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ABSTRACT

This work deals with the problem of classifying unknown organic 
compounds into classes based on their structure by using their infrared 
spectra.
The infrared spectrum of an organic compound consists of several peaks 

each characteristic to certain substructures (functional groups) of the 
molecule. The ambiguity of classifying peaks in an infrared spectrum by 
a human can be avoided if a neural network is trained to do the 
classification. The size of the pattern-recognition problem can be 
divided into several subproblems since only well defined parts of the 
spectrum contain information about the presence or absence of functional 
groups of interest.
A number of neural networks were trained so that each one can recognize 

the presence or absence of a particular functional group. A decision tree 
was then used to classify the compounds using the output of these 
networks.
The trained neural networks were able to identify fairly accurately the 

presence and the absence of functional groups. This method is compared 
to a pure neural network approach which used the same set of compounds. 
The final classification results were almost identical. When using the 
combined neural network - decision tree approach smaller networks can be 
used resulting in faster training, the outcome of a decision can be 
traced, and the modular structure of the system better accommodates 
changes in the overall classification goals. A disadvantage of the 
combined method is that structural differences and contamination in the 
organic compounds get more emphasis.
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1,Introduction

Organic chemistry is the chemistry of carbon containing compounds. 

Since carbon atoms can be bonded in several different ways to each other 

and to many other atoms, the number of organic molecules is extremely 

large. There are several ways to study an organic compound. First the 

organic chemist determines the ratio of different elements in the compound 

this analysis is called elemental analysis. There are, however, many 

different compounds with the same ratio of elements. Thus it is necessary 

to gain structural information before the compound can be identified. 

Infrared spectroscopy is a technique used to get structural information 

about an unknown compound. The output of an infrared spectrophotometer 

is a graph that can be examined to learn about the compound. Since this 

process really is a pattern-recognition problem, an artificial 

intelligence approach could help humans.

In recent years a high interest in solving pattern-recognition 

problems has developed. Artificial neural networks, whose design have 

been influenced by biological neurons in the brain, perform superbly for 

a large class of pattern-recognition problems. Artificial neural networks 

are able to generalize from examples, learn from experience, and abstract 

important features from noisy data. Artificial neural networks are used 

in image processing, system controlling, mapping the human nervous system, 

etc. On the other hand, artificial neural networks are poor in computing 

with numbers, and thus can not be used for solving numerical problems.

1
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1.1 Infrared Spectroscopy (Fessenden (1990 a))

Organic chemists use four major instrumental methods for structure 

determinations of unknown molecules : infrared (IR) spectroscopy,

ultraviolet (LTV) spectroscopy, nuclear magnetic resonance (NMR) 

spectroscopy, and mass spectrometry. IR and UV spectroscopy are based on 

the interactions of light with molecules. When light is passed through 

a sample the emergent light varies from compound to compound. Energy from 

the light is absorbed depending on, for example, the type of atoms, and/or 

type of bonds in the sample molecule. Molecules can be characterized by 

their absorption bands, which denote those wavelength (or frequency) 

regions where light absorption occurs. The shape of absorption bands is 

also important in most cases. In UV spectroscopy, absorption is due to 

changes in the electron configuration of the molecule, while infrared 

light is absorbed when vibrational modes of the molecule are changed.
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1.1.1 Features of an Infrared Spectrum

The spectrum of a molecule is a graph of frequency or wavelength 

versus A or %T where:

A = log(original intensity/intensity)

%T = (intensity/original intensity)*100 

(where intensity means the intensity of the light after 

the light passed through the sample, and original 

intensity is the intensity of the light before it 

is passed through the sample)

In this study %T and frequency were used. In this case the base 

line of the infrared spectrum is on the top of the graph where the sample 

did not absorb any light so the intensity equals the original intensity. 

An absorption peak or an absorption band can be seen on the infrared 

spectrum when the intensity of the radiation drops. This means the sample 

in the spectrophotometer absorbs the infrared light at that frequency. 

The position of an absorption band in the infrared spectrum can be 

expressed in cm'1, which is called wavenumber, and is the usual frequency 

unit used in IR spectroscopy. The usual range of the spectrum is between 

4000 cm'1 and 625 cm'1. An example of an IR spectrum is shown in Figure 

1 .1 .
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Figure 1.1. Infrared spectrum of butyrophenone (C6H5COCH2CH2CH3, Ket2).
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1.1.2 Interpretation of an Infrared Spectrum

Absorption bands in infrared spectra are characteristic of certain 

chemical bonds in the molecules of the sample. Some of the bonds may form 

reactive sites in the molecule, which are called functional groups. 

Experts in IR spectroscopy can structurally analyze an unknown molecule 

by just looking at its IR spectrum. These experts, because of years of 

experience, can recognize in an IR spectrum functional groups contained 

in the molecule because the presence of a functional group causes one or 

more peaks to appear in the spectrum. These peaks appear more or less at 

a given wavelength. There are a number of books available with 

correlation charts (Williams (1980)) to aid humans in interpreting IR 

spectra. Still, in case of a complicated molecule, peaks may overlap, the 

interactions of functional groups can cause a shift in the position of the 

peaks, other chemical effects can widen peaks, also the relative magnitude 

of the same peak, when compared to another, can vary from molecule to 

molecule. Furthermore, it is quite subjective how bands are defined and 

the books providing correlation charts do not satisfactorily agree in 

details.



6

1.2 Decision Tree (Weiss (1991)) and Corresponding Rules (Weiss (1991))

The decision tree technique can be very effectively used in 

partitioning samples into classes. A decision tree consists of nodes and 

branches just like an ordinary tree (see Figure 1.2). Each non-leaf node 

corresponds to a decision. Each branch below is labeled with a possible 

outcome of the decision. Depending on the possible outcomes of the

decision, the tree will branch accordingly. In case of a binary decision 

tree, each non-terminal node has two branches, a false and a true branch. 

Depending on the decision, the tree will branch to the right or to the 

left. At each leaf of the tree a conclusion, i.e., a class assignment can 

be made. The characteristics of a binary decision tree are as follows: 

one branch enters each node except for the root, two branches leave each 

node, there are N-l non-terminal nodes, and N terminal nodes (N 

classifications can be made).



-OH Acid

C -O -C

Carboxyl ic None Ester Ketone 
Acid

Figure 1.2. An example for a binary decision tree.



A decision tree can be transformed into an equivalent set of rules. 

The rule conditions are conjunctions of propositions each of which can be 

evaluated to be true or false.

The following is an example how to transform a classification done 

by the decision tree into an equivalent rule. First one has to follow 

the path of classification in the tree (each classification has a unique 

path), and use each node in the path as conjunctions of propositions in 

the condition of the equivalent rule. If the decision is to take the 

false branch in the tree the corresponding proposition in the condition 

is negated. The ester classification is done through the "-0H Acid" and 

"C-O-C" nodes. So the corresponding rule must contain "-0H Acid" and 

"C-O-C" as conjunctions of propositions in the condition of the rule. 

Since after the "C-O-C" proposition the false branch is taken, this 

proposition must be negated. The ester classification by a rule is then 

the following

IF NOT -OH Acid AND C-O-C THEN Ester.

In order to transform a decision tree into an equivalent set of 

rules one has to consider all possible classifications and for all 

classifications do the same process described in the example above. The 

following set of rules are equivalent to the decision tree in Figure 1.2. 

IF -OH Acid AND C=0 THEN Carboxylic Acid 

IF -OH Acid AND NOT C=0 THEN None

IF NOT -OH Acid AND C-O-C THEN Ester

IF NOT -OH Acid AND NOT C-O-C THEN Ketone
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1.3 Expert Systems (Prerau (1990), Giarratano (1989))

Expert Systems (ES) are built so that they make use of specialized 

knowledge to solve problems at the level of a human expert. An ES 

consists of two major parts, a knowledge base and an inference engine. 

The knowledge base is usually built by knowledge engineers who, through 

intensive interview over a longer period of time, gain knowledge from a 

human expert. The knowledge base may not cover the problem domain 

completely so the result or the "expertise" of the ES may not give the 

correct answer to every possible problem. The inference engine, using the 

facts in the knowledge base, draws conclusions. The inference engine 

tries to copy the way human being solves problems. It works like a 

cognitive processor. Prerau (1990) defined ES as follows: "An advanced 

computer program that can, at a high level of competence, solve difficult 

problems requiring the use of expertise and experience; it accomplishes 

this by employing knowledge of the techniques, information, heuristic, and 

problem-solving processes that human experts use to solve such problems. 

Expert systems thus provide a way to store human knowledge, expertise, and 

experience in computers - that is, a way to clone human experts (at least 

to some degree)."
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1.3.1 Benefits of an Expert System (Prerau (1990))

The advantages of using ES over using human experts are as follows:

-it provides expertise when it is scarce

-it provides expertise when obtaining expertise is expensive

-it provides expertise at times when experts are not available 

-it provides fast response 

-it provides steady solutions

-it provides understandable and traceable solutions 

-it provides low cost availability 

-it provides permanent availability 

etc.

1.4 Neural Networks

Artificial neural networks are inspired by the neuron-level 

structure of the nervous system. Artificial neural networks exhibit brain 

like behaviors because they are able to learn and remember.

Hecht-Nielsen (1989) gave a definition of neural network as a 

computing system made up of a number of simple, highly interconnected 

processing elements, which processes information by its dynamic state 

response to external inputs.

Figure 1.3 shows an example for a generic processing element in a 

neural network.
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Figure 1.3. Generic processing element (artificial neuron).
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A generic neural network processing element, an artificial neuron,

has a number of input signals arriving via incoming connections. These

input signals are then combined with the contents of the local memory of

the neuron and the result is passed through the transfer function,

characteristic to that processing element, to yield the output of the 

artificial neuron. There can be several input channels, but only one 

output for each processing element.

In this study the local memory is represented by the weights on the

incoming connections. The incoming input signals are multiled by these

weights on the corresponding connections. Then these are summed and 

entered to the transfer function creating the output of a neuron.

1.4.1 Network Architecture

A single-layer neural network consists of input and output neurons. 

The function of an input neuron is to distribute the input data. In the 

next layer there are the output neurons. From each input neuron there is 

a connection to each output neuron. Each connection is associated with 

a weight. The weights on the incoming connections constitute the local

memory of that neuron.
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Layer 0 Layer 1 Layer 2

W 1.1)

W< 1.1)

W(1,2 

W (2,1)

W(2,2)

W(3,1) W (3,1)

W(3,2)WC3.3)
Input
layer

Hidden
layer

Output
layer

OUT<1.2)

OUT(2,2)

Figure 1.4. Schematics of a two-layer artificial neural network similar 
to the ones used in this study.
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Multilayer neural networks are formed by cascading single-layer 

neural networks after each other (see Figure 1.4). In this case the first 

layer is still called input layer, and the last one is called output layer 

while the middle ones are called hidden layers. This cascading typically 

is done so that each neuron at the k-1 layer are connected with all 

neurons at layer k, and there is a weight assigned to each connection.

1.4.2 Recurrent and Nonrecurrent Networks

Networks can also be categorized by the way information flows in the 

network. In case of nonrecurrent networks, or so called feedforward 

networks, there are no feedback connections. Connections only go from 

layer k to layer k+1, this way the output of the network is determined 

only by the current input and by the weights on the connections.

Recurrent networks are able to recirculate previous outputs to be 

inputs, so their output is determined by the current input and by the 

previous set of outputs.

1.4.3 Training a Neural Network

The objective of training a network is to get the desired set of 

outputs for a given input. Algorithms to train a network can be 

categorized as supervised and unsupervised. Supervised training is done
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by presenting a number of training pairs to the network. A training pair 

contains an input vector with a target (desired) set of output vector. 

For every input vector, the network calculates an output vector, this 

output vector is then compared to the target output vector. The 

difference is fed back and the weights on the connections are adjusted 

accordingly. This training process stops when the difference between the 

target and the calculated output is less then a given value or when a 

certain number of training runs have been completed.

Unsupervised training does not require a target output. Thus, it 

is usually considered to be a better model of learning of a biological 

system than supervised training. The training is conducted by presenting 

only input vectors to the network. This type of training algorithms 

change the weights so that for each similar training vector the output 

vector is the same. But there is usually no way to determine which output 

pattern will be produced for a certain input pattern set. The assignment 

of output pattern to input pattern can be done after training.

1.4.4 Backpropagation Algorithm (Wasserman (1989))

The backpropagation learning algorithm belongs to the supervised 

training category. The goal of a training to get the network to produce 

a desired set of outputs for given set of inputs. For every input data 

an output is calculated. Then this output is compared to a so called 

target or desired output and the differences fed back and the weights on 

the connections are adjusted accordingly. This training process stops
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when the difference between the target output and the actual output 

becomes less than a given value or when a certain number of training 

cycles have been completed.

Following is an overview of the backpropagation learning algorithm: 

Step 1. select the next training pair (containing an input and a desired 

output) from the training set; apply the input vector to the network 

input.

Step 2. calculate the output of the network

Step 3. calculate the error between the network output and the desired 

output

Step 4. adjust the weights of the network in a way that seeks to minimize 

this error

Step 5. repeat steps 1 through 4 for each vector in the training set until 

the error for the entire set is acceptably low.

A somewhat more detailed description of the backpropagation learning 

algorithm is as follows. Before the training starts the weights on the 

connections are initialized to small random numbers. Then the first input 

pattern is applied to the neural network. Using eq. (1) a NET value is 

calculated and then the output of a unit is calculated by applying a 

transfer function to the NET input, see eq. (2). The transfer function 

for backpropagation must be differentiable. The most common choice is the 

sigmoid function (F(x)=l/(l+exp(x)))as a transfer function. The output 

of the first layer is the input for the second layer. Thus eq. (1) and 

(2) are applied for every layer until the OUT value is calculated for the 

output layer. This concludes the forward pass in the neural network.

The goal of the reverse pass is to adjust the weights in the network
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by propagating the error back through all of the layers. Eq. (3) shows 

the weight modifications to be add to the original weights in the network. 

The S's are defined the following way. For neurons in the output layer 

the S is calculated by eq.(4) and for neurons in the hidden layer S is 

calculated by eq. (5). Notice that there is no target value for neurons 

in the hidden layer so 6 for a neuron in layer q-1 is calculated using the 

6's from layer q weighted by the strength of the connection on which the 

error is propagated back. This procedure is repeated by applying new 

patterns to the network until the difference of the calculated output and 

the target output is less then a certain value.

The backpropagation algorithm is basically a gradient descent method 

for searching for the minimum of an appropriately defined error surface 

over the multidimensional weight-space.

Backpropagation algorithm

Forward pass:

(1) netpj 2̂  ̂w^ xpi

Wjt : weight between neuron j (in layer q+1) and
neuron i (in layer q) 

xpi : "input" associated with pattern p in neuron i 
netpj : the net value associated with pattern p of neuron j

(2) opj - F(netpj)

F : transfer function ( F(x)=l/(l+e“x) )
Opj : the output of neuron j associated with pattern p
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Reverse pass:

^PW jl — P °pi ^P,j

ApWji : change in weight between neurons i and j where
neuron i is in layer q and neuron j is in layer q+1

p : training constant (or learning rate) (0 <= p <= 1) 
opi : the output of neuron i 
5p j : see below

(4) Sp j = (tp j - Op(j) F' (netp j) for output neurons

Sp j : delta value for neuron j
tp_j : target value for output neuron j for pattern p
Opj : calculated value for output neuron j for pattern p
F'(netpj) : F' denotes the derivative of F and 

F' (netPjj) = Op j (1 - op>j)

(5) 5p j = Efc Sp k wk j F'(netp j) for hidden neurons

Sp j : delta value for neuron j
Sp,k : delta value for neuron k
(neuron k is in layer q while neuron j is in layer q-1)

The momentum method (Wasserman (1989)) often enables the network to 

decrease the training time of the backpropagation algorithm. The momentum 

method adds a term to the weight adjustment of eq.(3) This term is 

proportional to the previous weight adjustment. The following equation 

is the modified eq. (3):

Momentum method:

(3') ApWji = p opi Sp j + a (previous ApWji)

a : momentum coefficient
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1.4.5 Justification for the backpropagation Algorithm (McClelland (1988))

The backpropagation algorithm is a gradient descent method. The 

goal of the training is to minimize the error function:

Error(W,p) =Sj(0.5 (target(p,j)-o(p,j))2 

W : represents all weights in the network 

j : index of an output neuron 

p : the current input pattern 

This function, for each input pattern, defines a multidimensional surface 

(error surface) above the weight space. Each dimension of the weight 

space represents one weight, i.e., connection, in the network. Every 

point in this space is a possible state of the neural network. A point 

of the above defined error surface is the error for that particular state 

of the neural network at a given input pattern.

The backpropagation algorithm moves in the direction of the negative 

gradient of this surface at the current values of the weights, thus 

following the contour of the error surface always moving downhill in the 

direction of the steepest descent. In case of multilayer networks these 

error surfaces are quite complex and may have many minima. Some of the 

minima may constitute solutions to the problems in which the system 

reaches an errorless state. These minima are called global minima. The 

gradient descent method may fail to find a global minimum as it can get 

stuck in a local minimum from where every possible route is "uphill". It 

may also oscillate moving back-and-forth across a long and narrow 

"valley". Choosing an appropriately small learning rate helps to avoid
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these oscillations. The momentum term is usually an improvement to the 

original backpropagation algorithm. It helps to filter out the high 

curvature and thus allows the effective weight steps to be bigger.

1.5 Brief Review of Existing Spectral Interpreters

The DENDRAL (Barr (1982)) is often considered to be the first expert 

system. It was built in the nineteen-sixties. This expert system tried 

to determine the molecular structure of an unknown organic compound by 

using its mass spectrum. The main idea was to create (by using a large 

set of rules) possible molecules from the results of the mass spectrum 

then to simulate the mass spectra of these possible molecules and compare 

the results to the spectrum of the unknown compound. Each rule in the 

knowledge base checked the "available" atoms and if there were enough each 

rule "created" different functional groups and they reduced the available 

atoms accordingly.

Fessenden and Gyorgyi (Fessenden (1990 b)) trained a neural network 

to identify functional groups in the infrared spectra of an unknown 

organic molecule. They used a two-layer neural network with the 

backpropagation learning algorithm. The whole spectrum of the molecule 

was presented to the neural network.

Robb and Munk (Robb (1990)) used a linear neural network for 

automated interpretation of infrared spectra. Their attempt was very 

similar to Fessenden (1990 b). They used a significantly larger set of 

compounds, but the neural network they used had no hidden layer and their
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transfer function was linear. Their classification results were not 

satisfactory.

Meyer et al. (Meyer (1991)) used a neural network to identify 

complex organic compounds on the basis of their proton-NMR spectra. They 

used 13 compounds to train a network and they tested it with separately 

recorded spectra of the same compounds. In the lack of a larger training 

set they added fuzziness to their data to improve the robustness of their 

system.

Huixiao (1990) created ESSESA, an Expert System for Structure 

Euclidation by Spectral Analysis which contains a knowledge base of 

infrared spectra and an inference engine. The input to this expert system 

is given by a human, who, by looking at the spectrum, characterizes the 

appearance of peaks at certain places in the spectrum. This input is 

ambiguous. The inference engine of this expert system is a search tree 

which structurally classifies certain type of organic compounds.

There are several other earlier works on this subject. A most of 

them are listed in (Robb (1990)). Common characteristics of these systems 

that they use an inference engine to obtain structural knowledge from 

spectral information which was previously processed by a human expert.



2. Objective

There are a number of ways to interpret an infrared spectrum. Human 

experts use correlation charts. These charts are made by people who have 

a deep understanding of IR spectra. There are also computer programs and 

systems available that can interpret IR spectra. Most of these systems, 

like Huixiao (1990), need input from a human, who, by looking at the 

spectrum, characterizes the appearance of peaks at certain places in the 

spectrum. This input is ambiguous even when all precautions are taken.

Using neural networks, which are known to be good at pattern 

recognition and generalization, should be a good technique to avoid the 

possible ambiguity of this input.

The first goal, of my thesis is to set up a prototype expert system 

for interpreting IR spectra by incorporating the human knowledge 

accumulated in this area and by using neural networks to do the otherwise 

ambiguous classification of peaks. The objective of the prototype expert 

system is to classify unknown molecules into classes. This approach is 

a combination of the expert system methodology and the neural network 

methodology. An evaluation of this approach can be done by comparing it 

to a method for the interpretation of infrared spectra which is based 

completely on a neural network methodology.

Fessenden and Gyorgyi used a two-layer neural network with the 

backpropagation learning algorithm to obtain structural information of 

unknown organic compounds. They presented the whole IR spectra of a 

selected group of organic compounds as input and their classifications as

22
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a target output. Then they tested the trained neural network with unknown 

compounds (meaning that these compounds were not used in the training so 

they were unknown for the neural network).

My approach is to use neural network classification only on those 

portions of the spectrum that contain information about absorption bands 

of interest. Thus the knowledge in IR correlation charts can be utilized. 

A decision tree or a set of rules can then be used to combine and evaluate 

the information obtained from the individual neural networks.

The second goal of the thesis is to test the hypothesis that the 

combined approach described above is superior to the only-neural-network 

method if the correct intervals of the spectra are used for the 

identification of the absorption bands of interest. The accuracy of the 

two systems on the same compounds provided the basis for a comparison.

2.1 A Comparison of the Conditions in the Two IR Interpretation Methods 

Similarities

Data. I used the same forty-eight spectra as Fessenden and Gyorgyi 

did. A listing of the compounds can be found in Sec. 3.1. I used the 

same normalized input. Fessenden and Gyorgyi provided me with their 

training and testing sets.

Neural Network. In both cases two-layer feedforward neural networks 

with the backpropagation learning algorithm were used.

Evaluation of network output. The same criteria was used to 

evaluate the accuracy of the neural network performances (more details are
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in Sec. 4.3).

Differences

Data. While Fessenden and Gyorgyi presented the whole spectra to 

the neural network, for my approach each spectrum was cut into several 

intervals, and only those intervals where the correlation charts indicated 

the presence of a peak of interest were presented to the neural network.

Neural Network. The number of neurons used in the neural networks 

for the two approaches were substantially different. Fessenden and 

Gyorgyi used 250 input neurons, eighteen hidden neurons, and six output 

neurons. In my approach there was different number of input neurons for 

each interval studied, five neurons in the hidden layer, and one neuron 

in the output layer in all cases.

Functional group identification. Fessenden and Gyorgyi simply used 

the output of their trained network for this purpose. In my approach the 

output of many neural networks were combined and evaluated by a decision 

tree or by rules.



3. Methodology

3.1 Data

Forty-eight different compounds were selected for this study. These

compounds were chosen so that they belong to five different classes of 

compounds, namely alcohols, ketones, esters, hydrocarbons, and carboxylic 

acids. Every compound in the study had infrared active carbon-hydrogen 

bonds; therefore, I will not specifically mention this bond in the 

following discussion. Other bonds contained in the different compound 

classes are as follows:

alcohol ketone carboxylic acid esters hydrocarbon
-OH C=0 -OH C-O-C none

At least four out of ten compounds from the alcohols, esters, ketones, 

hydrocarbons contained a phenyl group. None of the carboxylic acids 

contained a phenyl group.

C=0 C=0

Table 3.1 Bonds and classes used in this study

Alcohols
benzyl alcohol *
1-butanol
2-butanol 
eyelohexanol
1-hexanol 
isoamyl alcohol 
isobutyl alcohol
sec-nhenethy1 alcohol *
2-phenoxyethanol *
3-phenyl-l-propanol *

Alcl
Alc8
Alc2
Alc5
Alc3
Alc4
Alc9
Alcl2
Alcll
AlclO

c6h5ch2oh
ch3ch2ch2ch2oh
ch3ch2c h(o h)ch3
CrH^OH

(ch3)2chch2oh
C6H5CH(OH)CH3
C6H50CH2CH20H
c6h5ch2ch2ch2oh

CH3(CH2)4CH2OH
(CH3)2CHCH2CH2OH
6 11

25
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Carboxylic Acids 
acetic acid 
heptanoic acid 
hexanoic acid 
isobutyric acid 
octanoic acid 
oleic acid 
pentanoic acid 
propanoic acid

Ac 5 
Ac4 
Ac 8 
Acl 
Ac 6 
Ac 3 
Ac 7 
Ac 2

CH3C02H
CH3(CH2)5C02H
CH3(CH2)4C02H
(CH3)2CHC02H
CH3(CH2)6C02H

CH3 ( CH2 ) 7 CH=CH ( CH2 ) 7C02H 
CH3(CH2);
ch3ch2co2h

/3co2h

Esters
benzyl benzoate * 
n-butyl acetate 
ethyl acetate 
ethyl benzoate * 
ethyl propionate 
isopentyl acetate 
isopropyl acetate 
methyl benzoate * 
phenylethyl acetate * 
n-propyl acetate

Estl2
Estl
Est6
Est3
Est4
Est8
EstlO
Est2
Est7
Est5

C6H5C02CH2C6H6
ch3co2ch2ch2ch2ch3 
ch3co2ch2ch3 
c6h5co2ch2ch3 
ch3ch2co2ch2ch3 
ch3co2ch2ch2ch ( ch3 ) 2
CH3C02CH(CH3)2
c6h5co2ch3
ch3co2gh2ch2c6h5
ch3co2ch2ch2ch3

Hydrocarbons
cyclohexane 
cyclopentane 
ethylbenzene * 
n-heptane 
n-hexane
isopropylbenzene * 
n-octane 
petrolatum 
polystyrene * 
toluene *

He 2 
Hcl 
He 5 
He 9 
HclO 
Hc6 
He 7 
He 3 
Hell 
He 8

C6Hl2
c5h10
c6h5ch2ch3
CH3(CH2)5CH3
CH3(CH2)4CH3
C6H5CH(CH3)2
CH3(CH2)6CH3
CH3(CH2)xCH3
-[CH2CH(C6H5)]x-
C6H5CH3

Ketones
acetophenone *
acetone
2-butanone
butyrophenone *
cyclohexanone
cyclopentanone
2-heptanone
2-octanone
phenylacetone *
propiophenone *

Ket3
KetlO
Ketl
Ket2
Ket5
Ket6
Ket4
Ket7
Ketl3
Ketl2

C6H5COCH3
CH3COCH32
ch3coch2ch3
c6h5coch2ch2ch3
*-■6̂ 10^
C5H80
CH3C0(CH2)4CH3
CH3C0(CH2)5CH3
c6h5ch2coch3
c6h5coch2ch3

where * denotes compounds containing a phenyl group.

Table 3.2 Compounds used in this study
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3.2 Preparation of Data

3.2.1 Spectra

The forty-eight different sample compounds listed above were used 

to obtain the forty-eight spectra, A Perkin-Elmer 1600 series FT-IR 

instrument was used to obtain the spectra. No special care was taken 

either for purification or for obtaining the spectra. The spectrum of a 

sample contained 1668 data points, where each point was represented by a 

pair of values (cm-1, %T). The Perkin-Elmer Corporation supplied us with 

a BASIC program that allowed the conversion of the digitized IR spectra 

to ASCII format. Dr. Ralph Fessenden obtained the spectra and made the 

conversions.

3.2.2 Normalization

The absorption unit was normalized the following way:

%T'(i) = (%T(i) - min %T) / (max %T - min %T)

where

i i = 1..1668
%T'(i) 
%T(i)

normalized point 
data point

min %T 
max %T

minimum %T value 
maximum %T value.
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3.2.3 Sampling

Books about IR spectroscopy usually contain charts specifying where 

to look for an absorption band for a given functional group. These charts 

indicate that a peak for an absorption band will be in a certain interval. 

They also suggest what kind of a peak to expect. For example, the H-bonded 

-OH peak between 3600-3200 cm"1 is described as a "strong often broad but 

may be sharp" (Williams (1980)).

Looking at the graphs of the normalized %T value and considering 

the intervals for each functional group, it is clear that a different 

sampling frequency is needed for each absorption band, see Figure 3.1. 

For example, the C=0 absorption band is found in the 1725-1700 cm"1 

interval and is described as a strong peak, while the -QH absorption band 

is in 2700-2500 cm"1 interval and wide, see Figure 3.1.

Functional group Band
1725-1700 cm-1 
2700-2500 cm-1

Type
strong
wide

C=0
-OH

Table 3.3 C=0 and -OH absorption bands
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Figure 3.1. Wavenumber intervals used in this study to identify 
functional groups. The notation is as follows: P1,P2 are the intervals 
for the identification of phenyl group; COC and CO are the intervals for 
the identification of carbon-oxygen single and double bond, respectively; 
OH-A and OH-C are the intervals for the identification of alcoholic and 
acidic 0-H bond, respectively.
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The IR interpretation charts list those intervals that contain the 

tip of the absorption peak for a given chemical bond. While I was doing 

preliminary studies I found that these intervals are not sufficiently wide 

for training a neural network. Using graphics from a spreadsheet program, 

I determined the width of the interval and the number of points within the 

interval necessary to successfully represent an absorption band for the 

network. These parameters are listed below.

Interval (cm-1) 
2200-3600 
3100-3600 
1625-1800 
1340-1130

*: see section 3.2.4

Table 3.4 Sampling frequency

Functional group Number of points
-OH (acid)* 28
-OH (alcohol)* 41
C=0 29
C-O-C 35

3.2.4 Hydroxyl■Group in Alcohols and in Carboxylic Acids

The width of the hydroxyl absorption band in alcohols and in 

carboxylic acids is different. The shape of these peaks in the spectra 

are also different, as it is shown on Figure 3.2. Both peaks are strong 

but the peak of carboxylic acid hydroxyl band is much wider.
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Figure 3.2. Typical -OH absorption bands in alcohols and carboxylic 
acids.
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3.2.5 Phenyl

A benzene ring contains 6 carbon atoms, joined in a ring (Fessenden 

(1990 a)). When benzene is a substituent in an organic molecule, it is 

called phenyl. The phenyl group strictly speaking is not a functional 

group, but in this study it was used that way because it has 

characteristic IR absorption. In case of the phenyl, two major absorption 

intervals were considered. There is a problem with the phenyl group, in 

that both absorption bands fall into the so called fingerprint region of 

the spectrum. The fingerprint region is from 1400 cm'1 to 625 cm'1. In 

this region correlations between absorption bands and functional groups 

can not be made unambiguously. The reason for this is that several 

vibrational modes give rise to absorption in the fingerprint region while 

in most part of the spectrum only one vibrational mode absorption is 

observed (Fessenden (1990 a)).

In the preliminary studies, I have found that training two neural 

networks separately on this two intervals produced poor results. The 

networks were not able to recognize phenyl with sufficient accuracy. When 

I changed the representation in such a way that the intervals were 

attached to one another, as indicated below, the results improved 

substantially.
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Functional group 
phenyl-1 
phenyl-2 
phenyl

where:
phenyl-1 and phenyl-2 are the two major absorption band for 

the phenyl group, and 
phenyl is when phenyl-1 and phenyl-2 were combined.

Table 3.5 Sampling frequency for phenyl

3.2.6 Hydrocarbons

All compounds used in this study are hydrocarbons. However, 

following the notation used by Fessenden and Gyorgyi only those compounds 

which do not contain -OH, C-O-C, or C=0 functional groups are named as 

"hydrocarbon" in this work. Because of this definition no separate 

absorption band testing is needed for "hydrocarbons".

3.2.7 Summary of the Input Data

The following table gives an overview of which class of samples 

contain what kind of infrared absorption bands:

Number of points Interval (cm )
30 670-790
31 990-1175
61 670-790 and 990-1175
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C=0 -OH (Alcohol) c-o-c -OH
Alcohol 0 1 0 0
Carboxylic Acid 1 0 0 1
Ester 1 0 1 0
Ketone 1 0 0 0
Hydrocarbon 0 0 0 0

where 1 stands for the presence of a functional group; 0

OH (Acid) Phenyl
0/1
0
0/1
0/1
0/1

absence of a functional group; 0/1 means that certain compounds 
contain and others do not contain that functional group from the 
same class of compounds

Table 3.6 Absorption bands appearing in the classes studied

3.3 Neural Network Program

A publicly available two-layer neural network using the 

backpropagation algorithm, written by Josiah Hoskins 1987 in the C 

language provided the basis of this work. This program originally was 

dedicated to one problem. It was extended by Kevin Lohn, and further 

extended by me.

3.3.1 Major Features of the Program

The program can work with up to seventy input neurons, fifteen 

hidden neurons, and seven output neurons. The largest number of input 

patterns I tried was thirty-nine.

The current program uses an improved random number generator (Park

(1988)) to initialize the weights on the connections in the neural
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network.

The weights with the original random number generator were (0,1) 

interval. If the weights on the connections are positive, and in this 

study the input for all patterns are positive, the result of eq. (1) will 

be positive and also this result might be a large value especially if the 

initial weights were "big". If this happens, the OUT value of eq. (2) 

will be very close to one, which means that delta of eq.(3) and eq.(4)

will be close to zero, and it means that the weights on the network will

hardly change. This phenomenon is called network paralysis (Wasserman

(1989)). In order to avoid network paralysis, the random numbers were 

generated in the [-0.5,0.5) interval. This ensures that the network does- 

not become saturated with large values of weights (Wasserman (1989)).

The program allows the user to set the learning rate.

A tolerance can also be set by the user to test whether for a given 

pattern the difference between the target output and the calculated output 

is less than the tolerance.

An upper limit for the number of training cycles can also be given 

by the user. This limit, or the previously mentioned tolerance, can be 

used to stop the training process.

A new feature of the program I implemented is the so called epoch

training (McClelland (1988)). Using epoch training, the weight

adjustments are done after a certain number of training patterns have been 

cycled through the neural network. The delta values of eq. (3) and eq. 

(4) are calculated after each training cycle and they are accumulated. 

Eq.(7) and eq.(6) are calculated with the accumulated delta values at the 

end of the epoch. This feature of the program was not used in this study,
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because, in the preliminary work that I did there was no indications of 

any kind of major improvement using any values larger then one.

3.4 Experimental Design

3.4.1 Data

The data were separated into two parts: a training set and a testing 

set. It is important to separate the data into these two parts because 

if the training and the testing set is the same then we make no mistake 

in the testing procedure thus overfitting of the data can not be detected. 

Overfitting or overspecialization occurs in classifiers when they perform 

well for their training data but the performance dramatically worsens when 

new, previously unseen, data is presented to the system. The chances are 

small in real life that any new data is identical to one of those which 

were in the training set. In case of neural networks it desired that the 

neural network generalizes from the training set instead of memorizing it. 

If the testing set contains different data from the training set the user 

can get a better estimate of the true error rate.

There were fifteen random selections from the forty-eight compounds 

used for the training. In each selection thirty-nine out of the forty- 

eight were used for training a neural network. The remaining nine 

compounds were used for testing. The five absorption bands were handled 

separately. For each training set, three randomly selected seeds were 

used to initialize the weights on three neural networks. This means that
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there were fifteen random selections of training data for the five 

absorption bands, and three neural networks were used for each training 

which made it to be a total of two hundred and twenty-five trained neural 

networks.

The selection of data was done so that each possible chemical group 

studied was represented in the training set and in the testing set for all 

fifteen selections. This means that among the thirty-nine training 

compounds there were always five alcohols, esters, hydrocarbons, and 

ketones without a phenyl; three alcohols, esters, hydrocarbons, and 

ketones with a phenyl; and seven carboxylic acids. In the testing set 

there were always one alcohol, ester, hydrocarbon and a ketone without a 

phenyl; one alcohol, ester, hydrocarbon, and a ketone with phenyl plus one 

carboxylic acid.

This selection of data was done exactly the same way as Fessenden 

and Gyorgyi did in their work.

3.4.2 Training Parameters

The tolerance, that is the desired difference between the target 

output and the calculated output, was set to be 0.1 for all training 

patterns.

The learning rate was set to 0.5 for all training. This learning 

rate seemed to be the optimal because the convergence was not slow, and 

network paralysis (i.e. the weights on the connections became very large) 

occurred approximately ten times out of the two hundred and twenty-five
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training. In other words, training was usually stopped when the error at 

the output neuron became less then 0.1. If the error did not become 

smaller than the desired tolerance after more then 2000 iterations were 

performed the training was halted, and a new training was started with a 

new seed for the random number generator which always solved the problem.

The momentum coefficient was always set to 0.9.

Weight adjustments were done after each training pattern was 

presented to the network (ie.„ the size of an epoch was set to one).

3.4.3 Testing

In each random selection, the testing compounds were chosen so that 

they represented all possible types. Two test compounds were selected 

from alcohols, esters, hydrocarbons, and ketones,so that only one out of 

the two contained a phenyl group. There was only one selected from the 

carboxylic acids, since no carboxylic acid contained phenyl group. Each 

of the nine compound was tested for all absorption bands. The total 

number of tests was nine times two hundred and twenty-five, meaning that

each neural network was tested with 9 compounds.
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3.5 Decision Tree and Rules

After interviewing Dr. Fessenden, an organic chemist, about how to 

evaluate an infrared spectrum, I could set up Table 3.6, and then from 

this table the following decision tree can be built, see Figure 3.3. The 

phenyl decision is not included in the upper tree because it can be 

handled as a separate problem. When the classification of the organic 

compound is done it can be decided whether it contains a phenyl group or 

not.

These binary decision trees are equivalent to the following set of

rules:

(Rl) IF C=0 and OH (Acid) THEN Carboxylic Acid

(R2) IF C=0 and not OH (Acid) and C-O-C THEN Ester

(R3) IF C=0 and not OH (Acid) and not C-O-C THEN Ketone

(R4) IF not C=0 and OH (Alcohol) THEN Alcohol

(R5) IF not C=0 and OH (Alcohol) THEN Hydrocarbon

(R6) IF Phenyl THEN Compound_contains_phenyl

(R7) IF not Phenyl THEN Compound_Does_not_contain_phenyl
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Alcohol Hydro
carbon

Carboxylic
acid

C -O -C

OH Acid —OH Alcohol

Ester Ketone

Phenyl

Compound
with

phenyl

Compound
without
phenyl

Figure 3.3. The binary decision trees used in this study to classify 
organic compounds.



4. Results

The testing results were categorized by using the OUT value of the 

output neuron. If OUT was within 0.4 of the desired value it was 

classified as good. If the OUT value was between 0.6 and 0.4 it was 

classified as uncertain. In any other case it was classified as bad. See 

the Appendix for a detailed listing of the tests results.

Each absorption band was tested four hundred and five times (since 

there were nine test compounds, fifteen training set, and three networks). 

The -OH absorption band for alcohols, and the C=0 were correctly 

recognized for all testing compounds. The -OH absorption band for the 

carboxylic acids were uncertain six times and bad once. The C-O-C 

absorption band was bad twenty-five times, and uncertain eight times. 

The phenyl absorption band was bad twenty-two times and uncertain seven 

times. Following is a table to summarize the errors:

Good Uncertain Bad
C=0 405 (100%) 0 (0%) 0 (0%)
C-O-C 372 (92%) 8 (1.9%) 25 (6.1%)
OH(Alcohol) 405 (100%) 0 (0%) 0 (0%)
OH(Acid) 398 (98.4%) 6 (1.4%) 1 (0.2%)
Phenyl 376 (93%) 6 (1.4%) 23 (5.6%)

Sum 1956 (96.68%) 20 (0.94%) 49 (2.38%)

Table 4.1 Summary of errors

41
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4.1 Bad Classifications

C-O-C absorption band. Table 4.2 shows the performances of the 

neural networks on problematic compounds in the C-O-C absorption band.

Compound Good Uncertain Bad
Estl2 17/24 6/24 1/24
Est2 3/9 0 6/9
Est4 3/9 0 6/9
Ket3 0 0 9/9
Ket6 3/6 0 3/6
Acl 1/3 „ 2/3 0

Table 4.2 Problematic compounds in the C-O-C absorption band. Each 
quotient indicates the ratio of the number of good, uncertain, or bad 
classifications of a certain testing compound over the total number that 
compound was in the testing set. These compounds were chosen randomly 
thus they were tested different number of times.

Figure 4.1 may provide some insight for the reason of these errors. 

Most esters in the C-O-C absorption band have very similar peaks to the 

peak Est6 has. This characteristic peak of the C-O-C absorption band is 

shifted to the left for Estl2 and Est2. Estl2, Est2 and Est3 (not shown) 

are structurally similar molecules (see Sec. 3.1). It might easily occur 

in the spectra as a shift in the absorption peak, most probably this is 

the case.
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One would say that Est4 is a "bad" spectrum. One reason why a 

spectrum like Est4 is called "bad" is as follows : if the concentration 

of the sample is high most of the IR light is absorbed, this usually 

results a spectrum which is flat and distorted meaning that the details 

are very poorly resolved. Besides Est4 is a structurally different 

compound from the rest in the training and in the testing set. It 

isdifficult to say whether it is the structural difference or the high 

concentration of Est4 which caused this poor spectrum.

In Figure 4.2 I show some problematic compounds not containing C-0-

C bond. Ket3 clearly has an ester contamination and this is why it has

a peak in the C-O-C absorption band. Ket6 is tested two times, once in 

T10 and then in T12 (see Appendix). In case of the T10 training, Est2 

and Est4 (already known as problematic compounds) were in the testing set

which means that mainly "good" compounds were in the training so a

slightly bad spectrum could pass the test. This was not the case in the 

T12 training. Est2 and Est4 were in the training set with "good" esters 

like Est6. It is hard to find what the neural networks picked as common 

features of these spectra. It is not possible to say anything about 

uncertain classifications of Acl.
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Carboxvlic acid -OH absorption band. The following is a table to 

show the performances of the neural networks for the carboxylic acid -OH 

absorption band.

Compounds Good Uncertain Bad
Hell 11/12 0 1/12
Ac 5 0 3/3 0

Table 4.3 Problematic compounds in the carboxylic acid -OH
absorption band

Figure 4.3 shows a comparison of the poorly classified compounds to 

two well classified compounds of similar structure. The problem arising 

of the low concentration of the sample when the spectrum is taken mightbe 

a reason for the uncertain classification of Ac5. Hell was classified as 

bad only once out of twelve. It is hard to find a reason for this wrong 

classification.
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Phenvl absorption band. The following is a table to show the 

performances of the neural networks on phenyl absorption bands.

Compounds Good Uncertain Bad
Est3 6/12 1/12 5/12
Ac 3 3/9 3/9 3/9
Hc8 0 1/15 14/15
Alc8 8/9 1/9 0
Alcll 8/9 0 1/9

Table 4.4 Problematic compounds in the Phenyl absorption bands

As it can be seen in Figures 4.4 and 4.5 it is a very difficult 

problem to recognize a phenyl group. All "good" compounds are quite 

dissimilar. Charts about regions of absorption for phenyl suggests to 

look for a "very strong" and a "strong" peak in the 770-690 interval (in 

this study it was expanded to 790-670 interval) which is the 1 to 30 input 

neuron region in Figures 4.4 and 4.5, and for "all weak" peaks in the 

1175-1000 interval (990-1175 in this study) which starts at 31 in the 

figures. Hc6 is the closest to the above description. Ac4 and Alc2 which 

were recognized well are very different from Hc6. At the same time Hc8 

is much closer to Hc6 then Ac4 or Alc2 and still it was almost always 

classified as bad.
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Figure 4.4. Input data for the problematic compounds (A,C) in the study of the absorption bands of phenyl group
that contain phenyl group. Estl2 (B) and Hc6 (D) were recognized correctly and are shown for comparison. The
break in the curves results from the use of two separate wavenumber intervals. £
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Figure 4.5. Input data for the problematic compounds (A,C) in the study of the absorption bands of phenyl group
that do not contain phenyl group. Ac4 (B) and Alc2 (D) were recognized correctly and are shown for comparison.
The break in the curves results from the use of two separate wavenumber intervals. o
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4.2 Decision Tree

For this study, a given set of compounds had to be classified into 

five different classes plus one more classification was needed, namely the 

compound does or does not contain a phenyl group.

In order to classify a compound as fast as possible a binary 

decision tree can be used. At each non-terminal node depending on the 

output of the corresponding neural network a decision can be made and then 

branch accordingly. The decision tree which was used to classify the 

compounds is in Figure 3.3.

The following is an example result which should be classified by the 

decision tree.

-OH
Acid

C-O-C C=0 -OH
Alcohol

Phenyl

Desired
Actual
output

0
0.009

0
0.011

0
0.036

1
0.95

Table 4.5 Output for Alcl2 in T01

1
0.999

Since the output for C=0 indicates that there is not C=0 bond in the 

compound we take the False branch in the tree. Next question whether 

there is an alcohol -OH bond in the compound the answer is yes. The 

phenyl decision conclude that this compound contains phenyl. The 

classification concludes that the compound is an alcohol containing 

phenyl. The following is an example when there is a wrong output.
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-OH C-O-C C=0 -OH Phenyl
Acid Alcohol

Desired 0 1 1 0  1
Actual 0.007 0.526 0.988 0.026 0.958
output

Table 4.6 Output for Estl2 in T05

The C=0 output indicates the presence of a C=0 bond so the True branch is 

taken. Next the acid -OH output is examined and the False branch is 

taken. Then C-O-C output which is uncertain makes the whole 

classification procedure to fail and Estl2 becomes uncertain. In case 

there is a bad output value the classification procedure can be halted 

similarly.

Using this decision tree the number of errors can be reduced. In 

case of the Acl (see Table 412) this compound would never be tested for 

the C-O-C absorption band if this decision tree is used. Also Hell (see 

Table 4.3) would never be tested for an acid -OH absorption band. To 

illustrate this the following figure shows the test results of Hell.

-OH C-O-C C=0 -OH Phenyl
Acid Alcohol

Desired 0 0 0 1 1
Actual 0.602 0.011 0.036 0.024 0.999
output

Table 4.7 Output for Hell in T01

The C=0 output for Hell indicates that there is not a C=0 bond in the 

compound so we branch to the False. The next test is done to determine
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whether there is an -OH for alcohol bond, the answer is no, so we branch 

to the False. The result of the phenyl decision is that this compound 

contains phenyl. The classification concludes that this compound is a 

hydrocarbon containing phenyl. The wrong classification of the -OH for 

acid was not used in this procedure.

The summary of errors, can be updated the following way.

C=0
C-O-C
OH(Alcohol)
OH(Acid)
Phenyl

Good
405 (100%) 
374 (92.5%) 
405 (100%) 
404 (99.8%) 
376 (93%)

Uncertain 
0 (0%)
6 (1.4%)
0 (0%) 
0 (0%)
6 (1.4%)

Bad
0
25
0
1
23

(0%)
(6.1%)
(0%)
(0.2%)
(5.6%)

Sum 1964 (97.06%) 12 (0.56%) 49 (2.38%)

Table 4.8 Summary of errors when decision tree is used in the
classification procedure

4.3 Comparison with Fessenden and Gyorgyi's Result

The evaluations of my results were done by comparing it to Fessenden 

and Gyorgyi's single coded results. The following is an example of the 

single coded result of Fessenden and Gyorgyi.
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Hydro- Carboxylic Ester Ketone Alcohol Phenyl
carbon Acid

Desired 0 0
Actual 0.023 0.000
output

Desired 0 1
Actual 0.015 0.919
output

Desired 0 0
Actual 0.006 0.012
output

Desired 0 0
Actual 0.169 0.001
output

Desired 1 0
Actual 0.904 0.001
output

0 0 1 1
0.065 0.001 0.995 0.999

0 0 0 0
0.016 0.013 0.009 0.000

1 0  0 0 
0.968 0.027 0.009 0.013

0 1 0 1
0.165 0.822 0.001 0.963

0 0 0 0
0.016 0.123 0.020 0.027

Table 4.9 Single coded results of Fessenden and Gyorgyi Alcl2, Acl.Estl, 
Ketl2, and Hcl

The next table is an example result of the same testing in my experiment.
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-OH
Acid

C-O-C C=0 -OH
Alcohol

Phenyl

Desired 0 0 0 1 1
Actual 0.009 0.011 0.036 0.95 0.999
output

Desired 1 0 1 0 0
Actual 0.974 0.311 0.998 0.051 0.016
output

Desired 0 1 1 0 0
Actual 0.012 0.961 0.995 0.026 0.017
output

Desired 0 0 1 0 1
Actual 0.010 0.012 0.770 0.255 0.991
output

Desired 0 0 0 0 0
Actual 0.011 0.010 0.028 0.026 0.016
output

Table 4.10 My results for Alcl2, Acl, Estl, Ketl2, and Hcl

As I mentioned earlier.I used the same criteria that Fessenden and 

Gyorgyi introduced, for the classification of my testing results. To be 

classified as good, the output results from a test spectrum had to be 

within 0.4 of the correct values for the output neurons. To be classified 

as uncertain the output results had to be between 0.4 and 0.6. If the 

output did not fall into these categories then it was classified as a bad.

In order to compare my results to Fessenden and Gyorgyi's results 

Table 3.6 is needed which tells what kind of IR absorption bands occur in 

the different group of compounds. For example a tested compound is an 

alcohol with a phenyl if and only if -OH for carboxylic acids, C-O-C, and 

C=0 tests results are in the [0,0.4] interval, while the output -OH for 

alcohol and for phenyl are in the [0.6,1] interval (see Table 4.10). In
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case of Fessenden and Gyorgyi's results the tested compound is an alcohol 

with a phenyl if and only if the alcohol and phenyl outputs are in the 

[0.6,1] interval and the rest are in the [0,0.4] interval (see Table 4.9).

Common feature of the two methods, that if there was one wrong 

classification among the output results then the test for that compound 

failed and it was classified as uncertain or bad depending on the 

magnitude of the error. For example if there was one uncertain 

classification among the output results the compound was classified as 

uncertain. In case there were more than one wrong classifications the 

worst was used for classifying that compound. If I follow this evaluation 

I get the following result.

Fessenden and Gyorgyi
Uncertain Bad E

single coded results 24 29 53
My results without decision tree 20 49 69
My results with decision tree 12 49 61

Table 4.11 Uncertain and bad classifications

In my study one compound was tested five times for the five

absorption bands while Fessenden and Gyorgyi tested each compound only

once. Among my results there were not any compound with more than one 

wrong classifications in one test, while in Fessenden and Gyorgyi's tests 

there were a few compounds with more then one wrong classifications in one 

test. If I break down Fessenden and Gyorgyi's results to see the total

number of wrong classifications I get the following table.
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Uncertain Bad 2
Fessenden and Gyorgyi

single coded results 35 34 69
My results without decision tree 20 49 69
My results with decision tree 12 46 61

Table 4.12 Total number of uncertain and bad classifications

My second goal, to prove that my combined approach is superior to 

the only neural network approach has failed since these results, under 

the previously described circumsantces, were the similar.



5. Conclusion

My study showed that a method which combines the human knowledge on 

IR spectroscopy with the pattern recognitions done by neural networks to 

identify functional groups in IR spectra a provides comparable results 

with a pure neural network approach.

5.1. Advantages and Disadvantages

There are several advantages and disadvantages of the combined 

method when compared to the pure neural network approach. These are as 

follows:

Advantages of the combined approach

Existing knowledge of experts in IR spectroscopy on the absorption 

bands in an IR spectrum is used.

Depending on the form of the peak or peaks in a certain absorption 

band different sampling of data might be used. In case of a broad strong 

peak, like the -OH for carboxylic acid, less frequent sampling is enough. 

In case of several sharp peaks in a small interval, like the phenyl, all 

available data might be used.’'

This approach enables the user to trace a decision.

Instead of one big network several smaller networks are used which

58
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could mean a shorter training time, and maybe better learning since in the 

combined approach the networks deal with simple patterns. There were no 

experiments made to test this statement.

The response time of the neural network is independent of the number 

of pattern it was trained on. This property of the neural networks make 

any system using them much faster then those which use conventional 

library search.

Disadvantages of the combined approach

An important interval for the identification of a functional group 

may not be considered since even the different books on IR analysis 

suggest different intervals for the recognition of certain functional 

groups.

Structural differences in compounds containing the same functional 

group get more emphasis then is desired.

Contamination in the sample may also be very critical. As seen in 

the result section the recognition may fail, or the networks may not train 

if one of the training compounds is contaminated. This disadvantage can 

be an advantage for example when the goal is to purify an organic 

compound.
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5.2 Comments

Input data. First of all, much bigger variety of input data is 

needed. Each expected type of compound should be covered in the training. 

For example it is important to cover structural differences with plenty 

of examples in the training (see the problems with Est4 in sec. 4.1). It 

would also be beneficial if the compounds were purified before their 

spectra are taken (see the problems with Ket3 in sec 4.1). The 

concentration of the sample should be chosen carefully, meaning that the 

highest peak should be around 10% in percent transmittance. This would 

allow for most of the important details of the spectrum to be observed.

A solution for these'problems could be the use of spectral libraries 

to train the system.

Performance of the neural networks. There are a number of ways to 

compare the performance of two neural networks. For example, it is 

possible to measure the time it takes the network to learn. This 

comparison was not possible in this study even for the same input since 

two different neural network programs were used on two different 

computers.

It is also possible to count the number of cycles it takes the 

neural network to reach a desired accuracy on the training set. Again in 

this study this comparison unfortunately can not be done. Fessenden and 

Gyorgyi used BrainMaker and the BrainMaker manual does not contain enough 

details about the way the program works. An example is the lack of 

information on the weight initialization in BrainMaker, which is known to
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have an impact on the way the network learns see Sec. 3.3.1 thus it 

effects the number of training cycles.

Decision tree. In more complicated situations compounds can contain 

several functional groups (e.g. alcoholic -OH and C=0 ) thus the tree must 

be extended and/or reorganized. There are automatic methods of inducing 

decision trees which may be useful in these situations.

5.3 Future Work

Uncertainty values. It.may be possible to assign a quantity to each 

neural network used in the system which would show the expected accuracy 

of that unit. To do this some compounds should be separated from the 

training set for testing as was done in this work. After a thorough 

training is done a careful test could guide humans in evaluating real life 

problems. When the testing is finished each neural network performance 

is known, meaning that the number of uncertain and bad classifications are 

given. Weights can be assigned then to each unit based on the amount of 

bad and uncertain classifications. Using the following equation a so 

called uncertainty value can be assigned to each neural network.



62

WA = 1 - (udwu + biWt,)/^

where:
wu : weight for the uncertain classifications. Suggested value:

1/2.
wb : weight for the bad classifications. Suggested value: 1.
bA : number of bad classifications by the i~th neural network
ut : number of uncertain classifications by the i"th neural

network
nA : number of testing on the i"th neural network
W£ : uncertainty factor of the i~th neural network

and
0 < WA < 1,
0 < Uj_ < n*,
0 < b l < ni( 
ui + bA < nA

Using the suggested values for wu and wb; W will be 0 if all tests 

turned out to be bad, 0.5 if all were uncertain and 1 if all were good. 

If the path in the tree was through a number of neural networks and the 

compound was finally classified as being in class X, then it can be said 

that the compound was classified as X with the certainty of C where C is 

calculated as follows:

where WA is the uncertainty value of the i~th neural network which was 

used to obtain the final classification.
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Appendix

The following tables are results of the fifteen training. The 

recognition of a functional group was categorized the following way. Good 

if the output of the neural network was in the [1,0.6) interval, uncertain 

[0.6,0.4), and bad [0.4,0]. In the tables only the uncertain (U) , and the 

bad (B) classifications are shown, where the indices stand for in which 

training out of the three possible.

Training 01 (T01)
OH(Alc) C=0

Estl
Est2
Hcl
Hell
KetlO
Ketl2
Alc9
Alcl2
Acl

Training 02 (T02)
OH(Ale)

Estl
Estl2
He 7
Hell
Ket3
KetlO
Alc5
Alcl2
Ac 3
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C=0 C-O-C OH(Ac) P

®1,2,3

Uj.,2 B3

C-O-C OH(Ac)

B l,2,3
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Training 03 (T03)
OH(Ale)

Est3
Est6
He 6
He 9
Ket5
Ketl3
Alc8
Alcl2
Ac2

C=0 C-O-C OH(Ac) P
B,

U,

Training 04 (T04)
OH(Ale)

Est4 
Estl2 
He 3 
He 8 
Ket2 
Ket7 
Alc4 
Alcll 
Ac 7

C=0 C-O-C OH(Ac)

B1,2,3

Training 05 (T05)
OH(Ale)

Est5 
Estl2 
He 6 
He 10 
Ket2 
Ket7 
Alcl 
Alc5 
Ac 3

C=0 C-O-C OH(Ac)

®i,3 U 2

Training 06 (T06)
OH(Ale)

Est5
Estl2
He 8
HclO
KetlO
Ketl3
Alcl
Alc2
Ac 7

C=0 C-O-C

U,

OH(Ac)

B1,2,3
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Training 07 (T07)
OH(Ale) C=0

Est2
C-O-C
®1,2,3

OH(Ac) P

EstlO 
He 5 
He 7 
Ket7 
Ketl3 
Alcl 
Alc8 
Ac4

Training 08 (T08)

Estl2 
He 6 
He 7 
Ket7 
Ketl2 
Alc4 
AlclO 
Ac 3

Training 09 (T09)
OH(Ale) C=0 C-O-C OH(Ac) P

Est3 B3 U2

OH(Ale) C=0 OH(Ac) P
Est4

Est6 
Hc2 
He 8 
Ket3 
Ket7 
Alc8 
AlclO 
Ac 6

Training 10 (T10)
OH(Ale) C=0 C-O-C OH(Ac) P

Est2
Est4
He 8
HclO
Ket3
Ket6
Alc9
AlclO
Ac4
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Training 11 (Til)
OH(Alc) C=0 C-O-C OH(Ac) P

EstlO
Estl2 Ux B3
Hc6
He 7
KetlO
Ketl3
Alc3
AlclO
A C 5  U l,2,3

Training 12 (T12)
OH(Alc)

Est6
Estl2
HclO
Hell
Ket6
Ketl3
Alc3
Alcll
Ac 5

C=0 C-O-C OH(Ac) P

Ui

B1,2,3

U1,2,3

Training 13 (T13)
OH(Ale)

Est3 
Est6 
He 2 
He 6 
Ket2 
Ket5 
Alc4 
AlclO 
Ac 7

C=0 C-O-C OH(Ac)
B1,2,3

Training 14 (T14)
OH(Alc)

Estl
Est3
HclO
Hell
Ket5
Ketl2
Alc2
Alcll
Acl

C=0 C-O-C

U1,3

OH(Ac)
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Training 15 (T15)
OH(Ale) C=0 C-O-C OH(Ac) P

Est5
Estl2 U2 3
Hcl
Hc8 ^1,2,3
Ket7
Ketl2
Alc5
Alcl2
Ac4
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