12 4		9 01			an a un u				4 2	•		٩N	ž	ž	136.		13.6					3 2	75	15				00	
Con ductivity	(m5/cm)	61.0	61.0			0 20				0.19			2 2 0			120			0 24			120		0 23	0.23			0 25			021	0 21	0.21	0.22	0.22	0.22		c2 0			VN	٧N	NA			0.18	0.17	0 18
ро	(mg/t.)		15 5			5	116	10.8	10.6	10.8		10.5	10.5		6.7	0.0		6	 		 5 d			9.5 9.5	N 0	v n		12.8			0 6	9.0	0.6	8.7	8.7	8.7		و	5	2	7 11	11.2	11.4	•				NA
ž	5m) (strun)	1 93	1 94	26.1			1 92					1.78	22		8 25	8.28		8.26				1.78			21 1				8.02		8 4		9	6.8						n o	8 2	82	~		·	•	1.5	
STREAM STREAM PH		i	0/62	-	683	1895		2176					210/		1813			1065			103			629				481			86211		12290	6609	9203				•		•					•	28	
STREAM S					10.03		-		2 25 66			242.31 6			64.02			1976			26 93 /			N	•			2	•		 a		104	319 9	-				•	•				•		. ~	, N	
	: =						96									86							•	98 22	86			98 , 16	. 86	lite -BD	66C /			•							8/ /0	18 76			EHC.	1 18)	1 16/	1
SAMPLE		4/20/98	4/29/98	4/29/98	5/19/98	2/19/	2/19/	6/9/9	8/5/9	6/5/98		6/29/98	6/29/98		1/20/98	7/20/98		86/11/8	8011118		6/1/6	86/1/6		10/6/98	10/6/98		11/1/1	11/7/98	11/2/1	River. 1	1/3/9	101011	18/6/1	1120/97	7120197	1/20/97		16//19		6///A	26/11/6	16/11/6	9/14/97		tie via	11/18/87	11/18/97	11/18/97
SAMPLE	ĺ	5	HC-2		į	DC-2	c,	ç	00	80.3		۔ ي	80.2	2	Ę.	8C.2		- <u>-</u>	80.3 80.3		<u>.</u>	BC:3		BC-1		2	Ģ	BC-2	53	lackfool	80-1 7/3/97 39	BD-2	BD 3	BD-1	20	BD-3		1-119		ŝ	BD-1	0.2	6-08		tiogum Creek, site "HC"	HC-I	C:5	HC-3
<u>5 2</u>		10	Ξ.	<u> </u>	-	- 1-		8		ац.	_	: الت	26	·		96	-) است	- 32		20	. 00	_	GI (£ 0	u	8	æ	<u> </u>	-	- 62	<u></u>	-		-	8	4	99	0 0	1	8	۵	<u> </u>	_		<u> </u>	Ξ	Ξ

SMPLE	SWPLE	STHEAM	STREAM	Ħ	00	Ċġ	Water	Ĩ	Inorganic	Total	Sultate	1 45	æ	3	3	3	5	×	5	ů	Mn	PZ	s	J.	ũ	Ĩ
NWE	DATE	ROW	ROW ROW			ductivity		Temp	Carbon	Alk																
		(cis)	(1/3)	(units) (mg	/6m) (L) (mS/cm	n) (Cel)	(Cel)	(mg/L)	10m	CaCO,)	(1.61)	(Hg/L) (Hg/L) (Mg/L) (Hg/L)	11-6		(1/04)	(1/64)	(mg/L)	(1/64)	(J/6w)	(1.64)	(mg/L)	(Hg/L) (mg/L) (Hg/L) (mg/L) (mg/L) (mg/L) (mg/L) (hg/L)	(mg/L	(1/6/))	(µ0/L)
								9				ç								1 6 1					96.5	
		•.				0.2 m - 1 -						4 4 5 4														
HC-2	86/9/1		2B	4°2		0 20		60	0.62		2			~		0.0				1.62	• •	و م	2.96	8,	824	э. о
HC:3	1/6/98			7.6		0.20	•	6.0	29.8		101	0.3		ຕ່		ć.0,				1 55	163	4 .5	2.93	8.0	ŧ:	2.7
HC-1	4/29/98	12 83	363	7.40	ž	1.0		-		ž	¥.	9 Q				€0.6					•	₩. ₩.	2.90	7.2	267	\$0.3
HC-2	4/29/98	12 88	365	14.7	ž	11.0				ž	۲N	0.5				<0.8						8.4	2.95	7.2	261	¢0.3
94C-3	4/29/98			6E 1	ž	1.0				¥.	٩N.	, o 5				¢0.8						6	2.96	7.2	265	. × 0.3
HC.H	5/19/98	151		1.35	. 1	010		191	10.7	Ň	Ň	9 5	. 8			6 Q A						, T	2.56	9	226	<0.3
HC-2	5/19/98	8.16	231	1.36	1.6	010				NN	YN.				-	×0.8						4.1	2 49	.9	226	¢0.3
HC-3	86/61/5			3E /	11.7	0 10			9	¥N.	ž	ĉΟ				<0.8			5 8 ,7		·	-	2.53	8.	222	<0.3
HC-I	81519	13.84	392	1.38	119	0.10	7.5	15.0	M	1 5	NA	0 6		66	Ţ	¢0.8	25	9.0		0 4 3	2 5	4 2	1.1	. 8	222	¢0.3
HC-2	6/5/98	15 01	425	7 41	11.8	010				50	۲N	90				<0 B		9.0	5.8			96	1.12	81	227	¢.05
HC-3	6/5/98			7.40	=	0.09				-	¥N.	0 e				≤0.8						0 Ŧ		8.0	226	<0.3
HC:1	7/20/98	8 15	102	8.04	1.7	C1 0	15.9	5 G C Z		61	NN.	8 0	120	15.0		4 O.A			2.7	96 1	8.5	9.1	1.23	86	100	¢0.3
HC-2	7/20/98			8.06	1.1	0.13	15.9	23.3		61	۲N	0.8		14 6	_	€.0.						5 2	1.1		327	¢0.3
F.C.	7/20/98			8 04	2	61.0	15.9	53 3		60	٩N	80	-	15 2	_	8.0						5.9	1.23	8.6	338	, <0 3
HC-1	8/17/98	5 44	69	1 79	8.7	0 17	6 =	6.41	¥Z	08	64	.=	861	691	Ţ	¢0.8	168	6.0	-	6 2		9.4	1.38	96	416	<03
HC-2	8/17/98	2 44	69	18.7	9	0.17	12.0	14.8																		
HC-3	86/11/8	10 6	18	7.80	8	110	12.0	14.7	42																	
		202																				ļ]

<u>Chapter 3:</u> <u>Geochemical dispersion trains of solute and bed sediment trace</u> <u>elements in the Blackfoot River, Montana</u>

I. Abstract

The Blackfoot River (Montana) and its major tributaries were sampled from the headwaters of the basin to near its confluence with the Clark Fork River over the course of 5 days in August, 1998. Streamflow was measured, fine-grained (<63 μ m) streambed sediment was collected, and the dissolved (<0.2 μ m) phase of the surface water was sampled using clean techniques. Water and sediment collected from near the historic Upper Blackfoot Mining Complex contained the highest concentrations of trace metals in the basin, despite the onset of remediation efforts in 1993. Many solute trace metals were at their highest several kilometers downstream from the mining district, where the river flows through an unremediated marsh system that has collected mine wastes in the past. Downstream of the headwaters area, water and bed sediment metal concentrations declined sharply. Comparison of sediment samples with those collected in August, 1989 and August, 1995 do not show evidence of basin-scale long term changes. The area of the proposed McDonald Gold Project near the confluence of the Landers Fork with the Blackfoot River was not contributing anomalous concentrations of naturally-occurring dissolved metals into the basin.

II. Introduction:

One of the current research priorities of the Mineral Resources Program of the United States Geological Survey (USGS) is to evaluate geochemical baselines in watersheds where mineral deposits erode naturally or are exposed by mining and mineral processing. Baseline characterization research is important for understanding how to differentiate between natural and human influences on the geochemistry of surface waters, soils, and sediments. Globally, there is essentially no pre-disturbance data on the solute geochemistry of rivers in watersheds that have been mined. In order to set realistic remediation targets in contaminated areas and to better quantify potential environmental impacts of proposed mining projects, it is necessary to characterize the geochemical distribution of trace elements in both mining impacted and unimpacted rivers. The 215 km long Blackfoot River in western Montana is a tributary to the Clark Fork River, which in turn flows into the Columbia River (Fig. 1). It was chosen as a case study for the USGS's investigations on geochemical baselines because it contains both historic and proposed mines. The Upper Blackfoot Mining Complex is located in the headwaters of the basin, and the area has been undergoing remediation since 1993. The proposed mine (the McDonald Gold Project) is located approximately 25 km downstream from the headwaters near the confluence of the Blackfoot River with the Landers Fork. In the research presented here, we characterize the spatial distribution of the aqueous and bed sediment geochemistry in the Blackfoot River and many of its tributaries over a single, short (5 day) time period and make some comparisons with previous data.

The primary goal of the current study was to examine the downstream dispersion of mining-related contaminants in the water and bed sediments of the Blackfoot River from the historical mining area in the headwaters. Although bed sediment dispersion trains have been typically used for prospecting purposes and for impact characterization of mining (Hawkes, 1976; Helgen and Moore, 1996), dispersion trains in the water column are not commonly evaluated in relation to bed sediment trains, even though they are subject to human and aquatic health standards. Detecting levels of trace metals in water samples is typically more difficult than for bed sediments, due to their lower concentrations and their shorter dispersion train lengths. Within each type of dispersion train, it is of geochemical interest to observe how tributaries affect the mainstem concentrations and to identify which elements are more mobile than others downstream from the source of contamination.

A second goal of the project was to compare the abundance and distribution on selected chemical elements in bed sediment in the basin to that determined in 1989 and 1995 by Moore and other (1991) and Mentes (1997), respectively. The 1989 sampling event occurred prior to the start of the remediation projects in the headwaters region in 1993. In 1995, Menges (1997) found few changes in the trace metal concentrations in the bed sediments in the basin other than in the immediate area of the remediation site. We wanted

to determine if there had been further changes in the geochemistry of bed sediments in the three years since the sampling represented in the Menges (1997) study.

The third purpose of this study is to bring the unmined McDonald Gold ore body area into the geochemical context of the Blackfoot River watershed. This necessitates testing whether or not there is a measurable input of trace metals from the mineralized yet unmined area to the waters and sediments of the Landers Fork and Blackfoot River in the vicinity of the deposit. Based on research on the dispersion trains in water draining unmined yet mineralized areas, naturally elevated concentrations rarely extend more than a few hundred meters from the source (Hoffman and Fletcher, 1972; Runnells and others, 1992; Schmitt and others, 1993; Leybourne and others, 1998). In bed sediments, natural dispersion trains typically do not extend for longer than 20 km from the mineral source (Helgen and Moore, 1996).

Although Moore and others (1991) also examined the bed sediment and solute dispersion trains in the Blackfoot River watershed, their research took place prior to the remediation work in the headwaters. Additionally they did not use "clean" sampling protocols for surface water. In the past decade, several investigations have demonstrated that standard water quality sampling methods have likely caused some degree of contamination to samples taken from both unpolluted and polluted watersheds (Windom and others, 1991; Benoit, 1994; Taylor and Shiller, 1995). The new clean methods to collect, process, and analyze trace element samples currently are replacing the problematic older methods (Horowitz and others, 1994; Hurley and others, 1996; Balough and others, 1998). With the increasing number of watersheds being impacted by mining and other human activities, it is important to build a database of accurate surface water geochemistry measurements in order to adequately monitor and regulate water quality into the future. As a result, an additional and final purpose to this project is to add to the growing database of water quality measurements which are as accurate and reliable as currently possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

III. Site desciption and history

Mining from 1865 to 1953 in the Upper Blackfoot Mining Complex in the headwaters of the Blackfoot River has been linked to water and bed sediment contamination and declines in benthic organisms and fish populations (Spence, 1975; Moore and others, 1991, Menges, 1997). These impacts are not limited to the headwaters, but continue for tens of kilometers downstream. The district is a collection of numerous mines and prospects scattered within the drainages of small tributaries which come together to form the Blackfoot River. The earliest operations consisted of gold placer mining, but later operations led to the building of an on-site smelter, and after the 1920s, activities were expanded to vein mining of Pb, Ag, Au, and Cu (Spence, 1975). Ore and waste rock contain sulfide minerals such as pyrite (FeS₂), galena (PbS), and sphalerite (ZnS), tetrahedrite (Cu₁₂Sb₂S₁₃), bornite (Cu₅FeS₄), chalcopyrite (CuFeS₂), arsenopyrite (FeAsS), as well as quartz (SiO₂) and rhodochrosite ($MnCO_3$) (Pardee and Schrader, 1933). The tailings, waste rock, and acid mine drainage from adits have been the primary sources of contamination to the Blackfoot. A particularly damaging event occurred in 1975, when a tailings dam broke and released approximately 100,000 tons of pyritic mine tailings into the river (Spence, 1975). The collection of mines in the area have been undergoing remediation since 1993 by ASARCO and ARCO. The remediation activities have focussed on plugging adits, excavating, liming, and revegetating waste rock and tailings, and treating acid mine drainage by channeling it into an oxidation pond and a wetland treatment system.

Elsewhere in the basin, little mining has taken place other than some relatively small-scale operations in the Nevada, Elk, and Union Creek basins. Portions of the watershed are used extensively for grazing, irrigation, and logging, but there are no major urban areas or industries. Several of the major tributaries of the Blackfoot River (Landers Fork, Northfork, and Monture Creek) originate in wilderness areas, supplying high quality water and sediment to the mainstem. The Blackfoot River is a Class I trout stream and is

classified by Montana's water quality standards as B-1, indicating it can support all beneficial uses such as drinking water, recreation, and fisheries (MDHES, 1994).

Current mining interests in the watershed are focussed on the McDonald Gold Deposit, near the confluence of the Landers Fork and the Blackfoot River. The proposed mine targets a gold and silver-bearing ore body hosted almost entirely in an lithic-rich rhyolite tuff concealed at the surface by glacial till and alluvium (Schafer and Associates, 1994). The proposed mine would be an open-pit operation with cyanide heap leaching and waste rock disposal situated along the floodplains of the streams. Other studies in the area have shown that the ground water and surface water of the Landers Fork and Blackfoot River are closely connected hydrologically (Nagorski and others, 1998; Nagorski and others, 2001). Notably, sections of both rivers receive perennial inputs of groundwater where they flow adjacent to the ore deposit. Therefore, a major concern is that mining would affect the physical dynamics and geochemical conditions in the adjacent rivers.

IV. Methods

1. Sampling design:

We sampled at fourteen sites along the Blackfoot River (BFR) and fourteen tributaries from August 16 to August 20, 1998 (Fig. 1). We selected sites along the BFR so that the mainstem was sampled above and below the major tributaries. This design resulted in more closely spaced sampling intervals in the upper portion of the basin. We did not sample many of the numerous small headwater tributaries, many of which have been impacted by mining. The most upstream site sampled was below most of the remediated area at the headwaters of the Blackfoot River, which is below the confluence of many of the mining-impacted tributaries. Three more tributaries (Shave Gulch, Paymaster Gulch and Swamp Gulch) not sampled for this project join the Blackfoot between the first and second sampling sites. Paymaster Gulch and Swamp Gulch were subject to remediation treatments in the early 1990s. These and other tributaries not included in this study were omitted because we estimated them to have relatively insignificant flow contributions to the mainstem.

We sampled all the selected tributaries as close to their confluence to the BFR as possible; generally, this was within 1 km of the confluence. For one tributary, Meadow Creek, this resulted in sampling the creek at a location where it flows through the metalscontaminated marsh system. As a result, Meadow Creek was not included in calculations of average tributary concentrations, which were used as estimates of baseline concentrations in the watershed.

We began sampling at the headwaters and progressed downstream, except that we did not sample two sites near the headwaters until the fifth day. Also on the final sampling day, we resampled an upper basin site to check for any changes in river chemistry compared to Day 1 (no measurable changes were found). Considering that the average measured water velocity was 0.5 m/s, the estimated travel time downstream from the headwaters to the confluence (215 km) with the Clark Fork River was 5.2 days. Therefore, we roughly followed a parcel of water as it traveled down the basin. During the study period, weather conditions varied from sunny to partly cloudy, with only trace amounts of precipitation in the watershed (WRCDC, 1999).

2. Streamflow measurement:

We measured streamflow following standard USGS protocol, with the exception that for a few of the small headwater streams that were <2 m in width, we used only 6 instead of the recommended minimum of 10 sampling stations per transect (Rantz and others, 1982). The streamflow measured on the Northfork for this project compared well with the streamflow reported by the real-time USGS gauge data (6.23 ± 0.08 cubic meters per second (m^3/s) vs. $6.40 \pm 0.31 m^3/s$, respectively) (USGS, 1999). We determined our measurement precision by measuring discharge at some sites multiple times. Our measurement error decreased with higher streamflows. Accordingly, we assigned sites

with <0.28 m³/s an error of ± 0.003 m³/s, 0.28-1.84 m³/s an error of ± 0.11 m³/s, and >1.84 m³/s an error of ± 0.17 m³/s. These errors represent the maximum measurement discrepancies obtained by the multiple measurements.

3. Water sampling:

At each site, we measured pH, dissolved oxygen, temperature, and conductivity in situ, using an Orion model 230A meter with a Ross electrode for pH; an Orion model 820 meter for dissolved oxygen; a Hach Conductivity/TDS meter for conductivity; and a Barnant 100 Thermocouple Thermometer Model No. 600-2820 (JKT) for temperature.

At all sites, we collected the water samples by depth and width integration as best as possible. At 12 of the sites, we collected a single water sample; at 13 of the sites we collected 4 samples; and at 3 sites we collected 10 samples. The purpose of collecting multiple samples per site was to define the spatial variability along the sampling transect. Four samples per site were deemed adequate for this estimation, based on previous studies in the upper part of the basin (Nagorski and others, 1998). However, at the 3 sites where we collected 10 samples, we did so to test whether 4 samples could adequately capture variability in differently-sized river sections. Results show insignificant improvement in the within-site variability estimate with the use of 10 versus 4 samples. Error bars on the data from sites with multiple samples represent the standard deviation of the mean concentration of the multiple samples. Error bars at sites with single samples were derived from the average percent relative standard deviation at all sites with multiple samples.

We collected, processed, and filtered samples using clean techniques. These measures included the exclusive use of materials that had undergone extensive acidwashing (2 hours in 50% HCl followed by 24 hours in 1% trace metal grade HNO₃, with a minimum of 3 rinses with Milli-Q deionized water before and after each acid treatment), double-bagging of sample bottles, and filtering of samples under a class 100 laminar flow hood wearing clean nitrile gloves. In the field, two people were required to obtain the

water samples, and both wore nitrile gloves that were changed between each site. One person was designated as "dirty hands" and the other as "clean hands." The former handled the outside bag, whereas only the latter could open the inner bag and take out the sample bottle. The clean hands person opened the sample bottle moments before sampling, emptied out the Milli-Q water which was stored in it, and rinsed the bottle and cap with river water. The sample was then taken by filling the 1-liter LDPE Nalgene sample bottle to capacity. We were careful to always sample upstream of where we had physically disturbed the site by wading and to sample upstream of bridges. We then returned the sample bottle to its double bags and stored it on ice for transport to the laboratory (University of Montana's Murdock Environmental Biogeochemistry Laboratory).

At the laboratory, we filtered the samples under the laminar flow hood within 12 hours of collection. We used Gelman Sciences Serum Acrodisc GF filters (each with a borosilicate glass fiber prefilter layer over a 0.2 μ m polyethersulfone membrane) and discarded the first 50 mL of filtrate in order to reduce the effective pore size of the filter and to rinse the filtration materials (Taylor and Shiller, 1995). Next, we filtered 60 mL of sample into pre-cleaned but non-acid washed amber glass bottles for anion and carbon analysis. We then filtered another 125 mL into ultra-clean LDPE bottles for cation and arsenic analysis. We acidified each of these samples with approximately 200 μ L (to bring the pH to <2) of ultrapure, double distilled from quartz, Optima (Fisher Scientific) HCl. We stored the sample bottles in sealed plastic bags until analysis.

4. Bed sediment sampling:

Following collection of the water samples, we took streambed sediment samples at each site. At half of the sites, we collected 4 samples, and at the other half, we collected 1 sample. At the single-sample sites, we integrated the sample over the same sized area that would have been divided into four sections had the site been selected for multiple samples. Error bars were determined the same way as described for water samples, in which the mean variability found at sites with multiple samples was applied to sites with single samples.

We sampled the sediment by scooping the top 1-2 centimeters of fine-grained bed sediment with a plastic spoon. Sediment availability varied among sites, and hence the area from which sediment was integrated per sample varied from approximately 30-100 meters of streambank length. We strove to collect an equal amount of sample from each channel bank and sieved the sediment with ambient stream water through a 63µm mesh plastic screen set in a plastic funnel casing. After collecting the sieved sediment-water slurries in 250 mL acid washed polypropylene bottles, we stored them on ice for transport to the laboratory.

Upon returning to the laboratory at the end of the field day, we centrifuged the samples at 2000 rpm for 15 minutes, decanted the water, and dried the sediments at 70°C for one day. Next, we crushed each dried sample to a fine powder in the sample bottle with an acid-washed glass rod. We used a microwave aqua-regia digest procedure to prepare the samples for analysis. This method entailed adding 0.5 ml of Milli-Q water, 1.25 ml trace metal grade HNO₃, and 3.75 ml trace metal grade HCl to 0.5 g of sediment sample, microwaving the mixture for 6 minutes on high power (ca. 570 watts), and adding Milli-Q water to bring the cooled solution to 50 grams. We centrifuged the completed digests for 5 minutes at 2500 rpm and transferred the clarified solutions to acid-washed polyethylene bottles for chemical analysis.

5. Laboratory analysis:

We analyzed the trace element and major ion concentrations in the water using a Thermo Jarrel-Ash ICAPES (IRIS) with ultrasonic nebulization (Cetac, U-5000AT+) according to EPA Method 200.15 (Martin and others, 1994). We used the ICAPES with cyclone nebulization according to EPA Method 200.7 (EPA, 1991) for the analysis of sediment digests.

We measured anions on a Dionex Ion Chromatograph (IC) within 48 hours of sample collection according to EPA Method 300.0 (Pfaff, 1993). We acidified remaining sample in the amber bottles with reagent-grade HCl to pH<2 and used it for determination of organic carbon using a Shimadzu Carbon Analyzer according to Standard Method 505A (Franson, 1985) 46 days after sample collection. We determined alkalinity by titration with sulfuric acid to pH 4.5 within 1 day of sample collection.

Following Standard Method 303A, we measured total arsenic using atomic absorption spectroscopy with hydride generation (HGAAS) (Franson, 1985). However, we modified the arsenic reduction method to follow a method developed at our laboratory (Mickey, written communication, 1997). This method calls for the addition of KI and HCl to all standards and samples to achieve final concentrations of 2% KI and 1 M HCl. We made the additions at least 2 hours prior to analysis to allow for complete reduction of oxidized arsenic species. We ran solutions of 0.35% sodium borohydride (stabilized with 0.5% NaOH and 6N HCl) together with the samples through the hydride generator.

6. Quality assurance/ quality control:

We conducted all laboratory analysis under a strict quality control program. At the start of each day's analysis, we calibrated all instruments and checked and corrected (if needed) the calibration at intervals of approximately every 10 samples. The detection limits used, called the Practical Quantifiable Limits (PQL), were defined as the concentrations at which elements could be reproduced within a variability range of approximately 30%.

For water samples, the mean difference between duplicate runs of samples on all instruments was less than 8.5%. Spike recoveries for all analytes measured above detection were between 92-115%. On the ICAPES, USGS water standards T-143 and T-145 run with water sample analysis fell within the reported acceptable range for all elements except for Ba in T-143 and T-145 and Sr in T-145, which were slightly low. External standards run on the HGAAS (USGS T-143 and T-113) and IC (QC SPEX) also fell

within the reported ranges. Accuracy was checked on the HGAAS, Shimadzu, and the IC by running in-house standards, and the mean differences between the standards and the measured concentrations were less than 10%. Lab blanks were below the detection limits on all instruments. Field blanks were mostly below detection, with the exception that Ca (0.02 mg/L), Mg (0.01 mg/L), and Na (0.23 mg/L) were detected in most of the blanks. These levels are low enough not to interfere with concentrations in environmental samples.

During ICAPES analysis of the sediment digests, the mean percent difference between duplicate runs of samples was less than 10%. Mean percent recoveries for spikes of all analytes were between 89-105%. As with the water samples, USGS standards T-143 and T-145 were analyzed using ICAPES during sediment analysis. All elements fell within the reported range, with the exception of mean Ca in T-143, which was 2% higher than the reported acceptable limit. All lab blanks were below detection limits, as were digest blanks, with the exception of trace amounts of Ca, Cr, Fe, Mg, Na, Si, and Ti. These contaminants were also not high enough to interfere with the concentrations in the environmental samples.

7. Dissolved load calculations

Loads were calculated by multiplying the discharge (m^3/s) at each site with the concentration (mg/L or $\mu g/L$) of the solute of interest. The propagated error associated with each load calculation was found using the formula:

Load error =; $\sqrt{B^2 \Delta A^2 + A^2 \Delta B^2}$, (Taylor, 1982) where B= discharge; ΔB = discharge error; A = concentration of solute; ΔA = concentration error (within-site variability)

Loads could not be quantified at sites where solute concentrations were below the specific element's PQL.

8. Average tributary concentrations

The chemical concentrations in the water and bed sediments of the mainstem were compared with the average concentrations in the water and bed sediments of the Blackfoot River tributaries. However, Meadow Creek was not included in the calculations of average tributary concentrations because it was sampled where it flows through the contaminated marshes near the headwaters. Many tributaries had some metal concentrations below the PQL. In these cases, we assigned a value of one-half the PQL to the undetectable concentration and calculated the averages using these assigned values.

V. Results

- 1. Water chemistry:
- a. Mainstem

Dissolved ($<0.2 \mu$ m) Al, Cd, Co, Cu, Mn, Ni, S, SO₄² and Zn peaked in the headwaters area, below the historic mining district, and then declined sharply downstream as cleaner tributaries joined the mainstem (Table 1). Mainstem Al, Cd, Co, Cu, Fe, Mn, and Ni concentrations dropped to average tributary concentrations or fell below detection at distances of 9-19 km from the most upstream site (Fig. 2a). Zinc and SO₄² were more mobile, remaining elevated above average tributary concentrations for 25 km and 37 km, respectively (Fig. 2b,c). Zinc may have been elevated over the average tributary levels for even longer distances, but this cannot be determined due to its drop below its PQL at 25 km downstream from the headwaters. Samples from the uppermost 3 kms of the mainstem had concentrations of Al, Co, Cu, Mn, Ni, S, and SO₄²⁻ that were at least 3 times greater than the mean tributary concentrations. Manganese and Zn were enriched by at least 2 orders of magnitude (exact enrichment factors cannot be calculated due to the undetectable levels lower in the basin).

Aluminum, Co, Cu, Mn, Ni, S, $SO_4^{2^{\circ}}$ and Zn were at their highest levels not at the site closest to the mining district, but at the second site, 2.5 km downstream from the first (Fig. 2a, b, c). This second site is located in the contaminated marsh system and downstream of the input of Pass Creek, Paymaster Creek, and Swamp Gulch. Conductivity, Fe, K, Li, Na, and Si were also higher at the second site, and pH was lower (7.3 compared to 7.7) (Figure 2d).

Other elements did not follow the pattern of declining downstream from a peak at the uppermost couple of sites. For example, Fe did not peak until river km 203.3 (BFR-above Alice Creek), where the BFR emerges from the second of three marshes downstream from the mining district (Figure 2e). Arsenic was below detection ($<0.2 \mu g/L$) at the uppermost site, but its concentration gradually increased to its peak of 2.3 $\mu g/L$ at river km 108.5, below the confluence with Nevada Creek, which had the highest As concentration in the basin samples (Figure 2f). Calcium concentrations almost doubled between the headwaters and river km 153 (Figure 2g). Mainstem Ba, K, Li, Mg, Na, Si, and Sr concentrations fluctuated little downstream, even though tributary concentrations of these elements varied far more widely.

b. Tributaries

Most tributaries were below detection levels for dissolved Al, Cd, Co, Cu, Mn, Ni, and Zn (Table 1). Tributaries with exceptionally high concentrations (relative to the mainstem) of measured solutes include: Hogum Creek, with the highest Fe and Sr detected in all the samples; Meadow and Elk Creeks, which were the only tributaries with detectable Al (>5 μ g/L); and Nevada Creek, with the highest dissolved organic carbon, As, K, Li, Na, and Si of all basin-wide samples. Meadow Creek, sampled where it flows through the contaminated marshes, had the highest tributary concentrations of Cd, Co, Cu, Mn, Ni, S, and Zn, and it was very similar chemically to the Blackfoot River sites immediately above and below their confluence. In the Landers Fork, concentrations of Cd, Co, Cu, Fe, Mn, Ni, and Zn were all below detection. It was the only site in the basin with Mn at levels below detection (<0.3 $\mu g/L$) and was one of only three sites with Fe below detection (<5 $\mu g/L$). Most of the detectable solutes (sulfate, As, K, Li, Na, S, Si, and Sr) were lower than the mean tributary concentrations, while alkalinity, Ba, Ca, and Mg were higher than the mean. All of these detectable elements fell within one standard deviation of the mean concentrations in the watershed tributaries, indicating that the Landers Fork was not geochemically anomalous in the basin.

c. Reactive solutes:

Reactivity of the solutes in the Blackfoot was evaluated by examining whether a drop in solute concentration occurred between two mainstem sites after accounting for tributary contributions and measurement errors. A loss in solute concentrations along losing or steady-streamflow reaches (determined by the streamflow measurements) was assumed to be a product of solutes transferring to the solid phase. Results of this evaluation indicated that SO₄²⁻, Fe, Mn, S, and Zn were dropping out of solution along several reaches of the river. Iron, Mn, and Zn were reactive between river kms 210.0 and 209.8 (above and below Meadow Creek); between kms 203.3 and 193.2 (BFR-above Alice Creek to BFR-above Hogum Creek); and between kms 193.2 and 187.7 (BFR-above Hogum Creek to BFR-above Landers Fork). Iron and Mn also were reactive along the reach above and below Nevada Creek's input (river kms 117.6 to 108.5). Sulfate (and S) were reactive between river kms 203.3 and 193.2. Additionally, alkalinity (as mg/L CaCO₃) and Ba were found to be reactive between the uppermost site (river km 212.5) and the second site (river km 210.0).

Gaining reaches were more difficult to evaluate for reactivity, because a decrease in concentration may have occurred due to dilution by the gained water or by chemical reactions. Hence, for the most part, reactivity could not be determined along gaining

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reaches because groundwater entering the reach was not sampled. However, if the concentration at the downstream site was still lower than predicted assuming the extreme case that the gained water had zero dissolved elements, then we could determine that solutes were coming out of solution along the stretch of the river. According to this evaluation, Cd, Cu, Mn and Zn were reactive along the gaining reach between river km 209.8 and km 203.3, and Fe and Mn were reactive along the gaining reach between river kms 108.5 and 74.4.

d. Evaluation of the tributary load contributions to the BFR:

There was generally a positive, approximately linear relationship between the solute loads of alkalinity, As, $SO_4^{2^-}$, Ba, Ca, K, Li, Mg, Na, Si, and Sr in tributaries of the BFR and the tributary sizes (expressed as discharge) (Figure 3a). Manganese loads had no clear pattern, indicating that its load contributions from tributaries could not be predicted from discharge (Figure 3b). Because no more than two tributaries contained above detection limit levels of Al, Cd, Co, Cr, Cu, Ni, and Zn, no conclusions could be made about the relationship between loads of those metals with tributary sizes. Considering the detectable elements, the Landers Fork was not an unusually large source of solute loads, because its solute loads fall in line with most other tributaries (Fig. 3a and 3c). Because the amount by which it increased the mainstem load of detectable trace metals is not unusually high for its size, a geochemical signal of the McDonald ore body in the area was not discernable in the solute phase. Outliers in the data included Hogum Creek, with high loads of Fe; Clearwater River with low loads of most solutes, especially Fe; and Nevada Creek with anomalously large loads of As, $SO_4^{2^-}$, K, Li, Mn, Na, Si, and Sr (Figure 3c).

2. Bed sediment

a. Mainstem

A sharp downstream decline in the mainstem sediment concentrations is seen for Al, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, S, Si, V, and Zn (Fig. 4a, b). Bed sediment collected immediately below the mining district (river km 212.5) contained the highest concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, S, and Zn of all the mainstem and tributary samples. These elements were elevated over average tributary concentrations by up to 3 orders of magnitude. The furthest downstream site in the basin, at river km 6.0, contained the lowest concentrations of Al, As, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn in the mainstem.

Arsenic, Co, Cu, Fe, Pb, V, and Zn reached average tributary concentrations at river km 117.6, almost 100 km downstream from the mines. Aluminum, Ba, Be, Cd, Mn, Ni, S, reached average tributary concentrations by river km 186.6 (below input of the Landers Fork), about 30 km downstream of the headwaters (Fig. 4c, d).

Yet not all elements were at a maximum in the headwaters. In fact, the sample taken below the Mike Horse Mine contained the lowest concentrations of Be, Li, Na, P, and Ti in the Blackfoot mainstem and the lowest Ba in all the basin samples. Barium, Ca, Cr, K, Li, Mg, Na, P, Sr, and Ti do not show clear downstream spatial trends below the mine (Figure 4e). Calcium and Mg are at their lowest between river kms 210.0 and 186.6 (Figure 4f). Chromium, K, P, Sr, and Ti exhibit relatively little fluctuation; their maximum concentrations in the mainstem are no more than twice their minimum concentrations.

b. Tributaries

Downstream from the headwaters mining complex, the influence of tributaries with atypical concentrations of some elements is seen on the mainstem. For example, Sr concentrations increase below the input of Hogum Creek (river km 187.7) and Nevada Creek (river km 108.5), which have anomalously high Sr levels . A 2 to 4-fold increase in

Mg and Ca in the BFR mainstem occurs below the confluence with the Landers Fork (river km 186.6), which contained the highest Mg and Ca concentrations of the tributaries sampled (Figure 4f).

Meadow Creek, which joins the Blackfoot several kms downstream from the Mike Horse Mine in the marsh area, contained the highest Al, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, S, Si, and Zn of all tributaries sampled. As noted earlier, Meadow Creek was sampled in the marshy area and only 10 m upstream of its confluence with the Blackfoot, and as a result, its high concentrations of solute and sediment metals may be due to influence of the mining- contaminated marsh itself. Monture Creek had the lowest concentrations of Al, As, Cr, Cu, Fe, K, Mg, Na, Ni, Si, Ti, V, and Zn of all the basin samples. No other site contained as many elements which were at minimum basin concentrations. The Hardscrabble Creek sample had the highest Ba and the lowest Co and Li of the tributaries. Hogum Creek contained the highest Be of the tributaries and the highest Cr, P, and Sr of all the basin samples. Arrastra Creek had the highest V and B (together with Elk Creek), the lowest Mn of all the tributaries, and the highest Li concentrations of all the sites in the basin. The highest Na concentration was found in the Nevada Creek sample, and the sample from Elk Creek had the highest K of both mainstem and tributary samples. The Clearwater River, Monture Creek, and Elk Creek were the only sites with As concentrations below detection (<6.5 ppm).

The Landers Fork was anomalous in that it had the highest Mg concentrations of all the tributaries, the highest Ca of all the basin-wide samples, the lowest Ba of all tributaries, and the lowest S concentrations found in all of the basin-wide samples. Still, elemental concentrations in the sediments from the Landers Fork fell within one standard deviation of the mean concentrations of the basin tributaries, with the exception that its Ca and Mg concentrations were higher and its P and S concentrations were lower than the mean ± 1 standard deviation. This result implies that a geochemical signal of the McDonald ore body was not found in the streambed sediments either.

c. Comparisons with 1989 and 1995 bed sediment data

In August 1989, Moore and others (1991) collected bed sediment samples at many of the same sites sampled in this study. In August, 1995, Menges (1997) revisited many of those sites for bed sediment collection, and she digested and analyzed both the 1989 and 1995 samples using the same method used in this study. Hence, direct comparisons among the sets of data can be made.

Generally, the downstream trends of metal concentrations are the same for each of the datasets. In all of them, there is a steep downstream decline in such elements as Al, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn, which are typically at least one order of magnitude higher in the headwaters than in most of the mainstem (Fig. 5). Although there are some site-specific changes, a basin-wide systematic decline in metal concentrations through time is not apparent.

VI. Discussion

I. Water chemistry:

Much of the sharp decline in the solute trace element concentrations may be explained by simple dilution by cleaner tributaries. Yet not all elements exhibited the same proportional declines in trace elements at each stage downstream. The longer distance (from the mining complex) over which above- average tributary concentrations of Zn and $SO_4^{2^2}$ concentrations persisted compared to other solutes can be explained by their higher degree of conservative behavior. Although the load data indicate that both $SO_4^{2^2}$ and Zn were reactive in the upper basin, they were less reactive than elements such as Al, Cu, and Fe. Zinc is generally believed to be more mobile than other trace metals in aqueous systems. Its sorption onto amorphous Fe oxyhydroxides is reportedly favored at higher pH levels than for many other trace metals, (Benjamin and Leckie, 1981; Filipek and others,

1987; Rampe and Runr.ells, 1989). Therefore, it would be expected to remain in the dissolved phase for a greater distance downstream from an acidic source than would the more reactive metals. Other researchers have identified $SO_4^{2^2}$ as a nearly or fully conservative ion in surface water as well (e.g. Bencala and others, 1987; Kimball and others, 1994; Schemel and others, 2000).

The reactivity of many of the trace metals and sulfate in the upper basin is expected in oxygenated, near-neutral pH surface waters. Presumably the metals are being lost from the water column by microbially-mediated precipitation and sorption reactions involving the formation of Fe and Mn oxides and the co-precipitation of other trace metals, metal sulfate formation, and scavenging by organic matter in the river. Such processes have been documented in many other streams impacted by mining contamination (e.g. Rampe and Runnells, 1989; McKnight and Bencala, 1990; Schemel and others, 2000). Additionally, our results are largely consistent with the geochemical patterns observed by Moore and others (1991) in their Blackfoot River water samples.

The increase in concentrations of several dissolved metals and sulfate and the drop in pH at the second mainstem site, a couple of kilometers below the mining district, are likely still due to the impacts from the mining. This sampling site (at river km 210.0) is in a marsh area, the first part of a system of three marshes that extend from river km 211.6 to 196.6. The marshes have collected wastes from the past mine operations, including those released during the tailings dam break in 1975 (Spence, 1975; Moore and others, 1991.) The site is also downstream of Paymaster Creek and Swamp Gulch, which are small, mining-impacted tributaries which were not sampled in this study. Although these creeks have undergone remediation, it is possible that they still supplied the metals and acidity measured in the samples at river km 210.0.

The mining-contaminated marshes might have been the source for the higher metals at the second site due to geochemical processes in the fine-grained organic-rich marsh sediments. Geochemical partitioning within saturated sediments is strongly controlled by

pH and reduction-oxidation reactions, and other studies have suggested that marshes, wetlands, hyporheic sediments, and reservoir sediments can therefore influence the geochemistry of receiving waters (Shotyk, 1988, Moore, 1994; Shiller, 1997; Nagorski and Moore, 1999). In reduced zones, many metals are favored to reside in the solute phase over the particulate phase, largely due to the instability of Fe- and Mn- oxides and hydroxides, which in turn can release co-precipitated metals when dissolved (Stumm and Morgan, 1996). Although no groundwater was sampled in this study, it is reasonable to speculate that it had higher metal concentration than did the oxygenated overlying surface waters. Hence, the increase in filterable metals in the surface water may be a result of hydrologic flushing of the more highly concentrated marsh ground water into the stream channel.

2. Bed sediment

The high concentrations of metals in the bed sediments at the uppermost sites indicate that the headwater mining district is still the major source of contaminants to the sediments of the Blackfoot River. The relatively low-metal sediment concentrations in upper-basin tributaries explain the sharp downstream decline in metal concentrations in the upper basin. Because Pass Creek, Alice Creek, Hardscrabble Creek, and the Landers Fork contain many-fold lower concentrations of elements such as As, Cd, Cu, Fe, Mn, Ni, Pb, S, and Zn, the mixing of their sediments with those in the mainstem lead to the observed declines in metal concentrations. (Table 2 and Fig. 5).

In her 1995 samples, Menges (1997) calculated that the bed sediment concentrations of Al, As, Cd, Fe, Mn, Ni, and Pb reached average tributary levels or fell below detection at 25 km from the headwaters, and that Cu and Zn reached average tributary concentrations at 80 and 140 km from the headwaters, respectively. Results from this project are somewhat different, with As, Fe, and Pb persisting over average tributary values for longer distances, up to 97 km downstream from the mining district. However,

these discrepancies are most likely merely a product of differences in the amount and type of data used to calculate the average tributary values in the two studies. Our study included a larger number of tributaries than did the study by Menges (1997). Although both projects compared mainstem concentrations to average concentrations in uncontaminated tributaries, the use of additional data in our calculation lowered the levels for the sediment concentrations. Importantly, Monture Creek was not sampled by Menges (1997), while we found this tributary to contain the lowest basin-wide concentrations of Al, As, Cr, Cu, Fe, K, Mg, Na, Ni, Si, Ti, V, and Zn. The lack of differences in the mainstem bed sediment concentrations in 1989, 1995, and 1998 further support this explanation for differences in attainment of average tributary levels as being a difference in the data used in the average tributary calculations rather than true changes in the sediment concentrations and distributions over time. These results underscore the importance of having large sample sizes, using consistent sampling designs, and employing consistent sample preparation and analytical protocols in long-term observational studies.

3. Differences between trends in water and sediment dispersion trains:

Although in general the metal concentrations in both the water and bed sediment were highest in the headwaters region, their patterns did not correspond exactly. While the bed sediment metal concentrations exhibited predictable dispersion curves according to sediment dilution models (Hawkes, 1976; Helgen and Moore, 1996), the solute trends were more complicated. Their pattern irregularities were likely due to their higher sensitivity to tributary contributions, in-stream chemical reactions, ground water inputs, and other physical and chemical factors in the watershed.

An example of the differences in sediment and water patterns is the As distributions. Although the lowest solute As concentrations in the basin were in the headwaters, sediment concentrations of As were highest there, indicating strong partitioning into the solid phase for As or major differences in As sources (Fig. 2d and 4a).

Additionally, solute Fe was relatively low at the headwater sites and peaked at river km 203, while sediment Fe was highest at the top of the basin and declined by over an order of magnitude downstream (Fig. 2c and 4b.) Comparison of sediment with solute distributions of other metals also show that many solute peaks were offset by one or two sites downstream of the mines. This trend may indicate that some solutes near the remediated mining district were being precipitated out of the water column, but the downstream marshes or unsampled tributaries resupplied the solute phase with some trace elements.

VII. Summary and Conclusions

Bed sediment and water quality analysis of samples taken from the Blackfoot River and its major tributaries show a downstream decline in trace metal concentrations from the general vicinity of the historic Upper Blackfoot Mining Complex. Most solute contaminants extended for 20 km downstream of the mining complex, while elevated metal concentrations in sediments extended for up to 100 km below the headwaters. Sediment metal concentrations follow patterns predicted by simple dilution models (Helgen and Moore, 1996), while solute trends were more complicated. Solute SO_4^{2-} , Cd, Cu, Fe, Mn, and Zn were identified as behaving non-conservatively along portions of the river, mostly in the headwaters area.

Comparison of the trends in water and sediment dispersion trains reveal that many solute peaks occurred one or two sites further downstream from the headwaters than the sediment samples, which showed peak concentrations mostly at the furthest upstream site. This indicates that solute concentrations near the remediated mining district might have been partially transferred to the solid phase, but the contaminated marshes or unsampled tributaries resupplied the dissolved phase with some trace metals.

The Landers Fork had no anomalously high solute concentrations or loads, at least for the detectable elements, and only a few anomalously high sediment concentrations despite its proximity to an unmined ore body. No basin-wide changes in sediment concentrations of metals were found compared to those collected in 1989 and 1995 despite the onset of remediation work in the headwaters in 1993. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn were still at least one order of magnitude higher in the headwaters than in most of the mainstem.

		0	He	00	Alk	Sulfate 0	Ora C	As 1			-		1			-	L	Ma	L	Na		s l s	+	-	اچ
	River Km	5	(units)	(mort)	1	(ma/l)	(ma/L)	(na/r) ((1/8/1)	(1/6n)	(mar.) ()	(hg/L) (((hg/L) (J	(1) (1)	(hg/L) (mg/L)	-	(hg/L) (m	~	(h0/L) (m	3	(hg/L) (m	(mg/L) (mg	(mg/L) (µg/L	-	(hg/L)
POL		+-			-	2.00	0	0.2	÷		+	+	H	+	t	Ц	0.5 0	\square	0.3 0		2	02	1 1	┞╌┨	0.2
BLACKFOOT MAINSTEM												,													
BF bel. Mike Horse Mine	212.5	0.0	2 69	8.12	98	48.2	<u>.</u>	0 2	(<2)	-	25.14		(c.0>	3.6			5	N		_		_			2
BF ab. Meadow	210.0	0 16	7.27	873	46	88.8	0	(<0 2)	2	-	26.85	-	60	-		5		22	244.8	_		_		-	1.7
BF bel. Meadow	209.8	0.21	751	871	51	87.4	0	(<0 2)	ē				_			6	2.0 13.	5	5						1.2
BF ab. Alice Cr.	203.3	0.44	7.86	8.50	78	44.3	1.4	02	(<5)			0 0		6.0		2	5			-					4 2
BF ab. Hogum	193.2	0.93	8 18	9 43	104	13.3	1.2	4 0	(<5)		_	-	_			8	2		2.5 2.5	_					1.6
BF ab. Landers Fork	187.7	1.09	8.27	9.71	101	12.8	1.3		(<5)		26.04 (-	_			8	9	10.80		_				-	9.0
BF bel. Landers Fork	186.6	3.09	8 25	9.83	131	6.6	(12)	05	(<5)	232	_	(<0.5)	_	(<0 8)	2	9	2.4 11	1.38 0		1.36 <	(<u><</u> 2)	1.95 4.	4.97 8	≥) 69	(<0.2)
BF at Lincoln	175.9	1.53	8.11	7.78	120	6.6	(12)		(<5)		35.51 (-	_		_		9	4	11.49	_	-	_	-		-	0.2)
BF at Ogden	153.3	5.87	831	961	170	5.7	(iv)	:	(<5)		42.84 (-					8	4	2 32 3	3	-	-			-	0.2)
BF ab. Nevada	117.6	6.78	838	96.6	144	5.5	(ī>)	15	(<5)				(<0.5) (<		_	6	S	12.58 7	9	_	_			-	0 2)
BF bel. Nevada	108.5	7 43	8.46	9.75	143	9.3	1.9	23	(<5)		4101					<u>.</u>		21 6		_	_			-	0.2)
BF bel. Monture Cr.	74.4	17.77	8 35	96.6	130	6.6	4	13	(<5)		_	6		_		6	_	12.46 1				_		-	0.2)
BF at Whitaker Bridge	30.3	25.60	874	11 27	121	60	0	1.2	(<5)	_	_		_			- 6	11 61	1 80	_	2.61 (<				-	0.2)
BF at Marco	6	20.59	8.77	10 25	123	6.0	17	-	(<5)			<0.5) (<0.5) (-		_	6	11 61	1.82 1		_		73 4.	16 8	-	(<0.2)
																									٢
I KIBU I AKIES										ŀ	h	ŀ	Ļ		┝	\mathbf{F}				\mathbf{F}	ŀ	- 1		ł	ŀ
Pass Creek	210.8	00	7.90	8 50	80	43	<u>;</u>	60	(<\$)		_	-	6	_		-		_	_	_		-	_	-	* .0
Meadow Cr.	209.8	0.05	7.53	8.24	45	85.6	1.0	5	9			1.9					-							-	6.0
Alice Creek	198.1	0.43	8.17	8.42	110	2.8	1.3	40	(<5)		27.36								2.3		-	_		-	0 2)
Hardscrabble Cr.	196.6	0.03	8 40	8.52	155	1.6	41	10	(<5)	-		(<0.5)	(<0.5) (<	(<0.8)		1.7 6	6.4 14	14.59		3.26 (<	_			-	0.2)
Hogum Creek	192.4	0.08	7 80	8.68	80	4.9	25	:	(<5)		_	-		_				_		_				-	0.2)
Landers Fork	187.2	2.04	831	9.71	132	2.9	ŝ	05	(<5)	_		_	_	_	-		-	-	(<0.3) 0			-		-	0.2)
Arrastra Creek	131.1	0.66	8.27	10.47	8	2.7	(i >)	04	(<5)		24 52 (_	(<0 8)	_	-	-					_	_	_	0.2)
Nevada Creek	109.1	1 19	8 50	9.43	158	28.0	7.1	19	(<5)								-	_		_			_	<u> </u>	0.2)
Northfork	87.1	6.23	837	10 28	135	40	(iv)	0.7	(<5)			_		_		-		_	0 9 0	_				-	0.2)
Monture Creek	74.8	1.84	8.65	10 46	16	3.8	13	0.8	(<5)					(0 8)		-	-							÷	0.2)
Clearwater	55.8	1.81	8.65	9.57	68	18	33	4.0	(<5)		16.97 (_	_	_				_	9	_		_		-	0.2)
Elk Creek	46.5	0.13	8 55	9.97	149	10.6	3.1	10	~								_				_			-	0.2)
Gold Creek	21.8	0.87	8.66	9.66	109	2.1	1.2	94	(<5)	68	30.24 (-	(<0.5)	<) (5.0>)	<0.8)	(<5) (<5)	4	_	8.02 0	0.6	>) [30] ((<2) 0.	0.55 4.	4.46 3	<u>3</u> 2	(<0.2)
Union Creek	20.8	0.34	8.47	9 68	195	7.1	3.7	4	(<2)	-	ㅋ	1	<0.5)	-	8	8	4	_	-	_	-	-	_	7	20
(All water samples were below detection for: nitrite (<0.05 mg/L), nitrate (<0.05 mg/L), phosphate (<0.05 mg/L), F (<0.05 mg/L), CI (<2 mg/L), Ag (<1 µg/L), Be (<0.05 µg/L), Cr (<1 µg/L)	low detection	on for n	itrite (<0).05 mg/L	.), nitrati	s (<0.05	ց.(.Դքա	hosphat	ie (<0.05	5 mg/L).	F (<0.05	5 mg/L).	CI (<2 n	1g/L), Ag	1(<1 µg/l	.). Be (<	0.05 µg	יר). כר (<1 µg/L)	<i></i>					

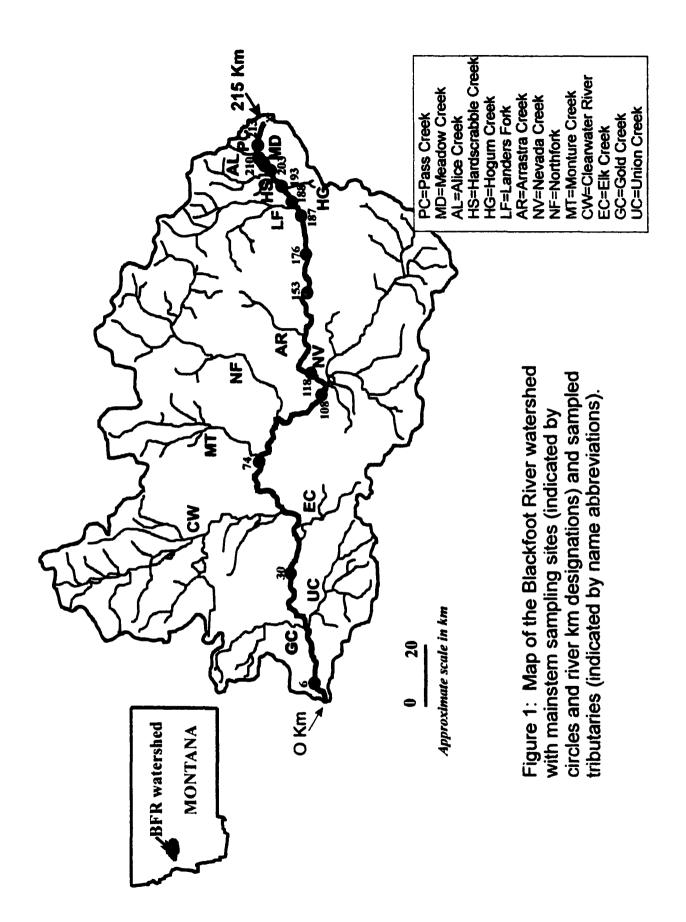

Mo (<1 μ g/L), Pb (<6 μ g/L), and V (<2 μ g/L).

Table 1. Mean concentrations of filtered (<0.2 μ m) water samples.

	River Km	N	As	8	89	2	Ca		L	-					┝─	_	L_	L	٩.	_	s	ũ	õ	F	>	۲.
70r		0	65	05	2	01			1 0	05 05		15	50 05	050	05 05	5 2	0	15		9		2	05	05	-	05
BLACKFOOT MAINSTEN		_		_	-										_			_	_			_		1		
orse Mine	2125	_		(<0.5)	÷	0 1) 1	11814	115	69	56 21	2193 146	48178	832	40 67	6732 21318	18 (<2)	24	4 648	802	8702 3	2 38342	4033	245	2	8	17377
BF ab Meadow	2100	18856	83.4	13.3	493 1	30	4309	32				1963					2 <mark>-</mark> 3		_		3540			120	5	5723
BF bel Meadow	209.8	16681	73.4			21	4494	8				619				71 (2)	4				2571			160	8	4106
BF ab Alice Cr	203 3	10170	2556	(< 0 5) E		14	4319	9				048				01 (<2)	ň				5 432			5	42	2273
BF ab Hogum	193 2	6307	16.8	36		60	5066	e				1557			_	70 (<2)	ú.				97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			142	88	859
BF ab Landers Fork	187.7	6757	16.6	15 4		10	5969	m				0340			_	01((<2)	4		· .	_	9 470			ň	8	656
BF bei Landers Fork	186.6	5180	15.8	28		0.8 2		(1				5284		-		91 (<2)	4			_	1 265			ğ	23	229
BF at Lincoln	1759	6482	171	50		102						6684	_	-		00 (<2)		_			0 251			ŝ	28	99
BF at Ogden Mtn Rd	153.3	5556	12.9		\$	06 2		=				104		-		20 (<2)	4				3 269			Ξ	20	6
BF ab. Nevada	1176	4300	110	34	204 8	061	(1>) 0686					6690	_	-		57 (<2)	4				3 266			103	16	S
BF bel Nevada	108.5	5311	112	17	~	072		5				040		Ξ.		11 (<2)	ف				390			121	15	2
ō	74.4	4184	113	28	2868	071		=				142B				17 (<2)	Ś				2 556			3	5	4
BF at Whitaker Bridge	503	5374	97	52	346 7	072		-				1321		-	_	17)(<2)	~			_	1 735			116	4	6
	9	3437	82		194 1	051			4	Ĺ		H39			_	30 (<2)	4				9 425		- 1	8	4	2
TRIBUTARIES							-	-																		
Pass Creek	210.8	11305	28.6	42 6	6107		5575	-	1	L	ľ	L	L				4	L	L	L		162	17.8	25	28	187
eek	209.8	21246		(< 0.5)	4145 14		4682	42		-	-						2				-	6829	191	113	R	9079
	-	4225	6	22		10		:	6				_			65 (<2)	'n			-		338	141	133	2	42
ê Çî	1966	5618	66	34													ف 		_			271	44 1	63	6	8
Hogum Creek	192.4	7853	16.0	38							-						<i>б</i> і					453	1558	ğ	33	59
Landers Fork	187.2	4906	13 4	36	2			5				_					4					275	230	8	1	ő
Arrastra Creek	1311	10711	14.2	46	8												ф 					286	\$	ğ	47	8
Nevada Creek	1 09 1	4693	72	26	4							_	_				Ξ.					203	757	114	=	8
	87.1	6175	29 6	43.2	295 1			-					_	_			~					445	202	121	3	4
Monture Creek	748		(< 8 5)		10			"					_	_			~	_				172	12.0	57	\$	22
Cleanvaler	55.8	7173	(< 9.5)	234	466.2			=	4	_			_				4				•	225	114	73	~	ମ
	46.5	10064	(< 9 2)	46	544	08]1		-			-	-					ē	_		٤		605		339	IE	37
	218		ć6 5)		290.8	80	(1>) 8988		2	66	15 B	B650	193	110 36	3600	442	2 37	65	920	ž	835	198	10.8	8	9	2
Union Creek	20.8	8463	67	2613	216	Ξ		1	8							<u>80152</u>)					2	229	19.9	120	121	20

Table 2. Mean concentrations of bed sediment (<63µm) samples.

81

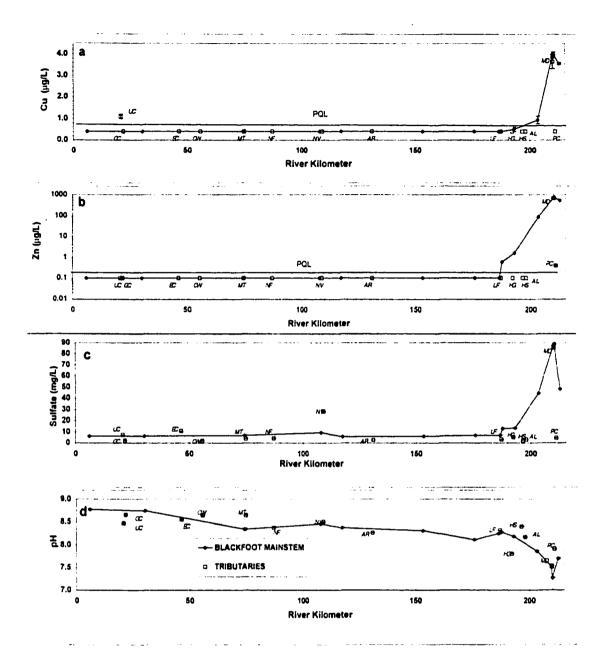
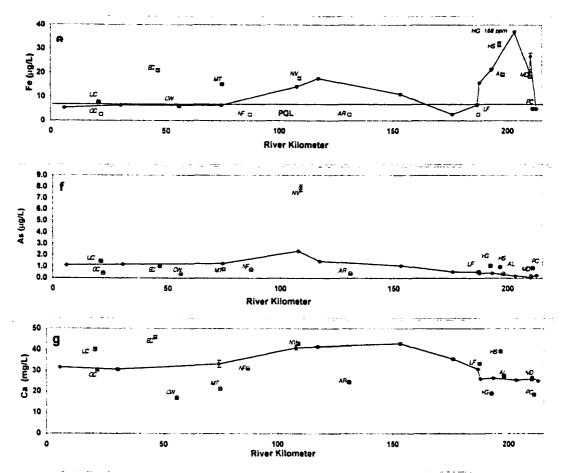



Figure 2 a-d: River kilometer vs. surface water a) Cu b) Zn (note log scale), c) sulfate, and d) pH Solid, connected diamonds represent the mainstem samples; the squares represent tributary samples. Tributaries are identified by their abbreviations (listed in Figure 1).

, . **v**

Figure 2 e-g: River kilometer vs. surface water e) Fe, f) As, and g) Ca Solid, connected diamonds represent the mainstem samples; the squares represent tributary samples. Tributaries with outlying concentrations are identified by their abbreviations (listed in Figure 1) to the left of their datapoints.

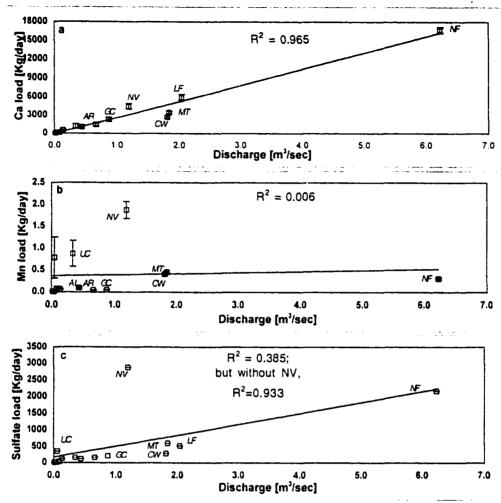


Figure 3: Tributary discharge vs. a) tributary Ca load, b) tributary Mn load, and c) tributary sulfate load

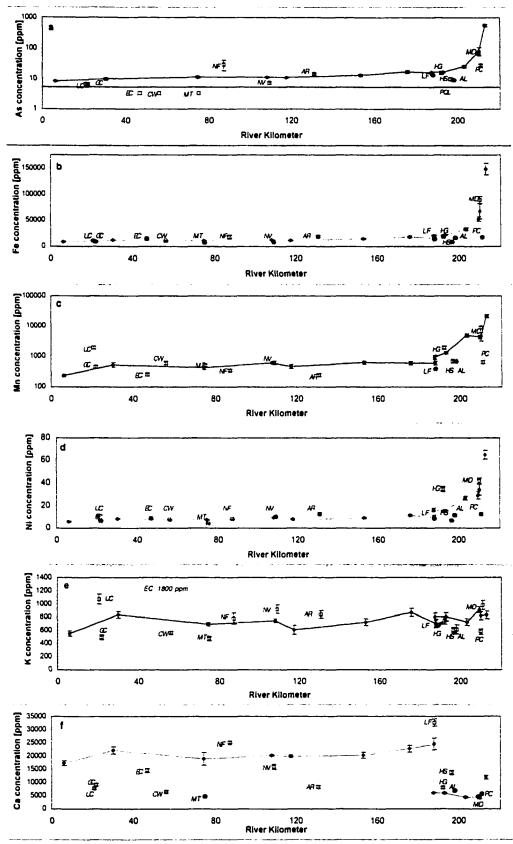


Figure 4: River Km vs. Bed sediment concentrations of a) As, b) Fe, c) Mn, d) Ni, e) K, and t) Ca (Solid triangles represent mainstem samples: squares represent tributaries)

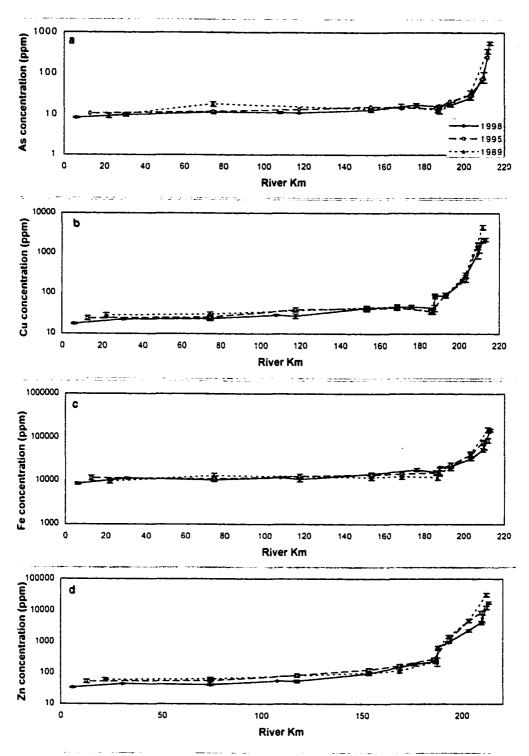


Figure 5: River Km vs mainstem bed sediment a) As, b) Cu. c) Fe, and d) Zn in 1989 (Moore et al., 1991), 1995 (Menges, 1997), and 1998 (this study).

	Sample	River Ka				- 2	2 0	Air Alk temp mo	ê S			R	8.	3	B	S	° U	e.	¥		N.	- N	Z		s		n2
			Ì	1			4 4 4					1	212	10.52	1905	14051	140 81	5			235	12	201	6	2	14 55	ļ
Pass Creak	PLANA B			1 8		017 12	22 22	2 2	, ,					2		-		,	;			:					
	016/96				000	2																				1	
	B-16/98	212	1 97.0		12 6	7 R	22 0[1	8 2		6	3	Į.	<u>e</u>	2 : X :	26	(ç ç ç	9	.	8	2:	9 1 2 1	160.2		2	= :	89	
	B/16/96							5			5	ē	1										39				
	86/01/R					-	7	88			33	23	29				22				1	5051	8				
		210	101	Ì.		1	8	-	1	L	1	12	101		12	-	4	8	=		14 10	12	121		10		
	NPACKA	•							0.00		5	•	102		5	9.0	Ę	2	60		29 (1	242.1	5		505		
_	8/20/66			8	2	0.00	129	4	58.7		10	=	101		20	•	•	18	2		H 23	247.4	4 15		32		
	870/98						- 1		9.65	- 1	ā	2	3		2	0	37	2	80		28	2249	M		80		
	82056		1 65 7				2	•	856		5	¢	3		5	90	27	2	8		1351	1 181	3 82		8		
	BUTORB		-																								
	9/20/5/8		1																	1							
	A16/98		2 60 0	1			3	51 45		•	80	(ç.)	187	641 P	(\$0.)	15051	(0.0)	(ç, †	•	20	4 12	(; 0.)		ş	3	20	*
	6/16/96		. ~	8	. 8	11 60 0	1	,							•												
	0/10/00		~				4			;																	
	AVANA	1004	7 10						C / B	-	10	-	101		11	10	96	2	60	20	1343	206 6	355				
										•	ē	9	1		8	90		5	00	20	13 42	207.4	3 62				
						3 3		3				::										210.4	171				
				-		R		R :				2,	5					:;									
								8	6		5	n	3		2			: ;									
	816/98							8	478	0	00	2	101				•	3			8		8				
	00/01/0							5	6/2	-	ā	=	102		8	90	5	<u>e</u>	60	20	8	2092	105				
	&16/94							3	6/3	-	0	=	107		2	60	Ę	5	8	20	13 69	2162	3 85				
	RUTBUOR							3	6 / 8	-	10	=	101 1		51	/ 0	Ę	2	60	20	13 52	5002	176				
								2	6/8	2	10	=	101	12	8	/ 0	85	2	60	20	94 (1	2055	3 49	•	38 52	62 23	673
								12			ē	: :	5		: :	2		8		91	12 79	195.0				-	
,			,							•		:,	2 5				; ;	2				į	2				
÷	850028		~				2	0		-	5	•	-		2	8	5	0	7	2	63.51		5				
	85/0/28		~	\$	3	C1 0C0	132		58																		
	820438			ł	- 1	- [Ì			12	ł			
	010/00		15.5/ 7				3	۰		-	20	(; <u>,</u>)	R .	2	8	(c 0,-)	-	R	2			2	<u>s</u> :		32		
	8/16/58		~				5	2		-	20	[;-]	102	35.68	66	[0]	=	R .				ŝ	2				
	016/90		~				ŝ	8		2	3	(ş×)	ş	29.5	80	(< 0 >)	2	2	0		12 59	62.6	181		22 51		
BR ab Alce-1	01000								54	-	20	(5)	261	24 63	150-1	15021	(10 8)	2	20	-	12	11	3	3	12 79	5	243
	0/16/96		15 79 8	2	842 0	0.24 1/	8	50 105		-	•	(ç,)	Ā	27	05	(; 0,)	(6 0 5)	2	20		91 11	53	5		101		
	BV16498			g		2	•	115	_																		
	B16/38			ę		2	-																				
	BV 10/94			1		1				ļ								:					,		1		9
ā	B/10/98					5	2	CC1 80	-		2	ŝ	ŝ		ŝ		ĩ	7	-			•	5				
5	EV 10/1/6					2				Ţ																	
	9/16/96																										
	8/17/08	1932	33.65 8	9 10	550	0 24 11	119 18	•				(s>)	240	20 92	1-05)	(<0.5)	80	2	60		8	20	8	5	2		
-	8417796						-	_				(; ·)	2	P.	(ş 02)	(50%)	(20%)	2	80		- -	25	1 92	2	8	2	
-	Bu17/54						8 - 8		461	=	•	(ç,)	ñ	27 22 22	(î (i (i	(5 0,-)	(4 0 B)	2	80	22		25	5	ŝ.	285		108 20
	BU1766			1				i		ł		1221	a	29.52	15051	1501	1991	2	80		171	22	607		181		
	BUT 150				866	017 11						(<>)	801	18 93	(505)	(505)		68	60		6 Q	6 <u>0</u>	4 57	ŝ	2	3	
DUP	86/21/18																										
Heaum Cr. DUP	B17/56		1 100	1 80		17 120		~																			
			50 6																	İ							ł
	8/17/94	1877		8 26 9	0 0/ 6	0 23 12	12.3 22				40	(s>)	214		(5 02)	(5 02)	(80-)	2	80		19 64	01	2 35		2		
	8017178							_			2	[52]	211		(505)	(\$02)	(80%)	9	80		10 64	2	9 7		22		
	10/21/0							_			10	1	211		592)	15051	(40.8)	5	90		10 76	10	2 27		20		
			•										TIC		9	15 0 5 1	10.0	16	0.0		10 75	=	2 13		976		
				L	ł.	,										1905		1971		ĺ	1.511	10.1	101		940		ł
			8			::	•••				1		1					1	50		1 69	1692	0 78		10		
			•			2 :					3												101				
						2	n	•			5	2	2		2	1		2									
	8v11/96							2	87	6	6	ĉ,	2					į.	53	::		2		23			
	8417/98							2			60	ŝ	ŝ		(0 0 0	(c 0,-)	(20)	î,	2				3				
	BV17/98							135			60	ŝ	55		(² 05)	(50-)		ē	\$0		2 1	5	\$				
	00/11/0							001			50	(;;)	247		(s 0 5)	(\$ 0 \$)	(80%)	(55)	50		1 68	(ç o y	\$ 0		180		
	8/17/5-B							521			6	(ç.)	ŝ		(ç 0;)	(\$ 0,2)	(0 0))	ŝ	05		2	ŝ	~ 0		8		
	AUT PAR							011			80																
										1		12.51	245	1144	15.0.51	10.050	140.81	1451	50	22	11 69		28.0		880		
								2		5			2					Į	12	: 2	11 70		0 75	ŝ	0 85	3 66 55	(<0.2)
					L	,	Ł	-		2	ľ	1991			19 0 1	15 077	NO.	•		1	11 37	50	1 14	1.2)	22	-	
								• •		5	;	Ī	1					•	;			;		-	•		
						2,2		• •		; 2	90		014	ş	10.041	10.00	140.01	~	*0	2.4	11 M	50	127	1421	181		Ī
	00/1/0		•			ę						2									2	;					
									9	0.0	•	2	12		150-1	1502		-	:	~	66 11	\$0	₽	5	8	15 83	(2 0 2)

date Km (cfs) pH 0.0 e1/766 153 207/16 153 207/16 173 e1/766 153 207/16 153 207/16 173 10 e1/766 153 207/16 153 207/16 10 73 e1/766 153 207/16 153 207/16 10 73 e1/766 153 207/16 133 207/16 10 73 e1/766 153 207/16 133 207/16 133 901 e1/769 153 207/16 133 207/16 133 901 e1/769 117.0 20 20 20 20 10 100 e1/1690 117.0 20 <th>Condiampie Condiampie</th> <th>32 32<</th> <th>9</th> <th>NPOC As 0 00 00 00 00 00 00 00 00 00 00 00 00 0</th> <th>< 2 2 2 2 22232 2³ 2³ 2³ 2³ 2³</th> <th></th> <th>C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th></th> <th></th> <th></th> <th>₽ ŷ</th> <th>X 0 0 000000000 00000</th> <th></th> <th>9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th></th> <th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th>≠ <u>5</u> 5 55555 55555555555555555555555555</th> <th>55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th> <th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th><u>v = 5 5 555556 55555888888888888888888888</u></th> <th>5 <u>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 </u></th>	Condiampie Condiampie	32 32<	9	NPOC As 0 00 00 00 00 00 00 00 00 00 00 00 00 0	< 2 2 2 2 22232 2 ³ 2 ³ 2 ³ 2 ³ 2 ³		C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				₽ ŷ	X 0 0 000000000 00000		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	≠ <u>5</u> 5 55555 55555555555555555555555555	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>v = 5 5 555556 55555888888888888888888888</u>	5 <u>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 </u>
Ultical Japace Journal Journal <thjournal< th=""> <thjournal< th=""> <thjo< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>· · · · · · · · · · · · · · · · · · ·</th><th></th><th>· · · · · · · · · · · · · · · · · · ·</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th><u> </u></th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th></th><th></th><th></th></thjo<></thjournal<></thjournal<>													· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
PUTORS B.12 T/T PUTORS 153.1 20714 8.12 7/T PUTORS 153.1 20714 8.12 10.04 PUTORS 153.1 20714 8.12 10.04 PUTORS 123.0 12.0 951 10.04 PUTORS 117.6 123.0 10.04 10.04 PUTORS 117.6 123.0 10.04 10.04 PUTORS 117.6 123.0 8.0 9.11 10.04 PUTORS 117.6 23.0 8.0 9.11 10.07 PUTORS 117.6 23.0 8.10 9.11 10.07 PUTORS 111.6 23.0 4.1 0 9.1 10.07 PUTORS 111.00 110.0 110.0 10.0 10.0 10.0 10.0 PUTORS 111.00 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <th></th> <th>• • • • • • • • • • • • • • • • • • •</th> <th>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</th> <th>222 252 252 252 252 252 252 252 252 252</th> <th>2000 2000 2000 2000 2000 2000 2000 200</th> <th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th><u> </u></th> <th>22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th></th> <th></th> <th></th>												• • • • • • • • • • • • • • • • • • •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	222 252 252 252 252 252 252 252 252 252	2000 2000 2000 2000 2000 2000 2000 200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Ref (1) Ref (1) <t< th=""><th></th><th></th><th></th><th>- 0 0 000000000000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>* ** *********************************</th><th>1732 1732 1732 1732 1732 1732 1732 1732</th><th></th><th>2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>ହ ବ ହେତ୍ୟତ ହେତ୍ୟତ୍ତ୍ତ୍ୟତ ହତ</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th></th><th></th><th></th></t<>				- 0 0 000000000000									* ** *********************************	1732 1732 1732 1732 1732 1732 1732 1732		2. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ହ ବ ହେତ୍ୟତ ହେତ୍ୟତ୍ତ୍ତ୍ୟତ ହତ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Lithing Lithing <thlithing< th=""> <thlithing< th=""> <thl< th=""><th></th><th></th><th></th><th>0 0 000000 000</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>······································</th><th>9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>20000000000000000000000000000000000000</th><th>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>ା ବି ବିବିତ୍ରରେ ବିବିତ୍ରର୍ବରେ ବିବି</th><th>8 1232 8 123 8 123 8 123 8 123 8 123 8 123 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12</th><th></th><th></th><th></th></thl<></thlithing<></thlithing<>				0 0 000000 000								4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	······································	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20000000000000000000000000000000000000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ା ବି ବିବିତ୍ରରେ ବିବିତ୍ରର୍ବରେ ବିବି	8 1232 8 123 8 123 8 123 8 123 8 123 8 123 8 12 8 12 8 12 8 12 8 12 8 12 8 12 8 12			
NURSIS 23 X 9 49 UNSIS 23 X 0 43 UNSIS 24 43 0 44 UNSIS 24 43 0 44 UNSIS 24 43 0 44 UNSIS 24 44 0 10 UNSIS 24 44 0 10 UNSIS 24 44 0 10 UNSIS 24 45 0 11 UNSIS 24 45 0 10 UNSIS 0 10 <th></th> <th></th> <th></th> <th>0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>12453 25000<u>0</u>100 = 28865 50</th> <th>984 1258 1258 1258 1259 1259 1259 1259 1259 1259 1259 1259</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th><u>e</u> <u>eeede</u> <u>eeedeeede</u> ee</th> <th>8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th></th> <th></th> <th></th>				0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									12453 25000 <u>0</u> 100 = 28865 50	984 1258 1258 1258 1259 1259 1259 1259 1259 1259 1259 1259	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>e</u> <u>eeede</u> <u>eeedeeede</u> ee	8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
R/10566 73 J0 6 27 10 46 R/10566 117.6 234 26 8 27 964 R/10566 117.6 234 26 8 77 964 R/10566 41 40 7 8 74 9 73 R/10566 41 40 7 8 74 9 73 R/10566 41 40 8 73 9 74 9 74 R/10566 20 26 8 41 9 73 10 23 R/10566 20 26 8 41 9 73 10 23 R/10566 20 26 8 24 10 23 9 43 10 23 R/10566 20 26 8 24 9 26 9 43 10 23 R/10566 21 21 23 20 26 9 24 9 34 10 23 R/10566 21 21 23 21 23 21 23 21 23													······································	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	হ হততবৃত তততবৃতততবৃত হত	8 52338 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Lithes Lithes <thlithes< th=""> <thlithes< th=""> <thlithes< th="" th<=""><th></th><th></th><th></th><th> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>00000 00000000000000000000000000000000</th><th>1245 226555724 = = <u>1</u>2255</th><th>228 228 228 228 228 228 228 238 238 238</th><th></th><th>22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>ବ୍ରସ୍ଥ ବ୍ରସ୍ଥ୍ୟର୍ବ୍ୟ ହେ</th><th>22222222222222 22222222222222222222222</th><th></th><th></th><th></th></thlithes<></thlithes<></thlithes<>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								00000 00000000000000000000000000000000	1245 226555724 = = <u>1</u> 2255	228 228 228 228 228 228 228 238 238 238		22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ବ୍ରସ୍ଥ ବ୍ରସ୍ଥ୍ୟର୍ବ୍ୟ ହେ	22222222222222 22222222222222222222222			
011000 011100 011100 011100 011000 011000 011100 011100 0110000 011100 01100 011100 0110000 0111000 011100 011100 0110000 0111000 0111000 0111000 0110000 011000 0111000 0111000 0110000 011000 0111000 0111000 0110000 011000 011000 011000 0110000 011000 011000 011000 0110000 011000 011000 011000 0110000 011000 011000 011000 0110000 011000 011000 011000 0110000 011000 011000 011000 0110000 011000 01000 01000 0110000 011000 01000 01000 0110000 011000 01000 01000 0110000 011000 01000 01000 0110000 01000 010000													1244	2268 2228 2228 2228 2259 2259 238 238 238 238 238 238 238 238 238 238		100 100 100 100 100 100 100 100 100 100	ହେତ୍ରର ଜନ୍ଦରହତ୍ରର ହେ	2222 2222 2222 2222 2222 2222 2222 2			
R. (1956) B. (1956) <thb. (1956)<="" th=""> <thb. (1056)<="" th=""> <thb< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>92.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 94.5 95.5</th><th></th><th>8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>হতরত তততরততরত হত</th><th>2322 237777777 2322 2377777777 2322 23777777777</th><th></th><th></th><th></th></thb<></thb.></thb.>														92.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5 94.5 95.5		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	হতরত তততরততরত হত	2322 237777777 2322 2377777777 2322 23777777777			
R1000 R10 R100 R10 R11 R11<													1255 22555555 1 1 1 1 1 1 1 1 1 1 1 1 1	927 928 928 928 928 928 928 928 928 928 928		201 10 10 10 10 10 10 10 10 10 10 10 10 1	ହେତ ଜନ୍ଦରହେତ୍ରର ହେ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Billion Control Control <t< th=""><th>776 776 776 777 777 772 752 752 752 752 752 752 752</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1 2 2 2 2 2 2 2 2 1 2 4 4 1 1 1 1 1 1 1</th><th>000 1200 1200 1200 1200 1200 1200 1200</th><th></th><th>1988 888 1988 1988 1988 1988 1988 1988</th><th><u>e essesses</u> se</th><th>8 2 2 3 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th></th><th></th><th></th></t<>	776 776 776 777 777 772 752 752 752 752 752 752 752												1 2 2 2 2 2 2 2 2 1 2 4 4 1 1 1 1 1 1 1	000 1200 1200 1200 1200 1200 1200 1200		1988 888 1988 1988 1988 1988 1988 1988	<u>e essesses</u> se	8 2 2 3 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Lines 1.10 0.53 0.51 0.51 Lines 23230 641 9.1 Lines 2323 641 9.1 Lines 23230 641 9.1 Lines 2323 641 9.1 Lines 2323 641 9.1 Lines 2323 641 9.1 Lines 233 649 649 649 Lines 14.4 62735 641 643 Lines 14.4 62735 641 643 Lines 14.4 62735 641 643 Lines 14.4 62735 644 643 Lines 14.4 62735 644 643 Lines 6445 644	776 771 771 772 752 753 753 753 753 753 753 753 753 753 753			~~~~~									222222222	12 00 12 00 13 00 10 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	୍ ଟେହସ୍ଟେହସ୍ଟ ବହ	22222222222222222222222222222222222222			
Citable Citable <t< th=""><th>1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>·····</th><th>1445 80000 8477</th><th>200 200 200 200 200 200 200 200 200 200</th><th>~ # - ~ S J O O O # # # #</th><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>ବ୍ରବ୍ରବ୍ରସ୍ଥ ବହ</th><th>2222222222 222222222222222222222222222</th><th></th><th></th><th></th></t<>	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1											·····	1445 80000 8477	200 200 200 200 200 200 200 200 200 200	~ # - ~ S J O O O # # # #	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ବ୍ରବ୍ରବ୍ରସ୍ଥ ବହ	2222222222 222222222222222222222222222			
Prised 262 20 644 9 78 Prised 2010 201 714 Prised 2122 85 3.17 10.26 Prised 212 86 23.2 3.17 10.26 Prised 212 89 2.14 22.13 9.17 10.26 Prised 212 89 7.4.4 227 3.19 9.13 Prised 7.4.4 227 3.19 9.11 10.26 Prised 7.4.4 227 3.19 9.11 10.26 Prised 7.4.4 227 3.19 9.11 10.26 Prised 11.9.06 7.4.4 2.13 9.10 10.41 10.41 Prised 11.9.06 11.26 11.26 9.26 9.26 10.41 10.41 10.41 10.41 10.41 10.41 10.41	171 170 175 155 155 155 155 155 155 155 155 155								1 1 1 1			6	100000 x 2000	12 00 12 00 10 1	~ \$ - ~ \$ J \$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1983 888 899 999 999 999 999 999 999 999	ଟ୍ଟ୍ଟ୍ଟ୍ଟ୍ଟ୍ଟ୍ ବ୍ଟ	2 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Dirboso Dirboso <thdirbosoo< th=""> <t< th=""><th>170 152 153 153 153 153 153 153 153 153 153 153</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1 1 1</th><th></th><th></th><th>000000000000000000000000000000000000000</th><th></th><th></th><th>00000 00000 00000000000000000000000000</th><th>277 888 887 77 77 77 77 77 77 77 77 77 77</th><th>22325536 25</th><th></th><th></th><th></th><th>*******</th></t<></thdirbosoo<>	170 152 153 153 153 153 153 153 153 153 153 153								1 1 1			000000000000000000000000000000000000000			00000 00000 00000000000000000000000000	277 888 887 77 77 77 77 77 77 77 77 77 77	22325536 25				*******
Direction 0.11 0.17 0.11 0.17 0.17 0.16 Prison Prison 272.85 0.17 10.26 Prison Prison 2.32.85 0.17 10.26 Prison Prison 2.32.85 0.17 10.26 Prison Prison 0.23 0.24 0.24 Prison Prison 0.25 0.24 0.24 Prison Prison 0.23 0.24 0.24 Prison Prison 0.25 0.24 0.24 Prison Prison Prison 0.24 0.24 Prison Prison Prison Prison 0.24 0.24 Prison Prison Prison Priso	153 153 153 153 153 153 153 153 153 153								1 1 1			00000 00000	·····			222 282 887 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6966666 55				**************************************
BULEAR 272.35 5.1 10.28 PURSON 22.45 6.31 10.28 PURSON 22.45 6.31 10.28 PURSON 2.66 6.51 10.47 PURSON 2.68 6.51 10.47 PURSON 2.68 6.51 10.43 PURSON 2.68 6.51 10.43 PURSON 2.68 6.51 10.43 PURSON 2.69 6.53 10.43 PURSON 2.69 6.53 10.43 PURSON 2.69 6.53 10.43 PURSON 7.4 27.33 8.09 9.93 PURSON 7.4 27.33 8.00 9.93 PURSON 7.4 27.33 8.00 9.93 PURSON 7.4 27.33 8.00 9.94 PURSON 7.4 27.33 8.00 9.94 PURSON 8.19 9.05 9.94 9.94 PURSON	151 152 152 153 153 153 153 153 153 153 153 153 153								1 1 1			-0000 00000				188888 <u>8</u> 4 45	বেরহরবর বর				
Unitade J22 85 0, J1 10, 70 Unitade 272 85 0, J1 10, 70 Unitade 271 85 0, 31 10, 26 Unitade 0, 10, 10 0, 31 10, 32 Unitade 0, 10, 10 0, 31 10, 32 Unitade 0, 10, 41 0, 31 10, 43 Unitade 0, 10, 41 0, 32 0, 43 Unitade 0, 10, 41 0, 10, 41 0, 43 Unitade 14, 4 0, 27 0, 43 Unitade 14, 4 0, 11, 43 0, 44 Unitade 14, 4 0, 12 0, 44 Unitade 14, 4 0, 12 0, 44 Unitade 14, 4 0, 13 0, 45 Unitade 0, 13 0, 13	222 222 222 222 222 222 222 222 222 222 222 222								1 1 1			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2222 2222			88884 **	<u> 2229</u> 2 22				88888 88888 88888 8
0.110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.2110-00 0.2110-00 0.2110-00 0.2110-00 0.110-00 0.110-00 0.110-00 0.1110-00 0.1110-00 0.1110-00 0.110-00 0.110-00 0.110-00 0.1110-00 0.1110-00 0.1110-00 0.1110-00 0.1110-00 0.1110-00 0.1110-00 0.1110-00 0.1110-00	22 12 12 12 12 12 12 12 12 12 12 12 12 1								1			0000 00000 0000 00000		8011 8011 8011 8011 8011 8011 8011 8011	1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888 <mark>8 75</mark>		2225 28953			8888 88888 -
United United <thunited< th=""> <thunited< th=""> <thunited< th="" th<=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1 1</th><th></th><th></th><th>000000000000000000000000000000000000000</th><th>124 124 124 124 124 124 124 124 124 124</th><th></th><th></th><th>88<u>8</u>8 25</th><th>ত্র্র হর</th><th></th><th></th><th></th><th></th></thunited<></thunited<></thunited<>									1 1			000000000000000000000000000000000000000	124 124 124 124 124 124 124 124 124 124			88 <u>8</u> 8 25	ত্র্র হর				
Euleria Control Control <t< th=""><th>222 222 222 222 222 2</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1 ł</th><th>1</th><th></th><th></th><th>2000</th><th>22.25</th><th>98 C A C A</th><th></th><th>83 35</th><th><u>96 55</u></th><th></th><th></th><th></th><th></th></t<>	222 222 222 222 222 2							1 ł	1			2000	22.25	98 C A C A		83 35	<u>96 55</u>				
Brister Color Color Color Prister Color Color Color	22 22 22 22 22 22 22 22 22 22 22 22 22			1				1 1	1			0 000000	5 8585	2 X X		a 35	<u>ē</u> 22				6 66666
01990 02180 02180 02191 011999 011999 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011999 011 011 011 011998 011 011 011 011 011999 011 011 011 011 011 011998 0119 011 011 011 011 011 011999 0119 011 011 <t< th=""><th>220 004 230 004</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>800000</th><th>57 5 5 F</th><th>¥ 6</th><th></th><th>145</th><th>22</th><th>- 8 9 5 A</th><th></th><th></th><th>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</th></t<>	220 004 230 004											800000	57 5 5 F	¥ 6		145	22	- 8 9 5 A			~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
011600 011600 0117 011600 011600 011 011600 74.4 07.13 0.0 011900 74.4 07.13 0.0 011900 74.4 07.13 0.0 011900 011900 0.0 0.0 011900 011900 0.0 0.0 011900 011900 0.0 0.0 011900 02.3 0.0 0.0 011900 02.3 0.0 0.0 011900 02.3 0.0 0.0 011900 02.3 0.0 0.0 011900 02.3 0.0 0.0 011900 02.4 0.0 0.0 011900 02.4 0.0 0.0 011900 02.4 0.0 0.0 011900 02.4 0.0 0.0 011900 02.4 0.0 0.0 011900 02.4 0.0 0.0 01900	220 00 00 00 00 00 00 00 00 00 00 00 00							1				8 8 8 6 6 8	2222	¥ 7; 8 8		57	22	28253	i		66666 99999
B11949 74.4 62.733 6.30 9.31 B11949 811949 9.34 9.44 9.44 B11949 811949 9.34 9.46 9.45 B11949 82.44 6.15 9.46 9.54 B11949 804.01 7.12 11.20 9.46 B11949 804.01 7.12 11.20 9.16 9.17 9.16 B11949 804.01 7.12 11.20 9.16 9.15 11.20 9.16 11.20 B11949 804.01 8.15 9.15 9.17 9.16 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 </th <th>22 22 23</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ł.</th> <th></th> <th></th> <th></th> <th>8968</th> <th>***</th> <th>2C 6</th> <th></th> <th>121</th> <th>[2]</th> <th>8 9 3 8</th> <th></th> <th></th> <th>6 6 6 6 6 6 6 6 6</th>	22 22 23							ł.				8968	***	2C 6		121	[2]	8 9 3 8			6 6 6 6 6 6 6 6 6
BURDO 74.4 527.33 420 931 P 201940 74.4 527.33 420 931 P 201940 74.4 527.33 420 931 P 201940 73.4 527.33 420 931 P 201940 73.4 627.33 130 946 P 201940 73.4 627.33 130 946 P 201940 73.91 812.9 946 945 P 19460 60.404 812.9 946 945 945 P 19460 804.01 812.1 125 1125 1125 P 19460 804.01 817.1 1125	122 22						1	ł			-	968	25					22	1		2000 2000
0 0	22 22 23 23 4 22 0 0 2 2 4	-						ł.		(e o,)		0.0	17	609		116	5	1 57			2 S
0 0.1944 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1 0.1 0 0.1014 0.1<	22 22 23 23 23 23 23 23 23 23 23 23 23 2	882	99	-	_					(e o,)	4	60		10.96	11	2 10	(25)	193		_	03
P (1990) P (1999) P (199	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	82 is			-									22	5	253	?	ł			
0.119-06 0.29 0.119-06 0.29 0.119-06 0.29 0.119-06 0.29 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.46 0.119-06 0.47 0.119-06 0.17 0.199-06 0.46 0.199-06 0.16 0.199-06 0.17 0.199-06 0.16 0.199-06 0.17 0.199-06 0.16 0.199-07 0.17 0.199-08 0.19 0.199-08 0.19 0.199-08 0.19 0.199-08 0.19 0.199-08 0.19 0.199-08 0.19 0.199-08 0.19 0.199-08	200	10			-									,					,		
0.11999 0.2 0.2 0.4 0.11994 0.2 0.4 0.5 0.4 0.1994 0.2 0.4 0.5 0.4 0.1994 0.4 0.4 0.5 0.4 0.1994 0.4 0.4 0.5 0.4 0.1994 0.4 0.4 0.5 0.5 0.5 0.1994 0.4 0.4 0.4 0.5 0.5 0.5 0.1994 0.4 0.4 0.7 1.1 0.7	220			15 13		5	3	(9)	(; 0;) (; 0;)		•	5	2	2 2 2	-	22	<u>S</u>	8	5	<u> </u>	000
0.119640 0.2 M 0.0 M 0.0 M 0.119640 0.4 M 0.0 M 0.0 M 0.119640 0.4 M 0.0 M 0.0 M 0.119640 0.4 M 0.0 M 0.1 M 0.119640 0.4 M 0.1 M 0.1 M 0.119640 0.4 M 0.1 M 0.1 M 0.119640 0.4 M 0.1 M 0.1 M 0.119640 0.1 M 0.1 M 0.1 M 0.19940 0.1 M 0.1 M 0.1 M		į.	T		1		2	1				-					3		202		5
EVIDAGE PAGE 2010 EVIDAGE PAGE 2010 EVIDAGE POLOT 1120 EVIDAGE POLOT 1													::			5 3	29				Ì
0.11250 0.112500 0.112500 0.112500 0.112500 0.112500 0.112500 0.112500 0.112500 0.112500 0.112500 0.11250000000000000000000000000000000000		2 5										5		5		1	20	33	20		16
0.11490 00.401 872 1130 0.1460 00.401 872 1130 0.1460 01960 015 1175 0.1460 01960 015 1175 0.1460 0196		3 <										1	; =	3		91	12	54.0			ŝ
0.11 25 0 10 20 20 20 20 20 20 20 20 20 20 20 20 20						ľ			Ł					9							ċ
0.11.00 0.11.00 0.11.00 0.11.00 0.11.00 0.11.00 0.10.00 0.000 0.000 0.000000			- 4			•						• J 5 C			: :	5 5	29	2			
1119-00 119-000 119-000		2					ł				•		•	1		1	-				ľ
		611	60	0 12	1451		2916		0,1	140.81	9	50	40	12 07	51	2 59	(2)	1 7.8	77		021
		120					28.71		2	10.0	-	60	2	11 15	-	247	ğ	101	85		20
		1		5			55 02		2	9	•	60	9	11 83	51	2 59	ŝ	2	Ţ		02
		Q11				.,	0910		2		-	-	Ţ	12 28	-	2 70	2	182	1.1		
		2		5 12			Ŕ		9	(Q)	~	60	9	11 65	51	256	ŝ	2-	4 42		2 0
		12		2			64 IC		2	1002	-	60	Ę	12 11		272	2	8	4 55		20
		911		21 7	-		28.42			0.0	~	80	97	10 91	-	247	ŝ	191	199		50
		120	19	0 12			10.10			1-0 81	~	60	ę	12.07	11	275	2	1 78	4 52	5	0.2)
		5		2			10.00		2	19 0-1	•	60	ę	11 75	-	265	ŝ	27	4 40		0.2)
607	1		_	12 04	1,51	8	¥2%	1,051	3	(00)	(2)	5	=	B 02	80	- 20	ç	0 55	4 45		(2 02)
400 199 MADE MADOLA	17.4																				
8/2/1/54 A 64 9 64																					
BU1996 11 85 8 49 9 66	161	24.0 195	5 17	37 14	5,1	8	10.04	1:03)	15051	=	•	-	~	6293	882	21	G	2-	1 79	28	(202)
845 865	002																				
613498 613498 6 49 5 68	20.0																				
80	12 111 000	7 6 149	106 3	01	7 066	2	10 94	(502)	(50>)	(\$0.5)	2	26	14.2	9 35	55	839	Q	582	18:01	118	(202)
B/20/446 B 26 9 56																					
85.0 95.0 95.0 9 55	111																				
740(7) 879 1025	18.2	25.5 125	63	25 11	lç, I	561	1616	159) 	(\$0>)	(8 Q>)	•	60		11 75	15	271	õ	22	4 0%	2	(2 0 2)
1 DUP &/20/56 8 77 10 26	820	122																į			į
0 76 10 23	80	5	3	= :	ŝ	2	3	(22)	(\$05)	(e 0, -)	<u>ن</u> ه	6 0	2	21		50	<u>7</u>	2	\$	32	
-Marco Fiais-1 Br20/98		2					5								2 :		5	2 2	5		

Blacktoort Basenwade	Project Al	Sedim	uent da	La ny-si Bla		vrected Ca				d digeri Gu	_		L	Mg	Mn	Mo	Na	Ni	P	Pb	5	<u>Si</u>	Sn	81	Ti	v	Zn
Samoa Name NetM	5807	253.9	(40 9	149	1-9 11	11814	115	63		2192.6	140178	832	40	6732	21316	(* 2)	24	54.8	805	9702	38342	4033	(<3)	24.5	719	36	17377
Pasa Greek	11305	20.6	42	811	12	5575		17		54 0	17026		14.4	4895		(*Z)	49	123		\$ 7		231	1432	17.0	154	20	187
Porcuping Guilth	12047	36 .4	46	910	14	5360	3	2	10	1170	21426	1100	99	3735	384.5	(*2)	46	126	974	76	220.	74	(=2)	24.9	159	37	290
BF ats Meadow-1 BF ats Meadow-2	23967 18990	500 647	(*0 5) 14 0	491 505	32	4730 4546	41 29		•	2142.4 1207.0	79470 60660	585 902	48	2391 3963	5685 4356	(*2) 31	8 K	at 2 31 8	1148 134	1912	2802 3634	7582 2546	4 (<3)	200 201	97 8 138	3	6671 5975
	20069 12398	147 4 31 5	32.4	364 612	41		54	\$2	6	1906 1 396 9	98235 29088	154	41	2911	7484	20 24	35	425 220	11 90 750	1671 271		7380 507	(=3)	22.0	51 8 163		8916 1331
Mean Sid dev	18856	83.4 49	13 14	493 102	30 7	4309	22		2	1414 785	65863 29488	822 127	70 3	3246 730	4610 2972	21	36 J	34 4 10	1007 207	1263 775	3540 1963	4811 3477	(43)	18.0	120 37	51 17	5723 3145
NASO	25	50	104	21	20	20	#1	11	27	¥		12	12	22	64		•	20	21	57	55	/1		21	<u>n</u>	22	×
Meadow Gr BF bel Meadow 1		725	1+0 \$r 9 2	414	1.0 1)	496 3565		90 34	,	1880 4 623 4	42102		58 51	2790	3755	(*2) (*2)	27	419	1001	2001 904	4 958	6429 1443	(< 3)	191_	112	ж 55	3176
BF being meedow-2 BF bi Meedow-3		72.2 74.4	30	809 580	22	5249	21	2 1	10 9	658 3 1104 9	51325	977	86	4015	3647	(*2) 21		26 a 30 7	1216	904 1296	2132	1315	(=)) (=))	21 9	172	60 53	3571
BF tr Meadow-4 BF tr Meadow-4	23405	77 8 78 2	1=0 50	732	22	4508			10 9	1897 8	63252		95 87	3639 3452	6006 5979	24	41	397 398	1168	1641	3480	3510 3555	4	21 0	138 139	54 54	5548 5532
BF bi Maadow-4-avg BF below Meadow d-5	24117	780 747		716	24	4587 4078	21	26	9 10	1625 1 724 0	641 89 45991	917	91 86	3501 3523	5958 3107	21	38 40	397 266	1179 1150	1624 813	3474 2168	3532 1089	4 (= 3)	207	139 171	54 57	5540 3431
	16681 5112	734 d	58	665	0	4494 681	10	30 11 27	,	967 2 506	51943 8655 17	10	81 2	3518 533	4271	(~2)	40	29 2 7	11 49 52	1124	2571 1048	1985 1028	(< 3)	194 J	160	56 3	4106
BF ab Akce	10170	255	92 (+0 5)	19	14	<u>15</u> 4319	37 91	7	15	256.6	32048	10	0.0	75 3447	4901	1420	22 25	25	3	29 145	432	52 651	(=]]	159	154	42	29
Alice Ci-1	3436	91	1.05	304	07	6556	/47)		5	50.4	13906		37	2827	666 7	(\$7)	3	83	913	13	215	38.4	(* 7)	123	111	133	40
	3443 3351	95 90	(=0.5) 2.4	317 300	07 08	6716 6672		6	7	49 0 48 8	14099	444 476	38	2059 3095	704 0 687 4	(=2)	31 31	95 96	936 909	14 13	219 217	387 377	(=]) (=]]	12 5	115	ม ม	41
Alce Cr . 2	3410 4033	92	10 (*05)	307 337	0.0	6835 6 7024	(= 1) (= 1)	9		49 7 50 5	14003 15141	534	37 49 -	2648 3215	585 3 672 5	(=2)	28 C 34	37	934 5 896	13	236	375 5 303	(*)) (*))	125	113	נג גר	\$ \$
Alca Cr-2 d' dup Alca Cr-2 avg Alca Cr-3	3898 3956 4850	73	(+0 5) (+0 9)	314 326 351	140 1) 04 09	6399 6811 7115	(*1) (*1)	8		480	13855 14498 17568	571	55	3400	6796	(*2) (*2)	29 31	107	758 827	15	245	281 232	(=3) (=3)	145	108	28	55
Arce Cr. J Mean	4675	8.8 9 1	22 54 22	309	08	6253 6754	(*1) (*1) (*1)	10	10	52 1 53 3 51 1	17000	772	67	3774	655 5 638 7 664 8	(*2) (*2)	50 36 37	12 1 12 4 11 2	C88 006	15	206	331 362 338	(=]] (=]]	151	138	12 12	43
Skt Dev NRSD	664 10	;	23 104		22	361	["	; ;;		2	1820	145	54 2 27	466 12	277 2	(42)	10 27	, . , .	80 7		228 18	35	(C >)	141	28	5	42 2 4
	3610	99	2.9	786	09	13602	1.071	2	10	430	7822	598	43	2796	673.7	(*2)	64	15	204	2	1279	271	1-12	44.1	931	9	4
8H-1	5297 5050	161	(=0 5) (=0 5)	490	08	5476 5943	4	11 12		836 747	21097	723	58	2864	1499	(*2)	47 40	149		52	419 413	543 571	(= 3)	24.9	125	38 38	1034
BH-1 avg	5178 5913	163	(*0 5) 8 1	491	08	6210 5995	4	12	1	79 1	21061	665	56 57 66	2017	1518	(=2) (=2) (=3)	43	156 152 143		52 36	416 317	567 460	(4) (4) (4)	229	124 125 142	2 R 2	1033
81-3	7423	169	1=0 50 8 0	904 531	09	5091 6168	3	13	10	94 9 82 6	22043	915	\$0 87	3337 3719	1185	(* 2) (* 2)	53	148	1255	40	535 436	422	(= 3) (= 1)	23.2	148	30	947 1046
Mean Skt Dev	6307 1004	17	36 40	493	05	5856	ž	13		81	21557	802 130	75	3278 371	1270	(*2)	52	15.2	1320	43	426	49	(<3)	24.6	142	39	959 108
SPS0	10	<u>ir</u>	110	7	12	9	19	2	15	12	5	18	21	"	12		<u></u>	5	<u> </u>	15	21	ii Ii		į		10	11
Hopum Cr.	7853	160				7903	1-17	_		22.9	17996		90	3821	1992		96		1525	17	446	452	10.2	155.8		23	59
NC 2 NC 2 NC-2 leb dup	5625 5878 5591	165	(+0 S) (+0 S) (+0 S) (+0 S)	548 195 392	10	60R0 6404 5869	2	14	10	929 782 754	20242 19706 19268		88 87 67	1051 2997 2950	904 0 547 1 554 8	(* 2) (* 2) (* 2)	45	149	1235	40	450 452 437	382 536	(= 3) (= 3)	34	130 118 118	37 31 30	754 508 504
BC 21ab dup BC-2 Avg	5891	149	1000	385	09	6014 6015	2	13		756	19482	715	68 67	3006	557 2 553 0	(*2) (*2) (*3)	40 45	128	1283	35	447	545	(= J) (= J)	29.8 29.4 25.5	120	11	508
8C 3 8C 4	6578 8054	166	54	505		5651	2 3 3	12	in	834	19110	877	83	1390 3763	963.7	1420	49	156	1291	22	510	411 387	(e.))	304 262	139 149	15	747
	6757 936	166	15	478	10	5959 212	3	13 7		85.9	20340	801 119	7 B 1	3297 358	900 8 261	(42)	48 5	18.2	1283	38 5	470 28	428	(= 3)	30.4	134	36 6	118
5450	14		150	14	1	4	25	1	11		8	15	19	11	28		10	17.	<u> </u>	12	ŝ	17		1	10	<u>11</u>	18
LD-1 LD 2 LD-2L DUP	4252 6527 6558	135	34 55 50		06 08 08	20546 34695 34744	(* 1) (* 1) (* 1)	7		27 8 26 0	11734 15719 15797	634 858 856	11 4 19 4 19 6	7581 10502 10531	375 8 376 4 378 3	(= 2) (= 2) (= 2)	44 51 52	90 92 92	685 717 718	16 18 18	222 210 206	213 313 375	(*)) ((*))	200		115 20 20	37 43 43
Digest Dup LD-2 LD-2 Avg	4013	114	(+0 5) 36		06	35694 35644	(* 1) (* 1)	6	5	260 256 259	12217	525	88 160	7500	377 5	(*2) (*2)	35	71	723 773	15	147	239	(L+) (L+) (L+)	237	73.9	16	38
	5191	121	(+0 9 8 5	249	06	33641	1417	6	8	316	14113	672	131	8086	392 3 396 1	1=21	41		687	15		297 328	(4.3)	223	98.3	18	40
LD-3 avg LD-4	5138	126	34	248	06	33015	(= 1)	6	6	29 8 26 2	13926	680 631	132	8497 8665	394 2 393 7	(*2) (*2)	41	81	668 673	14	157	312	(+3) (+3)	22 9	98.7 85.0	18 16	40 37
Veen Skt Dev	4906 645	134	36 0	246 18	07 0	32602 2768	(* f)	6		27 4	13196	674 55	130 2	6639 672	385 t 10	(= 7)	43 3	83	691 20	15 7	192 27	275	(«3)	23 O 2	89.5 15	17	39 7
B0-1	5270	15.0	9	270	0.8	20160	(* 1)	4	34	2	10	711	17	e	1		7	/	2 687	9	14	2	(=3)		17	10	3
	3420	129	45		06	26490 21234	(* 1) (* 1)	6 10	4	333 273 579	13085		128 88 109	8099 7136 6204	459 G 438 9 740 9	(*2) (*2) (*2)	50	88 70 126	687 807 978	16 17 39	280 274	283 282 341	(=3) (=3)	24 2 22 0 25 4	77 9 120	18	128
BQ 4 Mean	5424 5180	17G 158	41		10	20295 24547	(*1)	3	7	521 427	16356	764	97	6461 6975	715 4 591 0	(= 2) (= 2)	**	11 1	932 851	24 21	310	414	(4.3) (6.9)	250	118 104	28	346 729
Sid Dev SIRSD	1317	2 12	10	73 24	1	4386 18	L	2 29	2 28	15 24	3148 21	123 18) 25_	648 12	150 27	Ļ	i	3 26	131	6 28	30 15	62 19	ļ	2	19 19	5 24	136 60
OF a Locan	6482	121	20	290	1.0	2278	1.1	0		45.9	17869	872	16.1	9111	1992.0	1=2)	<u>191</u>	h.	1853	x	251	282	(-1)	225	130	20	194
BF at Coden Min Rd	25:5	129	1=0 9	250	26	20224	1-11	1	1	425	14104	720	114	6470	519.8	(* 2)	47	91_	691	18	299	277	1=33	20.9	111	30	33
Arrestra Gr Arrestra Cr -L DUP	10665 10757	14 3 14 2	60 32	369 393	07 07	7958 8381	(= 1) (= 1)	10	20 72 72	78 8 78 7	17840 19174	649 631	195	5804 5754	235 6 245 9	(* 7) (* 7)	91 98	122 129	1046 1087	12	693 700	273 298	(= 3) (= 3)	265 263	301 308	40	67 69
Meen.	10711	113	3	201	07	a170	1=11		21	7 <u>9</u> 7 258	18507	84Q 657	10.5	5779	240.6	(*2)	94 44	125	1072	12	313	216	(e3) (e3)	210	110	47	53
BF above Nevada 2 BF sb Nevada-2 d dup	3130	11.4	25	180	06		151)	5	5	242	8605 10802	484	59	10002 5995	545 8	(*7)	37	59	820 834	12	273	285	125	216	87.6	13	47
SF ab Nevada-2 avg BF above Nevada 3	3694	10 8 10 5	14	187	06	20157	(* 1) (* 1)	5	5	25 2 200	9704	504 477	72	5996 6183	5526 335 5	1=21	39 34	67 70	542 962	13 9	284 221	200	(t>) (L>)	221	97 84 8	14	50 43
BF ab heveda-4 Mean	5908 4300	114	55 34	271	08 06	20526	(= 1) (= 1)	1	8	37 2 27 0	13546		121	7387 6649	3107	1=21 (=2)	57 44	97 77	874 874	16 13	265 206	280 236	(= 3) (< 3)	214	119	22 16	67 53
SIC Dev NASO	1195		50	47	27	1	L_	17	22	27	2131 20	138 22	27	682 10	125	<u> </u>	10 22	i.	9.7 9.7	22	38 14	58 24	┡	ļ;	15	12	10
Nevada Cr.	4793	72	26	29 9	29	15800	1.0 11	5	9	170	7269	921	58	4062	5128	1=2	172	192	1105	1a	793	Z)	(* B	75.7	114	<u>111</u>	x
BF below Nevece 1 BF below Nevece 2	5606 5207	104	140 9	262 272	07 07	19722	(= 1)	6	8	280 307	12450	748 734	100	62733 59037		(*2) (*2)	59 61	97 95	949 932	14 15	368 374	217 265		311	123	16	55 54
OF theil Neveda 3	5317 4933	119 52	43 («0.9	265 259	08 06	20134 20235	(= 1) (= 1)	6	8 7	28 4 27 1	11539	817 697	109	6870 5863	6186	(= 2) (= 2)	56 58	90 86	920 932	12	409 411	251 253	66	314 289	120	15	53 52
BF below Nevada 4	4704	102	140 51	267	07 07	20530 21438	(= 1) (= 1)	7	7	27 4	11323	796	8 T 10 6	5785 7114	634 8	(*2) (*2)	73	91 97	912 952	14	389 428	283 226	(=]) (=])	29.8 30.4	118	14	52 56
BF tr Neveda-4 BF tr Neveda-4 D Dup	5708					20768		15	17	272	11689	685	91	6261	6209	(<2)	61	91	932	13	409	254	1(* 3)	237			54
BF ti Neveda-4 BF ti Neveda-4 D Dup BF ti Neveda-4 evg Mean	5708 5116 5311	103 112	19	256	107	20252	(<1) (<1)	6	8	28.6	12040	748	97	6325	611 4	(<2)	62	93	933	13	390	247	(=3)	311	121	14 15	54
BF til Neveda-4 BF til Neveda-4 D Dup BF til Neveda-4 evg	5708 5116	103 112							8 0 1		12040 409 2	748 54 7	97 1 10	6325 J82 6	611 4 78 13	(<2)	62] 9	93 0 2	903 12 7	13 1 10	390 22 6	247 21 8					54 !
BF ti Neveda-4 BF ti Neveda-4 D Dup BF ti Neveda-4 evg Mean Sid Cev	5708 5116 5311	103 112	17 19 113 83	284 7 2 295	07 0 4 07	20252 438 2 26733	(«1) («1)	8 0 2 5		286 1 5 343		54 7 544	1			(<2)	62] 9 95 90		12 7 935	13 7 70 15 14		247				15 1 3 22 22	
BF to Newsda-4 D Dup BF to Newsda-4 D Dup BF to Newsda-4 to Dup BF to Newsda-4 evg Mean Set Dow 3e320 Notthon-1 Northfon-1 L DUP Northfon-1 avg northfon-2 &18	5708 5116 5311 213 4 6630 6557 6594 6968	10 3 11 2 70 9 34 6 34 2 34 4 59 5	17 19 115 62 72 53	254 7 2 251 251 258 335	07	20252 439 2	(«1) («1) («1) («1) («1)	5 2 5 5 5 6	0 1 8 9 8	286 1 3 343 341 342 332	409 2 19953 19171 19562 27316	54 7 844 852 979	1 164 176 176 188	362 6 5020 8968 9004 9221	79 13 2957 2842	(<2) (<2) (<2) (<2) (<2)	3 95 90 93 113	a 2 83	12 7 935 896 916 834	r 10 15	22 g 619 606 612 545	247 21 8 453	(L») (L») (L») (L»)	31 1 7 2 21 9	121 7 125 123 124 138	15 1 3 22 22 22 22 22 22 22 22 22 22 22 22 2	42

•

												_	-														
Northford 4	AI	As		B.	80	Ca	Cđ		Cr		Fe	K	L	Mg	Mn	No	Na	Ni				34		Sr	TI	V	Zn
Mean	5400	11.4	(*C) 59	293	0.6	25500	1=11		6		11871	586	112	7249	425.3	(<2)	43	78	795	16	421	234	(<3)	192	105	13	40
Skt Dev	729	236	43	295 28	07	25044	(«1)	-		348	17612	780	152	8518	341.1	(<2)	74	80	636	14	498	445	123	20.2	121	21	40
BASO	12	177	68.3	10	ļ.,	818		2		Z	7436	172	J	344	59 17	1	13	0	50	11	97	257		2	14	2	1
		۳	144.7	10-	<u>μ. </u>	μ	┿	e	μ.	2	47		<u>n</u>	10	μΖ		47	₽ <u></u>	μ	¥	20	59	↓	10	μ_	μ.	2
Manture Cr 6/98	3098	(न्य इ	100 2	365	03	462	1=11	3	4	u1	6479	471	50	2389	497.9	(42)	22	41	705	7	518.	172	(< 1)	120	565	5	22
BF bel Monture-1	4071	99	21	323	07	15245	1411	5	6	18.0	10286	642	70	5360	5210	1.2	58	171	1007	111	582	218	1<3	194	94.5	12	30
BF bel Monture-2	1213	96	27	331	07	14160	1=11		ě.	200	9827	671	6.9	5038	464 8	1.27	54	4.	983	10	623	171	143	0.01	1070		5
8F bel Monture 3	3913	124	34	239	07	23752	100	5	5	27.8	10213	586	65	5717	1231	1.2	51	71	951	115	-	150	143	270	-	14	13
BF oel Monture-4	4551	148	34	368	07	21613	1411	6	6	26.9	11794	753	87	6341	3380	1.20	157	8.2	976	12	525	253	(<1	25.6	99 4	15	44
BF pel Monsure-4 d dup	4520	121	31	241	0.	23124	(* *)	5	6	27.9	10979	760	83	6106	3180	1.21	54	78	535	14	417	159	1<3	27 4	995	16	45
SF bel Monture-4 evg	4539	133	3	34	0.8	22368	141)	6	6	27.4	11367	756	85	6223	3280	1=21	56	80	956	13	511	206	(<2)	26.6	995	18	45
Mean	4184	113	3	207	07	10061	(< 1)	5	6	20.0	16428	689	72	5582	4172	(2)	55	73	974	12	556	187	1=34	231	945	13	45
Sitt Dev	266	2	1	47	0	4878		0	0	5	670	18	1	509	107	· -		1.	29	2	41	32	1	4	13	2	4
NP30	0	16	21	16	3	120	╘	2_	2	12.	6	12	12		24		5	7	1	ie_	11	17		19	6	16	9
Cleare stor-1	7027	BPCL		1.770	<u></u>		-	-	-	l		+		+				-									
Clearwater-2	6932	BPGL	22	478	10	5730	141)		1	136	9566	550 524	99	1502	6629		34	74	378	10	1008	223	(«3)	10.9		17	77
Cinerwater-3	7550	BPQL								134	10187		85	3409	6893	(=2)	44	76	958	11	1021	217	16.21	10.6		2	28
Mean	7173		34	408	10	7346	/=1)			153	10762	608	106	3654	404.6	(*2)	42	72	1114	10	1628	235	(* 1)	127	100	7	12
Ski Dev	338	(46.5)	2	466	10	6387	(*1)			14.1	10171	561	97	3522	586	(*2)	40	74	1003	10	1215	23	1431	114	729	7	29
3,850	1.10		45	53	10	849	1	0	2		594	10	1	124	157	1	5	0	94	1!	355		í	1.	23	0	P
	†*	 	10	 ''	 '	 "-	<u>+</u>	۳۰-	<u>ام ا</u>	<u> </u>	<u>le</u>	μ		<u> </u>	<u>~</u>	 	14	₽	10	↓₽	21	4		10	14	μ	10
En Crem	10054	1-4 31	46	254	G.	14463	1.11	E	16	172	14828	1814	167	8297	251.0	(2)	105		1243	1-01_	413	605	(* D.	111	239	21	37
OF Whiteher-1	5723	112	60	372	0.0	24171	141)	6		22.2	11887	951	96	6385	561 4	1=27	87	87	1014	112	987	182	193	30.0	117	14	147
BF Whitaner-2	4697	10.9	75	357	07	24338	14.15	5		207	10473	868	79	5793	7384	1=20	86	27	1001	110	917	213	1-30	307	97 1	12	41
OF Whitewar-3	5470	88	6.2	335	97	18383	(= 1)	5		21 9	11119	800	110	6733	3567	(*2)	65	80	661	10	488	242	(4.3)	247	128	16	42
BF-Whiteker-4	5605	78	10	323	06	21757	(* 1)	6	7	24 2	11804	729	94	5865	411 1	1421	59	84	903	13	577	205	103	258	122	15	44
Mean	5374	\$7	5	347	07	22165	141		7	22.3	11321	837	95	6194	517	(*2)	17	8.2	950	111	735	211	1=33	28 C	116	14	43
Std Dev	463	17	3	22]0	2117	1=11	0	•	1	662	05	1	446	171		18	σ	87	1	237	25	1	3	13	1	3
3,830	P	171	122	<u>اه</u>	₩	111		۹_	ш_	1	4	111_	14	2	23		23	<u>ه</u>	17	12	<u>n</u>	12		11	12	11	1
Union Cr	846)	67	26	122	ti.	7704	1=1)	•	•	20.0	10523	•076	58.	2747	· 660	(<2)	78	111	645	17	737	229	101	199	120	12	67
Gold Cr	7244	6.4	121-	291	-	9568	141)	-	-	14.6	-			2400		1	1.2	165	0.00	(44)	1835		1(=3)			-	24
	16T.	1×1.3	₩.	- T	1¥8	- -	₩°″	۳_	 '	<u></u>	19650	har.	11.0	3600	442.3	102	<u>''-</u>	183	920	1/ *#	194 <u>8</u>	198	14-11	198	<u>818</u>	1 9	14
ISF @ Marco 1	3478	87	24	183	45	17881	141)		5	172	8785	511	70	5,101	2740	1=21	41	59	986	•	317	196	1(=3)	20.5	990	18	11
BF et Marco-2	4121	69	34	225	06	1698.3	1=11		8	19.3	9530	648	81	5758	263.6	(=2)	48	64	928	•	421	234	1=33	20.5	108	14	37
BF @ Marco 3	3112	78	55	203	0.6	19356	1413		5	171	7402	564	50	4767	243 2		53	51	927		658	210	1=31	22.8	86 Q	11	32
BF el Marcs 4 D D BF el Marco-4	3265	71	(=0 5)	172	34	14702	(=1)		5	16.2	8552	476	56	454.)	1832		j 37	55	979	10	300	160	(«J)	169	928	15	12
	2940	7.	36	164	04	15207	1=13		4	163	7884	465	51	4921	1927	1421	43	51	995	•	300	182	1=31	171	877	13	31
8F al Marco-4 L DUP	2905	73	24	158	05	14613	/= 11		9	161	7675	+62	54	4911	1875	1=21	36	49	959	•	308	185	(*3)	170	86 5	14	30
OF at Marco-4 avg	3037	74	21	165	05	14841	1=11			162	8037	468	54	4825	191	(*2)	39	51	961	9	306	178	(=3)	170	89 0	14	31
Mean	3437	62	33	194	05	17,65	1+12	4	5	17.4	8439	548	64	5185	230	(*2)	45	56	956	9	425	204	(<j)< td=""><td>20 5</td><td>955</td><td>14</td><td>u</td></j)<>	20 5	955	14	u
SNE Cev SLRSD	495	07	2	26	0	1889		10	1.	12	921	78	!	474	31		Ľ.	1	35	0	164	25	1	2	10	3	13
37.22	114	U.(40	112	12	<u>u</u>	4		12	L/	<u></u>	114	22	18	11_		115	11.	11	17	138	12	L	12	11_	119	12

.

Chapter 4:

<u>Temporal variations of the geochemistry</u> in the Blackfoot and Clark Fork River basins

ABSTRACT

Two rivers and two mountain streams in the Blackfoot and Clark Fork River basins were sampled over variable temporal scales within a 12 month period. Samples were collected at approximately the same time of day at least monthly, with supplemental sampling during spring runoff and fall precipitation events. Two 24-hour diel studies were also conducted at each site during low flow summer conditions. All samples were analyzed for both dissolved (operationally defined as $<0.2 \,\mu\text{m}$) and total recoverable concentrations. Results show that for some parameters, short term variations (diel, or daily following precipitation events) are proportional to long-term variations, while other parameters cover significant portions of the seasonal variations in the short-term. Generally, the trace elements (Al, As, Cu, Fe, Mn, and Zn) behaved differently from the major elements (e.g. Ca, K, Mg, Na), which were better correlated with discharge. Suspended sediment, total recoverable trace metals, and some dissolved elements exhibited short-term flushing effects at the onset of high flow conditions. Diel cycling was observed for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and total recoverable metals at some or all sites. These results have important implications for the design of future monitoring studies of the geochemistry of surface waters.

INTRODUCTION

The spatial and temporal variations of the aqueous geochemistry of pristine and polluted streams and rivers are poorly defined. However, an understanding of these variations has potentially important implications for designing effective sampling and monitoring strategies and for the environmental regulation of pollution sources to rivers. Although numerous studies have made important contributions to the understanding of the time-dependent variability of the geochemistry of various freshwater systems, most were based on data from single study sites (e.g. Johnson and East, 1982; McKnight and Bencala, 1988; Fuller and Davis, 1989; van der Weijden and Middelburg, 1989; Cossa et al., 1990; Brick and Moore, 1996). Discrepancies among these and other studies in terms of sampling designs, sample processing, and analytical methods hinder the direct

comparison of datasets. On the other hand, studies that have described the spatial variations in the geochemistry of multiple numbers of streams typically lack the temporal resolution needed to put their samples into annual, seasonal, and daily contexts (e.g. Gibbs, 1973; Shiller and Boyle, 1985; Schemel et al., 2000; USGS, 2001).

Of the studies that have incorporated both spatial and temporal dimensions to their water quality research (e.g. Edwards, 1973; McKnight and Benčala, 1990; Carroll et al., 1998; Constanz, 1998; Evans and Davies, 1998; Clow and Mast, 1999, Meixner et al., 2000), not all have included trace metals into their evaluations, and even fewer studies have employed "clean" sampling and analytical methods. These methods have been recognized recently as being critical for the accurate assessment of trace metal concentrations in both pristine and contaminated waters (Horowitz et al., 1994, Benoit, 1994). It has been recommended that trace-metal research conducted without these methods should be viewed with extreme caution, and as a result, much of the trace metal data collected to date has been effectively invalidated (Shiller and Boyle, 1987; Benoit, 1994; Benoit, 1995; Taylor and Shiller, 1995; Windom et al., 1991). Of the published papers based on data generated using clean methods, many have again looked at either spatial or temporal aspects of aqueous geochemistry, but not both.

Many water quality studies take place during the late spring, summer, and early fall, and as a result, little is known about winter and early spring events. There are no known published clean-method studies examining seasonal variations in the Rocky Mountain region, where winter snowpacks create large streamflow surges in the spring and also where there are numerous streams and rivers contaminated by mining. Discharge is thought to be one of main controllers of the geochemistry of surface waters. It has been long reported that an inverse relationship exists between streamflow and the concentrations of major ions such as alkalinity, Ca, Mg, K, and Na, a trend explained by simple dilution from snowmelt and precipitation (Hem, 1970; Edwards, 1973; Whitfield and Clark, 1982; McKnight and Bencala, 1988).

However, research also suggests that these trends are not so simple and that many solutes and particulates can follow hysteresis patterns (Johnson and East, 1982; V'illiams, 1989; Campbell et al., 1995; Evans and Davies, 1998). Hysteresis patterns are formed by elemental concentrations along the rising limb of a hydrograph peak differing from the

93

those along the falling limb. The identification of hysteresis patterns in surface waters is important for designing monitoring studies, for making more informative comparisons among watersheds, and for evaluating the timing and nature of chemical sources to the stream channel (Hooper et al., 1990; Droppo and Jaskot, 1995; Sokolov and Black, 1996).

The initial stages of spring freshet may be characterized by a chemical surge of the dissolved major ion concentrations in the water channel. This phenomenon has been explained as a flushing of ions that have accumulated on snow crystals, in the soils, and in the groundwater over a relatively long winter residence period (Stottlemyer et al., 1997; Harrington and Bales, 1998; Marsh and Pomeroy, 1999). Such flushing events have been reported in the handful of hysteresis studies from alpine regions (Sottlemyer and Toczydlowski, 1990; Williams et al., 1993; Campbell et al., 1995). These events control the development of clockwise hysteresis patterns, in which solute concentrations are higher along the rising limb than on the falling limb. However, other research from similar regions have reported that some solutes may exhibit counter-clockwise hysteresis patterns as well (Stoddard, 1987; Stottlemyer and Troendle, 1992; Bhangu and Whitfield, 1997). These researchers have explained such trends by the volumetric dominance of dilute snowmelt over contributions from groundwater and soil water.

The seasonal variations of trace element concentrations have not been studied in nearly as much detail as that of the major ions. Because major ions are generally chemically conservative, their trends should be less complicated than those of the trace metals (Bencala et al., 1987; Wetherbee and Kimball, 1991). From the limited research using clean methods, the relationship between streamflow and trace element concentrations has been variable from site to site and no generalizations can be made. For example, Shafer et al. (1997) report 1- to 5- fold increases in filterable metal concentrations (and up to 17-fold increases in particulate metals) in two Wisconsin rivers during high flow events compared to baseflow. Similarly, Sherrell and Ross (1999) found highly significant positive correlations between discharge and dissolved metals in four acidic New Jersey streams. In contrast, Shiller (1997) reports that the dissolved metal concentrations in the Mississippi River do not correlate with discharge. Clearly, more data are needed to elucidate any patterns in the discharge versus trace metal relationships in streams and rivers.

In addition to the need for better data on this issue, there are unanswered questions regarding how seasonal dynamics compare with those that occur on shorter timescales, as on storm-duration and diel scales. Studies of metal loading into rivers during storm events have shown that both particulate and dissolved metals can be mobilized into stream channels in mining-contaminated basins (Bradley and Lewis, 1982; Bird, 1987; Soulsby, 1995; Sanden et al., 1997). On a diel scale, processes such as photo-oxidation and -reduction of Fe, biologically- induced pH changes, bank vegetationcontrolled changes in streamflow, and suspended sediment flux have been linked to diel cycles of dissolved and particulate trace elements in streams and rivers (McKnight et al., 1988; Fuller and Davis, 1989; Brick and Moore, 1996). Short-term variations have obvious implications for sampling designs and motivate the question of how seasonal geochemical cycles compare with what is seen on much narrower time scales. The purpose of this study is to answer some of these questions by examining the geochemical variability in the dissolved ($<0.2\mu$ m) and particulate phases in mining impacted and relatively pristine rivers in Montana on seasonal, short-term precipitation event, and hourly scales using clean sampling techniques.

METHODS

- 1. Sampling design
- a) Spatial design

We chose four sites in western Montana as the focus of this study (Figure 1). Two sites are relatively small, moderately high mountain streams (elevation= 1450 m) and the other two sites are lower (1000 m and 1200 m) on much larger rivers draining 20times the land area of the smaller streams. One of the two sites from each size category drains a region impacted by mining contamination, while the other drains relatively pristine areas.

The two smaller streams, at sites LF and BH, are located in the upper Blackfoot River watershed. The Landers Fork (LF) is a major tributary to the upper basin, and the site along the Blackfoot River near Hogum Creek (BH) is located 6 km upstream of the Blackfoot-LF confluence. The Landers Fork drains 350 km², while the Blackfoot at BH drains 254 km². Site BH is ca. 20 Km downstream from the historic Upper Blackfoot Mining complex. Site LF is located only 1 km upstream from the confluence with the Blackfoot, and in the years of this and previous studies (Nagorski et al., 1998; Nagorski et al., 2001) it is typically several times larger in streamflow than BH. It drains the pristine Scapegoat Wilderness area, where elevations reach 2400 m, and it thus receives more snowpack than does site BH.

The other two sites, BFB and CFBM, are located on the lower Blackfoot River (near Bonner) and Clark Fork River (near Bearmouth), respectively. They were selected due to the presence of USGS gauging stations as well as their similar streamflow sizes at baseflow conditions. We acknowledge the potential conflict of non-independence for the lower Blackfoot site due to its location downstream of BH and LF. However, BFB is 187 km downstream from the headwater sites, and its flow during the study period was on average 10 times larger than the headwaters streams combined. Studies on the watershed (Spence, 1975; Moore et al., 1991; Menges, 1997; Nagorski et al. 2000) show that the impacts of the headwater mines generally are not detectable in the solute phase by about 20-30 Km downstream of the site. The major tributaries feeding the Blackfoot River between the headwater sites to the lower basin site drain large portions of wilderness areas, in addition to rural agricultural land, and there are no large-scale industries or urban areas.

In contrast, the site along the Clark Fork River is approximately 130 km downstream from Butte, the setting for one of the world's largest historical mining operations. Over a hundred years of mining and smelting in the upper Clark Fork basin and Flint Creek basin have contaminated the river to the extent that the river's approximately 200 km stretch between Butte and Missoula is the largest Superfund complex in the U.S.A. (Moore and Luoma, 1990). Although CFBM is located a good distance from the major mining contamination, it is still chronically impacted by metal pollution from the tailings on the floodplain, elevated metals in the streambed sediments, and other nonpoint sources (Moore and Luoma, 1990; Nimick and Moore, 1991).

b) Temporal design

We sampled the sites on a monthly basis with supplemental high flow sampling during spring runoff and late summer precipitation events. Robertson and Roerish (1999) found that such a design was highly effective for one year studies aiming to estimate loads in small streams. Our monthly design consisted of a random weekend starting date in February, 2000, followed by a sampling date established at four week intervals from then on, through January, 2001 (thus a total of 13 "monthly" sampling events). We gave the four week rule an allowance of plus or minus two days in order to deal with adverse weather or other logistical inconveniences.

During spring runoff from mid-April through mid-June, we collected samples once or twice per week in order to capture as much flow variability as possible. Frequent site visitation was particularly important for sites BH and LF, as real-time streamflow data were unavailable. All 4 sites were visited for each event, except for one supplemental sampling event (on 4/14/00) when only BFB and CFBM were visited. As a result, BFB and CFBM had a total of 24 "seasonal" sampling events, while BH and LF had a total of 23.

Between September 1 and September 5, relatively large amounts of precipitation fell in the region following months of near-drought, warm, and dry weather (WRCC, 2001). In response, we took "rain event" samples every day or every-other day for almost two weeks. We sampled the lower sites closer to Missoula (BFB and CFBM) every day from September 1-9, and on September 11, and 12. Diel sampling events at BFB and CFBM during the next week provided additional site data. We sampled sites BH and LF on September 1, 3,4, 5, 6, 8, and 10; their further distance from Missoula did not allow for as dense of a temporal resolution as at BFB and CFBM.

We visited each sample site at approximately the same time of day in order to minimize complicating any seasonal trends with diel trends. We visited CFBM consistently within a few hours of sunrise in the morning, BFB during the late mornings, BH in the early afternoon, and LC in the mid-afternoons.

We conducted diel studies at each of the four sites during relatively stable, lowflow conditions (in August and September). Low-flow summer conditions are believed to be optimal for maximum diel variation (Brick and Moore, 1996). For two nonconsecutive days at each site, we sampled once every two hours. Sites BH and LC are close enough in distance to allow concurrent diel sampling. Hence, we collected samples at BH every odd hour and at LC every even hour on 8/17/00-8/18/00 and on 8/20/00-8/21/00 beginning at 14:00 on each diel set. We sampled CFBM bi-hourly on 9/14/00 at 08:00 through 9/15/00 at 08:00, and on 9/18/00-9/19/00, also from 8:00 to 8:00. At BFB, we sampled the first set beginning on 9/12/00 at 8:00, and ending on 9/13/00 at 8:00. However, the second diel set at BFB (begun on 9/16/00 at 8:00) was hampered by a several hour-long lightning and wind storm just after the 20:00 sampling. Although little rain fell, the weather conditions prohibited safe sampling of the river. Because the gauging station indicated no change in streamflow over the following 24 hours, the sampling event was resumed starting at 20:00 on the following evening (9/17/00) and carried through until 8:00 on 9/18/00.

2. Streamflow measurement

We obtained streamflow (Q) values at BFB and CFBM from the USGS gauging stations at the sites. The estimated error of the Q measurements is 5% (M. White, USGS, personal communication). From the end of November through the end of the study period, Q measurements at BFB were unavailable due to ice at the site.

At BH and LF, we measured streamflow ourselves, given that there were no gauging stations at these sites. We made the measurements using a Price AA current meter or a pygmy meter, according to standard USGS protocol (Rantz et al., 1982). Our reproducibility of the Q measurements at site BH averaged 7%, although the highest error of 17% was made during the low flow period in December. At LF the mean measurement precision was 3%, with the largest error at 7%.

At LF, daily Q values were estimated from the nearest USGS gauging station on the Blackfoot River, 71 km downstream from LF. Despite the distance from LF, we found a good linear relationship between Q measurements we made at LF and the Q reported on the same dates at the gauging station (R^2 =0.96). Hence, we could monitor the approximate Q at site LF. Site BH did not correlate well with the USGS gauging station, and so we do not have any estimated data on the Q values at BH on days inbetween sampling events.

3. Sampling protocol

We strictly followed a meticulous clean protocol during all stages of sample handling. As described in Chapters 2 and 3, we extensively pre-cleaned all sample bottles before each sampling event, and we used clean sampling procedures to obtain width and depth-integrated water chemistry samples. We obtained three individual samples from each site on each sampling event, except for during the diel sampling when we took only one sample per bi-hourly event. The triplicate samples were never composited and were put through handling and analysis procedures independently. Following collection of the water chemistry samples, we took samples for total suspended sediment (TSS) analysis from the same areas from where we collected the water quality samples. We measured pH, DO, and stream temperature in situ, and again we did so at the same places along the channel transect from where we collected the water quality samples. We checked the pH and DO meter and recalibrated it if necessary before measuring at each site.

4. Laboratory protocol

All sample processing and analysis took place at the Murdock Environmental Biogeochemistry Laboratory at the University of Montana. Sample filtration methods are described in the Methods section of Chapters 2 and 3. Following filtration to $<0.2\mu m$ (operationally defined as the "dissolved" phase), we decanted 100 mL for purposes of alkalinity measurement of the samples, and then we preserved the remaining volumes in the 1 liter sample bottles for total recoverable metal analysis with 3 mL of 6N trace metal grade HNO₃ per liter of sample. Total recoverable metal digests were performed within 2 months of sample collection according to EPA Method 200.2 (EPA, 1991). All steps of the digestion process took place under the clean hoods as well. The resulting concentrations in the digested samples are called "total" concentrations in this report.

We quantified the total suspended sediment (TSS) within 1 week, but usually within 1 day, of sample collection. We did so by weighing the mass of particulates retained on a 0.2 μ m filter following a vacuum-driven filtration of at least 300 mL (mean=1.5 liters) of sample. We measured DIC within two weeks using a Shimadzu

Carbon Analyzer. We determined alkalinity by titration with sulfuric acid to pH 4.5 within 3 days of sample collection. However, the large number of samples collected during the first couple weeks of September precluded the immediate alkalinity analysis on many of those samples. Some samples were kept in the refrigerator for 18 days before being analyzed for alkalinity, while the EPA recommended time limit is 14 days.

We measured arsenic concentrations on a HGAAS and all other elements using ultrasonic nebulization (Cetac, U-5000AT+) with a Thermo-Jarrel-Ash ICAPES (IRIS) as described in Chapters 2 and 3.

5. Laboratory QA/QC

We followed strict quality assurance and quality control protocols during all types of lab analysis. On the ICP we ran acidified blanks, fortified blanks, USGS Standards T143 and T145, sample analysis duplicates, and sample spikes at regular intervals so that at the end, 40-60% of the total analysis consisted of QA/QC evaluations. On the HGAAS, we analyzed at least one sample spike, one sample analysis duplicate, one or two checks of the USGS standards, a blank, and all 5 calibration standards with each set of 10 samples. When analyzing DIC, we again had at least one sample duplicate and one check of the blank and all 3 calibration standards with each set of 10 samples. The Practical Quantifiable Limit (PQL) on all instruments was defined as the minimum value at which elements could be detected with a maximum variability of 30% (Table 1). All QA/QC results are presented in Tables 1-7, and a summary follows.

Laboratory blanks: A total of 237 lab blanks were run on the ICP, and only trace amounts of Ba, Ca, Na, S, and Sr were detected in no more than 17 of the blanks (Table 1.1) All 262 lab blanks measured on the HGAAS and all 113 blanks run on the carbon analyzer were also below detection (Table 1.2). The highest TSS blank found was 0.1 mg/L (Table 1.2).

Filtered field blanks: The 48 filtered field blanks also had rare and insignificant concentrations of measured elements. Filtered Al, Ba, Ca, Mn, Si, and Sr were above the PQL in only 1 or 2 of the field blanks (Table 1.3). One of the 48 filtered field blanks had Fe at 41 μ g/L, substantially above its PQL of 5 μ g/L. Sodium's maximum field blank concentration of 0.6 mg/L likely accounts for some of the noise in Na concentrations at

sites LC, BFB, and BH, where Na concentrations were typically less than 4 mg/L. Although S concentrations were detected in 44 of the 48 field blanks, even the maximum concentration of 0.08 mg/L found is insignificant compared to values found in the environmental samples. Arsenic and DIC were below the PQL in all field blanks (Table 1.4). The highest alkalinity value measured in a field blank was 8.8 mg/L (Table 1.4).

Digest blanks and digested field blanks: Processing blanks through the digestion procedure resulted in some significant contamination. Elements which turned up at levels high enough to interfere with concentrations in environmental samples were Mn, Cr, Ni, P, Fe, and Zn (Tables 2.1 and 2.2). Manganese was detected (at 3 μ g/L compared to its PQL of 0.5 μ g/L) in only one of the 83 digest blanks and in none of the 45 digested field blanks. Although Fe was detected in less than a third of the digest blanks and digested field blanks, its maximum concentration of 0.07 mg/L exceeded Fe concentrations in many environmental samples. The Cr and Ni values in the blanks fully account for their concentrations in some of the digested samples, and so they were discarded from the dataset. Similarly, Zn contamination was problematic, with detections of up to 0.29 mg/L in 20 of the 45 digested field blanks and in 28 of the 83 digest blanks.

External standards: The mean concentrations of all elements (except Si) in USGS standards T-143 (n=151) and T-145 (n=102) as analyzed on the ICP fell within the reported acceptable ranges (Tables 3.1 and 3.2). These standards were also digested along with environmental samples for total recoverable determinations (Tables 4.1 and 4.2). Again, all but Si in both types of standards had mean measured concentrations within the reported acceptable range. However, Zn also violated the reported limit for USGS T-143 averaging 15% higher than the upper reported limit; its exceedance may be due to Zn contamination problems during the digest procedure, as evidenced by the blank recoveries. The USGS standards were also measured on the HGAAS, and the digested and non-digested USGS T-143 and T-145 (n= 107 and 164, respectively) standards fell within the acceptable ranges (Table 5.1).

Internal standards: An internal standard was measured 190 times on the ICP during sample analysis, and mean concentrations of all analytes were within 5% of the constructed value (Table 3.3). Exceptions to this are Be, Co, and Si, whose average

readbacks were within 8%, 6%, and 6% of the known values, respectively. On the HGAAS, the mean percent difference between known (lab-constructed) values and measured As concentions was 8% (stdev=8%) for As concentrations of <0.5 μ g/L and 3% (stdev=3%) for As concentrations >0.5 μ g/L (Table 5.2). On the carbon analyzer, the average difference between the 350 lab standards and their known (lab-constructed) concentrations was 2% (stdev=2%) (Table 5.2).

Analytical duplicates: The mean percent difference between samples measured twice on all instruments was 6% or lower for all elements (Table 6.1 and 6.2). The only exception was for duplicate measurements of TSS samples, for which the mean percent difference between samples was 26%.

Digest duplicates: The mean percent difference between digest duplicates (the same sample digested separately twice) was 6% or less as well, except for Al. As, Cr, Fe, Ni, P, and Zn (average % differences= 11%, 8%, 22%, 7%, 25%, 11%, and 21%, respectively) (Tables 6.3 and 6.4). Most of these elements were also those that turned up in the blanks at significant levels.

Spikes: Forty-two blanks and up to 223 samples were spiked for most elements analyzed. Mean spike recoveries on all detectable elements were between 97% and 111% (Tables 7.1, 7.2, and 7.3). The only exception to this was Li, whose mean percent spike recovery was 84%.

6. Data analysis

Due to the non-normal distributions of the concentration data, the presence of outliers for numerous parameters, heterogeneity of the sample variances, and the failure of data transformations to correct these problems, non-parametric statistical methods were used to analyze the data. The program SPSS was used for all statistical tests following spreadsheet manipulation in Excel. One exception to this was for calculations of non-parametric multiple comparisons by simultaneous test procedures (STP), which were done manually according to Sokal and Rohlf (1995).

RESULTS AND DISCUSSION

I. Seasonal variations

1. Streamflow variation

At BFB, LF, and BH, peak Q occurred in late spring and early summer. At BFB and LF, runoff lasted between April and July (Figures 2 a,c). At BH, Q peaked early relative to BFB and LF (Figure 2d). Streamflow at BH on 4/22/00 was higher than on any other date, and it decreased steadily from then on.

There was a highly unusual Q pattern at CFBM during the study year (Figure 2b). Instead of being characterized by the typical snowmelt runoff peak, Q decreased from April through August. As a result, the hydrograph was approximately inverted. Streamflow averages for March through August were the lowest in the 8 year site record, and 7/31/00 marked the lowest Q (2180 L/s) ever recorded at the site. The low Q, caused by below normal snowpack and precipitation levels in the region, was further complicated by an unknown amount of irrigation withdrawal in the Clark Fork valley.

2. Among-site comparisons of dissolved and total concentrations:

Comparisons among sites (using the Kruskall-Wallis test) showed that pH, water temperature, and dissolved oxygen concentration were the only parameters that lacked significantly different distributions among the 4 study sites. Non-parametric multiple comparisons by STP identified the relative significant (p=0.05) differences between sites for the rest of measured parameters, as listed in Table 8. Not included in the analysis were elements that were entirely or mostly below detection at all four sites.

The concentration distributions of most measured parameters (alkalinity, DIC, and dissolved (d) and total (t) As, Ca, Cu, K, Li, Mg, Mn, Mo, Na, P, S, Si, and Sr) were highest at site CFBM. The site was lowest in concentration only for Ba_d and Ba_t . The large sites (CFBM and BFB) had higher TSS, Al_t , As_d , and Li_t concentrations and lower Ba_d and Ba_t concentrations than the small sites (LF and BH). The mining-impacted sites (CFBM and BH) had higher concentrations of Fe_d, Mn_d, S_d, S_t, Si_d, Si_t, Sr_d, Sr_t, and Zn_t than the relatively pristine sites (BFB and LF). While BFB and BH had similar

distributions of alkalinity, DIC, Ca_d , Ca_t , K_d , K_t , Fe_t , Mg_d , Mn_t , Na_d , Na_t , and P_t concentrations, CFBM and LF had heterogeneous concentration distributions for all elements.

3. Differences in the dissolved and total concentrations

Differences between the dissolved and total concentrations of each detectable element were evaluated using the Wilcoxon Ranged Sign test, a non-parametric version of the paired t-test. This test was selected over the Wilcoxon Rank Sum test due to the lack of independence in the samples. Dissolved and total elements are not independent because the total fraction encompasses the dissolved fraction.

Arsenic (except for at CFBM), Ba, Cu, Fe, Mn, Mo, and P were significantly ($p \le 0.05$) higher in the total recoverable fractions compared to the dissolved fractions at the sites where they were detectable (Table 9). However, the dissolved and total fractions of most of these elements (As, Cu, Fe, Mn, and P) did not correlate well with one another (Table 10). (Exceptions to this are As at LF, where the correlation between dissolved and total concentrations was 0.91, and Mn at BFB, where r=0.81.) For example, while dissolved Fe concentrations at CFBM remained within the narrow range of 0.011 to 0.020 mg/L over the 12 month study, total Fe concentrations varied almost 2 orders of magnitude, from 0.071 to 1.132 mg/L. This lack of association means that changes in the particulate metal concentrations occurred independently of variations in the dissolved concentrations. The implication of this result is that the dissolved phase of these elements cannot be assumed to represent the total recoverable phase, and vice versa, and so both phases need to be sampled for monitoring and interpreting water quality variations in these rivers.

At sites BFB and LF, dissolved Fe and Mn were following nearly identical trends as total Fe and Mn (except for Fe at LF, where it was BPQL), despite their poor correlations (Figure 3a, b). This suggests that these "dissolved" metals may in fact be colloidal instead of truly dissolved. Numerous studies have demonstrated that in order to obtain the truly dissolved fraction, samples must be filtered through membranes that are no larger than 0.01 μ m in size (Kimball et al., 1992; Benoit, 1995; Ross and Sherrell, 1999). Therefore, our operationally-defined "dissolved" fraction may not be an accurate description for some of the elements in the filtered fraction.

4. Was streamflow a good predictor of dissolved and total concentrations?

Streamflow (Q) was significantly and inversely correlated (pearson correlation <- 0.80; p<0.01) at all four sites with dissolved (d) and total (t) Ca, Mg, and Sr only (Table 11 and Figure 4a-d). On a site-specific basis, significant inverse and good correlations (r<-0.80; p<0.01) with streamflow were present also for alkalinity, DIC, As_d , Ba_d , Ba_t , Li_d , Li_t , Na_d , and Na_t at BFB; for Li_d and Li_t at CFBM; for alkalinity, DIC, As_d , Ba_d , Ba_t , K_d , K_t , Na_t , S_t , Si_d , and Si_t at LF; and for alkalinity, DIC, Ba_d , Ba_t , Li_t , and Na_t at BH. Significant positive, linear correlations with Q were present only for TSS, Mn_d , Mn_t , Fe_t , Zn_d at site BH. Although Zn_t measurements are generally excluded from this report due to problems with contamination, it is worth noting that Zn_t was also correlated positively with Q at BH (r=0.91 and 0.97, respectively, excluding an extreme outlier).

According to these results, the general pattern emerges that the major elements, Ba, and Sr were moderately well and inversely associated with Q, while many of the trace elements were poorly or positively correlated with Q. Hence, the processes controlling the major element concentrations in these streams and rivers were different from those controlling the inputs of trace metals. Based on other studies with similar results, a probable explanation for the behavior of the major elements is that in general, they were chemically conservative and were simply diluted by snowmelt during runoff (Bencala et al., 1987; McKnight and Bencala, 1988; Whitfield and Clark, 1992; Bhangu and Whitfield, 1997).

The mobilization of sediment and some trace metals during higher flows may be due to physical processes, as indicated by the positive association between TSS and total metal concentration with Q at BH. Physical mobilization of sediments from the streambed and floodplain may occur with high Q events because the higher stage and velocity of the river can and entrain more bottom sediments and access broader areas of the floodplain (Bradley, 1984; Whitfield and Clark, 1992; Droppo and Jaskot, 1995). Yet, the chemical characteristics and availability of different sized sediments can vary substantially as well (Bradley and Lewis, 1982; Bird, 1987; Hatch et al., 1999). Hence, the size of the flow event may not necessarily correlate with the sediment and associated metal concentrations, as was the case at BFB, CFBM, and LF.

The mobilization of trace elements may also be chemical in nature, as suggested by the lack of predictability of the dissolved metal concentrations by Q, the most dominant physical factor. This lack of association between Q and dissolved trace elements such as As, Cu, Fe, Mn, Zn was most pronounced at site CFBM (Figure 5 a,b). The reactive nature of the trace elements makes them more susceptible to changing pH, redox, and temperature conditions, biological activity, and varying availability of complexing agents in the basin source areas and in the water channel (Forstner and Wittmann, 1979; Cossa et al., 1990; Shiller, 1997). The major source for the dissolved trace elements in the Clark Fork are the mining-contaminated floodplain soils and streambed sediments along most of the river corridor (Nimick and Moore, 1991; Axtmann et al., 1991). For example, trace metals that were immobilized in sulfide mineral complexes in the floodplain or in stagnant water areas may have become oxygenated and displaced into the water column at higher flows, where they temporarily remained out of equilibrium with Fe- or Mn-oxides/oxyhydroxides (Wetherbee and Kimball, 1991). They also may have been released into the river by the lifting of reduced bed sediments into the water channel, from hydrologic flushing of the hyporheic zone, or surface runoff that washed metal-rich salts off the floodplain (Lucy, 1996; Nagorski and Moore, 1999).

5. Relationships between TSS and total recoverable elements

Correlations of TSS against the total recoverable elemental concentrations at each site reveal that total Al, Fe, and Mn are very well correlated ($r\geq0.88$, p<0.01) with the TSS concentration at all sites (except for Fe and Mn at LF, where they are below the PQL) (Table 12). Total Cu was also well correlated (r=0.95) with TSS at CFBM, while it was below the PQL at the other 3 sites. Good correlations indicate that the total metal concentrations could be reasonably well estimated using TSS, which is far easier and less expensive to measure. Unlike for the trace elements, the association between TSS and

most of the major elements was poor. Together with the insignificant differences between the dissolved and total recoverable phases of the major ions, this indicates that the available major elements are concentrated in the dissolved fraction rather than in the particulate load.

Not all elements correlated uniformly across the sites. For example, As_t was poorly correlated with TSS (r=0.38 and -0.30) at the two minimally contaminated sites (BFB and LF), while it correlated reasonably well (r=0.78 and 0.81) at the two miningimpacted sites (CFBM and BH). This difference implies that the suspended sediments at CFBM and BH have approximately steady concentrations of As. Hence, when there were higher particulate levels in the river, the As concentrations increased accordingly. In contrast, the lack of a relationship between TSS and As_t at BFB and LF implies that the suspended sediments at these sites contained inconsistent concentrations of As.

One way of evaluating whether or not the mining-impacted sites had higher metal concentrations than the relatively pristine sites is to compare the total recoverable geochemistry. If rivers with similar TSS concentrations drain areas with similar physical and geochemical characterstics, the rivers also should have similar total recoverable metal concentrations. Considering that the TSS concentrations at CFBM (median=6.8 mg/L) were not statistically different (p<0.05) from the TSS at BFB (median=5.5 mg/L), and that the TSS at BH (median=1.3) was not significantly different than the TSS at LF (median=1.7), one would expect that the concentrations of the total recoverable elements to be similar as well. Total Al, which is commonly used a correction factor for grain size variations, had identical median concentrations and concentration distributions at CFBM and BFB. However, median As₁, Fe₁, Mn₁, S₁, and Zn₁ concentrations were 13, 1.6, 4.7, 22, and 8.3 times higher, respectively, at CFBM than at BFB. Total Cu was at least 4.3 times higher at CFBM than at BFB (exact enrichment factors can not be calculated because Cu, was below detection at BFB). Although median Al, was twice as high at LF than at BH, median Fe₁, Mn₁, S₁, and Zn₁ were 2.8, 4.8, 6.0, and 6.6 times higher, respectively, at BH than at LF. Therefore, both mining-impacted rivers were enriched in total-recoverable metals over their unmined counterparts.

6. Seasonal hysteresis at BFB, LF, and BH

Hysteresis patterns at sites BFB, LF, and BH were apparent for numerous parameters, while no hysteresis emerged from the CFBM data. At BFB, LF, and BH, pH and water temperature followed counter-clockwise hysteresis, meaning that they were lower along the rising limb of the hydrograph than on the falling limb (Figure 6a,b). The counterclockwise rotation in the pH loops indicates that earlier runoff was more acidic than later runoff, which presumably had more time to become buffered by materials in the watershed en route to the water channel.

Rotating in the other direction, dissolved oxygen, TSS, Al_p, As_p, K_d, K_p, Fe_p, Mn_p, S_d , S_t , and Sr_t followed clockwise hysteresis patterns at the 3 sites (Figure 7a-d). These patterns for the dissolved elements (K_d and S_d) suggest that the spring freshet exerted a piston-effect on relatively high-concentration solutes in ground water and soil water, or that the dissolved elements were preferentially eluted from the snowmelt (Stottlemyer and Toczydlowski, 1990; Williams et al., 1993; Campbell et al., 1995; Stottlemyer et al., 1997). Clockwise rotations for many of the total elements may have occurred due to flushing and subsequent depletion of sediments and other particulate matter in the channel and floodplain at the onset of high flow conditions (Williams, 1989; Droppo and Jaskot, 1995; Sokolov and Black, 1996).

Alkalinity, Ba_t , Ca_d , Ca_t , Mg_d , Mg_t , and Sr_d generally lacked open hysteresis loops at the sites (Figure 4a-d). Dissolved Ba at BFB was the only element with clear hysteresis, which rotated in a counter-clockwise direction. The lack of hysteresis loops means that the rising and falling limb concentrations were not distinct from one another due to linearity of the relationships or from cross-overs that prevented the formation of open loop patterns. Linear relationships indicate that concentration variations are in phase with Q variations. This can occur when the different geochemical sources have indistinguishable signatures or when the same sources are regulating the solute chemistry on the falling and rising limbs of the hydrograph. Cross-over patterns form as a result of inconsistent elemental concentrations of the various sources contributing to streamflow over the study period. A lack of clear hysteresis for these elements at LF was also found in the 1998 study (Nagorski et al., 2001). However, the same study identified counterclockwise hysteresis at BH for DIC, Ba, Ca, Li, and Si in 1998. It is possible that the difference between study years at BH may have been due to the better definition of the rising limb chemistry in 1998 than in 2000. While only 1 rising limb data point was collected in 2000, there were 3 such data points in 1998.

Several elements did not have consistent trends among sites BFB, LF, and BH. While DIC, Ba_d , Na_d , and Na_t had no hysteresis loops at LF and BH, DIC and Ba_d had counter-clockwise hysteresis and Na_d and Na_t had clockwise hysteresis at BFB. Dissolved Fe was below the PQL at LF and had no discernable pattern at BH, but had a clockwise pattern at BFB. Similarly, Li_t , Mn_d , and Ti_t had clockwise rotation at BFB but were mostly or totally BPQL at LF and BH, so comparisons could not be made. Dissolved As had clockwise rotation at LF, no hysteresis at BH, and had counterclockwise hysteresis at BFB if one discounts a single early season datapoint.

At BFB, the hysteresis loops for Ba, K, Na, Si, and Sr were more open than at sites LF and BH. This result is similar to those reported by Whitfield and Shreier (1981) and Whitfield and Clark (1992), who found wider hysteresis loops at sites further downstream than near the headwaters in several British Columbia streams and rivers. They hypothesized that such patterns may emerge due to the more numerous and chemically diverse sources available for contribution to the water channel at sites further downstream in the basins than those restricted to smaller drainage areas.

7. Discharge-concentration relationships at CFBM

At CFBM there was a complete absence of hysteresis patterns for all parameters measured. The hysteresis plots for CFBM show numerous cross-overs and overall disorder, as would be expected with an absence of a spring snowmelt hydrograph at the site (Figure 5a and 5b) The most prominent feature of CFBM's dataset is that TSS and total Al, As, Cu, Fe, Mn, P, and Ti were most highly concentrated on 6/1/00 and second most highly concentrated on 4/22/00 (Figure 8). On 6/1/00, the Montana Aquatic Life Standards for chronic and acute Cu (adjusted for hardness) were exceeded. Acute Cu violations also occurred on 4/22/00, while chronic exceedences occurred on 3/29/00, 4/14/00, 4/22/00 and 6/1/00.

The 6/1/00 sampling event captured the peak of a several-day long surge in streamflow caused by a large rain event the previous day (Figure 2b). On this day (5/31/00), 2.8 cm of precipitation was recorded in nearby Drummond, and this was the second largest single-day rain event of the year (WRCC, 2001). Streamflow on 6/1 was double that of the week before. Other researchers have also reported the flushing of suspended sediment and metals in industrialized watersheds at the onset of increasing Q levels (Bradley and Lewis, 1982; Bird, 1987; Sanden et al., 1997; Nagorski et al., 2001).

The sampling on 4/22/00 followed 1-2 weeks of intermittent rainfall that was also accompanied by fluctuations in the hydrograph, although these Q variations were not nearly as dramatic as on 6/1/00 (Figure 2b). Considering the 5% error on the Q values, the Q on 4/22/00 was no different from the Q on both 3/29/00 and 4/14/00, when TSS and metal concentrations were substantially lower. Therefore, the surge in TSS and associated metals occurred due to processes in the basin that supplied the river with sediment and its associated metals without significantly changing the Q values. One possibile mechanism or this could be that early spring rains became absorbed by the soils, and this process of ground saturation forced later rainfall to enter the river as direct surface runoff, which could in turn carry floodplain soils and sediments with it into the water channel. As mentioned earlier, potential sources of metals-enriched sediments are abundant along the Clark Fork River floodplain due to the mining and smelting wastes in the watershed (Nimick and Moore, 1991).

8. Is there evidence of spring flushing?

For some elements, a lack of good linear correlation with Q and a lack of clear hysteresis patterns may be explained by the interference of one or two data points collected during the early stages of runoff that appear to defy otherwise discernable patterns. These samples, which are characterized by a disproportionately large increase in concentration with the initial rise in Q at each site are termed "spring flushing" points. Many other researchers have identified such points in temporal sampling studies, although most of the focus in the literature has been on the flushing of atmosphericallyderived acidic anions such as sulfate and nitrate from the snowpack (Williams et al., 1993; Campbell et al., 1995), with little attention given to major cation, trace element,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

and particulate concentrations. The only known report of cation flushing in watersheds is from Sottlemyer and Toczydlowski (1990), who found flushing of Ca, Mg, Na, K, and NH_4^+ in a Michigan stream.

Examination of the patterns of the cross-over elements at BFB reveal that As_d , Ca_d , Ca_t , Mg_d , Mg_t , and Sr_d had open counter-clockwise hysteresis loops (which was found for Ba_d), if a single early event data point is not considered (Figure 4a, Figure 9a,b). Conversely, the unusually high value for dissolved and total S in the early spring opened a loop in what would otherwise be a linear relationship between Q and S concentration (Figure 7d). Dissolved and total As, K, Li, Mn, Na, S, Si, and Sr surged in concentration on 3/29/00 at the site, when streamflow was at the very early stages of increasing spring runoff (Figure 10a,b). Of these elements, As_t , and total and dissolved K, Na, S, and Si were higher on 3/29 than on any other date during the 12 month study. Total Al, Fe, Mn, and Ti peaked 2 weeks later, on 4/14/00, following the sharpest hydrograph rise of the spring runoff event (Figure 10c,d). TSS concentrations were highest between 3/29/00 and 4/22/00.

At site CFBM, spring runoff flushing is not possible to identify due to the lack of a spring freshet peak. However, as discussed in the previous section, surges in TSS and associated total elements (Al, As, Fe, Mn, P, and Ti) occurred on 4/22/00 and 6/1/00. The flushing events on these dates are more accurately described as flushing by precipitation events rather than by large-scale melting of snowpack in the watershed.

At site LF, we captured 2 main peaks in TSS during early runoff; one was on 4/22/00 and the second was on 5/3/00 (Figure 11a). Total Al, Fe, Mn, and Mn_d had similar peaks on these dates (Figure 11b). Alkalinity and total Ba, Si, and Sr also had a flushing effect on the surface water (Figure 11c). Their concentrations were higher on 3/29/00 compared with 2/26/00, even though flow had increased from 490 to 720 L/s. Other than Mn_d, which is likely colloidal and not truly dissolved, no other dissolved elements exhibited early spring flushing. These results are different from those found at the site in the spring of 1998 (Chapter 2; Nagorski et al., 2001). At that time, dissolved Ca and Mg flushing was measured in the early spring freshet samples. These differences in the study years might be due to the sampling frequencies being too coarse to capture

short-term flushing events. In the 1998 study, total recoverable concentrations were not measured, and so between-year comparisons can not be made.

At site BH, spring flushing is evident for K, and S (Figures 12 a,b). Dissolved and total K concentrations increased by 10% on 3/29/00 compared with 2/26/00, even though discharge had also increased (from 540 to 770 L/s). More pronounced flushing is evident for S. Dissolved S (which was not different from total S) dropped sharply after rising though 4/22. It remained at relatively low levels during the summer months when most other major ions were at their highest. It had a secondary peak in mid June, and its largest peak was in November. Spring flushing of S was observed at the same site in 1998 by Nagorski et al., (2001). Although S flushing has been widely reported in the literature as occurring in watersheds draining snowpacks with atmospherically-derived S (Schemenauer et al., 1985; Campbell et al., 1991), S flushing was observed at BH and not at LF in both study years. This indicates that the upstream mining sources in the Blackfoot River might have been driving the S surges during high flow events, and not atmospheric inputs.

9. By what extent do concentrations change during high flow compared to low flow?a) Elements with inverse, approximately linear relationships with Q:

At BFB, most elements that correlated inversely with Q (alkalinity, DIC, As_d , Ba_d , Ba_t , Ca_d , Ca_t , Li_d , Li_t , Mg_d , Mg_t , Na_d , Na_t , Sr_d , and Sr_t) decreased to 40-55% of baseflow concentrations when Q increased by a proportionally greater amount—by 8.5 times during the height of runoff. The exceptions were dissolved and total Li and Na, which were more dilute, at 22-30% of baseflow concentrations during peak flow. At CFBM, there was a 5.5-fold increase at the highest flow event sampled compared with the lowest Q sampled. Yet, the elements that correlated inversely with Q (Ca_d , Ca_t , Li_d , Li_t , Mg_d , Mg_t , Sr_d , and Sr_t) decreased to only 48-74% of their low-flow concentrations. More dramatically, at LF the highest Q was 28 times the low-flow Q, but the inversely-correlated elements (alkalinity, DIC, As_d , Ba_d , Ba_t , Ca_d , Ca_t , K_d , K_t , Mg_d , Mg_t , Na_t , S_t , Si_d , Si_t Sr_d , and Sr_t) remained at 42-70% of their baseflow concentrations. Finally, at site BH, the greatest difference in Q was a 16-fold increase during the peak of runoff

112

compared with baseflow. There, too, elements that correlated inversely with Q (alkalinity, DIC, Ba_d , Ba_t , Ca_d , Ca_t , Mg_d , Mg_t , Na_t , Sr_d , and Sr_t) were diluted by a relatively small amount, to 50-64% of their baseflow concentrations.

In sum, the concentrations of most of these elements generally decreased by the narrow range of approximately 40-70% at all sites, even though the maximum Q values at each site varied from 5.5 to 28 times the baseflow levels. This suggests that despite the variations in the increases of flow due to varying amounts of presumably dilute spring freshet, the meltwaters were being approximately uniformly mitigated by other sources in the basin that had relatively high concentrations of major elements. That is, most of the water contributing to the high flow events at each site likely was routed through soil and aquifer materials and picked up solutes before reaching the stream channel, no matter how much meltwater there was (Campbell et al., 1995; Droppo and Jaskot, 1995; Stottlemyer et al., 1997).

Additionally, closer examination of the relationships between the elements and Q reveal that at BFB and LF, the concentrations of many of the elements leveled off past a certain high Q threshold (Figures 4a, 4c). What emerges is an "L" shape to the Q vs. concentration plots, in which the negative slope of the Q v. concentration relationship approaches zero at the higher flow levels. This is observed for DIC, Ba_d , Ba_t , Ca_d , Ca_t , Mg_d , and Mg_t at BFB, and for the aforementioned elements and alkalinity, and As_d , As_t , Si_d , Si_t and Sr_t at LF. At BFB, the break in slope occurred when Q was approximately 5-times baseflow levels, and at LF when Q reached approximately 10-times baseflow levels. Sites CFBM and BH showed no similar L-shaped relationships. In a 1997-1998 study in Landers Fork and Upper Blackfoot, Nagorski et al. (2001) made similar observations for site LF. They too reported a stabilization of solute concentrations when Q exceeded 10 times baseflow levels. These results indicate that beyond a certain level of discharge, high flow input may be overwhelming the chemical signature contributed by water supplies that are dominant during low flow conditions.

b) Elements with positive linear relationships with Q:

BH was the only site where any measured parameters correlated positively and approximately linearly with Q. At this site, where Q was 16 times larger during the highest flows compared with the lowest flow, TSS increased by up to 39 times during high flow. Dissolved Mn increased by up to 6 times, Mn_t by 22 times, and Fe_t by 28 times. Therefore, increases in Q created disproportionately large increases in the suspended sediments and associated total metals. In this mining-impacted basin, this pattern may be explained by higher and faster flows being able to access greater volumes of metals-enriched streambed and floodplain sediment originating from the wastes produced by the historic mining operations near the headwaters.

II. Diel cycling

Based on the 2 days of diel sampling at each site, diel cycle patterns were identified for pH, D.O., and water temperature at all 4 sites (Figures 13 a-c). Additionally, DIC had a diel pattern at BFB, CFBM, and BH (Figure 13d), and K_d and K_t cycled at site BH (Figure 13e). At site CFBM, TSS and total Al, Cu, Mn, Ti, and Zn showed a diel pattern as well (Figure 13f-h). TSS appeared to display diel cycling at BFB as well, although the trends are mostly within the precision errors of the TSS measurements (Figure 13i). Many trace elements were below detection at the sites, and so although diel cycling was not measured, it cannot be definitively ruled out with this dataset.

The pH, D.O., and water temperature patterns were similar at all sites, as these parameters increased after sunrise, peaked between noon and 18:00, and then decreased at nighttime. Not all sites had the same timing of minima and maxima, however. At BFB, pH peaked at 16:00, at CFBM it peaked at 12:00-13:00, at BH the peaks were at 15:00 and 17:00, and at LF the pH remained stable at its highest value over a relatively long period of time- from noon to 18:00. At BFB and CFBM, the D.O. peaks occurred approximately 2 hours later than the pH peaks. At BH and LF, the D.O. cycles were far less pronounced than they were at BFB and CFBM. At BH the peaks occurred at 15:00, while at LF the D.O. peak was at 18:00 on the first day and at 14:00 on the second day.

The water temperatures reached their daily maxima between 14:00 and 18:00 at the sites, slightly later than the air temperature maxima, which were measured between 13:00 and 15:00.

_5

Diel cycling of DIC followed a trend opposite that of pH, D.O. and water temperature. DIC increased at night and decreased during the day. At BFB and CFBM, DIC peaked at 6:00-8:00, while at BH, concentrations were steadily higher between 23:00 and 9:00 compared to the daytime. This is consistent with pH, D.O., and inorganic carbon diel cycling found in other studies, which credit the process to regulation by photosynthesis and respiration of aquatic plants and algae (McKnight et al., 1988; Fuller and Davis, 1989; Brick and Moore, 1996).

At site BH, the diel cycling of K_d and K_t exhibited nighttime increases as well. The difference between daytime and nighttime K concentrations was only approximately 10%, but the results are consistent on both days. The lowest concentrations were at about noon, and the highest occurred during the late evenings. The cause of this cycling is not known, but it is interesting to note that this element was one of only 3 which exhibited spring flushing at the site.

At CFBM, TSS and total Al, Cu, Mn, and Ti were 150-400% higher at night than during the day. These total metals correlated moderately well (r=0.66-0.75) with TSS at the site over the diel timescale. Total Zn showed a similar pattern by being twice as concentrated at night as during the day, but these data are inconclusive due to the problems with Zn contamination. This observance of TSS and associated trace metal cycling is similar to the results found by Brick and Moore (1996) on the Clark Fork River near Deer Lodge, 92 km upstream of CFBM. Those researchers detected nighttime increases in TSS, dissolved Mn and Zn, and acid soluble Fe, Mn, Cu, and Zn. The cause for the nighttime increases in the suspended sediment and associated metals is unknown, although Brick and Moore (1996) suspected that nocturnal benthic insect activity could account for the differences.

III. Rain-storm response

1. Precipitation

In Butte, at the headwaters of the Clark Fork River, 1.14 cm of rain fell on 9/1 and 9/2, about twice the cumulative precipitation there (0.58 cm) from mid July-August 31. Similarly, in Drummond, only 9 miles from CFBM, only 0.18 cm fell between 7/10/00-8/31/00, compared with the 0.66 cm that fell on 9/1 and 9/2. A total of 1.57 cm fell from 9/1-9/6, and more rain (1.09 cm) fell on 9/11-9/13.

In the Blackfoot River basin, a similar pattern of early September rains followed many weeks of near-drought conditions. In Lincoln, the town approximately 15 km downstream of BH and LF, the cumulative precipitation of 1.57 cm on 9/1 and 9/2 exceeded the total precipitation (1.50 cm) of the 8 previous weeks. Similar levels of rainfall fell in the region through 9/5/00 and again from Sept 9-12. Midway down the basin, in the town of Ovando, there was 1.34 cm of precipitation on 9/3/00. This too was a drastic change from the previous 8 weeks, during which only 0.30 cm fell in the region.

All precipitation data comes from the WRCC (2001).

2. Streamflow variation during storm

At BFB and LF, Q rose by approximately 20% following the onset of the September rains (Figure 14a,b). There was a larger relative change in Q at BH, where Q rose from 260 to 410 L/s between September 1-5 (Figure 14c). The largest Q response was at CFBM, where Q nearly doubled from 3100 L/s on 9/1/00 to 5800 L/s on 9/6/00 (Figure 14d).

3. Water quality response to September rain events

a) Site BFB: Several parameters exhibited a response to the rain events and subsequent increase in Q. The pH level dropped on 9/2 and 9/3 by 0.1 units before going back up to 8.35-8.40 for the rest of the period. TSS decreased from 1.4-1.8 mg/L on 9/1 and 9/2 to 0.6 mg/L on 9/4/00, and then it went back up to 1.4-2.0 for the rest of the next week. The water temperature fell from 15°C to 11°C. Dissolved Mn was the only element which decreased in concentration over the first week of the rainy period (Figure

15a). By 9/6/00, it had dropped to 0.8 μ g/L from 1.1-1.2 μ g/L on 9/1 and 9/2, and after 9/6/00 it returned to its earlier concentrations.

Several elements increased in concentration over the course of rain-event study period. These included DIC, which increased by about 6%; Fe_d and Fe_t , which were rather noisy but overall increased by about 20%; and K_d , K_t , Na_d , Na_t , S_t , Si_d , Si_t , and Sr_d and Si_t , which increased by 10-20%. Dissolved S showed a stronger response; it increased by 30% between 9/1 and 9/12 (Figure 15b). Except for DIC and Na_t , these elements were among those that did not have good inverse, linear correlations with Q over the seasonal scale as well. Additionally, dissolved and total K, Na, S, Si, and Sr had concentration surges at the start of snowmelt in the spring. Their positive response to the increasing Q in September indicates that the rain created a flushing effect of those elements, rather than a diluting effect, just as the onset of spring runoff created a flushing effect in late March. This finding suggests that these elements are not predictable using Q alone in both short term (e.g. 1-2 weeks) and long term (e.g. several months of spring runoff) events in the watershed. Instead, information on the timing of relatively large surges in Q could be more useful in predicting the concentrations of these elements.

<u>b) Site CFBM:</u> This site, which had the largest Q response to the rainfall, exhibited some of the strongest geochemical responses. Total suspended sediment, which was relatively low from 9/1 to 9/4, (at 2.0-3.1 mg/L), increased sharply on 9/5, when it rose to 8.2 mg/L (Figure 16a). It continued to increase to 15 mg/L steadily through 9/12, except for a dip to 6.0 mg/L on 9/6. Total Al, Cu, Fe, Mn, P, Ti, and Zn followed almost identical patterns, increasing by 3-8 times over the 12 day study period (Figure 16b). As discussed earlier, these trace metals were generally well associated with TSS on the seasonal scale as well. Also increasing with Q were Ba_d , Ba_t , Si_d and Si_t , which rose by approximately 20% and whose trends were similar to those of the trace metals mentioned above (Figure 16c). Dissolved and total K also rose through 9/6/00, although unlike TSS and the associated metals, their concentrations dropped during the second half of the sampling event.

Dissolved and total Li, Mg, S, and Sr behaved in an opposite manner. These elements declined in concentration by 10-25% as the Q rose (Figure 16d). Dissolved and

total Li, Mg, and Sr also had good linear inverse correlations with Q on the seasonal scale, again suggesting that the system responded similarly to a significant rain event as it did to higher water during the spring earlier in the year.

c) Site LF: At this site, most changes that occurred over the rain event were within the measurement errors. No trends in concentrations are observed for this sampling period. The one exception is that dissolved S rose steadily by approximately 10%, from 0.93 mg/L on 9/1 to 1.00 mg/L on 9/10 (Figure 17). However, considering that the highest field blank reading on S was 0.08 mg/L, this trend may not be accurate. Nonetheless, it is interesting to note that in the fall of 1998, Nagorski et al. (2001) also found a surge in dissolved S at the same site. They hypothesized that the increases to S could have been due to delivery by rainfall directly, or by precipitation-induced flushing of S in adjacent aquifers—processes which have been identified by other researchers as likely sources for autumn S increases in watersheds (Williams et al., 1993 and Campbell et al. 1995).

<u>d) Site BH:</u> At this site, only a few parameters had measurable responses to the increase in Q. DIC, Ca, Mg, Si, and Sr concentrations dipped between 9/4-9/6, although these decreases were only 3-10%, which is close to the precision limits of the analytical measurements. Water temperature fell from 15 to 10°C. TSS decreased from 0.5 mg/L on 9/1 to 0.2 mg/L on 9/4, and then rebounded to 0.6 by 9/8.

The largest change in concentrations was for dissolved and total S. Its concentration was 3.6 mg/L on 9/1 and 9/3, and then it increased until 9/4, when its concentration was approximately 20% higher, at 4.4 mg/L. On 9/8 and 9/10, its concentration was still higher (at 4.0-4.1 mg/L) than it was at the start of the sampling event. Interestingly, this element exhibited flushing patterns at the site during spring runoff earlier in the year and also during the spring of 1998 (Nagorski et al. 2001). These results again indicate that the geochemical response to the high precipitation event was similar to the spring runoff response.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV. Comparison of seasonal, rain-event, and diel scale variabilities

1. How do diel variations compare with seasonal variations?

The range (maximum value- minimum value) in diel concentrations was compared with the range in seasonal (12-month) concentrations, although extreme outliers (values > 3 times the interquartile range) were excluded (Table 13 a-d). These outliers were removed from the comparison in order to avoid inflating range values with data that were highly unusual within each temporal set because of possible sample contamination problems. Most of the elements that had extreme outliers were the total recoverable metals.

Based on calculations of the percent of the seasonal range captured by the diel range for each parameter, the data were separated into three groups: parameters whose diel range (1) was \geq than seasonal range; (2) was 50-99% of the seasonal range; and (3) was <50% of the seasonal range.

Only 3 analytes fell within the first category. At site CFBM, the D.O. (in terms of percent saturation) was 135% greater over the 48 hour study period in September than during the 12 month seasonal study. The second element, Mo_t at CFBM, also had a diel range that exceeded the seasonal range. While the seasonal concentrations ranged from less than the PQL (0.003 mg/L) to 0.005 mg/L, the diel concentrations ranged from 0.003 to 0.009 mg/L. The relatively high diel Mo_t concentrations occurred between 9:00 and 21:00 on 9/18/00 for unknown reasons. The one other element with a diel range capturing the seasonal range was dissolved As at site BH. There, the seasonal range was from 0.2 to 0.4 μ g/L, while the diel concentration varied from 0.3 to 0.5 μ g/L—although these concentrations are very close to the PQL of 0.2 μ g/L.

The second category, in which the diel range covered 50-99% of the seasonal range, is comprised of: D.O. (mg/L) and As_d at BFB; pH, D.O. (mg/L) and Ca_d at CFBM; pH, water temperature, D.O. (% saturation), As_t , K_d , and Si_d at BH; and pH, water temperature, D.O. (% saturation), and As_d at LF.

All other elements fell into the third category, in which the ranges of diel concentrations were less than 50% the seasonal ranges. Yet, several parameters were in the higher end of this category. For example, the diel ranges of pH, water temperature,

and D.O. at BFB were 32-46% of the seasonal ranges. The TSS and associated total metals at CFBM had high percentages as well. The diel TSS range spanned 46% of the seasonal variation; As_d and As_t spanned 33-36%; Cu_t was 21% the seasonal range; Fe_d and Fe_t spanned 22 and 28%, respectively, and Mn_d and Mn_t covered 26 and 28% of the seasonal variation. At all sites, most of the major elements had diel concentration ranges which were between 5 and 30% of the seasonal ranges.

An important point to consider with these values, especially for those elements that are close to the detection limits is that portions of the variability may be due to instrument measurement error. That is, the relatively large diel variations may be due a combination of real environmental change and of laboratory measurement error. Nonetheless, the results show that for whatever the reason, diel processes can cause as much change as seasonal processes. This result underscores the importance of sampling at consistent times of the day when aiming to evaluate long-term or spatial trends in trace metal geochemistry.

Only a few other researchers have compared diel variations to seasonal variations in rivers. McKnight and Bencala (1988) reported that during the 48 hour period they studied, the Fe changes in the Snake River, Colorado reflected 47% of the total variability seen over 6 years at the site. Similarly, Constanz (1998) found that the diurnal surface water temperature in 2 large Sierra Nevada streams captured 30-40% of the annual variation.

2. How does the September rain event geochemistry compare with the diel and seasonalscale variations?

Examination of the boxplots in Figures 19-22 reveals that the amount of geochemical variability encountered at all 4 sites during the first 2 weeks of September was typically much smaller than the seasonal variability. The range in concentrations during the September rain event was more similar to those found during the diel studies for most measured parameters. However, the diel variability was generally larger than the rain event variability for the parameters with strong diel cycling, such as pH, DO (% saturation), and temperature. As noted earlier, both the seasonal and September sampling events took place at consistent times of day at each site.

With the exception of dissolved Mo at CFBM, there were no cases of the September rain event variability exceeding the seasonal variability. However, at CFBM the rain event produced nearly the same amount of concentration variation as was observed over the 12 month seasonal study for TSS, Al₁, Cu₂, Fe₂, Mn₂, P₂, S₄, S₅, Si₂, and Zn₄. (Figure 20). As described earlier, the September rain event triggered a 7-fold increase in TSS and a 3 to 8-fold increase in total recoverable metals. Put into the context of the overall seasonal variability, this relatively short-term rain event created conditions in the Clark Fork that reflected much of the variability seen on the seasonal scale.

These results, illustrated by the boxplots in Figures 19-22, indicate that the measured geochemistry of these rivers is highly dependent on the sampling design and frequency. From these results emerge the obvious implications for the design of future sampling projects. Without taking into account the time of day and sampling intensively during short term periods of variable climatic conditions, any attempts to characterize the seasonal or annual variations in surface waters may produce skewed and unrepresentative samples which may inaccurately portray the geochemical dynamics in rivers.

SUMMARY AND CONCLUSIONS

The findings of this project indicate that major variations in the geochemistry of streams and rivers in Montana may occur within diel, daily, and seasonal time scales. Within the same water bodies, some constituents vary predictably and conservatively according to changes in streamflow, while others behave irregularly and in response to a complex combination of physical and chemical dynamics in the basin source areas.

The Clark Fork River, which lacked the typical spring runoff hydrograph peak due to abnormally dry conditions in the watershed and large irrigation withdrawals, had higher concentrations of most measured elements than the 3 other sites over the 12 month study period. The mining-impacted sites (CFBM and BH) had higher concentrations of S and some metals (Fe, Mn, and Zn) than the relatively pristine sites (BFB and LF).

On the seasonal scale, streamflow generally correlated inversely with many of the major elements, and it was positively or poorly associated with TSS and trace metals. As

a result, predicting the geochemistry of most solutes and particulates in this river cannot be done accurately using streamflow alone. While the major elements were conservatively diluted by snowmelt (generally by 40-70%), the trace metals were appeared to be sensitive to changing particulate availability and chemical variations in the watershed.

Numerous elements at BFB, LF, and BH exhibited hysteresis patterns, in which falling limb concentrations were different from rising limb concentrations. Some elements had different types of relationships with Q at each of the study sites, indicating that watershed-specific processes regulate the timing of their geochemical variations. Most total recoverable metals followed TSS trends, which had clockwise hysteresis. This rotation direction is likely due to the washing out and subsequent depletion of sediments in the watershed that had built up over low-flow winter conditions.

In contrast, most major elements exhibited linear relationships or cross-over hysteresis patterns with Q. Many of the elements without open hysteresis loops would have had counter-clockwise rotation if a small number of early spring data points were not considered. These early spring surges in concentrations are thought to be produced by flushing mechanisms, in which accumulated stored solutes are suddenly displaced into the stream channel by the meltwater, or by preferential elution from the snow itself. Spring flushing was found for TSS, Al_t , As_d , As_t , Fe_t , K_d , K_t , Li_d , Li_t , Mn_t , Na_d , Na_t , S_d , S_t , Si_d , Si_t , Sr_d , Sr_t and Ti_t , at BFB, which also had wider hysteresis loops for many elements than at LF and BH. Spring flushing was also identified for alkalinity, Al_t , Ba_t , Fe_t , Mn_d , Mn_t , Si_t , and Sr_t at LF, and for dissolved and total K and S at BH.

At CFBM, there were no discernable relationships between Q and concentration for most parameters. The highest concentrations of TSS and associated metals occurred on days following relatively large rain events in the basin, indicating that rain-generated surface runoff can supply the river with mining-contaminated floodplain sediments or water and degrade the water quality 130 km downstream from the historic mining center.

Many elements that exhibited flushing effects at the start of spring runoff behaved similarly when relatively large September precipitation events ended 2 months of neardrought conditions in the region. Both dissolved and total recoverable concentrations of many elements climbed with increasing Q produced by the fall rain. At CFBM, particularly large rises in metal concentrations were observed during this short-term sampling event.

Dissolved oxygen, pH, and water temperature had diel cycles at all sites, and DIC cycled at 3 sites. Such cycles are thought to be dependent on photosynthesis and respiration patterns by plants and algae in the streams and rivers. At CFBM, suspended sediment and associated total recoverable metals were higher at night than during the day on both 24-hour sampling events. These findings are similar to those found further upstream in a 2 day study by Brick and Moore (1996), who hypothesized that enhanced benthic insect activity at night may account for the diel changes. The reproducibility of their results in this project suggests that nighttime increases in suspended sediment and associated metals may be a common occurrence in the river. It is recommended that future studies be conducted on this issue and on the possibility that suspended sediment variations occur on a diel scale in other rivers as well.

The range of diel variations rivaled the seasonal variations for many elements. Major parameters such as pH, DO, TSS, and some total recoverable metals varied almost as much or even more on the diel scale as they did on the seasonal scale at some or all sites. The range in geochemical concentrations observed on the scale of the September rain event was typically smaller than the seasonal variability and similar to the diel-scale variability. Yet, some parameters varied a relatively large amount during the late summer rains as well. Most prominently, TSS and total recoverable metals at CFBM varied almost as much during the 2 weeks of rain as they did on the entire seasonal scale. These results advocate for the need to sample at consistent times of the day and over variable climatic conditions when attempting to characterize long-term geochemical trends in streams and rivers.

Table 1					
Summa	iry:ICAP	ES measu	rement of L	eb Blanks	
			Total	Number	Highest
			number	of blanks	conc.
Elemen	t Units	POL	of blanks	below PQL	found
		1			
AI	mg/L	0.01	237	237	(BPQL)
8a	mg/L	0.0005	237	237	(BPQL)
Be	mg/L	0.0001	237	220	0.0003
Ca	mg/L	0.07	237	234	0.13
Cd	mg/L	0.001	237	237	(BPQL)
Co	mg/L	0.003	237	237	(BPQL)
Cr	mg/L	0.005	237	237	(BPQL)
Cu	mg/L	0.003	237	237	(BPQL)
Fe	mg/L	0.005	237	237	(BPQL)
ĸ	mg/L	0.20	237	237	(BPQL)
Li	mg/L	0.002	237	237	(BPQL)
Mg	mg/L	0.10	237	237	(BPQL)
Mn	mg/L	0.0005	237	237	(BPQL)
Mo	mg/L	0.003	237	237	(BPQL)
Na	mg/L	0.18	237	231	0.31
NE	mg/L	0.001	237	237	(BPQL)
Р	mg/L	0.01	237	237	(BPQL)
Pb	mg/L	0.02	237	237	(BPQL)
S	mg/L	0.007	237	223	0.023
Si	mg/L	0.02	237	237	(BPQL)
Sn	mg/L	0.0025	237	237	(BPOL)
Sr	mg/L	0.0005	237	235	0.0008
Ti	mg/L	0.005	237	237	(BPQL)
v	mg/L	0.005	237	237	(BPOL)
Zn	mg/L	0.001	237	237	(BPOL)
POL + P	Instical	Quantifia	ble Limit		

Tables 1.1-1.4: Laboratory and Field Blanks

Table 1.3

ummary: IC/	NPES me	asurement	of FA Field	d Blanks	
			Total	Number of	Highest
	ļ		number	of blanks	Conc.
Element	_Units	POL	of blanks	below PQL	found
AI	mg/L	0.01	48	47	0.06
Ba	mg/L	0.0005	48	45	0.0014
Se	mg/L	0.0001	48	48	(BPQL)
Ca	mg/L	0.07	48	47	0.13
Cd	mg/L	0.001	48	48	(BPQL)
Co	mg/L	0.003	48	48	(BPQL)
Cr	mg/L	0.005	48	48	(BPQL)
Cu	mg/L	0.003	48	48	(BPQL)
Fe	mg/L	0.005	48	47	0.041
к	mg/L	0.20	48	48	(BPQL)
Li	mg/L	0.002	48	48	(BPQL)
Mg	mg/L	0.10	48	48	(BPQL)
Mn	mg/L	0.0065	48	47	0.0006
Mo	mg/L	0.003	48	48	(BPQL)
Na	mg/L	0.18	48	25	0.61
Ni	mg/L	0.001	48	48	(BPQL)
P	mg/L	0.01	48	48	(BPQL)
Pb	mg/L	0.02	48	48	(BPQL)
S	mg/L	0.007	48	4	0.077
S	mg/L	0.02	48	46	0.23
Sn	mg/L	0.0025	48	48	(BPQL)
Sr	mg/L	0.0005	48	47	0.0007
Ti	mg/L	0.005	48	48	(BPQL)
v	mg/L	0.005	48	48	(BPQL)
Zn	mg/L	0.001	48	48	(BPOL)

PQL= Practical Quantifiable Limit BPQL= Below Practical Quantifiable Limit

Table 1.2

		arbon A		red on TSS filt	ers,
Analyte	Units	POL	Total number of blanks	Number of blanks BPOL	Highest conc. found
TSS	mg/L		9	•	0.1
Arsenic	µg/L	0.2	262	262	(BPQL)
DIC	mg/L	1.0	113	113	(BPQL)

TR= Total recoverable; digested according to EPA Method XXX.

Summary: Fiel Alkalinity			rbon Analy:		
Analyte	Units	POL	Total number of blanks	Number of blanks BPOL	Highest conc. found
As (FA and TR)	µg/L	0.2	96	96	(BPQL)
Alkalinity	mg/L	4	48	13	8.8
Inorganic C	mg/L	1.0	48	48	(BPQL)

Highest Conc. found Number of of blanks below POL Summary: ICAPES measurement of TR Digest Blanks number of blanks Total **** 0.01 0.005 0.0005 0.001 0.003 0.003 0.003 0.003 0.003 0.002 0.001 0.002 0.002 0.005 0.005 0.005 0.005 0.005 0.005 ğ Units $\frac{1}{2}$ Element Table 2 2 x##9999954x=22554500222=2

Table 2.3					
Summary:	ummary: Digest Blanks measured on AAS	measured or	n AAS		
			Total	Number	Highest
			number	of blanks	conc.
Analyte	Units	ğ	of blanks	BPOL	found
Arsenic	µg/L	0.2	62	79	(BPQL)

Tables 2.1-2.3: Digested field blanks and digest blanks

Table 2.1 Summary: 1	Table 2.1 Summarv: ICAPES measurement of TR	rement of TR	Field Blanks		
			Total	Number of	Highest
			number	of blanks	Conc.
Elernent	Units	ğ	of blanks	below PQL	found
A	mg/L	0.01	45	39	0.03
Ba	mg/L	0.0005	45	45	(BPOL)
8	mg/L	0.0001	45	45	(BPQL)
ථ	mg/L	0.07	45	42	0.14
8	mg/L	0.001	45	45	(BPOL)
8	mg/L	0.003	45	45	(BPQL)
ඊ	mg/L	0.005	45	42	0.018
ð	mg/L	0.003	45	45	(BPQL)
Fe	mg/L	0.005	45	30	0.069
×	mg/L	0.20	45	45	(BPOL)
בי	mg/l	0.002	45	45	(BPOL)
Мg	mg/L	0.10	45	45	(BPOL)
ž	mg/L	0.0005	45	45	(BPOL)
Ŵ	mg/L	0.003	45	45	(BPQL)
Ra	mg/L	0.18	45	42	0.28
ź	mg/L	0.001	45	38	0.004
٩	mg/L	0.01	45	36	0.03
£	mg/L	0.02	45	45	(BPQL)
S	mg/L	0.007	45	33	0.078
ത	mg/L	0.02	45	39	0.05
<i>5</i> 5	mg/L	0.0025	45	45	(BPOL)
თ	mg/L	0.0005	45	45	(BPOL)
II II	mg/L	0.005	45	45	(BPOL)
>	mg/L	0.005	45	45	(BPQL)
Z	mg/L	0.001	45	25	0.29

Table 3.1	3.1				Table 3.2	8				Table 3.3	¢,			
Summ	ary: USG	Summary: USGS Standard T-143 measured on ICAPES	neasured on ICA	PES	Summa	ry: USGS	Standard T-145	Summary: USGS Standard T-145 measured on ICAPES	PES	Summa	ry: internal si	Summary: Internal standard measured on ICAPES	d on ICAPES	-
(n=151)	6				(n=102)					(n=190)				
		Reported	Measured	Measured Mean			Reported	Measured	Measured Mean			Known	Measured	
Element	nt Units	Mean (Pange)*	Mean (Std. Dev.)	win Reported Range?	Element	Units	Mean (Range)	Mean (Std. Dev.)	win Reported Range?	Element	Units	value	Mean (Sid. Dev.)	
R	1/6:1	22.1 (16.6)	21 (1)	ស្ថ	¥	-	67.6 (22)	65 (2)	ŝ	R	mg/L	0.5	0.48 (0.01)	
8	1/6r	81.9 (9)	81 (3)	Ŕ	8	µ9/L	37.1 (3.8)	36 (1)	ŝ	8	mg/L	0.5	0.49 (0.01)	
8	1/61	8.5 (1.32)	8 (2)	ស្ត	å	µ9/ل	9.04 (1.4)	8.5 (0.2)	ŝ	æ	mg/L	0.5		_
ථ	աց/Լ	53.7 (4.4)	52.8 (1.6)	Ð	8	mg/L	30.7 (2.6)	30.2 (12)	ŝ	8	mg/L	10		
3	н9/L	19.1 (3)	(1) 81	ŝ	3	µ9/L	9.33 (1.64)	8.6 (0.6)	ŝ	8	mg/L	0.5		_
8	µ0/Г	12 (2 4)	(1) (4)	ŝ	8	µ9/Г	10 (18)	10 (0 3)	ŝ	გ	mg/L	0.5	0.53 (0.01)	
ö	40/L	37 (5.2)	36 (1)	ŝ	ð	1/61	15.3 (2.8)	14 (1)	ŝ	ð	mg/L	0.5		_
5	1/61	22.3 (3.8)	(1) 62	Ŕ	ð	۳ <u>6</u> /۲	11 (2.8)	(E) II	đ	8	т/бш	0.5	0.49 (0.01)	_
Ľ	н9/L	222 (28)	236 (6)	ŝ	Fe	µ9/L	101 (16)	107 (3)	ŝ	£	mg/L	0.5	0.50 (0.01)	_
¥	mg/L	2.5 (0.42)	2.5 (0.4)	Ř	×	mg/L	2.13 (0.32)	2.2 (0.1)	ង្	¥	mg/L	S	4.96 (0.08)	
Ξ	۲/6 rl	18 (4.2)	16 (1)	ŝ	3	µ9/L	27.3 (5)	25 (2)	£	5	mg/L	0.5	0.48 (0.01)	
Бw	աց/է	10.4 (1)	10.4 (0.3)	ŝ	ŝ	ոց/Լ	8.68 (0.9)	8 6 (0.2)	¥ES	ŝ	mg/L	10		_
ž	h9/L	18.2 (3.8)	17.2 (05)	ង្	ž	۲,6rt	20.9 (3)	(9.0) 6.61	ស្	ž	mg/L	0.5		_
Ŷ	h9/L	36.1 (8.6)	37 (1)	ŝ	Ŷ	µ9/L	9.23 (2.58)	9.1 (3)	ŝ	Ŷ	mg/L	0.5		_
ę	mg/L	34 (3.2)	33.5 (1.0)	ک	Ę	աց/Լ	41.2 (3.8)	41.0 (1.4)	ک	ş	mg/L	10		_
Z	hg/L	71 (10)	73 (2)	ŝ	ź	1/611	11 (2.6)	12 (1)	¥53	ž	mg/L	0.5	0.51 (0.01)	_
٩	1/61	(Not reported)		•	٩	יים/ך	(Not reported)	•		٩	mg/L	0.5		
£	1/6#	83.4 (14 2)	87 (2)	£3	£	1,611	12.7 (2.4)	(BPOL)		2	աց/Լ	0.5		_
s	աց/Լ	(Not reported)	•		s	աց/է	(Not reported)			s	mg/L	0.5	0.49 (0.02)	
03	ш9/Г	10.94 (1.64)	12.9 (0.5)	2	<i>й</i> л	mg/L	5.28 (0.66)	6.4 (0.3)	9	J	աց/Լ	0.5		
5	۳9/L	(Not reported)	•	•	জ	µ9/L	(Not reported)			5	mg/L	0.5		
ۍ کړ	1/61	306 (30)	303 (10)	ŝ	ŭ	µ9/L	203 (18)	204 (6)	ر ک	ũ	աց/Լ	0.5		
Ē	hg/L	(Not reported)	•		Ξ	1,6,t	(Not reported)			Ē	mg/L	0.5	_	
2	hg/L	30 (6)	28 (1)	ស្	>	µg/L	11.7 (3.4)	11 (0.4)	ŝ	>	mg/L	0.5	0.50 (0.02)	_
S	1/61	20 (4.4)	17 (1)	¥3	ភ	1/01	10 (4.8)	7 (1)	YES	ភ	mg/L	0.5	0.50 (0.01)	
'Repoi	ted Range	Reported Range is 2 pseudosigmas from the mean	from the mean		Heporte	ed Range	Reported Range is 2 pseudosigmas from the rean	s from the rnean						

Tables 3.1-3.3: Summary of standards measured on ICAPES during sample analyses.

126

Table 4.1 Summal	- Dig	ested USGS Standa	Table 4.1 Summary: Digested USGS Standard T-143 measured on ICAPES	on ICAPES	Table 4.2 Summary:		ested USGS Stanc	Digested USGS Standard T-145 measured on ICAPES	d on ICAPES
(<i>n</i> =61)					(n=24)	1			
	•	Reported	Measured	Measured Mean			Reported	Measured	Measured Mean
Element	Units	Mean (Range)	Mean (Std. Dev.) w	Dev.) w/in Reported Range?	Element	Units	Mean (Range)*	Mean (Std. Dev.) w	w/in Reported Range?
A	µ9/L	22.1 (16.6)		YES	A	µ9/L	67.6 (22)	71 (9)	¥5
Ba	µg/L	81.9 (9)	80 (2)	Æ	Ba	µ9/L	37.1 (3.8)	37 (1)	æ
Be	µ9/L	8.5 (1.32)	7.9 (0.2)	YES	Be	µg/L	9.04 (1.4)	8.5 (0.2)	Ŕ
රී	mg/L	53.7 (4.4)		Д	ণ্র	mg/L	30.7 (2.6)	29.7 (1.2)	لك
3	µg/L	19.1 (3)	18 (1)	YES	8	µg/L	9.33 (1.64)	8.7 (0.7)	SE SE
රි	µ9/L	17 (2.4)	17 (0.4)	YES	8	µ9/L	10 (1.8)	10 (0.3)	ل و ک
ö	µg/L	37 (5.2)	36 (3)	ر ک	<u>ک</u>	µ9/L	15.3 (2.8)	14 (1)	Ŕ
3	µ9/L	22.3 (3.8)	23.0 (0.8)	YES	5	µg/L	11 (2.8)	11.7 (0.4)	Ŕ
Fe	hg/L	222 (28)	242 (16)	Э С	Fe	µg/L	101 (16)	109 (4)	ک
¥	mg/L	2.5 (0.42)	2.6 (0.1)	YES	¥	mg/L	2.13 (0.32)	2.2 (0.05)	ង្ក
C:	µ9/L	18 (4.2)	17 (1)	YES	<u>.</u>	µg/L	27.3 (5)	25 (2)	Ř
Mg	mg/L	10.4 (1)		AT ST	Mg	mg/L	8.68 (0.9)	8.55 (0.22)	ل گ
E N	µ9/L	18.2 (3.8)	17.3 (0.6)	Ϋ́Ε Ϋ́Ε	۲ <u>م</u>	µg/L	20.9 (3)	19.9 (0.4)	لك
Mo	µg/L	36.1 (8.6)	37 (1)	AB S	Mo	µ9/L	9.23 (2.58)	8.9 (0.4)	لك
Ra	mg/L	34 (3.2)	33 (1)	AES YES	RA	mg/L	41.2 (3.8)	41.0 (1.2)	Ŕ
ž	µ9/Г	71 (10)	72 (2)	YES	Ż	μg/L	11 (2.6)	12 (1)	ស្ត
4	µg/L	(Not reported)		•	٩	µ9/L	(Not reported)	•	,
æ	µд/L	83.4 (14.2)	86 (2)	YES	£	µ g/L	12.7 (2.4)	(BPQL)	
s	mg/L	(Not reported)	•	•	S	mg/L	(Not reported)	•	•
ŝ	mg/L	10.94 (1.64)	12.8 (0.5)	9	Ø	mg/L	5.28 (0.66)	6.2 (0.2)	2
ۍ ک	hg/L	(Not reported)	•	•	ઝ	µ9/L	(Not reported)		•
ىر م	µ9/L	306 (30)	302 (9)	ک	ر د	µ g/L	203 (18)	206 (5)	ŝ
n	µg/L	(Not reported)	•	٠	H	μg/L	(Not reported)	•	•
>	µ9/L	30 (6)	28 (1)	SE VE	>	µ9/L	11.7 (3.4)	10.6 (0.5)	Ð
Zu	µg/L	20 (4.4)	28 (32)	Q	Z	µ9/L	10 (4.8)	10 (2)	Ð
"Reporter	I Range	Reported Range is 2 pseudosigmas from the mean	m the mean		Reported	l Range	Reported Range is 2 pseudosigmas from the mean	om the mean	

Tables 4.1-4.2: Summary of standards digested with TRM samples and measured on ICAPES during sample analyses.

127

Tables 5.1-5.2 External and Internal Standards Measurements

Table	5.1
-------	-----

Summary: External standards measured on AAS					
Concentrations in µ g/L.					
Standard	Reported value (Range)*	Measured values or mean (std. dev.)	Measured values within Report. Range?		
USGS T-143 (n =42)	15.2 (2.4)	14.3 (0.9)	YES		
USGS T-143 (Digested) (n =65)	15.2 (2.4)	13.8 (2.1)	YES		
USGS T-145 (n = 143)	9.88 (2.08)	8.8 (1.0)	YES		
USGS T-145 (Digested) (n =21)	9.88 (2.08)	9.8 (5.4)	YES		

*Reported Range is 2 pseudosigmas from the mean

Note: USGS Standards T-121, T-143, and T-113 were diluted to 10%, and USGS Standards T107, T-119, and T-145 were diluted by 50% for analysis in order to fall within the range of calibration of the AAS.

Table 5.2

Summary: Internal standards (for	rtified lab blanks)		
measured on AAS, an	d Carbon Analyzer		
	Mean (Std. Dev.) % difference		
	of fortified lab blank		
Standard a	and measured concentration		
Arsenic (< or = 0.5 µg/L) (n =649)) 8% (8%)		
Arsenic (>0.5 μg/L) (<i>n</i> =664)	3% (3%)		
Inorganic C (n =350)	2% (2%)		

Table 6.1		
Summary: Result	s of analytical dupl	icates on ICAPES
1	Number of	Mean (stdev) of
_	dupl. pairs	% differences
Element	above PQL	of all dupl. pairs
Al	92	3% (9%)
Ba	58	1% (2%)
Be	4	1% (1%)
Ca	182	2% (2%)
Cd	2	1% (1%)
60	2	1% (1%)
Cr	10	1% (2%)
Cu	56	5% (6%)
Fe	167	2% (2%)
K κ	182	2% (3%)
Li	139	2% (3%)
Mg	182	1% (2%)
Mn	162	2% (3%)
Mo	64	3% (4%)
Na	181	2% (3%)
Ni	35	5% (6%)
P	108	4% (5%)
Pb	2	1% (0%)
s	182	1% (2%)
S	182	1% (2%)
Sn	0	
Sr	182	1% (2%)
Ti	25	2% (3%)
l v	23	1% (0%)
Zn		• •
<u>د</u> ب	93	

Summary:		gest duplicates as
		analyzed on ICAPES
	Number of	Mean (stdev) of
	dupl. pairs	% differences
Element	above PQL	of all dupl. pairs
Al	65	11% (18%)
Ba	83	2% (2%)
Be	4	6% (7%)
Ca	83	3% (2%)
Cd	0	•
Co	0	•
Cr	8	22% (30%)
Cu	24	4% (5%)
Fe	83	7% (10%)
к	83	3% (5%)
Li	65	3% (6%)
Mg	83	2% (2%)
Mn	74	5% (10%)
Mo	23	5% (6%)
Na	83	4% (5%)
Ni	22	25% (42%)
P	50	11% (12%)
Pb	0	•
S	80	3% (2%)
Si	80	2% (2%)
Sn	0	•
Sr	83	2% (2%)
Ti	23	5% (4%)
v	0	•
Zn	64	21% (29%)

Tables 6.1-6.4: Precision results on all instruments

Table 6.2

.

Summary: AAS, alkalinity titration, and carbon analyzer replicate comparisons					
	Number of Mean (stdev) % difference				
	replicate sets	or % RSD of			
Analyte	above PQL	replicate sets			
Total Susp. Sed.	110	26% (25%)			
Arsenic	183	6% (6%)			
Alkalinity	· 89	1% (1%)			
Inorganic C	79	1% (1%)			

Summary:	Results of dig	jest duplicates as
	6	nalyzed on AAS
	Number of	Mean (stdev) of
	dupl. pairs	% differences
Element	above PQL	of all dupl, pairs
As	75	8% (12%)

PQL= Practical Quantifiable Limit

%RSD= Percent relative standard deviation

Table 7.1		.			Table 7.2				
Summary:	Summary: ICAPES Spike recoveries on blanks	e recoveries (on blanks		Summary:	ICAPES	Summary: ICAPES Spike recoveries on samples	on samples	
								Number of	
		,	Number		-		Ċ	samples above	
		Spike	OF DIADAS	Mean (Siand. Uev.)		11-21	aplice (meth)	PLUL IOF INB	Mean (Stand. Dev.)
LIEMEN		Values	spiked	percent recovery			Values (mg/L)	BIBITIETIT SPIKED	percent recovery
Ē (ш <u>у</u> , с		1 U		ē (יי יי			
æ	mg/L	0.5	42		8	mg/L	0.5 or 0.125	223	97 (4)
å	mg/L	0.1	42	105 (2)	සී	mg/L	0.1 or 0.125	6	102 (2)
පී	mg/L	20	42	99 (3)	පී	mg/L	20	223	98 (10)
8	mg/L	0.2	42	103 (4)	3	mg/L	0.2 or 0.05	0	•
ර	mg/L	0.2	42	104 (2)	8	mg/L	0.2 or 0.05	0	•
ర	mg/L	0.5	42	104 (2)	ඊ	mg/L	0.5 or 0.125	12	104 (3)
ð	mg/L	0.5	42		5	mg/L	0.5 or 0.125	55	98 (5)
Fe	mg/L	0.5	42		Ъ.	mg/L	0.5 or 0.125	210	
×	mg/L	S	42	102 (2)	×	mg/L	5	223	100 (3)
5	mg/L	0.6	42	86 (6)	د	mg/L	0.6 or 0.150	192	84 (5)
Mg	mg/L	5	42	102 (2)	Mg	mg/L	5	223	
ž	mg/Ł	0.5	42		ž	mg/L	0.5 or 0.125	195	101 (3)
Ŵ	mg/L	0.2	42	104 (2)	Ŵ	mg/L	0.2 or 0.05	68	103 (3)
Ra	mg/L	10	42		Ra	mg/L	10	223	
ź	mg/L	0.5	42	105 (3)	Ż	mg/L	0.5 or 0.125	47	
٩.	mg/L	-	42		٩	mg/L	1 or 0.25	117	100 (4)
£	mg/L	0.5	42	103 (2)	£	mg/L	0.5 or 0.125	0	ı
S	mg/L	5	42	99 (5)	s	mg/L	5	223	107 (9)
ۍ ۲	mg/L	5	42	109 (6)	ਲ	mg/L	5	223	108 (7)
5	mg/L	0.2	42	105 (2)	<i>5</i> 5	mg/L	0.2 or 0.05	0	•
ഗ്	mg/L	0.5	42	106 (3)	ر ي	mg/L	0.5 or 0.125	223	97 (5)
F	mg/L	0.1	42		Ë	mg/L	0.1 or 0.025	25	101 (4)
>	mg/L	0.2	42	103 (3)	>	mg/L	0.2 or 0.05	0	
Ϋ́	mg/L	0.5	42	103 (3)	ŗ	mg/L	0.5 or 0.125	94	100 (4)
					Table 7.3				
PQL= Pract	PQL= Practical Quantifiable Limit	ible Limit			Summary:		AAS Spike (fortified sample) recoveries	ple) recoveries	
%RSD= Per	%RSD= Percent relative standard	-	jeviation					Number	
							Spike	of samples	Mean (std. dev.)
					Analyte	Duit	Value	above POL	percent recovery
							•	4 7 0	1 1101 111

Tables 7.1-7.3: Summary of spike recoveries measured on all instruments.

130

111 (12)

170

1.0

<u>µ9/L</u>

Arsenic

PARAMETER:	ORDER
Q	BFB>CFBM>LF>BH
TSS, Alt	BFB=CFBM>LF=BH
Alk, Ca _t	CFBM>BFB=BH;
	8FB=LF, CFBM>LF, LF>BH
DIC, Ca_d , (Cu_d) , (Cu_t) , Li_d , Mg_t , (Mo_d) , Mo_t , P_d	CFBM>BFB=LF=BH
As _d	CFBM>BFB>LF>BH
Ba _d , Ba _t	LF=BH>BFB>CFBM
Fe _d	CFBM=BH>BFB>LF
K _d , K _t , Mn _t , Na _d , Na _t	CFBM>BFB=BH>LF
Mg _d	CFBM>BH>BFB;
	BFB=LF, CFBM>LF, BH=LF
Mn_d , S_d , S_t , Si_d , Si_t , Sr_d , Sr_t	CFBM>BH>BFB>LF
Ast	CFBM>BFB=LF>BH
Fet	BFB=CFBM>LF;
	BFB=BH, CFBM>BH, BH=LF
Lit	CFBM>BFB>LF=BH
Pt	CFBM>BFB=BH;
	BFB>LF, CFBM>LF, BH=LF
Znt	CFBM=BH>BFB=LF

Table 8: Summary of results of non-parametricmultiple comparisons among sites.

In parentheses: elements that were above the PQL only at site CFBM

.

.

•

Table 9						
Summary of Wilcoxon Signed Ranks Test results (p-values) comparing						
the seasonal dissolved and total concentrations of each element						
	BFB	CFBM	LF	BH		
As _d v. As _t	0.007**	0.092	0.004**	0.000**		
Ba _d v. Ba _t	0.000**	0.000**	0.004**	0.005**		
Ca _d v. Ca _t	0.032*	0.300	0.584	0.403		
Cu _d v. Cu _t	(BPQL)	0.000**	(BPQL)	(BPQL)		
Fe _d v. Fe _t	0.000**	0.000**	(BPQL)	0.000**		
K _d v. K _t	0.000**	0.819	0.004**	0.021*		
Li _d v. Li _t	0.006**	0.150	0.152	0.301		
Mg _d v. Mg _t	0.054	0.174	0.903	0.761		
Mn _d v. Mn _t	0.000**	0.000**	(BPQL)	0.000**		
Mo _d v. Mo _t	(BPQL)	0.04*	(BPQL)	(BPQL)		
Na _d v. Na _t	0.002**	0.135	0.004**	0.007**		
P _d v. P _t	0.000**	0.000**	(BPQL)	(BPQL)		
S _d v. S _t	0.048*	0.276	0.005**	0.089		
Si _d v. Si _t	0.003**	0.001**	?	0.951		
Sr _d v. Sr _t	0.083	0.211	0.042**	0.070		
Zn _d v. Zn _t	0.002**	?	0.000**	0.000**		

* Test is significant at the 0.01 level

** Test is significant at the 0.05 level

Table 10

Dissolved vs.	total metal cor	centration: con	relation coeffic	ients
	BFB	CFBM	LF	BH
As _d v. As _t	0.47*	0.45*	0.91**	-0.16
Ba _d v. Ba _t	0.97**	0.87**	0.98**	0.98**
Ca _d v. Ca _t	0.96**	0.79**	0.95**	0.96**
Cu _d v. Cu _t	(BPQL)	0.24	(BPQL)	(BPQL)
Fe _d v. Fe _t	0.55**	0.60**	(BPQL)	-0.39
K _d v. K _t	0.98**	0.99**	0.90**	0.94**
Li _d v. Li _t	0.94**	0.94**	0.95**	0.87**
Mg _d v. Mg _t	0.99**	0.98**	0.96**	0.96**
Mn _d v. Mn _t	0.81**	-0.45*	(BPQL)	0.73**
Mo _d v. Mo _t	(BPQL)	0.28	(BPQL)	(BPQL)
Na _d v. Na _t	0.99**	0.97**	0.84**	0.90**
P _d v. P _t	0.60**	0.54**	(BPQL)	(BPQL)
S _d v. S _t	1.00**	0.97**	0.75**	0.97**
Si _d v. Si _t	0.74**	0.79**	0.94**	0.52*
Sr _d v. Sr _t	0.99**	0.98**	0.97**	0.98**

Dissolved vs.	total metal	concentration:	correlation	coefficients

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

Table 11						
Moderate to go	od correlations be	tween Q and TSS,	dissolved (d)			
elements, and	total recoverable (1	t) elements at all si	ites.			
All other elements lacked good and significant correlations with Q.						
(Seasonal data	only; n =23 for LF	and BH; $n = 24$ for	CFBM; n =21 f	or BFB)		
Parameter	Site BFB	Site CFBM	Site LF	Site BH		
TSS	0.67**	0.64**	0.66**	0.85**		
Alkalinity	-0.96**	-0.77**	-0.91**	-0.95**		
DIC	-0.95**	-0.55**	-0.96**	-0.93**		
t_AI	0.48*	0.70**	0.58**	0.66**		
d_As	-0.82**	-0.40*	-0.81**	-0.48*		
t_As	-0.27	0.37	-0.68**	0.56**		
d_Ba	-0.91**	-0.48*	-0.96**	-0.95**		
t_Ba	-0.94**	-0.21	-0.95**	-0.96**		
d_Ca	-0.96**	-0.89**	-0.94**	-0.95**		
t_Ca	-0.96**	-0.82**	-0.93**	-0.95**		
t_Cu	BPQL.	0.66**	BPQL	BPOL		
d_Fe	0.01	0.58**	-0.25	0.01		
t_Fe	0.52**	0.68**	0.55*	0.88**		
d_K	-0.71**	-0.69**	-0.95**	-0.70**		
t_K	-0.59**	-0.66**	-0.85**	-0.62**		
d_Li	-0.92**	-0.89**	-0.69**	-0.75**		
t_Li	-0.85**	-0.91**	-0.75**	-0.81**		
d_Mg	-0.94**	-0.80**	-0.94**	-0.94**		
t_Mg	-0.96**	-0.80**	-0.93**	-0.96**		
d_Mn	0.14	0.25	0.45*	0.88**		
t_Mn	0.56**	0.39*	0.65**	0.85**		
d_Na	-0.84**	-0.68**	-0.79**	-0.77**		
t_Na	-0.86**	-0.74**	-0.89**	-0.90**		
d_S	-0.75**	-0.73**	-0.68**	0.39		
t_S	-0.75**	-0.78**	-0.41	0.34		
d_Si	-0.70**	-0.38	-0.94**	-0.70**		
t_Si	-0.28	-0.15	-0.91**	-0.66**		
d_Sr	-0.94**	-0.93**	-0.97**	-0.92**		
t_Sr	-0.93**	-0.90**	-0.96**	-0.93**		
t_Ti	0.26	0.71**	BPQL			
d_Zn	-0.30	0.10	BPQL	0.91**		
t_Zn	0.48**	0.45*		0.79**		
	eignificant at the (

Correlation is significant at the 0.01 level (2-tailed).
Correlation is significant at the 0.05 level (2-tailed).

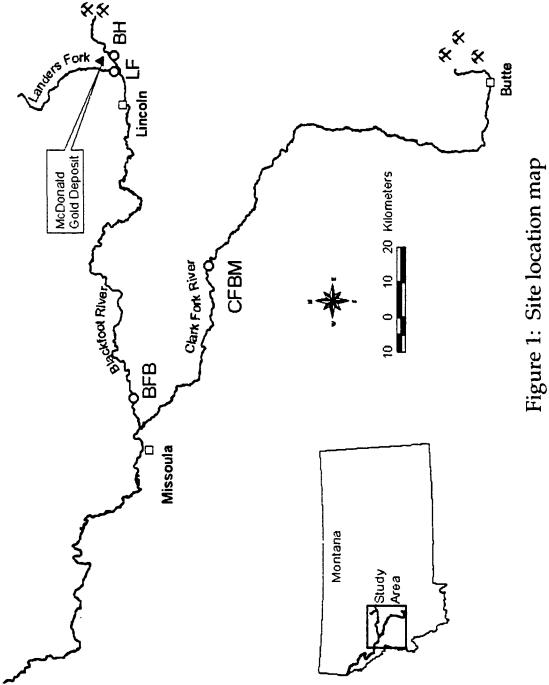
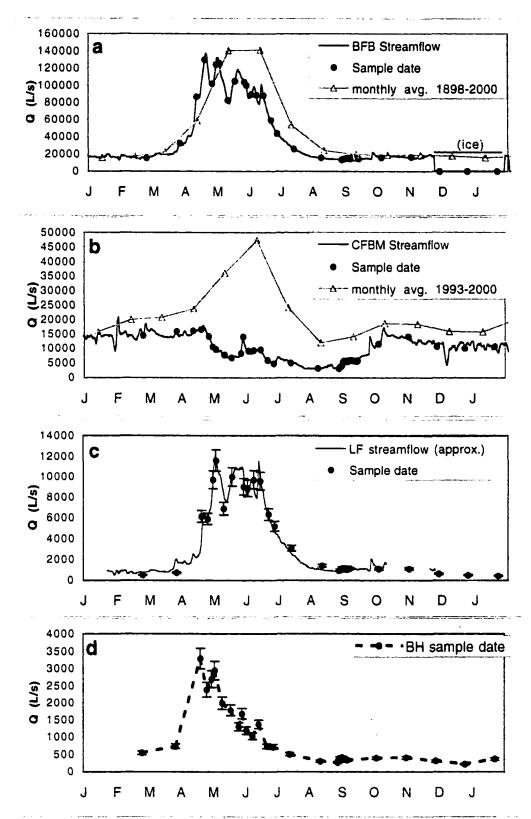
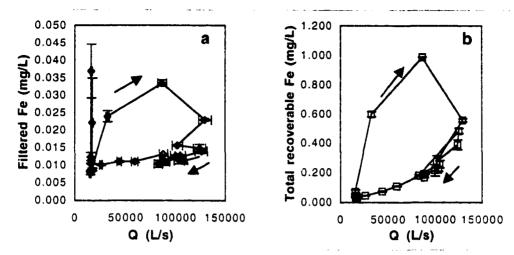

ISS vs. total metal concentrations: correlation coefficients					
TSS vs.:	BFB	CFBM	LF	BH	
Alt	0.89**	0.97**	0.99**	0.88**	
Ast	0.38	0.78**	-0.30	0.81**	
Bat	-0.67**	0.31	-0.70**	-0.76**	
Bet	(BPQL)	0.83**	(BPQL)	(BPQL)	
Cat	-0.64**	-0.50*	-0.66**	-0.77**	
Cut	(BPQL)	0.95**	(BPQL)	(BPQL)	
Fet	0.91**	0.95**	0.95**	0.98**	
Kı	0.03	-0.60	-0.33	-0.22	
Lit	-0.45*	-0.53**	-0.53**	-0.64**	
Mgt	-0.67**	-0.45*	-0.70**	-0.77**	
Mnt	0.92**	0.88**	0.99**	0.98**	
Nat	-0.39	-0.37	-0.54**	-0.67**	
Pt	0.78**	0.89**	0.05	0.35	
St	-0.24	-0.58**	-0.11	0.35	
Sit	0.38	0.26	-0.50*	-0.29	
Srt	-0.55**	-0.48*	-0.69**	-0.71**	
Tit	0.81**	0.97**	(BPQL)	(BPQL)	

 Table 12


 TSS vs. total metal concentrations: correlation coefficients

** Correlation is significant at the 0.01 level (2-tailed).


* Correlation is significant at the 0.05 level (2-tailed).

135

Figure 2: Hydrographs for the four study sites: a) BFB, b) CFBM, c) LF, and d) BH The approximated hydrograph at LF is based on a downstream gaging station on the Blackfoot River where Q was well correlated (R^2 =0.96) with Q measurements at LF.

Figure 3: Streamflow vs. (a) filtered ("dissolved") Fe and (b) total recoverable Fe at BFB. Error bars in these and all other plots represent the 95% confidence interval based on the triplicate samples collected per event.

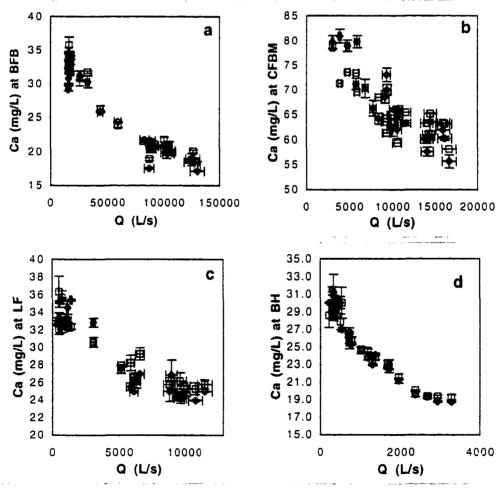


Figure 4: Streamflow vs. Ca at a) BFB, b) CFBM, c) LF, and d) BH. In these and all subsequent plots, filtered samples are denoted by triangles, and total recoverable concentrations by squares.

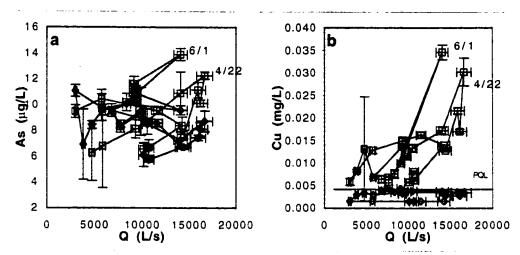


Figure 5: Streamflow vs. a)As and b) Cu at site CFBM. Sampling dates are connected in chronological order.

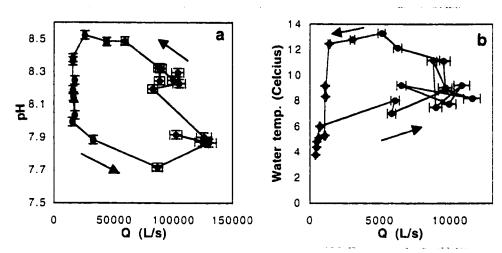
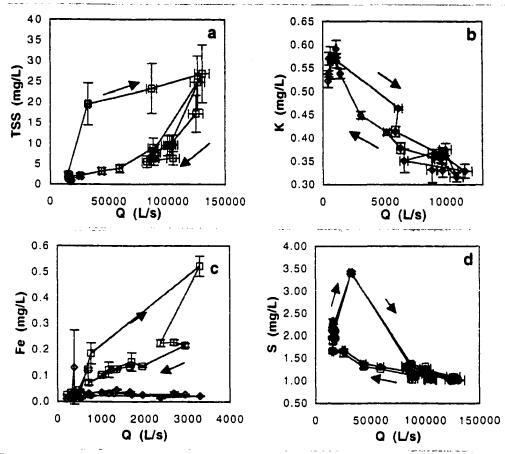



Figure 6: Streamflow vs. a) pH at BFB and b) water temperature at LF

Figure 7: Streamflow vs. a) TSS at BFB, b) dissolved K at LF, c) dissolved and total Fe at BH, and d) dissolved and total S at BFB. Sampling dates are connected in chronological order.

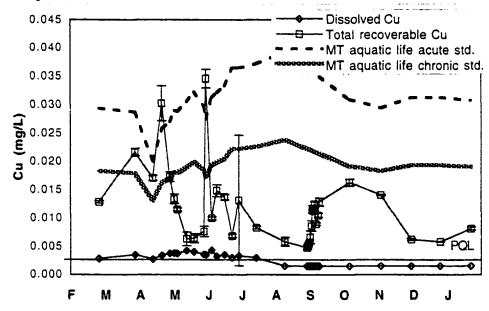
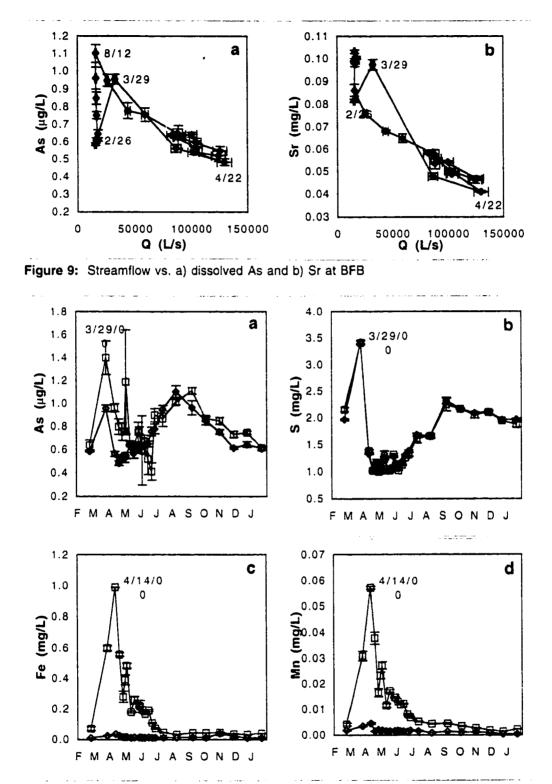



Figure 8: Date vs. Cu at CFBM, with MT aquatic life acute and chronic standards.

Figure 10: Date v. a) As, b) S, c) Fe, and d) Mn at BFB. Triangles denote dissolved concentrations and squares denote total recoverable concentrations.

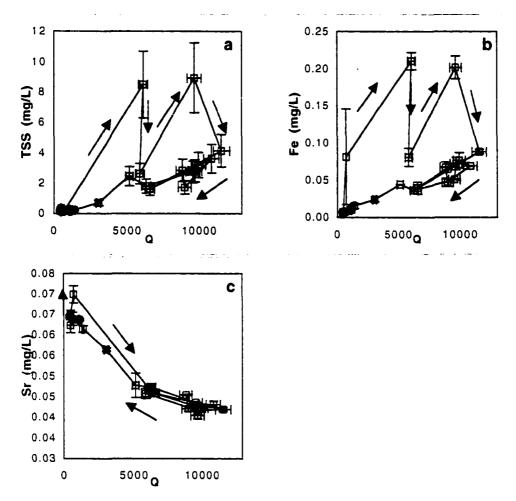


Figure 11: Streamflow vs. a) TSS, b) total Fe, and c) total Sr at LF.

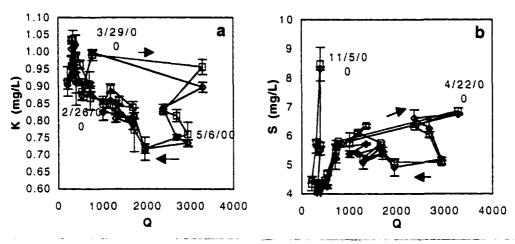


Figure 12: Streamflow vs. a) K and b) S at site BH.

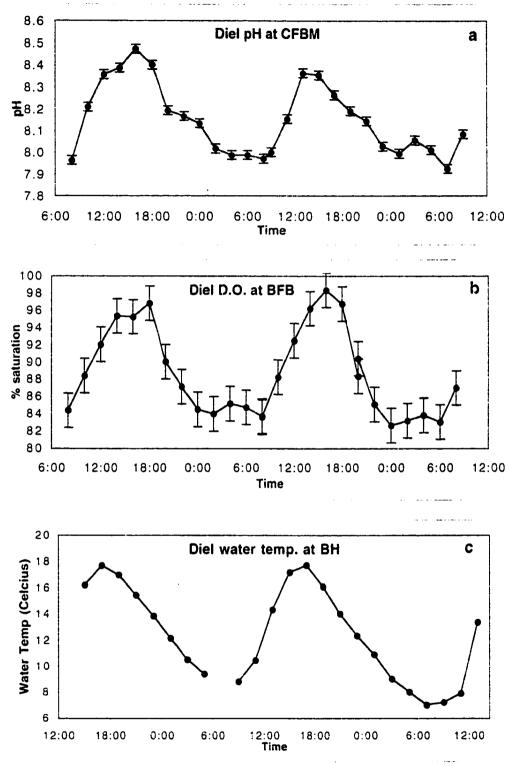


Figure 13: Diel variations of a) pH at CFBM, b) D.O. at BFB, and c) water temperature at BH.

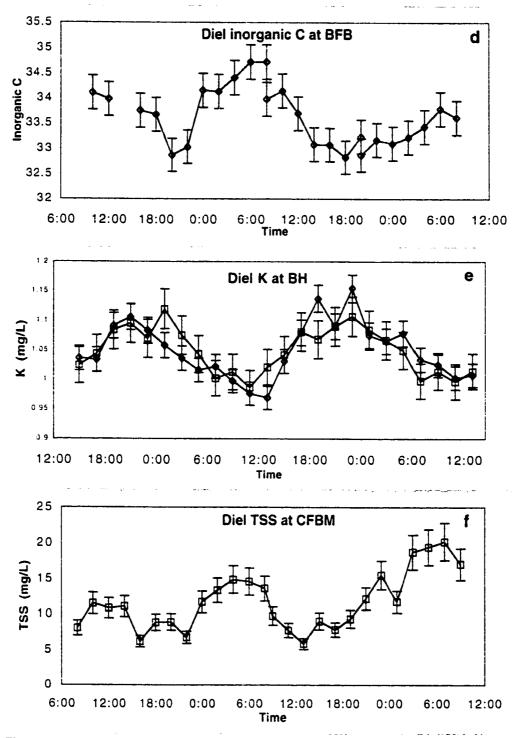


Figure 13: Diel variations of d) DIC at BFB, e) dissolved and total recoverable K at BH, and f) TSS at CFBM

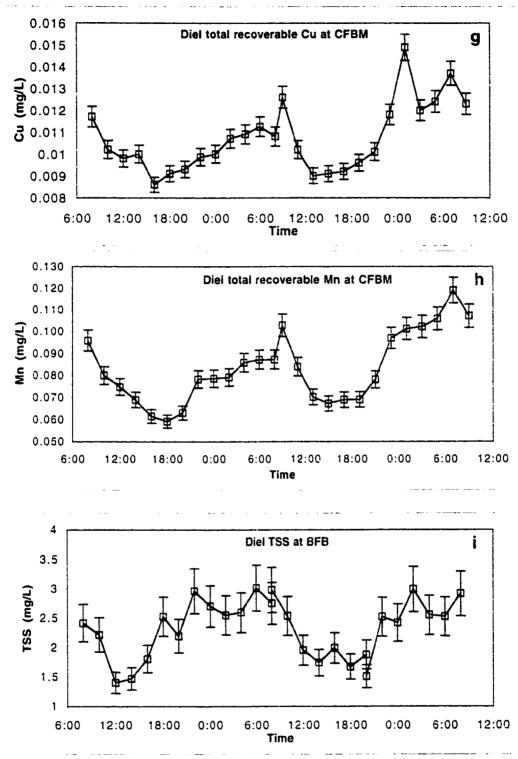
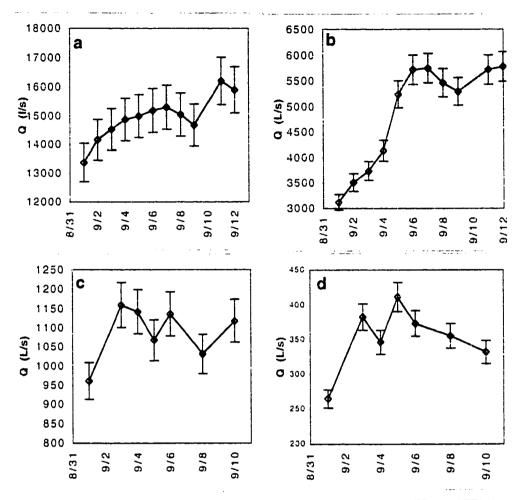



Figure 13: Diel variations of g) total Cu at CFBM, h) total Mn at CFBM, and i) TSS at BFB.

Figure 14: Streamflow during the first 2 weeks of September at a) BFB, b) CFBM, c) LF and d) BH.

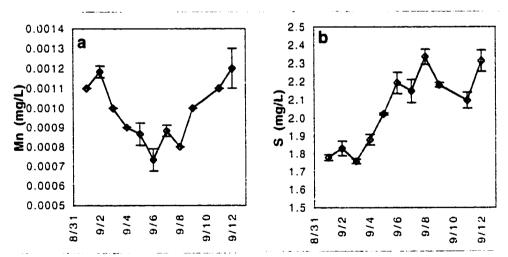


Figure 15: a) Dissolved Mn and b) Dissolved S at site BFB during the first 2 weeks of September.

Figure 16: a) TSS, b) Cu, c) Ba, and d) Sr at CFBM during the first 2 weeks of September

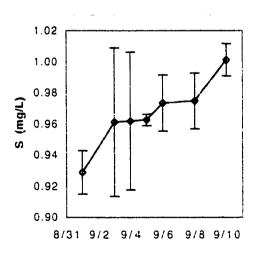
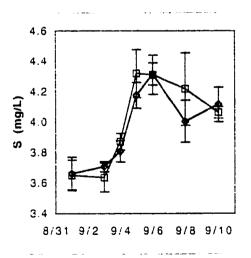



Figure 17: Dissolved S at site LF during the first two weeks of September.

Figure 18: Dissolved and total S at sit BH during the first two weeks of September.

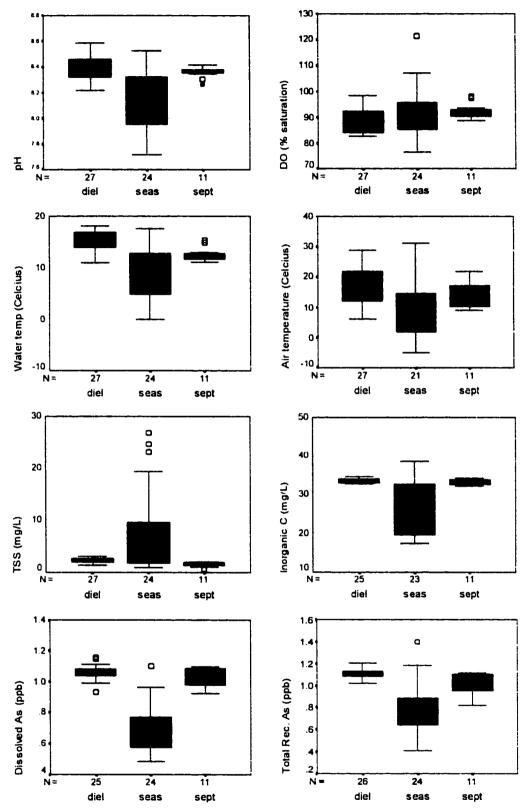


Figure 19: Boxplots of Diel, Seasonal, and September rain event variability at site BFB.

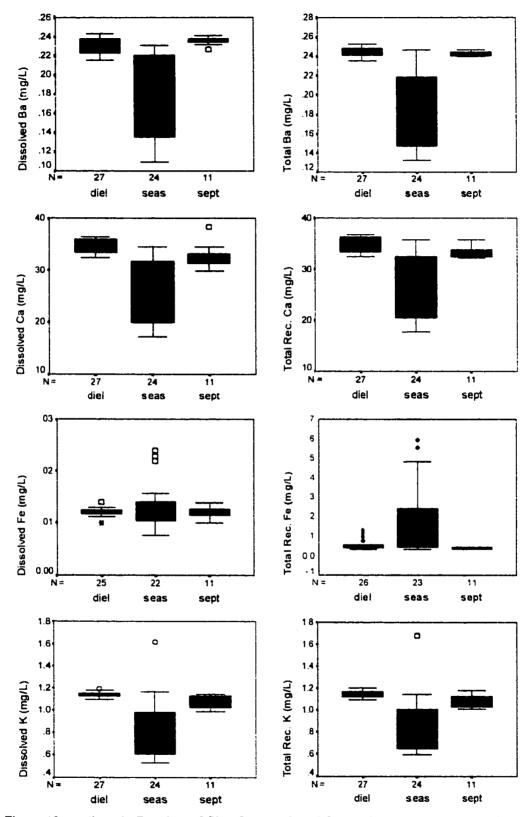


Figure 19, continued: Boxplots of Diel, Seasonal, and September rain event variability at site BFB.

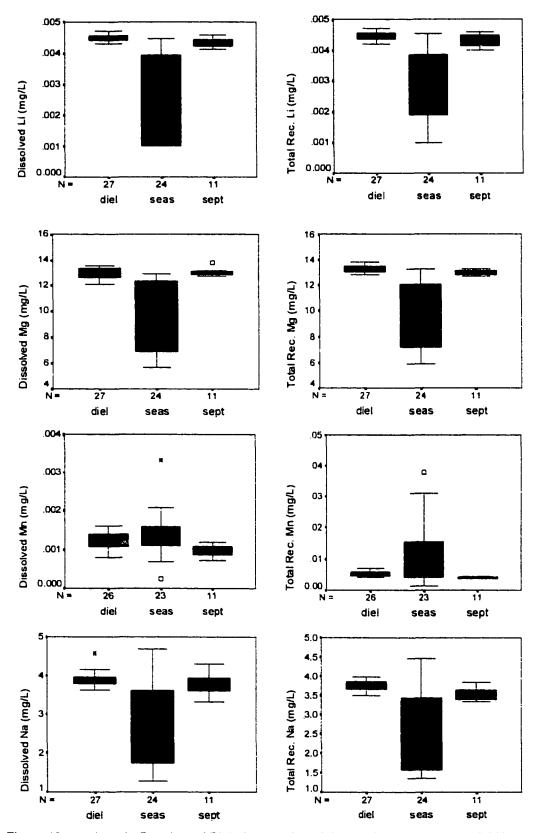


Figure 19, continued: Boxplots of Diel, Seasonal, and September rain event variability at site BFB.

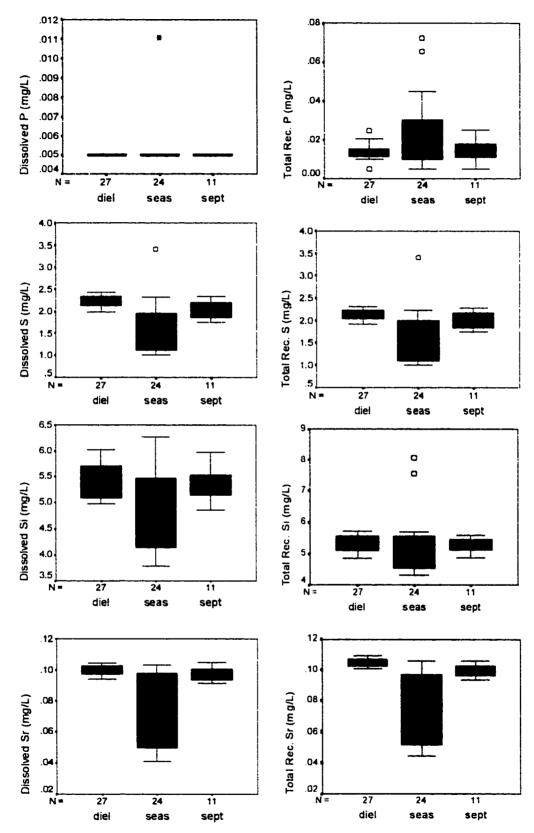


Figure 19, continued: Boxplots of Diel, Seasonal, and September rain event variability at site BFB.

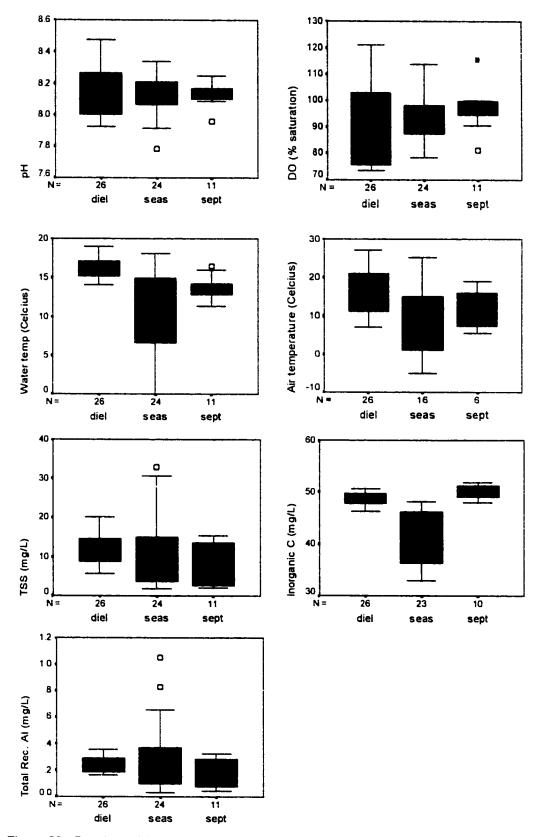


Figure 20: Boxplots of diel, seasonal, and September rain event variability at site CFBM.

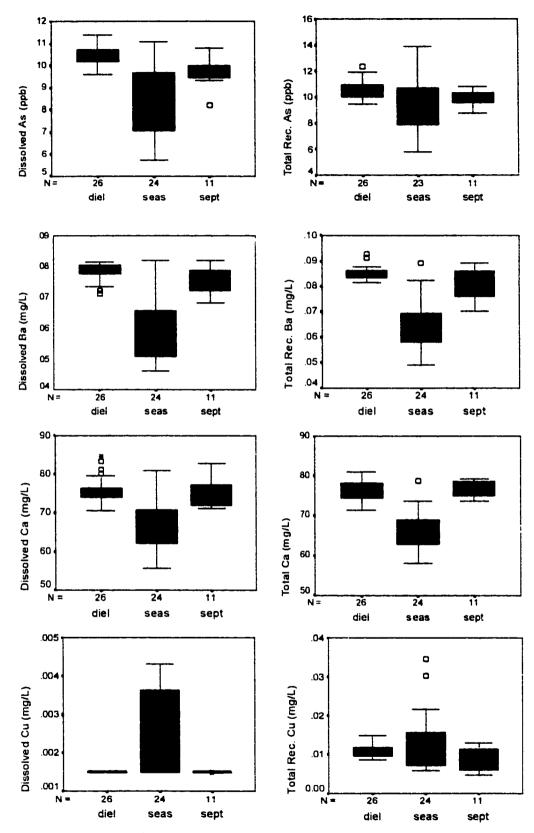


Figure 20, continued: Boxplots of diel, seasonal, and September rain event variability at site CFBM.

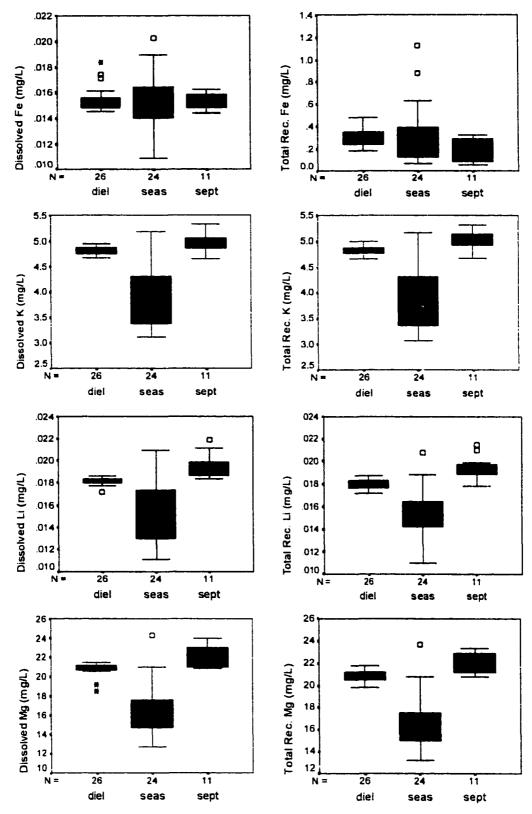


Figure 20, continued: Boxplots of diel, seasonal, and September rain event variability at site CFBM.

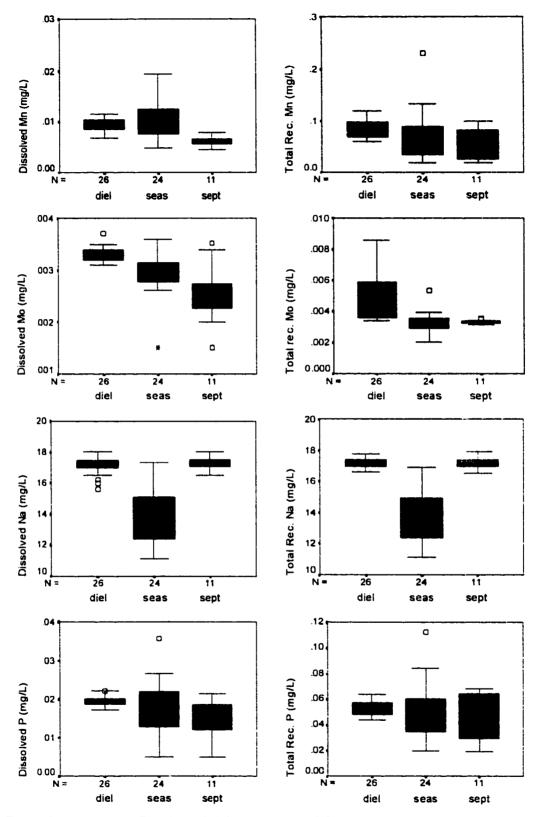


Figure 20, continued: Boxplots of diel, seasonal, and September rain event variability at site CFBM.

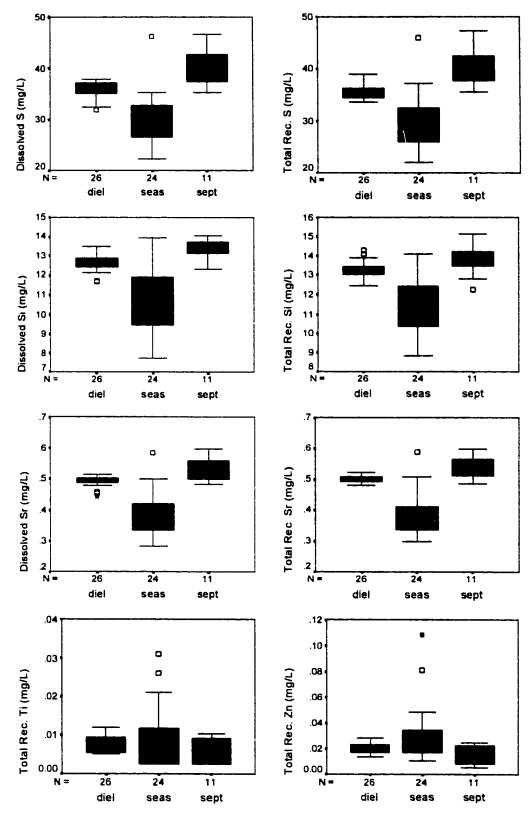


Figure 20, continued: Boxplots of diel, seasonal, and September rain event variability at site CFBM.

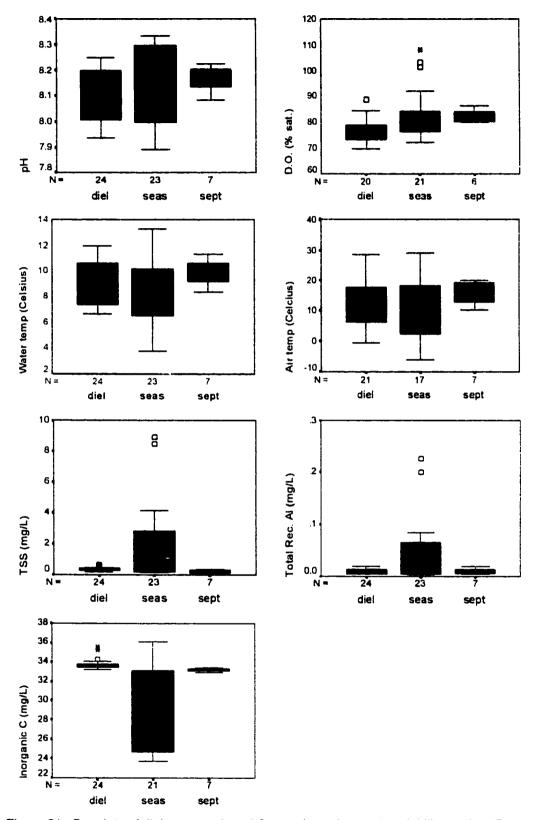


Figure 21: Boxplots of diel, seasonal, and September rain event variability at site LF.

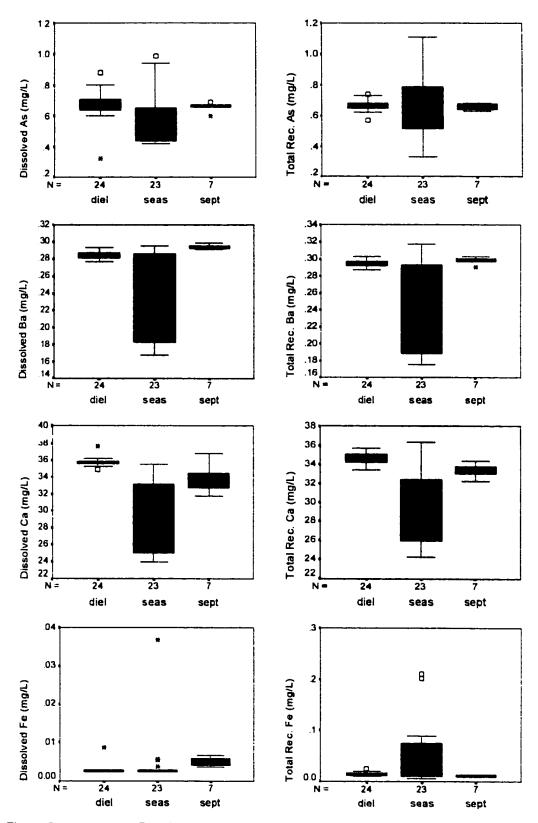


Figure 21, continued: Boxplots of diel, seasonal, and September rain event variability at site LF.

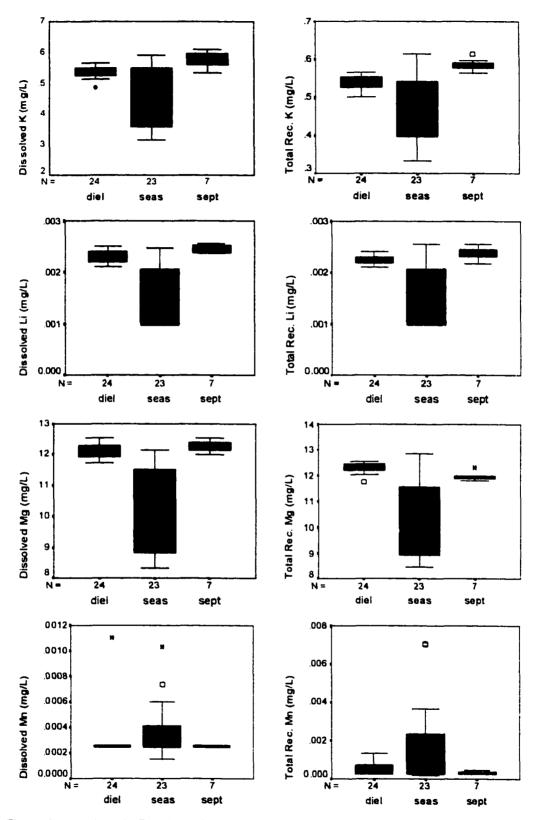


Figure 21, continued: Boxplots of diel, seasonal, and September rain event variability at site LF.

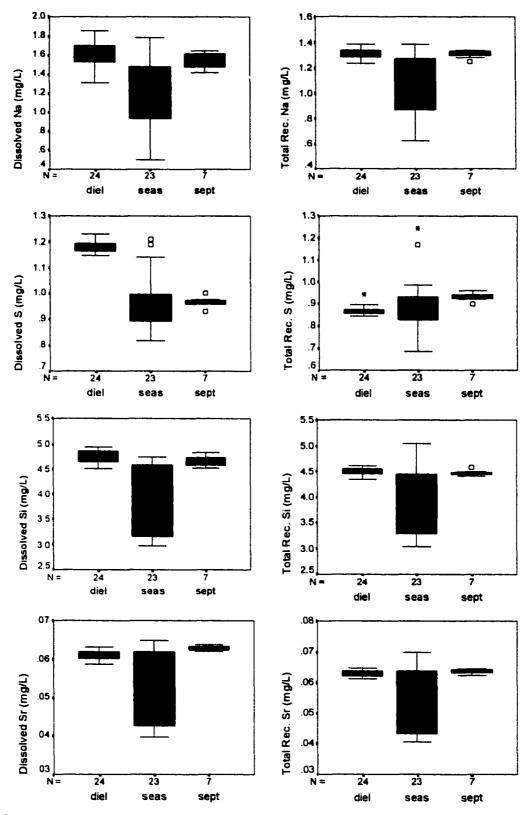


Figure 21, continued: Boxplots of diel, seasonal, and September rain event variability at site LF.

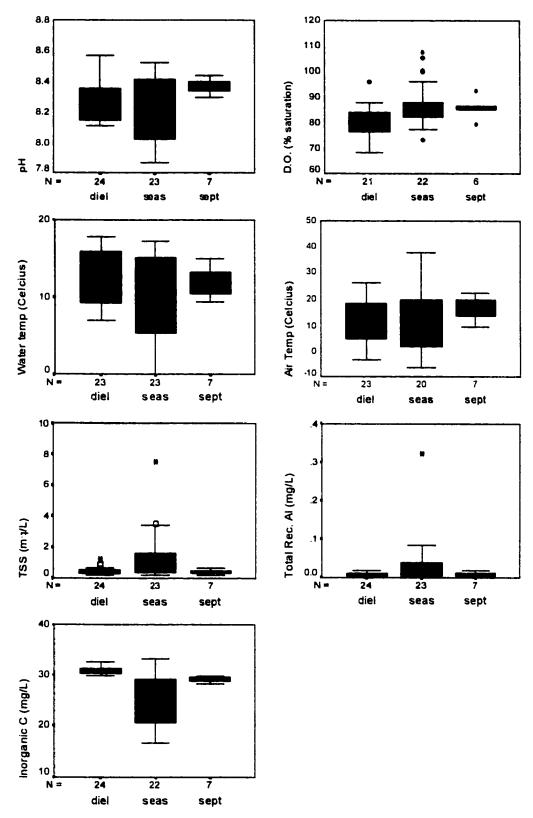


Figure 22: Boxplots of diel, seasonal, and September rain event variability at site BH.

160

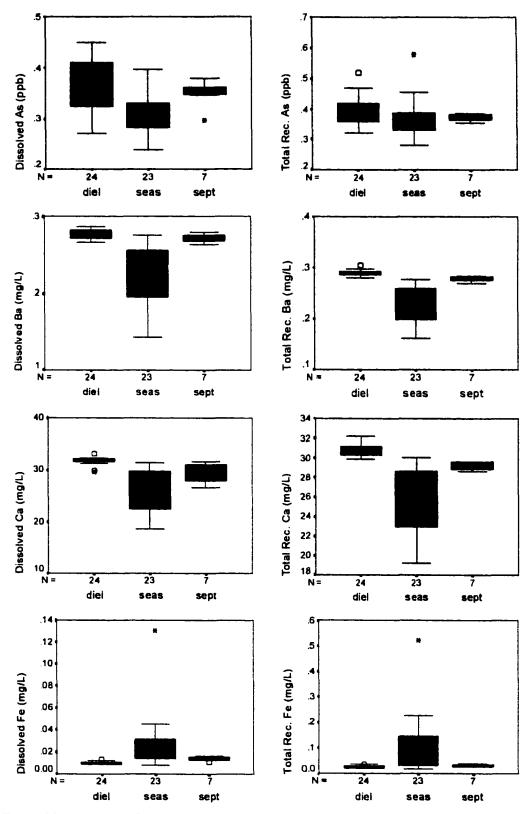


Figure 22, continued: Boxplots of diel, seasonal, and September rain event variability at site BH.

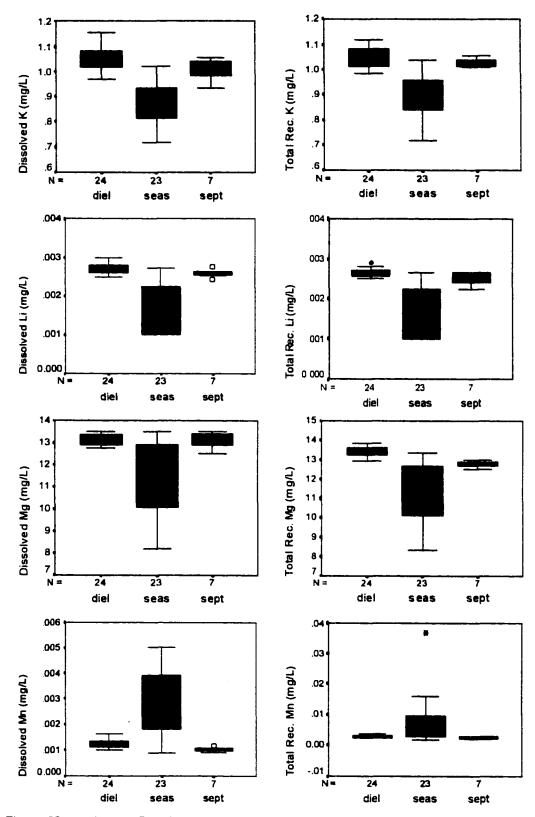


Figure 22, continued: Boxplots of diel, seasonal, and September rain event variability at site BH.

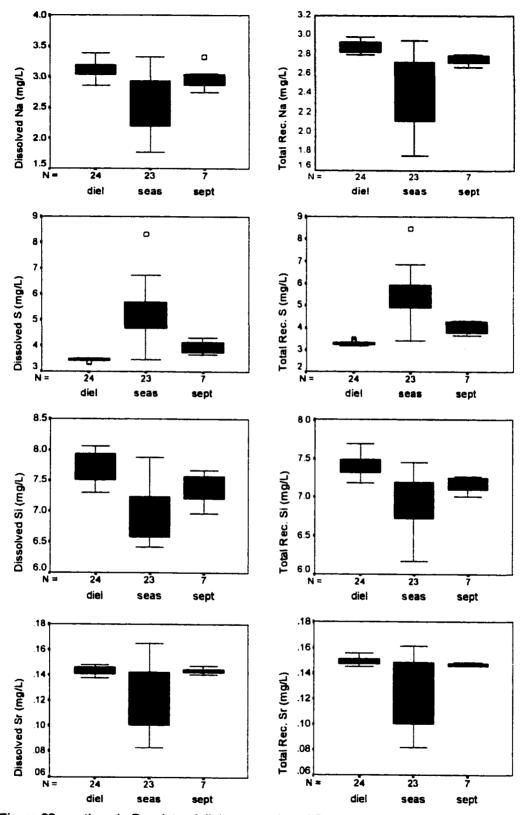


Figure 22, continued: Boxplots of diel, seasonal, and September rain event variability at site BH.

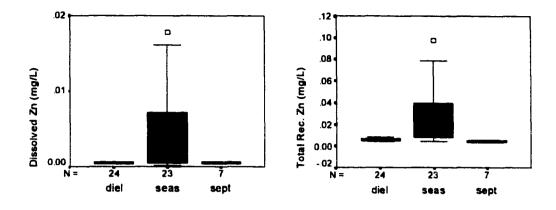


Figure 22, continued: Boxplots of diel, seasonal, and September rain event variability at site BH.

164

[7																												
	ŝ	990	0 0 0 0	0 062		0.062	0.062	0 062	0 061	0 059	0.061	0.060	0.060	090 0	0 144	0148	1410	0 145	0 147	0143	0140		0116	0 145	0130	0.142	0.101 0.000 0.097	0 102	160 0	0 102 0 096
	ŝ	4 78		3	4.74	4 86 4 95	19	88	4 71	4 63 4 63	4 22	451	* * *	1 0 T	6 6 7 7	16.2	831	90 B	90 9 2 8	8	343	65	22	160	152	62.2	5 98 5 66 5 74	000	92 S	6 02 5 63
	s Solo	211	229	123	<u>5</u>	81 I 91 I	61 1	6	1 23	22	1 20	1.16	122	1 20	445 6 6 6 6	4			349	348	;;;	179	4 5	347	141	3.42	2 2 2 X	2 39	325	2.41
	P	BPOL			n BPQL BPQL	BPOL BPOL		BPOL	BPOL	BPQI BPQI	BPOL BPOL	no BPOL		n io Bhoir		BPOL		BPOL BPOL	10 10 10 10	BPOL	no io Booi		1048	BPOL BPOL	BPOL	าธิสยิ	8PQL 8PQL 8PQL			BPOL
	ź	BPOL			ල් ල් සි			BPOL BPOL	BPOL	e bor	BPOL BPOL	1048 BPOL			io io io	BPOL		ក្តែត្រួ	BPOL BPOL	BPOL				BPOL		1248	B O TO B D TO B D TO	20 A 8		BPOL
	r Z	1 55		200 	57 F	151	355	\$	168	165	181	091	169	1 28	228	105	5 62 5 68 7 69	5 1 2	205	35	202	395		3 16		3 16	567 567	26	22.6	52 C
	Mo 0000	BPOL			BPQL BPQL			BPOL	BPQL BPQL	BPQL BPQL	1048 BPOL	BPOL BPOL	BPOL	BPOL	10 10 10 10 10 10 10 10 10	BPOL			BPOL POL	BPQL BPQL				1048 Hode		BPOL	BPOL BPOL			B O I
	Mn	BPOL	BPOL	7 d 8	ePol BPol			BPOL	BPOL BPOL	1048 BPQL	BPOL BPOL	BPOL BPOL	1000 0 0011	0 0003	0 0012	0 00 10	1000	1000	0 0012	1000	0 0014 1 00 0	1000	1100 0	1100 0	0 0012	0 0014	0 0000 0 0050 0 0050	0.0014	\$1000	0 0011
	Ra Na	12 07	12 27	12 28	12 94 12 95	12 28	12.28	12 33	12 21 11 90	11 87	12 23	12 09	13 84	12 03	13 43 13 19 19 19	9 11	13 41	13 49	13 52	22	12 78	220	13 1 0	12 89 12 89	12 81	13 20	13 21 12 59 12 64			
	-		0.002									0 002			C00 0						1000						0000	500 0	500 0	000
	×	0 22	0 52	19	0 29 0 50	650	333	0 52				50			888	3 3	583	888	86	260	5 8 S	60	282	83	888	101	222	2:	229	115
	Fe			a di Bra	BPOL	BPOL		10 HE	BPOL	BPOL BPOL	BPOL	BPOL	1048 0 000	1048 BPOL	0100						00100	000	00100	500	8000	010 0	0 012 0 259 0 012	2000	0012	0 0 1 2
	5	35 23	888									32.55						8 9 8			281				88		36 29 35 17 35 92			
	e a	812	0 259	0 285 0	0 280 0 283	0 287	0 287	0 287	0 288 0 281	0 280	0 285	0 284	0 281	0 280	0 285 0 277	0 286	0275 0286	0 283	0 280	0271	0 272 0 276		0.206	0 271	0.266	0 276	0 234 0 222 0 224	0 233	0 224	0219
	As (ug/l	80	0 73	0 6 6 1	0 72 0 63	00		0 72	067 06	0 69 0 66	065	0 65 0 32	062	0 65 0 65	640 642	50	0.32	111	620		0 4 7	100	550	160		1034	0 93 1 08 0 99		5 9 8 	115
	thord C	33.6 L		315	8 CE 7 CE	2.2		•				222			30 C						+ 0 i						- *6			
	Asimty	124 0	200	125	1270	22	1276	128.9				9151		1316	1204	* 611	122 4	1226	512	122 8	1240	9611	1228	1252	1208	123.9				
		100U)	22		0 29	178	5.5.5	12	920	88	12.2	500	8 9 9		255						**						2 42			
		obneb	2	037		2:	222	8 12				61 61			853	K 28 1 1 1	16 II	. 2 2	8	8 8	22				888					
	00	(1)6m) 9 2 6	10 10 60 60	8 8 7 8	68) - 0 5 - 0	7 C1 0 10	90 87	8 6 4 4		50			1 8 1		9.5	0 10 0		0 G 0 Z	50			4			8 A B	10.0		- 60 - 60
	00	(1e s 4) 84 4	810 866		757 766	292	223		643 798	877	697	724			880	772	76.3	763	662	217	86 4 84 1	472		513	7 06		84 4 88 4 92 1			
۲ <u>۲</u>		Puo C	0 248	5 8			1	0 250	249	222	122	0 255	254	250	0 244	28				0 245	385	521		525	0 253	12	0270 0271 0270	0 268	0 267	0 269
L. NS	Ar	25 4 Temp		176	19	. 0 .	69	221	284 199	16 9 1	200	0.0	90. 07	13 2 23 9	26.2	191	10 10 10	2 1 2	22	257	26 0 17 9	69 69 7	200	, e c	52	205	62 118 204	278		121
Cr, Cu, Pi beched	Water	Tenp.	6 I I	4 9 8 9 8	187	2.0	22	9 0 F	12 0 11 7	105		22	67 66	9 2 1 3 6	177	135	12.2	6 1 6	88	2 ¥	112	919	600		2 ~ 6	1	109 113			
Al, Cd, Co, Cr, Cu, Pb, otherwse specified		PH 8 25	8 25 8 23	8 07 8 01	1 95	888	808	8 20	821 821	8 20		7 99 8 02	8 04	8 (1) 8 09	8 20 7 5 8	6 3å	817		5.6	829	8 45 8 45	8 7 3 8 8 9 3 8 8 9 3	919 919		8 2] 8 2]	A 25	8 26 8 36 35			
lor Aq. Al. ndless off	1	<u>~i</u> ≌	49 9 49 7				1	53 7	46 1	472			£03	46 8	6 0 1 0 1	901					10 4 9 2	81					559 559	559	655	655 559
the PQL for Ag. in mg/L undless	Samplin	14 00	9 8 8 8	20 00 22 00	88	383	88	200	200 11 00 12	800	200	88	6 00 8 00	12 00 12 00	9921 9921	8 8 2 2	23 00	385	88	88	12 00	8 8 8 5 2	888	385		13 20	8 00 10 00 12 00	8	888	888
l samples below l I concentrations ii	Sampling	Date 3/17/00	8/17/00 8/17/00	8/17/00 9/17/00	8/18/00	6/18/00	B/18/00 B/18/00	8/18/00	6/20/00 6/20/00	8/20/00	8/20/00	8/21/00	8/21/00 8/21/00	8/2 1/00 6/2 1/00	00/21/8	00/21/0	8/17:00	0/18/00	8/18/00	8/18-00	8/20/00 8/20/00	8/20/00 8/20/00	8/21/00	8/21/00	8/2 1/00	8/2 1/00	9/12/00 9/12/00 9/12/00	9/12/00	9/12/00 9/12/00	9/12/00
All sampi All conce	1		22											김일													878 8F8 8F8	_		

Chapter 4 Appendus All Initered samples colected for the diel studies al each site All samples below the POL for Aq, Al, Cd, Co, Cr, Cu, Pb, Sn, Tr, V, Zh All concentrations in might undress otherwise specified

—]																																													
Sr	1		2	Þ	•	0 103	0104	0 104	0 103					0 102	0 102	0 102	0 103	0 101	0 103	0 101	0 495	1405					1489	1610	0 485	0.499	0469	9540	050	0.497	0 506	0.499	0 503	0.510	0454	0.502	0489	0.505		1150		114 0
Si 0.020			N S	69 C	537	5 01	4 97	500	504	5	: 5	5			5 15	5.18	5 15	5 05	5 35	5 07	12 70	1				8 2	2	12.70	12 55	12 57	12 10	12.47	12 33	12 56	12 69	12 68	12 58	12 83	12 62	12 97	13 47	8	69 C	2 S	222	12 41
S 0.007			21	2 3/	241	2 06	2 08	2 14	2 05	1	12	5	2	117	2 16	2 14	2 15	198	2 19	2 09	£7.2£	14 97				- 2	3	30.92	36 29	37 28	35.55	36 68	36 75	38	37.04	36.61	36.19	37 23	36.37	37 23	32 73	37 39		25	17 16	505
P 0010				IDAR	BPQL	BPOL	BPOL	BPOL	BPOL					P -	BPOL	BPOL	BPOL	BPOL	BPOL	BPQL	0018	9100					070.0	6100	0 0 18	0019	0 0 1 7	0 0 18	0019	0 0 19	0 020	0 0 19	0 020	0 020	0 0 19	0019	0 0 19	0 020	0 021	100		0 022
ž odo				1049	BPOL	BPQL	BPOL	BPOL	BPOI					D'H	BPOL	BPOL	BPOL	BPOL	BPOL	BPOL	0 001	1000						1000	000	000	BPQL	BPOL	0.001	0 001	BPOL	BFOL	000	000	BPOL	000	1000	BPCL	100 0	200		100 0
Na Bio			2	38/	4 04	3 79	3 79	3 02	3 72	14			5	26 E	397	387	3 93	3.06	4.57	4 15	12.71	5.41	3				2	17 55	17.28	17.57	17.16	17.37	17 96	17.46	17 79	18 06	17.30	17,45	16.61	17.12	17 29	17 12	8	2 2	22	16 23
Mo 0 00 0				ELOI.	BPOL	BPQL	BPOL	BPOL	BPOL					EPOL B	BPOL	BPOL	BPOL	BPOL	BPOL	BPUL	0 003	1000	200			33	1001	5000	0000	0 003	0 003	0000	0000	0 003	0 003	0 003	0 003	500	0000	0.003	0 003	0000	000	390	35	0000
Mn 0.0005		7100.0	71000	10000	0 0012	0 0008	1100 0	0 0015	0 0015	9100			7100 0	5000	0 0012	1000	0 0012	0 0011	0 0014	1100 0	0 0067	0 0077					6000 0	0 0005	0 0069	0 0 103	0 0104	0 0109	0 0115	0 0115	0 0108	E010 0	0 0092	0 0092	9000	0 0088	0 0092	0 0084	0 0092	10000		0105
Mg 0.100	2		9 I 2 I	13 07	12 08	13 45	13 29	13 26	13.34	11.25			2421	15 51	1341	13.36	13 38	13 59	13 25	13 36	21.00	20.05	24.91				20 12	21 06	20 86	20 8 8	21 13	21 05	21.21	21 27	21.00	21 67	20 94	21 16	20 59	21 23	2145	20 99	18 58	27 12	1012	19 23
L 0.003			COC. 0	c00 0	0 005	0 004	0000	0 005	0 005		220		200	600 0	0 005	0 005	0 005	0 005	0 004	0 005	0.018	0.010					0.010	0 018	0 018	0 018	0 0 18	0 0 1 8	0018	0 018	0 018	0 0 15	0 0 18	6100	0 018	0 018	0018	0 018	0.015	0100		0.017
K 0.00		2		2	9	1 15	113	=	2		2		2	-	-	=	113	1 15	1 12	=	4 95	101				-	4	99 4	8 83	484	4 98	4 85	4 86	4 89	4 B.4	4 76	4 72	4 85	8	4 76	4 80	114	8.4	4 4 4 4		4 69
Fe 0.005	2	7100	7100	100	0 011	0 012	0 0 13	0013	0 012	100			710 0	0 012	0 0 1 2	0 012	0 012	0 012	0 010	0 0 1 2	5100	100				100	6100	0 015	0 015	0 015	0 015	0 015	0 015	0 0 1 5	0 0 16	0 015	0 015	0.015	0 015	0.015	0 0 16	0 0 15	2100	9100	0.00	0.017
C.a	i.					32 89	33 70	3417	33.16		2 2	8			97 69	3	34 12	32.45	34 66	33 52	74.89	71.65				527	8	10 1/	11 22	74 68	70 44	74 23	76 21	75 39	16 40	75 60	76 05	2 2	515	75 70	79 60	25 38		25	59	84 49
8.0005		577 D	8170	0 Z32	0 215	0 242	0 243	0 241	0 236	22.0			C 2 0	0 235	0 238	0 238	0 243	0.240	0 243	0 236	0.001	0.081	200				B/0 C	0 078	0 078	019	0 078	0 079	0 090	0 081	0 081	0.080	0 0 C	1900	0 077	0 070	0 078	0 078	1/0 0	9100		0 077
AS (401		= :	3	1 24	1 08	8-	1 03	201	8	1	3 3	5	5	801	1 05	60 I	1 05	0.84	107	1 03	95.01	00	1				5	10 77	10 82	50	10 72	19 41	10 68	984	10 12	10 22	10 26	19 01	6Z 01	11 02	10 43	10 21	£9 2 5	12	2.5	961
D friend C			-	1 10	27	34.0		1 11					7 7	32 9	202	1 66	33.2	100		336	48.7						6 G 4	475	484	E / F	478	48.2	ŝ	50.6	1 61	/ 84	191			47B	478	48 5	496	0 0 0 7 0 7 0		58
Alkelinity	112.1																																													
155		2	7 60	3 02	2 75	2 98	2.54	3	1 7.4	00			1 45	151	2 52	242	2 99	2 55	253	162	8 06					2	10	5 9 5	673	11 70	13 33	14 86	14 57	13 60	67.6	174	5 82	9 02	7 84	6 33	12 18	15 48	22		04 AL	1/ 02
Heis	27125																																													
00			7	58	8 8	8 4	68	92											8 2	87	8.4	ŝ		2:			2 01	- 9	73		12	72	75	11	19	96	115	0	96	82	11	87	5.	* 0	, r , ~	83
00			2 52	B.4 B	1 [8	8 36	88 3	92.5	5		2	ŝ	• • •	406	851	82.7	83.2	6 CV	83.1	87.0	82.4						601	86 b	769	74.2	1 62	736	24.9	76 B	16/	97.3	1195	114 5	8 66	842	174	870	2		97	118
					0 274	0 267	0 267	0 265	192.0	192.0		107 D	0 261	0 261	0 262	0 263	0 264	0.764	0 265	0 265	c	• =	•	2 0	•	.	0	•	•	0	0 583	9	0	۰	0 583	•	¢	0 571	0	•	•				9	0 586
•	- E				62	12 2	187	23.3	28.6	2	32		2 2 2	177	190	18.8	171	14.6	151	161	=						25.3	174	40	66	92	90	1	71		209	22 0	22.0	178	16 5	159	146	Ξ			* :
Water			2	112	12.8	15.2	15.2	15.8	169	20	2	2	2	176	17.2	169	166	16.1	159	15.5	14.6	-	2 9	2		2	6 81	186	179	173	168	163	157	150	153	157	168	2	169	16.5	16.3	15.6	152	23		
10	540		2	80	-0	8 22	8 34	846				70.0	8 42	846	844	8 36	8.35	8 33	8 29	B 25	7 96			5			8 40	8 19	a 17	£ 13	8 02	66 /	66 /	197	8 00	8 15	98 F	8 35	8 26	8 19	1.0	8 (1)	65 /	5 6	56	808
teres de		796	505	553	553															89											200															502
	"	2 00	•	9	8	B 00	10.00	100		88	3 8	322	20 00	20 00	22 00	800	2 00	8	600	8 00	8.00	2		33	33	3	00 81	20 00	22 80	30	2 00	8	6 00	8 00	10 6	11 00	00 CI	15 83	17 00	19 00	2160	23 88	88	33	3 5	806
Sampling	Date	0075116	9/13/00	9/13/00	9/13/00	9/16/00	9/16/00	9/16/00	QUALID			00/01/6	9/16/00	9/17/00	9/17/00	9/18/00	9/18/00	9/18/00	BU LEVON	9/18/00	9/14/00						9/14/00	9/14/00	9/14/00	9/15/00	9/15/00	9/15/00	9/15/00	9/15/00	9/18/00	9/18/00	9/18/00	00/191/6	9/18/00	9/18/00	9/18/00	9/18/00	9/19/00	9/15/00		00.61/6
		848	8F8	878	BF0	BFB	BFB	BFB					BFB	878	Bf B	8FB	AFR	BFB	BFB	RFB.	CERM					Mal	CFBM	CFBM	CFBM	CFBM	CFBM	CFBM	CFBM	CFBM	CFBM	CFBM	CFRM	CFEM	CFBM	CFBM	CFBM	CFBM	CFBM	Crum		CFBM

		,																																						
Samira Number Number<	27 0 001	0.001	0 002	0.001	BPOL	RPOL	BPOL	0 001	BPQL	BPOL	סיטו	BPOL	BP00	000	0 002	0 001	1000		BPOL	BPOL	BPOL	0 005	0.005	0 005		0000	0 007	0000	2000	900 0	900 0	0 005	9000	9000	0 006	0 007	0 00 0	0 007	000	0 000
	TI 0.005	BPOL	BPOL	BPOL	BPOL		BPOL	BPQL	BPQL	BPOL	arut	BPOL		BPOL	BPQL	BPOI.	BPOL		BPOL	BPOL	BPOL	BPOL	BPQL	BPOL		BPOL	BPQL	BPOL	BPOL	BPOL	BPQL	BPQL	BPOL		BPOI.	BPOL	BPOL	BPOL	BPOL	
	0 001 0 001	0 062	0.062	0 063	0.061		800	0 063	0 062	0 063	2000	0 064	000	0 062	0 064	0 063	0 062	200.0	0.063	0 061	0 064	0 147	0.148	0 147	0 147	0 156	0 152	0149	0146	0.149	0 150	0.149	0150		0 151	0 153	0 152	0 147	0 147	1410
	SI 0 020	4 45	4 4 9 9 9	4 55	4.45	4 20 2	7 7 7	4 50	4 44	4 50	t t t	4 47	554	4 58	4 48	4 2	X 7	5.5	5 5	4 49	461	7 33	717	7 32	5	98.~	1 34	7 43	39	7 40	7 69	7 29	48	5.2	7 33	7 47	7 61	7 47	7 49	80 7 49
Same Anual An Mo Mo </td <td><i>o</i> 0</td> <td>0.87</td> <td>5 9 5 0</td> <td>0 58</td> <td>0.85</td> <td>68 C</td> <td>0.87</td> <td>0.87</td> <td>0 86</td> <td>0.86</td> <td>60</td> <td>0.87</td> <td>0.85</td> <td>0 86</td> <td>087</td> <td>0.87</td> <td>0.96</td> <td>380</td> <td>0.87</td> <td>0.84</td> <td>0 86</td> <td>3 25</td> <td>3 35</td> <td>3 28</td> <td>175</td> <td>3 42</td> <td>337</td> <td>3 29</td> <td>326</td> <td>327</td> <td>3 50</td> <td>3 29</td> <td>3 28</td> <td>2.5</td> <td>3 25</td> <td>02 5</td> <td>0 00 1 0 00 1 0 00</td> <td>321</td> <td>3 26</td> <td>325</td>	<i>o</i> 0	0.87	5 9 5 0	0 58	0.85	68 C	0.87	0.87	0 86	0.86	60	0.87	0.85	0 86	087	0.87	0.96	380	0.87	0.84	0 86	3 25	3 35	3 28	175	3 42	337	3 29	326	327	3 50	3 29	3 28	2.5	3 25	02 5	0 00 1 0 00 1 0 00	321	3 26	325
	P 0 010	BPOL	BPOL	0 02	003	500	500	0 03	0 03	800	50	80		BPOL	0 03	BPOL	BPOL		BPOL	BPOL	BPOL	BHOL	BPOL	000	500	300	0 02	500	002	003	0 03	0 03	BPOL	300	0 02	BPOL	BPOL	Brot	BPOL	กับสื
Samilion Atlantion Ca Ca <thca< th=""> <thca< th=""> Ca</thca<></thca<>	žο	BPOL	BPOL	BPOL	BPOL		BPOL	BPOL	BPOL	BPOL	מיתר	BPOL	BPOI	0 004	0.004	0 005	BPCL		BPOL	BPOL	BPOL	BPOL	BPOL	0 003	BPOL	BPOL	BPQL	BPQL	1000	BPOL	BPQL	BPQL	0 005		0 00	0.004	BPOL	BPOL	BPOL	10-JO
Sampling Atluction Atluction <th< td=""><td></td><td>13</td><td></td><td>13</td><td>с. </td><td>4 (* </td><td></td><td>13</td><td>13</td><td>۳ ۲</td><td>- -</td><td>12</td><td>1 m</td><td></td><td>13</td><td>13</td><td>• •</td><td>r ~</td><td></td><td></td><td>13</td><td>28</td><td>28</td><td>29</td><td>n c</td><td>90</td><td>30</td><td>00</td><td>5.0</td><td>28</td><td>28</td><td>28</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>587</td></th<>		13		13	с. 	4 (* 		13	13	۳ ۲	- -	12	1 m		13	13	• •	r ~			13	28	28	29	n c	90	30	00	5.0	28	28	28								587
Sampling At (ucl) Al Ba Cr Cr Cr Fa X V MQ 11/100 1400 057 0007 0205 0707 0205 0707 0705 0100 170 <td< td=""><td>Mo 0 003</td><td>BPOL</td><td>BPOL</td><td>BPQL</td><td>1048</td><td></td><td>BPOL</td><td>BPOL</td><td>BPOL</td><td>BPOL</td><td></td><td>BPOL</td><td>BPOI</td><td>BPQL</td><td>BPOL</td><td>BPOL</td><td>1049</td><td></td><td>BPOL</td><td>BPOL</td><td>BPQL</td><td>BPOL</td><td>BPUL</td><td>BPOL</td><td>BPOI</td><td>BPOL</td><td>BPQL</td><td></td><td></td><td>BFOL</td><td>BPOL</td><td>BPQL</td><td>BPOL</td><td></td><td>BPOL</td><td>BPOL</td><td>BPOL</td><td>BPOL</td><td>BPCI</td><td>BPOL</td></td<>	Mo 0 003	BPOL	BPOL	BPQL	1048		BPOL	BPOL	BPOL	BPOL		BPOL	BPOI	BPQL	BPOL	BPOL	1049		BPOL	BPOL	BPQL	BPOL	BPUL	BPOL	BPOI	BPOL	BPQL			BFOL	BPOL	BPQL	BPOL		BPOL	BPOL	BPOL	BPOL	BPCI	BPOL
Sampling At (µcl) M Ba C C C C C C C C C L <thl< th=""> L L</thl<>	Mn 0 001	100 0	800	000	BPOL	86	BPOL	0 001	BPOL	BPOI.	מרער	BPQL	BPOI	000	0 001	0.00			BPOL	BPOL	BPOL	0 003	0 003	0 003	5000	0 003	0 003	0 003	0 002	0 002	0 003	0 003	0000		0 003	0 003	0.000	0 002	0 002	0 002
Sampling At, Iug1 At Bas Ch Ch Fa X Data Turn 027 327 970 0003 0034 0035 003 0035 003 0035 003 0035 003 0035 003 0035 003 0035 003 0035 003	Mg 0100	12.30	12 27	12 50	12 19	7671	12 48	12 40	12 20	12.36	2	12 02	12 28	12 54	12 13	17 CI	8 S 2 S	27 21 BC C1	12 14	12 28	12 47	13 17	12 93	13 41	94 CI	13 80	13 70	13 69	135	13 22	13 24	13 17	13 58		13.45	13 57	13.86 13.60	13 48	13.46	282
Sampling Astuptl. All Ba Cr. Cu. Fa X Balles Tuno 02 0001 0201 0005 0001 0011 0111 011 011	Li 0 002	0 002	0 002	0 002	0 002		0000	0 002	0 002	0 002	7000	0 002		0 002	0 002	0 002	0.00		000	0 002	0 (102	0000	0 003	0003	88	0 003	0 003	000	0000	0 003	0.003	0 003	0 003		0 003	0 003	0 003	0 003	0 003	2003
Sampling AstuarLi M Bat CA Cu Bate Trme 0.2 0.007 0.005 0.291 3.07 0.003 0.003 B17700 16.00 0.67 0.021 0.291 3.07 0.003 0.012 B17700 16.00 0.65 0.012 0.293 3.657 8POL 8POL B1700 2000 0.012 0.293 3.657 8POL 8POL 8POL B18000 2000 0.65 0.012 0.293 3.657 8POL 8POL 8POL B18000 500 0.65 0.012 0.293 3.657 8POL 8POL 8POL B18000 1000 0.63 0.014 0.293 3.458 8POL 8POL <td></td> <td>0 55</td> <td>6 5</td> <td>056</td> <td>0 52</td> <td>250</td> <td>33</td> <td>054</td> <td>0 52</td> <td>32</td> <td>Ĩ,</td> <td>0.56</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 53</td> <td>1 02</td> <td>5</td> <td>89</td> <td>22</td> <td>1 12</td> <td>1 08</td> <td>89</td> <td>35</td> <td>66 0</td> <td>1 02</td> <td>104</td> <td>82</td> <td>58</td> <td>=</td> <td>108</td> <td>1 05</td> <td>8</td> <td>101</td> <td>86</td>		0 55	6 5	056	0 52	250	33	054	0 52	32	Ĩ,	0.56	20								0 53	1 02	5	89	22	1 12	1 08	89	35	66 0	1 02	104	82	58	=	108	1 05	8	101	86
Sampling As(up(1) Al Bas Ca Cr Baie Irms 0:0 0:007 0:000 0:00 0:00 0:000 0:00 0:00 0:00 0:000 0:00 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000	Fe 0 005	0.017	0.016	0014	0014	0015	0012	0 013	0 01 1	0.012	*	0.016	0100	0 015	0 015	0 024	100	100	0.012	0 0 10	0 012	0 027	0 026	0 034	0.026	0 626	J 025	0 025	0 025	0 025	0 028	0 029	0034	520.0	0 027	620.0	0 023	0 021	0 020	c70.0
Sampling Ak (ug/L) Al Ba Ca Bate Irme 0? 0.007 0.005 0.070 B17700 1600 067 0.012 0.297 33.57 B17700 200 065 0.012 0.297 33.57 B17700 200 065 0.012 0.299 33.54 B18000 000 065 0.012 0.299 33.54 B18000 000 065 0.012 0.299 33.54 B18000 600 075 0.013 0.299 33.54 B18000 600 076 0110 0.293 34.63 B18000 100 076 0113 0.293 34.63 B18000 100 076 0114 0.293 34.63 B18000 100 076 0113 0.293 34.63 B18000 100 056 0114 0.293 34.63 B20000 1400 160	Cu 0 003	BPCL	BPOL	BPOL	BPOL	ar u	BPOL BPOL	BPOL	BPOL	BPOL		BPQL	BPOI	BPOL	BPOL	BPOL	HPOL	RPO1	BFOL	BPOL	BPQL	BPOL	BPOL	BPOL	BPOI	BPOL	BPOL	BPOL	BPQ1	BPOL	BPQL	BPOL	BPQL	BPOI	BPOL	BPOL	BPOL	BPOL	BPOL	BPOL
Sampling As(up(L) A<(up(L)	Cr 0 005	BPQI.	BPOL	BPOL	BPOL		BPOL	BPOL	BPOL	BPOL		BPQI.	BPOL	BPOL	BPOL	BPOL	BPOL		BPOL	BPOL	BPQL	BPOL	BPOL	BPOL	RPOI	BPOL	BPOL	BPOL	BPOL BPOL	BPOL	BPQL	BPQL	BPOL	BPDI	BPOL	BPOL	BPOL	BPOL	BPOL	BPOL
Sampling A4 (ugUl) A1 Ba 9 Date Time 0.2 0.007 0.005 8117/00 1500 065 0.007 0.007 0.005 8117/00 1500 065 0.007 0.007 0.005 8117/00 1500 065 0.007 0.007 0.005 8117/00 200 065 0.012 0.295 8118/00 200 055 0.012 0.295 8118/00 200 0.65 0.013 0.295 8118/00 1200 0.65 0.013 0.295 8118/00 1200 0.65 0.013 0.295 8118/00 1200 0.65 0.017 0.295 8121/00 1800 0.76 0.019 0.295 8121/00 1800 0.65 0.017 0.295 8121/00 1800 0.66 0.65 0.017 0.295 8121/00 1900 0.65 0.	Ca 0 070	34 32	34 29	34 72	34 68	45 CC	35.57	34 83	34 54	34 76 31 55	2	33 42 34 71	- 88 57 58	35 43	78 EE	34 46	52 SE 52 SE	17 51	12	34 22	34 97	29 93	30 66	30.41	31.24	32 25	3154	31 43 20 62	388	30 28	30.28	29 95	80	2 22 22	30.66	20 97	91 38 91 51	31 10	30.31	30 28
Sampling As (upt). Al a build Time 02 0007 B11700 1400 067 0007 B11700 1800 065 0007 B11700 1800 065 0012 B11700 2000 065 0012 B11800 200 055 0012 B11800 200 055 0012 B11800 200 055 0012 B11800 200 073 BP01 B11800 100 065 0014 B11800 100 065 0012 B11800 100 065 0012 B11800 100 065 0012 B12000 100 065 0012	Ba <i>0 0005</i>	0 292	162.0	0 299	0.290	202 0	267 0	0 293	0 288	0 292	1670	0 295	262.0	0 293	0 296	0 297	0 253	262.0	0 293	D 287	0 297	0 286	0 286	0 287	067.0	0 305	0 29 0	0 292 0 262	0 285	0 283	0 286	290	292	50	295	296	291 201	281	281	287
Sampling As (ugL) 9 Date Time 0.2 8117/00 16 00 067 8117/00 16 00 065 8117/00 20 00 065 8117/00 20 00 065 8117/00 20 00 065 8118/00 20 00 065 8118/00 20 00 065 8118/00 20 00 065 8118/00 20 00 065 8118/00 20 00 065 8118/00 12 00 074 8118/00 12 00 065 821/00 12 00 065 821/00 10 40 065 821/00 10 40 065 821/00 10 40 065 821/00 10 00 053 821/00 12 00 054 821/00 10 00 055 821/00 10 00 055 821/00 10 00 054 821/00 <td>i</td> <td>i</td> <td></td>	i	i																																						
Sampling Sampling 9 Utilio 1100 8117/00 1400 1400 8177/00 1600 1100 8177/00 2100 2100 8177/00 2100 2100 8177/00 2100 2100 8177/00 2100 2100 81800 400 200 81800 600 81800 81800 600 81800 81800 600 800 81800 600 8180 82000 8180 1000 821000 1000 8200 821000 1000 800 821000 1040 800 821000 1040 800 821000 1040 800 821000 8100 1000 821000 8100 1000 821000 8100 800 821000 8100 800 821000 800 8100 <td>is (µg/L) • 2</td> <td>67</td> <td>65</td> <td>63</td> <td>62</td> <td>20</td> <td>66</td> <td>73</td> <td>68</td> <td>74</td> <td>60</td> <td>68</td> <td>2 2</td> <td>68</td> <td>69</td> <td>69</td> <td>53</td> <td>33</td> <td>5 3</td> <td>67</td> <td>62</td> <td>36</td> <td>47</td> <td>52</td> <td>14</td> <td>37</td> <td>32</td> <td>8:</td> <td>- 8</td> <td>9</td> <td>44</td> <td>41</td> <td>4:</td> <td>4 19</td> <td>41</td> <td>36</td> <td>f 5</td> <td>32</td> <td>34</td> <td>8.8</td>	is (µg/L) • 2	67	65	63	62	20	66	73	68	74	60	68	2 2	68	69	69	53	33	5 3	67	62	36	47	52	14	37	32	8:	- 8	9	44	41	4:	4 19	41	36	f 5	32	34	8.8
Sampling Sampling Bu17/00 Bu17/00 Bu17/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu17/00 Bu17/00 Bu17/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu17/00 Bu18/00 Bu20/00 Bu18/00 Bu17/00 Bu18/00 Bu20/00 Bu17/00 Bu20/00 Bu20/00 Bu20/00 Bu20/00 Bu20/00 Bu20/00 Bu20/00 Bu20/00 Bu21/00 Bu20/00 Bu21/00 Bu20																							-							-	-									

Chapiter 4 Appendix – All total recover/able samples collected for the drei studies at each site All samples below PQL for Ag_Be, Cd_Co, Pb, Sn, and V_Etement PQLs are listed under each element Note – Although Cr, Ni, P, and Zn values are listed there were contamination problems with these elements, as revealed in the digest blanks

νZ	0.001	BPOL	BPOL	BPOL	BPOL		BPOL	BPOL	BPOL	BPOL	000	BPOL		BPOL	BPOL	BPOL	BPOL				N IO IN	BPOL	BPQL	0.023	0 0 19	0 020	0.019	0 015	100		6100	0.018	0 020	0 020	0 023	0 019	0 015	0.014	0 015	0.017	0 023	0.025	0 025	0 028 0 026	
-	0.005	1048	BPOL	BPOL	BPQL		EPOL B	BPOL	BPOL	BPOL	BPOL			BPOL	BPQL	BPOL	BPOL					BPOL	BPOL	600 O	0000	0 007	900 O	900	2000		2000	0 008	800 0	200	600 0	0 008	9000	0 005	6000 0000	0 007	0 011	1100	1100	0 012 0 010	
Š	0.001	0 108	2010	0 109	0110		0100	0 102	0 106	0 109	8010 8010	0100	55	1010	0 103	0 103	0.103			3 2	500	0 105	0 101	0.497	0 489	0 486	0 499	0 489			0202		0 488	0 456 0 456	765 0	0 502	0 503	0.514	0 495	0 505	0 495	0 509	0 515	0521 0511	
ŵ	0.020	50	562	5 59	557	202	572	5 48	5 59	567	8 % 6 %	5 20 5 4	2 10	66	504	5 20	5 26	12.0	0 2 2 2 2 2		2 89 4	005	5 01	13.33	13 04	13 31	13 43	13 40	13 04		13 02	12 46	13 05	12 90 13 12	13 18	13 10	13 24	13 05	13 18	12 98	13 70	13 52	13 67	14 29 14 10	
											2 23	2 2	3 2	2 03	2 68	204	202	2 14	577	32	1 1 1	2 10	1 92	35.38	3371	34.37	36 08	5	35 10	22 42	36.33	35 78	34 85	5 S S										37 07 36 06	
٩	0.010	003	000	BPQL	0 02		000	00	600	600	500	66	5	500	001	00	000	500				000	001	0.06	000	0.05	0.05	0.05	500	58	300	0 05	0.05	88	0.05	900	0 05	0.05	60	0.05	900	58	80	899	
1		BPOL	BPOL	BPOL	BPOL		BPOL	BPOL	BPOL	BPOL	BPOL			BPOL	BPOL	BPOL	BPOL	800 0	9000			1100	0 0 10	000	BPOL	000	000	BPOL	BPOL		1000	0 001	000	000	0 032	0.016	0 028	0 031	00160	0 031	0 002	0002	0 002	0.00 0.002	
1			- 6 6	38	38	n 0	, 0 , 0	37	9 0	40	5 G 7 C	50 F												169	16.8	171	17.7	17.7	6 /1	20	173	166	17.0	173				2:		16	92;	2 92	1	17.8 17.6	
No											BPOL	BPOL		BPOL	BPOL	BPOL	BPOL				ap of	BPOL	BPOL	0.004	000	0 003	0.004	000	0000		500	0 004	0 00 0		600.0	0 000	0 008	600 0	800 0	0 008	0.004		0.004	000 0000 0000	
Mn	0 001	0 005	5000	0 004	0000		9000	0 005	0.005	9000	0000	0000		0 005	0 005	0 005	0000			2020	2000	2000	0 002	0.096	0 080	0 075	0 069	0 061	0 059		6/0 0	0.079	0 066	0.087	0 103	0 084	0 0 0 0	0.067	690 0	0 078	160 0	0 102	0 106	0 1 0 7 0 1 0	
ΒW	0 100	12 99	13 48	13 00	13 03	7 5	1361	13 52	13.50	1363	13 51			13 19	13 18	13 19	1000	32	13 23	22.21	10.01	12.85	12 98											73 73 73 73 73 73										21 72 21 46	
=	0 002		500	0 004	1000		5000	0 005	0 005	0.05	6000 0000			500	000	000	000	880			300		0000	0.018	0.018	0 018	0 018	0 018	0.018		0018	0 018	0 0 1 8	0 0 18	0.018	0 018	0 018	0 018	0.018	0 017	0.018	0018	0 018	0 0 19 0 0 18	
¥	0 200	41.		1 15	1 18	1 4	211	1 20	114	61	116	 22	4 4	2 2	113	1 12	2 !	2:	22	1:		112	=	4 86	481	4 85	491	4 88	4 86	5 G 4	4 89	4 88	4 79	4 4 8 80	4 77	4 80	468	471	4 73	4 67	4 69	6/4 5/5	4 78	4 95 4 85	
Fe	0 005	0.048	000	0 044	0 042		0000	0 045	0.046	6400	0 048	0100		0.034	0 033	0 032	0 035	9/00	0 1/0		4110	860 0	0 094	0.008	0 243	0 233	0 207	0190	0 178	551.0	0 244	0 245	0 262	0 258	0.478	0 333	0 349	0.360	0.284	0 401	0 341	505 0	0 355	0 347	
cr	0.003	BPOL	BPOL	BPQL	BPOL		BPOL	BPQL	BPOL	BPOL	BPOL	BPOL		BPOL	BPOL	BPQL	BPOL		arur Beoi		BPD1	BPOL	BPOL	0.012	0 0 10	0 010	0 010	600 0	6030	5000	00100	0 011	1100	1100	0.013	0 0 10	6000	600 0	0000	0 0 10	0.012	c10.0	0 012	0014	
ü	0 005	BPCL	BPOL	BPOL	EPQ1		BPOL	BPQL	BPOL	BPOL		BPOI.	apor BDOI	BPOL	BPOL	BPOL	BPOL		670 0		6100	0015	0 0 1 3	RPOI	BPOL	BPQL	BPOL	BPOL	BPOL		BPOL	BPOL	BPOL	BPOL	0.044	0 020	0 039	0.042	0 021	0.042	BPOL	BPOL	BPOL	BPOL BPOL	
1											96 96 26 65	34 47	25	33.68	33.90	32 96	33 14				55	35.07	32 45	76.70	72 15	72.64	79 16	75 32	74 98	20,27	77 23	71 35	73 75	75 45	77 65	76.86	78 85	78 07	76.40	76 71	74 38	77 58	78 27	81 0.1 80 58	
Ba	0 0005	0 249	0 248	0 248	0 249	647 O	0 249	0 242	0 246	0 252	0 253	0 244		162.0	0 240	0 238	0 235	0 248	0 248		2620	0 244	0 239	0.086	0.084	0 085	0 086	0 083	0 082	100 0	0 085	0 083	0 063	0 084	0 088	0 087	0 084	0.084	0.082	0 063	0 084	590 0 0 0 0 0	0 087	0 00 160 0	
A	0 007	0 029	0 025	0 027	0 023		0 031	0 029	0 030	0 030	0 0 0 3 4	0 024	*200	0 021	0 021	0 020	0 023	0 023	0700	0 0 0 0	0.078	0.022	0 026	0.288	0 222	0 228	0 185	0 181	0 172		0 227	162.0	0 263	0 247	0,289	0 241	0 176	0 166	0 185	0 204	0 339	0 326	0 341	0353 0315	
()/fiit) SV	02	114	70	1 10	3:			14	114	114	717	108	2	8	1 12	1 07	8		29	22	2 8	3	5	9 80	9 45	10 64	10 90	10 26	11 00		12 01	11 05	975 222	187 987	10.56	10 02	10 29	10 70	10 79	11 17	10.46	10.87	10 53	10 92 9 58	
	. 1	8 00	12 00	14 00	16 00		22 00	000	2 00	8 8	88	008	3 2	14 00	16 00	18 60	2000	888	8 8	38	384	809	8 00	8 00	10.00	12 00	14 00	16 00	18 00		800	2 00	88	000	00.6	100	13 00	15 00	8 6	21 00	23.00	38	5 00	00 c	
Sampling	Date	9/12/00	9/12/00	9/12/00	9/12/00		9/12/00	9/13/00	9/13/00	00/01/6	00/E1/6	9/16/00		9116/00	9/16/00	9/16/00	9/16/00	00/1/6			5/18/00	5/18/00	00/81/0	6/14/00	5/14/00	5/14/00	5/14/00	5/14/00	5114/00		5/15/00	00/51/6	5/15/00	5/15/00	6/18/00	5/18/00	5/18/00	5/18/00	5/18/00	9/18/00	00/81/6	9-19/00	9/19/00	9/1900	
	Site	3F8	070 8F8	BFB	8f8 9f9	010	8F8	BFB	BFB	0F0	81-8 8F8	8F8 8C8		BFB	8F8	BFB	8F8		61-12 0 - 12			efe Bfe	0FB	CERM	CFBM	CFBM	CFBM	CFDM	CFBM	CEUM	CFBM	CFBM	CFBM	CFBM										CFBM CFBM	

Standay Material	Chapter a spectrum trait and an instrum status and spectrum and spectrum instrument and and the Antana status and	t and acutical d and acutical	IH= Total H	scovefable				liaturo of the			1						į							i	1		Ű	ŭ	1
			Sampling	Weather			Vialer	2.	C a		155				ž			-	 ,	si e S	2 9 0			2 0	a c		<i>.</i> .	200	
MathMa			27600	B 05 Snowrg	- í	167				4	1101	4	1	4	322	1	1		100		188	1		100	200		o v v	0.081	1
The sector sect			2/26/00		ĩ	8	: 2	\$0	107 0		-	1140			2			8	•	1	2			0	đ	-	vi	0.042	
Mit Mit <td></td> <td>1-11-12-12-12-12-12-12-12-12-12-12-12-12</td> <td>372900</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>4</td> <td>-</td> <td>9/1</td> <td>32 0</td> <td>5 - 0 -</td> <td>025</td> <td>0</td> <td>-</td> <td>20</td> <td>a</td> <td>2</td> <td>0</td> <td>0</td> <td>-</td> <td></td> <td>010</td> <td></td>		1-11-12-12-12-12-12-12-12-12-12-12-12-12	372900									•	4	-	9/1	32 0	5 - 0 -	025	0	-	20	a	2	0	0	-		010	
MathMa		(8.3 /G BFB	00/62/1		9511	4	5 5	40			551	•	\$ 7		ē i	2 2	<u>.</u>	53	~ •			6.6	• •	00	••			1000	
111		19		11 53 lightsrow	3060	21		111		1921	28 G		2.4	55	83	40	22		00	5 0 100 100	00	00	22	00	00		หลังก		
1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000		8.3 M 8FB	4/14/00		3060	22		:		12 63	212		85	33	<u>s</u> 8	33	2 2		••	5 8	00	00	6 10 10 10	00	00		-A 40		
Matrix Matrix<		18-1 18-2 16-3 10 BFB	4122160 4122700 4122700 4122700		4590	7.87	:					++#	8=2	233 3	828	3= 8	300	C20 C20 C20	~~~	888 888	000	000	222	000	008		4 55 4 55		
With With With With With With With With		(81 1hr (82 4hrs (83 4hrs (81 9hrs 88 2 4hrs 87 19hrs 87 19hrs 87 104hrs	479/00 4729/00 4729/00 4729/00 4729/00 4729/00	2	0 9	7 92 7 92 7 92	Ę	2	8 5 6		- 0		8588879	2222222	5858565	8982283 8982283	22222222		*****	*****		0000000	2222222	<i></i>	0000000		*******	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
100 12		1 3SU) HIGH DU			01 9 4	1 92		0 01		14 70	95	0	2	53	121	1					•	0	-	•	0	-	4 62	0,050	
1000 1000 <th< td=""><td></td><td>. H</td><td>00/675</td><td>1 00</td><td>1100</td><td>787</td><td>82</td><td>12.6</td><td></td><td></td><td>167</td><td>75 G</td><td>3</td><td>54 0</td><td>-</td><td>e x</td><td>5</td><td>_</td><td>0</td><td>•</td><td>0</td><td>٥</td><td>-</td><td>0</td><td>0</td><td>-</td><td>4 19</td><td>0 048</td><td></td></th<>		. H	00/675	1 00	1100	787	82	12.6			167	75 G	3	54 0	-	e x	5	_	0	•	0	٥	-	0	0	-	4 19	0 048	
1000 1100 1000 <th< td=""><td></td><td>18-2 18-3 13 BFH</td><td>00175 00175 8000175</td><td></td><td>0011</td><td>1.87</td><td>28</td><td>12.6</td><td></td><td></td><td>1.11</td><td>744</td><td>23</td><td>232</td><td>53</td><td>23</td><td></td><td></td><td>00</td><td>88</td><td>- e</td><td>00</td><td>22</td><td>00</td><td>00</td><td></td><td>12.4</td><td>0 046 0 046</td><td></td></th<>		18-2 18-3 13 BFH	00175 00175 8000175		0011	1.87	28	12.6			1.11	744	23	232	53	23			00	88	- e	00	22	00	00		12.4	0 046 0 046	
0100 0100 <th< td=""><td></td><td>18-1 19-2 19-3 10-3</td><td></td><td>th mostly</td><td></td><td></td><td>0000 001 001</td><td>12</td><td></td><td>7999 3356</td><td>25.8</td><td></td><td>8283</td><td>3888</td><td>2858</td><td>3523</td><td></td><td></td><td>0000</td><td>8999</td><td></td><td>0000</td><td></td><td>0030</td><td></td><td></td><td>1281</td><td>740 0 740 0 740 0</td><td></td></th<>		18-1 19-2 19-3 10-3		th mostly			0000 001 001	12		7 999 3356	25.8		8283	3888	2858	3523			0000	899 9		0000		0030			128 1	740 0 740 0 740 0	
Image: 100 multi state 27100 multi state 27100 multi state 27100 multi state 27100 multi state 2710 multi state		181 182 181 191	00412 00412 00412 00412		0752	:	5 3				ŝ		1 8	23		8 5			~ ~	100	0 0	9		00	9 9		5 T	0.056 0.056	
111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111 27100 111		H-1		Z,	01/1	8 22	10 b	10		5		191	19	3	-	12 0			0		0	•	-	a		-	ð, t	6100	
HE1 5000 HE1 5000 66 0015 13 16 0013 13 0015 13 0015 13 0005 0001 13 0005 103 13 0005 0005 0005 0005 0005 0005 133 133 0005 0005 0005 0005 0005 0005 0005 133 133 135 <td></td> <td>8-2 8-3 G 8F8</td> <td>521/00 5/21/00</td> <td></td> <td>01/0</td> <td></td> <td>0.0</td> <td>0 01</td> <td>766</td> <td>8</td> <td>63</td> <td></td> <td>1</td> <td>3 3</td> <td>11</td> <td>28</td> <td></td> <td></td> <td>00</td> <td>_</td> <td>.</td> <td>00</td> <td>52</td> <td>00</td> <td>00</td> <td></td> <td>375 378</td> <td>0.049</td> <td></td>		8-2 8-3 G 8F8	521/00 5/21/00		01/0		0.0	0 01	766	8	63		1	3 3	11	28			00	_	.	00	52	00	00		375 378	0.049	
			00/00/5										4	:		81 0		-	0 7		•	0	-	•		-	3 83	0.048	
If bit is a condition Is a condition <this a="" condition<="" th=""> Is a condition I</this>		6-2 (9-1) (9-11) (9-11)	000005		0190			:		6 76 8.78			28		83	85	015 015		~ ~	6.6	00			00	00		29 C 98/C	0.049 0.049	
If B1 04000 B1 114 B6 904 104 2013 0011 06 0002 745 0011 0105 171 0.005 0.005 111 0.005 0.005 113 0.005 0.005 113 0.005 113 0.005 0.005 113 114 114 113 114 112 114 113 101 0.005 0.001 0.011 0.011 0.011 0.001 0.001 113 0.005 114 113 114 114 114 114 114 114		6-1 8-2 6-8f8		11.25 pl. cloudy sprmbles day after heavy rain	0+5E 042E	8 25 8 25 8 25 8 25	ā ī	ie ie		3538		~ ~ ~	1288	8822	2228	22.2E				200	0000	0000	5555 NO	0000	0000			2000 1900 1900	
BFB-1 &11100 BFB-2 ©111/0 6 _24 11.2 81.7 854 68 79.2 1483 0.54 01.41 2022 01.013 0.011 03 <i>010</i> 13 0.0013 174 0.0005 103 4.00 BFB-3 ©11100 BFB-3 ©11100		8-1 0 1 0 1 1 0 1 1 0	646.00 646.00 646.00 848.00		9716		222	916		555			8294	353	252	888 898			006	20 00 00 00 00	000	000 400	2 2 2		000		812	050 U 050 0	
0 (1100 C 849		8-1 6-2	00/11/0			5,8	113					~	3	23	ĩ	8	0	110	د	ġ	0	0	5			-		(500	
		6.9	00/11/0										ð	\$															

0 0010	0 0005	5000	0 0005 U 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	5000 0	0.0005	9000 90000	0.0005	9,000	0 0005 0.0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 (2005 2 (2005 2 (2005 2 (2005) 2 (2005)	0 0000 2000 2000 2000 2000 2000 2000	50000 0 50000 0 50000 0	0 0000 0 0000 0 0000 0 0000 0 0000	0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005	50000
0.005	055	350	8898		0 075 0 077	0.076	0 087 0 087	ł	250 0	C00 C	9000 1900 1900 1900	10000	5 1 1 1	5556	2010 2010 2010	8585	8989	5555	28
003	196	516	8825	2222	28		22	5.12	4 85	88	-388	3225		2222	8558	3 332	8858 8958	8553	252
0 007	81.1	28	****	8888	1 09 1 05	16	167	3	"	22	192 19 2	92 I 92 I 12 I	8258	5 5 5 5	2222	8893	****	2212 7713	5 12
0.01	2005	0 005	200 200 200 200 200 200 200 200 200 200	0 005 0 005 0 005	0 005	0.005	2000	0.005	0 005	500 0 500 0	v (105 0 005 0 005 0 005	0000 0000 0000 0000 0000	0 100 0 000 0 000 0 000	0 000 0 005 0 005 0 005	500 0 500 0 500 0	0 000 200 0 200 0 200 0	0 005 6 005 8 005	6 6 5 6	0 005 0 005
0.001	9 0005	0 0005	2000 0 2000 0 2000 0 0 0000 0	2000 0 2000 0 2000 0 2000 0	5000 0	0 0005	0 0000 0 0000	2002	0 0005	0 0000	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005 0 0005	0.0005	5000 0 000 0 000 0 000 0 0 000 0 0 0 0	0 00015 0 0000 0 0000 0 0000	00000 00000 000000	5000 0 0 0000
810		55	10.2	2282	22	2.30	22	3.15	R.	22	1978	2591	3858	8823	92038 93038	2568	1825	2222	22
0.003	\$100 Q	0 0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	2100 0 2100 0	0 0015	0 0015 0 0015	0.0015	0 0015	0 0015	0 0015 0 0015 0 0015 0 0015	0 0015	0.0015	0 //015 0 //015 0 //015 0 //015	0 0015 0 0015 0 0015 0 0015	0.0015 21/00 21/00 21/00 21/00 21/00 21/00	0 CUIS 0 2015 0 2015 0 0015	0 (UUS 0 (0)15 0 (0)15 0 (0)15	2102.0
5000	6100		C100 2100 100	8100 6100 6100	0015 0115	0015	0008	800	1160	198	8013 8013 8013	0100 0100 0100		5000 5000 5000	00000000000000000000000000000000000000	2888	000000000000000000000000000000000000000	0.000	100
0 0 0	•		82.84	8185	0 25 0	0 76 0	12 53 0	12.67 0	0 1521	202	9199	9000 222 222 2000	2325	2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	220	2258 2288 2028	0.000 0.000 0.000	0000 0000	1209 0
0.002 6	0 602 7		0 0002 0 0002	30.00	0 003	1 000	100	1 1000	1 1000	38	1	3333	2222	10000	20000000000000000000000000000000000000	3333	1000	S 5 5 5	20
100			665×8 0000	0000	8 ~ O		00 00	• 0	3 01	5 6 0		2000	0000 0000		2222	2222			::
1100	100	100 CI 00 CI	1100 1100	1100	0100	0100	0010	0.010	0100	0 0 10 0 0 10	1100 1100 1100	1100 1100 1100	0012 0012 0013	0012 0012 0012 0012	0112 0011 0012	0012 0012 0012 0012	100 100 100	000 000 000 000 000	(10)
003	\$100		5125 5125 5126 5126	2100 G 200 2100 G 200 2100 G 200	2100 2100	2100	1015 2015	818	\$100	2003	0 (1015 0 (015 0 0015 0 0015	2222	218 218 218 218	200 200 200 200 200 200 200 200 200 200	2028 2028 2028	2222	8988 8288 8288	2000 2000 2000 2000	100
0, 10	, ,	33	0000 5555 5555	22222 222222	898	1 22 0	87	0 11 0	0 00 00	50 52 22	0000 2000 2000 2000	8228 8228	5555 5555 5555	3332	0000 8388 8388 8388 8388 8388 8388 8388	2000	8888 8	3438	85
500	145 2	33	9235	5493 5493	33	E 781	22		K 9720	22	2222	2222	2222	0236 30	2328	8858 X58 3	****	2000 C	EL 1120 21 2120
10 190	9	200	2 2 2 2	5 3 5 5 0 0 0 0	99 99	95 0	88	•	32	••• *54	6 6 6 6 6 6 6 6 6 6 6 6	33 2	8888	385 8	9996	22 8	8223	222	00 C
1861			0000 099 3	883 883	00 89		 :	*	3:		.	111 000	2382	5 e e e	* *	82 8	888 8	 33	
-			****	225 0	ድ ደ :	•	55 2			***	8 8 8 8	888 60		2222 2	**	***	8228 8	22 2	22
_	2		536 8	601 201	911	111	121	121	33	121	88	911 9111 1916	50 A	110 110	61	1128 11677	8	10/ 10/ 10/	9C1 DV1
				2 2 2	23		12 1	1 2 1	23		-	2 2 2 2	8	2 1	3	22 2	2 2	=	2 5
			0 A A A	ភ្នេស ភូនិស្	555	27 8 85	6 21	56 97		388	18 9 18 9	5 5 5	0000 8888	17 1	51 5 L		38 8 39 8	33	10 05 10 01
1	68		1 9 9 9 1 9 9 9 1 9 9 9	838	969 (5	8	62.5		83	338	- 6 3 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8282 8282 8	5 6 6 6 6 7 7 6 6 7 7 6	C 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85 8	. i i	5 C6
e lere								•	318	3 21 60	. 9 5	or 11 or 12	5 5 8	0 1 2 4	9 6 0	6 01 C	10.2 0 10.20	9 0	971
1 Tere			848 145 849 145 849 145 849 145	848 175 849 176 848 175	1/1 258	171 23	9 J 1 5 8	CB 21 M			198 198 198	2 E E	2222	12 12 9 12 12 9 12 12 9	M 121 12.10			8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22
24 B24				1550		4 8 52	9	×. • ×			0 2 2 2 2 2 2 2 2	17 N 17 N 17 N		6 5 10 10 10	***)(8 1)(8 1	10 et	40
Liste Line Contrain [th] 0130	10.00		20 muu (1	15	11 45 pl coudy 508	805		557	13 00 overcasi 472	472	88	115	17 20 Libudy 525 325	529	53	10 30 clear and sun 540 540	162 Youway Yhhey 21 0 162	Ş10	12.00 mostly clouds 572
(1ale 140	11 011114	00414		711/00 711/00 711/00	00/11/2	00/21/2	812/00 812/00	8/12/00		0011-6	00/2/5 00/2/5 00/2/5	0047.6 0147.6 0047.6	94400 12 94400 94400	00/5/8 00/5/8	5,15,00 2,45,00 9,45,00 8,45,00	01 001149 001178 001178	WB400 10 8/5/00	000608 000608 000608	911/00 12 911/06
THI Ste	469.1	BFB 2 BFB 3 AVG BFB			0FB-1 0FB-2		8F8 1 8F8 2			8F8 3 AVG 8F8	666 1 866 2 868-3 AVG 868	6F0-1 8F8-2 8F8-3 AVG 8F8	0F8-1 8F8-2 8F8-3 AVG 8F8	6F6 1 8F8-2 8F8-3 AVG 8F8	618-1 668-2 848-3 Avg 868	BFB-1 BFB-2 AVG BFB AVG BFB	uf B-1 BF B-2 DF B-3 AVG BF B	668-1 668-2 676-3 AVG 848	1+8-1 168-2
E E E	1	444	1111		44	₹ ₹	523	44	Š	222	1111	4444	4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 4 4 4	2222	5151	2 4 4 4 2 4 4 4 2 4 4 4	54

12.10. 0.003 0.003 0.003 12.11. 0.003 0.003 0.003 12.11. 0.003 0.003 0.003 12.11. 0.003 0.003 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.013 0.013 12.11. 0.003 0.014 0.014 12.11. 0.003 0.014 0.014 12.11. 0.003 0.003 0.014 12.11. 0.003 0.003 0.014 12.11. 0.003 0.003 0.014 12.11. 0.003 0.003 0.014 12.11. 0.003 0.003 0.014 12.11	5. 101 0003 0003 1 0003 0003 1 0003 0003 1 0003 0003 1 0003 1 0003 1 0003 1 0003 1 0003 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1 1 0003 1	101 0003 0 0001 0001 1213 00013 0011 1 00014 111 00014 111 00014 111 00014 111 00011 111
1000000000000000000000000000000000000	10000 1011 00001 1011 10001 00011 223 233 243 00031 0103 111 00011 233 243 00031 0103 111 00011 0011 233 243 00031 0103 111 00011 0011 233 243 00031 0101 111 0001 233 0001 233 243 00031 0101 111 0001 234 0001 231 24013 00031 0101 111 0001 234 0001 231 24013 00031 0101 111 0001 234 0001 231 24013 00031 0101 111 0001 234 0001 231 24013 00031 0101 111 0001 234 0001 231 24013 00031 0101 111 0001 234 0001 <td< th=""><th>No. Ord Ord</th></td<>	No. Ord
	0 011 11 001 114 001 0 011 11 001 114 001 0 011 11 001 114 001 0 011 11 001 114 001 0 011 11 001 124 001 0 011 11 001 124 001 0 011 12 000 124 001 0 011 12 000 124 001 0 001 12 000 124 001 0 001 12 000 124 001 0 001 10 001 124 001 0 001 10 001 124 001 0 001 10 001 124 001 0 001 10 001 124 001 0 001	0 0 11 0 0 11 0
	1 0.001 11.10 0.001 1 0.004 13.10 0.001 1 0.004 13.10 0.001 1 0.004 13.10 0.001 1 0.004 13.10 0.001 1 0.004 13.93 0.001 1 0.004 13.93 0.001 1 0.004 13.93 0.001 1 0.004 13.93 0.001 1 0.004 13.73 0.001 1 0.004 13.73 0.001 1 0.004 13.73 0.001 1 0.004 13.73 0.001 1 0.004 13.73 0.001 1 0.004 13.73 0.001 1 0.004 13.73 0.000 1 0.004 13.73 0.000 1 0.004 13.73 0.000 1 0.004 13.73 0.000	No No<
	1 0	0 0

L. J.Y., 284		CFBM-1 5-J000 9-15 suiny CFBM-2 5-3000 CFBM-3 5-3000 AVG-FBM 5-3000		CFBM-1 64000 CFBM-2 64000 CFBM-3 64000 AVG-CFBM 64600	CFUM 1 M1100 CFUM 2 M1100 CFUM 3 M1100 AVG CFUM M1100	CLEM 1 CU1200 9 00 sunhy CFBM 2 6/12/00 CFBM-3 6/12/00 AVG CFBM 2/12/00	CFBW-1 67500 CFBW 2 67500 CFBW-3 672500 AVG CFBM 673500	CFBM 1 7/1/r/0 10 15 pi cinu/y 10 CFBM 2 7/1/r/0 10 15 pi cinu/y 10 CFBM 3 7/1/r/0 bul no cin now AVG CFBM 7/1/r/0 11 no cin now	CFBM 1 7/1/00 CFBM 2 7/1/00 CFBM 3 7/1/00 AVG CFBM 7/1/00	CFBM-1 8/12/00 muulerale smuse CFBM-3 8/12/00 muulerale smuse AVIC CFBM 8/12/00 101 AVIC CFBM 8/12/00 101	CFBM-1 W1X00 1100 Dvetcart CFBM 2 D11X0 Tained Last CFBM 3 S41X00 Tained Last AVG CFBM 8/1X00	CFBM-1 54200 10.45 ramed uni CFBM-2 92000 CFBM-3 92700 AVG CFBM 97200	CFBM.1 pl cloudy CFBM.2 9/2/00 CFBM.3 8/2/00 AVC CFBM 9/2/00	GFULL-1 84400 1055 cloudy CFBU-2 44400 GFBU-3 94400 AVG C+BIN 914000	CFEM 1 W500 CFEM 2 V2:00 CFEM 3 R5:00 AVG CFEM 815:00
1	14	è r	ue: //ww	450	**	000 000	802	105 105 105	11	umuke 107	overcast 110 rained last night in base	124	20	62 1	51
				:	8 8 8 6 8 8 8 6 2 9 9 9	2004 2725 2725			812 1 808 1	679 17 17	6 6 6 6 6 2 5 2 2	1 21 2 28	2 9 8 2 9 8 2 1 1	608 612 612 11	828
		1 1 2 1		16 20	12 8 13 12 8 12 8 12 8 12 8	157 16 156 156 158	13 S 13 S	191 32 192 32 193 32	111 111	112 173	161 165 165 16 16 10 10	15 0 13 16 1 15 1 5	22 23 25	2 (1) (1) 2 (1) 2 (1 2 (1)	111 111 112
1 0 0 0		14 6 11 14 6 11	99 9 (11	1 0 02	2018 2 EI 78 9 EI 78 9 EI	5 0 5 7 8 8 8	32		58	101	8	811 861 811 811 811	100	58 8 7 5 1 5	385
		0 8 0 +	a n		6.00 A		105 E	56.5 541 102.1 558 54.6 545 100.3 946	- 2	- 1	991 906 101 906 992 965 9877 9.72			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.5 0
196 24	•	61 10 00 34	25 26 26 28	2 60		8585	2		83	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8888	11.25 29 11.24 11.24 31	10 62 29 10 31 22	4 2 2 2 4	20 20 20
1091		1592	- 15 - 15	149 5	7 1640 4 1624 1652	1745	181 7 181 7	192 182 181	18/ Z 15/ 21	1961 Et 281	67 21 102 102 102	1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0	90 CO	204 B 206 4 206 6/	2 602
10.04	1	£, 2 ₽	00 87 97	CC 80 CC 80	5 7 7 8 9 9 9 9	4 4 4 4 2 5 5 5 2 5 5 5 2 6 5 5	45 89 46 46	2 5 5 8 9 9 9 4	24 1	198	9444 9444	444 4 4444	ទនទី និនិនិ	50 55 50 55 50 55	5 5 5 5 5 5
		10.01	959 7 3	85.5 82.5 82.5	62 01 06 01 61 11 72 01	292 9	451 1005 959	822 3	0 59 A 91	92 11 92 11	3003 7	04 01 25 01 26 0	578 778	01 9 53 6 11	335 336
10052		5500 5500	0 055 0 055 0 0 0 056 0 0	0.00		0.0000	0.063	0 00 0 0 00 0 0 0 0 0	0.006 0.055 0.055	0.067	0 0/4 0 0/1 0 0/1	6.00 0 6.00 0 6.00 0	0073	0072 0074 0072 0072	0 074 0 076 0 074 0 074
12.02		883 1 8481	222 2 222 2	62 59 62 59 63 59	10 69 69 69 69 69 69 69 69 69 69 69 69 69	20 52 20 52 20 55	81 87 81 85 87 87	8528 8528	79.67 82.40 88.08	80 10 82 85 84 85 85 85	2 22 2	85 12 80 23 82 68	2222 8228 8228	2228	222 222 111
- 1 000		000 000 000 000 000	100 0 000 0 000 0 000 0	000 0 000 0	(000 (000 (000 (000)		100 0 100 0		0000	0 (015 0 0015 0 0015 0 0015	0.000 0.000 0.000 0.000 0.000 0.000	0.0015 0.0015 0.0015	0 2015 0 2015 0 2015 0 2015	0.0015 0.0015 0.0015 0.0015	0 (015 0 (015 0 (015 0 0015
1100		1000 1000 1000 1000	6100 6100 6100	0 0 1 0 0 0 1 5 0 1 5	0015 0015 0015	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 UIS 0 UIS 0 015	4100 4100 4100 4100	0 014 0 014 0 020	0 016 0 015 0 015	0000 0000 0000	0014 0014 0015 0015	4100 4100 4100
	;		9999		;;;;	::: :	4 4 4 0 4 0	4 4 4 4	:::	4 4 4 4 V V V V	~ 0 ~ ~	; ;;	5 1 1 1 1 5 1 1 1 1 5	4 4 4 A	****
0 018		\$100 6100 6100	0014 0015 0015	0 016 0 015 0 016	0 015 0 015 0 015 0 015	0.016 0.016 0.016 0.016	010 0 020 0	0.015 0.019 0.019 0.019	0 U 18 0 0 16 0 0 16	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.022 0.021 0.023 0.022	1200 2200	0.020	020 0 020 0 020 0	510 0 510 0 510 0
9991	3	15 44 0 15 78 0 15 78 0	8538	51 51 51 51 51 51 51 51 51 51 51 51 51 5	16 12 0 16 12 0 16 28 0 28 0 20 0 20 0 20 0 20 0	16 15 0 16 15 0 17 42 0 16 70 0	18 22 0 19 18 0 18 69 0		87 81 87 81 88 81 9 8 88 9 8 8 8 9 8 8 8 8	2222 2222 2222 2222 2222 2222 2222 2222 2222	23 25 0	3 6 0	2222	2322	2222
2210		2 2 6 6 6 2 2 6 6 6	8-5-5-5 8-5-5-5-5	1012	00550 00550 00553 00553	800 F	0000 0000 0018	1000	1-100	1000	1988 5 1	800 1900	99000		1999 999 999 999 999 999 999 999 999 99
000	3	8888	99999	600	8888	3888	555	3333	60 G	5100 G	500	8 68	2002 2015 2015 2015	2002	2015 2015 2015
00 BE EL	> ;	10 10 00 00 00 00 00 00 00 00 00 00 00 0	223 256 257 257 257 257 257 257 257 257 257 257	197 00	537 00 1527 00 1528 000000000000000000000000000000000000	525 575 575 50 50 50 50 50 50 50 50 50 50 50 50 50	15 12 00 15 89 00	5 47 00 5 55 00 5 55 00 5 55 00 5 55 00 5 55 00 5 60 5 6	11 50 00	5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 37 00 17 01 05 14 00 16 14 00	17 42 00 16 95 00 17 19 00	00000000000000000000000000000000000000	882 883 883 883 883 883 883 883 883 883	157 00 175 00 175 00 175 00
00 5000	•	2000 2000 2000 2000 2000 2000	000 5000 5000 5000	0002 0002 0003 0002 0003	5000 5000 5000	000 0000 0000 0000	00 5000 2000 2000	0000 0000 0000 0000 0000 0000 0000	0005 0 020 0005 0 012 0005 0 018	0012 001 0005 001 0005 001	100 2000 100 100 100 100	500.0 5000 500.0 5000	0005 0 014 0005 0 013 0005 0 013	0005 0005 0005 0005 0005 0005	0000 0 0000 0000 0 000 0 0 0 0000 0
20.20	2	8888 8888		52 73 1 28 5	3 3 3 9 6 6	3888	01 317 01 352 01 352	200 200 200 200 200 200 200 200 200 200			55555 5775	8 8- 8 8	128- 2953	2444	
	2	0011	0 - 5 Q Q	10.6	100	001 001 001 001 001 001 001	956 676	227	121	1123	121	<u> </u>	2222	000	2002
1	,	0000		27C 0 08C 0 CBC 0	0 418 0 405 0 409	0 4 4 0 0 4 4 0 0 4 4 0 0 4 4 0	0 505 0 br>500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 503 0 565 0 565 0 565 0 565	0 452 0 486 0.474	000 000 000 000 000 000 000 000 000 00	0.520 1.720 1.882 1.982 1.982	0 602 0 592 0.587	0 569 1 52 0 1 50 0 100 0 1 50	0 562 0 540 0 568	0534 0538 0538

•

<u>Ste Date Date Com</u> CFBM-3 94500 AVG CFBM 94500	CFBM 1 W/MO 9:00 Clear CFBM-2 W/MO CFBM-3 S//MO AVG CFBM 9/700	00/12/5 00/12/5 00/12/5		CFBM-1 6/11/00 /amed CFBM-2 5/11/00 CFBM-3 5/11/00 AVG.CFBM 9/11/00	CFBH-1 6412/00 9.00 clear CFBH-2 5412/00 CFBM-3 5412/00 AVG.CFBM 8412/00	CF BM-1 10/00/10 CF BM-2 10/05/10 CF BM-3 10/05/00 AVG CF BM 10/5000	CFBM-1 11/000 CFBM-2 11/000 CFBM-3 11/00 AVG.CFBM 11/000	CFBM 1 12/200 9.20 clear CFBM 2 12/200 CFBM 3 12/200 AVG CFBM 12/200	CFBM-1 12/24/00 10.00 ckuds CFBM-2 12/29/00 CFBM-3 12/29/00 AVG.CFBM 12/29/00	CFBM-1 1/2001 9.30 CFBM 2 1/2001 CFBM 3 1/2001 AVQ CFBM 1/2801	512.6H 2735000 14 30 pr cuudy 8H - 2735000 14 30 pr cuudy 8H - 273500 AVG BH 273500	BH-1 2/2400 BH-2 2/2400 BH-3 2/2400 AV3 BH 2/2400	BH 1 4/22/00 14 15 party BH-2 4/22/00 BH-3 4/22/00 AVG BH 4/22/00	61-11 1-12 10 10-12 10 10-12 10 10-12 10 10-12 10 10 10 10 10 10 10 10 10 10 10 10 10
Lune Corrynnis [ch] 202	2	party roudy 193 183	2	id all day yesleriday 186	507 504	410	3	04C	34 enow 360		udy 10.00	22 72	y cloudy 115 to 116.16	2
88	8222	1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	9 39 5 5	817		7 83	(18 (18 (18 (18))		7 68 7	785 1 781 0 778 1	• • • •	2. 10. 7	500 500 10 10 10 10 10 10 10 10 10 10 10 10 1	27.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2
19 10 1	\$	(C C C C C C C C C C C C C C C C C C C	12 5 12 6	12.6 12.63	13.1 16 12.07	•		- 5	• • •	1 00 1 00 1 00 1 00 1 00 1 00 1 00 1 00	200 E	-	10 4 10 4	
10 09 2	5304 5304	തരം ക	ு கி	- 8	9 6	8	27 28	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2. 2 2. 2 2. 2	2 2	2		2
~ 2		ാനം ക		1 1001	69 7 69 7	e 81	~ 2	n - 8	- 5		2 2 8881	0/ \$ 10	0011	21 E.201
-		3 3 3	10 20 10 10 6(10 59 10 46 12	11 00.0	ĩ	5 1 2	1276 47 1253 36 1256 42	12 31 24 12 75 28 12 55 26	12 09 42 12 14 45 12 17 52	CO 07.CI	350 16		10 81 51 2 8 45
3	45 200 119 200 119 200 119 200	146 202 146 202	9 5 6	222	10. 10. 11. 11.		5 5 5		• • •	2222	588 8	888	8822	858
1000	2222	33 8	4 4 4	÷ ==		1806 1801 - 46		101 1050 1050 1012 1012 1012 1012 1012 1	44 44 44 44	1111	9 0 0	222	****	
		28.4	92 8	3.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 6 6 6 6 1 1 6 9 6 9 6 9 9 9 9 9 9 9	9958	3 업 2	2 6 9 6 6 6 9 6		8998 898	25.85	228
010 L96		1000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	32	8 5		2 2 2 2	9225 9229	\$22 \$22 \$11	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2222	000 5529	2222	555 8.82 8.82
010 24	100 100 100 100 100 100 100 100 100 100	20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	01 110 11 110 11 10	07 20 27 210	000 000 000 000 000 000 000 000 000 00	075 63 076 62 075 63	988 9 8828	2222 2 22222	8888	2 6 8 8 2 6 8 8 2 6 8 8	****	rra ZZZ	<u> </u>	25.52 5 2 5 5
132	14 21 00 10 10 00 10 10 00 10 11 17	8948	00 0 28 2	58	20 69 06 72 55 000 70 27 000	0000	8232	889 8	0000 8228	6996 5335	8858	222	2822	325
0115	2000	2002	8035 8135 8135 8135 813 813 813 813 813 813 813 813 813 813	2015	2015 2015 2015 2015	0015 0015 0015	0015 0015 0015 0015	2015	0015 0015 0015 0015	2015 0	00000 0010 0010 0010 00000	0 5100 0 5100	2015 2015 2015 2015	0015 0015 0015 0015
5 910 0	200 SEO	2000 2000	10 510	510 512	010 010 010 010 010 010	011 017 017	510 610 610	100	1000	500 FE		0 022 0 1 0 022 0	020 020 021 020 020	0012
53 00			00 0 00 0		00000 00000 00000		~	2000 2000 2000		****	1000 1000 1000 1000 1000 1000 1000 100	000 000	1000 0 1000 0 500 500 500 500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.002 0.10		0015 209 0018 209 0019 209 216 216	016 209 018 206 018 210	012 010	018 20 21 1 018 20 9 018 20 9	016 180 015 176 016 161 016 179	0 015 16 0 0 014 16 4 0 014 16 7 0 014 16 7 0 014 16 7	C 11 9100 C 11 9100 C 11 9100	015 169 015 169 010 170 015 170	0.016 1.01 0.016 1.01 0.016 0.016 0.016 0.016	2===	001 10 77 001 10 78 001 10 28	00 00 00 000	59 8 8 5 8 8 5 8 8 5 8 8 5 8 5 8 5 8 5 8 5
00000 W	15 0.0061 41 0.0050 91 0.0050 90 0.0050	27 0 0048 97 0 0048 69 0 0053	96 0.00/7 80 0.0068 03 0.0072	245 0 00000 000000	13 0 0060 86 0 0060 86 0 0060 86 0 0060 86 0 0060 86 0 0060	65 00110 65 00109 10 00111 85 00110	43 0.0106 43 0.0114 74 0.0114	20 00155 21 00151 21 00151	4600 0 000 100000 11 100000 11	7800 0 62 7800 0 61 7800 0 62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 0.0039 78 0.0039 12 0.0036	0.0050	10000
000			6 6	30	0000	0000	0000	0030	2000			000	0000	10015 10015 10015
001 016 1911 000 0011 1960	000 171 171 171 100 171 100	100 CON	5 I I	001 11 10	000 CON	0015 15 1 0015 15 1 0015 15 1	2015 141 2015 141 2015 141	1911 COO 1911 COO 1911 COO	800 122 122 122 122 122 122 122 122 122 1	00000 M	0015 252 0015 258 0015 258 0015 237	0015 229 0015 241 0015 241 244	0015 195 0015 215 0015 212	89 9 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2
5000 0 000 5000 0 000 5000 0 000	1000 0 11 1000 0 11 1000 0 10	45 0.0005 46 0.0005 46 0.0005 46 0.0005 46 0.0005 46 0.0005 46 0.0005	5/ 2 0005 28 0 0005 00 0 0005	1000 C	210 1 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0000 29 0 0005 29 0 001	5000 0 93 5000 0 93 5000 0 93	00000 00000 00000 00000	45 0.0005 20 0.0005 66 0.2005 78 0.0005	11 0 0005 17 0 0005 17 0 0005	0.0005	5000 0 5000 0	00005	0 0005
+	5255 5255	2222	2 0 0 0 2 0 0 0 2 0 0 0			5555 565 8	2222 2000 2000 2000	22 0 22 20 0 22 20 0 2 20 0 20 0 2 20 0 20 0 2 20 0 20 0 20 0 20 0 20 0 0 20 0 0 0	2222	5555 5655 5655	8 2 2 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000	2222	2000
282	5988	87.5 8 1 1 1 8 1 1 1 1	886 87	5.42 8.96							5225 5225	825 825	2020	
	1001	2000	000 000 7	501 511		11 8 12 1 12 0	3111	11.0	121	****	- 10 0 83 0 72 0 83	0 6 0 6 6 0 6 8 8	1944 1944	57.0 54.0 80.0
0.39	0.512 0.485 0.504	0 523 0 465 0 519 0 513	105 00 105 00 105 00	0 501	0 485 0 477 0 482 0 482	0 365 0 366 0 362 0 378	051.0 511.0 514.0 514.0	52C.0	0900 0 9000 0 9000 0 9000 0	0 386 0 360 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		0110	0.064	0 060 0 061 0 061
+						0000	0000	0000	0006			0.36	0.0150 0.000 0.0159 0.0159	609

_	0.0169	00160	•	a	00100 0	0 0015	0.006	0.0015	0.0005	0 0026 0 0026 0 0032	0 0000	00000	0 0000 0 0000 0 0000 0 0000	0 0000	0.0005	0 0000
1	0.065	0.062	0	0	660 0 870 0	0.00	0 0 0 0 0 0 0 0 0 0 0		0112	0100	0110		0.127	01100	0 7 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000
÷	299 299 299	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1/ 9	6 - 9 9	5 4 5 9 5 9 9 4 9	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0000 2000 2000	674 2022 211	0 0 0 2 2 3 3 2 4 3 3	200 200 200	9 2 9 9 9 7 7 9 7 7 9	****	3985	2222	222
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	vî -	4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	555 555 555 555 555 555 555 555 555 55	2000 2000 2000	2422	2222	5 5 8 6 5 7 8 6 8 7 8 8	5008 5008	3831	12000	1950 S	2.5
		0.000	٩	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005	0000	0000	0000	00000	00000	0000	00000	00000	0.005	50000
i	0 0000 0 0000	5000 0 5000 0	0 0002	0 0005	0 0005 0 0005 0 0005	0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	2000 11 2000 0 2000 0	0 0005 0 0005 0 0005	2000 0 2000 0 2000 0	0 0000 0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005 0 0005 0 0005	5000 0 5000 0 5000 0	0 0005 0 0005 0 0005
1	289	215	2	1.1	222	2 6 2	2382	****	8664	1188	****	9779 9779	1814	282	8538	2222
1000	0 0015 0 0019 0 0019	0.0015	5100 0	0.0015	0.001 2100.0 2100.0	0 0015 0 0015 0 0015	0.0015 0.0015 0.0015	0.0015 0.0015 0.0015 0.0015	100 0 100 0 100 0	0.0015 0.0015 0.0015 0.0015	0.0015	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0.0015 0.0015 0.0015 0.0015	2100.0 2100.0 2100.0
5000	0.0048	0 0045	0 0043	0 0043	0 0039 0 0039 0 0039	0 0011	0 0042 0 0042 0 0042	0 0035	1000	70000 70000 70000	0 0028 0 0028 0 0027	0.002/ 0.0025 0.0025		1000 1000 1000 1000	0 00 0 0 00 0 0 00 0 0 00 0 0 0 0 0 0 0	0.0010 1.0010 0.0010
010	8 8 8 8 8 8 8 8	8 8 8 8 8 8	[] 8	3	5 5/ 10 01 10 02	10 50 19 10	8 0 0 0 8 0 0 0 9 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 : 2 2	10 12 25 05 26 55	1121		11 80 12 15 12 15 12 15	2 2 2 2 2 2 8 8 8	5222 2222	5 2 3 3
2000		0 001	0 001	100 0	100 0 0 00 0 0 00 0	100 0 100 0	100 0 0 0 0 0 0 0	0 002 0 007 0 007	0 002 0 002 0 002		0 000 0 000	0 002 0 002 0 002	0 002 0 002 0 002		8888 8888 8888 8888 8888 8888 8888 8888 8888	
- -	- 	200	80	10	8 8 8 0 0 0	5 6 6 0 0 6	0 0 0 0 0 0 0 0		8768 0038	 					::?:	
S	0 0 3 3 0 0 2 5 0 0 2 5	1200	9 00 3	0.020	£000	0.012 0.012 0.012	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	N00 9000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	920 0 920 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0100	1000	1000 1000 1000
600	0 0015 0 0015 0 0019	0 0015 0 0015 0 0015		0.0015	0.0015 0.0015 0.0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 (015 0 (015 0 (015 0 0015	0.0015	0 0015	0 0015 2 00 0 2 00 0 2 00 0 2 00 0	0 0015 2 000 0 2 0015 2 0015	0 0015 2 0015 2 0015
1	9 9 9	18.67	21 47	51.12	* * * *	328	8888 8888	4232	8585 8828	8387 8888	2582 2222	8578 2828	2388	2833	8778	2852
6	0 155 0 162 0.121	231 0 231 0 231 0	581 0	£	101 O	0.210	55 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	210	1228	0 205 0 207 0 215 0 210	iz 2 2 2 2	222	252 252 872 192	33 3 3 3 3 3 3 3 3 3	281	0.200 0.277 0.277
1	323	8 28	12	5.0	1221	8888	2222	2 2	2 X R	8888	22 2	****		****	2222	** *
	852	==	22 22		21 66	22.5	95 55 65 59 65 59 65	8 5 5 5 5 5 5		R = 2 = 2 R = 2 = 2	2 I R	****	4 I C Z Z 4	****	2888	8000 C
	59 6 70 8 70 8	9 - 69	20	5	: :	50 58 50 58	800 5	3 2	85	3383	*** * \$5 1	50 0 0 50 0 0 50 0 0	4 C 0 0 0	2007	1010	539 539 539
-	9 4 9 9	• •	•	15	a a	••••		••• •••	••		8- 0 8- 0	0 5 F	10 50	0 m 10		
П	6 92 8 91 9 91 2	در و د	16	8	2 2	822	86 6	2 2	8 =	3238	0 1 1 1 1 1		1222	2:92	3	8 9 9
Ę		82 1	-	082	ec	290		6 6 6 6 4 6	88	- 4 4 4			8275	2040		- 58 - 58 - 58
Teme	2			1.211				i i		ē ē	19 19 19 19 19 19 19 19 19 19 19 19 19 1	2 2 2		* *	8 8	15.00
Temp T		1 1 1 1 1 1	1 01	10.1				15 2	12 5 12 5	2229		8 N	15 6 15 6 15 6	2222 7077	N N 0 9 8 9 1 1 1 9	= = = = = =
		88 22	1 20 8	1 27.9	a 10 a	***			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		~~ ¥			 	5173 6666	62 6
icht.	93 79 94 95	1 CO1	1 83	88°.16	62 55 50 49	40 82 45.76	5 5 5 5 5 5	•1.75	200.55	45 45 45 45	5 5 5 7	11 I.S.	10 81 61 81 81 11	10 01 10 01	7 7	71
The Customents	0 0 51 10 0012/5 0 0 0012/5 0 0 0012/5 0 0 0012/5 0 0 0012/5				thom yier 00 El		10 pt (100 pt			14 40 pl chaudy	14 45 sung	14 00 mutul fatau	Jums Of El	13.40 smokey. pt cloudy	15 overcant	
Dele	00/1/5 00/1/5	00/345 00/345 00/345	00/01/2 00/01/2	00/01/5	001525 001525 001525 001525	009275 001572 001572		004249 007249 007249 007249				00/1/2 00/1/2 00/1/2	1 00/11/1 00/11/1 00/11/1		21 00019 20100 20100 20100	ODIE 19 DATE 19 DETE 19 DETE 19
544	FA 8H-2 FA 8H-3 FA AVGBH	84-1 84-2 84-2 AVG BH	6H1 2H2 2H2	AVG BH	8H-1 6-HB 6-HB AVG BH	611-1 811-2 811-3 AVG BH	8H-1 8H-2 8H-3 AVG 8H	011-1 011-2 011-2 AVG BH	814-1 814-2 814-3 AVG 814	8H-1 8H 2 8H-3 AVG 8H	814-1 814-2 614-3 AVG 8H	8H 1 8H-2 8H-3 AVG BH	86-1 86-2 80-3 AVO 86	6H-1 8H-2 8H-3 AVG BH	6H-1 8H-2 8H-3 AVG 8H	84-1 84-2 84-3 AVG 84

	,														
2n 0.0010	0 0000 5 0000 6 0000	COOD 0 2000 0 2000 0	0 0005 0 0005 0 0005	0 0000 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0000 0 0000 0 0000	0 0005 0 0005 0 0015 0 0017	0 0005 0 0005 0 0005 0 0005	0 (1005 2000) 2000 2000 2000 2000 2000	0 0005 0 0005 0 0005 0 0005	5000 0 5000 0 5000 0	0 0000 5000 0 0000 0 0000 0 0000	5000 0 5000 0	2000 0 0100 0	0 0005 0 0005 0 0005 0 0005
Sr 0 0005	0100	0 142 0 142 0 140	0 141 0 0 145	2110 2110 2110 2110	0 146 0 149 0 147	0 0 0 0 8 1 0 8 1 0		0 155 0 151 0 151 0 151 0 152	0 150 0 160 0 150 0 158	1991 - 1995	0 050 U 060 0 062 0 060	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	0.046	1000
5 0 05	- 37	0 ~ 0 B	R 22	724 8	132	222 8	# 35 1	\$ 772	82292	8325	÷ ; ; ; ; ;	2 8 2 8		230	2222
5 0 007	828	4 1 2 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	9 X 7		8785	8955 8	****	2223	55 8 4	****	200 1	****	53	5	8666
4 10 0	0 0 0 0	000000000000000000000000000000000000000	200 0 200 0	0 005 0 005 0 005	0 005 0 005 0 005 0 005	0 005 200 0 000 200 0 000	0000 0000 0000 0000 0000 0000 0000 0000 0000	2000 0 2000 0 2000 0	0000 0000 0000 0000	0 000 0 000 0 000 0 000 0 000	0 005 0 005 0 005 0 005	0 000 0 005 0 005 0 005	0.005 0.005	505.0	0000 0000 0000 0000
1000	5000 0 50000 0	00000 00000 00000 00000 00000 00000 0000	0 0005 0 0005	0 0,005 0 0,005 0 0,005 0 0,005	0 0000 0 0000 0 0000 0 0000 0 0000 0 0000	00000 00000 00000 00000 00000	0 0000 0 0000 0 0000 0 0000	0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0000 0 0005	0.0005	5000 0 5000 0 5000 0	0.0005	0 0105	0 0005 0 0005	2000 0 2000 0 2000 0 2000 0
2 0	828	286	8 88	2222	222	54 7 5	2821	2281	222 2	8998	2225	****	6 F	8 8	384 8 3839
0 00 0	0.0015 0.0015 0.0015	0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0.0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0.0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	0 (0) 0 0 (0) 5 0 (0) 5 0 (0) 5 0 (0) 0	0 0015	0 0015	0 000 0 000 0 00 0 00 0 00 0 00 0 00 0
Mn 0.0005	11000	0 0012 0 0012 0 0011	0 1010 0 0010 0 0010	0 0000 0 0000 0 0000	6000 0 6000 0	0 0039 0 0015 0 0023	1100 0 1100 0 1000 0	1100 0 1100 0	0 0000	0 0016 0 0016 0 0016 0 0017	0 00025 0 00025 0 00025	0 00025 52000 0 52000 0 52000 0	0,0010	0 (CO25	0 0007 0 0008 0 0007 0 0007
570	332	12 55 12 12	10 10 10 10 10 10 10 10 10 10 10 10 10 1	=2 : 2 2:2:2	2222	3289	558 8 222 8	88 93 2222	2 2 2 2 2 2 3 2 2 2 2 3 3 2	2222	5888	****	24		8183
t. 0 002			(00 0 (00 0	000000000000000000000000000000000000000	0000	000000000000000000000000000000000000000	0 002 0 002 0 002	0000 0000 0000 0000 0000 0000	0 002 0 002 0 002 0 002	0 002 0 002 0 002	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0	0 001	100 0	8000
20 20		2552	: ::	- 000		2222	0308 0000	8529	3 6 9 9 0 3 0 0	- 30 -	6 5 5 6 G G G G		0 0 5 5	•	****
0 005	0.014	0 0 15 0 0 16 0 0 16 0 0 16	0 0 15 0 0 16 0 0 16	0 014 0 015 0 015	0013 0014 0014	0 293 0 070 0 020 0 130	4100 4100 4100		0000 0100 01000 01000	0 000 0 000 0 000 0 000	0 0025 0 0025 0 0025 0 0025	0 0005 2000 0 2000 0 2000 0	500 0 500 0	0 (10/5	0 0025 0 0025 0 0025
2000	0 0015 0 (1015	0 0015 0 0015 0 0015 0 0015	0 4015 0 4015 0 0015	0 (2015 0 (2015 0 (2015 0 (2015	0 0015 0 0015 0 0015 0 0015	0.0015 0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	2100 U 2105 U 2105 U 2105 U 2100 U	0 (k)15 0 (b)15 0 0015 6 0015	0 0015 0 0015 0 0015 0 0015	0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	2 (0) n 2 100 0	2 100 0 2 100 0	0 (015 0 2015 0 2015 0 2015
00	52 55 56 55 56 56	333 3 888 2	22 22 25 25 26 25	****	22 22 22 22 22 22 22 22 22 22 22 22 22	****	2883	8585	8858 8878	7238 8288	2222 2222 2222	22 22 22 22 22 25 23 25 25	25 UC 24 92	K 52 X	
B.0	100	1920 920 920	552 0 192 0	1/2 0 1/2 0 1/2 0	612 0 875 0 172 0	0.268 0.271 0.271 6.270	0 245 0 255 0 255 0 255 0 250	0.272 0.245 0.270 0.270	02.0 12.0 0 20.0	0.272 0.272 0.270 0.270	0 276 0 275 0 263 0 263	0 282 0 283 0 283 0.282	0.185	0 187	\$210 \$210
A.	222	****	9 9 9 0 0 0	100 N 00	9666 966	000 000 000 000 000 000 000 000 000 00	2200 0000	9822 0000	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 0 0 0 0 0 0 0 0	5 5 5 5		550 550 550	7777 0000	000 0
	286 289 289		285 288 281	7 8 5 8 8 8 8 8	2 2 2 2 2	88.9 8	49 -6		****	226 226 226		222	19 19	24 70	
A a almity	1220	4 4 1 1 4 9 1 1 1 1	1172	10 8 0	1220	1148 1148 1184	1096 1104 1097	0711 0711	121 2 121 2 120	1212 1212 1240	120 120 120	1262 1261	3 2	\$ 8	
155		50 •	0 \$	90	CO CO	02	; ;	••• · · · · · · · · · · · · · · · · · ·		0 2 2 0	(0 (0	02	8 5	21	101
0.0	00	0 0 0 0 6 0 0 0	**	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		10 64 11 01	8838	1107	222 2	2222	02 20 22 20	12 55 12 55	12 75	12 53	
00	6 6 6 6 6 6	8888	4 5 8	6 2 8 6 2 8 6 2 8		85 J 6 28 85 J		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	300 200 200 200 200 200		86 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	101 102 1015	164 0	A 601	0 11 0 11
N N	ļ	16 9 16 9	a =			19 F	2 8 7 8	2 2	8 0	4 4 5		2 2		1	2
	128	3633	107				2778	0 0 0 0 0 0 0 0	00-0	0000	: ;		0	~ *	4 4 0 8
	292	****	19	400		815 818 818	8888	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 1 2 4 1 1 2 4 1 2 4 1 2 4 1 1 2 4 1 1 2 4 1 1 1 1	8 01 8 02 8 01 7	7.96	a 3 8 8	181	167 191	
lotal	12 23	4 14 55 14 55 14 55	8.0	12 55	11.72 11.72	57 EI 57 EI	11 M - M	9.65 11.72 10.78	1 1		17.44	22 FR	218.52	202	3422 3422
Visather Total Q		party croudy	viej		niej lingel 21 E1	clear	cloudy snaw	13 DD Liear	_	13 (X) overcast, iced over gauge close to bridge	fanns fa	15 30 churdy			
1	299	2 2 2				0 13 40 Clear	£ 2 0000		2220		0 5 0		0000	004-	2 2 0000
Sampung	54400 54400 54400	007576 007576 007576	004848 000348 000348	00410 00410 00410	0040148 0040148 0040148	00/8/01 00/9/01 00/9/01	00/5/11 00/5/11	12/2/00 12/2/00 12/2/00	12/10/00 12/20/00 12/20/00	10/21 10/21	07800 272600 272600 272600	00/52/T 00/52/T 00/52/T	4/22/00 4/22/00 4/22/00	4/2 8/40 4/2 6/10 4/2 6/10	50700 57700 57700
	6H-2 BH 3 AVG BH	84-1 84 2 84 3 84 3	84-1 84-2 64-3 AVG 84	8443 8442 8443 8443	8H-1 8H-2 8H-3 AVG 8H	(114-1 1314-2 1314-3 AVG BH	ВН-1 ВН-2 ВН-3 АVG ВН	814-1 611-2 611-3 AVG BH	84-1 84-2 84-3 AVG 8H	84-1 84-2 84 3 AVG 8H	LC LC-1 LC-3 LC-3 AVBLC	AVBLC 10-3 AVBLC	LC-1 LC-3 AVGLC		1001 C
FAur St	555 555	7777 7777		2222 8885	7777 7777	5555 5885	7777 7127	8888 2222	2222 2222	7777 7995	2222 22228	FA LCC	FA LC-1 FA LC-2 FA LC-3	9993 1111	
<u> </u>]												an na la Ma		

[7					~ ~ ~		~ ~			•	~							
4Z	0000	0 (4005 0 0000 0 00005	0 0000 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005 0 0005	2000 0 2003 0 2003 0 2003 0 2005 0	0 0005 0 0005 0 0005	0 000 0 0000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 000000	0 0005 0 0005	5000 0	5000 C	5009 D	0 0005	0 0000 0 0000 0 0000 0 0000	2000 0 2000 0 2000 0 2000 0	5000 0 5000 0 5000 0 5000 0	0 000 0 2000 0 2000 0	0 2000 2000 2000 2000 2000 2000 2000	0 000	0 0005
ũ	0000	0100 0100 0100	0.04/	1000	0000 0000 0000 0000	0 041	0 010 0 0 000 0 0 000 0 0 000 0 0 000 0 0 000 0	0.042	2140 0	0 043	0 046	0.046		0.053 0.052 0.055 0.055	950 0 950 0 950 0	0.000	C (90 0 C (90 0 C (90 0	0.063	0.063
ŝ	9	222	9 83	8388	86.56	915 225 215	100	22	2 08	3 97	212	31.5	2222	8325	****	6394 6394	5855	3	3 3
s	000	3 9 8 3 9 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C9 0	0.81	0.82	0 29	6970		8958	1993	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160 I 000	55 0	88
۵.	00	0.00	0.005 0.005 0.005	0 0 0 0 0 0 0 0	0 000 0 200 0 200 0 200 0	2000 2000 2000	0000	0 00.0 200.0	200 O	0.005	9000	COO N	0 00 0 00 0 00 0 00 0 00 0 00	0.000	0 00 0 000 0 0 00 0 0 00 0 0 0 0	00000	0000	0 005	0.00 500 0
Ŧ	0000	0 0.005 0 0.005 0 0005	2000.0 2001.0 2000.0	0 0000 0 0000 0 0000 0 0000 0 0000	0000 0 0000 0 0000 0	0 000 0 0 000 0 0 000 0	2000 v 2000 v 2000 v 2000 v	0 0005	5000 0	0 0005	ê û û anê	0.0005	0 UCO5 0 UCO5 0 COC5 0 COC5 0 COC5	0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005 0 0005	0 0.00 2 0.00 2 0.00 2 0.00 2 0.000 2 0.0000 2 0.000000 2 0.0000000000	0 0005 0 0005 0 0005 0 0005	60000	2000 2000 2000
1		0 0 0 7 7 9	98 0 19 0 19 0		532 6	801	N	16 0 16 0	96 0	0 24	5	H.	16 0 0 0 16 0 0 0 16 0 0	9 G - F	7035	1414	5 3 7 9	1 63	53
å	500	0 0015 0 0015 0 0015	0.0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0.0015 2100.0	8888	5100 0 5100 0	\$100.0	0 0015	ê (0015	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	0.0015	2000 0 2000 0 2000 0 2000 0	6100 0 6100 0 6100 0	5100.0	0.0015
5	0 0000	9000 0 9000 0	0 00025 0 00025 0 0002	0 00025 0 00025 0 00025	0 00025 0 00025 0 00025	4000 0 4000 0	0 00025 0 00025 0 00025	0 00015	0 00025	\$ 00025	\$2009.0	0 00042	0 5000 5 0000 5 0000 0 0000 0 0000	0 0.0025 0 0.0025 0 0.0255 0 0.0255	0 00005 0 00005 0 00005 0 00005 0 0005	0 00025 0 00025 0 00025 0 00025	0 00025 0 00025 0 00025 0 00025	0 00025	0.00025 0.00025
ŝ	2 5	26 E	333		22 2 2 2 4 5 2 4 5		****	33	9 4 Ş	3	3	5	8 7 9 5 8	10 22 10 62 11 20 10 85	3 3 8 8 5 5 5 5	223 223 223 223	15 51 15 51 15 51	12.24	12 09 12 18
3	2000	100 0	1000	1000		100 0		000	1000	0 001	100 0	100 0	8888	0000		00000	0.002	200 0	0 007
E	1	666					6666	 	:	•	•	•	• • • • • • • • • •	5 7 7 7	0 0 0 0 0 0 0 0	0000 0000	0000	90	9 9 0 0
	0.005	0 0025 0 0025	5200.0 5200.0	5200 0 5200 0 5200 0	0 0025 0 0025 0 0025 0 0025	2000 0 2000 0	0 6025 0 0025 0 0025 0 0025	6200 0 8200 0	0 0025	0.0025	52001-0	0 0015	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 (1025 0 (1025 0 0025 0 0025	0 000 0 000 0 000 0 000	0 00 0 0 00 0	5200 0	5000 0 9000 0
3	000	0.0015 0.0015 0.0015	0.0015 0.0015 0.0015	0 0015 0 0015 0 0015	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0015 0.0015	0 200 2 br>200 2 200 2 200 2 200 200	0 (615 0 0015	0 0015	0 0015	1000	0 0015	0 0015 0 0015 0 0015 0 0015	0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 2005 2 100 0 2 100 0 2 100 0	0 0015 0 0015 0 0015 0 0015	0.0015	6 cons 8 cons
0	۰ jo	333	10 A2 10 br>10 A2 10 10 A2 10 10 10 10 10 10 10 10 10 10 10 10 10	232 2 2323	16 12 16 12 16 12	292 292		5 F2 5 F2	24.44	24 45	2 S	26.15	2 2 8 2 2 2 8 2 2 2 8 2	8878 8888	355 3 355 3	8828 8828	8238	B1 CC	8 % 7.7
18	2110	0 167	0 195	01/0 01/0 01/0 01/5	0 167 0 105 171 0	161 0 161 0		0.156	(81.0	0 163	<u>8</u>	0 194	0.200 0.210 0.210 0.210	0.237	0.275 0.275 0.281 0.281		202 0 202 0 202 0	162.0	2.0
Ŧ	188	0 1 2 1 2 0	9 9 9 9 9 9 9 9	770 770 770	97 59 0000	****	44 3	999 9	81 0	14 0	\$ 6	4	0000 1111	2000 2000 2000	000 1900 065	0 73 0	6000 6000 8000 8000	965	2 0
	1100	222	27 55 21 56	5 6 6 5 5 5 5 6 5 5 5 5 6 5 5		38 # 88 #	56 E E	23 65 23 66 23 66		36.95	88 88	8 £	8228 8333	1999 1997 1997	882 8 882 8	5 5 5 5	812 8 9828	10 01	2 2 8
Andres	Them 1	1001	164.4	****	888 8	2 101 2 101 2 001	9 00 0 9 00 0 1 01	6 8 5 8		ŝ	1001	2	107 6 105 6 104 8	2 511 2 511	• • • • • • • • • • • • • • • • • • •	137.4		••0	
155			0	11 1	97 P	0 T - 2	0 0 0 0 0 0	9 7		: 2	16	9	0 0 7	01	0 3 C 0	6	63	5	-
00			8 65 8 70	2228	5 5 5 5	12 01	78 2	5 8 6 8		874	97 4	4 21		8 28 8 28 8 28	8 2 8 2 1 8 1 1 8	07 6	4 9 0 9	10.6	25
01	1	22	C 91	292 192 192	800 C	9 C 9 C 9	2.92	12		760			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			835 832)	7665	į	128
7	an - I		2 22	1	2 2		i	8 .21		210			ž ž			8	152 152	ā	8
Water			8 8			51 51		0 3 0		1.11	121	12.1	222 2	12 G 12 B 12 B	10 1	198	3309 9009	2 01	C 01 12 01
	191		1000 1000 1000 1000		384 83 (qest 83) From 83 BFR-HEL 830	5 8 12 5 8 12 5 8		24		* *	2	8	8168	2 2 2 7 2 2 7 2 2 7 2 7 2 7 2 7 2 7 2 7		5 8	6 4 6 6	0.7	= 2
Let c	1691		# 202 #	9 125 7	197 197 197 197 197 197 197 197 197 197	2416	27 21C /bu	47.2M		86.705	1622	1 (27	182.50 ng 182.56	108 09	81 84 81.84		16 04 16 08	ctcud, 40.31	10.04
Viedheit	Time Comments			Interview Year	15 (JD overcas) young	14 30 pr chudy	14 45 mostly clouds 712 72				100 M 51		15.30 cluudy Itrunder Approacheng		14 30 smoker		15 OU overcas	15 45 mosthr ctc	
Building	Lete Land	Service Service	00/11/2 00/11/2 00/11/2		oovers	641/00 641/00		00/11/9 00/11/9 00/11/9	6/17.00 6/17/00 6/17/00	911/100	6425400 6425400	6/25/00	00/11/ 00/11/	00/11/2 00/21/2 00/21/2	00/21/8 00/21/8 00/21/8	901100 91100 91100	00/176 00/176 00/276		94400 94400
		AVGLC	10-1 10-2 10-2 10-2 10-2 10-1 10-1 10-1		Adde					AVGLC	333		NGLC AVGLC	10-1 10-1 10-3 10-1 10-3 10-3	10-1 10-2 10-3 10-3 10-3 10-3 10-3 10-3 10-3 10-3	Note Note	AVDLC		AVOLC LC-3 LC-2
FAur	Ē		 	<u></u>	****	4343	5555	~~~~ ~~~~	222		323	22		5454	2222 2	4 444	4 4 4 4 4 4 4 4 4 4 4 4	Ę	7 7 4

<u> </u>									
1 1	5000 0 5000 0	0 000 0 0000 0 0000 0 0 0 0000 0 0	0 0005 0 0005 0 0005 0 0005	2000 0 2000 0 2000 0 2000 0	0 0005 0 0005 0.0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005
Si 0 0005	0.062	0 00 100 0 100 0 100 0 100 0	0000 0000 0000 0000	0 063 0 063 0 063	0.064 0.062	0.004	0.064 0.062 0.063	0.000	0.005 0.065 0.064 0.064
50 0 0 0	8 8 5 8	1991	1283	227	s 32	759 2	101	8232	2 5 1 5
5 000	6688	0 0 0 2 0 0 2 0 0	28 0 28 0 28 0 28 0	\$ 5 5 8	· · · · · · · · · · · · · · · · · · ·	2020	8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8358 0000
000	0000	0 005 0 005 0 005	0 000 0 000 0 000 0 000 0 000 0 000	500 0 500 0 500 0 500 0	0.005 0.005 0.005	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2000 0 2000 0 2000 0 2000 0	5 5 5 5 5	500 0 500 0 600 0
1000	5000 0 5000 0 0 0000 0	0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005	0 0000 0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005	0 0000	2000 0 2000 0 2000 0
20	***	181 185 149	\$32 5	32 1 3	162	51 51	161 161 161	****	2 2 2 2
000 0 000	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015	0.0015 0.0015 0.0015 0.0015	0.0015 0.0015 0.0015 0.0015	0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015
un 0 0005	5700010 5700010	0 (CO75 0 (CO25 0 (OU25 0 (OU25	0 00025 0 00075 0 00075 0 00075	52000 0 52000 0 52000 0	0 0007 0 0.025	0 00025 0 (CO25 0 00025 0 0003	0 00025 0 00025 0 00025 0 00025	2000 0 2000 0 2000 0 2000 0	0 00025 0 00075 0 20025
010	2222	12 22 12 23 12 23	525 525 525 525	2222 2222	12 09	12 08 11 88 11 88	11 22 11 22 11 22 11 22	****	225 2
1000		000 000 000 000 000 000 000 000 000 00	0.003	0 002 0 002 0 002	0 003 0 002 0 002	600 600 600 600 600 600 600 600 600 600	0 502 0 502 0 002	0 002 0 002 0 002	0 002 0 002 0 002
200		000 0	0 0 0 0 0 0 0 0	0000 0000	0 0 0 9 0 0		0 0 C 0	2000 2000	0000 444
6 005	5200 0 500 0 500 0	0 0025 0 0055 0 0055 0 005	00000 00000 000000 000000	0 0056 0 0056 0 0054	0.000	0 0051 0 2025 0 0025 0 0036	0 2025 0 2025 0 2025 0 2025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025
2000	21000 21000 21000	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	2100.0 2100.0 2100.0	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 (015 0 (015 0 (015 0 (015	0.0015 0.0015 0.0015 0.0015
001 001		8 6 9 8 8 6 8 8	****	8235 8235	5915 10 10 10 10 10 10 10 10 10 10 10 10 10 1	22 25 25 25 26 25 26 26 26	****	883 8	0.02 EE 0.02 EE 0.02 EE
6. 0.0005		907 0 907 0 907 0	102 0 102 0 102 0	\$2.20 0.20 0.00	0 251 0 250 0 250	962 0 192 0 192 0	(67 0 (67 0 (67 0	100 0 100 0	52 C 22
1	0 0 0 0 5 0 0 0 6 0 0 0	0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9999 9999 9999 9999 9999 9999 9999 9999 9999	0.50		0 0 0 0 2 2 2 0 2 2 0	0.82 0.86 0.82	6 0 0 5 5 5
- Growi		228 241 241	22 CN NN 12 CN 12	8111	5 8 2 8	82.5 82.5	8818 8828	2222 2222	88 A A
Imut A	509 261	8101 8101 8211 8211	32 A 4	838 8	126.2 111.2 129.00	256 111 201 201	124	130 2 272 128 8	1286 1344 132.487
155		10	0 I 0 I	02	20	0 CO	02		02
0.0	51 9 51 9	\$ \$ \$ \$	57 F 50 F 50 F 50 F 50 F 50 F 50 F 50 F 50		13 8	10 62 10 60 10 62	81. X 999 9	176 66 66	10 10 10 26 10 21
00		4 C 9 5 6			1 10	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.1.5	000 00 00 00 00 00 00 00 00 00 00 00 00	/a 5 76 78 900
A K Ferro	2 2	10 2 10 2	18 9 18 9	· ·	17 88	22		0.2	6.100 6.100
Valer			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		92 813	****		::::	8.23 3.6 8.2 1.2 8 7.87 2.167
T	53 53 53		8 23 8 18 8 18		2 B Z	101 101 100 100 100		4 8 4 6 7 1 2 2 7 1 2 2	56 f
Total [ch]	69 /f	1 0 7	4, 16 25 16 59 16 50	39 46 38 48	75 R	414 -	21 52	16 84 16 84	3 3
nyang Weether Total O e Iane Centrerts [ch]	ins fasou or	18 15 chuch	846X.0 14.00 mostly clauds 26.59 646X.0 24.00 mostly clauds 26.59 948400 36.42	na) Mga 21 +1		11/5000 15.20 cloudy thow NA 11/5000 11/5000 11/5000	Sú clear	* *	8
5	*1 00/5/6 00/5/6	91.00 915/00 915/00	8-8-40 14 5-8-40 9-8-40 9-8-40	0000145 0000145 0000145	10/6/00 10/6/00 10/6/00	11/5/00 15 11/5/00 11/5/00	12/200 13 50 ctear 12/200 12/200	11 00000000000000000000000000000000000	127,01 14 00 127,01 127,01 127,01
Sanyang (Jale	ភ្ ភិ ភិ ភិ	8338	ತ ತ ನ ನ ನ	3333	999 9	333 8	2929	52 52 52 52 52 52 52 52 52 52 52 52 52 5	888 8
56	LC 1 LC 2 AVGLC	N01C 10.3 AVBLC	0100 103 103 4000	N010 10-3 10-3 10-3	IC-1 IC-1 AVDLC	10-1 10-2 10-3 AVB LC	LC-1 LC-2 AVGLC	LC-1 LC-2 LC-3 AVD1C	10-1 10-2 10-3 4VBLC
1 1		5555	5555 	2222	4444 1114	5555 	2222	2535	
ليب									

FAcr		-	1	*	ł.	۱ <u>گ</u>	3		3	Fe	¥	- -	Mq	Mn	Mo	Na	ź	P	S 202	SI S	Sr 2 2002	1000	U7
IR' SITE		Tune	202	000	5000 0	i	0/00		1000	C00 7	0 200	2000	200	coond	000	0 180	130	0100	1000	0700	50000	CM A	200
IR BFB	2/26/00				151 0	0 00005	215	0 0025	0 0015	160 0	07	0 002	151	0 0056	0 0015	22	0 0005	0010	145	3 85	0.062	0 0025	0 002
TR BFB.3 TD AVC HEA			0 69	0 05	0 198	0.00005	33.4	0 0025	0 0015	0 066	01	0 003	11 49	0.0040	0.0015	9 F F	2000 0	0.034	211	5 70	0 094	0.0025	0.004
											1												
	2 3/29/00	2	1 30	٥	0 184	0 0001	115	0 0063	0 0015	0 563	17	0 004	10 48	01000	0 0015		0 002	0 058	3 40	151	0 100	0 012	0 00 Q
TR BFB-3 TR AVG BFE	.3 3/29/60	• •	62 9 9	0.62	0 198 0.193	0.0000	917 917	0.0125	0.0015	0 587 0 597	9 I I	0.004	11.11 11.11	0 0284 0.0308	0.0015	4 4 9 19	0 003	0.072 0.073) (C C	6 43 8 0.8	0 10 10	0.014	0.001
			0.94																5				
TR BFB-3 TR AVG BFE	3 4/14/00 BFB 4/14/00		0.96	1 07	0.147	0.00015	6. 6.	0.0025	0.0019	0.987	-	too 0	6.57	1150.0	0 0015		100.0	0.0 65	1	7.56	0.052	0.023	0.018
		00 0																					
TR BFB	- 4/2200	<i>•</i>	100	0 57	(())	0 0001	671	0 0025	0 0015	0 551	80	0 001	6 01	0 0356	0 0015	16	0 002	0 045	101	572	0 045	0 012	000
	AVG BFB 4/22/00		0.00	0.55	2(1.0	1000.0	17.6	0 0025	0.0015	0.556		000	5 B B	7120 0	0.0015	1.6	0.002	0.045	1.02	5.59	0.044	0.011	600.0
	dFB-1 AVG 4/29/00		110	<u>د</u>		10000	4.04	1500	2000			0.000	61.9	1000	51000	4	0.007	0,0,0	91.1	18.4	0.051	0.005	0.027
TH BTU			0 72	07 N				8			2	200.0			222	-			2	3		1	
	BFB 4/13/00	0	0.75	0.25	161.0	0.0005	13.5	0.005	0 0015	0.278	0.7	0.002	11.9	0.0164	0.0015	9.1	100.0	0.027	• •		0.050	0.004	0.018
		00 11	0 76		0 139	0 00005	19.6	0 0025	0.0015	0 355	20	0 002	643	0 0247	0 0015	4		0 034	50		0.048	900 0	0 028
IR BFB3			200	40	100	500000	5	5200.0	\$1000	0 365	20	0 002	229	0 0224	51000		0000	1200	560		6900	600	0100
	BFB 5/3/00		0.75		0.137	0.00005		\$200.0	0.0015			200.0		1720.0		1	0.000				200	1000	
1R 0FB-1	1 5,6/00	411	66.0		0140	00005	201	2000 C	0 0015	0 454	7 C) 8 C	0 002	678 661	0 0286	21000	12	0 0005	00M	85	5 S S	0.049	0 0 00	900 C
H BFB			- 65 0		0 142	0 00005	201	0 0025	51000	0 464	90	0 602	6 58	0 0267		-	0 0013		8	66 7	0 0 2 0	0.008	0 0 19
	BFB 5/6/00		1.1	0.46	0.141	0.00005	20.0	0.0025	0.0015	0.462	9.9	0.002	6.69	0.0270		•	0.000		1.07	6.14	0,049	600.0	0.011
	1 5/14/00	0 B 15	990	016	641 0	20000	512	0 0075	0.0015	6110 8110	90	1000	7 82 7 45	11100	0 0015	22	0 0005	0017	123	4 47	1500 1500	0 0025	0 005
TR PFB-3					151 0	50000 0	6.2	0 0025	5102 0	0166	200	1000	692	0 0121	5100 0		0 0005	220 0	2	5	9000	0 0025	100 0
		a	C9.0		tel.0	60000.0	c 17	c700'0	6100'D			200				2			1				
TR BFB-1 TR BFB-2	1 5/21/00 2 5/21/00	0011 0	0 64	0 24	0 148 0 147	0 00005	197 201	0 0025 0 0025	0 0015	0 278 0 229	9 Q Q	1000	2 = 2 2 = 2	00176 00165	0 0015	22	0 0005 0 0005	0 0 19 0 0 18	100	17 1 7	0 048	0.0025	0000
TR BFB			950												1.000		2000				0.060		
		9		67.0	101.0	50000-0	•	e700-0	610.0	6C7'A		100.0				•			l	ļ			
	1 5/30/60	97 := 0	D 84		0156	20000 0	213	6200.0	2100 0	0218	07	0 002	7 40	00144	0 0015	9-	0 0010	0 019	108	99	0.053	0 0025	000
TR 8/6-3			0 68	021	0 156	500000	20.9	0 0025	0 0015	0212	06	0 002	737	00144	0 0015	<u>-</u>	0 0005	0 018	5	4 39	0 053	0 0025	0 002
	BFB 5/30/00	0	0.75		0.154	0.0000	21.0	0.0025	0.0015	1220	0.7	200.0	CZ /	0.0146	0.0015	9.	0.0007	000	1 .0	7 1 1	0.052	0.0025	0.004
TR BFB-1 TP RFR.2	1 6/1/00		080	0.22	0 147	0.0005	21 44	10000	51000	162.0	07	0.002	7.20	0.0144	0 0015	61	0 0005	0 025	1 30	57 7	0 054	0 0025	0 003
			52.0	•			:				:		;				1000			;;;	0.064	20000	
						50000.0		e700.0		617.0		200.0	9			1			1	ļ			
TR 848-1			0 25	016	0 152	0 00005 0 00005	21.58	0 0025	0 0015 0 0015	toi 0 251 0	07	0 CC2 0 CC2	7 46	06100	0 0015	9 I 1 G	0 0014 0 0014	1000 1000	221	4 61 4 57	0 055 0 054	0 0025 0 0025	0 002
	, ологи ВFB 6/6/00		6.59	0.18	0.152	0.00005	30.15	0.0025	0.6015	0.190	9.6	0.002	7.50	62100	0.0015	51	0.001	0.035	1.13	4.60	0.055	0.0025	160.0

.

	7															
Zn 0.001	0 002	0.001 0.001	0 004 9 006 9 006	0 005	0.034	0 004 0 002 0 002	0 002 0. 002	0 0005 0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0000 00000 00000 00000 00000	0.0005 0.0005 0.0005 0.0005	100 0 100 0 100 0	0 0005 0 0005 0 0005	0 00 0 0 2005 0 2005 0 2005 0 2009 0 2000	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005
11	0 0025	0 0025 0.0025	0 0025 0 0025 0.0025	0 0025	0.0025	0 0025 0 0025 0 0025 0 0025	0.0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	U 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0.0025 0.0025 0.0025 0.0025	0 0025 0 0025 0 0075 0 0075	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025
Sr 0.0005	0 052	0.051 0.051	0 055 0 054 0.054	0 062	0.061	0 072 0 067 0 067 0 067 0 069	0.052	0 087 0 050 0 089 0 089	0 097 0 056 0 096 0 096	0.096 0.095 0.093 0.093	0 092 0 094 0 094	0 095 0 099 0 099	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 101 0 100 0 100	0 103 0 105 0 105 0 105	0 106 0 108
S 0 0 0	940	4.35 16.4	4 60 4 51 4 53	4 61	4 52 4.58	\$7.4 \$2.4 \$2.4	4 85 4,55	5 01 5 07 5 03 5 03	5 02 5 05 5 03	4 52 4 86 4 84 4.87	4 94 5 08 5 21 5 07	5 14 5 13 5 23	5 09 5 25 5 34 5 23	5 35 5 13 5 24	5 43 5 80 5 35 8 48	5 63 5 87
S 0.007	1 02	1.02	21 I 1 I Z	1 27	1.24	2225	152	101	1 82 1 79 1 71 1 77	181 181 181	22 22 22 22 22 22	181 195 196	1 95 1 98 1 98	2 20	2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 28
P 0000	6200	0.026 820.0	0 024 0 019	6200	0.015 0.025	0 0 2 8 0 0 3 6 0 0 0 0 0 0 0 0 0	0.024	200 0 200 0 200 0	0 005 0 005 0 005 0 005	0.0260 0.005 0.005 0.012	0 005 0 005 0 025 0 025	0000 0010 0011	0.010 0.014 0.024 0.024	0 015 0 024 0 020	0 030 0 022 0 024 0 026	0 U28 0 037
1000	3	000	5000 0 5000 0	5000	9000	2000 2000 2000 2000	2000	0 0005 0 0005 0 0005	0.000 0.000 0.000 0.000	0 0005 0 0005 0 0005 0 0005	0 0005 2000 2000 2000 2000 2000 2000 200	0 0005 0 0005 0 0005 0 0005	0 0000 2000 2000 2000 2000	0 0005 2000 0 2000 0	0 0005 0 0005 0 0005 0 0005	0 0005
Na 1	1		~ 0 4	- -				NN-N	* 1 9 9 9	****			****	~	~~~*	~ 8
	1	22		5	2 2	~~~~	ัก ค การ									-
Mo 0.003	1	100 0 100 0	0.0015 0.0015 0.0015	0 0015	0.001	0 0015 0 0015 0 0015 0 0015	000 0 0 0010	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	2100.0
Mn 0.6005	00110	0.0120	0 0121 0 0121 0 0121	0 0082	0 0000 0 0010	0 0065 0 0071 0 0070 0 0070	0.0050	0 0042 0 0044 0 0042 0 0043	0 0040 0 0039 0 0039 0 0039	0 0042 0 0035 0 0040 0 0040	0 0036 0 0038 0 0040 0 0040	0 0042 0 0042 0 0037	0 0038 0 0040 0 0642 0 0642	0 0041 0 0044 0 0044	0 0030 0 0036 0 0036 0 0036	0 0046
Mq	121	7.10	7 50 7 16 7.29	8 52	8 44 8.47	556 556 556	11 12 10.04	12.55 12.56 12.57 12.57	13 01 13 09 13 16 13.01	12 85 12 65 12 61 12 70	12 56 12 56 12 12	12.71 13.23 12.85 12.85	12 40 12 78 13 13	12 12 12 12 12 12 12 12 12 12 12 12 12 1	12 92 13 30 13 15	32 EI 16 CI
ر 1000	100 0	0 001 0 001	0 002 0 002 0.002	0 002	0 002 0 002	0 003 0 003 0 003	0000	0 000 0 000 0 000 0 000	0 000 0 000 0 000 0 000	0 004 0 004 0 004	0 000 0 000 0 000 0 000	0 00 0 00 0 00 0 00 0 0	0 004 0 004 0 004	0 005 0 006 0 004 0 004	0 005 0 004 0 004	0 005 0 005
K V 200		8 9 0 0	000 900 900	01	00	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	88	0000 00-0	0000	<u></u>		0-00	:::2	====	2223	12
Fé Doos	0 168	0.165 0.165	0 185 0 196 0 189	0106	0 111 0.107	0 076 0 071 0 069	0 045 0.043	0 629 0 030 0 032 0 032	0 035 0 035 0 031 0 031	0 032 0 032 0 034	0 035 0 035 0 035 0 035	0000 0000 0000 0000	0 035 0 037 0 038 0 038	0 039 0 041 0 038 0 038	0 037 0 037 0 0 037 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	800 540 0
Cu	0.0028	0 0015 0.002	0 0015 0 0015 0.0015	0 0015	0.0015	0 0015 0 0015 0 0015 0 0015	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015
Cr	0 0025	0 0025 0.0025	0 0025 0 0025 0 0025	0 0025	0.0025	0 0025 0 0025 0 0025	0 U025	0 0025 0 0025 0 0025	0 0025 0 0075 0 0075 0 0075	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0075	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025
Ca	20.35	20 51 20.47	21 25 21 18 21.11	24 16	23 45 23 45	26.4 25.6 25.6 25.6	29 5 30.8	31.5 34.1 31.5	32 4 32 9 32 9	227 227 228 228	30 / 22 / 22 / 22 / 22 / 22 / 22 / 22 /	326 326 326	127 127 127	324 322	5 0 0 C C	910 151
Be	0 00005	0 00005 0.00005	0 00005 0 00005 0.0005	0 00005	0 00005 0.00005	0 00005 0 00005 0 00005 0 00005	0 00005 0.00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 60005 0 000125 0 00005 0 00008	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	20000 0 0 00005 20000 0 20000 0	0 00005 0 00005
Ba	0 147	0 146 0.147	0.154 0.150 0.150	0170	0.167 0.168	0 163 0 163 0 161 0 0 166	0.216 0.210	0 236 0 237 0 235 0 236	0 248 0 248 0 246 0 245	0 247 0 243 0 244 0.244	0 235 0 242 0 243 0 240	0 240 0 241 0 243 0 241	0 235 0 241 0 246 0 240	0 243 0 239 0 239 0 239	0 242 0 245 0 24 3 0.24 3	0 245 0 24 6
A A	0 15	0 15 0.15	0 15 0 19 0.19	60 0	60 0 60 0	000000	0.03	0 02 0 02 0 02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	000	0 62 0 03 0 02 0 02	0 0 2 0 0 2 0 92	003	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 02 0 03
5	0.65	0.67 0.67	0 42 0 67 0 46 0.52	0.45		0.039	0.83	0 90 1 02 1 03	0.99 0.93	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 91 0 99 0 96	1 02 1.01	101	0 46 1 04 1 05	1.12	115
Sampling	10 20			00 11				12 10		11 45	8		8	8		to iS
Summer	9/11/9	00/11/9 00/11/9	6/15/00 6/15/00 6/18/00 6/18/00	6/25/00	6/25/00 6/25/00	00/1/2 00/1/2 1/1/00	00/11/1 00/11/1	00/21/8 00/21/8 00/21/8	00/1/6 00/1/6 00/1/6	9/2/00 9/2/00 9/2/00	00/E/6 00/E/6 00/E/6	00/4/8 00/4/8 00/4/8	00/5/6 00/5/6 00/5/6	9.670 9.670 9.670 9.670 9.670	00/1/6 00/1/6 00/1/6	00/8/6
30.5	8f8-1	BFB-2 BFB-3 AVG BFB	8F8-1 8F8-2 8F8-3 AVG 8F8	0f8-1	61-6 2 668-3 AVG 868	8F8-1 8F9-2 8F0-3 AVG 8F8	BFB-2 BFB-3 AVG BFB	8F8-1 8F8-2 8F8-3 AVG UF8	BFB-1 BFB-2 BFb-3 AVG BFB	BFB-1 BFB-2 BFB-3 AVG BFB	efe.1 6F6.2 8F6.3 AVG 8F8	858-1 858-2 856-3 AVG 858	8F8-1 8F8-2 8F8-3 AVG 8F8	AFB-1 BFB-2 BFB-3 AVG AVG BFD	6F8-1 6F8-2 8F8-3 AVG 8F8	8FB-1 DFB-2
FAU	HI H	H H H	R R R	H I	¥ ¥ ¥	R R R R	AT AT A	RÄFF	8 8 8 8 8 8	RFF	¥ K K K	* E * E	ж ж ж ж	R R R R	5 8 8 8 8 8	AT AT

															
Zn 0.001	0.0024 0.0011	0 0005	0 0005 0.0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 001 0 001 0 001 0 001	0 0005 0 0005 0 0005 0 0005 0 0005	0 0 2 0 0 0 1 9 0 0 1 9	0 010 10 0	0 036 0 028 0 058 0 058	0.052	ύ 050 0 028
TI 0.005	0.0025	9 <i>200</i> 0	0 0025 0.0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 .0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 2025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0	0.021 120.0	0.014 0.017 0.017 0.016	0.029	0014
Sr 0 0005	0 104 0.104	601.0	0 102 0.103	0 102 0 102 0 100	0 110 0 105 0 103 0.106	0 100 0 100 0 099 0.100	0 102 0 100 0 100	0 102 0 104 0 104 0 109	0 094 0 096 0 096 0 095	0 103 0 101 0 105 0 103	0340 0344 0344 0344	72E 0 22E.0	555 0 555 0 555 0 555 0	0 28) 0.298	0 3 19 0 269
SI 0 020	5 52 5.61	5 40	10 S	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 62 5 62 6 88 8 88	5 37 5 42 5 32 8 37	5 70 5 48 5 58 5 58	5 63 5 73 5 72 6.70	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 42 5 17 5 53 5 51	10 51 10 51 10 06 10.01	10 90 11.49	10.21 12.01 10.01	10.03	9 75 9 47
S 0 007	2 30 2 29	122	2.16 2.18	214 214 203	237	215 215 215	2 05 2 10 2 205 2 05	2 07 2 09 2 14 2.10	26 26 86	1 64 1 85 1 85 1 87	28 27 29 33 27 16 28 15	25 80 25.76	25 73 25 76 25 37 25 37	21 53 22.99	24 47 22 51
P 0 0 10	0.025	0 005	0.023	0 024 0 005 0 005 0 011	0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0	0.015 0.005 0.005 0.008	0 005 0 012 0 012 0 019	0 005 0 012 0 005 0 005	0 011 0 012 0 005 0.009	0 005 0 013 0 012 0 012	0 053 0 067 0 049 0 049	0.067	0 056 0 056 0 0 056 0 0 057	150 Q	0 055 0 051
NI 0.001	0 0005 0 0005	0 0005	0 6005 0.0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005	0 00 0 1 00 0 1 00 0	0 0005 0 0005 0 0005 0 0005	0 0005 2000 0 2000 0 2000 0	0.001 0.002	0 002 0 0005 0 001 0 001	0.003 0.002	0 (\06 0 (\03
Na 0 180	9 2 2	36	22	0 N 0 9			8 8 9 9 9 8 8 9 9 9	16	2222	36 36 37	12 4	12.1 12.6		11.2	11 4
0 M0 0 003	0.0015	0 0015	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 003 0 003 0 003	0.003 0.004	0 00 0 0 00 0 0 00 0 0 00 0	0.004	0 008 0 005
Mn 0 0005	0 0043	7600 0	70000 70000	0 0044 0 0044 0 0042 0 0042	0 0041 0 0048 0 0042 0 0042	2000 2000 2000 2000 2000 2000	0 0026 0 0027 0 0025 0.0026	0 0018 0 0018 0 0017 0 0018	0 0013 0 0013 0 0014	0 0022 0 0021 0 0022 0 0022	0.050 0.051 0.049 0.050	0 006	0 090 0 085 0 085 0 085	7+1 0 661.0	0 073 0 073
Mq 0.050	13 20	13 00	12 86 12.93	13 10 13 09 13 23 14 14	13 E1 13 66 13 01 13 02	12 45 12 65 12 65 12 65	12 50 12 05 12 34	12.69 12.69 12.92 12.83	52 II 52 II 53 II 53 II	12 85 12 22 12 28 12 68	15 53 15 78 14 25 15.19	15 01 15 44	1817 1111	12 55 13 16	13 36 13 07
LI 0 002	0 005 0 005	100 0	0 005 0 005	100 0 100 0 100 0	0 000 0 000 0 000 0 000	100 0 100 0 100 0	1000 1000 1000	000 0 1000 0 1000 0	900 0 900 0 900 0	0 000 0 000 0 000 0 000	0 012 0 012 0 011 0 012	0.012	1100 1100	110.0	0014
IT O	12	-	22	::::	2111	2222		2222	000	<u> </u>	0 ~ 4 9 7 7 7 9	• •		5 C 2 C	32 32
Fe 0 005	0.040	90036	800 0 700.0	0 041 0 041 0 040	0 041 0 041 0 041	0 041 0 042 0 041 0 041	0 047 0 047 0 047 0 044	1000 1000	0031	0 0 35 0 0 36 0 0 36 0 0 37	0 321 0 327 0 319 0 319	0.632 0.632	0 497 0 515 0 549 0 549	1 003	0 574 0 520
0 0 0 0 0	0.0015	0 0015	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 021 0.022	0 017 0 017 0 017 0 017	9.00 9.00	0 016 0 018
Cr 0 005	0.0025	0 0025	0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0.0025	0.0025 0.0025 0.0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0.004	0 0 2 8 0 0 1 5
Ca 0 0 70	24.0	611	926 91.6		966 966 958 958 958		345 325 337		181.9 1855	37 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	673 673	6 2 9	63 1 63 8 62 8 63.2	58.4 58.1	57 1
Be 0 0001	0.00005	0 0005	0 00005 0.00005	50000 0 50000 0 50000 0	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0.00005 0.00005 0.00005 0.00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	2000C 0 70000 0	0 00005 0 00005 0 00005 0 00005	0 0001 8 0001	0 00005 0 00005
Ba 0 0005	0 245	0 242	0 239 0.240	0 242 0 242 0 236 0.240	0 252 0 247 0 241 0.241	0 220 0 229 0 228 0 228	0 225 0 221 0 221 0 222	0 229 0 233 0 234 0 215	0 212 0 213 0 216 0 216	0 227 0 221 0 232 0 232	0 056 0 056 0 055	0 062 0.065	0 060 0 061 0 061 0 061	0 068 0 064	0 055 0 055
AI 0.010	0 03	0 02	0.02 0.02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 02 0 03 0 02	000	6000 6000 6000	0 02 0 02 0 02	0 0 0 0 0 0 0 0 0 2 0 0 2	0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 20 0 20 0 20	0 04 0.65	0 55 0 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.90	0 46 0 43
A5 0.2		5	882	0.000	1 81	087 059 0.87	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 76 0 72 0 73	0 76 0 74 0.75	061	80 - C 80 - C 84 - C	11.67 10.47 11.23 11.12	10 40 9 87 10 06	12.28	8 96 1 85
Samphing /		95 11	÷	2 80	5 00	510	822	_ • •			6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8	3	~ •	9 42
ipling S	9/8/00 9/8/00	-	888			10.9/00 10.9/00 10.9/00		12/200 12/200 12/200	00/62/21 00/62/21 00/62/21	126/01 126/01 126/01				003 003	
San Date	79/6 79/6	¥6/8	00/6/6 00/6/6	00/11/6 00/11/6 00/11/6	012100 012100 012100 012100	201 201 201	11/6/00	[12] [12] [2]	2721 2721 2721	1/26/01 1/26/01 1/24/01	2/26/00 2/26/00 2/26/00 2/26/00	3/2 9/00 3/2 9/00 3/2 9/00 3/2 9/00	4/14/00 4/14/00 4/14/00 4/14/00	4.22/140 4.22/00 4.72/00 4.122/00	4/29/00
SITE	BFB-3 AVG BFB	BFB-1	8FB-2 BFB-3 AVG BFB	8F8-1 8F8-2 8F8-3 AVG 8F8	8FB-1 BFB-2 BFB-3 AVG BFB	BFB-1 RFB-2 BFB-3 AVG BFB	8F8-1 0F8-2 8F8-3 AVG 8F8	uf B-1 BFB-2 BFB-3 AVG BFB	8F8-1 8F8-1 6F8-3 AVG 8F8	6FB-1 6FB-2 8FB-3 AVG 8FB	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2
1			E E E E		88888 8994	2225 2234	E E E E E	RFFF	FFFF	E E E E E	R R R R	K K K K	H H H H H	ж ж қ ж 2 0 0 4	ж Б С С
	9														

[]													
Zn 0 001 0.043	0 024 0 023 0 026 0 028	0 017 0 020 0 046 0.027	0.012 0.012 0.011 0.011	0 009 0 014 0.010	0 020 0 013 0 013	0.063 0.093 0.089	0 056 0 190 0 190	0.026 0.028	0 024 0 024 0 024	0 013 0 013	000 900 900 000 000 000 000	0 015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 007 0 007 0 079
Ti 0 005 0 015 0.012	600 0 600 0 600 0 600 0	0 005 0 005 8.004	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0.0025	0 031 0 033 1 003	0 0025 0 0025 0 0025 0 0025	1100	0 009 0 010 0 010 0 010	0 0025 0.0025	0 0025 0 007 0 007 0 0025	0 0025 0 0025 0.004	0 0025 0 0025 0 0025
Sr 0 0005 0 313 0 313	800 0 820 0 820 0 100 0	0.364 0.342 0.362 0.366	0 400 0 400 0 595 0 393	0 456 0 384 0 421	285 0 585 0 096 0	0 326 0 370 0 345 0.349	0 404 0 381 0 421 0.402	195 U 0 1 1 0	0 427 0 2554 0 2554 0 2555	0 508 889.0	0.495 0.472 0.506 0.491	0.523 0.526 0.609	0611 0576 0584
Si 0 020 9 93 7 29	9 01 0 30 0 20 7 8.9	10.01 10.15 10.21 10.21	10 52 10 07 9 93 10.17	10.60 9.91 10.39	10 43 11 12 10 39 10.65	13 10 14 86 14 90	11 67 11 78 11 26 11 95	12 61	12 50 11 91 12 11	10 70 10.73	6 C 6 6 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C	80 CI 28 21 10.01	27 51 27 51 27 51 27 51
S 0 007 24 78 17.34	26 64 24 78 23 97 25.13	27 15 24 28 28 71 26.71	26 83 29 62 28 00 28 15	32 84 26 25 29.39	27.67 26.17 26.30	22 46 20 91 22 82 22.10	28 70 27 63 30 96 29.10	25 95 30 05	20 19 00 21 06 21 75 76.85	37 B1 36.48	36.28 32.85 36.47 35.87	38 45 19 14 71.12	48 20 44 33 45 42
P 0 010 0 051 0 042	0 043 0 045 0 044	0 0 X6 0 0 X6 0 0 X6 0 0 X6	0 0 0 0 0 0 0 0 0 0 0 0	0.034 0.028 0.032	0 035 7 20 0 2 20 0 2 2 2 2 2	0 105 0 121 0 110 0 110	0 053 0 057 0 055 0 055	0 U 75	0 072 0 055 0 066	820 0 820 0	0.057 0.057 0.030 0.030	0.055 0.045 0.050	0 027 0 042 0 026
Ni 0 002 0 002	0 0005 0 0005 0 0005 0 0005	0 0005 0 001 0 002 0 002	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0.0005	0 0005 0 0005 0 0005	0 001 0 002 0 002 0 002	0 002 0 003 0 002 0 002	0000 9000	0000 0000 0000	0.001	100 0 100 0	100 0 100 0	0 002 0 005
Na 0 180 11 7	120 106 11.5	12 2 12 2 12 4	12 8 12 8 12 8	138 126 13.4	0 9 0 7 7 0 0 7 7 0 0 7	12.5 12.5 12.4	14 5 14 7 14 7 14 8 14 7	9 S S	156 147 15.0	16.0 16.2	55 8 5 5 8 8 5 5 8 8 5 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	151	251 251 251
Mo 0 003 0 004 0 005	0 003 0 0015 0 003	0 000 0 000 0 000 0 000	0 003 0 003 0 003	0 00 0 0 00 0 0 00 0	0 003 0 003 0 003 0 003	0 003 0 003 0 003	0 000 0 000 0 000 0 000	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 0	0 000	100 0 100 0	0 001 1 00 0 1 00 0
Mn 0.0005 0.075 0.055	0 055 0 043 0 056 0 051	0 041 0 041 0 040 0 040	700 0025 000 0025	0 031 0 025 0 025	0 034 0 038 0 033 0 035	0 226 0 248 0 233 0 232	0 051 0 055 0 054 0 053	011 0	0 097 0 097 0 097	0 036 80.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.077 0.075 0.078	00/7 00/2 00/2
Mq 0.050 13.86 10.09	11 23 11 23 11 03 11 03	14 58 14 09 15 55 14.74	15 06 15 23 15 52 15 54	17 52 15 20 16 42	15 50 15 80 14 88 15 41	13 78 13 89 14 46	16 37 15 97 17 16 16.50	16 05 16 79	17 59 15 94 16 03	20 11 13.58	19 79 20 50 20 50	20 85 20 83 20.40	24 57 23 05 23 45
0.002 0.015 0.015	0015 0011 0012 0012	0.015 0.015 0.017 0.016	0017 0014 0014 0015	0.016 0.014 0.017	0.016 0.016 0.015 0.015	0014 0014 0015 0015	0.016 0.016 0.017 0.016	0015	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 020 0.019	0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 019 0 019 0 019	6 021 0 020 0 021
к 0 200 2 5	****		9123	3 G 3 C 3 C		444		;;;		4 4 8	* * * * 0 0 0 4	4 4 4 5 4 5 4 5	4 4 5 5 5 5
Fe 0 005 0 503	0 319 0 266 0 10 0 206	0 188 0 202 0 199	0.031 0.085 0.085 0.085	0.075 0.067 0.071	0 127 0 138 0 126 0 126	1 101 1 100 1 115 1 115 1 115	0 8 8 8 9 8 9 8 9 8 9 7 9 8 9 8 9 8 9 8 9	890 E 0	0107	0 108 0.108	0 073 0 638 0 076 0 262	0 166 0 174 0.175	0 000 170 0
Cu 0.018 0.018	0 014 0 012 0 014 0 013	0 011 0 012 0 011	0 008 0 006 0 006 0 006	0 006 8 006 8 006	0 005 0 005 0 005 0 005	0 034 0 036 0 036 0 035	0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	0016	C 100 C 100 C 100	0 007 0 007	0 007 0 026 0 006 0 013	0 008 0 008 0 008	0 005 0 005 0 007
Cr 0 005 0 013	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	U 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025	0 005	0.0025 0.0025 0.0025	0 0025 0.0025	0 0025 0 0025 0 0025 8.0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025
Ca 0070 45.2	63 5 5 5 5 5 9 0 5 9 1	657 612 613	671 663 649 6619	75.6 64.1 70.4	69 2 69 0 67 1 68.5	63.4 62.4 63.3	661 615 615 615	69 4 62 3	1 9 5 9 5 1 9 5 9 5 1 9 5 9 7	5.00 8.00	75 2 76 6 68 7 73.6	221 817 6.17	818 773
Be 0 0001 0 0002 0 0002	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0.00005 0.00005 0.00005	0 00005 0 00005 0 00005 0 00005	0 0001 0 0001 0 0001 0 0001	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005	0.00005 0.00005 0.00005 0.00005	0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005	0 00005 0 00005 0 00005
Ba 0 0005 0.042	0 054 0 047 0 053 0.053	0 049 0 050 0 050 0 050	0 050 0 049 0 048 0 048	0 056 0 050 0.054	0 059 0 063 0 061	0 077 0 075 0 075 0 075	0.062 0.063 0.064 0.064	0 066 0 066	0.072 0.072 0.070 0.070	0 066 0 067	0 005 0 071 0 066 0.067	0.075 0.075 0.075	0 067 0 068 0 069
AI 0.010 0.49 0.35	0 26 0 31 2 20 2 20	0 14 0 16 0 15	0 0 0 0 0 0 0 0 0	0 0 0 2 0 0 2 0 0	0 00 0 10 0 10	1 03 1 08 1 04	210 210 210	47 0 11 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	010	0 06 0 32 0.15	0 15 0 16 0 16	1000
1	818 757 876	8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	861 778 8.31	919	9.72 10.97 9.89 10.19	1128	11 02	11 49		1055 5 16 6.78	1825	00 00 90 05 92 05	= 8 8
< 0 - •	a e	යයවර		ைகை	a≓a∓					- ને જ છે	nece		
Samp		00 6	8			6 30			00 5			9 45	10 45
Santphing Samphing As Date Time 02 4/29/00 11 64 4/29/00 0.21	5/2/00 5/2/00 5/2/00	5/8/00 5/8/00 5/8/00	5/14/00 5/14/00 5/14/00 5/14/00	5/21/00 5/21/00 5/21/00	5/30/00 5/30/00 5/30/00	00/1/9 00/1/9	6,6,00 6,6,00 6,6,00	00/11/9	6/11/00 6/15/00 6/15/00 6/15/00	6/25/00 6/25/00 6/25/00 6/25/00	00/1/2 00/1/2	7/17/00 7/17/00 7/17/00 7/17/00	8/12/00 8/12/00 8/12/00
L FBM	19 19 19	10 0 0 10 0 0	1 2 3 4 1 8 M		10 0 0 0 1 0 0 0	2 2 2 FBN	19 19 19	2 Q Q		CFBM-1 CFDM 2 CFBM-3 AVG CFBM	12 22 75 18 14	197 197 197	- - - - -
SITE CFBM.3 AVG CFBM	CFBM-1 CFBM-2 CFBM-2 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3	AVG CFBM CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBN CFBN CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM 1 CFBM 2 CFBM 2 AVG CFBM	CFBM-1 CFBM-2 CFBM-3
FA or IR ⁷ TR TR	R R R R	R R R	X X X X	X X X X	R R R R	RFFF	RRF	R H H	F FEFE	R H H H	AT AT AT AT	Rëfë	EXE
تند													

]													
Zn 0.001 0.031	0 000 0 000 0 000 0 000	0 000 0 000 0 000 0 000	0 007 0 008 0 007 0 007	0.009 0.008 0.008 0.008	0 014 0 015 0 015 0 015	0 022 0 022 0 021 0 021	1200 1200 1200	570 0 570 0 220 0	0.015 0.016 0.015	0.019 0.020 0.020 0.020	0 025 0 025 0 025 0 025	150 0 150 0 950 0 910.0	0 021 0 023 0 022 0 021
TI 0 005 0.0025	0 0075 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0059 0 0051 0 005	0 000 0 010 0 000 0 000	0 010 0 009 0 009	0 000 0 010 0 010 0 010	0 005 0 006 0.007	800 0 800 0 800 0	0 010 0 011 0 011	0 0 1 4 0 0 1 5 0 0 1 5 0 0 1 5 0 1 0 1 5	0 000 0 010 0 010 0 010
Sr 0.005 0.590	0.612 0.571 0.613 0.599	0 594 0 574 0 588	0 581 0 554 0 550 0 575	0 589 0 540 0 537 0 536	0 530 0 514 0 514 0 537	0 527 0 526 1 6 52 0 528	0 530 0 501 0 519 0 516	0 517 0 497 0 532 0 515	0 516 0 502 0.509	0 501 0 490 0 507 8.600	0 495 0 472 0 455 0.485	165 0 876 0 786 0	0 348 0 339 0 350 0 350
S. 0.020 1351	12 27 12 21 12 31 12 3 1	12.62 15.16 12.62 12.60	13 26 13 59 13 48	13 40 13 51 13 53	13 59 13 76 13 70 13 60	11 95 11 32 14 54	15 18 15 29 15 00 15 16	14 12 14 09 14 49 14.23	13.00 13.01 13.21	14 15 14 15 14 15 14 15 14 15	20 M 20 M 21 M 21 M	13 05 11 01 12 04 12 04	11 28 11 28 11 28
S 0.007 45.99	45 60 44 50 45 73 47.28	45 24 41 91 44 34	4 09 4 09 4 14 4 15	44 55 40 95 38 55 41,69	40 81 37 76 42 09 40.15	39 27 38 00 11 0+ 21.45	39.42 35.53 37.55	30 06 37 25 87 85 17.86	36.97 36.99 37.58	36 98 36 10 36 50	8 8 8 8 8 8 8 8	21 12 29 51 30 54 20.39	29 55 29 32 30 04 29 17
P 0.010 0.031	0 019 0 020 0 019	0 020 0 021 0 039 0.027	0.026 0.027 0.026 0.026	0 032 0 034 0 034	0 0	0 050 0 077 0 0 0 00.0	0 052 0 069 0 066	0 059 1 0 059 1 0 0 0 0 0 0 0 0	0 055 0 056 0 056	0.044 0.046 0.064 0.052	6 070 0 060 0 670 0 670	0 052 0 047 0 047	0 034 0 035 0 037 0 037
Ni 0.001 0.003	0 0005 0 0005 0 0005 0 0005	0 001 0 0005 0 0005 0 0005	0 0005 0 001 0 001 0 001	100 0 100 0 100 0	0 001 0 001 0 001 0 001	0 0 0 0 1 0 0 0 1 0 0 0	0000	0 001 0 0 00 0 0 0 0 0 0 0 0	0 001 0 001 0 001	0 001 0 001 0 0005 0 0005	0 001 0 005 0 001 0 01	100 0	0 001 0 6/075 0 201 0.000
Na 0 180	166 165 163 16.5	166 178 170		172 172 172	173 175 174	177 184 172 172	180 175 175	169 172 170	169 170 18.9	221 271 271 271	168 170 18.9	8 4 1 1 5 0 1 5 1 8 6 9	
Mo 0.003 0.003	0 003 0 003 0 003 0 003	0 000 0 000 0 000 0 00 0 00 0 00	0 003 0 003 0 003	0 001 0 001 0 001 0 001	COO 0 COO 0 COO 0 COO 0 COO 0	0 001 0 001 0 001	0 004 0 003 0 004 0 004	0 004 0 004 0 003	0 00 0 0 00 0 0 00 0	0 000 0 000 0 000 0 00 0 00 0 00	0 00 0 0 00 0 1 00 0 1 00 0	0.607 0.003 0.0015 0.002	0 000 0 000 0 000 0 000 0 000
Mri 0.005 0.023	0 019 0 019 0 019 0 019	0 019 0 020 0 200	0 022 0 024 0 023 0 023	0 123 0 024 0 043 0 010	0 049 0 049 0 049 0 049	0 0 7 4 0 0 6 0 0 7 4 0 0 7 5	0 063 0 054 0 081 0 082	0 083 0 083 0 091 0 085	0 0 5 9 0 0 5 9 0 0 5 8	0 0 7 7 0 0 8 9 / 0 0 9 / 0 0	0.092 0.105 0.101 0.059	050 0 550 0 550 0	0.066 0.066 0.067 0.067
Mq 0.050 23.05	23 61 22 78 23 76 23 75 23 76	23 25 23 55 23 55 23 55 24 55 25 br>25 55 25 25 55 25 25 25 25 25 25 25 25 25 25 25 25 2	22 96 22 71 23 68 21 12	23 10 22 37 22 17 22 55	21 56 21 06 22 30 21 55	2258	21 52 21 52 21 52 21 52	21 12 20 69 21 69 21 17	21 54 20 78 21.16	20 20 20 20 20 20 20 20	20 20 20 20 20 20 20 20	15 21 17 57 17 86 17.86	16 17 16 35 16 51 16 61
LI 0 002 0 021	0 021 0 021 0 022 0.021	0 021 0 021 0 021 0 021	0 020 0 020 0 021 0 021	0 020 0 020 0 020 0 020	0 019 0 019 0 020	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 9 0 0 1 9 0 0 1 9 0 0 1 9	0 018 0 018 0 020 0 018	6100 6100	8100 8100 8100	0015 0017 0017 0017 0017 0017	0 016 0 015 0 015 0 015	0 014 1 0 0 1 0 0 1 0
× 0 200 ♦ 5	;;;;	4 4 4 4 4 4 4 4	2 2 7 5 0 1 1 5	4 4 6 0 0 0 0	0 5 0 5 0 5 0 5 0 5 0 5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 5 5 5 5 5 5 5 5 5	4 0 4	4 0 0 0	3223		****
Fe 0.005 0.076	0 056 0 056 0 056 0 058	0 057 0 062 0.063	0 0 7 8 0 0 8 7 0 0 7 7 0 0 8 0	0 078 0 085 0 140 0.101	0 182 0 191 0 173 0 173	0 271 0 292 0 278 0 278	0 307 0 322 0 277 0 202 0	7(2.0 0.296 0.215 0.298	0 195 0 195 0.190	0 242 0 272 0 265 0 260	0000 0100 0100 0100	0 405 0 412 0 385 0 402	0 317 0 335 0 325 0 325
Cu 0.003 0.005	0 005 0 005 0 005	0 005 0 005 0 005	900 0 900 0 900 0	0 000 0 0 0 0 0 0 0 0 0 0 0 0	600 0 600 0	0011 0012 0012	1100	0 012 0 012 0 013 0 012	600 0 600 0	0 0 0 0 0 0 0 0 0 0 0 0	0013 0013 0013 0013	0 016 0 017 0 018 0 16	0 014 0 0 014 0 014
Cr 0 005 0 005	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0075 0 0075 0 0025	0.0025 0.0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025
Ca 00/0	808 763 805 79.2	78 0 80 9 7 8 9	763 770 7850 7855	80 0 78 2 78 7	747 742 782 782	762 773 752 762	782 785 778 78.2	255 747 747 248 2.87	75 4 72 1	76 4 72 4 75 8	121	66 3 65 7 65 4	61 1 60 6 61 1 61.0
Be 0.0001 0.0003	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	20000 0 20000 0 20000 0 20000 0	0.00005 0.00005 0.00005 0.00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	20000 0 00005 0 00005	0 00005 2 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ba 0 0005 0.068	0 0 7 0 0 0 7 1 0 0 7 0 0 7 0 0	0 069 0 073 0 069	0 075 0 075 0 075 0 075	0 0 7 6 0 0 7 6 0 0 7 9	0077 0070 0000 0790	0 024 0 0 0 0 0 0 0 0 0 0 0 0	0 087 0 087 0 084 0 085	D 086 0 036 0 038 0 038 0 038	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 085 0 087 0 084 0 084	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.081 0.083 0.082 0.082	0 069 0 073 1 7 0 0 1 7 0 0
AI 0.010 0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 05 0 05	0 0 0 0 0 0 0 0 0 0 0 0	0 07 0 14 0 5	0 15 0 18 0 16	0 26 0 28 0 27 0 27	0 32 0 29 0 29	0 29 0 29 0 20	0 10 0 15 0 19	0 21 0 26 0 28	1003 1003 1003 1003	8008 8008	0 23
A5 0.2	\$ 5 4 8 05 8 66 8 75	987 887 948	9 43 10 44 10 37	10.26 8.92	02 01 12 01 12 01	10 12 10 78 10 04	10 25 10 42 8 96	10.01 10.75 10.63	9 41 9 41	8 57 9 18 9 12 9 12	9.65 10.06 10.74 10.45	968 972 923 956	7 65 8 93 8 59 8 39
Sampling Turk		10 45	90 01	10 55	06.8		00 e	519					9 30
Sampling Sampling Date Time 8/12/00	00/1/6 00/1/6	00/2/6 00/2/6 00/2/6	00/6/9 00/6/9 00/6/6	9/4/00 9/4/00 9/4/00	915,00 915,00 915,00	9 6:00 9 6:00 9:00 9:00 9:00 9:00	00/1/6 00//6 00/2/6	9/1/00 9/1/00 9/8/00 8/8/00	00/6/6 00/6/6 00/6/6	00/11/6 00/11/6 00/11/6	00/21/6 00/21/6 00/21/6	10/09/00 10/09/00 10/3/00	00/9/11 00/9/11
SITE AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM:1 CFBM:2 CFBM:3 AVG CFBM	CFBM 1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM 3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-1 AVG CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM	CFBM-1 CFBM-2 CFBM-2 AVG CFBM	CFBM-1 CFBM-2 CFBM-3 AVG CFBM
F4 0 182 TR	R R R R	R R R R	AT AT AT AT	81 H H H H	AT AT AT AT	at at at	AT AT AT	R T R H	r r r r	RRE	R R R F	REER	8 E E E

	1																																									
2n 0.001	0 012	E10 0	0.012 0.012	0 0 16	5100	0.016	0.015	9100			0 008		0.004	0 012	0 0 14 0 0 13	0.013			0.079		0 0 70	0 052		6500	0049	0.050	0 085	190.0	0.066	900.0	0.035	200 D	0.061	0 034	10.0	0.042	0 022	0.072	0.022	0 032	2000	0.032
Ti 0.005	0 0025	0 0025	0.0025	0 0025	52000	0.0025	0 0025	0 0025	0.0025		0 0075		6700'0	0 0025	0 0025	0.0025		500 0	0.004		0 0025	0 0025		0 0025	0 0025	0.0025	0 0025	0.005	0.0025	0 0025	0 0025	0.0025	0 6025	0 0025	0.0025	0.0025	0 0025	4200 0	0.0025	\$200.0	\$200.0	0.0025
Sr 0.0005	0 379	0 369	0.376	0 369		0.366	776.0	755 D	995.0		0 154		0.149	6210	9138	0.135		0 0 0 0	0.087		560 0	0 095		1800	0 062	0.012	0 083	0.070	0.081	0.094	2600	140 0 260.0	0102	0.105	660 C	6.102	0 112	50	0.111	860 0	1400	860.0
Ši 0.020	11 53	81		09 11		11.67	1511	27 II 17 II	11.56		1 45		871	6 95	125	1.40		8 0 /	5		661	665		6 06 1 26	6 14	11.9	6 19	A 16	3	6 68	651	557	7 0.8	6 78	2 2 2	6.78	6.73	0 02 4 60	5	6 20	6 13 6 25	19
S 0.007	141	10 55	25 26	15 (5	55	32.06	91.15	00 67 60 05	30.29		4 72	ļ	4.72	5 81	5 76	9		689			6 30	6.33		5 99	615	6.01	5 16	10.5	5.03	514	9 : 9 :	5.03	2	5 62	521	5.39	527	110	5.22	575	5 72 5 AD	5.75
P 0 010	0 0 20	0 0 19	0.019	0 029	1500	0.029	0 034		0.036		0 008		110.0	0 039	0 0 42	6:03		0 041	0.022		100	0 0 1 8		100	0015	0.015	0 015	1100	107	0 005	0 005	0.005	2100	0 010	0 002	0 0 10	1100	2100	110.0	0 005	5000	0 005
NO C	0 0005	0 0005	2000 0	0 0019	2000	0.002	0 0005	0 0005 2 0 0005	9000 0		5000 0		0.0005	0 002	0 0 10	0.002		0 001	100.0		0 0005	0 0005	6000 D	2000 0	00005	0.0005	0 0018	10006	0.000	0 0005	0 0005	0.0005	0.002	0 0005	0 0005	0.001	0 0005	0000	2,000S	0 0005	0 0005	0.0005
Na 0 160	110		5 7 7	•	2 2	2 2		1 2 2			27		5.6		26			0.4			20	20	7	61	20	12	17	a 	2	8	21			23	2.0	2.1	23	22	22	22	22	:2
0 Mo	0 003	0 003	0.003	0 0015	C7700 0	0.002		0 003			0 0015		0.0015	0 0015	0 000	0.001		0 0015	0.0015		0 0015	0 0015	6.00.0	5100 0	0.0015	0.0015	0 0015	21000	0.0015	0 0015	0 0015	0.0015	80000	0 0015	0 0015	0.0019	0 0015	0 0015	2100.0	0 0015	0 0015	0.0015
Mn 0.0005	1000	0 0 36	7000	6100	5100	0.019	6 <i>C</i> U 0	1600	0 0 3 0		0 0036		0.0015	0 0069	0 0077	C 100.0		0 0436	0.0169		0 0107	11100		19100	0.0167	0.0161	0 0157		0.0155	6600 0	2 000 0	0 0096 (609.0	10101	0 0085	£/00 0	96000	0 0088	0 0/388	0.0017	0 0082	0.00/6	1100.0
0.000	98 91	16 45	17 09	16 64	83	4.4	16 35	16 28	16.32		13 15		12.75	95 II	12 19	12.09		818			9 07	2.6		9.90 9.5	8.51	15.0	8 34			9 9 6	C + 6	9 44	202	10 56	1013	10.14	10 56	10 26	10.43	<u> 3</u> 95	9 25 0 0 1	966
L1 D (602	0 015	0 015	0.016	0 0 15	5100	510.0		0015			0 002		0.002	0 001	180	0.001		0.001	0.001		0 001	1000	100.0	100 0	1000	0.001	000	1000	0.001	0 001	000	0 00 0 00 0 00	5000	1000	100 0	0 001	1000		200.0	0 002	0 00205	0.002
X 2020	20	36	5 5						12		60		6.0	10		9		0				80		0.8			0.8					- -	2		07		0.8		n e:	9.0	9 0 0 0	
Fe	0128	0 127	0 121 0.125	0 092	0500	100	1010	0150	0.147		100		610.0	0 145	0 227	0.185		3350	0.522		952 0	0.216	1.244	02:6	0.228	111.0	0 223	201.0	0.215	0 140	151 0	0.135	C01.0	0 132	161.0	0.152	0 120	0 126	0.124	0 133	E(1 0	0.110
S.C.	0 006	0000	0 000 900:0	900 0		800	800 0	800 0	100.0		0 0015		0 0015	8	0 0015	8 8		9000	C00.0		8	0 0015	8	0 0015	2000	0.0015	51000	1000	6100.0	0 0015	0 0015	0.0015	31000	0 0015	2100 C	0.0015	0 0015	\$100.0	0.0015	0 0015	5100.0	2100.0
žě Č	0 2025	0 0025	0 0025 0.0025	0 0025	0 0025	0.0025	0 0025	0 0025	0.0025		0 0025		0.0025	0 007	6200	0.018		0 0025	0.0025		900 0	0 0025	0.006	0 0025	5200.0	0.0025	0 0025	31000	0.0015	0 0025	0 0025	0.0025		0 0025	0 0025	0.005	0 0025	0 0025	0.6025	0 0025	0 00/5	0.0025
Ca Ca	643	64 8	67.7 65.6	62.2	623	62.4	63 4	631	513		310		30.0	250	25.6	22		195	19.2		1 02	20.0	20.02	19.2	197		195		19.3	216	212	21.2		235	1 22	22.8	23.7	22 8	111	233	22.9	202
Be	0 00005	0 00005	0.00005 0.00005	0 00005	0 00005	0.00005	0 00005	0 00005	0.00005		0 00005		0.00005	0 00005	0 00005	0.00005		0 00005	0.00005		0 00005	0 00005	50000 0	0 00005	00000	0.00035	0 00005	10000	0.00005	0 00005	0 00005	0 00005 0.00005	0 00005	0 00005	500000	0.00005	50000 0	0 00005	0.00005	short u	0 00005	0.00005
Ba	0.067	0 068	0.066 0.067	0 062	0 063	0.062	0 061	0 063	0.062		0 251		0.243	0 225	0 239	0.215		0 163	0 167		0 165	0170	0.17	0 160	0 163	0.163	0 165		0.163	0 156	0 183	0 182 0.183	0.100	0212	002 0	0.204	0216	0211	0.214 0.214	0 196	9194	0.130
A!	000	600	800 800	90 0	88	0.01	11 0	012	12		100		0.0	0 03	500	5 0 70		50.05			0 10	010	0.0	60 0		6.03	0 05		800 600	0 03	0 03	()) ())		003	0 02	0.02	0 62	500	20.0	0 02	200	0.02
1	1		6.5 6.5	60	2	9 49 9 49 9 49		200			83	8	5	84	7	4				3	; ;			010			96 0			0 39		0.35			970		Ŧ	9	0 42 0 45	ננס		
E.	2	:		00 01			ŝ						•	13 10 0			J						•	809			0([13 00	Ŭ			Ŭ		Ū	13 15 0			13 00		
1.			<u>ଟ୍ଟ୍</u> ଟ୍		00.6	00/62/21	6 10	ĘĘ	5	;	5 5	8	007		55	38	g	Ş	38	ţ	88	8	ŝ	-	8 2	2 2	-	8 9	2 2		Ś	55	Ę	88	Ş	9		Ş:	88		8 9	2 2
UIPS	1.61	121	12/1/00	2/21	121	221	1/26	1/26/01	1/26		2/26/00	2/26	2/26	3/29	2/25	3/29/00	422	454 101	4/22/00	ļ	4/28/00	4/28	4/2/	10.2	104	00/1/5	5 46 1	192	5/6/00	TINS	tivs	5/12/00		125	2/21/00	12/5	\$/29/00	5/29/00	5/29/00	9/1/9	5110	00/1/9
	FRM.1	:FBM-2	CFBM-3 AVG CFBM	JFBM-1	CFBM-2	CFBM-3 AVG CFBM	SFBM-1	CFBM-2	AVG CFBM		BH-1 BH-2	Ē	AVG BH	1-14	3H.2	AVG BH	1+1	Bri-2	BH-3 AVG BH		B+-1 B+-2	CH3	ALC BH	1-H	2-H2	AVG BH	BH-1	2.12	Bri-3 AVG BH	0H-1	BH-2	BH-J AVG BH		BH-2	811-3	NG BH	611-1	11-2 11-2	AVG BH	8H-1	6H-2	avg bil
FAC			R R A C			5 ₹ £		a t t			1 H H					E H			= ≤		8 8 2 8					E E			ž č			R R R			TR				E E			2 4
F.	1																																									

.

r	1																																												
Zn 0.001	0 2 30	0 021	960'0	0 018	170.0	0.010	0 024	0 032	0 029	0.028	0 040	0 021	0.025		0016	0 0 18		600 0	9000	600.0	0000	0 005	0.005	9000	000	900 0		1000		100.0	0 005	0 005	0 005		900 0	9000	900.0	-	0 005	0 004	0.005	900 0	0 005	0.005	0 005
11 0.005	0 0025	0 0025	0.0025	0 0025	6730 D	5700 D	0 0025	0 0025	0 0025	0.0025	0 0025	0 0025	0.0025	1000	0 0025	0 0025	6 700 D	0 0025	52000	0.0025	0 0025	0 0025	0.0025	0 0025	0 0025	0 0025		0 0025	0 0025	0.0025	0 0025	0.0025	0 0025	6200.0	0 0025	0 0025	0.0025	1000	0 0025	0 0025	0.0025	0 0025	0 0025	0.0025	0 0025
Sr 0.0005	0117	6110	611.0	6110		0.116	6110	0114	0 114	0 114	0 124	0 127	0.121		0120	6110		<u>.</u>		11.0	01410	0 145	0.144	0 147	0 141	0 149		0 144	0 147	0.147	0 148	0 148	110	0.141	0 147	0 145	0.145		0 142	0 146	0.146	0 149	0 146	0.148	0 149
S, 0.020	707	= -	51.15	101	5 2	50. 20.	0 89	6 92	9	6.91	7 14	16.7	9 8 9		14	16.		137	c e	1.20	<i <="" td=""><td>101</td><td>10.1</td><td>7 22</td><td>6 27</td><td>:: .</td><td></td><td>81 2</td><td>7 32</td><td>7.26</td><td>7.0.7</td><td>5</td><td>3,</td><td>20.</td><td>7 09</td><td></td><td>1.08</td><td></td><td>9 A </td><td>7 06</td><td>1.23</td><td>744</td><td>7 05</td><td>1.24</td><td>7 10</td></i>	101	10.1	7 22	6 27	:: .		81 2	7 32	7.26	7.0.7	5	3,	20.	7 09		1.08		9 A 	7 06	1.23	744	7 05	1.24	7 10
S 0.007	60.9	6 08	0 18 6.12	18.5		573	6 28	6 39	8.37	6.35	5 99	6 22	4 4		82.9	85		9		44		÷	141	07 C	3 5.3	175		358	358	3	5	85	191		11	; ;				416	4.31	6 2 4	4 05		4 03
р 0.010	0.026	6200	0.024	970 0		0.019	0 0 18	0 013	0 0 1 2	0.014	0 012	0 028	5 0 0 3 3		6600	0 0 2 9		6100	A20.0	0.023	5000	500 0	0.005	0 005	1100	0.005		0 005	0 027	0.012	0.00	0 0 1 2	0 005	600.0	9000	1100	0.010		1200	210 0	0.021	0 CO5	2003	0.013	0 022
	۰.		0.004	100	ŝ	3 8	2000	100	0005	0001	100	5000	000		5 i i i i i i i i i i i i i i i i i i i	2000		5000	2000	2000	2000 0	Soo	2000	5000	5000	2000		5000	5000	0.0005	9000	5000	0002	6000	2000	500	0.0005		0 0005	0005	5000	5000		2000.	0 0005
Na 1 0 180 0	1			0 (90	0	•	0	•	0	-				0.0	3		50					0	0	06					ç	00	0 0	5								0	0	0	0
1	1		n ni	5	•	n ni	~	2	5 2 2	~	Ň	Ň	22	ć	Ň	53	i.	52	~ ~	• ••	22	~	ñ	~	~			~	Ň		ſ	• ~	56	Ń	~	201	~ ~		~ ~	~	N	5 28	~	2.8	27
M0 0.003				0 001		0.0015	0 001	000	0 0015	6.00.0	100 0	0 001	0.0015		000	0 0015		0 002		0.0015	21000	0 001	0.001	1000	0 001	21000		1000	1000	0 0015	196.0	0 0 0	0 0015	100.0	0 001	0 001	0.0015		0 0015	100 0	0.001	0 6015	0 0013	0.0015	0 0015
Mn 0.0005	0 0079	6/00 0	0.00/3	0 0066		0.0067	0 0071	0 0075	0 0076	0.0074	0 0057	0 0053	0.0053		0 0107	00139		0 0032	15000	2000.0	0 0029	00000	0.0029	0 0027	0 0025	0 0029		0 0023	0 0024	0.0024	0.002	0 001	9200 0	6700.0	0 00 30	0.000	0.0030		0 0024	0 0022	0.0024	0 0026	0 0025	0.0026	0 0022
PM 0200	10 60	10 92	10 25 01	15 01	5 2	10.68	10 52	10 51	10 67	10 57	11 42	1911	11.02			11 52		12 12	77 71	16.11	2 2 2	5 2 8	12.56			12 93 11 11		12 81	5	12.38	10.00	12 63	223	12.34	12 56	9 : 2 :	1071		12 21	12 69	12.14	26 21	12 64	12.48	12 80
L1 0.002	0 002	200 0	0.002	0 002	700 0	0.002	100 0	0 001	0 002	0.001	0 002	0 0021	0 001		0 002	200 0	700.0	0 002	200 0	0.002	1000	000	0.003	0000	0 003	1000		0 003	0 003	100.0	0.000	000	0 002	200.0	0.002	0 002	0.002		0000	0 003	0 001	0 003	0 003	0.003	E00 0
K 0 200	60	50	л с	30				ŧo	60			60			7 0 0 0			60				22	1.0	:	0	::	:	91	0	2	, ,	20	0		0 1	0		:		0	0.1	10	21	1.0	Ξ
Fe 0.005	0156	010	0.10/	860.0	101.0	0.10	121 0	0 127	0 125	0.124	0 009	0 078	1/00		6710	0 121	771.9	0.040		0.043	1200	620 0	££0.0	0 0,26	9200	0 0 26		0 029	0036	0000	100	100	620.0	10.0	860.0	0 037	760.0		2000	0 033	610 0	0 UZ7	620.0	0.028	0 026
n Cr	0 0015	0 0015	2100 D	0 0015	1000	0.0015	0 0015	0 0015	0 0015	0 0015	0 0015	6100.0	0 0015		51000	2100 0	cion'n	0 0015	51000	0.0015	0 0015	0.0015	0.0015	0 0015	0 0015	0.0015		0 0015	0 00 15	0.0015	2000	0 0015	0 0015	0.0013	0 0015	2100.0	51000		2100 0 2100 0	0 0015	0 0015	0 0015	0 0015	0 0015	0 0015
CC 000	0 012	0 0025	0.005	0 0025	5700.0	0.0025	0 0025	0 0025	0 0025	0.0025	0 0025	0 0025	5200 D		0 0025	0 0025	c700.0	0 0025	5700.0	0.0025	0 0025	0 0025	0.0025	0 0025	0 0025	0 0025		0 0025	0 0025	0.0025	1000	0 0025	0 0025	670078	0 0025	0 0025	0.0025		0 0025	0 0025	0.0025	\$250 0	0 0025	0.0025	0 0025
Ca	24.3	546	24.5	245		24.9	236	23.7	24.1	23.8			22.0			- R		20.2			28.8			104	28.3					29.6			286				515		28 8 28 8		29.1	30.0	1 62	29.5	28.0
Be	0 00005	0 00005	0 00005	0 0005	500000	20000 D	0 00005	0 00005	0 00005	0 00005	ō	δ.	0.00005		0 00005	20000 0	0.0003	500000	200000	0.0005	0.0005	0 00005	0.00005	0 00005	0 00005	0 00005		0 00005	0 00005	00005	20000	0 00005	0 00005	0.0003	0 00005	0 00005	5000010		20000 0 0 00005	0 00005	0 00005	0 00005	8	0.00005	\$1000 Q
Ba	0.226	0 229	0.231	0 228	0 225	0.223	0 215	0 219	0 221	0.219	6 2 3 9	0 246	EZZ 0		0 253	0 236	0.240	0 260	0 265	0.260	0 281	0 275	0.277	0 285	0273	0 289		0 280	0 282	0.284	910.0	0.279	1/20	0.277	0 2 76	0 273	0.274 0.274		0 265	0 289	0.270	0 282	0 275	0.279	0 277
	12	8	0 03 0 03	20.0	200	0.02	0 03	100	0 03	0.03	0 02	0 02	0.02		500	100	60.0	10 0	50	66	500 0	0 005	500 0	100	100	100		0 02	:00	0.02	.00	100	100	10.0	100	100	C0000		500 0 500 0	200 0	0.005	500 Q	0 005	0.005	0 005
45	040	92.0	0.10	-	50 0	0.3 1		0.38	90.0	0.35	550	1 T C	0.12			1		0.19	56.0	5.0	2 4 2 0 4 2	22	0.39	0 39	95 0	62 0 38		0.34	:	50		2.50	8	9.79	920	940		į	14 0	110	0.39	0 32	140	0.37	95.0
Sanping											14 45			;	8						13 40			15 15								3										12 45			13 15
ş	ŧ	3	88	00/	8	6/11/00	8	8	00/	200			6/25/00			8	9	8	88	7/11/00	8/15/00	38	80			82	3	8	8 :	3 2			8 2	8	8	8 :	3 2	:	88	8	8	-	2 g	8	10.00
ling of		6151	6/5/00 6/5/00	5	10	11/9	6112	119	6/17/00	5	6/25	6/24	6/21 6/25		NUL	00/1/2		E.	Ē	Ĩ	1/8	51-0	8/15	71/6	V1/6	9/1/00		10.6	VC/6	00/1/6	1.10	9.41	9/4/00	1716	7518	9/5V	DOVERS	1	00,946	00/9/6	194	00/9-6	00/9/6	00/8/6	9/10
	 	7	BH-3 AVG BH	Ţ	N	BH-J AVG BH	÷	2	6H-3	NG BH	₽	? ‡	BH-3 AVG BH		- 	BH-3	NG 84	Ŧ	ç ;	AVG RH	BH-1 BH-2	17	VG BH	÷	1 2	BH-3		Ŧ	? ₽	AVG BH		: 2	BH:3	HR 5A	÷	ç	BH-3 AVG BH	:		2	10 BH	Ŧ	2-H2 FH-3	/G BH	BH-1
1	ł.					₽ 4 ₽ 4			TR BH				₩ 14 14 14 14 14 14 14 14 14 14 14 14 14			i i i i i i i i i i i i i i i i i i i				2 2 2 2 2 2	16 19 19					17R 01				H N N N N N N N N N N N N N N N N N N N			HE HE				4 4 4 4						88 82		LR BH
FAO	ľ	-			.~ 1		-	-	-	-	-	-				,- I	-							-			-	-			•	-	- •	-	-	~ '		,	- 10	-	-	-		•	-

														
Zn 0 001 0 005	0 005 0.004	0 007 0 007 0 007	0.017 0.015 0.016	0 000 0 000 0 000 0 000 0 000	0.009 0.013 0.013 0.008	0 005 0 005 0 005 0.005	0 0005 0 0005 0.0018	0 002 0.001	0 001 0 002 0 002 0.002	0 026 0 027 0.022	0.018	0.004 0.006 0.010 0.007	0 006 0 017 0 005 0.018	0.005
11 0 005 0 0025	0 0025 1 000:0	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0028	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025	0 0025 0 0025 0.0025	0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0.0025 0.0025 0.0025	0 0025 0 0025 0 0025 0.0028	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025
Sr 0.0005 0.148	0.148	0.145 0.145 0.146	0 154 0 145	0 153 0 152 0 154 0.153	0 152 0 160 0 153 0.155	0 162 0 162 0 160 0 160 0.161	0 064 0 065 0.065	0 066 0 070	0 047 0 047 0 047 0 047	0.045 0.045 0.045	0.042 0.042 0.041	0.042 0.042 0.041	0 048 0 048 0 048 0 048 0 048	0 041
Si 0 020 7 10	5.33	7 2 2 4 0 7 2 2 4 0	757 247 245	7 28 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 1	6 8 6 95 6 73 6 73	12 12 12 12 12 12 12 12 12 12 12 12 12 1	4 5 4 8 5 4 8 5 4	4 93 5.04	4 05 2 97 2 97 8 100	3 40 3 42 3 42	040 040 040 040	510 120 120 120 120	29.78 29.78	525
S 0.007 4.11	4 05 3 05	5 2 2 5 2 5 5 5 5 5 6 5 6 5 6 5 6 5 6 5 6	00 0 70 0 74 0	5 7 5 5 7 5 5 8 7 5 5 8 7 5		4 25 4 22 4 27	117 128 1.25	H 1	75 0 96 0 96 0	0 94 1 U2 0.99	0 93 1 9 0 94 0 9 1 9 0 9 1 9 0 9 1 9 0 9 1 9 0 9 1 9 1	0 90 0 50 0 95	1950 1950 1950 1950	28 Q
P 0 010 0 037	0.036	1000 2000 2000	500 0	800 800 800 800 800 800 800	2005 2005 110 1001	210 0 200 0 200 0 200 0	0 005 0 035 0.016	1034 01030	0013	0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 016 0 014 0 010	0 005 0 005 0 000 0 000 0 000	20 00 00 20 00 00 20 00 00 20 00 00	0 005
0 001 0 001		2000 2000 2000	2000	5000 5000	5 6 6 6 6	0003 0003 0005	0 0005 0 0005 0 0005	E10 788	2000 0 2000 0 2000 0 2000 0	0.0005	0 0011 0 0005 0 0005 0 0005	0005 0005	2005 2005 2005	9 2000 0
Na N 0 180 0 2 6 0		~	90 90 90 90	80000	~ ~ ~ ~ ~		~~~	- 4	* e	100	e-0.		20000	9 90
1 1		~~~~	ы ми мала	. ค.ค.ค.ค.		~ ~ ~ ~ ~			-		0	55-5 55-55		
Mo 0 003 0 0015	0.00	0.0015 0.0015 0.0015 0.0015	0.0015 0.0015 0.0015	0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0.0015	0.000	0 0015 0 0015 0 0015 0 0015	0 0015 U 0015 0.0015	0 0015 0 0015 0 0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015
	0 2020	0 0022 0 0021 0 0023	0 0001	0 0015 0 0016 0 0017 0 0017	5 0020 0 0022 0 0015	0 0026 0 0028 0 0028 0 0026	2 00025 0 00025 0:00025	0 000	0 0066 0 0074 0 0071 0 0070	0.0005 0.0024 0.0017	0 0067 0 0075 0 0070 0 0070	0 0036 0 0040 0 0034	0 0015 0 0014 0 0018	0 0024
149 0 050 12 8/	12 80 9.63	13 15 12 77 13 25 13 06	13 61 80 CT 81 EE	12 CT 72 ST 10 CT	12 19 12 95 12 27	12 93 13 21 12 68 12 68	12 11 12 13 12 26	12.52 12.03	9 6 6 8 6 6 2 5 6	9 12 9 05 9 06	8 48 8 75 8 63 8.63	8 9 8 8 5 8 7 5 5 8 5 8 8 5 8	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 63
L1 0.002 0.003	0.001	0 002 0 002 0 002	0 002	0 002 0 002 0 002	0 002 0 002 0 002	0 002 0 002 0 002 0 002	0.002 0.002 0.002	000	100 0 100 0	0 001 0 001 0 001	0.001 0.002 0.001	0 00 0 0 00 0 0 00 0	100 0 100 0 100 0 100 0	0 001
K 0 200	-	0 0 0 0 	06 6	6 0 0 0 6 1 1 1	00-0 00-0	0070 0070	000 000	0 S 2 S	0000 0000	0 0 0 4 1 8	050055	0000 0000	0 0 0 0 1 4 4 1	63
Fe 0.005 0.027	0.026	0 023 0 023 0 024	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	810 0 910 0 910 0	0 025 0 026 0 024 0 024	0 021 0 021 0 022	000 0 100 0 900 0	0 147	0 209 0 223 0 200	0.068 0.052 0.061	0 185 0 215 0 206 0 206	0.091 0.091 0.091	0 U31 0 046 0 040 0-039	0 087
Cu 0 003	0.0015	0 0015 0 0015 0 0015 0 0015	0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0.0015	0 0015 0.0015	0 C015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 6015 0 0015 0 0015 0 0015	0 0015
Cr 0 005 0 005	0.0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025		2000 2000 2000 2000	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0.0025	0.040	0 0025 0 0025 0 0025 0 0125	0 0053 0 0063 0.004	0 000 0 000 0 000	100 0 100 0 100 0	0 00 0 00 0 00 0 00 0 00 0 00	0 0025
Ca 0 070 294	28.7 21.5	201 292 299	1.00	6 6 6 6 5 6 6 5 6 6	282 302 274 286	29.9 29.6 29.8	24 2 2 7 5 2 8 2	34.9	25.9 26.1 26.5	272 288 28.8	27 2 26 0 25 3 26 2	25 J 25 d 26 d 25 e	25 8 29 1 30 0 39 2	25 8
Be 0.0001 0.0005		0 00005 0 00005 0 00005 0.00005	0 00005 0 00005 0 00005	0 00005 0 00005 0 00005	0 00005 0 00005 0 00005	20000 0 20000 0 20000 0	0.00005	0 0005 0.0005	0 00055 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0.00005	0 00005
Ba 0 0005 0 276		0 277 0 269 0 276 0.276	0 268 0 251	0 268 0 266 0 269 0.268	0 251 0 264 0 253	0 265 0 268 0 261 0 261	U 258 0 293 0.292	0 306 112.0	0 136 0 196 0 200	6.192 0.194 0.194	0 174 0 180 0 173 0 173	0174 0174 0182 0.182	0 169 0 150 0 152 0.130	1110
ы 0 010 0 005	0.005	0 005 0 005 0 005 0 005	0 005 0 005 0 005	0 005 0 005 0 005	0 005 0 005 0 005 0 005	0 005 0 005 0 005 0 005	0 0035 2000 0 2000 0	5E00 0	0 22 0 23 0 22 0 22	0 0 7 0 07 0 07	017 022 021 021	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 0
44 037	9 7 0 1	4C 0 4E.0	032	0.32 0.28 0.28	0 32 0 35 0 35	0 26 0 26 0 28	0 98 0 95 7 6 0 7 6 0	8285	0.85 0.71 0.72 0.72	0 5 5 0 0 5 6 6 5 5 5 6 8 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 49	04/ 053 8.51	0 \$1
Sançang Fane		0+ 01			02 E I	00 [16 00		95 7			
	9/10:00	10,8,00 10,8,00 10,8,00	00/5/11 00/5/11 00/5/11	00.2121 00.2121 00.2121 00.2121	00/05/21 12/30/00 12/30/00	10/27/1 10/27/1 10/12/1	2/26/00 2/26/00 2/26/00 2/26/00	3/29/00 3/29/00 3/29/00 3/29/00	4/22/00 4/22/00 4/22/00 4/22/00	4/2000 4/2000 4/2000 4/2000	5/3/00 5/3/00 5/3/00 8/3/00	5.8,00 5.8,00 5,8,00 5,6,00	5/13/00 5/13/00 5/13/00	2/1/00
site BH-2	BH-3 AVG BH	8H-1 8H-3 8H-3 AVG 6H	8H-1 8H-2 8H-3 AVG 8H	8H-1 8H-2 8H-3 AVG 8H	8H-1 8H-2 8H-3 AVG 8H	8H-1 8H-2 8H-3 AVG BN	10-1 10-2 10-3 AVGLC	LC-1 LC-2 AVG LC	10-1 10-1 110-1 110-1 10-1	LC-1 LC-2 AVGLC	4V6 LC-1 LC-3 AV6 LC-3	LC-1 LC-2 AVG LC AVG LC	77516 103 103	1-01
FAC TR2 TR2	R H	R R R R	R R R R		R R R R	AT RE RE	18 18 18	R R R R	R R R R	4 8 8 8 8	R N R R	R R R	R R R R	ä

]														
Zn 0.001 0.006 0.006	0 003 0 002 0.002 0.002	0.001	0.047 0.061 0.066 0.066	0 004 0 003 0.003	0 015 0 004 0 012 0 010	0 004 0 003 0 004 0 004	5000 0	0 002 6.991	0 002 0 003 0 004	0 0005 0 0005 0 0014 0 0014	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 000 0 001 0 000 0 000	100 0
Ti 0.005 0.0025 0.0025 0.0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0.0028	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0.0025 0.0025	0 0025 0 0025 0.0025 0.0025	0 0025 0 0025 0 0025 0.0025	0 0025	0 0025 0.0025	0 0025 0 0025 0 0025 0.0028	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0.9025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025
Sr 0.005 0.043 0.042 0.042	0 044 0 043 0 043 0.043	0.042 0.043 0.041	0 046 0 045 0 045 0 045	0 041 0 041 0 039 0.940	0.044 0.044 0.043	0 047 0 046 0 046 0 046	0 050	0.046 0.046	0.057 0.056 0.056 0.056	0.061 0.061 0.062 0.061	0.064 0.065 0.065	0 003 0 063 0 064	0 065 0 063 0 063 0 064	U 065 0 065
Si 0 020 1 14 1 25	318 317 312 318	303	5228	321	2222	92 C 92 C 92 C	946	154 154	282 282 183	58 64	15 19 19 19	\$ 1 8 1	85 4 4 4 85 6 7 4 4	35
S 0.007 0.85 0.85 0.85	0 88 0 85 0 83 0 83	0.89 0.91 0.91	0 76 0 77 0 79 0 79	0 8 0 0 8 0 0 8 0 0 8 0	0 69 0 67 0 69	0 72 0 72 0 70	0 12	0.90	0 83 0 83 0 86 0 86	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 93 0 94 0 92	0 91 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 95 0 95 0 93 0 93	0 97 0 95
P 0 005 0 005 0 005	200 0 200 0 200 0 200 0	0 005 0 005 0 005 0 005	0.024	0 025 0 019 0 005 0 018	0 005 0 005 0 000 0 000	0000	0 022	0.025 220.0	0 018 0 018 0 005 0 005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000 0.000 0.000	0 005 0 005 0 024 0 024	0000	0 005 0 005
Ni 0 001 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0015 0 0015 0 0015 0 0 0021 0 0 0021 0 0 0 0 0 0 0 0 0 0 0	0 0052 0 002 0 002 0 0029	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0000 0 0000 0 0000	0 0005 (0.0005	0 0000 0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005 0 0005	0 0005
Na 0.180 0.5 0.6	0 6 0 8 0 0 0	50 50 50 50 50 50 50 50 50 50 50 50 50 5	0 6 6 6 6 0 6	70 80 87 8	8 8 6 8 0 0 0 0	8 8 8 8 0 0 0 0	60	6 6 6	:2:::	2222	2222	2222	1222	22
Ma 0.003 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015	0.0015 8.0015	0.0015 0.0015 0.0015 0.0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015
Mn 0 0005 0 0031 0 0025 0 0025	0.0028 0.0025 0.0027 0.0027	0 0019 0 0020 0 0018 0 0018	0 0019 0 0019 0 0019	0 0034 0 0034 0 0024 0 0024	0 0020 0 0020 0 0020 0 0020	C100 0 C100 0 C100 0 C100 0	9 6015	0.0018	9 0007 0 0007 0 0007 0 0007	000000 000000 000000	0 0007 0 00025 0 00025	0 00025 2000 0 22000 0 22000 0	0 00025 0 00025 0 00025	9000 0 5000 0
000 000 000 000 000 000 000	9.08 8.91 8.82 8.82	8 897 8 97 9 99 9 99	9 0 5 9 0 5 9 0 5	8 5 8 8 5 8 8 3 8 8 4 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 0 9 9 1 0 9 9 9 9 9 9	963	9.30 8.45	10.93 10.65 10.67 10.75	11 40 11 49 11 78	12 28 12 28	11 29 11 29 11 28	65 11 15 16 11 17 11 17	12 13
0 000 0 000 0 000 0 000	100 0 100 0 100 0	0 001 0 001 0 001	100 0 100 0 0 00 0	100 0 100 0 100 0	1000 1000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0	0 001	0.001 0.001	100 0 100 0 0 00 0	0 002 200 0 200 0	0 002 0 002 0 003 0 003	0 003 0 002 0 002 0 002	0 002 0 002 0 002 0 002	0 002 0 002
0.200 0.200	0000 4444	4444	****	4 4 K 4	4444	* * * *	•	0 0 4 4	8 8 8 8 8 8 8 8	0 0 0 9 0 0 0 9	0 0 0 0 0 0 0 0	6 6 6 9 6 6 6 9	2009 8999 8999	0 Q Q
Fe 0.035 0.035 0.068 0.068	0 069 0 069 0 069 0 069	0 046 0 053 0 042	0 062 0 065 0 075 0 075	0 000 0 000 0 000 0 0 000	0 051 0 050 0 050	0.035 0.035 0.036 0.036	0 044	47C 0 47C 0	0 027 0 027 0 027	0.016 0.011 0.015	0.011	010 0	0.010 0.010 0.010	0 013
Cu 0.003 0.0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015	0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0018	0 0015 0 0015 0 0015 0 0015	0 2015 0 2015
Cr 0.005 0.0025 0.0025	0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0054 0 003	0 00 0 0 00 0 0 00 0 0 0 0	0.0025 0.0025 0.0025	0 0025 0 0025 0 0025 0 025	0 0025	0 0025 0 0025	0 0025 0 0025 0 0025 0 025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 01 15 0 01 25 0 0125	0 0025 0 0025
Ca 00/0 258 252 252	259 254 245 253	26.2 26.8 26.6 26.5	25 9 25 9 25 9	24 6 24 5 24 5 24 5	242	0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	278	27.94	30 2 20 2 20 2 20 2	32 5 32 6 32 6				140
Ba 0 0001 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0.00005 0.00005 0.00005 0.00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005	0.0000	U 00005 D 00005 D 00005 D 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0.00005 0.00005 0.00005	50000 0 50000 0 50000 0	0.0005
8a 0.0005 0.110 0.177 0.178	0 190 0 185 0 185 0 185	0 185 0 186 0 186 0 186	0 195 0 195 0 195 0 195	0 177 0 178 0 173 0 173	991 0 981 0 981 0 981 0	0 207 0 207 0 202 0 202	0 219	0.204	0 255 0 255 0 252 0 252	0 283 0 282 0 290 0.285	0 301 0 302 0 304 0 304	0 299 0 297 0 298 0 298	0 305 0 295 0 295 0 297	0 304 0 301
AI 0.010 0.070 0.070	0.06 0.03 0.07	0000	8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 O	0 05 0.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 005 0 005 0 005	0 0 0 1 0 0 2 0 0	0 005 0 005 0 01 0 01	0 005 0 005 0 005 0.005	0 01 0 005
A5 0 25 0 46	0 5 0 1 5 0 1 5 0 1 5 0	0 2 0 0 5 0 0 2 4 0	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	047 049	0.50	0 39 0 23 0.33	0 52	0.54		0 57 0 58 0 58		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 68
Samphug	15 00	05 +1	14 42		15 45	0C SI	15 30		14 30		16 30	15 00	1545	0E † 1
Samuking Date 5/21/00 5/21/00 5/21/00	5/29/00 5/29/00 5/29/00	6/1/00 6/1/00 6/1/00	8/5/00 6/5/00 6/5/00	00/11/8 00/11/8 00/11/8	00/21/9 00/21/9 00/21/9	6/25/00 6/25/00 6/25/00	00/1/2	00/1/2	00/21/1 00/21/1 00/21/1	0012118 0012118 0012118 0012118	00/1/6 00/1/6 00/1/6	00/5/8 00/5/8 00/5/8 00/5/ 8	014.00 914/00 914/00 914/00	9/5/00 9/5/00
SITE LC-2 AVGLC	LC-1 LC-2 AVG LC	LC-1 LC-2 AVGLC	10-1 10-2 AVGLC	LC-1 LC-2 LC-3 AVG LC	LC-1 LC-2 LC-3 AVG LC	LC-1 LC-2 LC-3 LC-3	1.0	AVG LC	408LC LC-3 AVGLC	LC-1 LC-1 LC-1	LC-1 LC-2 AVG LC	LC-1 LC-2 AVG LC	LG-1 LC-2 AVG LC	1. Col
	EEEE 3334	555<	**** 	R X K K 2224	222<	HEEEE HEEEE		E E	REEE 2224	REEE 2224	REEE 2224	2223 E E E E E	5225 2225	E E
FA or IR7 IR7 IR1 IR1														

	1								
	2n 0.001 0.001	0 0005 0 0005 0 0005 0 0005	0.0005 2000 2000 2000 2000 0	5000 0 5000 0	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 003 0 003 0 003 0 003	0 0005 0 0005 0 0005 0 0005
	TI 0 005 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0.0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0.0028	0 0025 0 0025 0.0025
	Sr 0.0005 0.048	0 063 0 062 0 062 0 062	5000 5000 5000 5000 5000	0 064 0 064	0 064 0 063 0 063 0 063	0.054 1000 1000 1000 1000	0 063 0 063 0 063 0 064	0.062 0.061 0.054 0.052	0 065 0 065 0 064 0 064
	SI 0 020 4 46 3 37	5 6 6 7	• • • • •	:: :	4 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+ + 5 + 4 + 5 + 50	8 8 8 8 8	959 3
		0 90 7 8 0 9 9 1 9 0	0 92 0 94 9 94	180 180 180	0 93 0 92 0 92	0 94 0 94 0 94	0 45 0 67 0 96 0 96 0 96	0 80 0 80 0 82 0 82	0 85 0 86 0 84 0 85
	P 0.010 0.005 0.00125	0 022 0 033 0 005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0	0 005 0 005 0 005	0 005 0 005 0 005 0 005	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5000 5000 5000 5000 5000 5000
		0 0000 0 0000 0 0000 0 0000 0 0000	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005	0 0005 0 0005 0 0005 0 0005		0 002 0 002 0 002 0 003	0 0005 0 0005 0 0005 0 0005
Similary A: Ju Ba Der Cl Cl K K L Dis Dis <thdis< th=""> Dis Dis</thdis<>	Na 0 180 1 3 1 0	2222	2222	: : :	2222	2222	2222	1012	1013
	Mo 0 003 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0.0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0.0015			
	NLN 0.0005 0.00025 0.0005	0 00025 0 0005 0 00025 0 00025	0 00025 0 00025 0 0005 0 0001	0 00025 0 00025 0.00025	0 00025 0 00025 0 00025 0 00025	0 60025 0 00025 0 00025 0 00025			
	Mq 0.050 11.78	11 80 11 96 11 64 11 64	11 85 11 83 12 08 11.92	11.92	11 53 11 87 12 02 11.94	5 6 6 6			8333
	L) 0.002 0.002 0.002	0 002 0 002 0 002 0 002	0 003 0 002 0 002 0 003	0 001 0 001 0 001	0 002 0 002 0 003	0 002 0 002 0 003	0 602 0 002 0 002 0.002	0 002 0 002 0 002 0 002	0 002 0 002 0 002
	0 200 0 6 0 6	****	0 0 0 0 0 0 0 0	00 9 00 9	2 0 0 0 8 8 8 9	0000	0000 0000 0000	0000 4448	0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sampler Sampler Sampler Sampler Sampler Sampler Sampler Sampler Col	Fe 0.005 0.000 0.000	0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0	1100	0 000 0 011 0 0 010 0	0 009 0 010 0 010 0 010	0 000 0 007 0 0 15 0 10 0	0 007 0 007 0 007 0 007	0 0 0 0 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7	0 000 0 0 000 0 0 00 0 0 00 0 0 0 0
Sampling A. A. Bas Dia Cal Cal 94:00 02 0210 02005 02005 02010 0701 94:00 055 0003 0211 02005 02010 0701 94:00 055 0003 0211 02005 02005 313 96:00 051 0003 0233 000005 313 96:00 041 0203 0233 000005 313 96:00 041 0203 0233 000005 313 96:00 041 0203 0233 000005 313 96:00 041 0203 0233 000005 313 96:00 041 0203 0233 000005 313 96:00 041 0203 0233 000005 313 96:00 041 0203 0233 000005 313 91:000 041 02033 0233 000005	Cu 0 003 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0018	0 0015 0 0015 0 0015 0 0015	0 0015 0 0015 0 0015 0 0015			
Datimulary Samurakay <	Cr 0 005 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0025 0 0025 0 0025	0 0025 0 0075 0 0075 0 0075	0 0025 0 0025 0 0025 0 0025
Sampleny Sampleny Sampleny A AI Ba 94500 100 0003 0010 0005 0291 94500 055 005 0035 0295 0295 94500 055 005 0035 0295 0295 94500 056 056 0035 0295 0295 94500 061 056 0035 0295 0295 94500 061 063 0035 0295 0295 94500 011 0705 0203 0295 0295 94500 011 0705 0203 0295 0295 94500 011 0705 0203 0295 0295 94500 011 0705 0212 0295 0295 94500 011 0705 0212 0295 0295 910000 011 0705 0212 0295 0295 910000 012 012	Ca 0070 130	22.0	222 222 222 222	32 2 5 2 5 5 2 5	32 8 32 8 32 2	22.5	316 326 326	32.6	32 5 32 6 33 1
Date Linne 0.2 0.10 9.500 0.62 0.010 9.500 0.55 0.03 9.500 0.55 0.03 9.500 0.55 0.03 9.500 0.55 0.03 9.500 0.55 0.03 9.500 0.55 0.03 9.500 0.54 0.03 9.500 0.55 0.03 9.500 0.54 0.03 9.500 0.54 0.03 9.500 0.54 0.03 9.500 0.51 0.03 9.500 0.54 0.03 9.500 0.51 0.03 9.1000 0.51 0.03 9.1000 0.51 0.03 9.1000 0.51 0.03 9.1000 0.51 0.03 9.1000 0.51 0.03 9.1000 0.51 0.03 9.1000 0.51 0.03 9.1050	Be 0.0001 0.00005 0.00006	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0.00005	0 00005 200005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005	0 00005 0 00005 0 00005 0 00005
Stantychny J. Kampelwy J. Kampe	Ba 0 0005 0 297 0 228	0 292 0 289 0 289 0 289	0 297 0 295 0 302 8. 298	0 297 0 298 0 298	0 259 0 298 0 299	0 293 1920 1920 1920	0 292 0 200 1 304	0 263 279 0 294 0 296	0 294 0 294 0 293
Sampleng Sampleng Sampleng Sampleng Sampleng Sampleng Sampleng 95,00 95,00 95,00 95,00 95,00 95,00 95,00 95,00 95,00 10,000 14 15 95,00 10,000 14 15 95,00 10,000 14 15 95,00 10,000 10,000 10,000 11,15,	AI 0 0010 0 005 0 009	0 005 0 0171 0 005 0 005	0 005 0 005 0 0122 0 0122	000 00129 0110	0 005 0 005 0 005 0.005	0 005 0 0161 0 0156 0 0156	0 005 0 005 0 005 0 005	0.005 0.005 0.005 0.005	0 005 0 005 0 005
Statity-Any 5-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-10-00 9-10-00 9-10-00 9-10-00 1115-00 115-00 115-00 115-000	As 0.2 0.56	0.62 0.64	0 65 0 73 0 62 0 67	0 66 0 70 0 68 0 68	0 70 0 72 0 71	0 71 0 71 1 04	0 84 0 86 0 78 0 78	0 35 0 35	0 95 9 9 0 95 9 8 9 9
Statity-Any 5-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-5-00 9-10-00 9-10-00 9-10-00 9-10-00 1115-00 115-00 115-00 115-000	Samphing Tame		00 * 1	1• 15		15 20	13 50		*
81 10 10 10 10 10 10 10 10 10 1	Samplang Dute 9:5:00 9:5:00	00,0,6 00,8,6 00,8,6	00/8/6 00/8/6 00/8/6	00/01/6 00/01/6 00/01/6	10:4/00 10:4/00 10:3/00 10:3/00	09/5/11 00/5/11 00/5/11	12/3/00 12/3/00 12/3/00	00/00/21 00/00/21 00/00/21	1/27/01 1/27/01 1/27/01
No. No. <td>01</td> <td>21</td> <td>2</td> <td>2</td> <td>Ľ</td> <td>, rc</td> <td>Ľ</td> <td>ŗ</td> <td>21</td>	01	21	2	2	Ľ	, rc	Ľ	ŗ	21
	1								
<u>7.</u> 9. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	FA & IR IR	# # # # #	RHHH	R R R R	AT AT AT	RERE	81 81 81 81	RAFE	H H H H

.

References

Alexander, R.B., A.S. Ludtke, K.K. Fitzgerald, and T. L. Schertz, (1996). Data from selected U.S. Geological Survey National Stream Water-Quality Monitoring Networks (WQN) on CD-ROM. U.S. Geological Survey Open-File Report 96-337.

Axtmann, E.V, S.N. Luoma (1991). Large-scale distribution of metal contamination in the fine-grained sediments of the Clark Fork River, Montana, U.S.A. Applied Geochemistry 6: 75-88.

Balogh, S.J., M.L. Meyer, and D.K. Johnson (1998). Transport of Mercury in Three Contrasting River Basins, Environ. Sci. Technol. 32, 456-462.

Bencala, K.E., D.M. McKnight, and G.W. Zellweger (1987). Evaluation of natural tracers in an acidic and metal-rich stream. Water Resour. Res. 23(5): 827-836.

Bencala, K.E., D. M McKnight, and G.W. Zellweger (1990). Characterization of transport in an acidic and metal-rich mountain stream based on a lithium tracer injection and simulations of transient storage, Water Resour. Res. 26: 989-1000.

Benjamin, M.M., and J. O. Leckie (1981). Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. Journal of Colloid Interface Science 79: 209-221.

Benoit, G. (1994). Clean technique measurement of Pb, Ag, and Cd in freshwater: a redeifintion of metal pollution. Environmental Science and Technology 28(11): 1987-1991.

Bhangu, I. and P.H. Whitfield (1997). Seasonal and long-term variations in water quality of the Skeena River at USK. British Columbia. Water Research 31 (9): 2187-2194.

Bird, S.C. (1987). The effect of hydrological factors on trace metal contamination in the river Tawe, South Wales. Environmental Pollution, 45, 87-124.

Bradley, S.B. (1984). Flood effects on the transport of heavy metals, Intern. J. Environmental Studies, 22, 225-230.

Bradley, S.B. and J. Lewis (1982). Transport of heavy metals on suspended sediments under high flow conditions in a mineralised region of Wales. Environ. Poll. 257-267.

Brick, C.M. and J.N. Moore (1996). Diel variation of trace metals in the Upper Clark Fork River, Montana. Environ. Sci. Technol. 30: 1953-1960.

Brimblecombe, P., M. Tranter, P.W. Abrahams, I. Blackwood, T.D. Davies, and C.E. Vincent (1985). Relocation and preferential elution of acidic solute through the

snowpack of a small, remote, high-altitude Scottish catchment. Annals of Glaciology, 7: 141-147.

Broshears, R.E., R.L. Runkel, B.A. Kimball, D.M. McKnight, and K.E. Bencala (1996). Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron, Environ. Sci. Technol. 30: 3016-3024.

Campbell, D.H., J. T. Turk, and N. E. Spahr (1991). Response of Ned Wilson Lake watershed, Colorado, to changes in atmospheric deposition of sulfate. Water Resources Research, 27(8), 2047-2060.

Campbell, D.H., D.W. Clow, G.P. Ingersoll, M. A. Mast, N.E. Spahr, and J.T. Turk, (1995). Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains. Water Resources Research 31(11): 2811-2821.

Carroll, S.A., P.A. O'Day, and G.A. Waychunas (1998). Rock-water interactions controlling zinc, cadmium, and lead concentrations in surface waters and sediments, U.S. Tri-state mining district. 2. Geochemical interpretation, Environ. Sci. Technol. 32, 956-965.

Chapman, B.M., D.R. Jones, and R. F. Jung (1983). Processes controlling metal ion attenuation in acid mine drainage streams, Geochim. Cosmochim. Acta, 47: 1957-1973.

Clow, D.W., and M. A. Mast (1999). Long-term trends in stream water and precipitation chemistry at five headwater basins in the northeastern United States, Water Resources Research, 35(2): 541-554.

Clow, D.W. and J.K. Seuker (2000). Relations between basin characteristics and stream water chemistry in alpine/subalpine basins in Rocky Mountain National Park, Colorado. Water Resources Research, 36(1), 49-61.

Constanz, J. (1998). Interaction between stream temperature, streamflow, and groundwater exchange in alpine streams, Water Resour. Res., 34(7), 1609-1615.

Cossa, D., G.H. Tremblay, and C. Gobeil (1990). Seasonality in iron and manganse concentrations of the St. Lawrence River, Science of the Total Environment, 97/98, 185-1990.

Davis, A., R.L. Olsen, and D.R. Walker (1991). Distribution of metals between water and entrained sediment in streams impacted by acid mine drainage, Clear Creek, Colorado. Applied Geochemistry (6): 333-348.

Davies, T.D., C.E. Vincent, and P. Brimblecomb (1982). Preferential elution of strong acis from a Norwegian ice cap. Nature. 300, 161-163.

Davies, T.D., P.W. Abrahams, M. Tranter, I. Blackwood, P. Bristlecombe, and C.E. Vincent (1984). Black acidic snow in the remote Scottish highlands. Nature. 312, 58-91.

Droppo, I.G. and C. Jaskot (1995). Impact of river transport characteristics on contaminant sampling error and design. Environmental Science and Technology. 29: 161-170.

Edwards, A.M.C. (1973). The variation of dissolved constituents with discharge in some Norfolk Rivers, J. Hydrol., 18: 29-42.

Environmental Protection Agency (EPA), (1991). Methods for the determination of metals in environmental samples (EPA-600/4-91-010), from the Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S.E.P.A., Cincinnati, Ohio.

Environmental Protection Agency (EPA), (2000). Summary of the 1998 Toxic Release Inventory (TRI) data. <u>http://www.epa.gov/tri/index.htm</u>.

Evans, C. and T.D. Davies (1998). Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research 34(1): 129-137.

Ficklin, W.H., G.S. Plumlee, K.S. Smith, and J.B. McHugh (1992). Geochemical classification of mine drainages and natural drainages in mineralized areas, Proceedings of the 7th International Symposium on Water-Rock Interactions.

Filipek, L.H., D. K. Nordstrom, and W. H. Ficklin (1987). Interaction of acid mine drainage with aters and sediments of West Squaw Creek in the West Shasta Mining District, California. Environmental Science and Technology. 21: 388-396.

Forstner, U. and G.T.W. Wittmann (1979). Metal pollution in the aquatic environment. Springer-Verlag: New York, 486 pp.

Fuller, C.C. and J.A. Davis (1989). Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters. Nature, 340: 52-54.

Gibbs, R.J. (1973). Mechanisms of trace metal transport in rivers, Science, 182, 71-73.

Franson, M.A. H. (ed.), (1985). American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Standard methods for the examination of water and wastewater, a) Organic carbon (total), combustion-infrared method, p 507-511, b) Determination of arsenic and selenium by conversion to their hydrides by sodium borohydride reagent and aspiration into an Atomic Absorption Atomizer; p. 165-171.

Gurrieri, J.T., (1998) Distribution of metals in water and sediment and effects on aquatic biota in the upper Stillwater River basin, Montana, J. Geochem. Explor. 64: 83-100.

Harrington, R. and R.C. Bales (1998). Interannual, seasonal, and spatial patterns of meltwater and solute fluxes in a seasonal snowpack, Water Resources Research, 34: 823-831.

Hatch, L.K., J.E. Reuter, and C.R. Goldman (1999). Daily phosphorus variation in a mountain stream. Water Resources Research, 35(12), 3783-3791.

Hawkes, H.E. (1976). The early days of exploration geochemistry. J. Geochem. Explor. 6: 1-11, 1976.

Helgen, S.O. and J.N. Moore (1996). Natural background determination and impact quantification in trace metal-contaminated river sediments. Environ. Sci. Technol. 129-135.

Hem, J.D. (1970). Study and interpretation of the chemical characteristic of natural water. U.S. Geological Survey Water Supply Paper 1473, 363 pp.

Hoffman, S.J. and K. Fletcher (1972). Distribution of copper at the Dansy-Rayfield River Property, South-central British Columbia, Canada, J. Geochem. Explor. 1: 163-180.

Honeyman, B.D. and Santschi, P.H. (1998). Metals in aquatic systems. Environ. Sci. Technol. 22: 862-891.

Hooper, R.P., N. Christophersen, and N.E. Peters (1990). Modelling streamwater chemistry as a mixture of soilwater end-members—an application to the Panola Mountain catchment- Georgia, U.S.A., Journal of Hydrology. 16: 321-343.

Horowitz, A.J., C.R. Dems, K.K. Fitzgerald, T.L. Miller, and D.A, Rickert (1994). U.S. Geological Survey protocol for the collection and processing of surface-water samples for the subsequent determination of inorganic constituents in filtered water. U.S. Geological Survey Open-File Report 94-539.

Horowitz, A.J., K.R. Lum, J.R. Garbarino, G.E.M. Hall, C. Lemieux, and C.R. Demas, (1996). Problems associated with using filtration to define dissolved trace element concntrations in natural water samples. Environmental Science and Technology 30, 954-963.

Hosking, K.F.G. (1970). Problems associated with the application of geochemical methods of exploration in Cornwall, England, in Geochemical Exploration, Proceedings, 3rd International Geochemical Exploration Symposium, Toronto, April 16-18, 1970. Canadian Institute of Mining and Metallurgy.

Hurley, J.P., M. M. Shafer, S.E. Cowell, J.T. Overdier, P.E. Hughes, an D.E. Armstrong (1996). Trace metal assessment of Lake Michigan tributaries using low-lvel techniques, Environmental Science and Technology 30, 2093-2098.

Johannessen, M. and A. Henriksen (1978). Chemistry of snow meltwater changes in concentration during melting. Water Resources Research 14: 615-619.

Johnson, R.A., and J.W. East (1982). Cyclical relationships between river discharge and chemical concentration during flood events. Journal of Hydrology, 57: 93-106.

Kimball, B.A., R. E. Broshears, K.E. Bencala, and D. M. McKnight (1994). Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage, Environ. Sci. Technol.: 28: 2065-2073.

Kimball, B.A., D.M. McKnight, G.A. Wetherbee, and R.A. Harnish (1992). Mechanisms of iron photoreduction in a metal-rich, acidic, stream. Chemical Geology, 96: 227-239.

Leybourne, M.I., W.D. Goodfellow, and D.R. Boyle (1998). Hydrogeochemical, isotopic, and rare earth element evidence for contrasting water-rock interactions at two undisturbed Zn-Pb massive sulphide deposits, Bathurst Mining Camp, N.B., Canada, J. Geochem. Explor. 64: 237-261.

Lucy, J.K. (1996). Hydrologic and geochemical controls on metals partitioning in the vadose zone and shallow ground water zone of a highly-contaminated floodplain near Butte, Montana. M.S. Thesis, University of Montana.

Luoma, S.N. and J. L. Carter (1991). Effects of trace metals on aquatic benthos. In: M.C. Newman and A.Q. McIntosh (eds). Metal Ecotoxicology: Concepts and Applications. Lewis Publishers, Chelsea, Michigan.

Martin, T.D., C.A. Brockhoff, J.T. Creed (1994). Determination of metals and trace metals in water by Ultrasonic Nebulization Inductively Coupled Plasma-Atomic Emission Spectrometry (200.15). Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency.

Marsh, P. and J.W. Pomeroy (1999). Spatial and temporal variations in snowmelt runoff chemistry, Northwest Territories, Canada, Water Resources Research 35: 1559-1567.

McKnight, D. and K.E. Bencala (1988). Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, U.S.A., Arctic and Alpine Research, 20(4), 492-500.

McKnight, D.M. and K.E. Bencala (1990). The chemistry of iron, aluminum, and dissolved organic material in three aciic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes, Water Resources Research, 26(12), 3087-3100.

McKnight, D.M., B.A. Kimball, and K.E. Bencala (1988). Iron photoreduction and oxidation in an acidic mountain stream. Science, 240: 637-640.

Meixner, T., A. Brown, and R.C. Bales (1998). Importance of biogeochemical processes in modeling stream chemistry in two watersheds in the Sierra Nevada, California, Water Resources Research, 34(11), 3121-3133.

Menges, J. L. (1997). Investigation of temporal changes of heavy metal concentrations in sediments and water of the Blackfoot River, Montana. Unpublished M.S. thesis, University of Montana, 163 p.

Mickey, J.W. (1997). Determination of trace constituents for arsenic by hydride generation on the atomic absorption spectrometer. University of Montana Murdock Environmental Biogeochemistry Laboratory.

Miller, G.C., W. B. Lyons, and A. Davis (1996). Understanding the water quality of pit lakes. Environ. Sci. Technol. 30: 118-123.

Montana Department of Health and Environmental Sciences (MDHES) (1994). Montana Water Quality- the 1994 Montana 305 (b) Report with 303 (d) List Attached.

Moore, J.N. (1994). Contaminant mobilization resulting from redox pumping in a metalcontaminated river-reservoir system. In: Environmental Chemistry of Lakes and Reservoirs, pp. 451-471.

Moore, J.N. and S. N. Luoma (1990). Hazardous wastes from large-scale metal extraction, Environ. Sci. Technol. 1279-1284.

Moore, J.N., S.N. Luoma, D. Peters (1991). Downstream effects of mine effluent on an intermontane riparian system, Canadian Journal of Fisheries and Aquatic Sciences 48: 222-232.

Nagorski, S.A., and J. N. Moore (1999). Arsenic mobilization in the hyporheic zone of a contaminated stream. Water Resources Research, 35(1):3441-3450.

Nagorski, S.A., J.A. Shifflett, J.N. Moore, and D.B. Smith (1998). Geochemical baseline studies and relations between water quality and streamflow in the Upper Blackfoot River watershed, Montana: Progress report for July 1997- March 1998. U.S. Geological Survey Open-File Report 98-499, 133 p.

Nagorski, S.A., T.E. McKinnon, J.N. Moore, and D.B. Smith (2000). Geochemical characterization of surface water and streambed sediment of the Blackfoot River, Montana, during low flow conditions, August 16-20, 1998. U.S. Geological Survey Open-File Report 00-003, 59 p.

Nagorski, S.A., J.N. Moore, and D.B. Smith (2001). Geochemical baseline studies and relations between water quality and streamflow in the Upper Blackfoot River watershed, Montana: Data for July 1997- December, 1998. U.S. Geological Survey Open-File Report 01-0059, http://greenwood.cr.usgs.gov/pub/open-file-reports/ofr-01-0059/.

Nimick, D.A. and J.N. Moore (1991). Prediction of water-soluble metal concentrations in fluvially deposited tailings sediments, Upper Clark Fork Valley, Montana, U.S.A. Appl. Geochem. 6: 635-646.

Nordstrom, D.K. and J.W. Ball (1986). The geochemical behavior of aluminum in acidified surface waters, Science 232: 54-56.

Pardee, J.T., Schrader, F.C. (1933). Metalliferous deposits of the greater Helena mining region, Montana, USGS Bulletin 842.

Pfaff, J. D. (1993). Determination of inorganic anions by Ion Chromatography (300.0). EPA methods for determination of inorganic substances in environmental samples. EPA/600/R-93/100.

Pham, M. K, and J. M. Garnier (1998). Distribution of trace elements associated with dissolved compounds ($<0.45\mu m - 1 nm$) in freshwater using coupled (frontal cascade) ultrafiltration and chromatographic separations. Environmental Science and Technology 32(4): 440-449.

Piñol, J., A. Avila, and F. Roda (1992). The seasonal variation of streamwater chemistry in three forested Mediterranean catchments. Journal of Hydrology 140: 119-141.

Plumlee, G.S., K.S. Smith, W.H. Ficklin, and P.H. Briggs (1992). Geological and geochemical controls on the composition of mine drainages and natural drainages in mineralized areas, Proceedings of the 7th International Symposium on Water-Rock Interactions.

Rampe, J.J. and D.D. Runnells (1989). Contamination of water and sediment in a desert stream by metals from an abandoned gold mine and mill, Eureka district, Arizona, U.S.A., Applied Geochemistry 4: 445-454.

Rantz, S.E., and others. (1982). Measurement and computation of streamflow: volume 1. Measurement of stage and discharge. U.S. Geological Survey Water-Supply Paper 2175, p. 138.

Rice, K.C., and O.P. Bricker (1995). Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the mid-Atlantic region of the eastern USA, Journal of Hydrology 170: 137-158.

Robertson, D.M. and E.D. Roerish (1999). Influence of various water quality sampling strategies on load estimates for small streams. Water Resources Research, 35: 3747-

3759.

Rose, A.W., Hawkes, H.E., and J.S. Webb (1979). Geochemistry of mineral exploration, second edition, Academic Press, London.

Ross, J.M. and R.M. Sherrell (1999). The role of colloids in trace metal transport and adsorption behavior in New Jersey Pinelands streams, Limnology and Oceanography 44: 1019-1034.

Runnells, D.D., Sherpherd, T.A., and E. E. Angino (1992). Metals in water: Determining natural background concentrations in mineralized areas, Environ. Sci. Technol. 26: 23: 16-2323.

Sanden, P., S. Karlsson, A. Duker, A. Ledin, and L. Lundman (1997). Variations in hydrochemistry, trace metal concentration and transport during a rain storm event in a small catchment, J. Geochem. Explor. 58, 145-155.

Schafer and Associates (1994). Final surface water baseline characterization report for the Seven-Up Pete Joint Venture McDonald Project. Bozeman, Montana.

Schemel, L.E., B.A. Kimball, and K.E. Bencala (2000). Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado, Applied Geochemistry 15: 1003-1018.

Schemenauer, R.S., P.W. Summers, H.A. Wiebe, and K.G. Anlauf (1985). Spatial and temporal variability of surface snowfall and snowpack chemistry in central Ontario. Annals of Glaciology, 7: 185-190.

Schmitt, H.R., E.M. Cameron, G.E.M. Hall, and J. Vaive (1993). Mobilization of gold into lake sediments from acid and alkaline mineralized environments in the southern Canadian Shield: Gold in lake sediments and natural waters. J. Geochem. Explor. 48: 329-358.

Shafer, M.M., J.T. Overdier, J.P. Hurley, D. Armstrong, and D. Webb (1997). The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (U.S.A.). Chemical Geology, 136, 71-97.

Shelton, L.R. (1994). Field guide for collecting and processing stream-water samples for the national Water Quality Assessment Program. U.S. Geological Survey Open-File Report 94-455.

Sherrell, R.M, and J.M. Ross (1999). Temporal variability of trace metals in New Jersey Pinelands streams: Relationships to discharge and pH, Geochimica et Cosmochimica Acta, 63(19/20), 3321-3336.

Shiller, A.M. (1997). Dissolved trace elements in the Mississippi River: Seasonal interannual, and decadal variability, Geochimica et Cosmochimica Acta 61: 4321-4330.

Shiller, A.M. and E.A. Boyle (1987). Variability of dissolved trace metals in the Mississippi River, Geochim. et Cosmochim. Acta, 51, 3273-3277.

Shotyk, W. (1998). Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews, 25, 95-176.

Smith, K.S., W.H. Ficklin, G.S. Plumlee, and A.L. Meier (1992). Metal and arsenic partitioning between water and suspended sediment at mine-drainage sites in diverse geologic settings, Water-Rock Interaction, Kharaka and Maest (Ed.s); Proceedings of the 7th International Symposium on Water-Rock Interactions.

Sokal, R.R. and F.J. Rohlf. (1995). Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Company, New York, pp. 432-433.

Sokolov, S. and K. P. Black (1996). Modelling the time evolution of water-quality parameters in a river: Yarra River, Australia. Journal of Hydrology 178: 311-335.

Soulsby, C. (1995). Contrasts in storm event hydrochemistry in an acidic afforested catchment in upland Wales. Journal of Hydrology. 170, 159-179.

Spence, L.E. (1975). Upper Blackfoot River Study: A preliminary inventory of aquatic and wildlife resources, Montana Department of Fish and Game, Environment and Information Division in cooperation with the Anaconda Company. 86 pp.

Stoddard, J.L. (1987). Alkalinity dynamics in an unacidified alpine lake, Sierra Nevada, California, Limnology and Oceanography 32, 825-839.

Stottlemyer, R. and D. Toczydlowski, (1990). Pattern of solute movement from snow into an upper Michigan stream. Canadian Journal of Fisheries and Aquatic Sciences 47, 290-300.

Stottlemyer, R. and C.A. Troendle (1992). Nutrient concentration patterns in streams draining alpine and subalpine catchments, Fraser Experimental Forest, Colorado. Journal of Hydrology. 140: 179-208.

Stottlemyer, R., C.A. Troendle, and D. Markowitz (1997). Change in snowpack, soil water, and streamwater chemistry with elevation during 1990, Fraser Experimental Forest, Colorado. Journal of Hydrology, 195: 14-136.

Struempler, A.W. (1973). Adsorption characteristics of silver, lead, cadmium, zinc, and nickel on borosilicate glass, polyethylene, an polypropoylene container surfaces. Analytical Chemistry 45(13), 2251-2254.

Stumm, W., and J. J. Morgan (1996). Aquatic Chemistry. Third Edition, John Wiley and Sons, Inc.

Taylor, J.R. (1982). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. 270 pp.

Taylor, H.E. and A.M. Shiller (1995). Mississippi River methods comparison study: Implications for water quality monitoring of dissolved trace elements. Environmental Science and Technology 29(5): 1313-1317.

Tsiouris, S., C.E. Vincent, T.D. Davies, and P. Brimblecombe (1985). The elution of ions through field and laboratory snowpacks. Annals of Glaciology, 7, 196-201.

United States Geological Survey (USGS) (1999). Water resources of Montana homepage, World wide web http://montana.usgs.gov/.

USGS (2001). Hydrographs at Blackfoot at Bonner. http://montana.usgs.gov/rt-cgi/gen_stn_pg?station=12340000.

USGS (2001). National Water-Quality Assessment Program (NAWQA) Publications. http://water.usgs.gov/nawqa/pubsmail.html

Van der Weijden, C.H. and J.J. Middelburg (1989). Hydrogeochemistry of the river Rhine: Long term and seasonal variability, elemental budgets, base levels, and pollution. Wat. Res. 23(10), 1247-1266.

Western Region Climate Data Center (WRCDC) (1999). Personal communication.

Western Region Climate Data Center (WRCDC) (2001). Internet web site http://www.wrcc.dri.edu/wrccmssn.html.

Wetherbee, G.A. and B.A. Kimball (1991). Use of environmental variables to estimate metal loads in streams, upper Arkansas River basin, Colorado. In: U.S. Geological Survey Toxic Substances Hydrology Program; Proceedings of the technical meeting, Monterey, CA, March 1-15, 1991; G.E. Mallard and D.A. Aronson, (Eds). Water Resources Investigations Report 91-4034, pp. 398-406.

Whitfield, P.H. and M.J.R.Clark (1982). Patterns of water quality in the Rocky Mountains of British Columbia. In: Science and the management of protected areas. J.H.M. Willison, S. Bondrup-Nielsen, C. Drysdale, T.B. Herman, N.W.P. Munro, and T.L. Pollock (eds.). Elsevier Press, pp. 391-409.

Whitfield, P.H. and H. Schreier (1981). Hysteresis relationships between discharge and water chemistry in the Fraser River basin, British Columbia. Limnology and Oceanography 26(6), 1179-1182.

Whitfield, P.H. and W.G. Whitley (1986). Water quality-discharge relationships in the Yukon River basin, Canada. In *Cold Regions Hydrology Symposium*. American Water Resources Association. pp. 149-156.

Whitfield, P.H., N. Rousseau, and E. Michnowsky (1993). Rainfall induced changes in chemistry of a British Columbia coastal stream. Northwest Science, 67(1), 1-6.

Williams, G.P. (1989). Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology, 111: 89-106.

Williams, M.W., A.D. Brown, and J.M. Melack (1993). Geochemical and hyrologic controls on the composition of surface water in a high-elevation basin, Sierra Nevada, California. Limnology and Oceanography 38: 775-797.

Windom, H.L., J.T. Byrd, G. Smith, and F. Huan (1991). Inadequacy of NASQAN data for assessing trace metal trends in the nation's rivers. Environmental Science and Technology 25(6): 1137-1142.