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Abstract. 

Quantifying surface fuels in forests is problematic for land managers due to the difficulty in 

measuring fuels of different sizes and spatial variability. Estimating fuel loads is important 

for identifying departures from historical fire regimes, predicting fire behavior and effects, 

and prioritizing parcels for fuels reduction. Current field methods of estimation are not 

always cost-effective nor can they be practical for full coverage at landscape scales. Several 

studies have examined remote sensing techniques for estimating fuel loads.  One of the most 

promising is Light Detection and Ranging (LiDAR), which thus far has been applied 

primarily to forest canopies.  Metrics derived from LiDAR include canopy base height, 

canopy bulk density, biomass, crown height, basal area, and tree stem location. This study 

focuses on the surface fuel bed, defined as the two meter stratum above ground. The 

relationships between LiDAR-derived surface roughness and fuels were explored in mixed-

conifer forest using a relatively sparse LiDAR dataset (~1 point/m
2
). Surface roughness was 

imputed as the standard deviation of ground height distribution of laser pulse returns. Field 

data were derived from the nationally-scoped Fire-Fire Surrogate Study for 432 plots using 

two opposing azimuth Brown‟s transects at each sample point. Fuel loading and surface 

roughness were both highly variable at plot level across the study area.  

Total biomass could be predicted at a nine ha resolution (R
2
 = 0.73).  Relationships for total 

biomass in the fuelbed, analyzed at 2.25 ha and 0.07 ha resolutions, showed less correlation 

(R
2
 = 0.56 and 0.094, respectively). Individual surface fuel components were analyzed for 

correlation with surface roughness. A combination of forest floor mass and 1-hour fuels 

produced the highest correlation (R
2
 = 0.86). Additionally, LiDAR-derived data were used to 

derive fire behavior fuel models. Fuel models were classified by decision tree, CART 

analysis, and unsupervised classification using LiDAR-derived inputs. Results were validated 

using 101 gridded forest inventory plots. While LiDAR consistently characterized the plots at 

fine scale, the subjective nature of fuel model designation made statistical validation difficult. 
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CHAPTER 1.  INTRODUCTION 

 

Fuels are an ever-present facet of land management in a range of disciplines-from fire 

suppression to wildlife habitat, from restoration treatments to watershed hydrology. 

Wherever vegetation can gain a foothold, the detritus of previous generations of species 

continuously accumulate as part of ecosystem dynamics. This accumulation has been kept in 

check by a series of natural disturbance cycles that promote a balance between species-

specific adaptations and succession regimes to provide biodiversity at many scales (Arno et 

al., 1995). The encroachment of civilization into forested and range landscapes and the boon 

of natural resources these landscapes represent has sired many different management aims 

than the natural ecosystem mechanics produce. In the West, the disturbance most threatening 

to public safety, human-made infrastructure, and potential resources is wildfire. Damage 

assessments of wildfires inherently include acres burned, structures lost, and at their worst, 

casualties of fire events. The past 100 years have seen fire control efforts and management 

strategies evolve through lessons learned. Management has drawn upon scientific research 

and field observations to provide the necessary information needed for long-term planning 

and decisions that address the problems at hand. 

Changing weather patterns (Westerling et al., 2006), fuels accumulation (Reinhardt et al., 

2008), and an expanding wildland urban interface (WUI) (Cohen, 2008) have been accounted 

as factors for increased fire damage which puts greater pressure on land agencies to mitigate 

hazards, protect assets, and provide for public safety (Kimbell et al., 2008). Fire behavior is 

attributable to three main factors; fuels, weather, and topography. To effectively address fire 

behavior, managers must be able to manipulate fuels around uncontrollable but predictable 

weather conditions. Fuel conditions that are outside a normal local range may be designated 

as hazardous fuels due to potential fire behavior and top the priority list for treatment actions. 

In order to make well-informed and effective decisions about land holdings, a vast 

amount of data is required. Planning documentation for proposed actions such as the National 

Environmental Policy Act (NEPA) environmental assessments (EA) or environmental impact 

studies (EIS) require hours of research and writing, planning, and hard evidence to complete. 

The intensive effort required to accomplish hazardous fuels reduction goals can be daunting. 

Fire and fuels management officers (FMO) and their assistants are mandated (USDA Forest 

Service, 2009) in their job descriptions to:   
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Plan, coordinate, and direct a complex fire management program on a forest area that 

poses diverse, unusual, or conflicting problems, such as planning for critical fuel treatment 

programs that have a wide variety of natural and activity-generated fuel types found over 

steep, broken terrain in areas of high public interest. 

     

With this in mind, prioritizing specific tracts within thousands if not millions of acres 

requires complex data and geographic information systems (GIS) to assemble all pertinent 

data into a meaningful depiction of conditions on the ground. At present, consistent fuels data 

are available as layers from the LANDFIRE project, that cover the majority of the US at a 30 

meter resolution (Schmidt et al., 2002). The LANDFIRE project is a comprehensive coverage 

dataset addressing the ecological departures from historical conditions of vegetation, fuels, 

and fire regime layers (Rollins, 2009). These layers function best at small-scale but can prove 

inconclusive at the stand level, where treatments and actions are applied. Consequently, there 

is considerable room for improvement of fuels layers at project scales.  Although many 

quantitative analyses are available as large-scale samples for limited parcels, they continue to 

incur intensive time and money investments for anything above localized field collections.  

An ideal fuels layer would have full coverage of high resolution data that depict metrics taken 

from direct measurements of landscape elements.   

This study assesses airborne laser altimetry to estimate surface fuel loadings in mixed-

conifer forests of western Montana and to project that relationship across a landscape to 

produce a spatially explicit, consistent fuels map. Surface roughness is used in an attempt to 

quantify fuel loads, and different classification methods are explored to try to characterize the 

landscape according to fuel model precedents. Laser altimetry is considered as a potential 

solution to the problems inherent to measuring, inventorying, and managing fuels.   

The relationship between surface roughness and fuels was first explored by Seielstad and 

Queen (2003) in closed canopy forests of west-central Montana. They found that it was 

possible to differentiate between Fuel Model 8 and 10 (Albini, 1976) using several different 

surface roughness metrics including obstacle density (OD) and standard deviation of the 

ground height distribution (GHD). The fuel component with the greatest impact in this 

relationship was determined to be coarse woody debris (CWD). It was hypothesized that in 

closed canopy forests, CWD is the dominant patent reflective surface underneath a dense 

overstory. It was also suggested that a relationship between roughness and fuel loads might 



 3 

be established in more diverse fuel complexes (Seielstad and Queen, 2003). These results and 

assertions were developed in monoculture stands of lodgepole pine (Pinus contorta) with 

definitive differences between FM8 and FM10 fuel types.  The statistical reliability and 

accuracy were very high using OD to characterize the fuelbed in closed-canopy monoculture 

stands. Therefore, it seemed logical that a similar relationship might hold within closed 

canopy, mixed-conifer stands with varying fuel models and fuel loadings more typical of 

lower elevation mixed-conifer forest types.   

The research presented in this thesis, then, is based on an airborne laser altimetry dataset 

acquired in 2005/2006 for The University of Montana‟s Lubrecht Experimental Forest.  The 

University of Montana‟s National Center for Landscape Fire Analysis (NCLFA) contracted 

Horizons Inc., a photogrammetry and remote sensing firm, to acquire the data.  Lubrecht was 

an ideal study site for further fuels research using LiDAR due to its species and structure 

diversity as well as having a wealth of existing data. The Lubrecht acquisition presented an 

opportunity for a sensitivity analysis of the relationship between fuels and surface roughness 

and allowed for further exploration of surface roughness methods and fuel model 

classifications.  

 

1.1  Importance of Quantifying Fuels for Fire Management 

The importance of fuels in an ecosystem cannot be overstated. The accumulation of fuels 

beyond their historical loads presents future issues with fire management that compound with 

time. Addressing fuels is not only an issue of scale and time but subjective calls of severity 

and complexity. Each fire season demands that some type of action in the field be taken, 

whether mechanical treatments, harvests, or prescribed burns are applied to the landscape. 

Disturbances will always return to an area and the risk currently being run by the agencies is 

that wildfire will occur before accumulated fuels can be dealt with. A successful strategy is 

one where management can seize the initiative and act on the best possible terms rather than 

having wildfire make the decision for them.  

The influx of civilization into forested lands adds a heightened sense of urgency to the 

problem. Policy and management actions can be derailed when one has to take personal 

property into account. This grey area between privately owned properties and publicly 

managed lands is called the Wildland Urban Interface (WUI) and is perhaps the most 

pressing interaction between humans and the fire environment. About 60% of new homes in 
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the 1990‟s, over 8.4 million, were built within the WUI (Harbour, 2008). That trend 

continues as figures are projected into the future. With these homes comes the infrastructure 

to support them and an ever-increasing human presence within areas that will burn. This 

complicates matters as the public puts increasing pressure on the agencies to suppress fires. 

Fire and Aviation Director for the Forest Service, Tom Harbour states, “Until fuel loads on 

landscapes are reduced to a level that can safely accommodate some natural wildfire, any 

cooperative wildland fire framework will remain reactive and potentially ineffective” 

(Harbour, 2008). To be pro-active, hazardous fuels reduction projects must be undertaken 

during the off-seasons. Where prescribed fires can be used in remote areas to reduce fuels, 

the risk associated with losing control of prescribed fire necessitates using mechanical means 

of fuels reduction in the WUI (Reinhardt et al., 2008). It is critical then, to be able to identify 

the areas of greatest concern and deal with them in the appropriate manner. Past management 

practices were effective in dealing with the immediate problems faced in their time. 

Continuation of these same practices may only exacerbate the problem and prove to be 

ineffective at dealing with the different dynamics in present day forest management.  

 

1.2  Resulting challenges for fire managers 

In the arena of fuels and fire the main challenges for land managers outside of operational 

duties are to identify, prioritize, and mitigate hazardous fuel concentrations in a timely 

fashion. Wildfire has been identified as an issue that must be dealt with, the 2010 Forest 

Service budget requested a $134 million increase over 2009 to fully fund the average ten-year 

suppression costs (US Forest Service, 2010). Operational suppression actions are necessary 

but reactionary; to proactively deal with the problem at hand, managers have to develop plans 

for hazardous fuels that are based upon sound information. To identify areas of concern at a 

meaningful scale, the only viable option is to use some sort of remote sensing. Prioritization 

will mean landscape analysis that can depict and quantify hazardous areas. Mitigation at this 

scale will require management actions that reduce fuel loads and restore structure to 

manageable levels in specific areas of the landscape where it is most effective and 

economical. 
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CHAPTER 2.  BACKGROUND 

 

2.1  Introduction 

Forest fuels are most commonly defined by their physical characteristics or their 

relationship to various disturbances, among others.  The relationship between fuels and fire 

behavior is crucial for fuels assessment, and tends to be the driving force in current fuels 

management.  This includes consideration of classes of individual pieces of fuel, 

characterization of fuel complexes and accurate assessment of fuel loads. Remote sensing 

methods and datasets, specifically LiDAR, can be an important link to accurately assessing 

canopy and ground fuels. In the past, LiDAR data detailing surface roughness has been used 

to estimate fuel loads in monoculture forests.  If these same techniques can be used to 

estimate fuel loads in mixed conifer stands, fire managers could have access to accurate, 

landscape level fuels assessments where most fires occur.  

From a fire standpoint, fuels are defined as all biomass in a landscape that can contribute 

to fire behavior (Pyne et al., 1996). The majority of fuels are dead woody material of various 

diameter and composition that have either fallen to the forest floor or in the case of grasses 

and shrubs, dead material that has accumulated during the annual life cycle of the plants. 

These materials accumulate and decompose, adding to surface litter and duff layers as a 

function of time. How these different types of fuels react and contribute to fire behavior 

depends on many different factors. Size, shape, placement, type, terrain, and weather are a 

few of the necessary attributes in determining how fuels will affect fire behavior. How fuels 

will burn can be identified as the fire environment. The fire environment is often broken 

down into fire regimes and fire behavior within these can be altered by terrain, weather, and 

previous management actions. In this chapter I will give background on how fuels are 

classified and organized and how they are represented according to the expected fire behavior 

they can produce. I will finish off the chapter with methods of remote sensing and more 

specifically, airborne LiDAR applications to detect and measure fuels. 
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2.2  Effects of terrain and weather on fuel flammability 

The fire environment is very dynamic and the two influential features that directly affect 

fire behavior are terrain and weather. Terrain affects pre-heating of fuels, how much solar 

radiation fuels receive, and serves as a barrier to atmospheric conditions. Weather influences 

fuel temperature, moisture content, relative humidity, winds, and atmospheric stability. 

Weather also includes thunderstorm activity that serves as a source for ignition, moisture, and 

erratic winds, all which influence fire behavior. 

In regard to fire behavior, terrain can be broken down in to slope, aspect, and elevation 

(Agee, 1993). Steeper slopes present fuels higher up to pre-heating from an advancing 

flaming front. Slope also determines how much of the sun‟s radiation is absorbed, a function 

of tangency to the incoming rays. Grade of slope determines how exposed fuels are to 

upslope winds within the immediate slope wind sheath. The aspect of terrain dictates at what 

time of day solar radiation will heat the fuels and reduce relative humidity. Elevation of 

terrain influences dominant species and temperature. The size, shape, and orientation of 

terrain determine macro and micro-climatic conditions within the fire environment. Winds 

are channeled through landscapes by terrain and highly influenced by surface friction and 

heating and cooling of the surface (Schroeder and Buck, 1970). Precipitation often falls 

heavier on windward slopes as air masses are lifted over the terrain and reduce their moisture 

holding capacity (Whiteman, 2000). In a broad sense, terrain is the vessel in which the 

chemical reaction of fire occurs. It is a mostly static facet of the fire environment and critical 

to understanding and predicting fire behavior.  

Weather is the most dynamic factor present in the fire environment and elements of 

weather that affect fire behavior are: temperature, relative humidity, atmospheric stability, 

winds, and thunderstorms. High temperatures lower the moisture content of fuels through 

evaporation, and in live fuels transpiration is accelerated (Waring and Running, 1998). 

Related to temperature is relative humidity (RH), a ratio of how much water a parcel of air 

can hold to how much it has (Schroeder and Buck, 1970). RH‟s below 100% indicate that the 

air is unsaturated, allowing a moisture gradient to exist between fuels and the air.  As RH‟s 

begin to lower, fuels release their moisture into the air parcel. Wind compounds this 

relationship by mixing the air and replacing saturated air with warmer, drier air from lower 

elevations. During combustion, wind mixes the air around a fire providing a fresh source of 

oxygen and delivers the heated air to fuels in front of the advancing flame front, pre-heating 
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them and lowering their immediate RH. Atmospheric stability in the fire environment denotes 

convective activity that can influence fire behavior (Haines, 1988).  Stable lower atmospheric 

zones suppress vertical convection and mixing of air parcels. Conversely, unstable lower 

atmospheric zones promote convection and have been correlated to an increase in fire 

activity. Atmospheric instability creates conditions for the development of thunderstorms, 

producing lightning that leads to further ignition of fuels. Strong, erratic winds are produced 

at the ground level from thunderstorms and can cause extreme and unpredictable fire 

behavior. 

Terrain and weather are independent factors of the fire environment that cannot be 

controlled. Management actions and plans have to be worked around these elements. Fuels 

are the dependent factor in the fire environment and a proper assessment of the current state 

of a fuel bed is compared to where it should be sustainably is the subject of fire regimes. 

 

2.3  Fire regimes 

Fire regimes are characterizations of how fire disturbance events have shaped an 

ecosystem (Agee, 1993). For landscape and large scope planning, the most commonly used 

system is one that broadly denotes the severity of the most common type of event to occur. 

Severity is a subjective qualifier in this case and uses fire effects on the dominant species to 

determine a high, medium, or low severity (Agee, 1993). The second descriptive aspect of 

fire regimes is the frequency with which an event will occur. Mean fire-return intervals 

indicate this frequency and are mean times between fire events for given areas.  

The importance of fire regimes comes to the forefront when they change dramatically. 

Many species have developed adaptive strategies in response to generally stable, predictable 

fire regimes (Barnett, 1999). Fire exclusion has historically removed this stabilizing function 

from stands that relied on disturbance to maintain their dominant species. An example is 

Douglas-fir encroachment into ponderosa pine stands (Covington and Moore, 1994) and 

mountain grasslands (Arno and Gruell, 1986).  In some ecosystems, ingrowth of shade-

tolerant species into the understory and open areas had historically been kept in check by low 

intensity, high frequency fires. These fires would burn to their natural extents on a frequent 

basis and reduce the amount of dead and live fuel in the fuel bed, keeping fuel loads 

relatively low. Dominant species that had long periods of time to adapt survival mechanisms 

to these types of events would be vulnerable if a different type of frequency or intensity 
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disturbance event occurred. Higher than normal fuel loads would accumulate if fire frequency 

was reduced. This would also increase the probability of a higher intensity event. 

Accumulation due to low frequency events coupled with higher biomass loads caused by 

ingrowth pose a risk of high severity fires that dominant species cannot adapt to. In a stand-

replacing fire, shade-intolerant species that may have been dominant would have no foothold 

to compete with shade-tolerant species and the entire makeup of the stand would change from 

its historic norm. While stand-replacing events probably happened in the past naturally, they 

were most likely isolated events that affected a small area. The current risk is that fire 

regimes are changing on a broad scale, partly due to human actions, and that stand-replacing 

fires in the future won‟t be isolated events but ones that change the composition of entire 

forests in a short number of years. 

 

2.4  Effects of fire suppression on fuels and fire management 

The term, “Fire suppression” has perhaps incorrectly become synonymous with “fire 

exclusion.”  Fire suppression is a management strategy that is not always successful where 

fire exclusion is an ecological term that denotes a complete absence of fire disturbance. 

Management strategies of the past were centered on timber resources and forests were seen as 

cash crops that needed protection from destructive natural forces. The fires of 1910 greatly 

influenced a young Forest Service that united its power against a common enemy (Pyne, 

2002). Fire suppression became the nationwide management response to wildfires. This 

response interrupted the natural ecological processes and ecosystem balance that had 

developed for centuries past. Fire regimes, fuel loads, and the character of the landscape 

would change over the eighty years that suppression held sway. Initially the strategy worked 

and devastating fire events were apparently held in check. The unforeseen consequences of a  

suppression strategy are only now becoming apparent. Tree density has increased, increasing 

the competition for limited resources. Disease and insect infections are more capable against 

trees that lack the resources to fight them off. Adaptations that take generations to develop 

cannot keep up with drastic changes that are now taking place. Fire severity has increased 

due, in part, to historically higher fuel loads. Historic fire events systematically reduced fuel 

loads to sustainable levels, allowing species with fire-adapted responses to survive. Current 

fuel loads exceed the ability of those species to adapt, increasing their mortality and 

hindering their ability to retain their dominant status. Having fire on the landscape has been 
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found to be a necessary process and excluding it in the short term only created long term 

problems at an exponential scale.  

 

2.5  Describing Individual Fuel Components in the Fire Environment 

A fuel complex is made up of individual pieces of fuel that contribute differently to fire 

behavior. In general, smaller diameter pieces of fuel are associated with fire behavior where 

larger diameter pieces deal with fire effects (Lutes and Keane, 2006). It is important to 

understand the arrangement and classification of these pieces to get a sense of how they 

appear naturally and how remote sensing can be used to detect and quantify them. A 

distinction should be made between surface fuels and aerial fuels as they affect fire behavior 

differently. It should also be mentioned that fuels appear in strata that become relevant to fire 

behavior under certain conditions in the fire environment.  

Typically fuels are stratified vertically from ground and surface fuels to aerial fuels. 

Pieces of vegetation with similar physical characteristics are grouped together by similar 

sampling methods (Brown et al., 1982). Size and shape of fuel particles is relative to the 

surface area to volume ratio, the higher the ratio, the finer the particle. More surface area per 

volume means less heat is required to drive off moisture and raise the particle to ignition 

temperature (Pyne et al., 1996). 

The initial stages of fire growth and behavior are entirely dependent on surface fuels and 

most fire behavior prediction simulations center around these. Only when conditions are 

present in the surface to transfer fire to the crown are aerial fuels analyzed. Aerial fuels 

become necessary when this transition occurs and then play a part in determining subsequent 

fire behavior.  

 

2.5.1  Surface fuels and ground fuels 

Ground fuels denote the layer of fuel immediately above mineral soil that contains highly 

decomposed organic material. Surface fuels include surface litter, herbaceous vegetation, 

shrubs, and downed woody material. Small, live conifers 10 ft or less in height are generally 

included in the surface fuels layer due to their contribution to fire behavior. While this layer 

is assumed to be undetectable by LiDAR because the laser pulses cannot penetrate it, it has a 

correlation to the larger pieces above it that will decay and contribute fuel to this layer.  
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Duff and litter        Duff and litter are the layers of material above mineral soil that are 

composed of decaying organic material. Duff is merely highly decomposed litter, but it is 

important to distinguish between them as they contribute to fire behavior differently and 

signify different types of fire severity when they burn. Generally, duff is highly compacted 

compared to litter and therefore is less responsive to changes in relative humidity. Litter‟s 

lower bulk density allows air to circulate more freely and reflects the more immediate 

climatic conditions, meaning litter can and often does, burn independently of the duff. 

Remotely sensing the duff layer is questionable, and with an airborne LiDAR dataset, it is 

out of the question. In order to quantify the duff layer, it would be necessary to penetrate the 

organic material and retrieve returns from mineral soil, a task that is beyond LiDAR‟s 

capacities. Surface litter can, however, be detected but is in such close contact with the 

underlying duff layer that a ground surface model would not be able to differentiate litter 

from duff. 

 

Dead fuels and DWD: 1-1000 hour         Dead and down woody debris (DWD) is 

categorized into ranges of diameters but more commonly these categories are known by their 

moisture timelag class names. Moisture timelag classes identify the midpoint for the range of 

times fuels of corresponding diameter classes will lose or gain approximately two-thirds of 

their moisture. These classes are defined as 1 hour fuels, 10 hour fuels, 100 hour fuels and 

1000 hour fuels. DWD is commonly separated into fine woody debris (FWD) and coarse 

woody debris (CWD) because they function differently in forest ecosystems (Lutes and 

Keane, 2006). The 1-100 hour timelag classes make up FWD and the 1000 hour classes are 

CWD. For this study the distinction is made between FWD and CWD for their suitability as 

hard targets for LiDAR pulses.  

 1 hour fuels correspond to pieces of fuel with diameters of 0 to 0.6 cm which react to 

ambient air moisture changes within 2 hours or less. Common examples are grasses, lichens, 

herbs, and the topmost needles of the litter layer (Bradshaw et al., 1984).  
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Figure 1. NFDRS 1978 change in relative moisture of various sizes of dead fuels over time (h) (Bradshaw 

et al., 1984). 

 

Fuel particles such as dead twigs and branches of 0.26 to 1.0 inches in diameter constitute 

the 10 hour timelag series. Coarser pieces, 1 to 3 inches in diameter are classified as 100 hour 

fuels. Logs or branchwood over 3 inches comprise the 1000 hour, CWD series (Figure 1).  

 

Live fuels         Live fuels provide an excellent target for LiDAR pulses due to their leaf 

structure, and in the fuel beds of mixed-conifer forests are assumed to be shrubs, herbs, or 

small trees and saplings. The stems and branchwood of live fuels have a low surface area to 

volume ratio and do not significantly contribute to fire behavior, therefore while detectable, 

they are not considered in fuel load calculations. The foliage of live fuels represents the 

greatest amount of available fuel, depending on its moisture content. In conifer forests, tree 

needles present a very high surface area to volume ratio meaning they can become part of the 

available fuel load when temperatures rise and the RH lowers. Smaller trees and saplings can 

provide a continuous fuel load throughout the entire canopy and are known as „ladder fuels.‟ 

When live fuels in the fuel bed become available to combustion, they not only increase the 

fuel load dramatically, they also provide pre-heating and a source of ignition for the upper 

strata of the canopy.    
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2.5.2  Aerial/Crown fuels 

Aerial fuels are considered the foliage of mature trees above the fuel bed. They are still 

classified as live fuels but require an active surface fire for ignition. Once aerial fuels are 

ignited, they can burn independently of the originating surface fire and can provide an 

ignition source for surface fires away from the original source. Fires which propagate through 

the canopy are important to fire behavior and fire effects but are not a part of this study. 

 

2.5.3  Quantifying Fuels 

Definitions of common terms        Fuel load calculations are comprised of all timelag 

classes of fuels to determine an estimate of the quantity of fuel present in the fuel bed. Fuel 

loads are directly related to fire intensity and residence time and have a bearing on fire 

severity (Lutes and Keane, 2006). Estimations of fuel loads are currently based upon field 

data gathered from intensive large scale collections or broad, small scale collections. One 

issue with measuring fuels is that weather conditions change their availability for 

combustion. The following terms are used to describe fuels: available fuels, potential fuels, 

total fuels, and biomass. Available fuels and potential fuels are values used to determine fire 

behavior where total fuels and biomass deal with fire effects and ecological characteristics. 

 

Available fuel       Available fuels are the biomass within the fire environment that can burn 

under the climatic conditions present at the time of a select fire event (DeBano et al., 1998). 

They will change with differences in RH and temperature and are computed for a single event 

only. This has pertinence to fire behavior predictions and inputs into fire spread simulations 

use available fuel. 

 

Potential fuel         Potential fuels are vegetation and materials which may burn during an 

intense fire. This value is generally less than the total fuel and represents the worse-case 

scenario for fire behavior. 

 

Total fuel         Total fuel is all plant material or phytobiomass, above mineral soil to exclude 

root systems. Total fuel includes the boles of living trees that are never substantially 

consumed in a fire event (Pyne et al., 1996).  
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Biomass        Biomass includes all organic material above mineral soil and roots below; it is 

total fuel plus root systems and is any material that can undergo combustion. Biomass is an 

important value to know to determine how much material a site can support.  

 

2.6  Methods for estimating fuel loads 

2.6.1  Fixed Plot Method 

Fixed-area or quadrat methods use rectangles, circles, or other known fixed area shapes to 

bound plots about a centroid. All fuels within the boundaries that meet the sampling criteria 

are subject to a range of methods of collection. Common methods are destructive sampling 

which removes all target pieces of fuel and dries them in the oven to obtain dry-weights to 

volumetric sampling which merely measures the physical dimensions of target pieces. While 

highly accurate, the collection of fixed-area plots is time and cost intensive and thus, is 

generally relegated to research purposes (Sikkink and Keane, 2008; Keane and Dickinson, 

2007).  

 

2.6.2  Planar Intercept Method 

Planar intercept methods were developed by Brown and were based upon the line 

intercept method (Brown, 1971). Brown addressed errors due to fuel particle tilt by rotating 

the sampling plane around its x, y, or z axes. Identical to the roll, pitch, or yaw of an aircraft, 

the planar intercept is oriented perpendicularly to the predominant axis of the vegetation. 

Fuel volume estimates are sums of all fuel particle intercept areas times the length of the fuel 

bed. Estimates that are angle-inclusive in their area calculations are more accurate in their 

predictions, but tend to under-estimation of total volume (Brown, 1971). 

 

2.6.3  Fuel Load Method (Lutes) 

The Fuel Load (FL) method was proposed by Lutes and Keane as the sampling protocol 

for the FIREMON fire effects monitoring scheme (Lutes and Keane, 2006). The planar 

intercept methods developed by Brown are used to sample DWD. FL uses multiple planes for 

sampling and may go up to seven planes of different azimuths. This method was designed to 

reduce overestimation of loads and provide a greater sample size to offset high variability 
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(Lutes and Keane, 2006). Where Brown‟s methods and FL differ are the small live tree, herb, 

and shrub estimations. 

 

2.6.4  Photo Series Methods 

The photo series methods use photographs of sites that were subsequently sampled using 

Brown‟s methods to obtain fuel loads. These photos are then used by field personnel of 

varying skill levels to quickly assess a landscape, match the most similar photo, and assign an 

estimate to the area. Obviously there is a great amount of subjective assessment with this 

method and the photographs may not adequately capture all diameter classes present in the 

fuelbed.   

 

2.7  Fuel Models 

Fuel complexes are mathematical descriptions of fuels for use in fire behavior models. 

There are a variety of methods for determining fuel models ranging from field based visual 

estimations using thirteen simple classifications to databases of thousands of different 

customizable classifications (Anderson, 1982, Deeming and Brown, 1975, Scott and Burgan, 

2005, Keane and Dickinson, 2007, Ottmar et al., 2007). Regardless of the methods used, the 

intent of fuel models are to predict how a landscape will burn and what the primary carrier of 

fire will be (Scott and Burgan, 2005). Fuel models are used as inputs into fire spread 

calculations and need to be correctly identified in order to provide the best outputs for 

decision-making. Fuel models are a work-in-progress that have taken thirty-seven years to 

refine. Their subjective nature requires refinement that continues to this day. 

Fuel models were introduced to the land management lexicon in 1972 with Rothermel‟s 

work on a mathematical model of fire behavior (Rothermel, 1972) and The National Fire 

Danger Rocky Mountain Rating System (Deeming et al., 1972). The purpose of fuel models 

was to either mathematically describe physical conditions of a fuel bed as inputs for fire 

spread and behavior models or to classify potential severity conditions of a landscape 

(Anderson, 1982). The limitations of models relegate them to aids in decision-making and not 

self-supporting evidence. These models were knowingly subjective and the authors 

repeatedly stressed that results should be cross-referenced with on-the-ground observations 

(Brown et al., 1982). The research into how to mathematically describe fuels found two veins 

of thought, the first was a short-term solution to use them as inputs for fire spread models to 
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provide decision-making tools for managers (Brown et al., 1982). The second encompasses 

the need for long-term predictive tools used to aid in addressing a growing problem of 

hazardous fuel conditions  (Ottmar et al., 2007). 

 

2.7.1  Classic 13 

The most common fuel models still in use for immediate predictive purposes are the 13 

„classic‟ fuel models developed by Albini (Albini, 1976) and verified by Anderson 

(Anderson, 1982). They met the need to estimate fire spread for the fire behavior officer in 

the field. The impetus behind creating a basic 13 was to expedite predictions in the field on 

emerging fires and make the system as user-friendly yet accurate as possible. A weakness 

that makes fuel models subjective is the assessment of humans as to which model best 

represents the present conditions. It is important to note that fuel models are ultimately 

defined by fire behavior, specifically spread rates, rather than fuel type. Fuel particle 

properties are held constant; it is the depth and loading by size classes that change from 

model to model. At the same time the 13 models were gaining a foothold, 20 parallel models 

were developed for long-term planning purposes. 

 

2.7.2  NFDRS (20) 

The National Fire-Danger Rating System (NFDRS) was the culmination of many efforts 

to quantitatively evaluate landscapes in order to provide the best available science to 

decision-makers. NFDRS fuel models differ from the 13 classic models by how they are 

used. The System‟s main objective was to produce viable information for pre-suppression 

planning (Deeming and Brown, 1975). Weather observations as well as live fuel components 

are coupled into the model to yield indices for determining seasonal severity.  The first two 

fuel models were made available in 1964 with a closed canopy and open area model. Nine 

models were formulated for the NFDRS in 1972 when Rothermel‟s fire spread model made 

more detailed models a viable option.  Refinement and computerization of the NFDRS 

process solidified its use by all federal agencies and settled on 20 final fuel models. 

 

2.7.3  New Classics (40) 

In 2005, 40 new models were proposed to address the deficiencies the original 13 

presented when used during off-peak fire seasons. Predictive applications for Rothermel‟s 

model required new parameters for moisture content, humidity levels, and higher specificity 
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for surface fuels. The desire to simulate management actions and fuel treatments led to more 

choices of fuel models to provide a variety of planning options. Model categorization focused 

on similar fire-carrying fuel type, distinguished by fine fuel load, fuel type, and extinction 

moisture (Scott and Burgan, 2005).  

 

2.7.4  Fuel Characteristic Classification System 

The Fuel Characteristic Classification System was created from the need to have a single 

fuel model set that incorporated all the attributes currently used as inputs into various models. 

Most of the previous model sets were geared towards specific software applications and were 

not comprehensive enough for multiple uses (Ottmar et al., 2007).  FCCS is an attempt at a 

comprehensive, open-ended format of fuel models that function on general as well as specific 

uses and are provided as templates to be customized or as is. Regional workshops that 

included land managers, researchers, and policy makers identified the most sought after 

needs and requirements. It is this type of information that can drive policy and actions taken 

on public lands and further reinforces the need for accurate inputs and outputs from models 

and applications. 

 

2.8  Mapping of fuels 

2.8.1  Field and passive forms of remote sensing         

Field surveys were the first form of fuels mapping involving many workers and numerous 

amounts of man-hours (Hornby, 1935). While successful, they required more workers and 

human-hours than most managers could afford. The need to reassess fuels periodically often 

makes this method impractical for modern day fuels management.  Aerial photo 

interpretation (Lee, 1941) was an advancement in fuels mapping that is still a viable method, 

but it is also time consuming and subjective. Natural color photography improved stand 

delineation  (Lund, 1969) and infrared photography captured spectral reflectance 

characteristics of vegetation (Bertolette and Spotskey, 1999) that aided in interpretation of 

vegetation types. Satellite-based multispectral imagery including SPOT-HRV and Landsat 

MSS and TM have been used to classify landcover and vegetation for decades.  Imagery from 

the latter sensors has frequently been used with digital elevation data to produce fuel-oriented 

vegetation maps (Shasby et al., 1981, Chuvieco and Congalton, 1989, De Wulf et al., 1990, 

Salas and Chuvieco, 1995, van Wagtendonk and Root, 2003).   However, because optical 
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sensors are passive forms of remote sensing they cannot penetrate the canopy and therefore 

can only derive surface conditions as a surrogate of the canopy (Keane et al., 2001).  An 

alternative approach put forth approximately 12 years ago was ecological gradient modeling, 

which uses gradients of natural characteristics to predict environmental settings that influence 

vegetation and associated fuel types (Keane et al., 2001). In this approach, optical remote 

sensing data are used to establish current condition and type of vegetation and applied in 

conjunction with biophysical characteristics to model fuel parameters. The need for extensive 

field data, complex ecological modeling and robust statistical analysis can make gradient 

modeling impractical for some managers (Arroyo, Pascual and Manzanera 2008), but it 

remains a viable approach to map fuels across large areas despite its shortcomings.   

 

2.8.2  Active Forms of Remote Sensing         

Active forms of remote sensing, such as Synthetic Aperture Radar (SAR) (Saatchi et al., 

2007) and LiDAR (Popescu et al., 2003, Mutlu et al., 2008) can provide a structural profile of 

the canopy as emitted pulses propagate down and reflect off of the canopy. Ground returns 

can be discriminated from canopy returns to stratify the fuels and iteratively select fuel 

layers. Canopy metrics, such as canopy base height and crown bulk density can be obtained 

(Andersen et al., 2005, Riano et al., 2004) as well as surface fuel estimations (Seielstad and 

Queen, 2003), and surface fuel models (Mutlu et al., 2008).  When coupled with optical 

datasets, these active remote sensing methods offer a more complete picture of a landscape 

(Erdody and Moskal, 2010). 

 

2.8.3  Why LiDAR presents a different option 

Penetrates the canopy        The major strength of LiDAR is penetration of the canopy by 

the emitted pulses. Multiple returns from a single pulse allow stratification of the canopy and 

provide a dataset that can be used for analyses independent of pre-existing stand delineations. 

Because LiDAR is an active mode of remote sensing, each emitted pulse can be tagged so as 

to identify each return with a unique time stamp ID. From this information it can be 

determined how far down pulses are penetrating and where different stratum of the canopy 

exist in reference to geolocations. For example, the Lubrecht acquisition used in this study 

was capable of four returns per pulse, with current systems capable of five or more returns 

per pulse. The density of information is immense compared to other forms of remote sensing; 
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a modest dataset with an area of 2km
2
 registers around 5 million returns. Every return has 

explicit X, Y, and Z coordinates with the intensity of the returns recorded as well. From such 

dense, georeferenced datasets, several data products can be generated to fulfill many needs an 

analysis might require. 

 

Full Coverage        A benefit of remote sensing and LiDAR specifically is the area 

covered by the mission. An airborne based sensor can cover an entire management area in a 

single day. Despite temporal and environmental differences during an acquisition, 

normalization and calibration can mitigate factors such as: elevation changes, disparity of 

scan angles, and atmospheric conditions. The time frame in which remotely sensed data is 

collected can be orders of magnitude smaller than many other methods and as such, 

minimizes a dynamic environment. The result is an unbiased, even coverage dataset that 

reflects an instantaneous assessment of the target area.  

 

EMR properties of NIR are well understood        LiDAR typically utilizes an airborne 

laser that emits a wavelength pulse of at or around 1000 nm. The wavelength of 1064 nm is 

best suited for forestry applications due to the reflectance of vegetation at that spectrum. 

Visible EMR spans the wavelengths of 400 nm to 700 nm and green, healthy vegetation 

reflects 500-600 nm wavelengths, the green spectrum, more dominantly. This is why healthy 

vegetation appears green to the human eye. Visible band EMR is reflected from vegetation 

due to the palisade layer of leaf structures which contain chloroplasts, photosynthetic cells 

that absorb light in the blue (400-500 nm) and red (600-700 nm) wavelengths. EMR from the 

near-infrared (NIR) spectrum (700-1300 nm) is not utilized by vegetation for photosynthesis 

and passes through the palisade layer to the mesophyll layer, a spongy, air-filled layer used 

by leaves for respiration. These air pockets within the mesophyll scatter and reflect 40-50 

percent of the incident NIR radiation upon it, making healthy vegetation an excellent 

reflector of the NIR spectrum (Lillesand and Kiefer, 2000). Little of the NIR radiation is 

absorbed (less than 5 percent) by the mesophyll and the remaining EMR is transmitted 

through the leaf and propagates down through the canopy. The receiver on the ALS50 sensor 

array is sensitive enough to register up to four returns from the same initial pulse, even 

though the propagated portion of the pulse is reduced with each hit. Multiple returns from a 

single 1064 nm pulse allow a profile of the canopy that cannot be attained otherwise. At 



 19 

wavelengths above 1300 nm, incident radiation is either absorbed or reflected further 

emphasizing the utility of the 1064 nm wavelength as a sensor in forestry applications. 

 

 

2.8.4  Laser Altimetry and forestry applications 

The use of airborne optical lasers to scan terrain features was proposed as early as 1964 

(Rempel and Parker, 1964). For forestry applications, this would eventually produce Digital 

Terrain Models (DTM) and Digital Surface Models (DSM). DTM‟s represent the bare earth 

and are synonymous with Digital Elevation Models (DEM). DSM‟s represent the upper-most 

visible surface presented to the sensor and include vegetation, buildings and other surface 

features. LiDAR pulses penetrate through multiple canopy layers allowing stratification of 

vegetation between the DSM and the DTM.  

The ability to separate canopy returns and ground returns led to research on measuring 

forest canopy properties (Andersen et al., 2001). Mapping forest structure for mensuration 

and inventory purposes was explored using canopy stratification methods (Lefsky et al., 

2001). Canopy attributes of canopy height, surface canopy cover, canopy base height, and 

crown bulk density were derived from LiDAR acquisitions as inputs for fire behavior 

modeling (Riano et al., 2004, Andersen et al., 2005, Hall et al., 2005). While the majority of 

studies have examined the upper strata of available fuel, only a few to date have focused on 

the lower stratum of fuel where surface fires are.  

As previously mentioned, Seielstad and Queen (2003) used surface roughness to 

estimate fuel loadings in monoculture lodgepole pine. Other research has shown that surface 

fuel models could be estimated using LiDAR datasets and fusing it with multispectral 

imagery (Mutlu et al., 2008).  

 

2.8.5  Shortcomings of LiDAR 

Individual LiDAR pulse entries record explicit x, y, and z coordinates as well as the 

intensity of the return and scan angle. The coordinate data imparts the location and hence, the 

structure of the target when compared to adjoining returns. Scan angle may relate to intensity, 

but no substantial relationship has been determined. Where coordinate data impart structure 

by comparing a return to all local area returns, traditional remote sensing would indicate that 

intensity, or spectral reflectance, should relate the character of the return due to its signature. 
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Currently with LiDAR returns, intensity cannot be normalized to an indicative value. This is 

because it is impossible to determine how much of the pulse has been reflected, how much 

has been absorbed, and how much has been transmitted. With multiple returns from a single 

pulse, each successive return intensity value is compounded by the targets above it as to how 

much EMR the remaining pulse has propagated further. Despite having a record of 

reflectance responses for each individual return, these values cannot currently be used to 

characterize a target.  

If a pulse hits a target and there is not enough energy transmitted to register concurrent 

returns, the pulse number is classified as an “only” return. In an open field there is little doubt 

that an „only‟ return is in fact a ground hit as there is no substantial vegetation intercepting 

the pulse. Also, if an „only‟ return exists high in the canopy it can be assumed that the target 

is a solid object such as a branch or a tree bole. Simple target identification becomes less 

certain when returns come from a fuel bed beneath a canopy where portions of the pulse have 

been intercepted and a smaller footprint continues down. Terminal hits from these areas are 

generally classified as ground hits but any number of objects can cause a terminal return 

underneath the canopy.  
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CHAPTER 3.  METHODS 

 

3.1  Introduction 

This chapter describes the methods of data collection and analysis used to generate 

comparisons of surface roughness to point estimates of ground fuels at Lubrecht 

Experimental Forest, Montana.  I will describe the remote sensing parameters used during the 

LiDAR mission and then will describe the Fire/Fire Surrogate (FFS) study and its field 

collection methods. I will explain how I derived surface roughness from raw laser data and 

then how I aggregated both roughness values and plot data to perform statistical analysis. 

Regression analyses and a final biomass estimate map will complete this section of the 

chapter.  

The second part of this chapter deals with using a fusion of various remotely sensed 

layers to perform a landscape classification of fuel models. I will cover the field data for this 

section which is taken from Lubrecht Resource Inventory Plots (RIP) and a coinciding photo 

series. Decision trees, A description of Classification and Regression Tree (CART) analysis, 

and unsupervised classification strategies will conclude the chapter. 

 

3.2  Study Area 

The study site is the University of Montana‟s Lubrecht Experimental Forest in the 

Blackfoot Valley of western Montana (Metlen and Fiedler, 2006).  Lubrecht is an optimal 

study site for fuels as it represents the predominant terrain, species, and management history 

of much of western Montana (UM, 2003).  Mean annual precipitation averages 18 inches, 

44% as snow, and mean annual air temperature is 3.8° C (Nimlos, 1986). Lubrecht has a rich 

variety of tree, forb, and grass species present that are similar to many other sites in western 

Montana.  It is populated most commonly by ponderosa pine (Pinus ponderosa) and Douglas 

fir (Pseudotsuga menziesii), with localized western larch (Larix occidentalis Nutt.) and 

lodgepole pine (Pinus contorta) (Metlen and Fiedler, 2006). The forest was managed 

similarly to areas west of the divide as a source of timber for the Anaconda Mining Company 

and was heavily logged in the early 1900‟s. Some isolated pockets of old growth exist, but 

the majority of the stands are 80-90 year old, second-growth stands. Moderate grazing has 

helped keep undergrowth down in most of Lubrecht, but no recent grazing has been allowed 

within the focused study site (Metlen and Fiedler, 2006). Mean fire return interval for the 
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area is 20 years (Arno, 1980) but the landscape has not substantially burned since the late 

1800‟s (Metlen and Fiedler, 2006).  

 

3.3  Field Data and Resource Inventory Plots at Lubrecht 

3.3.1  Field Data of the Fire/Fire Surrogate Study 

In this section I will give a brief overview of the Fire/Fire Surrogate Study (FFS) and its 

field collection methods. Detail about the FFS study is necessary only for the sake of 

describing the physical characteristics and management history of the focused study sites. 

The intent is to describe the study and relay a sense of the site‟s composition and structure 

after the study was completed. This description will describe conditions in 2002 and not 

necessarily when the Lubrecht LiDAR mission was flown. It is assumed negligible 

differences at the site exist between the field collection and the LiDAR mission as no 

disturbances or management actions other than monitoring had taken place in the three year 

span. Data collection methods are the main thrust of the FFS section to ensure the integrity of 

the field data collection.   

Research into restoration treatments of understory and surface fuels was conducted at 

Lubrecht from 2000 to the present under the Fire/Fire Surrogate Study (Fiedler et al., 2000). 

This project spanned 11 states across the United States and highlighted 13 main study sites 

where experimental design focused on four restoration treatments. Selection of these 13 sites 

was based upon their representation of short return interval, low to moderate severity fire 

regimes. The four treatments called for available management tactics that either used fire 

directly or mimicked the effects of a natural fire regime. The first treatment was a control unit 

that was used to test a „hands-off‟ management strategy and to provide a baseline for the 

other three treatments (Control). The second treatment applied mechanical thinning and 

trampling of slash, testing the most common fuels reduction technique in use today (Thin 

Only). The third treatment would test a burn only strategy using prescribed fire and 

subsequent reburns to achieve restoration targets (Burn Only). The last treatment used a 

combination of thinning and trampling followed by prescribed fire in the subsequent year 

after the slash and down fuel had cured (Thin/Burn). 

Three study blocks with four treatment units for a total of twelve units were established at 

Lubrecht with each treatment bounded by a 9 ha square aligned on an azimuth. Mechanical 

thinning operations began on the Thin Only and Thin/Burn units in 2001, implemented 
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during the winter months when snow accumulation would mitigate soil compaction and 

disturbance due to the single-grip harvester used. Prescribed fire operations were conducted 

in the spring of 2002 using a strip headfire technique to emulate natural ground fire 

progression from the edge of the unit (Metlen and Fiedler, 2006).  

Fuels data collection was conducted pre-treatment in 2001 and post-treatment in 2002.  

Sampling protocol selected 36 gridded points within each treatment, 50 meters apart from 

each other and 25 m from the treatment unit boundary. Each plot center was identified using 

an Impulse LR laser to measure distance and a hand compass with a declination of 19.5 

degrees E to determine the correct azimuth. A standard tape was used for distance in the case 

of vegetation too dense to allow the use of the laser. Whittaker plots were established at 

randomly selected points (plots 02, 05, 09, 12, 18, 22, 24, 26, 29, and 33) on the grid center 

(Fiedler et al., 2000). All points had permanent metal stakes driven flush to the ground to 

facilitate treatment operations and were spatially located in 2004 using a Trimble Pro XRS 

GPS unit with differential correction (Fiedler et al., 2000). 

The lower forest floor (duff) was indirectly estimated by determining the depth-to-loading 

relationship for each block. Duff was destructively sampled at 13 randomly selected areas of 

the 36 grid points by measuring depth at 4 points along the edge of a 1 ft
2
 sample area. Litter 

layer fuels were measured before and after treatments in two, 1 ft
2
 areas in each of the 36 

points to measure fuel loss. Small trees were denoted as either seedlings less than 4.5 ft tall or 

saplings greater than 4.5 ft tall with a 4 inch breakpoint DBH. Saplings and seedlings were 

tallied by diameter class, height, and live crown height, with basal area used to estimate 

volumes (Avery, 1967). 

Two opposing 50 ft. planar Brown‟s transects were used to estimate surface fuels in the 

0.25 inch to 3.0 inch diameter categories. Coarse woody debris was sampled using a 20m X 

4m strip plot using the Brown‟s transect as a centerline. Two strip plots were established at 

odd numbered grid points for a total of 18 per treatment. Only logs longer than 1m and a 

large end diameter greater than 15cm were sampled. Volumes were based upon diameter of 

large and small ends rather than tapering functions of species and length.  

These field collections represented the best-available representation of field conditions 

that coincided with the acquisition. The range of values attained from opposing transects 

captured the high variability of measurements that would be possible from mixed-conifer 

stands. This high variability of fuel loads was an aspect of fuels that was hypothesized to be 
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an attainable attribute that LiDAR-derived surface roughness could possibly capture. The 

focus of this study would not only be on the ability of surface roughness to predict fuel loads, 

but also on the sensitivity of this determination.   

 

3.3.2  Resource Inventory Plots 

In 1998, the University of Montana‟s College of Forestry and Conservation initiated a 

field collection of forest stand information which would be updated on a recurring basis to 

provide a persistent assessment of field conditions that pertained to topographical and 

vegetation characteristics of Lubrecht. There were 101 fixed plots spaced on a grid 

approximately 200 acres per plot. Fuels data would be collected as per the FL method 

described by Lutes and Keane (Lutes and Keane, 2006). Three fuels transects were taken 

from each plot, oriented 000˚, 120˚, and 240˚ true azimuth. Each transect is 60 feet in length 

taken 15 feet away from plot center to minimize disturbance around the plot center. Digital 

photos were taken of the plot center at 45 feet and 75 feet along each of the three transects, 

for a total of six photos per plot. These photos would be used to visually assess fuel models 

using the Photo Series method.  

 

3.4  Acquisition 

The initial Lubrecht LiDAR mission was flown in June of 2005 using a Leica 

Geosystems ALS50, but scan errors on the eastern section due to improper elevation 

calibration required that section be re-flown in July of 2006. The 2006 mission replaced all of 

the 2005 data that had errors and data was validated to ensure data integrity. Terrain elevation 

minimum and maximum were set at 1140m AMSL and 2070m AMSL respectively. Nominal 

flying altitude was 2969m AMSL at 140 knots using a 35 degree scan FOV. At the lowest 

terrain elevation, this gave the widest swath scanned at 1153.36m. Laser pulse rate used was 

36.2 kHz at 1064nm with a scan rate of 27 Hz. Using these parameters, our average point 

density was 0.44 points per square meter.  
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Figure 2. Scan map with tile scheme overlaid for Lubrecht Experimental Forest. 

 

At the highest terrain elevation there was 5.66% sidelap with greater values at lower 

elevations. Forward overlap was 0.6 meters per scan line.  Focal length of the receiver was 

62.77mm with a 0.10mr IFOV. The vendor post-processed the data to correct for spatial 

accuracy and delivered the acquisition in the form of several native LiDAR files. 

 

3.5  Data Pre-processing 

All returns recorded during a single flight line swath were stored in the native LiDAR 

binary format called a LAS file. These individual LAS files are extremely large, spatially 

covering several kilometers, and require more processing power than most current desktop 

computers possess. A tiling scheme was designed for the raw Lubrecht LAS files to subset 

them into sizes manageable by 32-bit operating systems (Chen, 2007). Each tile was 2100m 

X 2100m with an intentional 50 m overlap of neighboring tile edges of both the X and Y axis 

to provide continuous data beyond a 2000m X 2000m analysis area. This 50m buffer around 

each tile could be removed post-analysis to mitigate any edge effects incurred during 

processing. 
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3.5.1  TerraScan Surface Model 

Ground classification processing was the first step of the analysis and classified points as 

either bare earth (BE) or canopy (CAN) return types. It was assumed that fine fuel targets 

reflect insufficient energy to trip the sensor and were thus, indistinguishable from bare earth. 

Canopy returns were assumed to represent targets that are either solid or present a significant 

enough surface to constitute a „hit.‟ TerraSolid‟s TerraScan (TerraSolid, 2005) software was 

used in the Microstation environment to run an unsupervised classification algorithm that 

assumes the lowest points within a search window are definite BE returns. A triangulated 

irregular network (TIN) surface is generated from the lowest points and the remaining ground 

points are queried out using an iterative approach. Ground classification iterations then took 

unclassified points within the search window and checked them against an angle drawn from 

the TIN surface to the point in question. With large triangles the „Iteration Distance‟ 

parameter ensures that points aren‟t incorrectly excluded by restricting their selection until a 

valid vertex is within the defined proximity (TerraSolid, 2005). If a point exceeded the 

threshold angle it was assumed to be a canopy point, else it was integrated into the bare earth 

pool. The process is repeated with an updated TIN consisting of classified BE points. Sources 

of error during the unsupervised classification involved terrain where the slope was greater 

than the iteration angle and ground points were misclassified as canopy points. Ends of road 

culverts or similar features that contain shallow pools of water introduced error-points as the 

laser pulse returned a z value significantly lower than the surrounding surface.  Error-

checking and reclassification were done manually with error points being reclassified and 

stricken from the active dataset.  These error points constituted approximately 250 points out 

of the entire 688 million points of the acquisition and were assumed to have no impact on the 

integrity of the dataset. Binary LAS tiles were then converted to GIS software compatible 

point shapefiles for analysis with each point having explicit x, y, and z coordinate attributes 

that were pertinent to this study. These coordinates are recorded natively in the WGS84 

geographic coordinate system. To coincide with existing geographical datasets of Lubrecht, 

each shapefile LiDAR tile was re-projected into NAD83 UTM Zone 12. This is a source of 

positional error, however nominal. 
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3.5.2  Validation 

Horizontal accuracy was tested by the vendor during multiple acquisitions at the Missoula 

International Airport (MSO). LAS shapefiles were visually inspected against aerial imagery 

in a GIS to validate a general horizontal accuracy. Vertical accuracy was determined by 

creating a DEM of the BE points for each tile and comparing to ground control.  

 

3.5.3  Error Points 

Points with drastic elevation differences were examined in Microstation and the error 

points were reclassified into a user defined class, separate from the BE or CAN points. Once 

the error points were removed, the ground classification algorithm was run on the remaining 

points. Misclassified areas were manually reclassed to BE points. These areas were fairly 

obvious to detect as they registered only canopy hits; without BE hits, large pockets of the 

ground surface were missing from the DEM. Generally, these areas coincided with manmade 

road cuts that were not characteristic of the surrounding terrain. 

Initially the CAN points were either classed as „low vegetation‟ or „high vegetation‟ but it 

was decided that early classification beyond ground and vegetation would constrain further 

analyses. Error points were examined by gathering descriptive statistics on each tile. Drastic 

height differences were only found on two points and they were assumed to be errors and not 

addressed further. 

 

3.5.4  Mosaicking and Generating Canopy Height (CH) 

Multiple tiles covered the FFS study site and were mosaicked to provide data continuity 

across the analysis area. Removal of the 50 meter buffer before mosaicking resulted in a 

seamless edge between tiles. FFS boundaries defined the subset of points used for further 

analysis. All BE points were used to create a minimum surface from which fuel bed points 

could be differenced. Circular and square search window options were explored as well as 

varying sizes to best suit terrain smoothing. Square windows tended to create artificial 

features due to sharply contrasting edges along a square‟s side where the circular edges were 

„softer‟ on the terrain. A window that was too large tended to oversimplify terrain differences 

but smaller windows left areas of no data due to undersampling. A 5 meter circular search 

window was settled upon as it provided continuous data with the best representation of 

terrain height. This window was used iteratively on the points using ARCINFO to create a 
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raster of all minimum surface height values at 1m resolution. The minimum surface raster 

was converted back into gridded points for the purpose of generating a TIN surface that better 

interpolates heights between cell centroids. All points from the initial LiDAR acquisition, 

minus error points, were differenced from the TIN to give height above the smoothed surface 

and the values stored in a new field termed, „CH.‟ 

 

3.5.5  Generating Surface Roughness 

All CAN points with CH values less than or equal to 2.0 meters plus all bare earth points 

were computed for standard deviation from mean CH value using an iterative circular search 

window originating from the top, left 1m cell within the 2000m tile and continuing to the 

lower right 1m cell. I determined the best radius of the search window to be 10m using the 

same logic as the smoothed terrain surface. Windows smaller than 10m had gaps in the data 

and undersampled the relative vegetation, but larger windows (i.e.15m, 20m) oversimplified 

roughness and reduced the range of values for roughness.  

Roughness was calculated as the standard deviation of the iteration origin cell CH height 

from the mean CH height of all points within the search window. Bare earth points would 

intuitively have a CH of 0, however due to differencing their heights from the smoothed 

surface step mentioned earlier, most bare earth points‟ CH value was not equal to 0. The 

resulting 1m raster represented the laser altimetry derived surface roughness of the 2 meter 

fuel bed.  

 

3.6  Data Analysis 

3.6.1  Analysis of Surface Roughness on FFS 

The four treatments of the FFS study were assumed to have different structures that could 

be identified using surface roughness. The control units would have the most targets in the 

fuel bed and show a high roughness value. The Thin/Burn units would have the least targets 

and show as smoother surfaced areas. It was assumed that the Thin Only and Burn Only 

treatments would contribute material to the fuel bed but due to trampling in the thinned unit 

and fuel consumption in the burned unit, they would fall somewhere in between the Control 

and Thin/Burn roughness values. Mean roughness values were produced for each unit and 

correlated to predicted values for each treatment. 
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Similar to Seielstad and Queen (2003), I compare roughness to fuels using linear and 

stepwise regression techniques. Three scales of analysis comprised of 9 ha (300m X 300m; 1 

FFS treatment unit), 2.25 ha (150m X 150m; ¼ FFS treatment unit), and 0.07 ha (0.07 ha 

circular plot; 1 FFS fuels plot) were used. I used the 9 ha treatment unit scale because each 

unit held clear structural differences due to restorative treatments applied during the FFS 

study implementation. The 2.25 ha areas represented treatment units divided into four 

quadrants each with an equal number of plot estimates. The 0.07 ha areas represented 

individual plots with two opposing 100 ft. long Brown‟s Transects intended to possibly 

capture the same fuels measured in the field data. These three scales would allow for 

appropriate analysis (Waring and Running, 1998) in terms of variability and imprecision of 

field data in terms of landscape, stand, and plot scales. N-sizes for the 9 ha, 2.25 ha, and 0.07 

ha circular plots were 12, 48, and 432 respectively. 

As described previously, fuels data consisted of 432 plot-level observations with multiple 

fuel components described previously in the FFS study. Plot level analysis used each of the 

432 observations, 2.25 ha quadrants were represented by mean values from the 9 plots that 

fell within each of the 150m cells, and 300m cells were represented by the mean of 36 plot 

observations within each treatment boundary. Within each scale, groups of fuels 

characteristics were evaluated against roughness. Mean values of roughness and fuel loads 

for were used for the three different scales by averaging roughness values relative to 9 ha, 

2.25 ha, and 0.07 ha zones. 

 

Linear Regression        The first statistical analysis was a linear regression model based 

upon having field estimates as the independent variable and corresponding roughness values 

as the dependent variable. This analysis was done at the three previously mentioned scales 

and was done to test the relationship between roughness and CWD developed by Seielstad 

and Queen (2003). Even at the coarsest scale (9 ha), there was not a strong relationship (R
2
= 

0.383; pvalue = 0 .032); therefore it was decided to test each individual fuel component 

against roughness using simple and stepwise linear regression methods. 

 

Stepwise Regression        Individual fuels data were available from the FFS field 

collection and included: forest floor mass, forest floor depth, 1 hour, 10 hour, 100 hour, 1000 

hour sound, 1000 hour rotten, and small live tree loads. All of these estimates were in 
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megagrams per hectare (Mg/h) with the exception of forest floor depth, which was in 

millimeters (mm). Simple linear regression was performed on each component and then all 

components were used as input for stepwise regression. Stepwise regression was performed 

on individual fuel components and lacking a decent relationship, combinations of fuel 

components for total fuel loads were used.  

 

Fuel Combinations        Four combinations of single fuel components were tested 

against roughness using simple linear regression. These combinations were configured as 

they would most likely appear in the fuel bed and represented Total Biomass in the 2 m-deep 

fuel bed, Total Dead Fuel, Downed Woody Sound/Rotten, and Downed Woody Sound.  

„Total Biomass‟ was defined as dead combustible material of any diameter or integrity that 

had separated from the tree, plus small live trees, duff, and litter. It included all biomass 

within the fuel bed, excepting duff. This definition of total biomass closely represents the 

definition of total available fuel (DeBano, 1998). Total Dead Fuel is identical in make-up to 

Total Biomass minus the small live tree component. The two downed woody debris (DWD) 

aggregates contained 1, 10, 100, and 1000 hour timelag fuels, with one of them including 

rotten logs of 6 inches or more in diameter whose centers were above the duff layer (Lutes 

and Keane, 2006). 

The regressions were bivariate (e.g., Single Combined Fuel Variables with Roughness as 

the predictor in each of four cases). Several relationships were identified at a coarse scale 

using the fuel combinations and were projected across the entire acquisition for landscape 

scale analysis. 

 

3.6.2  Mapping Roughness for Fuels 

Once a method of generating roughness from GHD had been established from the FFS 

area, it was expanded to the entire acquisition area. This required processing each tile for 

surface roughness, removing the 50m buffer, and mosaicking the tiles together. Surface 

roughness was coded in Arc Macro Language (AML) script for all 78 tiles. Removal of the 

50m buffer was accomplished using a batch file script available in ArcGIS. Mosaicking was 

done using Leica Geosystems‟ Imagine mosaic function. While the mosaic function is 

normally used for satellite or aerial imagery with overlapping coverage, removal of the buffer 

left no areas of overlap between tiles. Since the tiles held no sensor information, „Most Nadir‟ 
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is somewhat misleading because Nadir is the point of an image directly below the sensor. 

Neither of these discrepancies affected the mosaic output because there is no overlap. The 

function essentially stitched together neighboring tiles while maintaining edge values. 

 

3.7  Total Biomass and a Fuels Map 

As the results below will show, a definitive relationship between fuel loads and roughness 

could not be attained at a scale that reflected the accuracy and precision LiDAR affords.  

Thus, a landscape scale relationship was developed and used to assess fuel loads. It would 

require using the surface roughness values for the entire acquisition area and converting these 

to biomass values using the regression equation that best expressed the fuels/roughness 

relationship. 

Lacking field data of any roughness metric, validity of landscape surface roughness was 

done visually, concurrent with easily identifiable features. Known manmade structures such 

as roads, buildings, and agricultural improvements were identified by surface roughness and 

were distinct signatures within the entire roughness map. These features proved to be „rough‟ 

relative to neighboring points due to the contrasting height differences. Aerial imagery 

identified stands of low mean height tree regeneration that coincided with higher values of 

surface roughness. Regeneration has a high target density within the fuel bed and high 

density of stems per acre. Terrain features such as creek drainages, with a higher probability 

of denser vegetation, showed high surface roughness where open fields of grasses showed 

very low surface roughness. 

The landscape surface roughness raster was set at a cell size of 1 meter resolution with 

268,522,976 cells of valid information. It was resampled to present the mean values for 300m 

cells representing 3073 cells of valid information. This was done to reflect the appropriate 

fuels/roughness relationship for predicting biomass. The slope equation of the final 

fuels/roughness regression; y = 224.67x - 22.858 was used where roughness values were „x‟. 

This produced a total fuelbed biomass estimate for Lubrecht. 
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3.8  Classification of Fuel Models 

The second phase of this project involved using LiDAR data to predict fuel models as 

inputs into fire behavior prediction and fire spread software. Layers that can be used as inputs 

for some prediction models are: canopy cover, crown base height, crown bulk density, digital 

elevation models, stand heights, and fuel models. A single LiDAR acquisition can produce all 

of these layers save the fuel model. Currently, no fuel model layers have been created from 

LiDAR data and they pose the most important input into fire behavior calculations. While 

most of the other layers define canopy characteristics, fuel models describe surface fuels. As 

has been mentioned before, ground fuels are what drive fire behavior and propagate fire into 

the canopy; without a sound assessment of surface fuels, fire behavior calculations cannot be 

relied on for management decisions.  

 

Photo Series Field Classification        The Lubrecht Resource Inventory Plot (RIP) 

photos were presented to various individuals from the NCLFA who have varied, but good 

experience with fuels and the Photo Series method of fuel model determination. Fuel models 

were assigned using Anderson‟s Aid to Determining Fuel Models (Anderson, 1982). Three 

separate sets of fuel model assignments were conducted using the same RIP photos. I 

reviewed the photos on my own to test the fuel model assignment process and gather a 

separate expert opinion before conducting the two other assignments. Three PhD‟s of 

Forestry and a PhD of Forestry candidate were used for the second assessment, all with 

experience in wildland firefighting and fuels management. The third assessment used a PhD 

of Forestry and two Master‟s of Forestry candidates with extensive field fuels work. Each 

plot was identified by the highest ranking fuel model assignment with a secondary 

assignment for alternate analysis. 

 

Decision Tree        In their previous LiDAR research, Seielstad and Queen indicated 

that while they were successful in separating FM8‟s from FM10‟s to a high degree of 

accuracy, there were too few examples of FM1 and FM2 to separate them from FM8 based 

on OD alone (Seielstad and Queen, 2003). They indicated that FM10‟s could be separated 

from FM1, FM2, and FM8 by using OD, a surface roughness measurement. They 

hypothesized further, that FM1‟s, FM2‟s and FM8‟s could be separated by using canopy 
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metrics that were characteristic and unique to each fuel model. FM1 and FM2 are 

characterized by more open, grass-type areas where FM8 is closed-canopy timber areas.  

For my study, a decision tree was used to classify FM1, FM2, FM8, and FM10 by using 

values for roughness and canopy cover. The logic follows that FM1 and FM2 should have 

open canopies and FM1 would be „smooth‟ surfaced where FM2 would be „rough‟ surfaced. 

FM8 and FM10 would follow the same logic using closed canopies; FM8 having a „smooth‟ 

surface and FM10 having a „rough‟ surface. The median values of roughness (0.24 STD) and 

canopy cover (61.5 percent) were taken for the landscape layers of Lubrecht and used as 

breakpoints. Median values were used because outliers existed in both canopy cover and 

roughness data layers. The output generated a landscape scale layer that held four different 

attributes for fuel models. 

 

CART Analysis        Classification and regression tree (CART) analysis is a powerful 

data-mining technique, traditionally used for machine-learning, but is now finding favor as a 

tool for ecology (De'ath and Fabricius, 2000). CART analysis explains the variation of one 

response variable by examining one or more explanatory variables which can be a mix of 

nominal or ordinal data (De'ath and Fabricius, 2000). CART analysis is a recurring process 

that builds „trees‟ by separating the response variable into more and more homogenous 

classes using the best-fit explanatory variable. The best-fit is determined by the highest 

information gain or simply, the difference in entropy when using a certain explanatory 

variable (Quinlan, 1993). The analyses used in this project were J48, an implementation of 

the C4.5 algorithm defined by Quinlan, and Random Forests, a process which builds multiple 

independent trees from randomly selected attributes and outputs the mode of classification 

for all trees (Breiman, 2001). The C4.5 algorithm allows for missing values in the dataset 

which were present in this project where the photo series classification lacked digital photos 

for 7 plots. Both analyses were computed using the WEKA software package (Hall et al., 

2009). Attributes that directly influence vegetation type and understory characteristics were: 

Species, Elevation, Distance from Stream, Canopy Cover, and Potential Solar Radiation 

(Krasnow et al., 2009). LiDAR-derived attributes which were added to the classification 

analysis were: Surface Roughness, STD of Tree Height, BE intensity, and Mean Tree Height. 

Surface roughness has a relationship with surface fuel loading (Seielstad and Queen, 2003) 

where it was hypothesized that standard deviation of tree heights and mean tree heights 
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would give further insight into canopy characteristics not addressed by canopy cover. The 

response variable used was the photo series classification done by NCLFA personnel that 

classified 94 plots with 7 missing values. 

J48 (C4.5) analysis was computed on a 10-fold cross-validation and also by training the 

tree on 66% of the response variable and then testing on the remaining 33%. This process 

was repeated using the Random Forests algorithm with results in Chapter 4. 

 

Unsupervised Classification        The third method of classifying fuel models used a 

fusion of different layers in an unsupervised classification algorithm provided by Leica 

Geosystem‟s Imagine software. The traditional use is for landcover classification using 

different bands of a Landsat image. This project created a „layer stack‟, which is a collection 

of multiple rasters that cover the same geographical area stored as a single data file. Each 

layer in the stack can be used like an individual band of a Landsat image; the images do not 

correspond to spectral reflectance, but represent characteristics about an area that can be used 

to classify individual pixels. The initial layers used in the stack were based upon Krasnow et 

al‟s work, and used: aspect, canopy cover, slope, forest type, elevation, distance from stream, 

maximum tree height, standard deviation of tree height, BE intensity and surface roughness 

(Krasnow et al., 2009). These first outputs were strongly dominated by terrain and were 

discarded. The final layer stack was intended to only analyze LiDAR products and had five 

rasters: maximum tree height, standard deviation of tree height, canopy cover, BE intensity, 

and roughness.  
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CHAPTER 4.  RESULTS 

 

4.1  FFS Roughness Analysis 

 

CWD        Initially, coarse woody debris was tested against roughness at three 

resolutions with the best relationship observed at the 9 ha cell size. Fuel classes „1000 hour 

sound‟ and „1000 hour rotten‟ were tested individually and then combined for „1000 hour 

sound/rotten‟. The combination „1000 hour sound/rotten‟ produced the highest correlation 

(Table 1) of the three, with an R-square statistic of 0.383 (p-value = 0.032). At the 0.05 

confidence level, these findings are significant, indicating that a relationship likely exists. 

However, most of the variation observed in fuel loads is not explained by roughness.  This 

result is somewhat different from another study using similar methods (Seielstad 2003) which 

noted a much stronger correlation between CWD and roughness in lodgepole pine. For my 

study, ~60% of variance in CWD could be explained by factors other than roughness, and 

such a vague relationship using CWD alone was disappointing for estimating fuel loads on 

the ground. It was desired to explain a larger percentage of roughness (r
2
>0.60) at a higher 

confidence interval (.001) and I concluded that roughness in Lubrecht did not adequately 

predict CWD. 

  

Table 1. Linear regression of CWD Sound and Rotten vs roughness (9 ha scale). 

Model (n=12) R-Square p-Value SEE 

1000 hour Sound (Mg/ha) .122 .122 .0624 

1000 hour Rotten (Mg/ha) 
.351 .042 .0536 

1000 hour Sound/Rotten (Mg/ha) .383 .032 .0523 

 

 

Assessment of Timelag Classes using Stepwise Regression        Stepwise linear 

regression was subsequently used to identify and evaluate individual timelag class 

contributions to the roughness/fuels relationship. Additional fuels variables such as Forest 

Floor Mass, and Small Live Tree were also included in this analysis.  Mean aggregated 

values of field fuels estimates were used at 9 ha and 2.25 ha, while at the plot level (0.07 ha) 

total values were used. Pearson correlation was applied to examine inter-component 
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relationships (Table 2). Remaining components that met the significance threshold of 0.05 

were identified by the highest partial correlation values.  

 

Table 2. Pearson correlation and significance between individual fuel components. 

 

 

The best stepwise analysis was at the 9 ha scale with an r-square of 0.862 (p-value = 

0.037) using Forest Floor Mass plus 1 Hour Material (Table 3). While Forest Floor Mass was 

a recurring factor at all three scales, inter-correlation between fuel components was high, 

indicating that it is difficult to distinguish between any one fuel component using roughness 

with our datasets.  Surprisingly, 1000-hr fuels (CWD) were not picked out by the regression. 
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Table 3. Stepwise regression (roughness – fuels) results at three scales. 

Stepwise Regression at 9 ha 

Model (n=12) R-Square R Square 

Change 

p-Value SEE 

Forest Floor Mass (Mg/ha)2 .770 .770 .000 0.0319 

Forest Floor Mass (Mg/ha)
2 

1 Hour Material (Mg/ha) 
.862 .092 .000 0.0261 

 

 

Stepwise Regression at 2.25 ha  

Model (n=48) R-Square R Square 

Change 

p-Value SEE 

Forest Floor Mass (Mg/ha)2 .640 .640 .000 .0407 

Forest Floor Mass (Mg/ha)
2
 

Small Live Trees (Mg/ha) 

 

.692 .052 .000 .0381 

Forest Floor Mass (Mg/ha)
2
 

Small Live Trees (Mg/ha) 

1 Hour Material (Mg/ha) .737 .045 .000 .0356 

 

Stepwise Regression at 0.07 ha 

Model (n=432) R-Square R Square Change p-Value SEE 

Forest Floor Mass (Mg/ha)2 .150 .150 .000 .0870 

Forest Floor Mass (Mg/ha)2 

Small Live Trees (Mg/ha) 

 

.201 .051 .000 .0844 

Forest Floor Mass (Mg/ha)2 

Small Live Trees (Mg/ha) 

1 Hour Material (Mg/ha) 

 

.231 .030 .000 .0829 

Forest Floor Mass (Mg/ha)
2
 

Small Live Trees (Mg/ha) 

1 Hour Material (Mg/ha) 

100 Hour Material (Mg/ha) 

.239 .008 .000 .0826 
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Intuitively, it would be a stretch to consider 1 hour fuels contributing to a relationship 

with roughness in any sense as they prove to be difficult targets for laser altimetry. Likewise, 

forest floor estimates are based upon depth of material (below ground) which is beyond the 

capacity of LiDAR data to detect. Rotten logs are more feasible targets and due to the 

management history of the area, may account for a majority of CWD. The crux is that most 

fuels classified as rotten have a low profile on the surface, nominally contributing to 

roughness. The only viable fuel component attributable to laser altimetry left in the model is 

small live trees, which contributes little to the overall relationship (r-square change of .052). 

The lack of a sound relationship between roughness and any single fuel component reinforces 

the notion that roughness is caused by a multitude of features that cannot yet, be 

distinguished with the field data available for Lubrecht.  In short, the reflective characteristics 

of the fuel bed/forest floor are still not well understood with respect to laser altimetry. 

 

Combinations of Fuel Components        Lacking strong relationships with individual 

fuel components that LiDAR could reasonably be expected to detect, I came to the 

conclusion that fuel estimates should be combined as their components occur in the field.  

Consequently, I tested  linear regression at the three previously described scales ranked the 

four variables in order of descending significance as Total Biomass, Total Dead Fuel, DWD 

Sound/Rotten, and DWD Sound Only (Figure 4). Results show the best relationship (Figure 3) 

existed at coarse grain (9 ha) where Total Biomass had the highest r-square of 0.730 (p-value 

< .001). A color-coded breakdown of the 9 ha regression shows that the treatments used in 

the Fire-Fire Surrogate Study are easily represented by surface roughness (Figure 4).  Total 

Dead Fuel was also predictable to a lesser degree, but both DWD aggregates showed no 

indication of a relationship with roughness. Looking at larger scales (Table 4, Figures 5,6) 

yielded r-squares of .568 (p-value < .001) at 2.25 ha 0.094 (p-value < .001) at 0.07 ha Total 

Biomass. Regression analyses results were ranked by R
2
 values for all three scales (Figure 4).  

 

Table 4 
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Figure 3. Linear regression plot of the highest correlation between fuel components and surface roughness. 

 

Figure 4. Color coded regression showing different treatment structures and loads with corresponding 

roughness values. 
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Figure 5. Linear regression of Biomass vs. Roughness at 150m X 150m scale (n= 48).  

 

 

Figure 6. Linear regression analysis of roughness vs. plot level fuels data. Plot is heavily heteroskedastic, 

indicating high variance of fuels and roughness.  
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Table 4. Regression Analysis for Aggregated Fuels Estimates vs. Roughness  

9 ha n R-Square p-Value 

Total Biomass 12 .730 .000 

Total Dead Fuel 12 .718 .001 

DWD Sound/Rotten 12 .311 .060 

DWD Sound  12 .053 .473 

2.25 ha n R-Square p-Value 

Total Biomass 48 .568 .000 

Total Dead Fuel 48 .530 .000 

DWD Sound/Rotten 48 .165 .004 

DWD Sound  48 .042 .165 

0.07 ha n R-Square p-Value 

Total Biomass 432 .094 .000 

Total Dead Fuel 432 .063 .000 

DWD Sound/Rotten 432 .004 .192 

DWD Sound  432 .001 .537 
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4.2  LiDAR-derived Surface Roughness Values 

 

As described previously, surface roughness values were imputed for the entire 

Lubrecht/Elk Creek area to produce a roughness map showing a maximum value of 1.47 and 

a minimum value of 2.2 X 10
-7 

(Figure 7). Intuitively, sections of flat-terrain and agricultural 

use are relatively smooth. Watershed drainages with variable terrain and greater bio-diversity 

register higher roughness values. Known areas of high density regeneration also show high 

surface roughness, and the FFS treatments show a gradient of roughness defined by detailed 

biomass/fuels estimates.  From these roughness estimates, total biomass was calculated on a 9 

ha grid by averaging roughness to that grain and applying the 9 ha, Total Biomass regression 

equation (y = 224.67x - 22.858).  A histogram of roughness at 9 ha cell size indicates a bi-

modal distribution, right-skewed (Figure 8). Bimodal distribution is indicative of two separate 

classes of roughness; lower roughness is representative of close proximity, ground returns 

where the dominant mode represents positive vegetation/fuel returns. 

     Total Biomass (Figure 9) predicted for each 9 ha grain indicates a maximum of 211.11 

Mg/ha (92.89 T/ac) and a minimum of -22.858 Mg/Ha (-10.06 T/ac). The minimum positive 

biomass value was 0.043 Mg/ha (0.019 T/ac). Mean biomass was 30.52 Mg/ha while 

standard deviation was 32.52 Mg/ha. As expected, areas of low biomass are coincident with 

non-forested areas. High biomass coincides with creek drainages and heavy timber. Total 

Biomass in the fuel bed for the 23,931 ha Lubrecht Forest is 972,306 Mg. 
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Figure 7.  Surface roughness for 2006 acquisition at 1 meter cell size. Blue to red gradient with low roughness as blue, high roughness as red.  
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Figure 8. Histogram of Surface Roughness for the Lubrecht Acquisition.
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Figure 9. Total fuel bed biomass estimates for 2006 acquisition at 300m cell size 
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4.3  Fuel Model Classification 

As described previously, fuel model classification was performed using the Photo 

Series method, a Decision Tree, CART analysis, and Unsupervised Classification. 

The Photo Series classification was conducted to establish a „ground truth‟ of 

subjective classifications that reflected the most widely used, standard operating 

procedure of fuel model classification. Since no definitive data source indicated fuel 

model classifications for Lubrecht, this classification would also be compared to the 

LANDFIRE project to assess different „ground truth‟ data. The RIP collection 

represented the most current field conditions at the time of the LiDAR acquisition. 

The Decision Tree approach was a simple straight-forward approach to test 

assumptions about the physical settings of fuel models. It pivoted around two 

variables and tested the ability to discern fuel models using percent canopy cover and 

surface roughness. It would act as an indicator of the further possibility of 

determining fuel models using multiple LiDAR-derived products. CART analysis was 

used to expand the notion that decision trees that were regression-based could identify 

and homogenize the response variables based upon multiple attributes. Unsupervised 

classification offered a classification technique that was independent of subjective 

verification. This technique identifies values of each attribute layer and groups classes 

based upon similar characteristics (Lillesand and Kiefer, 2000).  Multiple variables 

were included in this analysis.  They are: roughness, ground return intensity, canopy 

cover, maximum tree height, standard deviation tree height, elevation, slope, aspect, 

tree species, potential solar radiation (from slope, aspect, and latitude).  These 

variables were originally described by Krasnow et al., except for surface roughness, 

bare earth intensity and tree heights (Krasnow et al., 2009). 

 

4.3.1  RIP Photo Series classification 

RIP Photo Series used 97 of the available 101 plots (photos were not available for 

four plots) to classify fuel models. The RIP classification resulted in 37.6% of 

Lubrecht as a FM2, 23.8% as FM8, 14.9% as FM5, and the remaining classified 

16.8% as FM1, FM9, or FM10 (Figure 10). 6.9% of the plots were other fuel models or 

unassigned due to a lack of photos for classification.  
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Figure 10. Representative fractions of fuel models in Lubrecht Experimental Forest for Resource 

Inventory Plots and Landfire classifications. 

 

In my professional opinion and using my field experience at Lubrecht, the RIP 

classification over-represents FM5 and I would expect as much FM8 if not more, than 

FM2. I think FM9 is represented fairly well due to a lack of 100% ponderosa pine 

stands in Lubrecht. However, LANDFIRE probably overrepresents FM 9 and under 

represents FM2. 
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4.3.2  Landfire as an independent fuels assessment 

Comparisons with the LANDFIRE project were used to evaluate an independent 

assessment of fuels at Lubrecht.  LANDFIRE indicates different proportions than the 

RIP classification (Figure 10). FM8 is the dominant fuel model in the LANDFIRE 

classification (46.5%). FM2 is practically non-existent where FM9 is a quarter of 

Lubrecht. I believe these two classifications are over-represented based upon my field 

experience and the fact that LANDFIRE has a heavy influence of terrain affecting its 

classification. A comparison of LANDFIRE to the RIP classification is shown in Table 

5.  

 

Table 5. LANDFIRE confusion matrix of four fuel models using RIP photo classification. 

 LANDFIRE Classification  
Photo 
Series FM01 FM02 FM08 FM10 Totals 

FM01 4 0 1 0 5 

FM02 3 0 20 3 26 

FM08 1 0 9 1 11 

FM10 1 0 2 4 7 

Totals 9 0 32 8 49 

     Accuracy 

     34.69% 

 

While LANDFIRE covers the entire Lubrecht acquisition area, this comparison 

was restricted to the areas the RIP photos could assess. The LANDFIRE project used 

combinations of biophysical settings to determine fuel models which, in the case of 

Lubrecht, tend to mirror terrain features (Figure 11).   

It was important to cross reference the RIP classifications with LANDFIRE 

classifications to get a sense of agreement or disparity between the two sources of 

„ground truth‟ available to the study.  LANDFIRE would be subjectively compared to 

the Decision Tree, CART analysis, and unsupervised classification with restrictions 

placed on LANDFIRE concurrent with the limitations of other techniques.  
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Figure 11. LANDFIRE coverage of Lubrecht showing six fuel models at 30 meter cell size. Open areas were classified as non-forested areas. 
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Figure 12. Decision Tree output showing four fuel models within the Lubrecht Experimental Forest at 10 meter cell size. 
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4.3.3  Decision Tree 

The Decision Tree method used median values for canopy cover and roughness and 

returned values for FM1, FM2, FM8 and FM10 (Figure 12). The Decision Tree method 

was referenced to the RIP classification (Table 6). An accuracy of 33.77% left many 

classifications in question and misclassification of FM2 and FM10 indicated a serious 

flaw in the approach. If we were to assume that the RIP classification was 100% 

correct, the Decision Tree method under-represented FM1 and FM10. It was an 

indicator that while 33.77% accuracy showed some promise, the Decision Tree was 

flawed in using canopy cover to separate even basic fuel model classes (Grass, Shrub, 

Timber, Slash).  

 

Table 6. Confusion Matrix of Decision Tree vs. RIP Photo Series. 

 

 Decision Tree Classification  
Photo 
Series FM01 FM02 FM08 FM10 Totals 

FM01 5 1 0 0  6 

FM02 12 7 6 13 38 

FM08 4 5 6 9 24 

FM10 0 0 1 8 9 

Totals 21 13 13 30 77 

     Accuracy 

     33.77% 

 

 

4.3.4  Decision Tree and LANDFIRE comparison 

LANDFIRE identifies both FM5 and FM9 in Lubrecht (Figure 11) but for a direct 

comparison to the Decision Tree approach which has only four fuel models, 

LANDFIRE output was restricted to FM1, FM2, FM8, and FM10. The Decision Tree 

was referenced to the RIP photo series classifications and LANDFIRE as a baseline 

investigation into the effectiveness of classification schemes. LANDFIRE coverage of 

the same area (Figure 11) and decision tree output were cross-referenced (Table 7). 
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Table 7. Cross-reference of LANDFIRE and Decision Tree Output. 

 LANDFIRE Classification  

Decision Tree FM01 FM02 FM08 FM10 Totals 

FM01 3751 265 10611 1272 15899 

FM02 1971 311 11150 1660 15092 

FM08 534 45 9574 3324 13477 

FM10 640 103 19749 9157 29649 

Totals 6896 724 51084 15413 74117 

      

Omission Comission  Accuracy 

FM01 54% FM01 24%  31% 

FM02 43% FM02 2%   

FM08 19% FM08 71%   

FM10 59% FM10 31%   

 

Accuracy in this case is more an indicator of agreement between LANDFIRE and 

the Decision Tree. Considering 25% of LANDFIRE classification (FM9) at Lubrecht 

was eliminated, a higher correlation would be expected since FM8 and FM9 are very 

similar from a remote sensing standpoint and can be mistaken for each other. 

Accuracy of both LANDFIRE and Decision Tree comparisons to the RIP Photo 

Series is around 34%, indicating a moderately better than chance classification 

method. 

 

4.3.5  CART Analysis 

CART and RIP Photo Series Classification        Four analyses were computed 

for fuel model classification. An implementation of the C4.5 algorithm named, „J48‟ 

and a technique described by Breiman (Breiman, 2001) called „RandomForest‟ were 

used. A 10-fold cross-validation and percentage split of 66% training/33% testing 

methods were used for both J48 and RandomForest.  Initial model results showed that 

the first node split based upon, „Species‟. While „Species‟ allowed the greatest 

information gain statistically, the level of precision of the species layer disqualified it 

as a dominant attribute. The model showed improvement in true positive and true 

negative results after the attribute, „Species‟ was removed.  

RandomForest with percentage split testing produced the best results with 14 

(46.67%) correctly classified instances and 16 (53.33%) incorrectly classified 

instances (Table 8). The kappa statistic was 0.2079, showing the highest correlation of 

the four methods and rated as „Fair‟ agreement (McGinn et al., 2004). Mean Absolute 
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Error (MAE) was 0.2167and Root Mean Squared Error (RMSE) was 0.3353. FM2 

had the highest success rate, correctly identifying 10 of 13 observations. Seven FM2 

observations were misclassified as FM8 by RandomForest analysis and as will be 

discussed in Chapter 5, may have more to do with the accuracy of the RIP Photo 

Series classifications than the RandomForest technique.  

RandomForest using 10-fold cross-validation correctly classified 36 (38.30%) 

instances and incorrectly identified 58 (61.70%) instances (Table 9). Kappa statistic 

was 0.1288, indicating slight correlation above chance. MAE was 0.2287 and RMSE 

was 0.3651. While not the most accurate of the four techniques, this method classified 

a greater population (101) than the percentage split (30). FM2 was correctly identified 

most often with this method as well. FM2 and FM8 were the most accurately 

predicted fuel models and showed the highest amount of crossover. Accuracy for 

Random Forest analyses was similar to the LANDFIRE and Decision Tree 

classifications (34.69% and 33.77% respectively) again, perhaps an indicator that the 

Photo Series is flawed. 

 

Table 8. Confusion Matrix of RandomForest Analysis on RIP Photo Series using percentage splits. 

Correctly identified classes marked in Red. 

Classified as: Field 
Observations FM1 FM2 FM5 FM8 FM9 FM10 

0 0 0 0 0 0 FM1 

0 10 1 1 0 1 FM2 

0 0 2 1 1 1 FM5 

0 7 0 1 0 0 FM8 

0 0 0 0 1 0 FM9 

0 1 1 1 0 0 FM10 

 

Table 9. Confusion Matrix of RandomForest Analysis on RIP Photo Series using 10-fold cross-

validation. Correctly identified classes marked in Red. 

Classified as: Field 
Observations FM1 FM2 FM5 FM8 FM9 FM10 

1 4 1 0 0 0 FM1 

2 20 6 9 0 1 FM2 

1 8 3 1 1 1 FM5 

2 10 1 11 0 0 FM8 

0 1 0 0 1 0 FM9 

0 2 3 4 0 0 FM10 
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J48 testing with percentage splits correctly classified 13 of 30 instances with a 

kappa of 0.1918, an indication that the agreement between the model and actual 

classes was marginally above chance. MAE was 0.1928 with RMSE at 0.399. J48 

analysis with cross-validation correctly classified 34 of 94 instances. Kappa statistic 

was 0.106, indicative of a correlation nominally above chance. MAE was 0.2149 with 

an RMSE of 0.435.   

 

CART and LANDFIRE classification        The same four CART techniques, J48 

with percentage splits, J48 with 10-fold cross-validation, RandomForest with 

percentage splits, and RandomForest with 10-fold cross-validation were used to 

predict LANDFIRE fuel model classes. RandomForest using 10-fold cross-validation 

produced the best results (Table 10), correctly identifying 43 (42.57%) of 101 

observations. Kappa statistic was 0.1314, slight correlation above chance, with MAE 

of 0.2124 and RMSE of 0.3557.  

 

Table 10. Confusion Matrix of RandomForest Analysis on LANDFIRE using 10-fold cross-validation. 

Correctly identifed classes marked in red. 

Classified as: LANDFIRE 
Classification FM1 FM2 FM5 FM8 FM9 FM10 

4 0 0 4 2 0 FM1 

0 0 0 1 0 0 FM2 

0 0 2 1 2 0 FM5 

1 0 2 27 14 3 FM8 

3 0 1 12 9 1 FM9 

0 0 0 9 2 1 FM10 

 

 

RandomForest using percentage splits correctly identified 13 (38.24%) of 34 

observations. Kappa was 0.0377, MAE was 0.2216, and RMSE was 0.3586 (Table 11). 

J48 using 10-fold cross-validation correctly identified 32 (31.68%) of 101 

observations and J48 using percentage splits correctly identified 8 (23.53%) of 34 

observations. Both Kappa values were negative for the J48, indicating no agreement 

and a predictive power less than chance. 
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Table 11. Confusion matrix of RandomForest Analysis on LANDFIRE using percentage splits. 

Correctly identified classes marked in red. 

Classified as: LANDFIRE 
Classification FM1 FM2 FM5 FM8 FM9 FM10 

0 0 0 0 1 0 FM1 

1 0 0 0 0 0 FM2 

0 0 1 0 1 0 FM5 

0 0 0 9 5 1 FM8 

0 0 0 6 3 0 FM9 

0 0 0 6 0 0 FM10 

 

 

4.3.6  Unsupervised Classification 

Unsupervised classification resulted in six classes being populated of the 15 

potential classes assigned (Figure 13). I subjectively assigned fuel models to classes 

using the RIP photos and aerial imagery. RIP photos were used to determine the five 

best representations of each of the six fuel models. The representative plots were 

sampled from the unsupervised classification to determine the majority class 

populating each plot area. Aerial imagery was used to identify areas such as open, 

grassy fields that presented critical fuel model characteristics. Other known fuel 

models, such as the FFS units, were used in conjunction with the RIP photos to cross-

reference. IR imagery of the area was also used to help identify classes.  

Two classes which showed influence from canopy cover, BE intensity, and 

roughness were assigned to the grass fuel models, FM1 and FM2. FM1 was assigned 

to the class which had an open overstory and predominantly grass understory. FM2 

was the transitional class between FM1 and timbered areas. The dominant factor 

differentiating FM1 and FM2 was canopy cover. FM1 had little or no canopy present 

(mean value of 1.3%) where FM2 has some canopy present (mean value of 13.8%).  

FM2 had a slightly higher mean intensity (192.2 vs. 176.4) than FM1 and a greater 

mean roughness (0.25 vs. 0.11) than FM1.   

FM5 was assigned to a class that was separated from a structurally similar FM2 

by mean canopy cover (FM5 = 74.1%; FM2 = 13.8%), mean intensity (FM5 = 146.1; 

FM2 = 192.2), roughness (FM5 = 0.30; FM2 = 0.25). 



 56 

 

Figure 13. Unsupervised classification of five LiDAR-derived layers resulting in six fuel model classes. 
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The remaining three classes were assigned to fuel models through a process of elimination 

and were assumed to be timber fuel models due to the fairly continuous canopy identified with 

the aerial imagery. It was assumed that since FM8, FM9, and FM10 present increasing fuel loads 

in the timber group, that they could initially be separated by roughness (class8 = 0.25, class9 = 

0.28, class10 = 0.30). The standard deviation of roughness for each class overlapped so much 

that roughness alone could not separate the classes. Mean BE intensity provided greater 

separation from the three classes (class8 = 147.8, class9 = 176.6, class10 = 109.7) and standard 

deviations showed minimal overlap at the tails of the distributions. Mean canopy cover also 

differentiated the three classes (class8 = 25.6%, class9 = 53.4%, class10 = 84.2%) with minimal 

overlap at the tails. Timber fuel models were assigned based upon the best available indicator. It 

was assumed all timber fuel models would have a high canopy cover compared to other general 

classes. It was also assumed that FM8 would have a low roughness, high intensity return with a 

moderate canopy cover. Conversely, a FM10 would have high roughness, low intensity, and high 

canopy cover. FM9 was assumed to lie somewhere between the FM8 and FM10 classes, but 

identical in structure to FM8. Majority classes taken from the RIP plot areas were used to assign 

FM8 and FM9. These assignments were subject to the accuracy of the RIP classifications as well 

as how dominant the majority of the circular area was. Neither maximum tree height nor 

standard deviation of tree height had any influence on the classification based upon mean values 

and standard deviations. This was expected as they were included only to detect regeneration 

which will be expanded on in Chapter 5.  
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Figure 14. Fractional percentages of fuel models for Lubrecht using Unsupervised Classification. 

 

Because the Unsupervised Classification was assigned fuel models using majority 

representation of the RIP classification, it would need to be referenced to the other ground truth, 

LANDFIRE, to independently assess its accuracy. Comparing the Unsupervised Classification to 

LANDFIRE (Table 12),  FM1 performed extremely well. The error of omission is likely due to 

four non-combustible classes in LANDFIRE being removed for direct comparison. The timber 

fuel models (FM8, FM9, and FM10) have quite a bit of cross-over and it should be noted that 

they don‟t agree exactly on which fuel models are present, but they generally agree on where 

they are located. FM5, as previously mentioned, is probably over-represented in the 

Unsupervised Classification. This is made apparent when there are only 4072 cases of agreement 

on FM5‟s. The bulk of the Unsupervised FM5‟s were classified as timber fuel models by 

LANDFIRE (highlighted total of 68261 cases). Again, it is hypothesized that regeneration within 

the timber fuel models is structurally and qualitatively identical to FM5 from a LiDAR 

standpoint. 
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Table 12. Confusion matrix of LANDFIRE vs. Unsupervised classification. 

  LANDFIRE Classification  

Unsupervised Classification FM01 FM02 FM05 FM08 FM09 FM10 Totals 

FM01 12657 1225 892 1734 745 314 17567 

FM02 9086 867 3469 16579 7451 1095 38547 

FM05 1864 360 4072 33060 23385 11816 74557 

FM08 5224 958 4220 11915 10311 2182 34810 

FM09 3964 587 3856 23444 13538 2632 48021 

FM10 345 132 1580 20003 13225 15702 50987 

Totals 33140 4129 18089 106735 68655 33741 264489 

 

Omission Comission      Accuracy 

FM01 38% FM01 72%      22% 

FM02 21% FM02 2%       

FM05 23% FM05 5%      Kappa 

FM08 11% FM08 34%      8% 

FM09 20% FM09 28%       

FM10 47% FM10 31%       

 

 

4.4  Classification method summaries 

 

4.4.1  Fuel model prediction methods and RIP Photo Series 

Fuel model prediction using a CART, implementing the RandomForest algorithm with 

percentage splits of training/test data (CART
1
) produced the highest accuracy (46.67%) in 

predicting the RIP Photo Series classification  (Table 13). This accuracy is somewhat skewed due 

to only 30 total observations used and one class (FM2) representing more than half the total 

observations (18). CART analysis with RandomForest using 10-fold cross-validation (CART
2
) 

used 94 observations and represents the most accurate, statistically sound prediction method. The 

Decision Tree resulted in 33.8% accuracy but only predicts four fuel models. Where it may 

better perform is as a first pass examination of basic fuel model groups (grass, brush, timber, 

slash). Unsupervised classification had the second lowest accuracy (20.21%) that centered 

around misclassification of FM5, possibly an issue of tree regeneration misidentified as brush, 

which will be discussed in Chapter 5. LANDFIRE produced the lowest accuracy at predicting 
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the RIP classification (18.09%). Again, accuracy in this case is more a measure of agreement 

than the predictive powers of LANDFIRE. 

Table 13. Summary of Decision Tree, CART, Unsupervised Classification, and LANDFIRE methods used to classify 

RIP Photo Series. 

RIP 
Classifications 

Classification Methods 

Decision Tree CART1 CART2 Unsupervised LANDFIRE 

FM01 23.8% 0.0% 16.7% 100.0% 44.4% 

FM02 53.8% 55.6% 44.4% 42.9% 0.0% 

FM05   50.0% 21.4% 13.2% 0.0% 

FM08 46.2% 25.0% 44.0% 50.0% 20.5% 

FM09   50.0% 50.0% 0.0% 0.0% 

FM10 26.7% 0.0% 0.0% 24.1% 40.0% 

Overall Accuracy 33.8% 46.67% 38.30% 20.21% 18.09% 
      

      

CART
1
 Used RandomForest with percentage split.   

CART
2
 Used RandomForest with 10-fold cross-validation   

 

 

4.4.2  Fuel model prediction methods and LANDFIRE 

CART analysis implementing the RandomForest algorithm using 10-fold cross-validation 

(CART
2
) to predict LANDFIRE fuel models produced the highest accuracy (42.57%) of four 

methods (Table 14). As previously noted, this method uses a sound population of observations and 

of the methods used, presents the best method used to predict LANDFIRE classes. CART 

analysis with RandomForest using percentage splits (CART
1
) and Decision Tree methods 

produced better accuracy than the Unsupervised classification but, as mentioned previously, have 

limitations on number of observations and fuel models. Unsupervised classification, while only 

having an accuracy of 22.21%, used a cell by cell sensitivity analysis for 264489 individual cells 

and was the most comprehensive method of analysis. Disagreement between the Unsupervised 

classification and LANDFIRE centered around FM5 and the timber fuel models (Table 12). The 

regeneration issue discussed later may address the FM5 disparity. Disagreement between timber 

fuel models is to be expected when a major determining factor between FM8 and FM9 is species 

composition. FM10 is also expected to be significantly different given LiDAR‟s ability to 

penetrate high canopy closure areas and assess roughness where LANDFIRE relied more on 
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gradient modeling and biophysical settings to derive accumulation and fuel loading levels. These 

surface characteristics are the main attribute that separates FM8 and FM10. 

 

Table 14. Summary Table of Decision Tree, CART, and Unsupervised Classification methods used to classify 

LANDFIRE. 

LANDFIRE 
Classification Methods 

Decision Tree CART1 CART2 Unsupervised Classification 

FM01 23.6% 0.0% 50.0% 72.0% 
FM02 2.1% 0.0% 0.0% 2.2% 

FM05   100.0% 40.0% 5.5% 

FM08 71.0% 42.9% 50.0% 34.2% 

FM09   30.0% 31.0% 28.2% 

FM10 30.9% 0.0% 20.0% 30.8% 

Overall Accuracy 31.00% 38.24% 42.57% 22.21% 
     

     

CART
1
 Used RandomForest with percentage split.  

CART
2
 Used RandomForest with 10-fold cross-validation  
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CHAPTER 5.  DISCUSSION 

 

In this chapter I discuss the work flow of the project the results. I will address the different 

points of the project in the same order they were presented in Chapter 4. 

 

5.1  Data/Acquisition 

The LiDAR acquisition used for this project was an aggregate dataset using data from 2005 

and 2006. On the eastern half of the 2005 data, pre-flight high terrain elevation calibration was 

done incorrectly which resulted in heavy „pitting‟ of the DEM. These error points were severe 

enough in certain areas to require a second mission to be flown in 2006. The newer acquisition 

covered several tiles on the east and southeast areas of Lubrecht and the issue of „pitting‟ was 

resolved. The temporal discrepancies between 2005 and 2006 were assumed to be insignificant 

because annual fuel accumulation should be nominal in one year time span absent significant 

disturbance. There was no documented disturbance and the acquisition pre-dates significant 

mountain pine beetle activity in the area. Consequently, it was also assumed that the aggregate 

dataset was continuous across the entire study area and 2005/2006 data were merged for 

analysis. 

The average LiDAR point density was 0.44 points per square meter for approximately 28,000 

acres. Common resolutions for a study area of this size are 10m and 30m cell sizes. In general, I 

performed neighborhood analyses at 10m cell size and resampled to coarser resolutions. While 

this is a rich dataset compared to other remotely sensed data at Lubrecht, it is still a low density 

acquisition compared to other LiDAR datasets. The relatively high resolution of this dataset 

allowed for analysis at multiple scales and delineations and was optimal for a study of surface 

roughness and fuels. 

 

5.1.1  Integrity of BE/CAN Classification 

The unsupervised classification of Bare Earth points using TerraScan software is a robust 

technique that has been used on many LiDAR datasets. Each run needs to be calibrated for 

unique acquisitions in regards to the steepest allowable iteration angle. In short, the algorithm 

iterates between angles of slope for neighborhoods of points.  The majority of issues with this 

project‟s calibration dealt with misclassification of BE points due to steeper than expected terrain 

(e.g., near-vertical terrain in road cuts and in rocky outcrops. Two sources of error, auto-
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misclassification and manual misclassification, are accepted in this project. Sources of 

misclassification within the unsupervised classification are attributable to, terrain features, rocks, 

and manmade structures. Rock outcroppings and manmade structures were sparse such that they 

had little impact on the final dataset. Terrain features that obviously affected larger areas were 

manually reclassified by several individuals of varying technical expertise. For example, one 

entire uphill slope of a roadcut was classified a vegetation, but when the imagery was referenced, 

it showed bare soil. No ground hits were present on the slope, an area of about 1/10 an acre, and 

the analyst had to essentially reconnect the ground across the slope. This required determining 

which vegetation points were actually ground points by making a judgment call based upon 

visual arrangement.  The method of manual re-classification done with this project certainly 

introduced some uncertainty due to the subjective nature of reclassification based upon operator 

judgment. While these errors are acknowledged, they represent a small fraction of the entire 

dataset and were accepted as having little impact. 

 

5.1.2  Transformations Applied to Data 

Geographic transformations from the native GCS to UTM projection had a minute affect on 

positional accuracy. Normally a transformation would have little influence but due to the high 

degree of accuracy and precision that a LiDAR dataset affords, these minor fluctuations in 

position affect large scale measurements greatly. The scales at which the analyses of this project 

were conducted were at a far coarser scale than the introduced positional errors could affect. The 

assumption that positional differences of centimeters or ever meters did not significantly change 

outputs, especially when one considers central tendency, low-pass filters were applied to the data 

before arriving at the final outputs. 

 

5.2  Surface Roughness 

High variations in roughness complicate matters when trying to relate it to fuels that are 

already highly variable. It is accepted that slight positional error exists with LiDAR data as well 

as the fuels data. When high variations in roughness are produced, as they were with the 

Lubrecht data, there is no hard and fast way to determine what on the ground caused the 

roughness. The roughness raster produced was at 1m resolution (using a 5 meter radius 

neighborhood), a fine scale for most datasets. The difficulty lies in associating ground fuels with 
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the values presented on the raster. The finest scale available from the fuels data was the 30m 

plots, which a 1m resolution raster samples on average, 703 times to produce a single value for a 

30m diameter circle. When fuels were correlated to a single roughness value derived from 703 

individual cells, there was such a large range of roughness values represented that a single 

quantifiable estimate was more a matter of chance. Without the ability to assign a small range of 

roughness values to a small range of fuel loads, the only sound assessment that could be made 

with the relationship present was qualitative, an attribute that is dubious at best at finer scales. 

Finer scale analyses are also more susceptible to variation and outliers due to the smaller 

populations of values they draw upon. I concluded that I could not reasonably analyze fuels at a 

1m resolution or even within a 30m diameter area when I also factored in the assumption that not 

all roughness present in my data was caused by surface fuels.   

Two Brown‟s transects do not characterize actual fuels variability in a plot as well as one 

might like. Again, a greater number of transects at different azimuths would better capture the 

true mean fuel load and stabilize some of the variability. Co-location issues between transects, 

plot center coordinates, and LiDAR accuracy make it unclear whether the problems come from 

the field data or the LiDAR data or both. In sum, as with many LiDAR studies, relating remote 

measurements to field estimates poses many challenges.  Based on simple observation that 

roughness usually corresponds to identifiable features on the ground (downed trees, logs, 

regeneration, rocks), it is my belief that the roughness metric might do a better job of identifying 

fuels than field transects.  However, we don‟t have the data to support this inference.   

 

5.2.1  Fuel Bed Parameters 

2m Threshold        Fuel bed depth presents an issue in the analysis when a large percentage 

of the total available fuel is a live, small tree component. We used 2 meters as a base depth for 

surface fuel beds as defined by Albini and also Anderson (Albini, 1976), (Anderson, 1982). At 

Lubrecht, where CWD is not often the driving force between roughness and fuel load, 2 meter 

fuel beds may have incorporated more of the canopy/ladder fuels. While ladder fuels are still a 

component of total available fuel and an interesting facet to look at from a fire behavior 

standpoint, fuel bed depths need to be evaluated for each acquisition in order to draw a 

distinction between surface fuels and canopy fuels.  
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Most of the fuel models present in Lubrecht average a 0.3 – 0.6 meter depth of fuel bed, 

significantly different than two meters. The two meter fuel bed depth was used in this project 

because of Anderson and Albini‟s  definitions (Anderson, 1982), (Albini, 1976) as well as the 

precedent set forth by Seielstad and Queen (Seielstad and Queen, 2003). Using a 2m fuel bed at 

Lubrecht expands the range of the ground height distribution which affords less sensitive 

comparisons between roughness signatures. It may be useful to reexamine roughness using a 1 

meter of smaller fuel bed, although sample size issues and expected low variability in roughness 

could confound analysis.  

Dead vs. Live        The lack of any significant fire events in Lubrecht has resulted in a large 

amount of regeneration in the fuel bed. Currently there is no way to separate live targets from 

dead ones using LiDAR. This makes it more difficult to identify the drivers of the roughness/fuel 

load relationship when it is considered that live regeneration can have the same surface 

roughness as other fuel components.  

 

5.2.2  Other Causes of Roughness 

Generating surface roughness from a LiDAR dataset requires using the Z values to find the 

standard deviation from the mean Z value, in our case, elevation above Mean Sea Level in 

meters. As surface roughness goes, the greater the standard deviation, the rougher a surface 

while the smaller standard deviation represents a smoother a surface. 

The information from a LiDAR dataset is fairly rudimentary. It is essential to keep in mind 

that roughness merely represents relative height differences of individual returns and currently 

no LiDAR return attribute can qualify a target based on its reflectance as something like multi-

spectral imagery can. What we have from LiDAR is explicit x, y, and z coordinates, reflectance 

intensities, and a chronology of when returns are received, but no valid qualitative 

measurements. In my study, I focused on using the z coordinate, or height values of the returns 

and at that, I examined the magnitude of height variations. Many things can cause height 

differences within a landscape that aren‟t fuels (e.g. man-made features or terrain features). 

Roughness anomalies other than surface fuels add complexity to the landscape that must be taken 

into account before surface roughness alone can be used to assess fuel loads (Figure 15). 
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Figure 15. Digital photo of RIP plot 81, identified by the Unsupervised Classification as FM10.
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Since both man-made and terrain sources of roughness exist in nearly every landscape, it is 

accepted that they will produce incorrect assessments of fuels if they are included in roughness. 

Most man-made sources of roughness, such as road edges and borrow pits, can be identified well 

enough using a GIS and buffering these features for manual inspection and error-correction, but 

this is time-consuming and technically intensive. Unless a distinct terrain feature is known or 

identified, natural terrain differences blend in and are indistinguishable from vegetative biomass, 

especially underneath a canopy. In this study it was assumed that terrain roughness existed but 

contributed to overall roughness slightly. Man-made features in the FFS study were assumed to 

be non-existent due to lack of infrastructure throughout the study site. 

Deciphering what „smooth‟ and „rough‟ mean depends on what kind of surface we are 

considering. For this study, we are looking at the fuel bed which includes bare earth hits. While 

we are equating a „rougher‟ surface to indicate that there is more surface fuel present, at the root 

level a „rougher‟ surface can only indicate that there are greater micro variations in elevation. 

This is true when numerous objects provide a contrast in height but sharply contrasting terrain 

creates areas of high standard deviation that represent a genuine „rough‟ surface without 

necessarily having combustible fuels. During an unsupervised classification similar to the 

TerraScan algorithm, enough mis-classified terrain features can render the roughness map 

useless due to the high percentage of incorrect areas. Again, one of the strengths of laser 

altimetry derived roughness is its cost-effectiveness. Manually checking areas erodes LiDAR‟s 

strength and thus, a reasonable set of parameters needed to be developed to classify large areas 

without over-extending a budget. 

Roughness derived from terrain is usually caused by abrupt changes in elevation. Sinkholes, 

rock outcroppings, or narrow drainages can provide returns whose elevation exceeds the 

previously mentioned iteration angle used to classify points as either bare earth or canopy. Rock 

outcroppings may be classified correctly as bare earth but due to the lack of surrounding 

vegetation, the relative height differences can indicate roughness that would be incorrectly 

identified as fuel using the roughness to fuel relationship.  

Man-made objects and features can inherently have abrupt elevation changes that contribute 

to roughness. Buildings, mine shafts, and infrastructure features affect roughness the same way 

terrain features do by exceeding the iteration angle. The highest man-made contribution to 

roughness observed in Lubrecht was forest roads and their associated objects. Steep road cuts 



 68 

into the uphill slope had been classified as vegetation in several areas. Culverts and bridges 

presented contrasting elevations on the sides of roads that were misclassified as canopy or errors.  

 

5.2.3  Variability of Surface Roughness 

The high variability of fuels on the ground shows its complexity in several ways. A natural 

patchiness in the Control unit of the FFS study and the overall patchiness of Lubrecht was 

identified by the roughness raster. The variability is high in many areas, indicated by an almost 

„salt and pepper‟ appearance of the raster values. While a low-pass filter can homogenize an 

area, this reduces the accuracy and precision LiDAR has been championed for. It is unclear at 

this time which component of the fuel bed accounts for the higher areas of surface variability. 

Regression analysis in this study is contrary to Seielstad and Queen‟s findings that coarse woody 

debris drives the relationship. Coarse woody debris alone shows a weak relationship at Lubrecht 

and the total available fuel load is highly dependent on small live trees and the Forest Floor Mass 

contribution. The loose correspondence to roughness that Forest Floor Mass has is important to 

note because while it is not a measureable fuel component using laser altimetry, it may be related 

to an ecological function that is. The depth of fuel on the forest floor is partly a function of the 

overstory‟s contribution of down material. One possible explanation is that sites which can 

support greater amounts of vegetation will naturally have higher amounts of accumulation and 

depth of forest floor mass. Standard deviation of ground height distribution is higher at these 

sites due to more targets in the fuel bed. The auto-correlation is hypothesized to be a function of 

biophysical settings that produce greater volumes of forest floor mass at sites that contain higher 

populations of viable laser targets. 

 

5.2.4  Sidelap/ Data Density Biases 

Sidelap of scanned swaths created strips within the dataset with twice the normal point 

density. Certain areas within the acquisition had three and four passes made with the sensor. This 

increased overall density, but resulted in areas with very high density. This point density 

introduces a bias by providing a richer cross-section of the target area. Sidelap can clearly be 

seen in certain areas of the surface roughness map and it trends towards higher roughness values. 

These sidelap artifacts were assumed to be isolated enough to have little effect on the landscape 

scale of the project. Fine scale analyses in areas of known sidelap would need to identify areas of 
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higher point density and appropriately decimate them to possibly some central tendency point 

density. 

 

5.2.5  Mosaicking 

Removal of 50m Buffer        Removal of the 50 meter buffer around each tile was intended 

to eliminate processing errors incurred due to a lack of data beyond the tile edge. The overlap 

into adjoining tiles meant that the buffer area was trimmed back so all tiles could be seamlessly 

connected together during the mosaic process. The final mosaic showed no drastic variations in 

values as the seam edges were encountered 

and appeared to have worked quite well. 

 

Seam Errors/Interpolation        Most tiles were 

seamless in the final mosaic. However, 

several border tiles of the acquisition area had 

slight gaps or distinct seams present. While 

these tiles had buffer areas, they lacked data 

points along the left edge of the tile. This is 

important when the raster of roughness is 

created, based upon the lowest, most-left 

point of the tile. That point acts as the initial 

centroid for the grid array to be built upon. 

When there is no data, the adjoining grids 

don‟t align. When the buffer is removed, it 

removes a row or column of cells that are not 

completely within the tile border.  

A second source of seam errors occurred 

throughout the mosaic. In this case, the data 

was continuous but the magnitude of 

adjoining cells of the neighboring tiles contrasted. Because each tile was processed individually, 

the ranges of roughness differed from tile to tile. The magnitude differences on the edges of 

seams were artifacts of the mosaic process where a common histogram could have been used to 

Figure 16. Block 3 of the FFS study site showing roughness 

raster. Areas of high roughness are coded red with areas of 

low roughness blue 
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normalize all the tiles. This was not done to retain the roughness values as a measure of surface 

roughness instead of producing an arbitrary value which relates only to the histogram.  

 

5.2.6  Validation of Roughness Map 

It is interesting to note that intuitively, roughness rasters correlate to surface fuels as one 

would think. Initial assessment of roughness (Figure 16) shows the untreated control unit having 

greater roughness and hence, higher probable fuel loading as one might assume about an 

untreated, undisturbed stand. The Thin/Burn unit also correlates with intuition by showing a 

relatively smooth surface with little fuel, as to be expected from a unit that has undergone 

mechanical thinning and subsequent burning. Supporting a quick assumption about a 

fuels/roughness relationship, the Thin only and Burn only units are of varying degrees of 

roughness in between (Figure 17).  

 

 

Figure 17. Color coded linear regression of mean surface roughness vs. mean biomass at 9 ha resolution. 
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The Thin unit should by all rights, have a higher fuel load on the ground due to slash being 

trampled and left in place. Thin only units on average, have a higher fuel loading than units that 

were burned but still less on the ground than the control units.  

A possible explanation could lie in the live fuel component removed during the thinning 

process, still present in the control units, that contributes to roughness in acute areas.  

Over time, the burn only units would be expected to undergo an accelerated attrition and 

accumulation of dead fuel just starting to present itself when the LiDAR mission was flown. The 

field collection of fuel loads was completed in 2002 where the LiDAR acquisition was taken 

initially in 2005. The three year period between the two may contribute to some disparity 

between roughness and field estimates. Patchy openings in the canopy created by restoration 

treatments would allow pioneer species to flourish and enhance roughness that may have been 

less when the field samples were taken. It is accepted that field estimates of fuel loads might be 

lower than LiDAR estimate simply due to the fact that the time elapsed allowed for ingrowth of 

open areas. 

 

5.3  FFS Plot Data 

The high variability of estimates from the field data collected at Lubrecht for the FFS study 

further complicates any direct assumptions about fuels and laser derived products. While the 

layout and population of sample sites seems adequate, the dependency on capturing appropriate 

fuel loadings using two Brown‟s transects alone in Lubrecht is flawed if the intent is to compare 

on scales of one to tens of meters. The high variability of total fuels from plot to plot and even 

within single plot transects highlights the need for more decisive field fuels estimations. At the 

landscape scale, the only conclusion that can be drawn from such highly variable estimates is 

that the landscape has highly variable fuel loads. LiDAR data is very precise and lacks the 

human component of data entry. In my opinion, field data is more subject to error and 

interpretation and I would be more apt to believe the LiDAR data over the field collection for a 

clearer picture of what field conditions were. I also believe that a more intensive field collection 

would align itself better with the laser estimates. The stock I put in the laser altimetry is 

somewhat anecdotal, but it‟s clear looking at Figure 16 on the preceding pages and Figure 18 on 

the next page that surface roughness is capturing conditions on the ground at least in some cases. 
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5.3.1  Brown’s Transects 

The fuels transects taken on each of the FFS plots were 

indicative of the high variability of fuel loads present in 

Lubrecht. Many plots had high fuel load estimates for one 

azimuth while the opposing azimuth held no significant fuel 

load. The proximity and density of the field collection 

transects merely highlighted the issue of comparing a 

different dataset with a highly variable field collection. The 

variability of fuels and roughness in Lubrecht cannot be 

understated. Finding the appropriate scale to capture and 

quantify such variability has proved a daunting task. One 

perk of LiDAR is that the data has no set scale. As a 

manager, planning level events may only require small scale 

analysis, while inventories and projects may require larger 

scale analyses. The amount of detail will vary and I believe it 

is best to have the finest scale available to accommodate 

project scales while retaining the ability to resample for 

planning scales. It is also good practice to leave as many 

options open for future use of the data. 

The nature of Brown‟s transects, such as those collected 

for the FFS study, can lend themselves to a wide range of 

estimates within a small area. The greatest range of samples 

taken was sample point 5205 of the FFS study. The first 

transect reported 9.46 Mg/ha total fuel while the opposing 

azimuth transect reports 283.07 Mg/ha; all within a 100 ft 

total sampling plane. 23 plots had one transect which showed 

some measurement of fuel but no fuel recorded for the 

second transect, the largest difference being plot 4111which reported 63.62 Mg/ha for the first 

transect and 0 Mg/ha for the second transect. The standard deviation of differences between 

paired transects for all 432 plots was 32.23 Mg/ha which was greater than the mean difference of 

22.34 Mg/ha, an indicator of high variability.   

Figure 18. Showing roughness (top), CIR 

imagery(middle), and overlay (bottom) 

where roughness identified individual 

downed tree boles. 
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What these examples show is the high variability of fuels across the landscape and high 

variance within sampling points. The Fuel Load (FL) sampling method described as part of the 

FIREMON project promotes using three sampling planar transects and up to seven if necessary 

(Lutes and Keane, 2006). Spatial arrangement of transects described in the FL method may 

provide for a more representative sampling of the non-random orientation of fuels (Lutes and 

Keane, 2006) that opposing transects can miss. FL protocol suggests positioning the first transect 

at a 090° true azimuth from the plot center with the second and third transects at 330° and 270° 

true azimuth respectively from the end of the previous transect. 

More is not necessarily better for transects if the design of their layout has faults. Also, time 

restrictions may not make it possible to collect 7 transects for each of the 432 plots. That being 

said, more samples of different origins and azimuths in the FFS study may have eliminated the 

issues of high variance encountered with the two opposing transects. High variability in the fuels 

estimates makes it difficult to assign a roughness value to a certain fuel load at large scale 

analyses because of the wide range of loads represented by a single plot. 

 

5.3.2  Positional Accuracy and Precision 

Direct measurements of roughness for each return become meaningless if they do not 

coincide with fuels estimates on the ground. It is not certain that the roughness values indicated 

by a cell relate to the roughness outside the immediate vicinity.  It is also not certain that the 

roughness values assigned to a cell are coincident with the fuels present. When variability is 

coupled with positional error, any attempt to directly line up highly variable fuels with their 

geographically coincident roughness at a fine scale (1m) will fail. The only means available of 

drawing a conclusive relationship between fuels and roughness is to aggregate roughness up to 

an area that the fuels data can represent. The smallest area available with our fuels data was the 

30m diameter plot, which showed little evidence of a roughness/fuel load relationship. While 

roughness is indicative of fuels in a landscape absent of other sources of roughness, we cannot 

say with certainty that at finer scales, roughness represents surface fuels on the ground. 

 

5.3.3  General Sparse Nature of Fuels at Lubrecht 

Typical fuel loads for ponderosa pine and Douglas fir stands in western Montana are elusive. 

Due to fire exclusion and management practices of the last century, a natural range of fuel loads 
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has been affected by means other than purely ecological. The fuel loads present in the FFS study 

were thought by several people involved in this project to be somewhat sparse. Compared to fuel 

loads and fuel models of the Tenderfoot study, the FFS fuels have minimal impact on fire 

behavior. Measuring, even on the high end, such a sparse fuel load lends itself to the efficacy of 

roughness as a surrogate for fuels. If meager fuel loads can be detected with a degree of accuracy 

in mixed-conifer, common fuel loads more prevalent in the northern Rockies would be easier to 

estimate using LiDAR. 

Lubrecht provides an excellent study area but the fuel loads trend towards sparse. At 

Tenderfoot, coarse woody debris may stack as high as 2 meters and provide a continuous fuel 

layer throughout the stand. The large range of fuel loads at Tenderfoot may have made detection 

and segregation more straightforward whereas the small range of fuels at Lubrecht limits the 

ability to distinguish between differences and variation. While no reasonable fuel model can be 

discerned from this study, it remains that the relationship between roughness and fuel loads holds 

at the lighter end of fuel loads and it lends promise towards transitioning surface roughness from 

a purely academic endeavor to a practical, in-the-field use of laser altimetry when considering 

the functionality at areas with higher than normal fuel loads. 

 

 

5.4  Regression Analyses 

At this point, it is only safe to say that we can predict total biomass well at a 9 ha resolution, 

and adequately at 2.25 ha resolution. The relationship between fuels and roughness holds to a 

lesser degree than Seielstad and Queen‟s (Seielstad and Queen 2003) findings, and at a coarser 

resolution. Some errors in estimation are caused by a high variability of both fuels and roughness 

estimates. This high variability in fuels presented such a range of estimates that no single 

component could be identified as the landmark estimator that CWD had been for the previous 

study.  At coarser scales, this variability is reduced at the cost of fine scale precision and 

accuracy that  LiDAR datasets could potentially afford to the user. A general mismatch of remote 

sensing techniques with field data continues to be a problem. 
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5.4.1  Linear Regression 

Linear regression was the most direct statistical analysis for roughness to fuel load 

comparisons. Seielstad and Queen (Seielstad and Queen, 2003) found that simple linear 

regression tested their hypotheses more than adequately. One intention of this project was to test 

the relationship Seielstad and Queen (Seielstad and Queen,2003) had developed on mixed-

conifer forests. The idea was not to re-invent the process but to test proven techniques and 

methods on a different dataset. Following the linear regression methods offered unbiased insight 

into the relationship while excluding error and deviation due to methods.  

 

5.4.2  Appropriate Scale 

The three scales used for regression analyses were logical divisions of the available data. Plot 

level was a matter of drawing appropriately-sized circles around plot centers to capture what the 

Brown‟s transects represented. On the other end of the scale, the 9 ha areas were defined by the 

FFS treatment areas with 72 transects per treatment. The 2.25 ha areas were a simple division of 

each treatment areas into equal quarters, each holding equal numbers of field plots. From my 

perspective, it would have been better to attempt finer scales but there were no field collections 

available at anything smaller than the FFS provided. While they were definitely robust, rich data 

collections for the area they covered, it would be more desirable for similar studies to acquire an 

extremely intensive field collection over fewer, finer scale plots. A more appropriate study might 

include a ground-based LiDAR acquisition which would allow extremely fine scale data and 

multiple fuels transects which were all-inclusive in their estimates. However, even in this case, 

co-location of the respective datasets might be difficult.   

 

 

5.4.3  Stepwise Regression 

Stepwise regression allowed for multivariate analyses to identify any drivers of the 

relationship. It also gave insight into how the individual size classes related to each other via a 

Pearson‟s correlation. Stepwise regression was a good method for exploring the data. It 

identified surface fuels as drivers which led us to surmise that some type of auto-correlation had 

to be occurring in the surface fuels. This was supported by correlation between the size classes. 
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Realizing that no single fuel component could account for the roughness/fuels relationship led 

me to begin exploring total biomass, one of the products from this project. 

 

5.4.4  Contributions from Fuel Types 

One issue that came up when the FFS field data was related to roughness was dealing with 

components present in the Total Biomass estimates that are not detectable by laser altimetry. 

Forest floor fuel loads consisted of newly cast litter and organic material down to mineral soil 

(Fiedler et al., 2000), sections of the fuel bed not detectable by laser altimetry. This is in direct 

contradiction to the fact that Forest Floor Mass contributes heavily to the total biomass estimate 

comprising 44% of the total (Figure 19). In the field study, forest floor mass was destructively 

sampled and measured by the depth of material underneath a surface the laser would classify as a 

„last‟ return. While 1 hour fuels only contribute 1% to total biomass, in the step-wise regression 

1 hour fuels were included in the model with a p-value <0.001, indicating they were significant 

and improved the model.  

The diameters of 1 hour fuels present such small surface areas as targets it was assumed they 

intercept too little radiation to provide enough reflected energy to register on the receiver. The 

Pearson‟s correlation for 1 hour fuels showed significant relationships with 10 hour, 1000 hour 

rotten, and forest floor mass fuel components (Table 2). It is probable that 1 hour fuels are auto-

correlated to other fuel components which are more likely candidates for causing surface 

roughness and therefore it is not a reflectance issue as much as it is an auto-correlation issue with 

1 hour fuels.  A possible explanation is that as 1000 hour and 100 hour fuels fall to the surface, 

they carry many more pieces of 10 hour and 1 hour fuels with them. A single fallen tree bole will 

register high roughness, but the fuels transect may show a jackpot of smaller diameter pieces if it 

crosses the crown. 
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Figure 19. Percentages of single fuel components’ contribution to Total Biomass estimate at 300m X 300m scale. 

 

 

Auto-correlation        Forest floor mass may also contribute to the relationship through an 

auto-correlative function with the coincident vegetation. As shown earlier with the step-wise 

regression (Table 2) most of the timelag classes are significantly related to each other. This 

would make sense with a simple observation of downed branches or trees providing many 

different pieces of fuel of different diameters. Plots with high basal areas contribute greater 

amounts of material to the litter and duff layers, thus possibly accounting for an improvement of 

the model by adding a component which is not measureable by LiDAR.  

 

Shrub not captured in field data        Shrubs and herbaceous vegetation provide a target 

which is similar to small, live trees and would contribute to roughness. The field data had no 

estimates of shrub or herb components that could be compared to roughness. The relationship 

between roughness and fuels would be diminished when vegetation is present that cannot be 

accounted for in the field data. 
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5.5  Biomass Map 

Expanding the relationship of roughness to fuels across a larger landscape required the same 

processing techniques as the FFS data on ten times the number of points. A tiling scheme was 

established early on in the pre-processing stage to facilitate the limitations of the computer 

hardware. Raw data points were extracted from flight lines by tile before being classified or 

processed further. Each tile was 2100 m by 2100 m with the intention of stripping away a 50m 

border on all four sides to eliminate edge effects. As the data ran out to the edge of a tile, it 

incurred errors due to sampling from areas of no data that influenced the roughness values. The 

remaining „cores‟ of the tiles were mosaicked, creating a final product that was a seamless 

assessment of roughness across the entire acquisition at the landscape level (Figure 20). 

 

 

Figure 20. Surface roughness of 2005-2006 Lubrecht LiDAR acquisition. 

 

A total biomass map was created from the roughness map by resampling the 1m cell values 

of the roughness map up to single 300m cells to reflect the highest resolution fuels could be 
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predicted effectively at. The regression equation (y = 224.67x - 22.858) from the Total Biomass 

vs. Surface Roughness at 9 ha analysis (Figure 3) was used to calculate fuel values for the 300m 

cell mean roughness raster (Figure 21). These values reported in were Mg/ha and as each 300m 

cell represents 9 hectares, the final values were multiplied by 9 to give a fuel load value for each 

cell in megagrams.  

 

 

Figure 21. Predicted fuel loads (Mg) for Lubrecht at 300m cell size. 

 

5.5.1  Scale 

The resolution of the Total Biomass map is fairly coarse when compared with other remotely 

sensed datasets. Such coarse resolution can only produce landscape scale outputs from the 

surface roughness/fuel load relationships, but these are still useful for planning purposes and 

provide a reasonable characterization of field conditions. 
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5.5.2  Validity 

The Total Biomass map appears to be a reasonable representation of field conditions. The 

heavier loads in the eastern section of Lubrecht have a high tendency to follow drainages and 

low areas that can support greater amounts of vegetation.  Landmark areas of low loads such as 

the agricultural areas in the northern section and open, grassy fields or water sources show up as 

either NoData or very low biomass. Results from this project showed mean biomass values of 

30.5 Mg/ha and maximum biomass value of 211.1 Mg/ha. In a similar mixed-conifer ecosystem 

at the Teakettle Experimental Forest in the Sierra National Forest, Total mean C storage of six 

different stand structures averaged 289.3 Mg C/ha (North et al., 2009). Species composition and 

climate may account for higher values in the Sierra study but are comparable. 

 

5.6  Fuel Models 

5.6.1  RIP Plots 

The Resource Inventory Plots provided an evenly spread dataset for fuel model validation. 

There were a minimum of two photos per plot and up to nine photos from different azimuths and 

ranges from the plot center. These proved to be invaluable as a subjective source of plot 

information. No calls on what fuel models the plots represented were made, allowing NCLFA 

personnel to make unbiased judgments using the Photo Series method of fuel model assignment. 

 

5.6.2  Problems with Human Subjectivity When Classifying from Photos 

Human interpretation was the greatest problem using the photo series method to assign fuel 

models. Individual focus in the photos changes from person to person and differed with 

experience levels. Some individuals focused on what they perceived would carry fire through the 

landscape. Others focused on the structure of the overstory and understory and tried to „guess‟ 

how the laser would see the fuels. Another option looked at experience with the perceived fuel 

load and what the rate of spread might be. It was initially thought to use Scott and Burgan‟s 40 

fuel models but the variability with just Albini‟s 13 fuel models quickly negated introducing 

other sources of variability. 

The group dynamic in which the assignments were held also affected the outcomes. A 

rotation around the room changed the initial response for each plot. The trend with three people 

was for the following two to not state their fuel model assignment as much as it was to determine 
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if they agreed with the first response or not. Thus, it was sometimes more about how much 

someone bought off on the initial responder‟s pitch for a certain fuel model. This also brought 

about another slightly annoying side-effect of a group assignment which was a learning and 

reasoning mechanism that drove future fuel model assignments based upon previous calls. In 

what I will call the „sales pitch‟ for a certain fuel model it was often said that since the group had 

assigned one plot a certain fuel model, they must then logically assign the current plot that fuel 

model as well. While I appreciate logical reasoning, it seemed that both groups quickly limited 

their options due to some apparent set precedent. The Photo Series part of this project would 

provide a fascinating social dynamics project on its own and underlines a central issue with 

clearly identifying fuel models: The only real truth we have when it comes to assigning fuel 

models is the fire behavior they exhibit while they are burning. With this in mind it certainly 

fosters a healthy sense of skepticism when assessing scientific studies or even „Company Lines‟ 

that have relied upon on the findings of a „Panel of Experts.‟ 

The Photo Series assignments were used in the absence of any other source of fuel model 

ground truth. The results from each method of fuel model classification are difficult to interpret 

with the underlying knowledge that the „truth‟ in this case has variability. If we had had the 

opportunity of a wildfire in Lubrecht to test our fuel models against, as in the Boulder study 

(Krasnow et al., 2009), the assignments may have gone through some revisions. Without 

alternatives, the process was accepted as ground truth with the knowledge that outcomes, either 

poor or favorable, may have been the results of poor ground truthing. 

 

5.6.3  Decision Tree Approach 

Identifying fuel models from just LiDAR data used two layers. The first layer was percent 

canopy cover classified as either greater or less than the median of 61.455%. The second layer 

was 1m roughness classified as either greater or less than the median roughness of 0.24. Median 

values were used to mitigate outliers in both canopy cover and roughness rasters which could not 

be ground truthed.  The concept was that we could identify four groups of fuel model 

characteristics by either open or closed canopies and whether they have a high or low surface 

roughness (are rough or smooth). The fuel models present in the LANDFIRE dataset at Lubrecht 

are FM1, FM2, FM5, FM8, FM9, and FM10. FM1 and FM2 should appear in this scheme as 

open-canopied, smooth surfaced areas. The break point for inclusion into the canopy cover was 
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the median value. where areas without any canopy points were classified as NoData. Separating 

FM1 from FM2 would be a matter of identifying areas of NoData that were smooth as FM1‟s 

where FM2 should have some margin of canopy present. FM5 would be differentiated by a 

higher percent canopy cover with a higher roughness value than the FM1 or FM2.  

For closed canopy fuel models, FM8 and FM9 can be separated from FM10 by roughness. 

FM8 and FM9 will have low roughness values, the difference being FM8 is short-needle where 

FM9 is long-needle litter. Lacking a species map, I made some assumptions about the structure 

of FM8 and FM9 in Lubrecht. The first assumption was that FM8 in Lubrecht would be 

smoother than FM9. This was based upon shade-tolerant regeneration being more prolific in a 

FM9 due to 80 years of fire exclusion. The second assumption was the depth of forest floor mass 

would be greater in a FM9, as previously mentioned, a possible auto-correlative effect of 

biophysical settings. As no species map was incorporated into this classification scheme, 

roughness values alone were used to differentiate the three timber fuel models, selecting 

appropriate breakpoint values of roughness. FM10 will be on the higher end of the roughness 

spectrum and as such, requires a separate breakpoint value. From the initial product I then 

compared it to an independent classification scheme to identify appropriate breakpoint values. 

Photo series were available from a sampling study completed in 2007. This study used 101 

fixed plots evenly spaced across the entirety of Lubrecht to assess fuels. Each plot had three fuels 

transects and at a minimum, two photos taken of the plot centers. Both transects and photos were 

aligned on a 0, 120, and 240 degree azimuth from plot center.  I used Anderson‟s „Aids to 

Determining Fuels Models for Estimating Fire Behavior‟ to assess the fuel models and 

categorized them into one of the 13 fuel models available. The main focus was on the ground 

fuels, characterizing them by what fuel component was the primary carrier of fire. I then 

extracted the point values for each plot from my initial fuels layer to return a fuel model value 

that corresponded to each of the 101 plots. Photos were only available for 98 of the plots and the 

initial validation only produced 26 correct matches. Since there were only four models in the 

fuels layer, 26 correct matches out of almost 100 plots produced results that were no better than 

chance. Many plots were identified as a FM2 with the photos that were assigned a FM10 from 

the fuels layer. When I returned to the photos, it was apparent that a high volume of regeneration 

had affected the outcome. In a mature ponderosa pine stand the primary carrier of fire on the 

surface is needle litter and grasses. When Douglas fir begins to infiltrate the stand, as is the case 
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in Lubrecht due to lengthy fire exclusion, heavy patches of fir seedlings add to the fuel layer. In 

my decision tree approach of open vs. closed and smooth vs. rough, a FM2 should have a closed 

canopy with a smooth surface where a FM10 is has a closed canopy with a rough surface. Since 

the canopy cover layer takes a top-down approach, disregarding height, patches of regeneration 

add to the canopy cover layer. For uses such as LAI, inclusion of regeneration is appropriate 

because for LAI one is interested in all strata of the canopy. For determining fuel models, it is 

inappropriate because all we really want is the dominant strata of trees to gain insight into the 

probable nature of the surface fuels. Adding to the issue of canopy cover, regeneration also 

provides targets within the fuel bed that account for higher standard deviation and therefore a 

„rougher‟ appearing surface. The combination of the canopy appearing more closed plus a 

rougher surface, both due to clumps of regeneration cause the decision tree approach to 

misclassify FM2‟s as FM10‟s. It is critical to distinguish between these two due to contrasting 

rates of spread; FM2 averages around 35 ch/hour where FM10 averages around 7.9 ch/hour. The 

fire behavior of these fuel models differs greatly and can dictate suppression methods (Anderson 

1982). The possible work-around for this issue is to reduce the pool of points used to determine 

canopy cover from 2m high and up to possibly the canopy base height. This would eliminate 

most of the negative effects regeneration has on fuel model classification when deciding between 

FM2 and FM10. 

Another issue that arose was misclassification of FM5‟s. Since the decision-tree approach 

only allows for categorization into one of four fuel models, FM5‟s were either determined to be 

FM2‟s or FM10‟s, depending on the height of the brush. As with the previous regeneration issue, 

areas of taller shrubs and brush create a higher percentage of canopy closure plus higher 

roughness which results in a FM10. Classification of FM5‟s as FM2‟s was a simple matter of 

DWD vs. live fuels since both are open canopied, rough surfaced fuel models. Misclassification 

as a FM2 poses less of an issue than FM10 because FM10‟s represent the areas of greatest 

concern when dealing with fuel loading. Nonetheless, it is important to differentiate as many fuel 

models as possible, especially considering that a FM2 burns can burn at 35 chains/hour where a 

FM5 burns at 18 chains/hour under similar conditions. One possible method to differentiate 

between FM5‟s and FM10‟s is a reassessment of the canopy closure. As a secondary step in the 

decision tree, separating out generally open canopied FM5‟s from FM10‟s would be possible by 
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training an unsupervised classification of canopy closure on sample plots of known FM5‟s and 

FM10‟s.  

Several FM9‟s were identified from the photo series that correlates to closed canopy, long-

needle conifer stands with generally continuous needle litter being the only carrier of fire. FM8‟s 

are short-needle stands with nominal fire behavior under normal weather ranges. Rates of spread 

and flame lengths are 1.6 ch/hour and 1 foot flame lengths for FM8 and 7.5 ch/hour and 2.6 foot 

flame lengths for FM9. Again, it‟s fairly critical from a management standpoint that the two fuel 

models be distinguished. A high percentage of FM9‟s identified by the photos were classified as 

FM8‟s using the decision tree, understandably so when it is considered that FM8‟s and FM9‟s 

share a closed canopy, smooth surface structure. Since significant fire behavior differences exist 

between FM8 and FM9, it would be useful to separate the two in a classification scheme. A 

species layer used in the CART analysis was used before concluding that the current species map 

was unreliable and removed from the attributes. If a species map were available which had a 

high degree of accuracy and reliability, it is hypothesized that it could differentiate FM8‟s from 

FM9‟s.  

 

5.6.4  Issues with Decision Tree 

Limiting Lubrecht to only four fuel models was considered restrictive when several viable fuel 

models were excluded. Many FM5‟s, a few FM9‟s, and two FM4‟s were identified using the 

Photo Series method on the RIP data. Because these fuel models were excluded from the 

decision tree outputs, they then lend weight to misclassification of other fuel models. The 

variability of fuels and a degree of complexity of Lubrecht has become the recurring theme of 

this project. To categorize fuel models into four groups, even at 100% accuracy, doesn‟t best 

capture the range of variability on the ground. Lubrecht may be somewhat structurally simple, 

but when the possible fuel models are considered, the rates of spread and flame lengths tend to 

stand out. Even though Lubrecht can be simplified into 3 basic fuel models (Grass, Brush, and 

Timber) the focus of the study is to explore the potential of the techniques and science. If these 

methods and techniques work well at Lubrecht, they can be applied to more complex landscapes 

with a greater degree of certainty. While a decision tree approach with four outcomes isn‟t 

necessarily decisive science, it certainly acts as an indicator of how other classification methods 
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may fare. Good progress on simple classification methods allow for more complex analyses that 

might better reflect the field conditions of a complex landscape.  

 

5.6.5  CART Analyses 

Classification and regression tables provided an approach to unsupervised classification 

methods that re-tooled each run according to the results of the previous ones. CART analyses are 

used extensively in machine learning projects to mine vast datasets and provide dynamic flow-

charts which identify sometimes obscure patterns in the data. For ecological applications, they 

are ideal because they can deal with nonlinear relationships and missing data. 

 

Validation        Two methods of validation were used on both the J48 and RandomForest 

analyses. The first method was a percentage split which held back a third of the original data and 

created a tree from the remaining two-thirds. The tree was then tested on the portion held back 

for validation. The second method was cross-validation which divides the original data into even 

numbered subsets. A ten-fold cross-validation divided the original data into ten equal parts and 

developed the tree on nine of them. The tree was tested on how well it predicted the tenth subset. 

This was repeated ten times with each subset held back for testing. The final tree was developed 

by using the majority nodes for all ten iterations. 

 

Sampling of Attributes         Sampling attributes for individual plots was done by finding 

the mean value for a 75 foot diameter area around each plot center. This was done to reflect the 

length of each fuel transect collected for the RIP data. It was assumed that only the viewable area 

of the most distant photo from plot center could be used to determine fuel models using the 

Photo Series method. The high variability within Lubrecht makes a mean value more and more 

suspect as the area of the circle increases. While 75 feet diameter represents the absolute best 

positional accuracy, the geographic error of this project makes a plausible value more like 150 

feet. The range of values for each attribute within a 150 foot diameter circle more than likely 

encompass a multitude of fuel models. Selection of a single-most likely candidate glosses over 

the possibility that the correct model wasn‟t necessarily the most common model, but may have 

been the most geographically correct one. A FM5 surrounded by FM2 is an example of this type 

of error. 
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Selection of Attributes        Attributes of the landscape which could determine fuel models 

were similar to the Boulder study (Krasnow, Schoennagel and Veblen 2009) which used the 

term, „predictor variable.‟ Most of the predictor variables were already available from on-going 

NCLFA LiDAR studies and only a few required further processing to create. The predictors used 

reflected vegetative and non-vegetative qualifiers for fuel models. The „species‟ layer was used 

for the first several iterations, but was eventually dropped because its accuracy and resolution 

were not verified. While „species‟ had a large influence on the first node of the tree, it became 

apparent that the species assignments differed greatly from field observations of the RIP Photo 

Series. The „species‟ layer was also too general over large areas which led to highly 

heterogeneous node breaks after the first node. While species is important for fuel model 

classification, the available layer‟s use in this project proved to grossly overpower equally 

important factors of fuel models, such as structural and biophysical attributes. 

 

5.6.6  Unsupervised Classification 

Validation        Validation of the unsupervised classification output used a combination of 

RIP photos, known areas of fuel models, and IR imagery. FM1 was selected first due to the high 

signature grassy, open field presented in the output. Not everything in the FM1 class was fuel, 

since it included highways, water sources, and agricultural areas. FM2 had a tendency to line 

open areas and was almost a buffer between meadows and timber. FM2‟s were differentiated 

from FM8‟s and FM9‟s due to the higher reflectance of IR radiation. FM2‟s appeared „brighter‟ 

on the IR imagery than either of the competing timber fuel models. A larger than expected 

number of areas were classified as FM5. While there are brush fields present in Lubrecht they 

are not as prolific as the classified output would suggest. The most likely cause of this is a large 

amount of regeneration which shares the same structure as brush. The FM5‟s aren‟t necessarily 

brush fields, but have the same ladder fuels and share the same structure. There is also a similar 

amount of live fuels present in the fuel bed which makes the fuel model RH dependent. The 

timber fuel models appear to have been most influenced by BE Intensity. FM8‟s tended to have 

the highest intensity returns of the three, FM9‟s were mid-range, and FM10‟s reflected the least 

amount of radiation. This appears to be a function of mean canopy cover for the three classes as 

well (FM8 = 25.6%, FM9 = 53.4%, FM10 = 84.2%)  
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The intensities would make sense for the FM10 due to canopy interception of the pulse as it 

propagated through to the ground; a partial return pulse would register lower intensity. FM9 may 

return mid-range intensities due to height differences between dominant trees and regeneration. 

While the mature trees would define the stand as a timer fuel model, regeneration in the fuel bed 

would intercept the pulse, albeit for a shorter vertical range than FM10 might. FM8 is assumed to 

have sparse fuels on the ground and while canopy interception would still degrade intensity, 

canopy cover is generally more open, allowing pulses to complete the trip unhindered. 

 

Selection of Attributes        The attributes used for the unsupervised classification were 

initially the same as the CART analysis. The first output resembled a hillshade effect and was 

not unlike the LANDFIRE data. It became readily apparent that with more than one elevation 

feature in the mix, terrain quickly dominated the results. It was then decided to remove all 

elevation attributes and focus on LiDAR-derived canopy and vegetation layers. It would be 

interesting to include ecological layers in further research, which was the idea behind the 

elevation and distance-from-stream layers.  

 

5.7  Project Summary 

 

Quantifying and characterizing forest fuels will remain an elusive endeavor as long as variable 

and subjective qualification of both persists. In this project I explored the viability of measuring 

fuel loads and classifying the landscape using a remote sensing technique with mixed results. It 

i`s a promising branch of previous laser altimetry work and tested effective methods in a 

different forest type. While the current methods need to be re-tooled for fine scale analysis, they 

return products that can be used at a coarse scale for planning purposes. Future work with 

surface roughness and fuels will require sound field assessments that can reciprocate the fine 

scale nature of LiDAR data. Detailed field collections that are exhaustive and all-inclusive 

should be coupled with ground-based LiDAR at a fine scale and cross-referenced with airborne 

LiDAR data to explore the relationship between surface roughness and fuels.  In my professional 

opinion, this would address the deficiencies identified in this study and provide a clearer picture 

of how LiDAR can be utilized by land managers to effectively measure the current fuel loads of 

a landscape. 
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Classifying fuels into pre-determined fuel models leaves a great deal of room for error. Even 

with picture-perfect structure and representation, parcels can only be assigned to a certain fuel 

model based upon the fire behavior exhibited while they burn. This is a reactive process. Fuel 

models are used to describe the most-likely fire behavior and most often, the potential worse-

case scenario for any given area. Pro-active classification needs to allow for variability that 

cannot be captured in 13 fuel models, perhaps not even with 2500+ fuel models. Fuel models are 

defined by the main carrier of fire and are segregated into bins that represent rates of spread and 

flame lengths. Field experience will show that actual fire behavior will defy many of the best 

estimates. With this in mind, the efforts spent in classification are not wasted, and perhaps the 

best strategy for prevention is to assume a worst-case-scenario and plan accordingly. While fine 

scale fuel model classification cannot currently be done with a high degree of accuracy, coarse 

scale classification shows promise when correlated to independent land classifications. The high 

severity, project fire events that land managers spend the most time planning for are not 

determined at the 1/10
th 

acre or even the 10-acre scale. These events are managed and executed at 

a landscape scale, a scale that some of these classification methods perform at. The classes 

presented in the Unsupervised Classification represent different structures and fuel loads that 

equate to some construct that when burned, will exhibit similar fire behavior. Assignment of fuel 

models to classes was an academic venture that can be replicated by a land manager using their 

professional experience and field collections to verify. In my opinion, the classes are valid and 

remain, they are structurally and characteristically different, despite the fuel model assignments 

and that is the accomplishment of this project. The accuracy of the fuel model assignments 

presented in this project may not be 100% accurate, but the same method of assignment using 

local knowledge of field conditions would allow a land manager to independently assess 

conditions using the same classes. The variable nature and distribution of the classes make them 

valuable for fire spread predictions at a planning level. They represent the best possible 

distinction from each other in a highly variable landscape. The expected fire behavior from a 

FM8 and FM9 are distinct, but do not greatly affect the outcome of an emerging project fire. The 

perimeter of such an event will be assessed at the landscape scale, and the findings of this project 

present a valuable contribution to planning for and dealing with such an event. 

 

 

 



 89 

  



 90 

CHAPTER 6.  BIBLIOGRAPHY 

 

Agee, J. 1993. Fire Ecology of Pacific Northwest Forests. Island Press: Washington,    

   D.C.; 250. 

 

Albini, F. 1976. Estimating Wildfire Behavior and Effects.  USDA Forest Service General  

   Technical Report INT-30, 97. 

 

Andersen, H., R. McGaughey, and S. Reutebuch. 2005. Estimating Forest Canopy Fuel  

   Parameters Using LiDAR Data. Remote Sensing of Environment. 94(4): 441-449. 

 

Andersen, H., S. Reutebach, and G. Schreuder. 2001. Automated Individual Tree Measurement  

  Through Morphological Analysis of a LiDAR-based Canopy Surface Model.  Proceedings of  

  the First International Precision Foresty Syposium: Seattle, 193. 

 

Anderson, H. 1982. Aids to Determining Fuel Models for Estimating Fire Behavior. USDA  

  Forest Service General Technical Report INT-122, 28.  

 

Arno, S., and G. Gruell. 1986. Douglas-fir Encroachment into Mountain Grasslands in  

  Southwestern Montana. Journal of Range Management. 39(3): 272-276. 

 

Arno, Stephen F. 1980. Forest Fire History in the Northern Rockies. Journal of Forestry. 78(8):  

   460. 

 

Arno, S., M. Harrington, C.  Fiedler, and C. Carlson. 1995. Restoring Fire-Dependent Ponderosa  

   Pine Forests in Western Montana. Restoration and Mangement Notes. 13(1): 32-36. 

 

Arroyo, L., C. Pascual, and J. Manzanera. 2008. Fire Models and Methods to Map Fuel Types:  

   The Role of Remote Sensing. Forest Ecology and Management: 1239-1252. 

 

Avery, E. 1967. Forest Measurements. McGraw-Hill: New York, NY, 480. 

 

Barnett, J. 1999. Longleaf Pine Ecosystem Restoration: The Role of Fire.  Journal of Sustainable  

   Forestry. 9(1/2): 89-96. 

 

Bertolette, D., and D. Spotskey. 1999. Fuel Model and Forest Type Mapping for FARSITE.  

  Proceedings of the Joint Fire Science Conference and Workshop: Boise. 

 

Bradshaw, L., J. Deeming, R.  Burgan, and J. Cohen. The 1978 National Fire-Danger Rating  

   System:Technical Documentation. USDA Forest Service General Technical Report,  

   Intermountain Forest and Range Experiment Station, GTR-INT-169, 44. 

 

Breiman, L. 2001. Random Forests. Machine Learning. 45(1): 5-32. 

 

Brown, J. 1971. A Planar Intersect Method for Sampling Fuel Volume and Surface Area. Forest  



 91 

   Science. 17(7): 96-102. 

 

Brown, J., R. Oberheu, and C. Johnston. Handbook for Inventorying Surface Fuels and Biomass  

   in the Interior West. USDA Forest Service General Technical Report INT-129, 52. 

 

Chen, Q. 2007. Airborne Lidar Data Processing and Information Extraction. Photogrammetric  

   Engineering and Remote Sensing. 73(2): 109-112. 

 

Chuvieco, E., and R. Congalton. 1989. Application of Remote Sensing and Geographic  

  Infomation Systems to Forest Fire Hazard Mapping. Remote Sensing of the Environment. 29:  

  147-159. 

 

Cohen, J. 2008. The Wildland-Urban Interface Fire Problem, A Consequence of the Fire  

   Exclusion Paradigm. Forest History Today, 20-26. 

 

Covington, W., and M. Moore. 1994. Southwestern Ponderosa Forest Structure. Journal of  

   Forestry.92(9): 39-47. 

 

De Wulf, R., R. Goossens, B. Deroover, and F. Borry. 1990. Extraction of Forest Stand  

  Parameters from Panchromatic and Multispectral SPOT-1 Data. International Journal of  

  Remote Sensing. 11: 1571-1588. 

 

De'ath, G., and K. Fabricius. 2000. Classification and regression trees: A powerful yet simple  

   technique for ecological data analysis. Ecology. 81(11): 3178-3192. 

 

DeBano, L., D. Neary, and P. Ffolliott. 1998. Fire's Effects on Ecosystems. John Wiley & Sons:  

   New York, NY, 319. 

 

Deeming, J., J. Lancaster, M. Fosberg, R. Furman, and M. Schroeder. 1972. The National Fire  

   Danger Rocky Mountain Rating System. USDA Forest Service Research Paper RM-84. 

 

Deeming, J., and J. Brown. 1975. Fuel Models in the National Fire-Danger Rating System.  

   Journal of Forestry. 73(6): 4. 

 

Erdody, T., and M. Moskal. 2010. Fusion of LiDAR and Imagery for Estimating Forest Canopy  

   Fuels. Remote Sensing of Environment. 114(4): 725-737. 

 

Fiedler, C., T. DeLuca, M. Harrington, S. Mills, and D. Six. 2000. A National Study of the  

   Consequences of Fire. Fire/Fire Surrogate Study Project: Missoula, MT. 

 

Haines, D. 1988. A Lower Atmosphere Severity Index for Wildland Fires. National Weather  

   Digest. 13(2): 23-27. 

 

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. 2009. The WEKA  

   Data Mining Software: An Update. SIGKDD Explorations. 11(1):10-18. 

 



 92 

Hall, S., I. Burke, D. Box, M. Kaufmann, and J. Stoker. 2005. Estimating Stand Structure Using  

  Discrete-return LiDAR: An Example from Low Density, Fire Prone Ponderosa Pine Forests.  

  Forest Ecology and Mangement, 208: 189-209. 

 

Harbour, T. 2008. The Tie that Binds. Remarks delivered by FAM Director Tom Harbour to the  

  Congressional Fire Service Institute National Advisory Committee. UDSA Forest Service:  

  Washington, D.C. 

 

Hornby, L. 1935. Fuel Type Mapping in Region One. Journal of Forestry. 33: 67-72. 

 

Keane, R., R. Burgan, and J. van Wagtendonk. 2001. Mapping Wildland Fuel for Fire  

   Management Across Multiple Scales: Integrating Remote Sensing, GIS, and Biophysical    

   Modeling. International Journal of Wildland Fire. 10: 301-319. 

 

Keane, R., and L. Dickinson. 2007. Development and Evaluation of the Photoload Sampling  

   Technique. USDA Forest Service Research Paper RMRS-RP-61CD, 29. 

 

Kimbell, A., J. Caswell, M. Bomar, J. Gidner, and H. Hall. 2008. 2008 Direction to Leaders- 

   Federal Fire and Aviation Programs. 

 

Krasnow, K., T. Schoennagel, and T. Veblen. 2009. Forest fuel mapping and evaluation of  

   LANDFIRE fuel maps in Boulder County, Colorado, USA. Forest Ecology and Management.  

   257(7): 1603-1612. 

 

Lee, H. 1941. Aerial Photography: A Method for Fuel Type Mapping. Journal of Forestry. 39:  

   531-533. 

 

Lefsky, M., W. Cohen, and T. Spies. 2001. An Evaluation of Alternate Remote Sensing Products  

   for Forest Inventory, Monitoring, and Mapping of Douglas-fir Forests in Western Oregon.  

   Canadian Journal of Forest Research. 31(1): 78-87. 

 

Lillesand, T., and. Kiefer. 2000. Remote Sensing and Image Interpretation, 4th Edition. John  

  Wiley & Sons, Inc.: New York, NY, 736. 

 

Lund, H. 1969. Appraising and Mapping Fuels with Aerial Photographs. Proceedings American  

   Society of Photogrammetry and American Congress on Surveying and Mapping: Portland.  

 

Lutes, D., and R. Keane. Fuel Load (FL) Sampling Method. 2006. USDA Forest Service General  

   Technical Report, Rocky Mountain Research Station, 25. 

 

McGinn, T., P. Wyer, T. Newman, S. Keitz, R. Leipzig, and G. Guyatt. 2004. Tips for Learners  

   of Evidence-based Medicine 3: Measures of Observer Variability (Kappa Statistic). Canadian  

   Medical Association Journal. 171(11): 1369-1373. 

 

 

Metlen, K., and C. Fiedler. 2006. Restoration treatment effects on the understory of ponderosa  



 93 

   pine/Douglas-fir forests in western Montana, USA. Forest Ecology and Management. 222(3):  

   355. 

 

Mutlu, M., S. Popescu, and K. Zhao. 2008. Sensitivity Analysis of Fire Behavior Modeling with  

   LiDAR-derived Surface Fuel Maps. Forest Ecology and Management. 256(3): 289-294. 

 

Mutlu, M., S. Popescu, C. Stripling, and T. Spencer. 2008. Mapping Surface Fuel Models Using  

   LiDAR and Multispectral Data Fusion for Fire Behavior. Remote Sensing of Environment.  

   112(1): 274-285. 

 

Nimlos, T. 1986. Soils of Lubrecht Experimental Forest. Miscellaneous Publication No. 44.  

   Montana Forest and Conservation Experiment Station: Missoula, MT. 

 

North, M., M. Hurteau, J. Innes.  2009. Fire Supression and Fuels Treatment Effect of Mixed- 

   Conifer Carbon Stocks and Emissions.  Ecological Applications. 19(6): 1385-1396. 

 

Ottmar, R., D. Sandberg, C. Riccardi, and S. Prichard. 2007. An overview of the Fuel  

   Characteristic Classification System-Quantifying, classifying, and creating fuelbeds for  

   resource planning. Canadian Journal of Forest Research. 37(12): 2383-2393. 

 

Popescu, S., R. Wynne, and R. Nelson. 2003. Measuring Individual Tree Crown Diameter with  

   LiDAR and Assessing its Influence on Estimating Forest Volume and Biomass. Canadian  

   Journal of Remote Sensing. 29(5): 564-577. 

 

Pyne, S. 2002. Year of the Fires: The Story of the Great Fires of 1910. Penguin Publishing: New  

   York, NY. 

 

Pyne, S., P. Andrews, R. Laven. 1996. Introduction to Wildland Fire. John Wiley & Sons.  

   Inc.: New York, NY. 

 

Quinlan, J. 1993. C4.5: Programs for Machine Learning.. Morgan Kaufmann Publishers Inc.:  

   San Mateo, CA.  

 

Reinhardt, E., R. Keane, D. Calkin, and J. Cohen. 2008. Objectives and considerations for  

   wildland fuel treatment in forested ecosystems of hte interior western United States.  Forest  

   Ecology and Management. 256(12): 1997-2006. 

 

Rempel, R., and A. Parker. 1964. An information note on an airborne laser terrain profiler for  

   micro-relief studies. Proceedings from the 3rd. Symposium of Remote Sensing Environment,  

   321-337. 

 

Riano, D., E. Chuvieco, S. Condes, J. Gonzalez-Matesanz, and S. Ustin. 2004. Generation of  

   Crown Bulk Density for Pinus Sylvestris L. from LiDAR. Remote Sensing of Environment.  

   92(3): 345-352. 

 

Rollins, M. 2009. LANDFIRE: A Nationally Consistent Vegetation, Wildland Fire, and Fuel  



 94 

   Assessment. International Journal of Wildland Fire (CSIRO). 18: 235-249. 

 

Rothermel, R. 1972. A Mathematical Model for Predicting Fire Spread in Wildland Fuels.  

   USDA Forest Service Research Paper INT-115, 50. 

 

Saatchi, S., K. Halligan, D. Despain, and R. Crabtree. 2007. Estimation of Forest Fuel Load  

   From Radar Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing. 45(6):  

   1726-1740. 

 

Salas, F., and E. Chuvieco. 1995. Aplicacion de imagenes Landsat-TM a la cartografıa de  

   modelos de combustible." Revista de Teledeteccion. 5: 18-28. 

 

Schmidt, K., J. Menakis, C. Hardy, W. Hann, and D. Bunnell. 2002. Development of Coarse- 

   Scale Spatial Data for Wildland Fire and Fuel Management. USDA Forest Service General  

   Technical Report RMRS-GTR-87, 50. 

 

Schroeder, M., and C. Buck. 1970. Fire Weather...A Guide for Application of Meteorological  

   Information to Forest Fire Control Operations. US Forest Service: Washington, D.C. 

 

Scott, J., and R. Burgan. 2005. Standard Fire Behavior Fuel Models: A Comprehensive Set for  

   Use with Rothermel's Surface Fire Spread Model. USDA Forest Service General Technical  

   Report GTR-153, 72. 

 

Seielstad, C. and L. Queen. 2003. Using airborne laser altimetry to determine fuel models for  

   estimating fire behavior. Journal of Forestry. 101(4): 10-15. 

 

Shasby, M., R. Burgan, and R. Johnson. 1981. Broad Area Forest Fuels and Topography  

   Mapping Using Digital Landsat and Terrain Data. Proceedings of the Seventh International  

   Symposium Machine Processing of Remotely Sensed Data. West Lafayette: Purdue University,  

   529-538. 

 

Sikkink, P., and R. Keane. 2008. A comparison of five sampling techniques to estimate surface  

   fuel loading in montane forests. International Journal of Wildland Fire. 17(3): 363-379. 

 

TerraSolid. 2005. TerraScan User's Guide, 169. 

 

University of Montana. Updated 2003. Lubrecht Experimental Forest.   

   <http://www.cfc.umt.edu/Lubrecht/History/history.htm> Accessed September 2008. 

 

US Forest Service. 2010. US Forest Service Fiscal Year 2010 President's Budget Overview. 

 

USDA Forest Service. Full Job Description-Assistant Fire Management Officer, GS-0401-09.  

   <https://www.avuedigitalservices.com> Accessed March 2009. 

 

 

 



 95 

van Wagtendonk, J., and R. Root. 2003. The Use of Multitemporal Landsat Normalized  

   Difference Vegetation Index (NDVI) Data for Mapping Fuels Models in Yosemite National  

   Park, USA.  International Journal of Remote Sensing. 24: 1639-1651. 

 

Waring, R., and S. Running. 1998. Forest Ecosystems; Analysis at Multiple Scales. Academic  

   Press: San Diego, CA. 

 

Westerling, A., H. Hidalgo, D. Cayan, and T. Swetnam. 2006. Warming and Earlier Spirng  

   Increase Western U.S. Forest Wildfire Activity. Science. 313(5789): 940-943. 

 

Whiteman, D. 2000. Mountain Meteorology: fundamentals and applications. Oxford University  

    Press:  New York, NY, 355. 

 

 

 


	Using Airborne Laser Altimetry to Characterize Surface Fuels in Western Montana
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1384975458.pdf.WkS5x

