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Nagorski, Sonia A. Ph.D. May, 2001 Geology

Spatial and temporal variations in the geochemistry of several western Montana 
streams and rivers. /  /
Director: Johnnie N. Moore

Clean sampling methods were used to examine the solute (operationally defined as <0.2 
(im) and total recoverable geochemistry o f the Blackfoot River and Clark Fork River 
watersheds. The purpose o f the first study, conducted in the upper Blackfoot River 
watershed near a proposed gold mine site, was to measure pre-mining water quality 
conditions and to characterize the physical relationships between surface water and 
ground water. Other than for the major elements, most solutes were not well correlated 
with streamflow. The chemical variations appeared to be a product o f the complex 
interactions among the timing and magnitude o f meltwater and rainwater contributions, 
shifting proportions o f the ground water component of the streamflow, and contaminant 
mobilization in the headwaters o f the Blackfoot.
The second study measured both the solute phase and bed sediment in a one-time 

sampling event o f the entire Blackfoot River watershed. The highest metal 
concentrations were located in the vicinity o f the historic mining complex in the 
headwaters, and these concentrations declined sharply as tributaries joined the mainstem. 
Comparison o f sediment samples with those collected in 1989 and 1995 do not show 
evidence for basin-scale long-term changes, despite remediation work begun in 1993.
The third project investigated the geochemical responses of the solute and suspended 

phases to streamflow on bi-hourly, daily, and seasonal timescales. The study was 
conducted on two rivers and two mountain streams in the Blackfoot and Clark Fork River 
basins. Generally, the trace element (Al, As, Cu, Fe, Mn, and Zn) patterns were more 
complicated than those o f the major elements (e.g. Ca, K, Mg, Na), which were better 
correlated with discharge. Suspended sediment, total recoverable trace metals, and some 
dissolved elements exhibited short-term flushing effects at the onset o f high flow 
conditions associated with spring runoff and a late summer precipitation event. Diel 
cycling was observed for pH, dissolved oxygen, water temperature, dissolved inorganic 
carbon, total suspended sediment, and total recoverable metals at some or all sites. For 
many parameters, short-term variations were small compared with long-term variations. 
However, the short-term variability o f some parameters covered large portions of or 
exceeded the seasonal variability. These results have important implications for the 
future design o f studies that aim to monitor and characterize the surface water 
geochemistry o f contaminated and pristine watersheds.
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Chapter 1: Introduction

The mineral extraction industry is a major anthropogenic source o f metal and 

metalloid contamination to waters, soils, and biota. At last report, the metal mining 

industry was the largest source o f toxic releases to the environment in the United States, 

accounting for 3.5 billion pounds of releases in 1998 alone (EPA, 2000). Some o f the 

consequences of mineral extraction include surface water and ground water quality 

degradation, aquatic benthos toxification, hydrological and landscape alterations, and air 

pollution (Honeyman and Santschi, 1988; Moore and Luoma, 1990; Luoma and Carter, 

1991; Helgen and Moore, 1996; EPA, 2000). The environmental impacts o f resource 

extraction have become important areas of study in the fields o f geochemistry, hydrology 

and biology.

Due to rising human populations and growing demands for the world’s natural 

resources, environmental problems associated with mining and ore processing w ill draw 

increasing regulatory and scientific focus in the future. Though widespread and o f great 

concern to human and environmental health, the impacts by mining activities on water 

quality have not been well characterized and quantified. Additionally, very limited work 

has been done to characterize the aqueous geochemistry o f pristine systems to which 

impacted areas need to be compared.

The research to date is so limited largely because the science o f freshwater 

aqueous geochemistry is a relatively young field. Few current and historic mines have 

adequate records o f pre-mining water quality conditions. Historically, pre-impact 

characterization o f watersheds was not required, and early mineral prospectors found 

metal concentrations in surface water to be of limited use in locating ore deposits due to 

their fluctuating, low, or undetectable concentrations (Hosking, 1970; Hoffman and 

Fletcher, 1972; Rose et al., 1979; Runnells et al., 1992). At present, there is little 

consistency in the sampling designs of water quality studies. Sample processing and 

analytical methods are continually being revised and are typically incompatible among 

datasets. In the past decade, several studies have effectively invalidated much o f trace 

metal work done for much of the last century due to the discovery o f major 

contamination problems associated with standard sampling protocols (Benoit, 1994;

1
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Windom et al., 1991; Horowitz et al., 1994; Taylor and Shiller, 1995). These studies 

have demonstrated that by following meticulous “ clean” (or “ ultra-clean” ) sampling,
O

processing, and analytical techniques, trace metal contamination o f water samples can be 

drastically reduced. The conversion to the use o f these new techniques is ongoing, but 

numerous papers are still being published based on data collected using the problematic 

older methods.

Based on both conventional and clean data, scientists still have a poor 

understanding o f the spatial distribution and temporal dynamics o f the geochemistry of 

trace metals in surface waters. Most studies examine either spatial or temporal aspects of 

trace metal geochemistry, but not both, and many o f these studies focus only on heavily 

contaminated areas. In particular, a relatively large amount o f work has been done on 

defining the spatial geochemical trends in streams impacted by acid mine drainage (e.g. 

Filipek et al., 1987; Moore et al., 1991; Kimball et al., 1994; Schemel et al., 2000). Few 

such studies have incorporated a temporal dimension to their research. Additionally, 

there is a lack o f research examining the surface water geochemistry at similarly tight 

spatial and temporal resolutions in uncontaminated systems.

The geochemistry o f rivers can vary within short distances due to both physical 

and chemical dynamics in the watershed. Microbially-mediated, redox and pH- 

dependent dissolution- precipitation, and sorption-desorption reactions are thought to be 

the major controls on partitioning of metals and metalloids among the dissolved, 

colloidal, suspended sediment, and bed sediment fractions (Nordstrom and Ball, 1986; 

Filipek et al., 1987; Rampe and Runnells, 1989; McKnight and Bencala, 1990; Moore et 

al., 1991; Smith et al., 1992; Broshears et al., 1996). Metals transported away from a 

source become physically diluted by tributaries and ground water, while changing 

chemical conditions continue to rearrange the partitioning between the water column and 

particulate phases [Chapman et al., 1983; Bencala et al., 1990; Davis et al., 1991;

Kimball et al., 1994; Gurrieri, 1998].

In pristine areas, the major controls on the physical and chemical changes to the 

stream geochemistry include variable contributions from soil zones and vegetation, 

interactions with groundwater and hyporheic zones, atmospheric deposition o f acidic 

anions, the natural buffering capacity o f the local geology, differential weathering rates

i
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within the basin, and the organic carbon concentration in the stream (Campbell et al., 

1991; Pinol et al., 1992; Shafer et al., 1997; Meixneret al., 1998; Clow et al., 2000). In a 

stream impacted by acid mine drainage, additional factors influence the dispersion o f the 

mining contaminants in the watershed. These include the type, size, and grade o f the 

mineral deposit, the mining and ore processing methods, the grain size o f the 

contaminated sediments in the system, the availability o f sorption surfaces in the water 

column, and interactions between the metals and sulfate released from the mine drainage 

sources (Ficklin et al., 1992; Plumlee et al., 1992, Helgen and Moore, 1996; Schemel et 

al., 2000).

While the study o f seasonal variations in the major element geochemistry of 

freshwater systems has received a moderate amount o f research attention, few studies 

have included trace metals in their analyses. Even fewer have used clean methods to 

collect those data. From the available data, little agreement has emerged in terms o f the 

temporal patterns o f trace metal concentrations in both contaminated and pristine streams 

and rivers. In contrast, numerous papers have reported generally consistent inverse 

relationships between discharge and major ion concentn-tions (e.g. Hem, 1970; Cossa, 

1990; Pinol et al., 1992; Williams et al., 1993).

One type o f temporal variation that has increasingly been recognized is that o f 

hysteresis patterns. Hysteresis describes a loop pattern in streamflow vs. concentration 

plots in which concentrations differ along the rising limb from the falling limb o f a pulse 

of increased streamflow (Whitfield and Schreier, 1981; Johnson and East, 1982; 

Stottlemyer and Troendle, 1992; Evans and Davies, 1998.) Yet only a handful o f papers 

have described hysteresis patterns in dissolved or total trace metals (e.g. Whitfield and 

Clark, 1982; Weatherbee and Kimball, 1991 Sokolov and Black, 1996; Bhangu and 

Whitfield, 1997). Because trace metals are more reactive in surface waters than are major 

ions, they are more susceptible to changing conditions in their source areas and to in- 

stream chemical dynamics (Van der Wcijden et al., 1989; Shiller, 1997, Sherrel and Ross, 

1999). Hence, their hysteresis patterns are less predictable and more difficult to interpret 

than those for major ions such as Ca, Mg, and Na.

An adequate collection o f reliable water quality research is clearly lacking, 

despite the vast environmental and economic implications. There are many unanswered

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



questions regarding the spatial and temporal variation o f surface water geochemistry that 

are o f scientific, environmental health, and regulatory importance. In this dissertation I 

try to answer some o f these questions, at least in terms o f how they relate to the Blackfoot 

River and Clark Fork River watersheds in western Montana.

In Chapter 2, I present the results o f a temporal and spatial investigation o f the 

geochemistry o f a several kilometer-long stretch of the contaminated upper Blackfoot 

River and one of its pristine tributaries, the Landers Fork. Studying the seasonal variation 

at sites spaced at approximately I km intervals, I found a large degree o f physical and 

chemical variation among sites, over time, and between streams. I discuss hysteresis 

patterns which emerged for many of the major elements and try to explain some of the 

differences between the responses o f trace elements and major elements to high flow 

events. The Blackfoot River and Landers Fork eome together at the site o f a proposed 

large scale open pit gold mine, and it is for this reason that they were chosen for study by 

the Mineral Resources Program (MRP) of the U.S. Geological Survey (USGS). This 

project is pan of a larger scale effort by the MRP to investigate geochemical baselines in 

mineralized, unmined watersheds. The results o f this project have been previously 

reported in the form of two USGS Open File Reports: Nagorski et al. (1998) and 

Nagorski et al. (2001).

I present a synoptic study of the water and sediment geochemistry o f the 

Blackfoot River basin in Chapter 3. The purpose of this study was to put into context the 

geochemistry o f the study area in chapter 2 into the Blackfoot River basin as a whole, and 

to characterize the downstream extent of metals contamination originating from the 

historic Heddleston Mining District in the headwaters. I examine the role of tributaries 

in influencing the geochemistry o f the mainstem, and I identify differences between the 

water and sediment dispersion patterns for metals o f environmental concern. In addition,

I compare streambed sediment data from the watershed collected by Moore et al. (1991) 

in 1989 and Menges (1997) in 1995 with those I collected in 1998. While the historic 

mining district has been undergoing remediation since 1993,1 found almost no 

differences among metal concentrations in 1989, 1995, and 1998. The data from this 

research have been published in a U.S.G.S. Open File Report as well (Nagorski et al., 

2000).

4
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In Chapter 4 ,1 report the results o f a twelve month study on the spatial and 

temporal variations of the inorganic geochemistry at four sites in western Montana. For 

this study, I sampled two large rivers and two high elevation streams; two o f which were 

impacted by mining and two not. The smaller streams were the Landers Fork (pristine) 

and upper Blackfoot River (mining-impacted), which were the focus of the study in 

chapter 2. Hence, another year o f data at two of the sites in the chapter 2 project was 

added, allowing for multiple year examination of temporal patterns in the watersheds.

The two large river sites were the Clark Fork River near Drummond (mining-impacted) 

and the lower Blackfoot River near Bonner (minimally-impacted). However, unlike the 

projects in chapters 2 and 3, in this study I analyzed the total recoverable phase in 

addition to the dissolved phase of the water samples. Because water quality standards 

are set for the total recoverable content in waters, I monitored the water quality 

according to aquatic life regulations. In addition to examining the seasonal variations of 

the geochemistry o f these rivers, I conducted two 24 hour studies at each site in the 

summer, in which I took samples every 2 hours. The purpose of this portion o f the 

project was to compare the diurnal variation to the seasonal variation. A third type of 

temporal scale examined was that o f daily sampling for almost two weeks following the 

first significant rainfall in September at the end o f the summer drought. From these data, 

1 found that short term variations in some parameters captured much of the variation 

found on much longer time scales. I also report that major ions behaved differently from 

the trace metals, that clear hysteresis patterns were present for many constituents, and 

that streamflow values alone were inadequate predictors of the surface water 

geochemistry in those systems.

The findings from these projects underscore the superiority o f the newly 

developed clean techniques for sampling water, demonstrate that some o f the greatest 

geochemical changes of a water year may occur during the early stages o f runoff, and 

show that the widely held generalization regarding the inverse relationship between 

streamflow and solute concentrations is largely invalid in these rivers. The results should 

have significant implications for the sampling design o f future monitoring studies and 

w ill contribute to the understanding of the chemical dynamics of surface waters in 

western Montana.
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Chapter 2: 
Seasonal variations in the solute geochemistry of the upper 

Blackfoot River watershed. Montana.

Abstract

Clean sampling methods were used to study the solute (operationally defined as 
<0.2 jam) geochemistry o f mining impacted and pristine surface waters in the upper 
Blackfoot watershed. Five sites along the Upper Blackfoot River and four sites along the 
Landers Fork were sampled, some more regularly than others, over the course o f 18 
months in 1997-1998. Samples were also collected from a tributary to the Blackfoot 
(Hogum Creek) and a tributary to the Landers Fork (Copper Creek). The Upper Blackfoot 
River, which drains historic mines ca. 20 km upstream of the study area, had higher trace 
metal concentrations than did the Landers Fork, which drains the pristine Scapegoat 
Wilderness area. In both rivers, many of the major elements show a seasonal hysteresis 
effect in which the concentrations were lower on the rising limb of the hydrograph than on 
the falling limb. However, elements such as As, Cu, Fe, Mn, S, and Zn exhibited more 
irregular temporal patterns, which included periods of almost no response to changes in 
streamflow, concentration elevation following a summer storm, concentration surges at the 
start of snowmell in the spring, and/or elevation throughout the course o f spring runoff. 
Streamflow values alone were poor predictors o f the solute concentrations in the streams, 
and complex interactions between the timing and magnitude of streamflow appeared to 
account for the geochemical trends in the study area.

Introduction

In order to characterize baseline conditions in pristine watersheds and to obtain 

accurate data in contaminated watersheds, ultra-clean sampling, processing, and analytical 

methods are necessary (Benoit, 1994; Horowitz et al., 1994). In the past decade, the 

importance o f these methods has been highlighted by studies that cast doubt on the validity 

of much o f the trace metal data collected using standard protocols (Windom et al., 1991; 

Taylor and Shiller, 1995). Still, only a small number of published research to date has 

reported on both spatial and temporal trends within river basins using clean sampling 

techniques (e.g. Hurley et al., 1996; Shafer et al., 1997; Sherrell and Ross, 1999).
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Although major USGS water quality programs (NAWQA and NASQAN) have adopted 

clean sampling and analytical methods (Horowitz et al., 1994; Shelton, 1994; Alexander et 

al. 1996), they have not focussed on defining geochemical trends at dense spatial and 

temporal resolutions within individual watersheds.

Based on both clean and conventional studies, little is known about seasonal 

variations o f the inorganic geochemistry o f freshwater systems. Storm-scale or seasonal- 

scale hysteresis, defined as a loop pattern in plots o f concentration vs. discharge caused by 

elemental concentrations differing along the falling limb from the rising limb of a 

hydrograph, have been reported for decades (e.g. Johnson and East, 1982; Wetherbee and 

Kimball, 1991; Pinol et al., 1992; Campbell et al., 1995; Droppo and Jaskot, 1995;

Sokolov and Black, 1996; Bhangu and Whitfield, 1997). However, the studies present 

little consistency in the hysteresis patterns and very few provide data on trace elements. 

Identifying hysteresis cycles is important because their presence violates the assumption 

that the geochemical variation in rivers is generally based on an inverse, linear relationship 

between streamflow and chemical concentration (Hem, 1970; Whitfield and Schreier,

1981). Hence, the identification of hysteresis cycles is critical for the accurate monitoring 

o f trace element loads in surface waters. Additionally, hysteresis patterns can help identify 

which geochemically distinct sources and processes in the watershed are dominating stream 

chemistry at different times (Hooper et al., 1990; Evans and Davies, 1998).

Much o f the hysteresis research has come from regions where seasonal streamflow 

variations are not dominated by the springtime melting o f snowpacks, but by rain events. 

Such research has generally documented hysteresis patterns with clockwise rotations 

(concentrations higher along the rising limb than along the falling limb, Figure la). This 

clockwise pattern is typically attributed to flushing effects at the onset of higher flow 

conditions, when precipitation in a catchment leads to the displacement of ionically 

concentrated soil and ground water into the stream channel (Pinol et al, 1992; Sokolov and 

Black, 1996).
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In the few studies coming from cold, mountainous regions in North America 

(Colorado Rocky Mountains; Sierra Nevadas, and Canada), both clockwise and 

counterclockwise hysteresis (Figure lb) rotations have been reported (e.g. Whitfield and 

Whitley, 1986; Campbell et al., 1995; Bhangu and Whitfield, 1997). Clockwise hysteresis 

patterns in snowmelt-dominated watersheds have been explained by ionic pulses from the 

snow itself at the start o f the melt period that create surges in stream water ionic 

concentrations (Williams et al., 1993; Campbell et al., 1995) and/ or a piston-effect by 

meltwater which increases the soil and groundwater contribution to streamflow 

(Stottlemyer and Toczydlowski, 1990). Counter-clockwise rotation can occur in high 

elevation watersheds because when thawed in the spring, the snowpack produces overland 

flow of relatively unaltered meltwater which produces dilute stream water conditions during 

early runoff (Stoddard, 1987; Stottlemyer and Troendle, 1992; Bhangu and Whitfield, 

1997). Following the initial, usually rapid influx of meltwater, soil water and ground 

water gain larger roles in contributing to flow, as more snowmclt travels through the 

subsurface before entering the channel.

Almost no work known to the authors has been done on investigating geochemical 

seasonal hysteresis in the Rocky Mountains, a region where much of the annual streamflow 

occurs during the spring snowmelt (Campbell et al., 1995). In this report we present the 

results o f a temporal and spatial investigation of the geochemistry o f a several kilometer- 

long stretch of the upper Blackfoot River and the Landers Fork, which are moderately high 

elevation streams in western Montana (Figure 2). The purpose of the project is to document 

seasonal geochemical trends along short reaches of a mining-impacted river and its 

uncontaminated tributary using clean sampling and processing methods. By identifying 

hysteresis patterns, we establish the usefulness of streamflow as a valid predictor of 

surface water geochemistry in the two rivers. By comparing and contrasting the hysteresis 

patterns, we make inferences about the varying sources driving the geochemical seasonal 

variability in the contrasting drainages.
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Several historic mines, which have been linked to water and bed sediment 

contamination in the watershed, are located in the headwaters o f the Blackfoot River, 20 

km upstream of this project’s study area (Moore et al., 1991; Menges, 1997; Nagorski et 

al., 2000). In contrast, the Landers Fork largely drains a pristine area, a portion o f the 

rugged Scapegoat Wilderness area. The upper Blackfoot River and the Landers Fork flow 

adjacent to an undeveloped ore deposit proposed for open-pit gold mining (the McDonald 

Gold Project area) before joining together to the southwest of the deposit (Figure 2). The 

elevation at the sampling sites is ca. 1400 m, and the streams drain areas with elevations of 

up to 2400 m; therefore, the annual hydrologic variability is dominated by snowmelt 

dynamics in the spring and early summer. Downstream of the study area, the Blackfoot 

River flows for another 186 km before joining the Clark Fork River, a major tributary to 

the Columbia River. The complete dataset from this project has been documented in two 

USGS Open File Reports (Nagorski et al., 1998 and Nagorski et al., 2001). The first 

Open File Report (OFR) contains data collected from July, 1997 until March, 1998, while 

the second focuses on data collected between April and December, 1998.

Methods

1. Sampling locations and frequencies:

We selected sites upstream, adjacent to, and downstream of the proposed mine area 

(Figure 2). The sites were spaced as evenly as possible, considering access limitations in 

the area, covering approximately 7 km of each river. Between July, 1997, and August, 

1998 we sampled at four sites along the Landers Fork (LA, LB, LC, and LD), three sites 

along the Blackfoot River (BH, BB, and BC), one site at Copper Creek (C) and one at 

Hogum Creek (HC) 6 to 13 times (Figure 2). We continued sampling at two of the Landers 

Fork sites (LB and LC) and two of the Blackfoot River sites (BB and BC) monthly through 

December, 1998 (although sites LB and BC could not be accessed due to heavy snow in 

December, 1998). An additional two sites (sites BA and BD) were sampled only from
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July to September, 1997. We collected samples of seep water emerging from the 

streambanks near sites LB and LC when possible—in 1/98 and 4/98 near LB, and in 

11/97, 1/98, 3/98,4/98, 10/98, 11/98, and 12/98 at site LC. During the other times, the 

seeps near LB were not accessed and the seeps at LC were submerged by channel flow.

2. Streamflow measurement:

We measured streamflow at each sampling site using a Price AA current meter 

connected to an Aqua Calc 5000 calculator (Rickly Hydrological Co.) according to standard 

USGS protocol (Rantz et al. 1982). During the majority o f the sampling events, we 

measured streamflow twice at each site in order to define the measurement precision. 

Replicate measurements at sites with less than 142 L/s, between 142-991 L/s, and >991 L/s 

were within 14%, 9%, and 7%, respectively. At sites where we took only one streamflow 

measurement, the error assigned to the measurement was the maximum precision error 

found in the appropriate streamflow bracket.

3. Water sampling

Two people were present for each sampling event. While one person measured 

streamflow, the other took measurements o f pH, dissolved oxygen (D.O.), conductivity, 

and air and water temperature in situ, using an Orion model 230A pH meter, an Orion 

model 820 dissolved oxygen meter, a Hach Conductivity/TDS meter, and aBarnant 100 

Thermocouple Thermometer, respectively. The pH and D.O. meter were calibrated at least 

once per day, and their calibrations were checked and usually redone at each sampling site.

We used clean sampling and processing methods in order to minimize the chances 

of contaminating the samples. Each sample bottle was stored in double zip-close bags, 

from which it was removed only moments before sampling. The sampler contacted each 

bottle wearing new latex or nitrile gloves. With the help o f the other person, the sampler 

wearing the clean gloves contacted nothing but the sample bottle and the inner storage bag.
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After rinsing the sample bottle with one volume of stream water, the sampler filled each 

bottle by width and depth integrating over an area upstream of where we had disturbed the 

site by measuring streamflow and the other in situ parameters and took three samples per 

site. In addition, we always collected samples upstream o f bridges in order to lim it 

additional sources of contamination. We immediately returned the sample bottles to their 

zipped double bags and stored them on ice until return to the laboratory.

We extensively pre-cleaned all collection materials (bottles, syringes, etc.) that came 

into contact with the water samples. One exception to this was the amber glass bottles used 

for anion and carbon samples; these bottles were washed only by repeated rinsing with 

M illi-Q  water. A ll other materials were made of LDPE or HDPE plastic or teflon. Their 

cleaning procedure consisted o f a regular wash with warm water and soap, several rinses in 

deionized water, soaking in 6N HC1 for 2 hours, three rinses in M illi-Q  deionized water, 

soaking in a 1 % trace-metal grade HNO3 bath for 24 hours, another three rinses in M illi- 

Q, and drying and storing into clean plastic bags under a Class 100 laminar How hood. At 

least one field blank was carried through the acid washing stage, transport into the field and 

exposure to the ambient air, filtration, preservation, and analysis for each sampling event.

4. Lab Methods

We removed the samples from their double bags and filtered them under a Class 

100 laminar flow hood at the University o f Montana Murdock Environmental 

Biogeochemistry Laboratory within 30 hours of collection. Studies have shown that 

standard methods o f field filtration can result in high risks of introduction o f trace metal 

contamination into bottles, and that lab filtration, even i f  not done immediately, does not 

cause significant sorption onto sample bottles prior to filtration (Struempler, 1973; Benoit, 

1994; Taylor and Shiller, 1995). In addition, we conducted an experiment for this project 

to test whether sorption onto bottles before filtration was a problem with these samples. 

Five replicate samples taken from the Blackfoot River were stored on ice for 2, 12,41, 65,
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and 160 hours before being filtered for analysis. Results show that there was no 

measurable change in elemental concentrations for most constituents over the 160 hours. 

The only exceptions were Fe and Mn, whose concentration dropped significantly after 65 

hours, a time period longer than the holding times used in this project.

We wore clean nitrile or latex gloves whenever handling the sample bottles and any 

other sample storage or processing materials. We filtered the samples through 0.2 pm 

syringe filters with glass prefilters (Gelman Sciences Serum Acrodiscs). At least 50 mL of 

sample material was used to rinse the syringe, filter, and bottle and to reduce the effective 

pore size (and as a result, the passage of colloidal material) of the filters (Taylor and 

Shiller, 1995; Horowitz et al., 1996). Following the purging by the 50 mL of sample,we 

filled a 60 mL amber glass bottle with filtered sample for the purposes o f carbon and anion 

analysis. Finally, we filled a 125 mL plastic bottle with filtered sample material for cation 

and arsenic analysis, still using the same filter. We stored the amber bottles in a 4°C 

refrigerator before analysis, whereas we acidified the samples in the plastic bottles to pH<2 

with ultrapure, double distilled from quartz Optima (FisherScientific) HC1.

We used a Thermo Jarrel-Ash ICP (IRIS) with ultrasonic nebulization (Cetac, U- 

5000AT+) to measure trace element and major cation concentrations in the water samples 

according to EPA Method 200.15 (Martin et al., 1994). This method was modified slightly 

in that we did not add nitric acid or hydrogen peroxide to the samples. Nitric acid was 

previously determined by the laboratory not to improve analytical performance, and 

hydrogen peroxide was not necessary because arsenic was not being analyzed by ICAPES.

Using a Shimadzu Carbon analyzer, we measured inorganic carbon concentrations 

within one week o f sample collection according to Standard Method 505A (Franson, 

1985a). However, due to technical problems with the Shimadzu Carbon analyzer in the 

summer and fall o f 1998, we were unable to analyze all samples collected in that time 

period for inorganic carbon.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Arsenic analysis was done using atomic absorption spectroscopy with hydride 

generation (HGAAS) according to Standard Method 303A (Franson, 1985b). This method 

was modified by the Murdock Environmental Biogeochemistry Laboratory to optimize 

analytical performace (Mickey, written communication, 1997). The modifications 

consisted of adding KI and HC1 to the samples and standards to achieve final 

concentrations o f 2% KI and 1 M HC1 and of running solutions o f 0.35% NaBFU 

(stabilized with 0.5% NaOH) and 6N HC1 through the hydride generation during analysis.

5. Quality Assurance/ Quality Control

We conducted sample analysis according to a strict quality assurance/ quality 

control program. We calibrated each instrument at the start o f each day and checked for 

accuracy and precision with the analysis of every 10 samples. Accuracy was measured 

through the analysis o f internal and external standards, spikes, and blanks. Precision was 

evaluated by running replicate samples and standards within individual and over multiple 

analytical events. The practical quantification limit (PQL) was determined as the threshold 

at which a sample can be reproduced within a maximum variability o f 30% (Table 1).

Six different external standards were analyzed 47 times on the HGAAS with the 

arsenic samples, and each measured within the reported acceptable range. On the ICP, 

three types o f USGS standards (USGS T-107, USGS T-143, and USGS T-145) were run 

a total o f 150 times during sample analyses, and the average measured concentrations o f all 

elements fell within the reported acceptable range except for Sr, which measured up to 4% 

low on all three standards, and Ag, which was 12% high on USGS T-143. The mean 

percent difference between known and measured values o f internal standards measured on 

the HGAAS, and carbon analyzer was less than 7.1%. On average, sample duplicates run 

on all instruments were less than 8% different from one another (Table 1). Mean percent 

spike recoveries for all measurable elements were between 86 and 112% (Table 1).
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Laboratory reagent blanks were all below the PQL on all instruments. Field 

collected blanks were mostly below the PQL for all elements as well. Exceptions are for 

Ca, Mg, Na, S, Si, and Zn, which were detectable in up to 23 of the 31 field blanks. The 

concentrations o f Ca, Mg, S, and Si in the blanks were inconsequential, as they were at 

least an order o f magnitude lower than concentrations fcund in environmental samples. 

However, the highest Na concentration (0.42 mg/L) detected in the field blanks could 

explain the noisiness o f much of the Na data. The appearance of 3.7 jig /L  of Zn in one of 

the field blanks unfortunately calls into question much of the Zn data. Zinc is one o f the 

most easily contaminating elements due to its presence in many plastics and materials. 

However, it should be noted that 24 of the 3 1 field blanks did not have quantifiable Zn 

(<0.3 pg/L), and the vast majority of samples from the Landers Fork did not have 

detectable Zn either.

Results

1. Streamflow

Streamflow levels and surface water - ground water dynamics varied seasonally 

along the studied reaches of the Landers Fork and Blackfoot River. Streamflow decreased 

between July, 1997 and March, 1998. Between April and December, 1998, there was a 

more variable streamflow pattern, as would be expected due to the occurrence of spring 

runoff in this time period. At most sites, streamflow started to rise in April, and runoff 

lasted through July (Figures 3 and 4).

Streamflow between LA and LB (accounting for Copper Creek, which joins the 

Landers Fork between LA and LB) either stayed constant or increased during the summer 

months. However, it was disconnected during the low flow winter period, when LA was 

dry and C’ s flow was lost to the subsurface before reaching LB. Streamflow generated
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from seeps sustained ice-free flow at LB and LC at all times of the year sampled. The 

reach between LB and LC was gaining flow during all 17 times that both sites were 

measured. The reach between LC and LD had no measurable gain or loss on 3 o f the 8 

times it was measured; otherwise it was losing.

At the Blackfoot River sites, streamflow was present at all sites eve 17 time they 

were visited over the course o f the study. The one exception to this is site BB, where the 

river was frozen on 1/6/98. The ice-free status at sites BH and BC during the cold winter 

months indicates an important role by ground water in sustaining streamflows in the area. 

Although the stretch between BH and BB (accounting for Hogum Creek) was a losing 

reach 5 of the 6 times it was measured, the stretch o f river between sites BB and BC was 

gaining streamflow the majority (10 of 15) o f the times the sites were gauged. The reach 

upstream o f site BD, below the confluence o f the Landers Fork and Blackfoot River, was 

at a steady state flow condition 3 o f the 5 times measured, and a losing reach in early 7/97 

and 8/97.

2. Surface Water Geochemistry

The solute chemistry of the Landers Fork was different from the Blackfoot for most 

o f the constituents measured. Comparisons o f mean concentrations show the Blackfoot 

samples had higher concentrations o f Fe, K, Mn, Na, S, Si, Sr, and Zn and lower 

concentrations o f inorganic carbon, As, Ca, and Mg than the Landers Fork, during the 

study period (based on paired t-tests with p-values<0.01) (Table 2). The rivers had similar 

pH values, water temperatures, and dissolved oxygen, Ba, and L i concentrations. Elements 

that were below the detection limits in some samples (Fe, Mn, and Zn in the Landers Fork 

only) were assigned a value o f one-half the element-specific PQL. Both Cr and Cu were 

usually but not always below their PQLs in both rivers, and so mean concentration 

comparisons could not be made. No samples from any sites had detectable concentrations
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of Ag (<1 (ig/L), Be (<0.05 Jig/L), Cd (<0.5 |ig/L), Co (<0.5 |ig/L), Mo (<1 |ig/L), Ni 

(<2 Hg/L), Pb (<6 |i.g/L), T i (<2 lig/L), and V (<2 (ig/L).

Most solute concentrations increased as discharge decreased in the both the Landers 

Fork and the Blackfoot River sites through the summer and fall o f 1997. Following the 

start o f spring runoff in April, 1998, most of the major ions decreased in concentration and 

subsequently rose throughout the rest of study period through summer and fall conditions. 

Few generalizations can be made about the behavior of the trace elements in the Blackfoot 

River, and they were largely below detection in the Landers Fork. Specific results follow.

a) Landers Fork

Major elements. Ba. Li. and Sr:

Hysteresis loops with counter-clockwise rotation were present for inorganic 

carbon, Ba, Ca, K (site LA only), Li, Mg, and Sr at sites C and LA  (Figure 5). That is, 

these elements had lower concentrations along the rising limb than on the falling limb of the 

hydrograph. At C, these elements (as well as Si) were inversely correlated with 

streamflow (r<-0.85. p<0.01) overall, while at LA only Ba, K, and Sr were (r<-0.74, 

p<0.04). The other elements at LA were inversely related to discharge considering the 

falling limbs alone, but a single low concentration rising limb datapoint is responsible for 

much of the loop formation and the lack of good linear correlation (Figure 6).

At LB and LC, the hysteresis loops are not nearly as clear as those seen upstream at 

C and LA, despite the additional 5-6 months of sampling at the sites (Figure 7). Although 

inorganic carbon, Ba, Ca, K, Li, Mg, Si, and Sr show an inverse, approximately linear 

correlation (r < -0.64, p<0.01) with streamflow at the sites, hysteresis loops are weakly 

apparent due to multiple crossovers. At LD, which was not sampled as regularly as LB and 

LC, the aforementioned elements also have negatively sloping correlations with streamflow 

(r< -0.69, p<0.04), and overall, the geochemistry at LD was very similar to that o f LC. At 

LB and LC, there were wider ranges of solute concentrations during low flow compared to
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high flow periods. In fact, once streamflow exceeded baseflow levels by a factor o f about 

10, concentrations o f many major elements reached relatively steady levels (Figures 7 and 

8 ).

An anomalous major element in the Landers Fork was S, which exhibited different 

patterns at almost every site. At site C, its concentration was higher during runoff in 1998 

than during the falling limb of the 1997 streamflow, an opposite trend to those seen for the 

other major elements. In contrast, S at LA generally followed the counter-clockwise 

hysteresis loop characteristic o f the other major elements, although its concentration failed 

to rise with the decrease in streamflow at the last sampling event, in July, 1998. At site 

LB, S concentrations increased with decreases in streamflow in the fall of 1997, and the 

highest concentration was found on the late April, 1998 sampling date, when streamflow 

had just begun to rise for spring runoff (Figure 14b). As runoff continued, S 

concentrations dropped again to levels found the previous summer. Sulfur concentration 

variation was comparatively small at LC, even during the dynamic streamflow conditions 

o f 1998. The highest S there was found in September, 1997 (Figure 9).

Trace elements: Cu. Cr. Fe. Mn. Zn. and As:

The filterable trace metals Cu, Cr, Fe, Mn, and Zn were usually or always below 

quantifiable levels at Copper Creek and the Landers Fork sites. Copper was never detected, 

and Cr was found only rarely—  at C on 1/6/98, and at LC during the winter (11/16/97, 

1/6/98) and during the highest flow in 1998 (6/29/98). Iron was detected at all sites from 

July, 1997 to January, 1998. At sites LB and LC, which were sampled through the second 

fall season, Fe did not rise above the PQL (5 (jLg/L) as it did in the fall of 1997 (Figure 10). 

At site C. Mn was at or above its PQL of 0.3 pg/L only during the first several sampling 

events, through the summer o f 1997. However, at LA, LB, LC, and LD, Mn was 

quantifiable during 1-2 high flow events in 1998 in addition to during the summer of 1997
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(Figure 11). Zinc was mostly below the PQL as well, and it was always below the 

concentration found in the highest field blank.

Arsenic correlated poorly with streamflow at most sites in the Landers Fork, except 

for at C and LB, where they correlated reasonably well (r= 0.66-0.68, p< 0.03). The 

concentration o f As wavered little over time at C and LA, except for some increases during 

high flows in July, 1997. In contrast, As concentrations at LC and LD were highest during 

the winter low flow period, reaching a maximum of 1.0 |ig/L in early 1998, compared to 

the 0.4-0.6 pg/L found during the rest o f the year (Figure 12). During low flow periods, 

streamflow at LC was dominated by ground water input, and the seeps measured near the 

site had As concentrations of 0.9-1.0 pg/L. However, during the last two sampling events 

(11/98 and 12/98), the seep As concentrations were only 0.5 pg/L, and the surface water 

As concentration also dropped, to 0.4 pg/L.

m i

Although diel pH variations were not considered, as sites were not always 

measured at a consistent time of day, some general seasonal pH patterns are apparent at 

most sites. The pH at the site C exhibited counter-clockwise hysteresis, with pH lower 

(pH=8.0) at spring runoff compared to the previous fall and winter (pH=8.1-8.4) and to 

the post-runoff sample in July, 1998 (pH=8.4). At LA, pH did not have a clear 

relationship with streamflow, although measurements were lower (pH=8.0-8.1) during 

spring runoff in 1998 than they were in the late summers of 1997 and 1998. At LB, the 

pH was generally higher (pH=8.0-8.4) in the summers o f 1997 and 1998 than during other 

times o f the year (pH=7.6-7.9). At LC, pH also followed a counter-clockwise hysteresis 

pattern (Figure 13). It was generally lower in the winter o f 1997 through spring runoff in 

1998 (pH=7.7-8.0), than during the summers of 1997 and 1998, when pH levels were in 

the range of 7.9-8.3. During the winter, when the site was ground water dominated, the 

seeps at the site had pH levels that were lower than in the surface water (7.1 - 7.8
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compared to 7.7 - 8.3), which could explain the lower winter pH levels at the site. Fall 

measurement o f pH at the site were at levels similar to pre-runoff conditions.

Spring flushing:

An ionic pulse o f some elements was detected prior to spring runoff at LB and LC. 

In April, 1998, when streamflow had just begun to rise for runoff at LB, concentrations of 

Ca and S also rose before being diluted by snowmelt in May and June (Figure 14). While 

Ca concentrations were 33-35 mg/L between November and March, they rose to 40 mg/L 

on 4/6/98, when streamflow remained unchanged since March, and to 43 mg/L by the end 

of April, when streamflow had increased 2-3 fold, to 100 L/s. Sulfur concentrations, 

which were between 1.0 and 1.1 mg/L from November- March, had increased to 1.2-1.3 

mg/L in late April, when streamflow had begun rising for runoff. Barium, Li, and Mg also 

rose during early runoff, although not as convincingly. Barium’s concentration was 265 

(±4) pg/L on 4/26/98, compared with 230-250 pg/L from November through early April. 

Lithium rose from 2.2-2.4 pg/L in the winter to 2.6-2.7 pg/L in early and late April. 

Magnesium, whose concentration stayed within the narrow range of 12.8-13.3 mg/L from 

September through early April, was at 14.0 (±0.2) mg/L in late April. The aforementined 

ions all dropped in concentration with the subsequent continuation of the rising hydrograph 

in May and June.

Similarly, a rise in Ca, and Mg is evident at LC in March and early April, 1998, just 

before spring runoff began at the site (Figure 15). Streamflow was essentially constant 

(between 610-740 L/s) from January through April at the site, before jumping up to 8100 

L/s at the time of the 5/19/98 sampling. The flushing is seen in that Ca at the site was 34- 

37 mg/L during the two April sampling events, compared with 31-33 mg/L in January and 

March. Magnesium was not as consistent during the winter as was Ca, although its 

concentration o f 13.2 ±  0.2 mg/L in late April is slightly higher than that in early April
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(12.0 ±  0.5 mg/L), and Mg concentrations did not rise above 13.0 mg/L on any o f the prior 

sampling events. Unlike at site LB, no flushing effect for S was seen at LC.

b) Blackfoot River

Major elements. Ba. Li. Sr:

At site BH, counter-clockwise hysteresis loops with negative slopes (r< -0.60, 

p<0.05) to streamflow are seen for inorganic carbon, Ba, Ca, Li, and Si (Figure 16). 

Potassium and Mg also correlate inversely with streamflow (r< -0.78; p<0.01), but the 

falling and rising limbs are not distinct from one another (Figure 17). Similarly, inorganic 

carbon, Ba, Ca, Li, Mg, Si, and Sr correlate inversely with streamflow at site BB (r< -

0.64, p<0.02). These elements follow a counter-clockwise hysteresis pattern as well, 

except for Ca and Mg, which have cross-over falling and rising limbs. Likewise, inorganic 

carbon, Ba, K, Li, Si, and Sr exhibit counter-clockwise hysteresis at site BC (Figure 18). 

Again, they (and Ca and Mg) have an overall negative relationship (r < -0.52, p<0.05) to 

streamflow at the site. Hogum Creek, which was sampled only between November 1997 

and August, 1998, had inverse correlations (r< -0.82, p<0.03) with streamflows for most 

detectable elements (Bav Ca, K, Li, Mg, Mn, and Sr) as well. However, only 2 elements 

showed hysteresis loops—S, which had clockwise rotation, and Si, with counterclockwise 

rotation, and neither was linearly correlated with streamflow.

As was noted for sites LB and LC, there appears to be a stabilization of solute 

concentrations at BB and BC during high flow periods. This observation is based on only 

two o f sampling events, when discharge increased from 1900 and 2800 L/s at sites BB and 

BC, respectively, on 6/5/98 to the highest flow measured over the study period (6000 L/s 

at BB and 7000 L/s at BC), on 6/28/98. During this high flow event, concentrations o f 

most measured solutes were almost identical to those taken earlier that month (Figure 18).
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This result may indicate that beyond a certain flow threshold, meltwater overwhelms 

baseflow contributions.

Trace elements:

Unlike in the Landers Fork, many o f the trace metals in the Blackfoot were well 

above their detection limits, allowing for characterization o f their trends with time.

Although hysteresis patterns were not found, S and trace metals such as Cu, Fe, Mn, and 

Zn regularly were elevated during spring runoff in 1998, and they were also relatively high 

following a rainstorm the day before the 7/20/97 sampling event. Like at the Landers Fork 

sites, a haphazard relationship between streamflow and As is seen along the Blackfoot. 

Because trace metal seasonality varied from site to site, each site is considered separately.

Site BH: As, Cu, Fe, and Mn were the most highly concentrated on 7/20/97, the 

post-storm sampling date, than on any other over the 14 month study at the site. On the 

seasonal scale, Fe, Mn, and Zn concentrations were elevated during runoff compared to 

winter and late summer, although hysteresis loops are not apparent (Figure 19). On the 

contrary, As showed a counter-clockwise hysteresis cycle without a positive or negative 

trend (r= 0.12, p=0.72) with streamflow (Figure 20). Copper was not detected other than 

on the post-storm date and in one of the triplicate samples from each sampling date in July 

and August 1998. Chromium concentrations appeared above the PQL during a few of the 

low flow events, but not during spring runoff. Zinc concentrations were highest (31-33 

(ig/L) in late April, 1998, at the early portion of spring runoff, and overall Zn correlated 

positively with streamflow (r=0.79, pcO.Ol) (Figure 21a). It was also relatively high (20- 

28 |ig/L) during the two July, 1997 sampling events. Sulfur behaved similarly to Zn, in 

that its highest value was in late April, 1998 as well (Figure 21b). In late April and May, 

1998, its value (24-31 mg/L) was 2-4 times the concentrations found during the rest o f the
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study period. During the 6/5/98 and 7/20/98 sampling, when streamflow was still high due 

to runoff, S concentrations returned to levels similar to pre-runoff conditions.

Site BB: In late July, 1997, the samples at BB dropped in pH and increased in Cu 

and Fe the day after the large rain event. Iron was at its maximum on that event compared 

the whole study period (Figure 22). Overall, Fe correlated poorly with streamflow (r=0.05; 

p=0.86) although its lowest values were found in the 6/29/98 samples, when streamflow 

was the highest (Figure 22). Copper was detected above its PQL not only after the storm, 

but also in some o f the late spring and summer samples of 1998 (Figure 23). In fact, its 

maximum concentration occurred during the highest flows measured, in late June, 1998. 

Manganese and streamflow had a positive relationship (r=0.48; p=0.02). Arsenic was 

higher in the late summers of 1997 and 1998 than during other times of the study, and it 

roughly followed a counter-clockwise hysteresis pattern as it did at BH.

Site BC: This site was first sampled on 7/20/97, the event that immediately 

followed the summer storm referred to before. These first samples at BC are relatively low 

in pH and high in As, Fe, Mn, and Zn compared with those collected through the rest of 

the study period (Figure 24). The highest Fe (46-49 |ig/L) found at the site over the study 

period was on the first sampling date, the post-storm event (Figure 24). Otherwise, Fe 

concentrations were approximately uniform during spring runoff, when they exceeded 

concentrations in the previous winter and subsequent fall. Like at the other sites, As at BC 

was variable (0.2-0.5 pg/L) during low flow conditions and it did not have a negative or 

positive relationship to streamflow overall (r=0.04, p=0.88). Copper was detected only 

during the highest flow event at BC, on 6/29/98. Chromium was above its PQL only in the 

November 1997 and January 1998 samples, as well as in one o f the triplicates from 

6/29/98. Manganese correlated particularly well with streamflow at site BC (r= 0.91, 

p<0.01) (Figure 25). The most outlying point on the linear regression between streamflow 

and Mn was the July 1997 post-rainstorm sample. Concentrations of S and Zn were lower 

during the peak o f runoff than at the start (Figure 26).
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Site HC: Arsenic was peculiar in that its concentration went from 0.2 |ig/L (the 

PQL) during November, 1997 and January, 1998, to increasing steadily through the end of 

the sampling period, when it measured 1.1 pg/L on 8/17/98. Iron also did not follow the 

trends the major elements did. Although it had a negative relationship with discharge for 

most o f the study period, the last sample collected (in August, 1998) was 3-4 times as high 

in Fe as all the other samples (Figure 27). Clearly, Hogum Creek would need to be 

sampled at a far finer temporal resolution and over a longer period of time in order to 

elucidate the details of its temporal variability.

m i

Although diel variations were not determined when sampling the Blackfoot sites 

either, a few consistent observations were noted. At BH, the pH was always well above 

neutral (between 7.8 and 8.4), and the lowest pH values occurred on the post-rain storm 

sampling day (7/20/97), when pH measured 7.9, and during spring runoff in 1998, when 

the pH was ca. 7.8. The pH values at BB were not clearly correlated with streamflow 

either, although they were lower at the start o f 1998’s spring runoff (7.9 - 8.0) than they 

were before and after (8.1-8.3). The pH levels at BC were variable within the 7.7 to 8.3 

range, and pH was clearly lower at the start o f runoff than at the end. The pH at HC was 

between 7.3 and 7.6 from November 1997 to June, 1998, and between 8.0 and 7.8 at the 

last two sampling events, in July and August, 1998, indicating clockwise hysteresis.

Spring Hushing:

Sulfur and Zn appeared to be mobilized primarily during the early stages o f runoff 

at all Blackfoot sites. At BH, HC, BB, and BC, these elements peaked during the early 

stages o f runoff and subsequently dropped during periods of higher flow. This flushing of 

S and Zn are evident in the load plots. While for all other solutes (e.g. Si and Mn), load 

trends followed streamflow trends almost exactly, S and Zn loads do not follow changes in
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streamflow over the course o f runoff (Figure 28). For example, at BH the S load did not 

increase with the second runoff peak sampled on 6/5/98 (Figure 4a). Because its 

concentration dropped so dramatically after the start o f runoff, its load continued to drop as 

well despite the rise in streamflow (Figure 28a). This same phenomenon is visible for the 

Zn loads. While the second runoff peak is detectable via the rise in Zn loads, the second 

peak is not as high as the first one, even though the streamflow level had risen (Figure 

28b). This indicates that factors other than discharge accounted for their load variations.

Discussion;

1. Hysteresis

Hysteresis patterns were observed for some elements at most o f the study sites, 

indicating that factors other than the amount of streamflow need to be considered when 

predicting the solute geochemistry in these streams. The counter-clockwise seasonal 

hysteresis o f many solutes in both the Landers Fork and Blackfoot River is an indication of 

the important role played by direct runoff of snowmelt into the streams during the early 

periods o f the spring melt. Although snowmelt, soil, and ground water were not sampled 

in this study, other researchers have shown that shifting proportions o f the relative 

contributions o f these various water sources likely drive hysteresis patterns (Stottlemyer 

and Toczydlowski, 1990; Pinol et al., 1992; Campbell et al., 1995; Sokolov and Black, 

1996).

Additionally, the differences in the widths o f the loops are presumably an indication 

o f greater or lesser chemical differences among the various water sources supplying 

streamflow during different periods along the hydrograph (Johnson and East, 1982; Evans 

and Davies, 1998). Hence, the lack of hysteresis loops for some major ions may be due to 

the sources supplying flow along the falling limb and rising limb having indistinguishable 

chemical signatures. For example, the lack of open hysteresis loops at LB and LC may
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have been due to the strong chemical dominance by the relatively large and steady ground 

water contributions at the sites. In contrast, the open hysteresis loops at sites C and LA, 

where groundwater played small to insignificant roles in contributing to surface flow, were 

likely controlled by more dynamic variations in the snowmelt runoff chemistry and the 

spatial routing o f the meltwater,.

Presumably, snowmelt traveling to the stream channel with minimal interaction with 

ground surface produced a dilution effect during the earlier portion of runoff. Yet, 

considering that concentrations did not drop by the same factor by which discharge 

increased, the soil water and ground water must have been contributing a fair amount to 

flow as well, and/or there was a significant amount of routing of fresh meltwater through 

the subsurface. The most dramatic example of this is at LB, where flow increased by 

approximately 400-fold in the spring o f 1998 compared to the preceding winter, although 

concentrations o f most ions were diluted by less than 30%. Another example is at BC, 

where high flow in the spring was 17 times the winter flow levels, although ionic 

concentrations were still at 70-90% their baseflow levels (other than for the trace heavy 

metals, which varied more widely). In general, during high flow conditions at all the sites, 

concentrations o f many ions were typically diluted by no more than one half despite the 

much larger proportional increases in streamflow. Hence, the diluting power of snowmelt 

was apparently mitigated by substantial contributions from a combination of adjacent soil 

water and ground water. During the summer and fail, after the snowpack had been 

depleted, soil and ground waters, with their higher solute concentrations, presumably took 

on the dominant role in supplying water to the stream channel. Although much of the 

original source for the soil and ground water may have been the earlier snowmelt, the dilute 

meltwater likely took up more ions when in contact with soil and aquifer materials on its 

subsurface journey to the stream channel (Stottlemyer and Toczydlowski, 1990; Campbell 

etal., 1995; Stottlemyer et al., 1997).
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The lack of hysteresis patterns for many of the detectable trace metals is an 

indication that processes controlling metal loading are different from those controlling 

loading o f major elements. Other studies in the literature have also found that discharge- 

concentration relationships for filterable trace metals are poorly defined (Wetherbee and 

Kimball, 1991; Shafer et al., 1997; Shiller, 1997). Because metals such as Fe, Cu, Mn, 

and Zn are more reactive than major ions such as Ca, Mg, and Na, their concentrations are 

more sensitive to changing conditions such as varying pH, redox, dissolved organic 

carbon, availability of soiption surfaces on colloids, and biologically-controlled processes 

in the watershed (McKnight and Bencala, 1988; Cossaet al., 1990; Kimball et al., 1992; 

Shafer et al., 1997; Ross and Sherrell, 1999).

2. High flow increases in trace metals:

The increase of several trace metals and arsenic in the Landers Fork basin (As at site 

C; Mn at LA; As and Mn at LB; and Mn and Cr at LC) and in the Blackfoot (Cu, Fe, Mn, S 

and Zn at BH, BB, and BC) during high flow events might be due to one or more of the 

following factors. For one, the higher solute concentrations may simply be an artifact of 

the sample processing. During high Hows, total suspended particulate matter generally 

increases in rivers, and hence the presence of more colloidal particles may account for the 

apparent changes. Many recent papers have shown that even 0.2 ^tm is not an adequate 

cut-off for separating colloidal material and truly dissolved particles (e.g. Horowitz et al, 

1996; Pham and Gamier, 1998; Ross and Sherrell, 1999). With an increased colloidal 

abundance in the waters, the likelihood of collecting colloids in the filtrate likewise 

increases. It is well established in the literature that colloids, primarily colloidal iron, are 

major transport vectors for trace metals such as Cu, Mn, and Zn (Ross and Sherrell, 1999; 

Schemel et al. 2000).

Another explanation for the high flow increases in metal concentrtations is that 

during the higher flows, water sources which normally do not significantly contribute to
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the streamflow may be active. For example, groundwater from deeper or more distant and 

geochemically distinct portions of the aquifer may be supplying water to the high flows 

(Rice and Bricker, 1995). Research in other rivers suggest that during high flow events 

ground water can play dominant roles in influencing the geochemisty o f surface waters 

(Whitfield et al., 1993; Campbell et al., 1995; Sherrell and Ross, 1999). Additionally, as 

mentioned earlier, the high reactivity o f trace metals, both dissolved and colloidal, make 

them more prone to physical and chemical changes in the watershed that are more difficult 

to identify than for conservative major ions. The coupling of changes in both the physical 

and chemical conditions in the watershed makes it difficult to distinguish among the 

potential processes which may be accounting for the seasonal trace metal variations.

Lastly, the mining contamination in the Blackfoot watershed may help explain the 

trends in that river. Metals might be released from the upstream mining district or mining- 

contaminated marshes below the district. Physical and chemical sources could include 

higher water supplies from groundwater interacting with mine workings, overflowing 

treatment ponds, or flushing of reduced waters in the contaminated wetlands and soils 

upstream o f the study area. Clearly, more extensive studies are needed to identify the role 

o f colloids and the specific sources and mechanisms potentially supplying solute metals to 

the streams during high flow conditions.

The same possibilities discussed above to explain the seasonal rises in trace metals 

may explain the drop in pH and rise in high As, Cu, Fe, Mn, and Zn collected at one or 

more o f the 3 main Blackfoot sites (BH, BB, and BC) following a rainstorm in late July, 

1997. Other studies in the literature have reported trace metal surges and drops in pH in 

rivers during storm periods (Bird, 1987; Soulsby, 1995; Sherrell and Ross, 1999). The 

data presented here show that a single short term event may cause geochemical changes at 

least as great as those found over the course of an 18 month seasonal study in which 

samples were taken approximately once per month. This result has implications for
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adequately designing monitoring studies that aim to capture the full range of temporal 

geochemical variation in streams.

3. Spring flushing

Flushing effects might explain the pre- and early- runoff rise in the concentrations 

of some solutes in the Landers Fork and Blackfoot River. With this mechanism, elements 

which have been accumulating on the periphery of snow crystals and in adjacent soil and 

ground water over the winter are suddenly pulsed into the surface water, creating a brief 

surge in concentrations, after which they are depleted (Johannessen and Henriksen, 1978; 

Harrington and Bales, 1998; Marsh and Pomeroy, 1999). Most research on spring ionic 

pulsing have focussed on the widespread flushing of sulfate and nitrate, which commonly 

are atmospherically-derived acidic anions. However, studies of cation flushing report more 

variable results. For example, while Williams et al. (1993) and Meixner et al. (1998) 

report little or no ionic pulse for cations in streams in the Sierra Nevada, Stottlemyer and 

Toczydlowski (1990) observed flushing for Ca, Mg, Na, K, and NH4+ in a Michigan 

stream. These authors have attributed the patterns of variable cation responses to different 

biogeochemical processes by soils and vegetation which can both release and uptake pulses 

of ions, variable displacement o f ground water by meltwater into the stream, and 

weathering-related processes in the watersheds.

Sulfur displayed the most prominent flushing at most sites in this study. A 

probable explanation for the early S surges is its presence in the snow itself. Extensive 

snow sampling in the basins would be required to determine its concentration distributions, 

since the geochemistry of snow varies considerably with depth and distance 

(Brimblecombe et al., 1985). Yet, it is widely recognized in the literature that atmospheric 

S accumulates in snow packs both near and far from industrial sources (Davies et al., 1984; 

Schemenauer et al., 1985; Campbell et al., 1991). Many researchers studying the flush of 

ions in snowmelt have repeatedly shown that sulfate is preferentially eluted from the
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snowpack at the nascent stages o f the melt period (Davies et al., 1982; Tsiouris et al.,

1985; Williams et al., 1993). Additionally, the higher S concentration in the fall compared 

to the winter at several Landers Fork sites might be explained by fresh S supplies delivered 

by autumn precipitation events which contribute directly to the stream or which induced 

flushing of soil and ground waters in which S accumulated over the relatively dry summer 

period (Williams et al., 1993; Campbell et al., 1995),

The spring surge of S in the Blackfoot River was likely due to a combination of 

elution from the melting snow as well as to inputs from acid mine drainage processes 

upstream. While the pulse o f S in the Landers Fork was on the scale of several hundred 

micrograms per liter, the surge in S in the Blackfoot River was on the order o f several 

milligrams per liter. Unless markedly higher S surges in the Landers Fork were missed in 

the sampling, it is likely that the much larger increases in the Blackfoot S concentrations 

originated from sources in addition to the snow itself. The obvious candidate for such a 

source is the sulfide mining complex 20 km upstream of the study area. The increase of S 

(and trace metals Fe, Cu, Mn, and Zn) following the July rain storm in the Blackfoot River 

and not the Landers Fork is further evidence that S can be mobilized and transported 

downstream in anomalously high concentrations.

Possible reasons for the Zn flushing in the Blackfoot are less clear. Several other 

studies have noted increases in filterable Zn at the onset of high flow events as well 

(Weatherbee and Kimball, 1991; Sokolov and Black, 1996; Shafer et al., 1997). In 

general, Zn is thought to be more mobile than other trace elements because the sorption of 

Zn onto amorphous Fe oxyhydroxides is reportedly favored at higher pH levels than for 

many other metals (Benjamin and Leckie, 1981; Filipeket al, 1987; Rampe and Runnells, 

1989; Schemel et al., 2000). Hence, any releases of Zn into the surface waters from more 

acidic sources upstream would more likely be captured further downstream than for the 

more reactive metals. The mining impacted tributaries and wetlands upstream o f the
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Blackfoot River sites are good candidates for sources o f the filterable Zn and lower pH 

water (Moore et al., 1991; Nagorski et al., 2000).

The lack o f ionic flushing at many sites is likely simply an aritifact of the sampling 

design, which tracked early runoff events at too crude o f a temporal resolution to capture 

short-term changes in chemistry (Whitfield and Schreier, 1981; Robertson and Roerish, 

1999). Most studies on ionic pulses in the literature are based on sampling designs in 

which chemical data are collected at least weekly, and often daily, during the melt period 

(e.g. Stottlemyer and Toczydlowski, 1990; Pinol et al., 1992; Campbell et al., 1995; 

Harrington and Bales, 1998). In this study, however, we rarely sampled more than once a 

month at the sites.

Summary and conclusions:

In summary, this report presents the results o f up to 18 months o f baseline 

geochemical studies in the upper Blackfoot and lower Landers Fork watersheds which 

show large seasonal variations in both physical and chemical characteristics o f the sites. 

Streamflow values alone were poor predictors of the geochemistry o f many solutes in the 

Landers Fork and upper Blackfoot River. The location on the side o f the hydrograph 

appears to be at least as important as knowing the streamflow level for many solutes at the 

sites studied. Many cations exhibited counter-clockwise seasonal hysteresis, indicating that 

early meltwater produced a dilution effect on the surface water geochemistry, and that soil 

and ground water played more important roles in supplying water to the stream channel 

later in the season. Nonetheless, several ions also exhibited surges at the beginning o f the 

melt period, which may be an indication of flushing from the snow itself or from 

displacement o f soil or ground water by early meltwater.

Compared to the Landers Fork, the Blackfoot River had higher mean concentrations 

o f dissolved organic carbon, sulfate, and most trace metals; lower mean concentrations of
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inorganic carbon, As, and Ca; and similar pH, water temperature, dissolved oxygen, Ba, 

Li, and Mg. Within each watershed, the geochemical and physical variability among sites 

within a short distance o f one another were substantial, with highly variable seasonal 

streamflow patterns, surface water - ground water interactions, and concentration - 

discharge relationships. These results highlight the value o f designing studies with tight 

spatial resolutions. As found by Whitfield and Schreier (1981), who observed more 

variable hysteresis patterns among stations within a single river basin in British Columbia 

than they did at each station over the course of 4 years, it appears that site specific 

differences in watersheds such as the Upper Blackfoot can be so great as to have important 

limitations on any generalizations made from monitoring studies about seasonal 

geochemical variability in the watershed as a whole.

The apparent mobilization of many trace metals during high flow events in the 

Blackfoot River may be a result o f enhanced contributions of the reactive metals from the 

historic mining district upstream. These results also have implications for the importance 

of designing sampling and monitoring studies to adequately capture wide variations in 

streamflow levels. In the Landers Fork, the trace metals were below detection on most 

sampling events, indicating that more sensitive analysis (e.g. by ICP-Mass Spectrometer) 

is necessary to detect any ultra-low levels at this site. This result further justifies the use o f 

clean sampling and handling techniques. More detailed temporal studies would be helpful 

to better understand issues of early spring runoff flushing, storm geochemistry versus 

spring runoff geochemistry (especially for the trace metals), and the perplexing 

haphazardness of arsenic concentrations in both watersheds.
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Prictical Quantification Instrument precision Soika racovariaa
Llmlla

A nalvte PQL

Num ber of 
replicate sets 

above PQL

M ean (std. dev.) 
of %  difference 

btwn. duolicates

Concentration  

of added  
sDike

Num ber of spiked  

samples above P Q L  
prior to soike add'n

M ean (Std. Dev.) 
p ercent 
recovery

Inorg. C 1 m g/L 71 2 .0  (2 .7 ) . . .
As 0 .2  pg/L 6 3  (< 0 .5  pg/L) 

3 9  (> 0 .5  pg/L)
7 .0  (6 .1 ) 
3 .6  (3 .5 )

t.O 44 1 09 .8  (7 .0 )

Ag 1 pg/L 0 • 2 0 0 .
Al 5 pg/L 0 • 1 0 0 -
Ba 1 pg/L 5 5 3 .8  (4 .0 ) 2 0 0 5 8 9 8 .0  (9 .5 )
Be 0  0 5  pg /L 0 - . 0 .
Ca 0.01  m g/L 5 5 3 .6  (4 .7 ) 10. 20 . 30 4 0 1 0 2 .5  (1 0 .3 )
Cd 0 .5  pg/L 0 - 1 0 0 .
Co 0 .5  pg/L 0 • - 0 -
Cr 1 pg/L 1 2 7 .4  (4 .2 ) 1 0 1 8 1 00 .7  (7 .6 )
CU 0 .8  pg/L 13 3 .3  (4 .0 ) 3 . 10. 20 1 5 1 06 .9  (6 .7 )
Fe 5 pg/L 3 6 7 .8  (1 0 .0 ) 20. 30. 50 4 3 1 0 6 .0  (1 6 .3 )
K 0 .1 0  m g/L 5 4 4.1 (5 .0 ) 1. 2 . 2 .5 5 8 1 01 .3  (5 .6 )
Li 0 .5  pg/L 5 5 3 .4  (4 .3 ) 5. 10 5 6 103 (6 .0 )
Mg 0 .0 1  m g/L 5 5 2 .9  (4 .3 ) 5. 10 5 9 1 03 .8  (6 .4 )
Mn 0 .3  pg/L 31 3 .8  (4 .8 ) 10 2 3 9 2 .0  (4 .8 )
Mo 1 ug/L 0 • 0 •
Na 0 .1 5  m g/L 5 5 5.4  (6 .7 ) 2 .5 . 5. 10 5 8 1 02 .6  (7 .5 )
Ni 2 pg/L 0 • 2 0 0 .
Pb 6 pg/L 0 8 0 0 .
S 0.01  m g /L 5 5 5 (6 .7 ) 2 . 5 5 5 1 1 1 .8  18.5)
S 0 .0 2  m g/L 5 5 3 .3  (4 .4 ) 2 . 5 5 5 1 11 .9  (8 .7 )
Sr 2 pg/L 5 5 4 .0  (5 .2 ) 50 . 100 5 4 9 2 .5  (8 .6 )
Ti 2 pg/L 0 - 0
V 2 ug/L 0 - 0 .
Zn 0 .3  iia /L 2 8 7 .8  (1 3 .3 ) 10. 20 3 7 1 04 .4  (8.11

T ab le  1: POLs, precision results, and spike recovery results lor anaysis at w ater sam ples.

LANDERS FORK 

(Sites LA.LB.LC. and LD)
BLACKFOOT RIVER 

(Sites BA. BH. BB. BC. ar
p-value Irom 

two-tailed  

paired t-test 
•» jid m //c a n f

overall m ean (std. dev ) 
of all sites on all dates

overall m ean (std. dev.) 
of all sites on all dates

PH 8-OS (0 .2 5 ) 8 .0 2  (0 .1 8 ) 0 .9 1 2
D O . 10.5 (2 .0 ) 10.5  (2 .1 ) 0 .5 7 9
W ater tem p 7 .9  (3 .2 ) 8 .3  (5 .5 ) 0 .6 8 0
Air temp 1 2.3  (1 0 .3 ) 13.7  (9 .4 ) 0 .7 7 5
Inorg.C 32.1 (3 .5 ) 25.1 (3 .7 ) 0.000’
As 0 .5  (0 .1 ) 0 .3 5  (.1 0 ) 0 .0 0 0 ’
Ba 2 2 0  (42 ) 2 05  (33 ) 0 .0 7 2
Ca 3 2 .5 0  (3 .0 0 ) 25.11  (3 .1 1 ) 0 . 0 0 0 ’
Cr 0.6  (0 .2 ) 0.6  (0 .0 ) (BPQL)
Cu 0.4  (0 .0) 0.4  (0 .2 ) (BPQL)
Fe 4 (2 ) 2 1 .4  (1 1 .6 ) 0 .0 0 0 ’
K 0 .5  (0 .1 ) 0 .8  (1 .0 ) 0 .0 0 0 ’
Li 2  2  (0 .3 ) 2 .2  (0 .4 ) 0 .1 5 8
Mg 1 1 .6 0  (1 .1 0 ) 10.97  (1 .2 8 ) 0 .0 0 0 ’
Mn 0  2  ( 0 . 1) 3 .0  (1 .7 ) 0 .0 0 0 ’
Na 1.05  (0 .2 9 ) 2 .31 (0 .4 0 ) 0 .0 0 0 ’
S 0 .9 9  (0 .1 7 ) 5 .3 2  (2 .9 1 ) 0 .0 0 0 ’
a 3 6 0 ( 0 .6 1 ) 6 .2 7  (0 .6 8 ) 0 .0 0 0 ’
Sr 19 (8 ) 114 (24 ) 0 .0 0 0 ’
Zn 0 .2  (0 .2 ) 6 .5  (7.01 0 .0 0 1 ’

Tab le  2: Results ol paired t-test comparing means in the Landers Fork and Blackfoot River.

M ean concentrations Irom  all sites within the Landers Fork were paired by sampling date with the 

m ean concentrations from all sites within the Blackfoot River.
Concentrations below the PO L w ere assigned a value of one-hall Ihe element's PQL.
Overall m ean values that are below the P Q L  (BPQL) are italicized in the table.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



io
E<00)w

Falling
limbRising

limb

Date

co*<ss Falling
limb2

c0)ocoo
Rising

limb

Streamflow

co Rising
limb(0

c0)ucoo Falling
limb

Streamflow

Falling 
s  limb

co
aw
C0)ocoo Rising

limb

Streamflow
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Figure 5: Streamflow vs. Ca concentration at Copper Creek (site C).
Triplicate samples were taken on each sampling event, and each is represented by a 
square. The lines connect the mean concentrations at each sampling date.
Similar hysteresis was seen for Ba, Li, Mg, and Sr.
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Figure 6: Streamflow vs. Li concentration at site LA.
Similar hysteresis was seen for inorganic carbon, Ba, Ca, K, Mg, Si, and Sr.
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Figure 7: Streamflow vs. Ca concentration at site LB.
Similar patterns for Ba, K, Li, Mg, Na, Si, and Sr.
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Figure 8: Streamflow vs. K concentration at site LB.
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Figure 10: Date vs. Fe concentration at site LB.
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Figure 11: Date vs. Mn concentration at site LC
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Figure 12: Date vs. As concentration at site LC
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streamflow in Figure 3c.
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Figure 16: Streamflow vs. Li concentration at site BH.
Similar patterns for Ba, Ca, and Si.
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Figure 17: Streamflow vs. Mg concentration at site BH. Similar pattern for K.
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Figure 19: Streamflow vs. Mn concentration at site BH. Similar pattern for Fe.
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Figure 20: Streamflow vs. As at site BH.
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Figure 23: Date vs. Cu concentration at site BB.
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Figure 24: Date vs. Fe concentration at site BC.
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Figure 25: Streamflow vs. Mn concentrations at site BC.
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Figure 26: Date vs. (a) S and (b) Zn concentrations at site BC. 
Compare with Figure 4c to note timing of peaks.

200

150
-I
0 5
3 .100

U- 50

100 300 400 5000 200
Stream flow (L/s)

Figure 27: Streamflow vs. Fe concentrations at site HC.
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Chapter 3:
Geochemical dispersion trains of solute and bed sediment trace 

elements in the Blackfoot River. Montana

1. Abstract

The Blackfoot River (Montana) and its major tributaries were sampled from the headwaters 
o f the basin to near its confluence with the Clark Fork River over the course o f 5 days in 
August, 1998. Streamflow was measured, fine-grained (<63 (im) streambed sediment was 
collected, and the dissolved (<0.2 (im) phase of the surface water was sampled using clean 
techniques. Water and sediment collected from near the historic Upper Blackfoot Mining 
Complex contained the highest concentrations of trace metals in the basin, despite the onset 
of remediation efforts in 1993. Many solute trace metals were at their highest several 
kilometers downstream from the mining district, where the river flows through an 
unremediated marsh system that has collected mine wastes in the past. Downstream of the 
headwaters area, water and bed sediment metal concentrations declined sharply. 
Comparison o f sediment samples with those collected in August, 1989 and August, 1995 
do not show evidence o f basin-scale long term changes. The area o f the proposed 
McDonald Gold Project near the confluence of the Landers Fork with the Blackfoot River 
was not contributing anomalous concentrations of naturally-occurring dissolved metals into 
the basin.

II. Introduction:

One o f the current research priorities o f the Mineral Resources Program o f the 

United States Geological Survey (USGS) is to evaluate geochemical baselines in 

watersheds where mineral deposits erode naturally or are exposed by mining and mineral 

processing. Baseline characterization research is important for understanding how to 

differentiate between natural and human influences on the geochemistry o f surface waters, 

soils, and sediments. Globally, there is essentially no pre-disturbance data on the solute 

geochemistry of rivers in watersheds that have been mined. In order to set realistic 

remediation targets in contaminated areas and to better quantify potential environmental 

impacts o f proposed mining projects, it is necessary to characterize the geochemical 

distribution o f trace elements in both mining impacted and unimpacted rivers.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The 215 km long Blackfoot River in western Montana is a tributary to the Clark 

Fork River, which in turn flows into the Columbia River (Fig. 1). It was chosen as a case 

study for the USGS’s investigations on geochemical baselines because it contains both 

historic and proposed mines. The Upper Blackfoot Mining Complex is located in the 

headwaters o f the basin, and the area has been undergoing remediation since 1993. The 

proposed mine (the McDonald Gold Project) is located approximately 25 km downstream 

from the headwaters near the confluence of the Blackfoot River with the Landers Fork. In 

the research presented here, we characterize the spatial distribution of the aqueous and bed 

sediment geochemistry in the Blackfoot River and many o f its tributaries over a single, 

short (5 day) time period and make some comparisons with previous data.

The primary goal of the current study was to examine the downstream dispersion of 

mining-related contaminants in the water and bed sediments o f the Blackfoot River from the 

historical mining area in the headwaters. Although bed sediment dispersion trains have 

been typically used for prospecting purposes and for impact characterization of mining 

(Hawkes, 1976; Helgen and Moore, 1996), dispersion trains in the water column are not 

commonly evaluated in relation to bed sediment trains, even though they are subject to 

human and aquatic health standards. Detecting levels of trace metals in water samples is 

typically more difficult than for bed sediments, due to their lower concentrations and their 

shorter dispersion train lengths. Within each type of dispersion train, it is of geochemical 

interest to observe how tributaries affect the mainstem concentrations and to identify which 

elements are more mobile than others downstream from the source of contamination.

A second goal o f the project was to compare the abundance and distribution on 

selected chemical elements in bed sediment in the basin to that determined in 1989 and 1995 

by Moore and other (1991) and Mentes (1997), respectively. The 1989 sampling event 

occurred prior to the start o f the remediation projects in the headwaters region in 1993. In 

1995, Menges (1997) found few changes in the trace metal concentrations in the bed 

sediments in the basin other than in the immediate area o f the remediation site. We wanted
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to determine i f  there had been further changes in the geochemistry o f bed sediments in the 

three years since the sampling represented in the Menges (1997) study.

The third purpose of this study is to bring the unmined McDonald Gold ore body 

area into the geochemical context of the Blackfoot River watershed. This necessitates 

testing whether or not there is a measurable input o f trace metals from the mineralized yet 

unmined area to the waters and sediments of the Landers Fork and Blackfoot River in the 

vicinity o f the deposit. Based on research on the dispersion trains in water draining 

unmined yet mineralized areas, naturally elevated concentrations rarely extend more than a 

few hundred meters from the source (Hoffman and Fletcher, 1972; Runnells and others, 

1992; Schmitt and others, 1993; Leybourne and others, 1998). In bed sediments, natural 

dispersion trains typically do not extend for longer than 20 km from the mineral source 

(Helgen and Moore, 1996).

Although Moore and others (1991) also examined the bed sediment and solute 

dispersion trains in the Blackfoot River watershed, their research took place prior to the 

remediation work in the headwaters. Additionally they did not use “ clean”  sampling 

protocols for surface water. In the past decade, several investigations have demonstrated 

that standard water quality sampling methods have likely caused some degree of 

contamination to samples taken from both unpolluted and polluted watersheds (Windom 

and others, 1991; Benoit, 1994; Taylor and Shiller, 1995). The new clean methods to 

collect, process, and analyze trace element samples currently are replacing the problematic 

older methods (Horowitz and others, 1994; Hurley and others, 1996; Balough and others, 

1998). With the increasing number of watersheds being impacted by mining and other 

human activities, it is important to build a database of accurate surface water geochemistry 

measurements in order to adequately monitor and regulate water quality into the future. As 

a result, an additional and final purpose to this project is to add to the growing database o f 

water quality measurements which are as accurate and reliable as currently possible.
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I I I .  Site desciption and history

Mining from 1865 to 1953 in the Upper Blackfoot Mining Complex in the 

headwaters of the Blackfoot River has been linked to water and bed sediment contamination 

and declines in benthic organisms and fish populations (Spence, 1975; Moore and others, 

1991, Menges, 1997). These impacts are not limited to the headwaters, but continue for 

tens of kilometers downstream. The district is a collection of numerous mines and 

prospects scattered within the drainages of small tributaries which come together to form 

the Blackfoot River. The earliest operations consisted of gold placer mining, but later 

operations led to the building of an on-site smelter, and after the 1920s, activities were 

expanded to vein mining of Pb, Ag, Au, and Cu (Spence, 1975). Ore and waste rock 

contain sulfide minerals such as pyrite (FeS,), galena (PbS), and sphalerite (ZnS), 

tetrahedrite (Cu12Sb,S,3), bomite (Cu5FeS4), chalcopyrite (CuFeS,),arsenopyrite (FeAsS), 

as well as quartz (SiO,) and rhodochrosite (MnCO,) (Pardee and Schrader, 1933). The 

tailings, waste rock, and acid mine drainage from adits have been the primary sources of 

contamination to the Blackfoot. A particularly damaging event occurred in 1975, when a 

tailings dam broke and released approximately 100,000 tons of pyritic mine tailings into the 

river (Spence, 1975). The collection of mines in the area have been undergoing 

remediation since 1993 by ASARCO and ARCO. The remediation activities have focussed 

on plugging adits, excavating, liming, and revegetating waste rock and tailings, and 

treating acid mine drainage by channeling it into an oxidation pond and a wetland treatment 

system.

Elsewhere in the basin, little mining has taken place other than some relatively 

small-scale operations in the Nevada, Elk, and Union Creek basins. Portions o f the 

watershed are used extensively for grazing, irrigation, and logging, but there are no major 

urban areas or industries. Several o f the major tributaries o f the Blackfoot River (Landers 

Fork, Northfork, and Monture Creek) originate in wilderness areas, supplying high quality 

water and sediment to the mainstem. The Blackfoot River is a Class I trout stream and is
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classified by Montana’s water quality standards as B -l, indicating it can support all 

beneficial uses such as drinking water, recreation, and fisheries (MDHES, 1994).

Current mining interests in the watershed are focussed on the McDonald Gold 

Deposit, near the confluence of the Landers Fork and the Blackfoot River. The proposed 

mine targets a gold and silver-bearing ore body hosted almost entirely in an lithic-rich 

rhyolite tu ff concealed at the surface by glacial till and alluvium (Schafer and Associates, 

1994). The proposed mine would be an open-pit operation with cyanide heap leaching and 

waste rock disposal situated along the floodplains o f the streams. Other studies in the area 

have shown that the ground water and surface water o f the Landers Fork and Blackfoot 

River are closely connected hydrologically (Nagorski and others, 1998; Nagorski and 

others, 2001). Notably, sections of both rivers receive perennial inputs o f groundwater 

where they flow adjacent to the ore deposit. Therefore, a major concern is that mining 

would affect the physical dynamics and geochemical conditions in the adjacent rivers.

IV. Methods

/. Sampling design:

We sampled at fourteen sites along the Blackfoot River (BFR) and fourteen 

tributaries from August 16 to August 20, 1998 (Fig. I). We selected sites along the BFR 

so that the mainstem was sampled above and below the major tributaries. This design 

resulted in more closely spaced sampling intervals in the upper portion o f the basin. We did 

not sample many o f the numerous small headwater tributaries, many of which have been 

impacted by mining. The most upstream site sampled was below most of the remediated 

area at the headwaters of the Blackfoot River, which is below the confluence of many o f 

the mining-impacted tributaries. Three more tributaries (Shave Gulch, Paymaster Gulch 

and Swamp Gulch) not sampled for this project join the Blackfoot between the first and 

second sampling sites. Paymaster Gulch and Swamp Gulch were subject to remediation 

treatments in the early 1990s. These and other tributaries not included in this study were
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omitted because we estimated them to have relatively insignificant flow contributions to the 

mainstem.

We sampled all the selected tributaries as close to their confluence to the BFR as 

possible; generally, this was within I km of the confluence. For one tributary, Meadow 

Creek, this resulted in sampling the creek at a location where it flows through the metals- 

contaminated marsh system. As a result, Meadow Creek was not included in calculations 

o f average tributary concentrations, which were used as estimates of baseline 

concentrations in the watershed.

We began sampling at the headwaters and progressed downstream, except that we 

did not sample two sites near the headwaters until the fifth day. Also on the final sampling 

day, we resampled an upper basin site to check for any changes in river chemistry 

compared to Day 1 (no measurable changes were found). Considering that the average 

measured water velocity was 0.5 m/s, the estimated travel time downstream from the 

headwaters to the confluence (215 km) with the Clark Fork River was 5.2 days.

Therefore, we roughly followed a parcel of water as it traveled down the basin. During the 

study period, weather conditions varied from sunny to partly cloudy, with only trace 

amounts o f precipitation in the watershed (WRCDC, 1999).

2. Stream/low measurement:

We measured streamflow following standard USGS protocol, with the exception 

that for a few of the small headwater streams that were <2 m in width, we used only 6 

instead of the recommended minimum of 10 sampling stations per transect (Rantz and 

others, 1982). The streamflow measured on the Northfork for this project compared well 

with the streamflow reported by the real-time USGS gauge data (6.23 ±0.08 cubic meters

per second (m-Vs) vs. 6.40 ±0.31 nvVs, respectively) (USGS, 1999). We determined our 

measurement precision by measuring discharge at some sites multiple times. Our 

measurement error decreased with higher streamflows. Accordingly, we assigned sites
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with <0.28 m3/s an error of ±0.003 m3/s, 0.28-1.84 m-Vs an error of ± 0.11 m-Vs, and 

> 1.84 m3/s an error of ± 0.17 m-Vs. These errors represent the maximum measurement 

discrepancies obtained by the multiple measurements.

3. Water sampling:

At each site, we measured pH, dissolved oxygen, temperature, and conductivity in 

situ, using an Orion model 230A meter with a Ross electrode for pH; an Orion model 820 

meter for dissolved oxygen; a Hach Conductivity/TDS meter for conductivity; and a 

Bamant 100 Thermocouple Thermometer Model No. 600-2820 (JKT) for temperature.

At all sites, we collected the water samples by depth and width integration as best as 

possible. At 12 o f the sites, we collected a single water sample; at 13 of the sites we 

collected 4 samples; and at 3 sites we collected 10 samples. The purpose of collecting 

multiple samples per site was to define the spatial variability along the sampling transect. 

Four samples per site were deemed adequate for this estimation, based on previous studies 

in the upper part o f the basin (Nagorski and others, 1998). However, at the 3 sites where 

we collected 10 samples, we did so to test whether 4 samples could adequately capture 

variability in differently-sized river sections. Results show insignificant improvement in the 

within-site variability estimate with the use of 10 versus 4 samples. Error bars on the data 

from sites with multiple samples represent the standard deviation of the mean concentration 

o f the multiple samples. Error bars at sites with single samples were derived from the 

average percent relative standard deviation at all sites with multiple samples.

We collected, processed, and filtered samples using clean techniques. These 

measures included the exclusive use of materials that had undergone extensive acid- 

washing (2 hours in 50% HC1 followed by 24 hours in 1 % trace metal grade H N 03, with a 

minimum of 3 rinses with M illi-Q deionized water before and after each acid treatment), 

double-bagging of sample bottles, and filtering o f samples under a class 100 laminar flow 

hood wearing clean nitrile gloves. In the field, two people were required to obtain the
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water samples, and both wore nitrile gloves that were changed between each site. One 

person was designated as “ dirty hands”  and the other as “ clean hands.”  The former 

handled the outside bag, whereas only the latter could open the inner bag and take out the 

sample bottle. The clean hands person opened the sample bottle moments before sampling, 

emptied out the M illi-Q  water which was stored in it, and rinsed the bottle and cap with 

river water. The sample was then taken by filling the 1-liter LDPE Nalgene sample bottle 

to capacity. We were careful to always sample upstream of where we had physically 

disturbed the site by wading and to sample upstream of bridges. We then returned the 

sample bottle to its double bags and stored it on ice for transport to the laboratory 

(University o f Montana’s Murdock Environmental Biogeochemistry Laboratory).

At the laboratory, we filtered the samples under the laminar flow hood within 12 

hours of collection. We used Gelman Sciences Serum Acrodisc GF filters (each with a 

borosilicate glass fiber prefilter layer over a 0.2pm polyethersulfone membrane) and 

discarded the first 50 mL of filtrate in order to reduce the effective pore size of the filter and 

to rinse the filtration materials (Taylor and Shiller, 1995). Next, we filtered 60 mL of 

sample into pre-cleaned but non-acid washed amber glass bottles for anion and carbon 

analysis. We then filtered another 125 mL into ultra-clean LDPE bottles for cation and 

arsenic analysis. We acidified each of these samples with approximately 200 pL (to bring 

the pH to <2) o f ultrapure, double distilled from quartz, Optima (Fisher Scientific) HC1.

We stored the sample bottles in sealed plastic bags until analysis.

4. Bed sediment sampling:

Following collection of the water samples, we took streambed sediment samples at 

each site. At half of the sites, we collected 4 samples, and at the other half, we collected 1 

sample. At the single-sample sites, we integrated the sample over the same sized area that 

would have been divided into four sections had the site been selected for multiple samples. 

Error bars were determined the same way as described for water samples, in which the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mean variability found at sites with multiple samples was applied to sites with single 

samples.

We sampled the sediment by scooping the top 1-2 centimeters o f fine-grained bed 

sediment with a plastic spoon. Sediment availability varied among sites, and hence the area 

from which sediment was integrated per sample varied from approximately 30-100 meters 

o f streambank length. We strove to collect an equal amount of sample from each channel 

bank and sieved the sediment with ambient stream water through a 63^m mesh plastic 

screen set in a plastic funnel casing. After collecting the sieved sediment-water slurries in 

250 mL acid washed polypropylene bottles, we stored them on ice for transport to the 

laboratory.

Upon returning to the laboratory at the end o f the field day, we centrifuged the 

samples at 2000 rpm for 15 minutes, decanted the water, and dried the sediments at 70°C 

for one day. Next, we crushed each dried sample to a fine powder in the sample bottle 

with an acid-washed glass rod. We used a microwave aqua-regia digest procedure to 

prepare the samples for analysis. This method entailed adding 0.5 ml of M illi-Q  water,

1.25 ml trace metal grade HNOj, and 3.75 ml trace metal grade HC1 to 0.5 g of sediment 

sample, microwaving the mixture for 6 minutes on high power (ca. 570 watts), and adding 

M illi-Q  water to bring the cooled solution to 50 grams. We centrifuged the completed 

digests for 5 minutes at 2500 rpm and transferred the clarified solutions to acid-washed 

polyethylene bottles for chemical analysis.

5. Laboratory analysis:

We analyzed the trace element and major ion concentrations in the water using a 

Thermo Jarrel-Ash ICAPES (IRIS) with ultrasonic nebulization (Cetac, U-5000AT+) 

according to EPA Method 200.15 (Martin and others, 1994). We used the ICAPES with 

cyclone nebulization according to EPA Method 200.7 (EPA, 1991) for the analysis of 

sediment digests.
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We measured anions on a Dionex Ion Chromatograph (IC) within 48 hours of 

sample collection according to EPA Method 300.0 (Pfaff, 1993). We acidified remaining 

sample in the amber bottles with reagent-grade HC1 to pH<2 and used it for determination 

of organic carbon using a Shimadzu Carbon Analyzer according to Standard Method 505A 

(Franson, 1985) 46 days after sample collection. We determined alkalinity by titration with 

sulfuric acid to pH 4.5 within 1 day of sample collection.

Following Standard Method 303A, we measured total arsenic using atomic 

absorption spectroscopy with hydride generation (HGAAS) (Franson, 1985). However, 

we modified the arsenic reduction method to follow a method developed at our laboratory 

(Mickey, written communication, 1997). This method calls for the addition of KI and HC1 

to all standards and samples to achieve final concentrations of 2% KI and 1 M HC1. We 

made the additions at least 2 hours prior to analysis to allow for complete reduction of 

oxidized arsenic species. We ran solutions o f 0.35% sodium borohydride (stabilized with

0.5% NaOH and 6N HCi) together with the samples through the hydride generator.

6. Quality assurance/ quality control:

We conducted all laboratory analysis under a strict quality control program. At the 

start o f each day’s analysis, we calibrated all instruments and checked and corrected (if 

needed) the calibration at intervals of approximately every 10 samples. The detection limits 

used, called the Practical Quantifiable Limits (PQL), were defined as the concentrations at 

which elements could be reproduced within a variability range of approximately 30%.

For water samples, the mean difference between duplicate runs of samples on all 

instruments was less than 8.5%. Spike recoveries for all analytes measured above 

detection were between 92-115%. On the ICAPES, USGS water standards T-143 and T- 

145 run with water sample analysis fell within the reported acceptable range for all elements 

except for Ba in T-143 and T-145 and Sr in T-145, which were slightly low. External 

standards run on the HGAAS (USGS T-143 and T -113) and IC (QC SPEX) also fell
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within the reported ranges. Accuracy was checked on the HGAAS, Shimadzu, and the IC 

by running in-house standards, and the mean differences between the standards and the 

measured concentrations were less than 10%. Lab blanks were below the detection limits 

on all instruments. Field blanks were mostly below detection, with the exception that Ca 

(0.02 mg/L), Mg (0.01 mg/L), and Na (0.23 mg/L) were detected in most o f the blanks. 

These levels are low enough not to interfere with concentrations in environmental samples.

During ICAPES analysis of the sediment digests, the mean percent difference 

between duplicate runs of samples was less than 10%. Mean percent recoveries for spikes 

o f all analytes were between 89-105%. As with the water samples, USGS standards T- 

143 and T -145 were analyzed using ICAPES during sediment analysis. A ll elements fell 

within the reported range, with the exception of mean Ca in T-143, which was 2% higher 

than the reported acceptable limit. All lab blanks were below detection limits, as were digest 

blanks, with the exception of trace amounts o f Ca, Cr, Fe, Mg, Na, Si, and Ti. These 

contaminants were also not high enough to interfere with the concentrations in the 

environmental samples.

7. Dissolved load calculations

Loads were calculated by multiplying the discharge (m3/s) at each site with the 

concentration (mg/L or |ig/L) o f the solute of interest. The propagated error associated 

with each load calculation was found using the formula:

Load error =; , (Taylor, 1982)
where
B= discharge;
AB = discharge error;
A = concentration of solute;
AA = concentration error (within-site variability)

Loads could not be quantified at sites where solute concentrations were below the specific 

element’s PQL.
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8. Average tributary concentrations

The chemical concentrations in the water and bed sediments o f the mainstem were 

compared with the average concentrations in the water and bed sediments o f the Blackfoot 

River tributaries. However, Meadow Creek was not included in the calculations of average 

tributary concentrations because it was sampled where it flows through the contaminated 

marshes near the headwaters. Many tributaries had some metal concentrations below the 

PQL. In these cases, we assigned a value o f one-half the PQL to the undetectable 

concentration and calculated the averages using these assigned values.

V. Results

I. Water chemistry:

a. Mainstem

Dissolved (<0.2 pm) Al, Cd. Co, Cu, Mn, Ni, S, S042'and Zn peaked in the 

headwaters area, below the historic mining district, and then declined sharply downstream 

as cleaner tributaries joined the mainstem (Table 1). Mainstem Al, Cd, Co, Cu, Fe, Mn, 

and Ni concentrations dropped to average tributary concentrations or fell below detection at 

distances o f 9-19 km from the most upstream site (Fig. 2a). Zinc and SO*2' were more 

mobile, remaining elevated above average tributary concentrations for 25 km and 37 km, 

respectively (Fig. 2b,c). Zinc may have been elevated over the average tributary levels for 

even longer distances, but this cannot be determined due to its drop below its PQL at 25 km 

downstream from the headwaters. Samples from the uppermost 3 kms of the mainstem

had concentrations o f Al, Co, Cu, Mn, Ni, S, and S042' that were at least 3 times greater 

than the mean tributary concentrations. Manganese and Zn were enriched by at least 2 

orders o f magnitude (exact enrichment factors cannot be calculated due to the undetectable 

levels lower in the basin).
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Aluminum, Co, Cu, Mn, Ni, S, S042'and Zn were at their highest levels not at the 

site closest to the mining district, but at the second site, 2.5 km downstream from the first 

(Fig. 2a, b, c). This second site is located in the contaminated marsh system and 

downstream o f the input o f Pass Creek, Paymaster Creek, and Swamp Gulch. 

Conductivity, Fe, K, Li, Na, and Si were also higher at the second site, and pH was lower 

(7.3 compared to 7.7) (Figure 2d).

Other elements did not follow the pattern o f declining downstream from a peak at 

the uppermost couple o f sites. For example, Fe did not peak until river km 203.3 (BFR- 

above Alice Creek), where the BFR emerges from the second o f three marshes downstream 

from the mining district (Figure 2e). Arsenic was below detection (<0.2 jag/L) at the 

uppermost site, but its concentration gradually increased to its peak o f 2.3 (ig/L at river km

108.5, below the confluence with Nevada Creek, which had the highest As concentration 

in the basin samples (Figure 2f). Calcium concentrations almost doubled between the 

headwaters and river km 153 (Figure 2g). Mainstem Ba, K, Li, Mg, Na, Si, and Sr 

concentrations fluctuated little downstream, even though tributary concentrations o f these 

elements varied far more widely.

b. Tributaries

Most tributaries were below detection levels for dissolved Al, Cd, Co, Cu, Mn, Ni, 

and Zn (Table I). Tributaries with exceptionally high concentrations (relative to the 

mainstem) o f measured solutes include: Hogum Creek, with the highest Fe and Sr detected 

in all the samples; Meadow and Elk Creeks, which were the only tributaries with detectable 

Al (>5 |ig/L); and Nevada Creek, with the highest dissolved organic carbon, As, K, Li,

Na, and Si o f all basin-wide samples. Meadow Creek, sampled where it flows through the 

contaminated marshes, had the highest tributary concentrations o f Cd, Co, Cu, Mn, Ni, S, 

and Zn, and it was very similar chemically to the Blackfoot River sites immediately above 

and below their confluence.
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In the Landers Fork, concentrations of Cd, Co, Cu, Fe, Mn, Ni, and Zn were all 

below detection. It was the only site in the basin with Mn at levels below detection (<0.3 

|ig/L) and was one of only three sites with Fe below detection (<5 fig/L). Most of the 

detectable solutes (sulfate. As, K, Li, Na, S, Si, and Sr) were lower than the mean 

tributary concentrations, while alkalinity, Ba, Ca, and Mg were higher than the mean. All 

of these detectable elements fell within one standard deviation of the mean concentrations in 

the watershed tributaries, indicating that the Landers Fork was not geochemically 

anomalous in the basin.

c. Reactive solutes:

Reactivity of the solutes in the Blackfoot was evaluated by examining whether a 

drop in solute concentration occurred between two mainstem sites after accounting for 

tributary contributions and measurement errors. A loss in solute concentrations along 

losing or steady-streamflow reaches (determined by the streamflow measurements) was 

assumed to be a product of solutes transferring to the solid phase. Results o f this

evaluation indicated that SO.f', Fe, Mn, S, and Zn were dropping out o f solution along 

several reaches o f the river. Iron, Mn, and Zn were reactive between river kms 2 10.0 and

209.8 (above and below Meadow Creek); between kms 203.3 and 193.2 (BFR-above 

Alice Creek to BFR-above Hogum Creek); and between kms 193.2 and 187.7 (BFR-above 

Hogum Creek to BFR-above Landers Fork). Iron and Mn also were reactive along the 

reach above and below Nevada Creek’s input (river kms 117.6 to 108.5). Sulfate (and S) 

were reactive between river kms 203.3 and 193.2. Additionally, alkalinity (as mg/L 

CaC03) and Ba were found to be reactive between the uppermost site (river km 212.5) and 

the second site (river km 210.0).

Gaining reaches were more difficult to evaluate for reactivity, because a decrease in 

concentration may have occurred due to dilution by the gained water or by chemical 

reactions. Hence, for the most part, reactivity could not be determined along gaining
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reaches because groundwater entering the reach was not sampled. However, i f  the 

concentration at the downstream site was still lower than predicted assuming the extreme 

case that the gained water had zero dissolved elements, then we could determine that 

solutes were coming out of solution along the stretch o f the river. According to this 

evaluation, Cd, Cu, Mn and Zn were reactive along the gaining reach between river km

209.8 and km 203.3, and Fe and Mn were reactive along the gaining reach between river 

kms 108.5 and 74.4.

cl. Evaluation o f the tributary load contributions to the BFR:

There was generally a positive, approximately linear relationship between the solute

loads of alkalinity, As, S042', Ba, Ca, K, Li, Mg, Na, Si, and Sr in tributaries o f the BFR 

and the tributary sizes (expressed as discharge) (Figure 3a). Manganese loads had no clear 

pattern, indicating that its load contributions from tributaries could not be predicted from 

discharge (Figure 3b). Because no more than two tributaries contained above detection 

limit levels o f Al, Cd, Co, Cr, Cu, Ni, and Zn, no conclusions could be made about the 

relationship between loads o f those metals with tributary sizes. Considering the detectable 

elements, the Landers Fork was not an unusually large source of solute loads, because its 

solute loads fall in line with most other tributaries (Fig. 3a and 3c). Because the amount by 

which it increased the mainstem load of detectable trace metals is not unusually high for its 

size, a geochemical signal o f the McDonald ore body in the area was not discemable in the 

solute phase. Outliers in the data included Hogum Creek, with high loads of Fe;

Clearwater River with low loads of most solutes, especially Fe; and Nevada Creek with

anomalously large loads o f As, S04:\  K, Li, Mn, Na, Si, and Sr (Figure 3c).
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2. Bed sediment

a. Mainstem

A sharp downstream decline in the mainstem sediment concentrations is seen for 

Al, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, S, Si, V, and Zn (Fig. 4a, b). Bed sediment 

collected immediately below the mining district (river km 212.5) contained the highest 

concentrations o f As, Cd, Co, Cu, Fe, Mn, Ni, Pb, S, and Zn o f all the mainstem and 

tributary samples. These elements were elevated over average tributary concentrations by 

up to 3 orders of magnitude. The furthest downstream site in the basin, at river km 6.0, 

contained the lowest concentrations of Al, As, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, and Zn in 

the mainstem.

Arsenic, Co, Cu, Fe, Pb, V, and Zn reached average tributary concentrations at 

river km 117.6, almost 100 km downstream from the mines. Aluminum, Ba, Be, Cd, Mn, 

Ni, S, reached average tributary concentrations by river km 186.6 (below input of the 

Landers Fork), about 30 km downstream of the headwaters (Fig. 4c, d).

Yet not all elements were at a maximum in the headwaters. In fact, the sample 

taken below the Mike Horse Mine contained the lowest concentrations of Be, Li, Na, P, 

and Ti in the Blackfoot mainstem and the lowest Ba in all the basin samples. Barium, Ca, 

Cr, K, Li, Mg, Na, P, Sr, and Ti do not show clear downstream spatial trends below the 

mine (Figure 4e). Calcium and Mg are at their lowest between river kms 210.0 and 186.6 

(Figure 4f). Chromium, K, P, Sr, and Ti exhibit relatively little fluctuation; their maximum 

concentrations in the mainstem are no more than twice their minimum concentrations.

b. Tributaries

Downstream from the headwaters mining complex, the influence of tributaries with 

atypical concentrations o f some elements is seen on the mainstem. For example, Sr 

concentrations increase below the input o f Hogum Creek (river km 187.7) and Nevada 

Creek (river km 108.5), which have anomalously high Sr levels . A  2 to 4-fold increase in
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Mg and Ca in the BFR mainstem occurs below the confluence with the Landers Fork (river 

km 186.6), which contained the highest Mg and Ca concentrations o f the tributaries 

sampled (Figure 4f).

Meadow Creek, which joins the Blackfoot several kms downstream from the Mike 

Horse Mine in the marsh area, contained the highest Al, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, 

S, Si, and Zn o f all tributaries sampled. As noted earlier, Meadow Creek was sampled in 

the marshy area and only 10 m upstream of its confluence with the Blackfoot, and as a 

result, its high concentrations o f solute and sediment metals may be due to influence of the 

mining- contaminated marsh itself. Monture Creek had the lowest concentrations of Al,

As, Cr, Cu, Fe, K, Mg, Na, Ni, Si, T i, V, and Zn o f all the basin samples. No other site 

contained as many elements which were at minimum basin concentrations. The 

Hardscrabble Creek sample had the highest Ba and the lowest Co and Li of the tributaries. 

Hogum Creek contained the highest Be of the tributaries and the highest Cr, P, and Sr of 

all the basin samples. Arrastra Creek had the highest V and B (together with Elk Creek), 

the lowest Mn of all the tributaries, and the highest Li concentrations of all the sites in the 

basin. The highest Na concentration was found in the Nevada Creek sample, and the 

sample from Elk Creek had the highest K of both mainstem and tributary samples. The 

Clearwater River, Monture Creek, and Elk Creek were the only sites with As 

concentrations below detection (<6.5 ppm).

The Landers Fork was anomalous in that it had the highest Mg concentrations o f all 

the tributaries, the highest Ca o f all the basin-wide samples, the lowest Ba of all tributaries, 

and the lowest S concentrations found in all o f the basin-wide samples. Still, elemental 

concentrations in the sediments from the Landers Fork fell within one standard deviation of 

the mean concentrations of the basin tributaries, with the exception that its Ca and Mg 

concentrations were higher and its P and S concentrations were lower than the mean ±1 

standard deviation. This result implies that a geochemical signal o f the McDonald ore body 

was not found in the streambed sediments either.
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c. Comparisons with 1989 and 1995 bed sediment data

In August 1989, Moore and others (1991) collected bed sediment samples at many 

o f the same sites sampled in this study. In August, 1995, Menges (1997) revisited many 

of those sites for bed sediment collection, and she digested and analyzed both the 1989 and 

1995 samples using the same method used in this study. Hence, direct comparisons 

among the sets o f data can be made.

Generally, the downstream trends of metal concentrations are the same for each of 

the datasets. In all o f them, there is a steep downstream decline in such elements as Al, As, 

Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn, which are typically at least one order o f magnitude 

higher in the headwaters than in most o f the mainstem (Fig. 5). Although there are some 

site-specific changes, a basin-wide systematic decline in metal concentrations through time 

is not apparent.

V I. Discussion

/. Water chemistry:

Much of the sharp decline in the solute trace element concentrations may be 

explained by simple dilution by cleaner tributaries. Yet not all elements exhibited the same 

proportional declines in trace elements at each stage downstream. The longer distance 

(from the mining complex) over which above- average tributary concentrations of Zn and

S042'concentrations persisted compared to other solutes can be explained by their higher 

degree o f conservative behavior. Although the load data indicate that both S042' and Zn 

were reactive in the upper basin, they were less reactive than elements such as Al, Cu, and 

Fe. Zinc is generally believed to be more mobile than other trace metals in aqueous 

systems. Its sorption onto amorphous Fe oxyhydroxides is reportedly favored at higher pH 

levels than for many other trace metals, (Benjamin and Leckie, 1981; Filipek and others,
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1987; Rampe and Runr.ells, 1989). Therefore, it would be expected to remain in the 

dissolved phase for a greater distance downstream from an acidic source than would the 

more reactive metals. Other researchers have identified S O /’as a nearly or fully 

conservative ion in surface water as well (e.g. Bencala and others, 1987; Kimball and 

others, 1994; Schemel and others, 2000).

The reactivity of many of the trace metals and sulfate in the upper basin is expected 

in oxygenated, near-neutral pH surface waters. Presumably the metals are being lost from 

the water column by microbially-mediated precipitation and sorption reactions involving the 

formation of Fe and Mn oxides and the co-precipitation of other trace metals, metal sulfate 

formation, and scavenging by organic matter in the river. Such processes have been 

documented in many other streams impacted by mining contamination (e.g. Rampe and 

Runnells, 1989; McKnight and Bencala, 1990; Schemel and others, 2000). Additionally, 

our results are largely consistent with the geochemical patterns observed by Moore and 

others (1991) in their Blackfoot River water samples.

The increase in concentrations of several dissolved metals and sulfate and the drop 

in pH at the second mainstem site, a couple of kilometers below the mining district, are 

likely still due to the impacts from the mining. This sampling site (at river km 210.0) is in 

a marsh area, the first part o f a system of three marshes that extend from river km 211.6 to

196.6. The marshes have collected wastes from the past mine operations, including those 

released during the tailings dam break in 1975 (Spence, 1975; Moore and others, 1991.) 

The site is also downstream of Paymaster Creek and Swamp Gulch, which are small, 

mining-impacted tributaries which were not sampled in this study. Although these creeks 

have undergone remediation, it is possible that they still supplied the metals and acidity 

measured in the samples at river km 210.0.

The mining-contaminated marshes might have been the source for the higher metals 

at the second site due to geochemical processes in the fine-grained organic-rich marsh 

sediments. Geochemical partitioning within saturated sediments is strongly controlled by
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pH and reduction-oxidation reactions, and other studies have suggested that marshes, 

wetlands, hyporheic sediments, and reservoir sediments can therefore influence the 

geochemistry of receiving waters (Shotyk, 1988, Moore, 1994; Shiller, 1997; Nagorski 

and Moore, 1999). In reduced zones, many metals are favored to reside in the solute phase 

over the particulate phase, largely due to the instability o f Fc- and Mn- oxides and 

hydroxides, which in turn can release co-precipitated metals when dissolved (Stumm and 

Morgan, 1996). Although no groundwater was sampled in this study, it is reasonable to 

speculate that it had higher metal concentration than did the oxygenated overlying surface 

waters. Hence, the increase in filterable metals in the surface water may be a result of 

hydrologic flushing of the more highly concentrated marsh ground water into the stream 

channel.

2. Bed sediment

The high concentrations o f metals in the bed sediments at the uppermost sites 

indicate that the headwater mining district is still the major source of contaminants to the 

sediments o f the Blackfoot River. The relatively Iow-metal sediment concentrations in 

upper-basin tributaries explain the sharp downstream decline in metal concentrations in the 

upper basin. Because Pass Creek, Alice Creek, Hardscrabble Creek, and the Landers Fork 

contain many-fold lower concentrations of elements such as As, Cd, Cu, Fe, Mn, Ni, Pb, 

S, and Zn, the mixing o f their sediments with those in the mainstem lead to the observed 

declines in metal concentrations. (Table 2 and Fig. 5).

In her 1995 samples, Menges t 1997) calculated that the bed sediment 

concentrations o f Al, As, Cd, Fe, Mn, Ni, and Pb reached average tributary levels or fell 

below detection at 25 km from the headwaters, and that Cu and Zn reached average 

tributary concentrations at 80 and 140 km from the headwaters, respectively. Results from 

this project are somewhat different, with As, Fe, and Pb persisting over average tributary 

values for longer distances, up to 97 km downstream from the mining district. However,
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these discrepancies are most likely merely a product o f differences in the amount and type 

o f data used to calculate the average tributary values in the two studies. Our study included 

a larger number of tributaries than did the study by Menges (1997). Although both projects 

compared mainstem concentrations to average concentrations in uncontaminated tributaries, 

the use o f additional data in our calculation lowered the levels for the sediment 

concentrations. Importantly, Monture Creek was not sampled by Menges (1997), while 

we found this tributary to contain the lowest basin-wide concentrations of Al, As, Cr, Cu, 

Fe, K, Mg, Na, Ni, Si, Ti, V, and Zn. The lack o f differences in the mainstem bed 

sediment concentrations in 1989, 1995, and 1998 further support this explanation for 

differences in attainment of average tributary levels as being a difference in the data used in 

the average tributary calculations rather than true changes in the sediment concentrations 

and distributions over time. These results underscore the importance of having large 

sample sizes, using consistent sampling designs, and employing consistent sample 

preparation and analytical protocols in long-term observational studies.

3. Differences between trends in water and sediment dispersion trains:

Although in general the metal concentrations in both the water and bed sediment 

were highest in the headwaters region, their patterns did not correspond exactly. While the 

bed sediment metal concentrations exhibited predictable dispersion curves according to 

sediment dilution models (Hawkes, 1976; Helgen and Moore, 1996), the solute trends 

were more complicated. Their pattern irregularities were likely due to their higher 

sensitivity to tributary contributions, in-stream chemical reactions, ground water inputs, 

and other physical and chemical factors in the watershed.

An example of the differences in sediment and water patterns is the As 

distributions. Although the lowest solute As concentrations in the basin were in the 

headwaters, sediment concentrations o f As were highest there, indicating strong 

partitioning into the solid phase for As or major differences in As sources (Fig. 2d and 4a).
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Additionally, solute Fe was relatively low at the headwater sites and peaked at river km 

203, while sediment Fe was highest at the top of the basin and declined by over an order o f 

magnitude downstream (Fig. 2c and 4b.) Comparison of sediment with solute 

distributions o f other metals also show that many solute peaks were offset by one or two 

sites downstream of the mines. This trend may indicate that some solutes near the 

remediated mining district were being precipitated out o f the water column, but the 

downstream marshes or unsampled tributaries resupplied the solute phase with some trace 

elements.

V II. Summary and Conclusions

Bed sediment and water quality analysis o f samples taken from the Blackfoot River 

and its major tributaries show a downstream decline in trace metal concentrations from the 

general vicinity of the historic Upper Blackfoot Mining Complex. Most solute 

contaminants extended for 20 km downstream of the mining complex, while elevated metal 

concentrations in sediments extended for up to 100 km below the headwaters. Sediment 

metal concentrations follow patterns predicted by simple dilution models (Helgen and 

Moore, 1996), while solute trends were more complicated. Solute S042', Cd, Cu, Fe, Mn, 

and Zn were identified as behaving non-conservatively along portions o f the river, mostly 

in the headwaters area.

Comparison o f the trends in water and sediment dispersion trains reveal that many 

solute peaks occurred one or two sites further downstream from the headwaters than the 

sediment samples, which showed peak concentrations mostly at the furthest upstream site. 

This indicates that solute concentrations near the remediated mining district might have been 

partially transferred to the solid phase, but the contaminated marshes or unsampled 

tributaries resupplied the dissolved phase with some trace metals.
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The Landers Fork had no anomalously high solute concentrations or loads, at least 

for the detectable elements, and only a few anomalously high sediment concentrations 

despite its proximity to an unmined ore body. No basin-wide changes in sediment 

concentrations o f metals were found compared to those collected in 1989 and 1995 despite 

the onset o f remediation work in the headwaters in 1993. Aluminum, As, Cd, Co, Cu, Fe, 

Mn, Ni, Pb, and Zn were still at least one order o f magnitude higher in the headwaters than 

in most o f the mainstem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79



Ta
ble

 
1. 

Me
an

 
co

nc
en

tra
tio

ns
 

of 
filt

er
ed

 
(<

0.
2p

m
) 

wa
te

r 
sa

m
pl

es
.

N  |  C

55

V) ^  <
E <

c  <  I 
= 1<

a  a  ■

-p< 0> ‘

ra o * 
O S

Q  E

E*

r t  »• (N N
IO M  -  2  ®  <P n  »  « S  r  o  m n ip ®

rvcvcNcvcvtNrvcv
0 0 0 0 0 0 0 0v v v v v v v v

n < o n ^ 2 2 o » * - ° ° ^ o o mN N N S ^ J c O O ^ ^ J f f l C I ®

ntoioiAioot t iniONt t t
w 2 2 2 N { N ' r t M O N n ^ » n

N N r g N N N M ( N < N N M
• v v v v v v v v v v v

oincoinootto<ocDNmo«*QPl’- IOf f lONnr iOMOt lOS

f-. T  ®  _  i f )«oZ 
w  N  <M ®

< n o m ( M n < o < o < o > o < o  cv^d^nr- .®*-* -
t t « A N ( O O O C D ® < M a O * - < 0 O f t^ o ^ t n ^ o f o ^ n u i c s ’v o o

P ) « - O n N I O V V t i A 9 l l O 0 I O l
^ N N ^ N N N N n r t ’f o n n

< 0 ® a > h » f l o c Q < 0 < o a 3 ® r t o a » < n
© o d o ' o o o o o o » - o o o

0 0 0 95
O O O O O O O O O Ov v v v v v v v v v

lAgy^tAiftiniAiniAiAiAt/iiAin 
0 0  0 0 0 0 0 0 0 0 0  V V V v v v v v v v v1 o  o

JO ^  CD <0 U ) t f ) i A i A i A i A i f l U t i A i O
d d O O O O d O O O
v v v v v v v v v v

cn mmio idu) io iooMN^*r td '>  M N N N W N n n v t v r t n  “
nnnQ(DnNNf l9«naia iQ too f f iM**nnNNOoa i(? i  cvcvfvcvcvrvcv<N»- —

N « t ^ t m n » - i n n t n N
o o o o o * - * - c v » - * -

r O O V N n r r ^ ^ O t t l D S  
V r- V V V V

N n ^ O « f n t o » - a 5 i n i f l '_  _ _  __ _| p»»
^ N M n V N B M O f l l N C l N N  
®  CO CO CO o  O  d  N  fl) 01 ff) <JJ ^  ®

N S N N Q O C O O Q t O t O C D Q O

o i o ^ t n c i f t n s B n t S S- -  r  (N t  C i O O m c D N

« o e s n N M 0 9 ; n i o i q t r t  
N  d  t f i  n  n  N  10 u j  p i  N  03 «  n '  | d v * ^ O O 0 l ( 0 < 0 M A i > O ? S  N N N N ^ ^ ^ ^ ^ f p p , n

JC -g

I 6 ° d E g Si n f i l l s
S s 2 ? l " J S  
" S j d ' S i a r i d l i  —

u s

S  5  5

w 5 f f J
Z  5  .

— jn to m 
u.  u.  
t o to

- 5 2

r t P o d o o d o d o d d d o
O  - ^ . w w w < ^ w w > w w ^ > w V

i fl teiooiflirttJJortrtOtN

^ r i i O ® r t N N ( pc o( £ i ( f l ( p
r t O N f - ' O J o J O N N l f l d

VT « :

1 * (O 9 52 *> « ! 
1 h* h* V- 5 »n r** J in o  o  5 m n  1 0 ®  r t  t*> 01

r I O O * * O O e O " - - O N O » -

{NCMCNICN<N(V(V<NfV<Nt(NCM‘ v v v v v v v v v v v v

r N n t O N N O f i S f f l t O O l * *
O f f l ( D N i f l l O n n f f ) n O N f ,J N

f l J o n t » ( ' i o N o i f l * - N ^ t  OCV(NtOTCVCN~fVCN^-J^CN

* ® r » r » » ® i A ' r r > j v ) © ^ © * o  
o o o  — o o o c n o o o r v b  —

? $ t o

^ o i o n c o c o c o c o o c o t o c  
0 ^ 0 0 0 0 0 0 0 0 0 0 0 ^v v v v v v v v v v v v

^miAiAiAOiAVtiAlAlfliA
O O O O O O O O O O O Ov v v v v v v v v v v v

iD^^miA^iniAiAininiAinif)
d - H O o d d o o o o o d d  • * * ^ » - ' V V V V  v v v v v v v

i O r > { 0 ( N t o o o r s»

f l 3 0 r t ^ O N N v 0 2 { 2 5

if),ft iou)iniAifliAtAioV)l.ininv * ° v v v v v v v v v r * v v

0 0 0 * - r - 0 0 p ^ 0 0 0 » - 0 » -

‘ o n ^ i f l ? ? ' - ? n r ^ ( \ i s  
„ n  v , i , s ^ ' * n i n p r t

( 0 ( 0 0 ( 0 5 l f f l S ° O O C O ( 0 « - » *
« r ! £ r ' j * - < r c N C \ i £ } ^ ' c n « - a c v r ' .

§ 5 ^ " 2 c § « 2 5 S ; 2 ®

o v N N a ^ t n S ' S N M
tO (D f i  O  O  0 )  ,

N N < O O N ( 0 ( D Q ( O Q O ( O C O ( B C O

• - i n r t n a j v i O o i i n v r n N  O O ^ O O O O ^ t N ® ® * - ®  
O O O O O C N O * - ( 0 ^ - « “ O O O

5 5 2 5 2 2 ^ : ^ 3 2 3 2 5  s g ; * ; « j ; 5 S S ? 5 5

< S ^ o ' i u o i u | 1i £ 5
5 o | o  S 6 2 a«s s I  g5 o 
S S « 8 ' S f f c S 2 i  =  i u 3 l  
H 0 . 2 < X I - i < 2 z 2 a u i O 3

0 -
a l l s ?

£

■a
E

S -j.
1 a

f>
»n £  o  m 
d  ^  
v  _J

f ta  <0 c  v,
li n O 0.

8

s©*lA©"S.
E

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C 2

17
37

7 
57

23
 

41
06

 
i 

22
73

 
95

9 
6

56
 

22
9 

16
6 93

 
53

 
5*

 
41

 
43

 
33 N 9 l N S 9 S l f i Q O N O > N < r No r v ^ ^ i n n i r t v N N r i N i o

~ 8

>
i O ' * O N a f f l n o o i o i f l n t v ® © t n © i ' t H f « » ^ ^ © r « » r » © c v

r j  r t  r t  ^  cn r> ^

V"l 
h- ©

N O Q ^ N T ? p - ( n > - 7 t £ | i p
N ( S l f l i i W n 0 n " - 0 < N 5 l ' " i y i v i ' i n n o o v « « > k n 9 i i y oV i ' - r ) ( J ) o S Q » - r \ i f l N r t c o f ,

*> 
</) ©

C D - p ^ « O t K f N O T * * ( O O l
N B l V V ' n r t f f l « 1 0 . N ,* » * 0 »

cv
i / i

< 5 » * l O ' » f l » ® Q N N « 7 I N N * - 5
c n ^ ® » n ® t N « c > H < n « r ® r * o " O i a o n i A i o n i n N V i o o a in N n M A K O Q q N M O a M

N g r t « N ^ N N N V « O ^ N

N.
i / i

M Q > * ( S ( O O < A ,* 0 l ( O O | f l i O i O3 5 r s . m ? 3 r * * ® « o ® 5 * 3 1 « n r s i
r t i n © ^ * « T r i c N r i ? i < n m r * » « r
S

Q ® ® ® ® r v ® m m ® © r ) © H
l O f f l N I N V ^ l O N ^ y i f ^ V l O K

N ( n t t f l p » o « o # w n N * * «

® *» w-

N r  t  A N I O N ®  V N O  r-»

§  S'  3 “IV v v

Q.
©  n-  o> o o n x p i n v n t Q i o  Q Q ^ { O r 3 f f l / i m f f l N r t N ? i J >  
o O ^ o n M D a o o o i o i s i o

i f l r r v ^ ^ i v i a i n i f l n n o i f l
K 5 Q ( f l O ( N O » s o n o Q » f l n© o ® f v © © 0 * - ® r ' * - o c N i © c £

©  
2  -

8 3 ^ ( S ( O P < ( N O i n ' * S M n N l f l
2 ^ A t ^ « n ® o i o o t h > o > N > ® to

n D < N i O M * i i n N o > - ^ o i f l * *
M r r | 0 ^ ® ( V Q ® V N C 0 < 0 r

* 2
^ ( O O l A N O l O n N V M A M A
( N n n c n f l n v u i n ’ t i o r f i N ^

o i N - N » v o n « f f M » r ( N O O N ®
^ N n i f i S ^ f f i n N N n o n s

M
o 2 CN

V v v v v v v v v v v v v

(N

V V V V V V V V V V V V  V

2  <=»
» - ^ N O K 0 3 > 0 ( N i r t ^ ^ ^ r tr > ® C N a » ( N a i v > t 5 < o ^ © ^ u ' i < N

r i l O ' f l ^ f N t f l r ’ T r N l O N N O
v © ( b H ® ® « r ^ n © ® m « ? 4  i d ( O i 2 0 o n N 0 n « < 3 N ^ Q  ® •• —

o.*>
2  o

N f f l a s c D s f l - o a i f l t N S O
n n ^ V N 9 I S « ' N ,T ( N Q 0 l i Ss f M i n v N t N f t ^ o i o n u l ' - ' -
© < n ( * ) n n r ) © 0 i o ® © ® < 0 ®

® a r ' » < Q * * 0 > © < N B © < N H Q H
® r » « r v ® © H O i O n © 6 4 ® H
n i s n n n i i n v o N r i o n n

.2 o
0 0 * ® 0 ® 0 * , 1 » < N N t f l ' r
n S ® B 3 N k O l O ' - O l O I M J I l O

v o o n o o i o a N O N ^ o a
v t f i t f l v f t n s i A y i i A c i o r i o

K 50

n N i n o N f O N O r t i o a N O
S S a S S S S S K S S S S S

N N O i f l ^ ^ O r O ' - r t n i f l
® N r f l > ^ S 5 N l 3 N ( f l - O N
a > « n ® m r >« 0 ® a > r v * r © ® * o

*> 
t> •* 
ik

O r t n ® K O 9 0 9 9 O 3 ] * * 9
N t f 5 5 l0 ^ # S ! O « ' 5 N N ^^ w t f t © ' 0 n f v a > ^ ® 0 9 f ^ nB i o o i N ^ O ' O M O n O ' I Bn f i i f l n r N i N ' - ' - ' - ' * ' - ’ ' ' *

® © o r v © ® H © < s © < ~ ® o n
3 W S ® S ^ ? S t 5 ® ,* - S o S

D £
U  O

n « T N . ® « » ® n © < N ^ © r ,>cNf>» 
*-  ^  ©  cn(N *-

O Q r n r t K o i N i r t n ^ N . i n o i« f f l i n * f P 4 < N N ^ i n ^ * * » r ( V

w **
u  ©

■
> A ® O I 9 l O ) O N O U ) i A s i O K W t

f l N ' T f A C i o w o r i n B i o a i
O f f l f l O r M - S s ^ K i n i C S  
— — CN CN —

o  ** 
u

n o o ) f i r t ( i o ® N < n i o y i i o v  to «t n  i*i ^ r g A n n i o A i f l o n n ' O i f l ®

■a **
O

v) pj  o  n  i»i

v v v v v v v v

*• r t  
n

V V V V V V V V V V V V

«
u

^ ® 5 © < 0 © N » ~ « r © C 4 ^ v > V )
^ 0 © r » 8 S ® » l « C 4 © * n ® ® ®( D n « n Q 9 i A K N e n c D * * N• • v ^ ^ 3 ) i n v f v o 3 o 3 < N N•-  CNCN?4r - fN* -<N«-

u i N t N n N o g t n N n o t
r > » ® i n Q Q Q r « . Q « © ® < 0 ® oV l l d N I D A U r f i O S A « A k
v ) v i O ( ’) N ^ a « J i ? t f j t a k

(S o
- » . 0 » - ^ © 0 ® © ® ® r v r ^ r v v i  
" “ t o r s  — o » * o ^ o o o o o o  
oV

» - * * O O r - O O O O O r - O O r -
o

s S
« > - n a ^ ! n n s i n ® N c o s -
a m < o v o ® n © r ^ ' T « * ) ® ® 9
« D < O ^ d l N Q O < 0 O < O O ^ C l* * ^ i f l « t V r t M N N N N r t p

N i O N O N N ® 9 r | f t P l t f i l S
O f n C M f l Q f f l m m B t o r
^ « - * N ® » n n » © © « © © i o © e N( D t n N o r i n N N T i t f t N n

•o 
0  ©

^ . < o v : _ , ® ® ® o  v  s  ®  i n n  
n — c v ® n

©  *- ©V V

n ^ N v o i o i o t o n  co © ^  ® 
n ^ N r t r i n ^ t s v  cn ^  r i  cn 

o

©  
<  «

o i t v K ) s < o o » 0 ) O N i n N N
i n ® r - . f N * - » - » - * - » - * - r - ^ -
<n

l O V l » - 5 I O V ( N ( ' ( i a ^ - > - s _HN  
OCNCTO>tO<* l ^ r>«. m' , r i ^ ' * ' * V > t2 
fNP*. ■— * - * -  CN ©  t£ <0 <0 

V V V V

Al 10

f - ® r “ © f N f ' * » Q C N ® Q r . 5 ^ f - .
Q < n n s o i f l O B A O < ‘ O N ni n i O ' - r t N - ' i « i n n > - n «
n c B i O O i O < o < n i o v ) v i A v < A n

u i i O i f l B n g r n K i a n v v r t  o « r < N * * © o * - o p » ® r - . ' a ^ o  
n c u N i f l o S N i a ^ O ^ o i N T  r r ^ i f l S ^ O ^ O n N O N B  
~  CN *- •-

E
X
$>
5

K i o s n p f M S O n o i o m
( N O » n n M f l i f l r t M t ’ , n
' ■ ^ 0 0 « ® O N 4 l » * C V O

B # r l O  V N r r
O A B O N N - f f l ,‘ ® ® i n o ®' • C A Q A f f l n O N ' f i n i f l r O
< N C N * - r - r * ^ ^ * - ® f * > © ^ < N C N

uH
1/as
<
£

\
5
c
*
5

1
*  x  €  5  §
8  . - £  “  ° I s  
^ i i S  i i f i s S f l l g

l k t k U . l k l k U : U . l k U . l k l L l k l L l k  
CD 0  0  0  0  0  0  0  0  0  0  0  0  S

©
t i
s
<
H3a
£
H

S 5  "¥ ■€ M ^  « *
l “ S 8 o ' ; d o c u | - |  8

s  s  s i  I f « * 1  s  1 ° s  i
0 . 2 ? : i j < Z Z 2 U u i O 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>B
FR

 w
at

er
sh

ed

M
O

N
T

A
N

A

21
5 

Km

A
pp

ro
xi

m
at

e 
sc

al
e 

in
 k

m

Fi
gu

re
 1

: 
M

ap
 o

f t
he

 B
la

ck
fo

ot
 R

iv
er

 w
at

er
sh

ed
 

w
ith

 m
ai

ns
te

m
 s

am
pl

in
g 

si
te

s 
(in

di
ca

te
d 

by
 

ci
rc

le
s 

an
d 

riv
er

 k
m

 d
es

ig
na

tio
ns

) a
nd

 s
am

pl
ed

 
tri

bu
ta

rie
s 

(in
di

ca
te

d 
by

 n
am

e 
ab

br
ev

ia
tio

ns
).

P
C

=P
as

s 
C

re
ek

 
M

D
=M

ea
do

w
 C

re
ek

 
A

L-
A

lic
e 

C
re

ek
 

H
S=

H
ar

ds
cr

ab
bl

e 
C

re
ek

 
H

G
=H

og
um

 C
re

ek
 

LF
=L

an
de

rs
 F

or
k 

A
R

=A
rr

as
tra

 C
re

ek
 

N
V

=N
ev

ad
a 

C
re

ek
 

N
F=

N
or

th
fo

rk
 

M
T=

M
on

tu
re

 C
re

ek
 

C
W

=C
le

ar
w

at
er

 R
iv

er
 

EC
=E

lk
 C

re
ek

 
G

C
=G

oi
d 

C
re

ek
 

U
C

=U
ni

on
 C

re
ek



4.0
kc\

3.0t
a. 2.0
3U

PQL1.0
• o

iT— K L J fi_____ fC.-

200
.02.

0 60 100 160

River Kilometer

1000
100

£3
e
N

PQL

LC 00 av UT

0.01
0 SO 100 150 200

River Kilometer

5 40
a jo 
1 20

PCUT.
MUL

0 60 100 160 200
River Kilometer

6.0
ac
LC

8.5
a  8.0 BLACKFOOT MAINSTEM

K B

a TRIBUTARIES

0 60 100 160 200
River Kilometer

Figure 2 a-d: River kilometer vs. surface water a) Cu b) Zn (note log scale), c) sulfate, and d) pH
Solid, connected diamonds represent the mainstem samples: m e squares represent tributary samples. 
Tributaries are identified by their abbreviations (listed in Figure 1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83



40

401 *0
UT

uc

PQL*  D
0 so 100 2001S0

R iv tr Kilometer

33

100

R iv tr K ilo m tttr

®  30 i S. t
B« 20 i av

10

SO 100
R iv tr K ilo m tttr

200

Figure 2 e-g: River kilometer vs. surface water e) Fe, f) As, and g) Ca
Solid, connected diam onds represent me mainstem samples; the squares represent tributary samples.
Tributaries with outlying concentrations are identified by their abbreviations (listed in Figure t) to the left of their datapomts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 4



18000

R = 0.965

BJ2000

O 6000

O  3000

3 0  4 0
Discharge [m /sec]

R2 = 0.006n 2.0

e  0.5

3.0 4.0
Discharge [m’/sec]

>
3500

ca 
10 3000
O)
*

2500

ca
2000

o 1500

$  1000 
a
3 500
OT 0

C R2 = 0.385;
NV but without NV,

R2=0.933

* ___
Sg'tS 'e a ac ewe

0.0 1.0 2.0 3.0 4.0
Discharge [mJ/sec]

5.0 8.0 7.0

Figure 3: Tributary discharge vs. a) tributary Ca load, b) tributary Mn load, and 
c) tributary sulfate load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1000

100

v r  o

120
Rlvtr Kilometer

20040 160

o 100000

•  50000

* PCUT w
0 40 80 120 200160

Rlvtr Kilometer

'100000

10000

S >000 cw.

100

0 120 20080 16040

Rlvtr K llom tltr

aae 60

I  40

20 ic 
%

»ca

_ LF * I 9

a. r
'  AL PC

40 60 120
River Kllomettr

160 200

■g 35000 

£  30000 

g  25000 

5  20000 

f  15000 

c  10000 

u  5000 

U 0 L 
0

EC 1900 ppm
0 LC

•W a
LF

u  200

2000 40 80 120 160

Rlvtr K llom tttr

j
LFi

—  f

a :a MfS

*
OC

tea

MO

40 8 0  120 
Rivtr K llom tttr

160 200

Figure 4: R iv er K m  vs . B ed  s e d im e n t concentra tions o t a )  As. b) F e . c) M n , d ) N i, e )  K . a nd  t) C a  

(S o lid  triang les  re p re s e n t m a in s tem  s am ples: squares  re p res en t tr ibutaries)

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E&a
e
o

e«>u
c
oo
(A<

1000

00

10

1
20 4 0 60 8 0 100 120 

River Km
140 160 180 200 220

10000

E
a
a
'ST 1000 
o

2
« 100 Oeou
<J 10

0 20 6040 80 120100 140 180 200160 220

River Km

1000000

£
a
3  100000
c
o

10000

1000
0 20 4 0 60 8 0 120 220100 160 180 200140

River Km

100000

X

10000

1000

100

0 50 200100 150

River Km

Figure 5 : R iver Km vs m ainstem  bed sediment a) As, 0 ) Cu. c) Fe . and d) Zn  in 1989 (M oore e l al.. 1991), 1995 (M enges. 

1997), and  1998 (this study).

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o o o o o o o o

83S

8 S 2 2 S

,<?<??<? <?<???

8 S38

? "

22 2S

^ o o o o o o o

0 0^00
S S r S R S S . S  
R R R R R R R R R

SSSS

aaaaasaa as

RS
O |o  a  ol

33

S3 SS ss

£

I??
a 5 aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

131t
l l l l S l i i i s i iu

I I I i i i 6 d a3 9 9a a a a

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Sa
m

pl
e 

R
iv

er
 

Q 
W

at
er

 
Ai

r 
A

IN
al

im
ty

 
Sa

m
pl

e 
na

m
e 

da
le

 
Km

 
(c

fs
) 

pH 
D

.O
. 

C
on

d 
te

m
p.

 
te

m
p.

 m
oO

. 
C

aC
i 

SO
/ 

NP
OC

 
As

 
A

l

a

5?

a
o

a
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Chapter 4;

Temporal variations of the geochemistry 

in the Blackfoot and Clark Fork River basins

ABSTRACT

Two rivers and two mountain streams in the Blackfoot and Clark Fork River 
basins were sampled over variable temporal scales within a 12 month period. Samples 
were collected at approximately the same time o f day at least monthly, with supplemental 
sampling during spring runoff and fall precipitation events. Two 24-hour diel studies 
were also conducted at each site during low flow summer conditions. A ll samples were 
analyzed for both dissolved (operationally defined as <0.2 pm) and total recoverable 
concentrations. Results show that for some parameters, short term variations (diel, or 
daily following precipitation events) are proportional to long-term variations, while other 
parameters cover significant portions of the seasonal variations in the short-term. 
Generally, the trace elements (Al, As, Cu, Fe, Mn, and Zn) behaved differently from the 
major elements (e.g. Ca, K, Mg, Na). which were better correlated with discharge. 
Suspended sediment, total recoverable trace metals, and some dissolved elements 
exhibited short-term Hushing effects at the onset o f high flow conditions. Diel cycling 
was observed for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, 
total suspended sediment, and total recoverable metals at some or all sites. These results 
have important implications for the design o f future monitoring studies of the 
geochemistry o f surface waters.

INTRODUCTION

The spatial and temporal variations of the aqueous geochemistry o f pristine and 

polluted streams ar.d rivers are poorly defined. However, an understanding o f these 

variations has potentially important implications for designing effective sampling and 

monitoring strategies and for the environmental regulation of pollution sources to rivers. 

Although numerous studies have made important contributions to the understanding of 

the time-dependent variability o f the geochemistry o f various freshwater systems, most 

were based on data from single study sites (e.g. Johnson and East, 1982; McKnight and 

Bencala, 1988; Fuller and Davis, 1989; van der Weijden and Middelburg, 1989; Cossa et 

al., 1990; Brick and Moore, 1996). Discrepancies among these and other studies in terms 

o f sampling designs, sample processing, and analytical methods hinder the direct
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comparison o f datasets. On the other hand, studies that have described the spatial 

variations in the geochemistry o f multiple numbers o f streams typically lack the temporal 

resolution needed to put their samples into annual, seasonal, and daily contexts (e.g. 

Gibbs, 1973; Shiller and Boyle, 1985; Schemel et al., 2000; USGS, 2001).

O f the studies that have incorporated both spatial and temporal dimensions to 

their water quality research (e.g. Edwards, 1973; McKnight and Bencala, 1990; Carroll et 

al., 1998; Constanz, 1998; Evans and Davies, 1998; Clow and Mast, 1999, Meixner et 

al., 2000), not all have included trace metals into their evaluations, and even fewer 

studies have employed “ clean”  sampling and analytical methods. These methods have 

been recognized recently as being critical for the accurate assessment o f trace metal 

concentrations in both pristine and contaminated waters (Horowitz et al., 1994, Benoit, 

1994). It has been recommended that trace-metal research conducted without these 

methods should be viewed with extreme caution, and as a result, much o f the trace metal 

data collected to date has been effectively invalidated (Shiller and Boyle, 1987; Benoit, 

1994; Benoit, 1995; Taylor and Shiller, 1995; Windom et al., 1991). O f the published 

papers based on data generated using clean methods, many have again looked at either 

spatial or temporal aspects o f aqueous geochemistry, but not both.

Many water quality studies take place during the late spring, summer, and early 

fall, and as a result, little is known about winter and early spring events. There are no 

known published clean-method studies examining seasonal variations in the Rocky 

Mountain region, where winter snowpacks create large streamflow surges in the spring 

and also where there are numerous streams and rivers contaminated by mining.

Discharge is thought to be one of main controllers o f the geochemistry o f surface waters. 

It has been long reported that an inverse relationship exists between streamflow and the 

concentrations o f major ions such as alkalinity, Ca, Mg, K, and Na, a trend explained by 

simple dilution from snowmelt and precipitation (Hem, 1970; Edwards, 1973; Whitfield 

and Clark, 1982; McKnight and Bencala, 1988).

However, research also suggests that these trends are not so simple and that many 

solutes and particulates can follow hysteresis patterns (Johnson and East, 1982; Williams, 

1989; Campbell et al., 1995; Evans and Davies, 1998). Hysteresis patterns are formed by 

elemental concentrations along the rising limb o f a hydrograph peak differing from the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



those along the falling limb. The identification o f hysteresis patterns in surface waters is 

important for designing monitoring studies, for making more informative comparisons 

among watersheds, and for evaluating the timing and nature o f chemical sources to the 

stream channel (Hooper et al., 1990; Droppo and Jaskot, 1995; Sokolov and Black,

1996).

The initial stages o f spring freshet may be characterized by a chemical surge of 

the dissolved major ion concentrations in the water channel. This phenomenon has been 

explained as a flushing o f ions that have accumulated on snow crystals, in the soils, and 

in the groundwater over a relatively long winter residence period (Stottlemyer et al.,

1997; Harrington and Bales, 1998; Marsh and Pomeroy, 1999). Such flushing events 

have been reported in the handful o f hysteresis studies from alpine regions (Sottlemyer 

and Toczydlowski, 1990; Williams et al., 1993; Campbell et al., 1995). These events 

control the development o f clockwise hysteresis patterns, in which solute concentrations 

are higher along the rising limb than on the falling limb. However, other research from 

similar regions have reported that some solutes may exhibit counter-clockwise hysteresis 

patterns as well (Stoddard. 1987; Stottlemyer and Troendle, 1992; Bhangu and Whitfield,

1997). These researchers have explained such trends by the volumetric dominance of 

dilute snowmelt over contributions from groundwater and soil water.

The seasonal variations of trace element concentrations have not been studied in 

nearly as much detail as that o f the major ions. Because major ions are generally 

chemically conservative, their trends should be less complicated than those o f the trace 

metals (Bencala et al., 1987; Wetherbee and Kimball, 1991). From the limited research 

using clean methods, the relationship between streamflow and trace element 

concentrations has been variable from site to site and no generalizations can be made.

For example, Shafer et al. (1997) report 1- to 5- fold increases in filterable metal 

concentrations (and up to 17-fold increases in particulate metals) in two Wisconsin rivers 

during high flow events compared to baseflow. Similarly, Sherrell and Ross (1999) 

found highly significant positive correlations between discharge and dissolved metals in 

four acidic New Jersey streams. In contrast, Shiller (1997) reports that the dissolved 

metal concentrations in the Mississippi River do not correlate with discharge. Clearly,
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more data are needed to elucidate any patterns in the discharge versus trace metal 

relationships in streams and rivers.

In addition to the need for better data on this issue, there are unanswered 

questions regarding how seasonal dynamics compare with those that occur on shorter 

timescales, as on storm-duration and diel scales. Studies of metal loading into rivers 

during storm events have shown that both particulate and dissolved metals can be 

mobilized into stream channels in mining-contaminated basins (Bradley and Lewis,

1982; Bird, 1987; Soulsby, 1995; Sanden et al., 1997). On a diel scale, processes such as 

photo-oxidation and -reduction of Fe, biologically- induced pH changes, bank vegetation- 

controlled changes in streamflow, and suspended sediment flux have been linked to diel 

cycles of dissolved and particulate trace elements in streams and rivers (McKnight et al., 

1988; Fuller and Davis, 1989; Brick and Moore, 1996). Short-term variations have 

obvious implications for sampling designs and motivate the question of how seasonal 

geochemical cycles compare with what is seen on much narrower time scales. The 

purpose of this study is to answer some o f these questions by examining the geochemical 

variability in the dissolved (<0.2pm) and particulate phases in mining impacted and 

relatively pristine rivers in Montana on seasonal, short-term precipitation event, and 

hourly scales using clean sampling techniques.

METHODS

1. Sampling design

a) Spatial design

We chose four sites in western Montana as the focus o f this study (Figure 1).

Two sites are relatively small, moderately high mountain streams (elevation= 1450 m) 

and the other two sites are lower (1000 m and 1200 m) on much larger rivers draining 20- 

times the land area of the smaller streams. One o f the two sites from each size category 

drains a region impacted by mining contamination, while the other drains relatively 

pristine areas.

The two smaller streams, at sites LF and BH, are located in the upper Blackfoot 

River watershed. The Landers Fork (LF) is a major tributary to the upper basin, and the
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site along the Blackfoot River near Hogum Creek (BH) is located 6 km upstream o f the 

Blackfoot-LF confluence. The Landers Fork drains 350 km2, while the Blackfoot at BH 

drains 254 km2. Site BH is ca. 20 Km downstream from the historic Upper Blackfoot 

Mining complex. Site LF is located only 1 km upstream from the confluence with the 

Blackfoot, and in the years o f this and previous studies (Nagorski et al., 1998; Nagorski 

et al., 2001) it is typically several times larger in streamflow than BH. It drains the 

pristine Scapegoat Wilderness area, where elevations reach 2400 m, and it thus receives 

more snowpack than does site BH.

The other two sites, BFB and CFBM, are located on the lower Blackfoot River 

(near Bonner) and Clark Fork River (near Bearmouth), respectively. They were selected 

due to the presence o f USGS gauging stations as well as their similar streamflow sizes at 

baseflow conditions. We acknowledge the potential conflict o f non-independence for the 

lower Blackfoot site due to its location downstream of BH and LF. However, BFB is 187 

km downstream from the headwater sites, and its flow during the study period was on 

average 10 times larger than the headwaters streams combined. Studies on the 

watershed (Spence, 1975; Moore et al., 1991; Menges, 1997; Nagorski et al. 2000) show 

that the impacts o f the headwater mines generally are not detectable in the solute phase 

by about 20-30 Km downstream of the site. The major tributaries feeding the Blackfoot 

River between the headwater sites to the lower basin site drain large portions of 

wilderness areas, in addition to rural agricultural land, and there are no large-scale 

industries or urban areas.

In contrast, the site along the Clark Fork River is approximately 130 km 

downstream from Butte, the setting for one of the world’s largest historical mining 

operations. Over a hundred years o f mining and smelting in the upper Clark Fork basin 

and Flint Creek basin have contaminated the river to the extent that the river’s 

approximately 200 km stretch between Butte and Missoula is the largest Superfund 

complex in the U.S.A. (Moore and Luoma, 1990). Although CFBM is located a good 

distance from the major mining contamination, it is still chronically impacted by metal 

pollution from the tailings on the floodplain, elevated metais in the streambed sediments, 

and other nonpoint sources (Moore and Luoma, 1990; Nimick and Moore, 1991).
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b) Temporal design

We sampled the sites on a monthly basis with supplemental high flow sampling 

during spring runoff and late summer precipitation events. Robertson and Roerish (1999) 

found that such a design was highly effective for one year studies aiming to estimate 

loads in small streams. Our monthly design consisted o f a random weekend starting date 

in February, 2000, followed by a sampling date established at four week intervals from 

then on, through January, 2001 (thus a total o f 13 “ monthly”  sampling events). We gave 

the four week rule an allowance o f plus or minus two days in order to deal with adverse 

weather or other logistical inconveniences.

During spring runoff from mid-April through mid-June, we collected samples 

once or twice per week in order to capture as much flow variability as possible. Frequent 

site visitation was particularly important for sites BH and LF, as real-time streamflow 

data were unavailable. A ll 4 sites were visited for each event, except for one 

supplemental sampling event (on 4/14/00) when only BFB and CFBM were visited. As a 

result, BFB and CFBM had a total of 24 “ seasonal”  sampling events, while BH and LF 

had a total o f 23.

Between September 1 and September 5, relatively large amounts of precipitation 

fell in the region following months of near-drought, warm, and dry weather (WRCC,

2001). In response, we took “ rain event”  samples every day or every-other day for 

almost two weeks. We sampled the lower sites closer to Missoula (BFB and CFBM) 

every day from September 1-9, and on September 11, and 12. Diel sampling events at 

BFB and CFBM during the next week provided additional site data. We sampled sites 

BH and LF on September I, 3,4,5,6,8, and 10; their further distance from Missoula did 

not allow for as dense of a temporal resolution as at BFB and CFBM.

We visited each sample site at approximately the same time o f day in order to 

minimize complicating any seasonal trends with die! trends. We visited CFBM 

consistently within a few hours of sunrise in the morning, BFB during the late mornings, 

BH in the early afternoon, and LC in the mid-afternoons.

We conducted diel studies at each o f the four sites during relatively stable, low- 

flow conditions (in August and September). Low-flow summer conditions are believed 

to be optimal for maximum diel variation (Brick and Moore, 1996). For two non-
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consecutive days at each site, we sampled once every two hours. Sites BH and LC are 

close enough in distance to allow concurrent diel sampling. Hence, we collected samples 

at BH every odd hour and at LC every even hour on 8/17/00-8/18/00 and on 8/20/00- 

8/21/00 beginning at 14:00 on each diel set. We sampled CFBM bi-hourly on 9/14/00 at 

08:00 through 9/15/00 at 08:00, and on 9/18/00-9/19/00, also from 8:00 to 8:00. At 

BFB, we sampled the first set beginning on 9/12/00 at 8:00, and ending on 9/13/00 at 

8:00. However, the second diel set at BFB (begun on 9/16/00 at 8:00) was hampered by 

a several hour-long lightning and wind storm just after the 20:00 sampling. Although 

little rain fell, the weather conditions prohibited safe sampling o f the river. Because the 

gauging station indicated no change in streamflow over the following 24 hours, the 

sampling event was resumed starting at 20:00 on the following evening (9/17/00) and 

carried through until 8:00 on 9/18/00.

2. Streamflow measurement

We obtained streamflow (Q) values at BFB and CFBM from the USGS gauging 

stations at the sites. The estimated error of the Q measurements is 5% (M. White, USGS, 

personal communication). From the end of November through the end o f the study 

period, Q measurements at BFB were unavailable due to ice at the site.

At BH and LF, we measured streamflow ourselves, given that there were no 

gauging stations at these sites. We made the measurements using a Price A A  current 

meter or a pygmy meter, according to standard USGS protocol (Rantz et al., 1982). Our 

reproducibility o f the Q measurements at site BH averaged 7%, although the highest error 

o f 17% was made during the low flow period in December. At LF the mean 

measurement precision was 3%, with the largest error at 7%.

At LF, daily Q values were estimated from the nearest USGS gauging station on 

the Blackfoot River, 71 km downstream from LF. Despite the distance from LF, we 

found a good linear relationship between Q measurements we made at LF and the Q 

reported on the same dates at the gauging station (R2=0.96). Hence, we could monitor 

the approximate Q at site LF. Site BH did not correlate well with the USGS gauging 

station, and so we do not have any estimated data on the Q values at BH on days 

inbetween sampling events.
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3. Sampling protocol

We strictly followed a meticulous clean protocol during all stages o f sample 

handling. As described in Chapters 2 and 3, we extensively pre-cleaned all sample 

bottles before each sampling event, and we used clean sampling procedures to obtain 

width and depth-integrated water chemistry samples. We obtained three individual 

samples from each site on each sampling event, except for during the diel sampling when 

we took only one sample per bi-hourly event. The triplicate samples were never 

composited and were put through handling and analysis procedures independently. 

Following collection of the water chemistry samples, we took samples for total 

suspended sediment (TSS) analysis from the same areas from where we collected the 

water quality samples. We measured pH, DO, and stream temperature in situ, and again 

we did so at the same places along the channel transect from where we collected the 

water quality samples. We checked the pH and DO meter and recalibrated it i f  necessary 

before measuring at each site.

4. Laboratory protocol

A ll sample processing and analysis look place at the Murdock Environmental 

Biogeochemistry Laboratory at the University of Montana. Sample filtration methods are 

described in the Methods section o f Chapters 2 and 3. Following filtration to <0.2pm 

(operationally defined as the “ dissolved” phase), we decanted 100 mL for purposes of 

alkalinity measurement o f the samples, and then we preserved the remaining volumes in 

the 1 liter sample bottles for total recoverable metal analysis with 3 mL of 6N trace metal 

grade H N 03 per liter o f sample. Total recoverable metal digests were performed within 2 

months o f sample collection according to EPA Method 200.2 (EPA, 1991). A ll steps of 

the digestion process took place under the clean hoods as well. The resulting 

concentrations in the digested samples are called “ total”  concentrations in this report.

We quantified the total suspended sediment (TSS) within 1 week, but usually 

within 1 day, o f sample collection. We did so by weighing the mass o f particulates 

retained on a 0.2 pm filter following a vacuum-driven filtration o f at least 300 mL 

(mean=1.5 liters) o f sample. We measured DIC within two weeks using a Shimadzu
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Carbon Analyzer. We determined alkalinity by titration with sulfuric acid to pH 4.5 

within 3 days o f sample collection. However, the large number o f samples collected 

during the first couple weeks o f September precluded the immediate alkalinity analysis 

on many o f those samples. Some samples were kept in the refrigerator for 18 days before 

being analyzed for alkalinity, while the EPA recommended time lim it is 14 days.

We measured arsenic concentrations on a HGAAS and all other elements using 

ultrasonic nebulization (Cetac, U-5000AT+) with a Thermo-Jarrel-Ash ICAPES (IRIS) as 

described in Chapters 2 and 3.

5. Laboratory QA/QC

We followed strict quality assurance and quality control protocols during all types 

of lab analysis. On the ICP we ran acidified blanks, fortified blanks, USGS Standards 

T143 and T145, sample analysis duplicates, and sample spikes at regular intervals so that 

at the end, 40-60% o f the total analysis consisted o f QA/QC evaluations. On the 

HGAAS, we analyzed at least one sample spike, one sample analysis duplicate, one or 

two checks o f the USGS standards, a blank, and all 5 calibration standards with each set 

of 10 samples. When analyzing DIC, we again had at least one sample duplicate and one 

check o f the blank and all 3 calibration standards with each set o f 10 samples. The 

Practical Quantifiable Limit (PQL) on all instruments was defined as the minimum value 

at which elements could be detected with a maximum variability o f 30% (Table 1). A ll 

QA/QC results are presented in Tables 1-7, and a summary follows.

Laboratory blanks: A total o f 237 lab blanks were run on the ICP, and only trace 

amounts o f Ba, Ca, Na, S, and Sr were detected in no more than 17 o f the blanks (Table

1.1) A ll 262 lab blanks measured on the HGAAS and all 113 blanks run on the carbon 

analyzer were also below detection (Table 1.2). The highest TSS blank found was 0.1 

mg/L (Table 1.2).

Filtered fie ld  blanks: The 48 filtered field blanks also had rare and insiginificant 

concentrations o f measured elements. Filtered Al, Ba, Ca, Mn, Si, and Sr were above the 

PQL in only 1 or 2 o f the field blanks (Table 1.3). One o f the 48 filtered field blanks had 

Fe at 41 |ig/L, substantially above its PQL o f 5 |ig/L. Sodium’s maximum field blank 

concentration o f 0.6 mg/L likely accounts for some o f the noise in Na concentrations at
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sites LC, BFB, and BH, where Na concentrations were typically less than 4 mg/L. 

Although S concentrations were detected in 44 o f the 48 field blanks, even the maximum 

concentration o f 0.08 mg/L found is insignificant compared to values found in the 

environmental samples. Arsenic and DIC were below the PQL in all field blanks (Table 

1.4). The highest alkalinity value measured in a field blank was 8.8 mg/L (Table 1.4).

Digest blanks and digested fie ld  blanks: Processing blanks through the digestion 

procedure resulted in some significant contamination. Elements which turned up at 

levels high enough to interfere with concentrations in environmental samples were Mn, 

Cr, Ni, P, Fe, and Zn (Tables 2.1 and 2.2). Manganese was detected (at 3 jig /L  compared 

to its PQL of 0.5 |ig/L) in only one o f the 83 digest blanks and in none o f the 45 digested 

field blanks. Although Fe was detected in less than a third of the digest blanks and 

digested field blanks, its maximum concentration of 0.07 mg/L exceeded Fe 

concentrations in many environmental samples. The Cr and Ni values in the blanks fully 

account for their concentrations in some of the digested samples, and so they were 

discarded from the dataset. Similarly, Zn contamination was problematic, with 

detections of up to 0.29 mg/L in 20 of the 45 digested field blanks and in 28 o f the 83 

digest blanks.

External standards: The mean concentrations o f all elements (except Si) in 

USGS standards T-143 (n= 151) and T-145 (n=102) as analyzed on the ICP fell within the 

reported acceptable ranges (Tables 3.1 and 3.2). These standards were also digested 

along with environmental samples for total recoverable determinations (Tables 4.1 and

4.2). Again, all but Si in both types of standards had mean measured concentrations 

within the reported acceptable range. However, Zn also violated the reported lim it for 

USGS T-143 averaging 15% higher than the upper reported limit; its exceedance may be 

due to Zn contamination problems during the digest procedure, as evidenced by the blank 

recoveries. The USGS standards were also measured on the HGAAS, and the digested 

and non-digested USGS T-143 and T-145 (n= 107 and 164, respectively) standards fell 

within the acceptable ranges (Table 5.1).

Internal standards: An internal standard was measured 190 times on the ICP 

during sample analysis, and mean concentrations o f all analytes were within 5% of the 

constructed value (Table 3.3). Exceptions to this are Be, Co, and Si, whose average
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readbacks were within 8%, 6%, and 6% of the known values, respectively. On the 

HGAAS, the mean percent difference between known (lab-constructed) values and 

measured As concentions was 8% (stdev=8%) for As concentrations o f <0.5 |ig/L and 

3% (stdev=3%) for As concentrations >0.5 |ig/L (Table 5.2). On the carbon analyzer, the 

average difference between the 350 lab standards and their known (lab-constructed) 

concentrations was 2% (stdev=2%) (Table 5.2).

Analytical duplicates: The mean percent difference between samples measured 

twice on all instruments was 6% or lower for all elements (Table 6.1 and 6.2). The only 

exception was for duplicate measurements o f TSS samples, for which the mean percent 

difference between samples was 26%.

Digest duplicates: The mean percent difference between digest duplicates (the 

same sample digested separately twice) was 6% or less as well, except for Al. As, Cr, Fe, 

Ni, P, and Zn (average % differences= 11%, 8%, 22%, 7%, 25%, 11%, and 21%, 

respectively) (Tables 6.3 and 6.4). Most of these elements were also those that turned up 

in the blanks at significant levels.

Spikes: Forty-two blanks and up to 223 samples were spiked for most elements 

analyzed. Mean spike recoveries on all detectable elements were between 97% and 

111% (Tables 7.1, 7.2, and 7.3). The only exception to this was Li, whose mean percent 

spike recovery was 84%.

6. Data analysis

Due to the non-normal distributions of the concentration data, the presence of 

outliers for numerous parameters, heterogeneity of the sample variances, and the failure 

of data transformations to correct these problems, non-parametric statistical methods 

were used to analyze the data. The program SPSS was used for all statistical tests 

following spreadsheet manipulation in Excel. One exception to this was for calculations 

of non-parametric multiple comparisons by simultaneous test procedures (STP), which 

were done manually according to Sokal and Rohlf (1995).
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RESULTS AND DISCUSSION 

/ .  Seasonal variations

1. Streamflow variation

At BFB, LF, and BH, peak Q occurred in late spring and early summer. At BFB 

and LF, runoff lasted between April and July (Figures 2 a,c). At BH, Q peaked early 

relative to BFB and LF (Figure 2d). Streamflow at BH on 4/22/00 was higher than on 

any other date, and it decreased steadily from then on.

There was a highly unusual Q pattern at CFBM during the study year (Figure 2b). 

Instead o f being characterized by the typical snowmelt runoff peak, Q decreased from 

April through August. As a result, the hydrograph was approximately inverted. 

Streamflow averages for March through August were the lowest in the 8 year site record, 

and 7/31/00 marked the lowest Q (2180 L/s) ever recorded at the site. The low Q, 

caused by below normal snowpack and precipitation levels in the region, was further 

complicated by an unknown amount o f irrigation withdrawal in the Clark Fork valley.

2. Among-site comparisons of dissolved and total concentrations:

Comparisons among sites (using the Kruskall-Wallis test) showed that pH, water 

temperature, and dissolved oxygen concentration were the only parameters that lacked 

significantly different distributions among the 4 study sites. Non-parametric multiple 

comparisons by STP identified the relative significant (p=0.05) differences between sites 

for the rest o f measured parameters, as listed in Table 8. Not included in the analysis 

were elements that were entirely or mostly below detection at all four sites.

The concentration distributions of most measured parameters (alkalinity, DIC, 

and dissolved (d) and total (t) As, Ca, Cu, K, Li, Mg, Mn, Mo, Na, P, S, Si, and Sr) were 

highest at site CFBM. The site was lowest in concentration only for Bad and Bat. The 

large sites (CFBM and BFB) had higher TSS, A lt, Asd, and Li, concentrations and lower 

Bad and Bat concentrations than the small sites (LF and BH). The mining-impacted sites 

(CFBM and BH) had higher concentrations o f Fed, Mnd, Sd, St, Sid, Sit, Srd, Srt, and Znt 

than the relatively pristine sites (BFB and LF). While BFB and BH had similar
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distributions o f alkalinity, DIC, Cad, Cat, Kd, Kt, Fet, Mgd, Mnt, Nad, Nat, and Pt 

concentrations, CFBM and LF had heterogeneous concentration distributions for all 

elements.

3. Differences in the dissolved and total concentrations

Differences between the dissolved and total concentrations o f each detectable 

element were evaluated using the Wilcoxon Ranged Sign test, a non-parametric version 

of the paired t-test. This test was selected over the Wilcoxon Rank Sum test due to the 

lack o f independence in the samples. Dissolved and total elements are not independent 

because the total fraction encompasses the dissolved fraction.

Arsenic (except for at CFBM), Ba, Cu, Fe, Mn, Mo, and P were significantly 

(p<0.05) higher in the total recoverable fractions compared to the dissolved fractions at 

the sites where they were detectable (Table 9). However, the dissolved and total fractions 

o f most o f these elements (As, Cu, Fe, Mn, and P) did not correlate well with one another 

(Table 10). (Exceptions to this are As at LF, where the correlation between dissolved and 

total concentrations was 0.91, and Mn at BFB, where r=0.81.) For example, while 

dissolved Fe concentrations at CFBM remained within the narrow range o f 0.011 to

0.020 mg/L over the 12 month study, total Fe concentrations varied almost 2 orders of 

magnitude, from 0.071 to 1.132 mg/L. This lack of association means that changes in the 

particulate metal concentrations occurred independently o f variations in the dissolved 

concentrations. The implication o f this result is that the dissolved phase o f these elements 

cannot be assumed to represent the total recoverable phase, and vice versa, and so both 

phases need to be sampled for monitoring and interpreting water quality variations in 

these rivers.

At sites BFB and LF, dissolved Fe and Mn were following nearly identical trends 

as total Fe and Mn (except for Fe at LF, where it was BPQL), despite their poor 

correlations (Figure 3a, b). This suggests that these “ dissolved”  metals may in fact be 

colloidal instead of truly dissolved. Numerous studies have demonstrated that in order to 

obtain the truly dissolved fraction, samples must be filtered through membranes that are 

no larger than 0.01 |im in size (Kimball et al., 1992; Benoit, 1995; Ross and Sherrell,
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1999). Therefore, our operationally-defined “ dissolved”  fraction may not be an accurate 

description for some of the elements in the filtered fraction.

4. Was streamflow a good predictor of dissolved and total concentrations?

Streamflow (Q) was significantly and inversely correlated (pearson correlation <-

0.80; pcO.Ol) at all four sites with dissolved (d) and total (t) Ca, Mg, and Sr only (Table 

11 and Figure 4a-d). On a site-specific basis, significant inverse and good correlations 

(r<-0.80; p<0.01) with streamflow were present also for alkalinity, DIC, Asd, Bad, Bat,

L id, Li,, Nad, and Na, at BFB; for L id and Li, at CFBM; for alkalinity, DIC, Asd, Bad, Ba,, 

Kd, K,, Na,, S,, Sid, and Si, at LF; and for alkalinity, DIC, Bad, Ba,, Li,, and Na, at BH. 

Significant positive, linear correlations with Q were present only for TSS, Mnd, Mn,, Fe,, 

Znd at site BH. Although Zn, measurements are generally excluded from this report due 

to problems with contamination, it is worth noting that Zn, was also correlated positively 

with Q at BH (r=0.91 and 0.97, respectively, excluding an extreme outlier).

According to these results, the general pattern emerges that the major elements,

Ba, and Sr were moderately well and inversely associated with Q, while many of the 

trace elements were poorly or positively correlated with Q. Hence, the processes 

controlling the major element concentrations in these streams and rivers were different 

from those controlling the inputs o f trace metals. Based on other studies with similar 

results, a probable explanation for the behavior o f the major elements is that in general, 

they were chemically conservative and were simply diluted by snowmelt during runoff 

(Bencala et al., 1987; McKnight and Bencala, 1988; Whitfield and Clark, 1992; Bhangu 

and Whitfield, 1997).

The mobilization of sediment and some trace metals during higher flows may be 

due to physical processes, as indicated by the positive association between TSS and total 

metal concentration with Q at BH. Physical mobilization o f sediments from the 

streambed and floodplain may occur with high Q events because the higher stage and 

velocity o f the river can and entrain more bottom sediments and access broader areas of 

the floodplain (Bradley, 1984; Whitfield and Clark, 1992; Droppo and Jaskot, 1995).
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Yet, the chemical characteristics and availability of different sized sediments can vary 

substantially as well (Bradley and Lewis, 1982; Bird, 1987; Hatch et al., 1999). Hence, 

the size o f the flow event may not necessarily correlate with the sediment and associated 

metal concentrations, as was the case at BFB, CFBM, and LF.

The mobilization o f trace elements may also be chemical in nature, as suggested 

by the lack o f predictability o f the dissolved metal concentrations by Q, the most 

dominant physical factor. This lack o f association between Q and dissolved trace 

elements such as As, Cu, Fe, Mn, Zn was most pronounced at site CFBM (Figure 5 a,b). 

The reactive nature o f the trace elements makes them more susceptible to changing pH, 

redox, and temperature conditions, biological activity, and varying availability o f 

complexing agents in the basin source areas and in the water channel (Forstner and 

Wittmann, 1979; Cossa et al., 1990; Shiller, 1997). The major source for the dissolved 

trace elements in the Clark Fork are the mining-contaminated floodplain soils and 

streambed sediments along most o f the river corridor (Nimick and Moore, 1991;

Axtmann et al., 1991). For example, trace metals that were immobilized in sulfide 

mineral complexes in the floodplain or in stagnant water areas may have become 

oxygenated and displaced into the water column at higher flows, where they temporarily 

remained out o f equilibrium with Fe- or Mn-oxides/oxyhydroxides (Wetherbee and 

Kimball, 1991). They also may have been released into the river by the lifting o f reduced 

bed sediments into the water channel, from hydrologic flushing o f the hyporheic zone, or 

surface runoff that washed metal-rich salts o ff the floodplain (Lucy, 1996; Nagorski and 

Moore. 1999).

5. Relationships between TSS and total recoverable elements

Correlations o f TSS against the total recoverable elemental concentrations at each 

site reveal that total Al, Fe, and Mn are very well correlated (r>0.88, p<0.01) with the 

TSS concentration at all sites (except for Fe and Mn at LF, where they are below the 

PQL) (Table 12). Total Cu was also well correlated (r=0.95) with TSS at CFBM, while 

it was below the PQL at the other 3 sites. Good correlations indicate that the total metal 

concentrations could be reasonably well estimated using TSS, which is far easier and less 

expensive to measure. Unlike for the trace elements, the association between TSS and
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most o f the major elements was poor. Together with the insignificant differences 

between the dissolved and total recoverable phases of the major ions, this indicates that 

the available major elements are concentrated in the dissolved fraction rather than in the 

particulate load.

Not all elements correlated uniformly across the sites. For example, As, was 

poorly correlated with TSS (r=0.38 and -0.30) at the two minimally contaminated sites 

(BFB and LF), while it correlated reasonably well (r=0.78 and 0.81) at the two mining- 

impacted sites (CFBM and BH). This difference implies that the suspended sediments at 

CFBM and BH have approximately steady concentrations o f As. Hence, when there 

were higher particulate levels in the river, the As concentrations increased accordingly.

In contrast, the lack o f a relationship between TSS and As, at BFB and LF implies that 

the suspended sediments at these sites contained inconsistent concentrations o f As.

One way o f evaluating whether or not the mining-impacted sites had higher metal 

concentrations than the relatively pristine sites is to compare the total recoverable 

geochemistry. I f  rivers with similar TSS concentrations drain areas with similar physical 

and geochemical characterstics, the rivers also should have similar total recoverable 

metal concentrations. Considering that the TSS concentrations at CFBM (median=6.8 

mg/L) were not statistically different (p<0.05) from the TSS at BFB (median=5.5 mg/L), 

and that the TSS at BH (median=1.3) was not significantly different than the TSS at LF 

(median=1.7), one would expect that the concentrations o f the total recoverable elements 

to be similar as well. Total Al, which is commonly used a correction factor for grain size 

variations, had identical median concentrations and concentration distributions at CFBM 

and BFB. However, median As,, Fe,, Mn,, S,, and Zn, concentrations were 13, 1.6,4.7, 

22, and 8.3 times higher, respectively, at CFBM than at BFB. Total Cu was at least 4.3 

times higher at CFBM than at BFB (exact enrichment factors can not be calculated 

because Cu, was below detection at BFB). Although median Al, was twice as high at LF 

than at BH, median Fe,, Mn,, S,, and Zn, were 2.8,4.8, 6.0, and 6.6 times higher, 

respectively, at BH than at LF. Therefore, both mining-impacted rivers were enriched in 

total-recoverable metals over their unmined counterparts.
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6. Seasonal hysteresis at BFB. LF. and BH

Hysteresis patterns at sites BFB, LF, and BH were apparent for numerous 

parameters, while no hysteresis emerged from the CFBM data. At BFB, LF, and BH, pH 

and water temperature followed counter-clockwise hysteresis, meaning that they were 

lower along the rising limb of the hydrograph than on the falling limb (Figure 6a,b). The 

counterclockwise rotation in the pH loops indicates that earlier runoff was more acidic 

than later runoff, which presumably had more time to become buffered by materials in 

the watershed en route to the water channel.

Rotating in the other direction, dissolved oxygen, TSS, A lt, Ast, Kd, Kt, Fet, Mnt, 

Sd, S,, and Srt followed clockwise hysteresis patterns at the 3 sites (Figure 7a-d). These 

patterns for the dissolved elements (Kd and Sd) suggest that the spring freshet exerted a 

piston-effect on relatively high-concentration solutes in ground water and soil water, or 

that the dissolved elements were preferentially eluted from the snowmelt (Stottlemyer 

and Toczydlowski, 1990; Williams et al., 1993; Campbell et al., 1995; Stottlemyer et al.,

1997). Clockwise rotations for many of the total elements may have occurred due to 

Hushing and subsequent depletion of sediments and other particulate matter in the 

channel and floodplain at the onset o f high flow conditions (Williams, 1989; Droppo and 

Jaskot, 1995; Sokolov and Black, 1996).

Alkalinity, Bat, Cad, Ca,, Mgd, Mg,, and Srd generally lacked open hysteresis 

loops at the sites (Figure 4a-d). Dissolved Ba at BFB was the only element with clear 

hysteresis, which rotated in a counter-clockwise direction. The lack o f hysteresis loops 

means that the rising and falling limb concentrations were not distinct from one another 

due to linearity o f the relationships or from cross-overs that prevented the formation of 

open loop patterns. Linear relationships indicate that concentration variations are in 

phase with Q variations. This can occur when the different geochemical sources have 

indistinguishable signatures or when the same sources are regulating the solute chemistry 

on the falling and rising limbs o f the hydrograph. Cross-over patterns form as a result o f 

inconsistent elemental concentrations o f the various sources contributing to streamflow 

over the study period. A lack of clear hysteresis for these elements at LF was also found 

in the 1998 study (Nagorski et al., 2001). However, the same study identified counter-
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clockwise hysteresis at BH for DIC, Ba, Ca, Li, and Si in 1998. It is possible that the 

difference between study years at BH may have been due to the better definition o f the 

rising limb chemistry in 1998 than in 2000. While only 1 rising limb data point was 

collected in 2000, there were 3 such data points in 1998.

Several elements did not have consistent trends among sites BFB, LF, and BH. 

While DIC, Bad, Nad, and Nat had no hysteresis loops at LF and BH, DIC and Bad had 

counter-clockwise hysteresis and Nad and Nat had clockwise hysteresis at BFB.

Dissolved Fe was below the PQL at LF and had no discemable pattern at BH, but had a 

clockwise pattern at BFB. Similarly, Li,, Mnd, and Ti, had clockwise rotation at BFB but 

were mostly or totally BPQL at LF and BH, so comparisons could not be made.

Dissolved As had clockwise rotation at LF, no hysteresis at BH, and had counter­

clockwise hysteresis at BFB if  one discounts a single early season datapoint.

At BFB, the hysteresis loops for Ba, K, Na, Si, and Sr were more open than at 

sites LF and BH. This result is similar to those reported by Whitfield and Shreier (1981) 

and Whitfield and Clark (1992), who found wider hysteresis loops at sites further 

downstream than near the headwaters in several British Columbia streams and rivers. 

They hypothesized that such patterns may emerge due to the more numerous and 

chemically diverse sources available for contribution to the water channel at sites further 

downstream in the basins than those restricted to smaller drainage areas.

7. Discharge-concentration relationships at CFBM

At CFBM there was a complete absence of hysteresis patterns for all parameters 

measured. The hysteresis plots for CFBM show numerous cross-overs and overall 

disorder, as would be expected with an absence of a spring snowmelt hydrograph at the 

site (Figure 5a and 5b) The most prominent feature o f CFBM’s dataset is that TSS and 

total Al, As, Cu, Fe, Mn, P, and Ti were most highly concentrated on 6/1/00 and second 

most highly concentrated on 4/22/00 (Figure 8). On 6/1/00, the Montana Aquatic Life 

Standards for chronic and acute Cu (adjusted for hardness) were exceeded. Acute Cu 

violations also occurred on 4/22/00, while chronic exceedences occurred on 3/29/00, 

4/14/00,4/22/00 and 6/1/00.
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The 6/1/00 sampling event captured the peak o f a several-day long surge in 

streamflow caused by a large rain event the previous day (Figure 2b). On this day 

(5/31/00), 2.8 cm o f precipitation was recorded in nearby Drummond, and this was the 

second largest single-day rain event of the year (WRCC, 2001). Streamflow on 6/1 was 

double that o f the week before. Other researchers have also reported the flushing of 

suspended sediment and metals in industrialized watersheds at the onset o f increasing Q 

levels (Bradley and Lewis, 1982; Bird, 1987; Sanden et al., 1997; Nagorski et al., 2001).

The sampling on 4/22/00 followed 1-2 weeks o f intermittent rainfall that was also 

accompanied by fluctuations in the hydrograph, although these Q variations were not 

nearly as dramatic as on 6/1/00 (Figure 2b). Considering the 5% error on the Q values, 

the Q on 4/22/00 was no different from the Q on both 3/29/00 and 4/14/00, when TSS 

and metal concentrations were substantially lower. Therefore, the surge in TSS and 

associated metals occurred due to processes in the basin that supplied the river with 

sediment and its associated metals without significantly changing the Q values. One 

possibile mechanism or this could be that early spring rains became absorbed by the soils, 

and this process o f ground saturation forced later rainfall to enter the river as direct 

surface runoff, which could in turn carry floodplain soils and sediments with it into the 

water channel. As mentioned earlier, potential sources o f metals-enriched sediments are 

abundant along the Clark Fork River floodplain due to the mining and smelting wastes in 

the watershed (Nimick and Moore, 1991).

8. Is there evidence o f spring flushing?

For some elements, a lack o f good linear correlation with Q and a lack o f clear 

hysteresis patterns may be explained by the interference o f one or two data points 

collected during the early stages o f runoff that appear to defy otherwise discemable 

patterns. These samples, which are characterized by a disproportionately large increase in 

concentration with the initial rise in Q at each site are termed “ spring flushing”  points. 

Many other researchers have identified such points in temporal sampling studies, 

although most o f the focus in the literature has been on the flushing o f atmospherically- 

derived acidic anions such as sulfate and nitrate from the snowpack (Williams et al.,

1993; Campbell et al., 1995), with little attention given to major cation, trace element,
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and particulate concentrations. The only known report o f cation flushing in watersheds is 

from Sottlemyer and Toczydlowski (1990), who found flushing o f Ca, Mg, Na, K, and 

NH4+ in a Michigan stream.

Examination o f the patterns o f the cross-over elements at BFB reveal that Asd, 

Cad, Cat, Mgd, Mgt, and Srd had open counter-clockwise hysteresis loops (which was 

found for Bad), i f  a single early event data point is not considered (Figure 4a, Figure 

9a,b). Conversely, the unusually high value for dissolved and total S in the early spring 

opened a loop in what would otherwise be a linear relationship between Q and S 

concentration (Figure 7d). Dissolved and total As, K, Li, Mn, Na, S, Si, and Sr surged in 

concentration on 3/29/00 at the site, when streamflow was at the very early stages of 

increasing spring runoff (Figure 10a,b). O f these elements, Ast, and total and dissolved 

K, Na, S, and Si were higher on 3/29 than on any other date during the 12 month study. 

Total Al, Fe, Mn, and Ti peaked 2 weeks later, on 4/14/00, following the sharpest 

hydrograph rise o f the spring runoff event (Figure 10c,d). TSS concentrations were 

highest between 3/29/00 and 4/22/00.

At site CFBM, spring runoff flushing is not possible to identify due to the lack o f 

a spring freshet peak. However, as discussed in the previous section, surges in TSS and 

associated total elements (Al, As, Fe, Mn, P, and Ti) occurred on 4/22/00 and 6/1/00.

The flushing events on these dates are more accurately described as flushing by 

precipitation events rather than by large-scale melting of snowpack in the watershed.

At site LF, we captured 2 main peaks in TSS during early runoff; one was on 

4/22/00 and the second was on 5/3/00 (Figure 1 la). Total Al, Fe, Mn, and Mnd had 

similar peaks on these dates (Figure 1 lb). Alkalinity and total Ba, Si, and Sr also had a 

flushing effect on the surface water (Figure 1 lc). Their concentrations were higher on 

3/29/00 compared with 2/26/00, even though flow had increased from 490 to 720 L/s. 

Other than Mnd, which is likely colloidal and not truly dissolved, no other dissolved 

elements exhibited early spring flushing. These results are different from those found at 

the site in the spring o f 1998 (Chapter 2; Nagorski et al., 2001). At that time, dissolved 

Ca and Mg flushing was measured in the early spring freshet samples. These differences 

in the study years might be due to the sampling frequencies being too coarse to capture
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short-term flushing events. In the 1998 study, total recoverable concentrations were not 

measured, and so between-year comparisons can not be made.

At site BH, spring flushing is evident for K, and S (Figures 12 a,b). Dissolved 

and total K concentrations increased by 10% on 3/29/00 compared with 2/26/00, even 

though discharge had also increased (from 540 to 770 L/s). More pronounced flushing is 

evident for S. Dissolved S (which was not different from total S) dropped sharply after 

rising though 4/22. It remained at relatively low levels during the summer months when 

most other major ions were at their highest. It had a secondary peak in mid June, and its 

largest peak was in November. Spring flushing of S was observed at the same site in 

1998 by Nagorski et al., (2001). Although S flushing has been widely reported in the 

literature as occurring in watersheds draining snowpacks with atmospherically-derived S 

(Schemenauer et al., 1985; Campbell et al., 1991), S flushing was observed at BH and not 

at LF in both study years. This indicates that the upstream mining sources in the 

Blackfoot River might have been driving the S surges during high flow events, and not 

atmospheric inputs.

9. By what extent do concentrations change during high flow compared to low flow?

a) Elements with inverse, approximately linear relationships with Q:

At BFB, most elements that correlated inversely with Q (alkalinity, DIC, Asd,

Bad, Ba,, Cad, Cat, L id, Li,, Mgd, Mg,, Nad, Na, Srd, and Sr,,) decreased to 40-55% of 

baseflow concentrations when Q increased by a proportionally greater amount— by 8.5 

times during the height o f runoff. The exceptions were dissolved and total L i and Na, 

which were more dilute, at 22-30% o f baseflow concentrations during peak flow. At 

CFBM, there was a 5.5-fold increase at the highest flow event sampled compared with 

the lowest Q sampled. Yet, the elements that correlated inversely with Q (Cad, Ca,, L id, 

Li,, Mgd, Mg,, Srd, and Sr,) decreased to only 48-74% of their low-flow concentrations. 

More dramatically, at LF the highest Q was 28 times the low-flow Q, but the inversely- 

correlated elements (alkalinity, DIC, Asd, Bad, Ba,, Cad, Ca,, Kd, Kt, Mgd, Mg,, Na,, S,, 

Sid, Si, Srd, and Sr,) remained at 42-70% of their baseflow concentrations. Finally, at site 

BH, the greatest difference in Q was a 16-fold increase during the peak o f runoff
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compared with baseflow. There, too, elements that correlated inversely with Q 

(alkalinity, DIC, Bad, Bat, Cad, Ca,, Mgd, Mgt, Nat, Srd, and Srt) were diluted by a 

relatively small amount, to 50-64% o f their baseflow concentrations.

In sum, the concentrations o f most o f these elements generally decreased by the 

narrow range o f approximately 40-70% at all sites, even though the maximum Q values 

at each site varied from 5.5 to 28 times the baseflow levels. This suggests that despite 

the variations in the increases o f flow due to varying amounts o f presumably dilute spring 

freshet, the meltwaters were being approximately uniformly mitigated by other sources in 

the basin that had relatively high concentrations o f major elements. That is, most o f the 

water contributing to the high flow events at each site likely was routed through soil and 

aquifer materials and picked up solutes before reaching the stream channel, no matter 

how much meltwater there was (Campbell et al., 1995; Droppo and Jaskot, 1995; 

Stottlemyer et al., 1997).

Additionally, closer examination of the relationships between the elements and Q 

reveal that at BFB and LF, the concentrations of many o f the elements leveled o ff past a 

certain high Q threshold (Figures 4a, 4 c ) . What emerges is an “ L ”  shape to the Q vs. 

concentration plots, in which the negative slope of the Q v. concentration relationship 

approaches zero at the higher flow levels. This is observed for DIC, Bad, Bat, Cad, Cat, 

Mgd, and Mg, at BFB, and for the aforementioned elements and alkalinity, and Asd, As,, 

Sid, Si, and Sr, at LF. At BFB, the break in slope occurred when Q was approximately 

5-times baseflow levels, and at LF when Q reached approximately 10-times baseflow 

levels. Sites CFBM and BH showed no similar L-shaped relationships. In a 1997-1998 

study in Landers Fork and Upper Blackfoot, Nagorski et al. (2001) made similar 

observations for site LF. They too reported a stabilization o f solute concentrations when 

Q exceeded 10 times baseflow levels. These results indicate that beyond a certain level 

of discharge, high flow input may be overwhelming the chemical signature contributed 

by water supplies that are dominant during low flow conditions.
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b) Elements with positive linear relationships with Q:

BH was the only site where any measured parameters correlated positively and 

approximately linearly with Q. At this site, where Q was 16 times larger during the 

highest flows compared with the lowest flow, TSS increased by up to 39 times during 

high flow. Dissolved Mn increased by up to 6 times, Mn, by 22 times, and Fe, by 28 

times. Therefore, increases in Q created disproportionately large increases in the 

suspended sediments and associated total metals. In this mining-impacted basin, this 

pattern may be explained by higher and faster flows being able to access greater volumes 

o f metals-enriched streambed and floodplain sediment originating from the wastes 

produced by the historic mining operations near the headwaters.

I I .  D iel cycling

Based on the 2 days of diel sampling at each site, diel cycle patterns were 

identified for pH, D.O., and water temperature at all 4 sites (Figures 13 a-c).

Additionally, DIC had a diel pattern at BFB, CFBM, and BH (Figure 13d), and Kd and K, 

cycled at site BH (Figure 13e). At site CFBM, TSS and total Al, Cu, Mn, Ti, and Zn 

showed a diel pattern as well (Figure 13f-h). TSS appeared to display diel cycling at 

BFB as well, although the trends are mostly within the precision errors o f the TSS 

measurements (Figure 13i). Many trace elements were below detection at the sites, and 

so although diel cycling was not measured, it cannot be definitively ruled out with this 

dataset.

The pH, D.O., and water temperature patterns were similar at all sites, as these 

parameters increased after sunrise, peaked between noon and 18:00, and then decreased 

at nighttime. Not all sites had the same timing of minima and maxima, however. At 

BFB, pH peaked at 16:00, at CFBM it peaked at 12:00-13:00, at BH the peaks were at 

15:00 and 17:00, and at LF the pH remained stable at its highest value over a relatively 

long period of time- from noon to 18:00. At BFB and CFBM, the D.O. peaks occurred 

approximately 2 hours later than the pH peaks. At BH and LF, the D.O. cycles were far 

less pronounced than they were at BFB and CFBM. At BH the peaks occurred at 15:00, 

while at LF the D.O. peak was at 18:00 on the first day and at 14:00 on the second day.
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The water temperatures reached their daily maxima between 14:00 and 18:00 at the sites, 

slightly later than the air temperature maxima, which were measured between 13:00 and 

15:00.

Diel cycling o f DIC followed a trend opposite that o f pH, D.O. and water 

temperature. DIC increased at night and decreased during the day. A t BFB and CFBM, 

DIC peaked at 6:00-8:00, while at BH, concentrations were steadily higher between 

23:00 and 9:00 compared to the daytime. This is consistent with pH, D.O., and inorganic 

carbon diel cycling found in other studies, which credit the process to regulation by 

photosynthesis and respiration of aquatic plants and algae (McKnight et al., 1988; Fuller 

and Davis, 1989; Brick and Moore, 1996).

At site BH, the diel cycling o f Kd and K, exhibited nighttime increases as well. 

The difference between daytime and nighttime K concentrations was only approximately 

10%, but the results are consistent on both days. The lowest concentrations were at about 

noon, and the highest occurred during the late evenings. The cause o f this cycling is not 

known, but it is interesting to note that this element was one of only 3 which exhibited 

spring Hushing at the site.

At CFBM, TSS and total Al, Cu, Mn, and Ti were 150-400% higher at night than 

during the day. These total metals correlated moderately well (r=0.66-0.75) with TSS at 

the site over the diel timescale. Total Zn showed a similar pattern by being twice as 

concentrated at night as during the day, but these data are inconclusive due to the 

problems with Zn contamination. This observance of TSS and associated trace metal 

cycling is similar to the results found by Brick and Moore (1996) on the Clark Fork River 

near Deer Lodge, 92 km upstream o f CFBM. Those researchers detected nighttime 

increases in TSS, dissolved Mn and Zn, and acid soluble Fe, Mn, Cu, and Zn. The cause 

for the nighttime increases in the suspended sediment and associated metals is unknown, 

although Brick and Moore (1996) suspected that nocturnal benthic insect activity could 

account for the differences.
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I l l  Rain-storm response

1. Precipitation

In Butte, at the headwaters o f the Clark Fork River, 1.14 cm of rain fell on 9/1 and 

9/2, about twice the cumulative precipitation there (0.58 cm) from mid July-August 31. 

Similarly, in Drummond, only 9 miles from CFBM, only 0.18 cm fell between 7/10/00- 

8/31/00, compared with the 0.66 cm that fell on 9/1 and 9/2. A total of 1.57 cm fell from 

9/1 -9/6, and more rain (1.09 cm) fell on 9/11-9/13.

In the Blackfoot River basin, a similar pattern of early September rains followed 

many weeks of near-drought conditions. In Lincoln, the town approximately 15 km 

downstream of BH and LF, the cumulative precipitation of 1.57 cm on 9/1 and 9/2 

exceeded the total precipitation (1.50 cm) o f the 8 previous weeks. Similar levels o f 

rainfall fell in the region through 9/5/00 and again from Sept 9-12. Midway down the 

basin, in the town of Ovando, there was 1.34 cm o f precipitation on 9/3/00. This too was 

a drastic change from the previous 8 weeks, during which only 0.30 cm fell in the region. 

A ll precipitation data comes from the WRCC (2001).

2. Streamflow variation during storm

At BFB and LF, Q rose by approximately 20% following the onset o f the 

September rains (Figure 14a,b). There was a larger relative change in Q at BH, where Q 

rose from 260 to 410 L/s between September 1-5 (Figure 14c). The largest Q response 

was at CFBM, where Q nearly doubled from 3100 L/s on 9/1/00 to 5800 L/s on 9/6/00 

(Figure 14d).

3. Water quality response to September rain events

a) Site BFB: Several parameters exhibited a response to the rain events and 

subsequent increase in Q. The pH level dropped on 9/2 and 9/3 by 0.1 units before going 

back up to 8.35-8.40 for the rest o f the period. TSS decreased from 1.4-1.8 mg/L on 9/1 

and 9/2 to 0.6 mg/L on 9/4/00, and then it went back up to 1.4-2.0 for the rest o f the next 

week. The water temperature fell from 15°C to 11°C. Dissolved Mn was the only 

element which decreased in concentration over the first week o f the rainy period (Figure
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15a). By 9/6/00, it had dropped to 0.8 pg/L from 1.1-1.2 (ig/L on 9/1 and 9/2, and after 

9/6/00 it returned to its earlier concentrations.

Several elements increased in concentration over the course of rain-event study 

period. These included DIC, which increased by about 6%; Fed and Fet, which were 

rather noisy but overall increased by about 20%; and Kd, Kt, Nad, Nat, S,, Sid, Sit, and Srd 

and Si,, which increased by 10-20%. Dissolved S showed a stronger response; it 

increased by 30% between 9/1 and 9/12 (Figure 15b). Except for DIC and Na,, these 

elements were among those that did not have good inverse, linear correlations with Q 

over the seasonal scale as well. Additionally, dissolved and total K, Na, S, Si, and Sr 

had concentration surges at the start o f snowmelt in the spring. Their positive response to 

the increasing Q in September indicates that the rain created a flushing effect o f those 

elements, rather than a diluting effect, just as the onset o f spring runoff created a Hushing 

effect in late March. This finding suggests that these elements are not predictable using 

Q alone in both short term (e.g. 1-2 weeks) and long term (e.g. several months of spring 

runoff) events in the watershed. Instead, information on the timing o f relatively large 

surges in Q could be more useful in predicting the concentrations of these elements.

b) Site CFBM: This site, which had the largest Q response to the rainfall, 

exhibited some of the strongest geochemical responses. Total suspended sediment, 

which was relatively low from 9/1 to 9/4, (at 2.0-3.1 mg/L), increased sharply on 9/5, 

when it rose to 8.2 mg/L (Figure 16a). It continued to increase to 15 mg/L steadily 

through 9/12, except for a dip to 6.0 mg/L on 9/6. Total Al, Cu, Fe, Mn, P, Ti, and Zn 

followed almost identical patterns, increasing by 3-8 times over the 12 day study period 

(Figure 16b). As discussed earlier, these trace metals were generally 'veil associated with 

TSS on the seasonal scale as well. Also increasing with Q were Bad, Ba,, Sid and Si,, 

which rose by approximately 20% and whose trends were similar to those of the trace 

metals mentioned above (Figure 16c). Dissolved and total K also rose through 9/6/00, 

although unlike TSS and the associated metals, their concentrations dropped during the 

second half o f the sampling event.

Dissolved and total Li, Mg, S, and Sr behaved in an opposite manner. These 

elements declined in concentration by 10-25% as the Q rose (Figure 16d). Dissolved and
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total Li, Mg, and Sr also had good linear inverse correlations with Q on the seasonal 

scale, again suggesting that the system responded similarly to a significant rain event as it 

did to higher water during the spring earlier in the year.

c) Site LF: A t this site, most changes that occurred over the rain event were 

within the measurement errors. No trends in concentrations are observed for this 

sampling period. The one exception is that dissolved S rose steadily by approximately 

10%, from 0.93 mg/L on 9/1 to 1.00 mg/L on 9/10 (Figure 17). However, considering 

that the highest field blank reading on S was 0.08 mg/L, this trend may not be accurate. 

Nonetheless, it is interesting to note that in the fall o f 1998, Nagorski et al. (2001) also 

found a surge in dissolved S at the same site. They hypothesized that the increases to S 

could have been due to delivery by rainfall directly, or by precipitation-induced flushing 

o f S in adjacent aquifers— processes which have been identified by other researchers as 

likely sources for autumn S increases in watersheds (Williams et al., 1993 and Campbell 

et al. 1995).

dt Site BH: At this site, only a few parameters had measurable responses to the 

increase in Q. DIC, Ca, Mg, Si, and Sr concentrations dipped between 9/4-9/6, although 

these decreases were only 3-10%, which is close to the precision limits o f the analytical 

measurements. Water temperature fell from 15 to 10°C. TSS decreased from 0.5 mg/L 

on 9/1 to 0.2 mg/L on 9/4, and then rebounded to 0.6 by 9/8.

The largest change in concentrations was for dissolved and total S. Its 

concentration was 3.6 mg/L on 9/1 and 9/3, and then it increased until 9/4, when its 

concentration was approximately 20% higher, at 4.4 mg/L. On 9/8 and 9/10, its 

concentration was still higher (at 4.0-4.1 mg/L) than it was at the start o f the sampling 

event. Interestingly, this element exhibited flushing patterns at the site during spring 

runoff earlier in the year and also during the spring o f 1998 (Nagorski et al. 2001). These 

results again indicate that the geochemical response to the high precipitation event was 

similar to the spring runoff response.
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IV , .  Comparison o f  seasonal, rain-event. and diel scale variabilities

I . How do diel variations compare with seasonal variations?

The range (maximum value- minimum value) in diel concentrations was 

compared with the range in seasonal (12-month) concentrations, although extreme 

outliers (values > 3 times the interquartile range) were excluded (Table 13 a-d). These 

outliers were removed from the comparison in order to avoid inflating range values with 

data that were highly unusual within each temporal set because o f possible sample 

contamination problems. Most o f the elements that had extreme outliers were the total 

recoverable metals.

Based on calculations of the percent o f the seasonal range captured by the diel 

range for each parameter, the data were separated into three groups: parameters whose 

diel range (1) was > than seasonal range; (2) was 50-99% of the seasonal range; and (3) 

was <50% o f the seasonal range.

Only 3 analytes fell within the first category. At site CFBM, the D.O. (in terms o f 

percent saturation) was 135% greater over the 48 hour study period in September than 

during the 12 month seasonal study. The second element, Mo, at CFBM , also had a die! 

range that exceeded the seasonal range. While the seasonal concentrations ranged from 

less than the PQL (0.003 mg/L) to 0.005 mg/L, the diel concentrations ranged from 0.003 

to 0.009 mg/L. The relatively high diel Mo, concentrations occurred between 9:00 and 

21:00 on 9/18/00 for unknown reasons. The one other element with a diel range capturing 

the seasonal range was dissolved As at site BH. There, the seasonal range was from 0.2 

to 0.4 |ig/L, while the diel concentration varied from 0.3 to 0.5 jj.g/L— although these 

concentrations are very close to the PQL of 0.2 jig/L.

The second category, in which the diel range covered 50-99% o f the seasonal 

range, is comprised of: D.O. (mg/L) and Asd at BFB; pH, D.O. (mg/L) and Cad at 

CFBM; pH, water temperature, D.O. (% saturation), As,, Kd, and Sid at BH; and pH, 

water temperature, D.O. (% saturation), and Asd at LF.

A ll other elements fell into the third category, in which the ranges o f diel 

concentrations were less than 50% the seasonal ranges. Yet, several parameters were in 

the higher end o f this category. For example, the diel ranges of pH, water temperature,
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and D.O. at BFB were 32-46% of the seasonal ranges. The TSS and associated total 

metals at CFBM had high percentages as well. The diel TSS range spanned 46% o f the 

seasonal variation; Asd and Ast spanned 33-36%; Cut was 21% the seasonal range; Fed 

and Fe, spanned 22 and 28%, respectively, and Mnd and Mn, covered 26 and 28% o f the 

seasonal variation. At all sites, most of the major elements had diel concentration ranges 

which were between 5 and 30% of the seasonal ranges.

An important point to consider with these values, especially for those elements 

that are close to the detection limits is that portions of the variability may be due to 

instrument measurement error. That is, the relatively large diel variations may be due a 

combination o f real environmental change and o f laboratory measurement error. 

Nonetheless, the results show that for whatever the reason, diel processes can cause as 

much change as seasonal processes. This result underscores the importance o f sampling 

at consistent times o f the day when aiming to evaluate long-term or spatial trends in trace 

metal geochemistry.

Only a few other researchers have compared diel variations to seasonal variations 

in rivers. McKnight and Bencala (1988) reported that during the 48 hour period they 

studied, the Fe changes in the Snake River, Colorado reflected 47% o f the total variability 

seen over 6 years at the site. Similarly, Constanz (1998) found that the diurnal surface 

water temperature in 2 large Sierra Nevada streams captured 30-40% of the annual 

variation.

2. How does the September rain event geochemistry compare with the diel and seasonal- 

scale variations?

Examination o f the boxplots in Figures 19-22 reveals that the amount of 

geochemical variability encountered at all 4 sites during the first 2 weeks o f September 

was typically much smaller than the seasonal variability. The range in concentrations 

during the September rain event was more similar to those found during the diel studies 

for most measured parameters. However, the diel variability was generally larger than 

the rain event variability for the parameters with strong diel cycling, such as pH, DO (% 

saturation), and temperature. As noted earlier, both the seasonal and September sampling 

events took place at consistent times of day at each site.
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With the exception of dissolved Mo at CFBM, there were no cases o f the 

September rain event variability exceeding the seasonal variability. However, at CFBM 

the rain event produced nearly the same amount o f concentration variation as was 

observed over the 12 month seasonal study for TSS, A l„ Cu„ Fe„ Mn„ Pd, P„ Sd, S„ Si„ 

and Zn,. (Figure 20). As described earlier, the September rain event triggered a 7-fold 

increase in TSS and a 3 to 8-fold increase in total recoverable metals. Put into the 

context o f the overall seasonal variability, this relatively short-term rain event created 

conditions in the Clark Fork that reflected much o f the variability seen on the seasonal 

scale.

These results, illustrated by the boxplots in Figures 19-22, indicate that the 

measured geochemistry of these rivers is highly dependent on the sampling design and 

frequency. From these results emerge the obvious implications for the design of future 

sampling projects. Without taking into account the time o f day and sampling intensively 

during short term periods o f variable climatic conditions, any attempts to characterize the 

seasonal or annual variations in surface waters may produce skewed and unrepresentative 

samples which may inaccurately portray the geochemical dynamics in rivers.

SUMMARY AND CONCLUSIONS

The findings of this project indicate that major variations in the geochemistry o f 

streams and rivers in Montana may occur within diel, daily, and seasonal time scales. 

Within the same water bodies, some constituents vary predictably and conservatively 

according to changes in streamflow, while others behave irregularly and in response to a 

complex combination of physical and chemical dynamics in the basin source areas.

The Clark Fork River, which lacked the typical spring runoff hydrograph peak 

due to abnormally dry conditions in the watershed and large irrigation withdrawals, had 

higher concentrations of most measured elements than the 3 other sites over the 12 month 

study period. The mining-impacted sites (CFBM and BH) had higher concentrations o f S 

and some metals (Fe, Mn, and Zn) than the relatively pristine sites (BFB and LF).

On the seasonal scale, streamflow generally correlated inversely with many o f the 

major elements, and it was positively or poorly associated with TSS and trace metals. As
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a result, predicting the geochemistry of most solutes and particulates in this river cannot 

be done accurately using streamflow alone. While the major elements were 

conservatively diluted by snowmelt (generally by 40-70%), the trace metals were 

appeared to be sensitive to changing particulate availability and chemical variations in the 

watershed.

Numerous elements at BFB, LF, and BH exhibited hysteresis patterns, in which 

falling limb concentrations were different from rising limb concentrations. Some 

elements had different types o f relationships with Q at each of the study sites, indicating 

that watershed-specific processes regulate the timing o f their geochemical variations.

Most total recoverable metals followed TSS trends, which had clockwise hysteresis. This 

rotation direction is likely due to the washing out and subsequent depletion of sediments 

in the watershed that had built up over low-flow winter conditions.

In contrast, most major elements exhibited linear relationships or cross-over 

hysteresis patterns with Q. Many o f the elements without open hysteresis loops would 

have had counter-clockwise rotation i f  a small number o f early spring data points were 

not considered. These early spring surges in concentrations are thought to be produced 

by flushing mechanisms, in which accumulated stored solutes are suddenly displaced into 

the stream channel by the meltwater, or by preferential elution from the snow itself.

Spring flushing was found for TSS, A lt, Asd, As,, Fet, Kd, Kt, L id, L it, Mnt, Nad, Nat, Sd, 

S,, Sid, Si,, Srd, Srt and Ti,, at BFB, which also had wider hysteresis loops for many 

elements than at LF and BH. Spring flushing was also identified for alkalinity, Al,, Ba,, 

Fe,, Mnd, Mn,, Si,, and Sr, at LF, and for dissolved and total K and S at BH.

At CFBM, there were no discernable relationships between Q and concentration 

for most parameters. The highest concentrations o f TSS and associated metals occurred 

on days following relatively large rain events in the basin, indicating that rain-generated 

surface runoff can supply the river with mining-contaminated floodplain sediments or 

water and degrade the water quality 130 km downstream from the historic mining center.

Many elements that exhibited flushing effects at the start o f spring runoff behaved 

similarly when relatively large September precipitation events ended 2 months o f near­

drought conditions in the region. Both dissolved and total recoverable concentrations of
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many elements climbed with increasing Q produced by the fall rain. A t CFBM, 

particularly large rises in metal concentrations were observed during this short-term 

sampling event.

Dissolved oxygen, pH, and water temperature had diel cycles at all sites, and DIC 

cycled at 3 sites. Such cycles are thought to be dependent on photosynthesis and 

respiration patterns by plants and algae in the streams and rivers. At CFBM, suspended 

sediment and associated total recoverable metals were higher at night than during the day 

on both 24-hour sampling events. These findings are similar to those found further 

upstream in a 2 day study by Brick and Moore (1996), who hypothesized that enhanced 

benthic insect activity at night may account for the diel changes. The reproducibility of 

their results in this project suggests that nighttime increases in suspended sediment and 

associated metals may be a common occurrence in the river. It is recommended that 

future studies be conducted on this issue and on the possibility that suspended sediment 

variations occur on a diel scale in other rivers as well.

The range o f diel variations rivaled the seasonal variations for many elements. 

Major parameters such as pH, DO, TSS, and some total recoverable metals varied almost 

as much or even more on the diel scale as they did on the seasonal scale at some or all 

sites. The range in geochemical concentrations observed on the scale o f the September 

rain event was typically smaller than the seasonal variability and similar to the diel-scale 

variability. Yet, some parameters varied a relatively large amount during the late 

summer rains as well. Most prominently, TSS and total recoverable metals at CFBM 

varied almost as much during the 2 weeks of rain as they did on the entire seasonal scale. 

These results advocate for the need to sample at consistent times o f the day and over 

variable climatic conditions when attempting to characterize long-term geochemical 

trends in streams and rivers.
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Tab le  i . l

T a b le *  1 .1 -1 .4 ; L a b o ra to ry  a n d  F ie ld  B la n k *

______________________________  Table 1.3____________
S u m m ary ilC A P E S  m eaaurem ent o f Lab  B la n k*

Total Number Highest
num ber ol blanks conc.

Elem ent Units PQL of blanks below PQL found

Al m g /L 0.01 2 3 7 2 3 7 (BPQL)
Ba m g /L 0 .0 0 0 5 2 3 7 2 3 7 (BPQL)
Be m g /L 0.0001 2 3 7 220 0 .0 0 0 3
Ca m g /L 0 .0 7 2 3 7 2 3 4 0 .1 3
Cd m g /L 0.001 2 3 7 2 3 7 (BPQL)
Co m g /L 0 .0 0 3 2 3 7 2 3 7 (BPQL)
Cr m g /L o .o o s 2 3 7 2 3 7 (BPQL)
Cu m g /L 0 .0 0 3 2 3 7 2 3 7 (BPQL)
Fe m g /L 0 .0 0 5 2 3 7 2 3 7 (BPQL)
K m g /L 0.20 2 3 7 2 3 7 (BPQL)
Li m g /L 0.002 2 3 7 2 3 7 (BPQL)

Mg m g /L 0.10 2 3 7 2 3 7 (BPQL)
Mn m g /L 0 .0 0 0 5 2 3 7 2 3 7 (BPQL)
Mo m g /L 0 .0 0 3 2 3 7 2 3 7 (BPQL)
Na m g /L 0 .1 8 2 3 7 2 31 0 .3 1
Nl m g /L 0.001 2 3 7 2 3 7 (BPQL)
P m g /L 0.01 2 3 7 2 3 7 (BPQL)

Pb m g /L 0.02 2 3 7 2 3 7 (BPQL)
S m g /L 0 .0 0 7 2 3 7 2 2 3 0 .0 2 3
s m g /L 0.02 2 3 7 2 3 7 (BPQL)
Sn m g /L 0 .0 0 2 5 2 3 7 2 3 7 (BPQL)
Sr m g /L 0 .0 0 0 5 2 3 7 2 3 5 0 .0 0 0 8
Ti m g /L O.OOS 2 3 7 2 3 7 / BPQL)
V m g /L 0 .0 0 5 2 3 7 2 3 7 (BPQL)
Zn m q /L 0.001 2 3 7 2 3 7 (BPQL)

S um m ary; ICA P E S  m easurem ent o f FA  F ie ld  B lanks

Elem ent Units PQL

Total 
num ber 

ol blanks

N um ber of 
ol blanks 

below PQL

Highest
Conc.
found

Al m g /L 0.01 4 8 4 7 0 .0 6
Ba m g /L 0 .0 0 0 5 4 8 4 5 0 .0 0 1 4
Be m g /L 0.0001 4 8 4 8 (BPQL)
c a m g /L 0 .0 7 4 8 4 7 0 .1 3
Cd m g /L 0.001 4 8 4 8 (BPQL)
Co m g /L 0 .0 0 3 4 8 4 8 (BPQL)
Cr m g /L 0 .0 0 5 4 8 4 8 (BPQL)
CU m g /L 0 .0 0 3 4 8 4 8 (BPQL)
Fe m g /L 0 .0 0 5 4 8 4 7 0 .0 4 1
K m g /L 0.20 4 8 4 8 (BPQL)
Li m g /L 0.002 4 8 4 8 (BPQL)

Mg m g /L 0.10 4 8 4 8 (BPQL)
Mn m g /L 0 0 0 0 3 4 8 4 7 0 .0 0 0 8
Mo m g /L 0 .0 0 3 4 8 4 8 (BPQL)
Na m g /L 0 .1 8 4 8 2 5 0 .6 1
Ni m g /L 0.001 4 8 4 8 (BPQL)
P m g /L 0.01 4 8 4 8 (BPQL)

Pb m g /L 0.02 4 8 4 8 (BPQL)
s m g /L 0 0 0 7 4 8 4 0 .0 7 7

s m g /L 0.02 4 8 4 6 0 .2 3
Sn m g /L 0 .0 0 2 5 4 8 4 8 (BPQL)
Sr m g /L 0 .0 0 0 5 4 8 4 7 0 .0 0 0 7
Ti m g /L 0 .0 0 5 4 8 4 8 (BPQL)
V m g /L 0 .0 0 5 4 8 4 8 (BPQL)
Zn m q /L 0.001 4 8 4 8 (BPQL)

P Q L *  P rac tic a l Q u an tifiab le  Lim it 
B P Q L * B e lo w  P rac tica l Q u an tifiab le  L im it

Table 1 2

S um m ary : L a b o ra to ry  b lan ks  m e asured  on TSS filte rs , 
A A S  an d  C a rb o n  A n a lv ie r

Analyte Units PQL

Total 
num ber 

of blanks

Num ber 

of blanks 

BPQL

Highest
conc.
found

TSS m g /L 9 - 0.1
Arsenic p g /L 0.2 2 6 2 2 6 2 (BPQL)
O C m q /L 1.0 1 13 1 1 3 (BPQL)

F A *  F ilte red  and  ac id ified
T R *  To ta l re co verab le ; d ig e a te d  a cc o rd in g  to  E PA  M e th o d  X XX .

Table 1.4
Sum m ary: F ield  B lanka m eas u red  on  A A S , 

A lk a lin ity  titra io r . a nd  C arbon  A n a lyze r
Total Num ber Highest

num ber of blanks conc.

Analvte Units PQL of blanks BPQL lound
As (F A  and TR) u g /L 0.2 9 6 9 6 (BPQL)
Alkalinity m g /L 4 4 8 13 8.8
Inorqanic C m q /L 1 0 4 8 4 8 (BPQL)
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Iables §,1-5,2
External and Internal Standards Measurements

Ta b le  5.1
Summary: External standards measured on AAS
Concentrations in p g/L.

Reported M easured values or M easured values
S tandard value (R a n g e )' m ean (std. dev.) within Report. R anqe?
U S G S  T -1 4 3  (n  = 4 2 ) 15 .2 (2 .4 ) 1 4 .3  (0 .9 ) YES
U S G S  T -1 4 3  (D igested) (n  = 6 5 ) 15 .2  (2 .4 ) 1 3 .8  (2 .1 ) YES
U S G S  T -1 4 5  (n  = 1 4 3 ) 9 .8 8  (2 .0 8 ) 8 .8  (1 .0 ) YES
U S G S  T -1 4 5  (D igested) (n  = 2 1 ) 9 .8 8  (2 .0 8 ) 9 .8  (5 .4 ) YES
'R e p o rte d  R an ge  Is 2  pseudosigm as from the m ean
Note: USGS Standards T-121, T-143. and T-113 were diluted to 10%. and USGS Standards 
T107, T-119, and T-145 were diluted by 50% for analysis in order to fall within 
the range of calibration of the AAS.

Ta b le  5 .2
Summary: Internal standards (fortified lab blanks)
__________ measured on AAS. and Carbon Analyser__________

M ean (Std. D ev.) %  ditference  
of fortified lab blank

S tandard_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a n d  m easured concentration
Arsenic (<  or =  0 .5  pg /L ) (n = 6 4 9 )  8%  (8 % )
Arsenic (> 0 .5  pg /L) (n  = 6 6 4 )  3%  (3 % )
Inorganic C  (n = 3 5 0 )  2%  (2 % )
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Table 6.1

Tables 6,1-6.4; Precision results on all instruments

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  T a b le  6 .3
Summary: Results of analytical duplicates on ICAPES

N u m b e r of M e a n  (s tdev) of
dupl. pa irs  %  d ifferen ces

E lem en t_ _ _ _ _ _ _ a b ove P Q L of all dupl. pairs
Al 9 2 3 %  (9 % )
Ba 5 8 1 %  (2 % )
Be 4 1%  (1 % )
C a 1 8 2 2 %  (2 % )
Cd 2 1%  (1 % )
Co 2 1%  (1 % )
C r 1 0 1%  (2 % )
Cu 5 6 5 %  (6 % )
Fe 1 6 7 2 %  (2 % )
K 1 8 2 2 %  (3 % )
Li 1 3 9 2 %  (3 % )

Mg 1 8 2 1%  (2 % )
Mn 1 6 2 2 %  (3 % )
M o 6 4 3 %  (4 % )
Na 1 8 1 2 %  (3 % )
Ni 3 5 5 %  (6 % )
P 1 0 8 4 %  (5 % )

Pb 2 1%  (0 % )
S 1 8 2 1%  (2 % )
S 1 8 2 1%  (2 % )
Sn 0
Sr 1 8 2 1%  (2 % )
Ti 2 5 2 %  (3 % )
V 2 1%  (0 % )
Zn 9 3 3 %  ( 4 % )

Summary: Results of digest duplicates as 
analyzed on ICAPES

E lem ent

N u m b e r of 
dupl. pairs  
above P Q L

M e a n  (s tdev) of 
%  d ifferen ces  

of all dupl. pa irs
Al 6 5 1 1 %  (1 8 % )
Ba 8 3 2 %  (2 % )
Be 4 6 %  (7 % )
Ca 8 3 3 %  (2 % )
Cd 0 •

Co 0 •

Cr 8 2 2 %  (3 0 % )
Cu 2 4 4 %  (5 % )
Fe 8 3 7 %  (1 0 % )
K 8 3 3 %  (5 % )
Li 6 5 3 %  (6 % )

Mg 8 3 2 %  (2 % )
Mn 7 4 5 %  (1 0 % )
Mo 2 3 5 %  (6 % )
Na 8 3 4 %  (5 % )
Ni 2 2 2 5 %  (4 2 % )
P 5 0 1 1 %  (1 2 % )

Pb 0 -

S 8 0 3 %  (2 % )
S 8 0 2 %  (2 % )
Sn 0 •
Sr 8 3 2 %  (2 % )
Ti 2 3 5 %  (4 % )
V 0 •

Zn 6 4 2 1 %  (2 9 % )

T a b le  6 .2
Summary: AAS, alkalinity titration, and carbon

analyzer replicate comoarisons
N u m b e r of M e a n  (stdev) %  difference

rep lica te  sets or %  R S D  of
A n a lv te above P Q L replicate sets

To tal S usp . S ed . 1 1 0 2 6 %  (2 5 % )
A rsen ic 1 8 3 6 %  (6 % )
A lka lin ity ■ 8 9 1%  (1 % )
Inorcan ic  C 7 9 1%  (1 % )

T a b le  6 .4
Summary: Results of digest duplicates as 

analyzed on AAS
N um be r of M e a n  (s tdev) of
dupl. pairs %  differences

E lem ent above PQ L of all duDl. oairs
As 7 5 8 %  (1 2 % )

PQL= Practical Quantifiable Limit 
%RSD= Percent relative standard deviation
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Table 8: Summary of results of non-parametric 
multiple comparisons among sites.
PARAMETER:_________________________________  ORDER
Q BFB>CFBM>LF>BH
TSS, Al, BFB=CFBM>LF=BH
Aik, Ca, CFBM>BFB=BH;

BFB=LF, CFBM>LF, LF>BH
DIC, C ad, (Cud), (Cu,), Lid, Mg,, (Mod), Mo,, Pd CFBM>BFB=LF=BH
Asd CFBM>BFB>LF>BH

Bad, Ba, LF=BH>BFB>CFBM

Fed CFBM=BH>BFB>LF
Kd, K,, Mn,, Nad, Na, CFBM>BFB=BH>LF

Mga CFBM>BH>BFB;

BFB=LF, CFBM>LF, BH=LF
Mnd, Sd, S,, Sid, Si,, Srd, Sr, CFBM>BH>BFB>LF

As, CFBM>BFB=LF>BH

Fe, BFB=CFBM>LF;

BFB=BH, CFBM>BH, BH=LF
Li, CFBM>BFB>LF=BH

P« CFBM>BFB=BH;

BFB>LF, CFBM>LF, BH=LF
Zn, CFBM=BH>BFB=LF

In parentheses: elements that were above the PQL only at site CFBM
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T ab le  9
Summary of Wilcoxon Signed Ranks Test results (p-values) comparing 
the seasonal dissolved and total concentrations of each element

BFB CFBM LF BH
Asa v. As, 0 .0 0 7 ” 0.092 0 .0 0 4 " 0 .0 0 0 "
Bad v. Ba, 0 .0 0 0 ” 0 .0 0 0 " 0 .0 0 4 " 0 .0 0 5 "
Cad v. Ca, 0 .0 3 2 ’ 0 .300 0 .584 0.403
Cud v. Cu, (BPQL) 0 .0 0 0 " (BPQL) (BPQL)
Fea v. Fe, 0 .0 0 0 ” 0 .0 0 0 ” (BPQL) 0 .0 0 0 "
Ka v. K, 0 .0 0 0 " 0.819 0 .0 0 4 " 0 .021*
Lia v. Li, 0 .0 0 6 " 0.150 0.152 0.301

Mga v. Mg, 0 .054 0.174 0 .903 0.761

Mnd v. Mn, 0 .0 0 0 ” 0 .0 0 0 " (BPQL) 0 .0 0 0 "
Mod v. Mo, (BPQL) 0 .0 4 ’ (BPQL) (BPQL)

Nad v. Na, 0 .0 0 2 " 0 .135 0 .0 0 4 " 0 .0 0 7 ”

Pd v. P, 0 .0 0 0 " 0 .0 0 0 " (BPQL) (BPQL)
Sd v. S, 0 .0 4 8 ’ 0 .276 0 .0 0 5 " 0 .089
Sid v. Si, 0 .0 0 3 " 0 .0 0 1 " ? 0.951

Sra v. Sr, 0 .083 0.211 0 .0 4 2 " 0 .070

Zna v. Zn, 0 .0 0 2 " ? 0 .0 0 0 ” 0 .0 0 0 ”

* Test is significant at the 0.01 level
* ' Test is significant at the 0.05 level 

T ab le  10
Dissolved vs. total metal concentration: correlation coefficients

BFB CFBM LF BH
Asa v. As, 0 .4 7 ’ 0 .4 5 ’ 0 .9 1 " -0.16

Baa v. Ba, 0 .9 7 " 0 .8 7 " 0 .9 8 " 0 .9 8 "
Cad v. Ca, 0 .9 6 ” 0 .7 9 " 0 .9 5 " 0 .9 6 "

Cua v. Cu, (BPQL) 0 .24 (BPQL) (BPQL)

Fea v. Fe, 0 .5 5 " 0 .6 0 " (BPQL) -0.39

Ka v. K, 0 .9 8 " 0 .9 9 " 0 .9 0 " 0 .9 4 ”

Lia v. Li, 0 .9 4 " 0 .9 4 ” 0 .9 5 " 0 .8 7 "

Mgd v. Mg, 0 .9 9 " 0 .9 8 " 0 .9 6 " 0 .9 6 "

Mnd v. Mn, 0 .8 1 " -0 .45* (BPQL) 0 .7 3 ”
Moa v. Mo, (BPQL) 0.28 (BPQL) (BPQL)

Nad v. Na, 0 .9 9 ” 0 .9 7 " 0 .8 4 ” 0 .9 0 "

Pd v. P, 0 .6 0 " 0 .5 4 " (BPQL) (BPQL)

Sa v. S, 1 .0 0 " 0 .9 7 " 0 .7 5 ” 0 .9 7 "

Sia v. Si, 0 .7 4 ” 0 .7 9 " 0 .9 4 " 0 .52*

Srd v. Sr, 0 .9 9 " 0 .9 8 ” 0 .9 7 " 0 .9 8 "

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
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Table 11
Moderate to good correlations between Q and TSS, dissolved (d) 
elements, and total recoverable (t) elements at all sites .
All other elements lacked good and significant correlations with Q. 
(Seasonal data only; n  =23 for LF and BH; n =24 for CFBM; n =21 for BFB)
Parameter Site BFB Site CFBM Site LF Site BH
TSS 0 .6 7 * * 0 .6 4 ” 0 .6 6 * * 0 .8 5 * *
Alkalinity -0 .9 6 ** -0 .7 7 ” -0 .9 1 ” -0 .9 5 **
DC -0 .9 5 ** -0 .5 5 ” -0 .9 6 ** -0 .9 3 ”
t_A I 0 .4 8 * 0 .7 0 ” 0 .5 8 ” 0 .6 6 * *
d_As -0 .8 2 ** -0 .4 0 * -0 .8 1 ” -0 .4 8 *
t_As -0 .2 7 0 .37 -0 .6 8 ” 0 .5 6 ”
d_Ba -0 .9 1 ” -0 .4 8 * - 0 .9 6 " -0 .9 5 ”
t_Ba -0 .9 4 ** -0.21 -0 .9 5 ** -0 .9 6 ”
d_Ca -0 .9 6 ” -0 .8 9 ** -0 .9 4 ” -0 .9 5 ”
t_Ca -0 .9 6 ” -0 .8 2 ** -0 .9 3 ” -0 .9 5 ”
t_Cu BPQL 0 .6 6 ** BPQL BPQL
d_Fe 0.01 0 .5 8 ” -0 .25 0.01
t_Fe 0 .5 2 * * 0 .6 8 ” 0 .5 5 * 0 .8 8 * *
d_K -0 .7 1 ” -0 .6 9 ” - 0 .9 5 " -0 .7 0 ”
t_K -0 .5 9 ” -0 .6 6 ” -0 .8 5 ** -0 .6 2 ”
d _ li -0 .9 2 ** -0 .8 9 ” -0 .6 9 ** -0 .7 5 ”
t_Li -0 .8 5 ” -0 .9 1 ** -0 .7 5 ** -0 .8 1 ”
d_Mg -0 .9 4 ” -0 .8 0 ** -0 .9 4 ** -0 .9 4 ”
t_Mg -0 .9 6 ” -0 .8 0 ” -0 .9 3 ” - 0 .9 6 "
d_Mn 0 .1 4 0 .25 0 .4 5 * 0 .8 8 * *
t_Mn 0 .5 6 * * 0 .3 9 * 0 .6 5 ” 0 .8 5 ”
d_Na -0 .8 4 ” -0 .6 8 ** - 0 .7 9 " -0 .7 7 ”
t_Na -0 .8 6 ” -0 .7 4 " -0 .8 9 ” -0 .9 0 ”
d_S -0 .7 5 ** -0 .7 3 ** -0 .6 8 ** 0 .3 9
t_S -0 .7 5 ” -0 .7 8 ” -0.41 0 .3 4
d_Si -0 .7 0 ” -0 .38 -0 .9 4 ** -0 .7 0 ”
t_Si -0 .2 8 -0 .15 -0 .9 1 ** -0 .6 6 * *
d_Sr -0 .9 4 ** -0 .9 3 ** -0 .9 7 ” -0 .9 2 * *
t_S r -0 .9 3 ” -0 .9 0 ” -0 .9 6 ” -0 .9 3 * *
t_Ti 0 .2 6 0 .7 1 ” BPQL
d_Zn -0 .3 0 0 .10 BPQL 0 .9 1 ”
t_Zn 0 .4 8 * * 0 .4 5 * 0 .7 9 * *
** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed).
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Table 12
TSS vs. total metal concentrations: correlation coefficients
TSS vs.: BFB CFBM LF BH
Al, 0 .8 9 * * 0 .9 7 ** 0 .9 9 * * 0 .8 8 * *
A st 0 .3 8 0 .7 8 " -0 .3 0 0 .8 1 * *
Ba, - 0 .6 7 " 0.31 - 0 .7 0 " - 0 .7 6 "
Be, (BPQL) 0 .8 3 " (BPQL) (BPQL)
Ca, - 0 .6 4 " -0 .5 0 * - 0 .6 6 " - 0 .7 7 "
Cu, (BPQL) 0 .9 5 " (BPQL) (BPQL)
Fe, 0 .9 1 " 0 .9 5 " 0 .9 5 * * 0 .9 8 * *

K, 0 .0 3 -0 .60 -0 .3 3 -0 .2 2

Li, -0 .4 5 * -0 .5 3 ** - 0 .5 3 " - 0 .6 4 "

Mg, -0 .6 7 ” -0 .4 5 * -0 .7 0 ** -0 .7 7 "
Mn, 0 .9 2 * * 0 .8 8 " 0 .9 9 * * 0 .9 8 * *
Na, -0 .3 9 -0 .37 - 0 .5 4 " -0 .6 7 **

P, 0 .7 8 " 0 .8 9 " 0 .0 5 0 .3 5

s, -0 .2 4 -0 .5 8 " -0 .11 0 .3 5
Si, 0 .3 8 0 .26 -0 .5 0 * -0 .2 9
Sr, -0 .5 5 ** -0 .4 8 * - 0 .6 9 " - 0 .7 1 "

Ti, ••COo

0 .9 7 " (BPQL) (BPQL)

** Correlation is significant at the 0.01 level (2-tailed). 
* Correlation is significant at the 0.05 level (2-tailed).
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Figure 2: Hydrographs for the four study sites: a) BFB, b) CFBM, c) LF, and d) BH 

The approximated hydrograph at LF is based on a downstream gaging station on the 

Blackfoot River where Q was well correlated (R2=0.96) with Q measurements at LF.
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Figure 3: Streamflow vs. (a) filtered ("dissolved") Fe and (b) total recoverable Fe 
at BFB. Error bars in these and all other plots represent the 95% confidence interval 
based on the triplicate samples collected per event.
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Figure 4: Streamflow vs. Ca at a) BFB, b) CFBM, c) LF, and d) BH.
In these and all subsequent plots, filtered samples are denoted by triangles, and total 
recoverable concentrations by squares.
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Figure 19, continued: Boxplots o f Oiel, Seasonal, and Septem ber rain event variability 
at site BFB.
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Figure 20: Boxplots of diel, seasonal, and September rain event variability at site CFBM.
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