View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Montana

University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &

Professional Papers Graduate School

1967

The Weierstrass approximation theorem

Gordon M. Haight
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

Haight, Gordon M., "The Weierstrass approximation theorem" (1967). Graduate Student Theses,
Dissertations, & Professional Papers. 6122.
https://scholarworks.umt.edu/etd/6122

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.


https://core.ac.uk/display/267576563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F6122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/6122?utm_source=scholarworks.umt.edu%2Fetd%2F6122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

THE WEIERSTRASS APPROXTMATION THEOREM

By
Gordon M. Haight

B. S. University of Utah 1962
Presented in partial fulfillment of the recuiremerts
for the degree of
Masters of Arts for Teachers of Mathematics

URIVERSITY OF MORTARA
1967

Approved by:

~~ o a
B T K

,"‘A - s
b - 4 s "
o/ "2/""1(/{ Vi A e

Chairman, Board of Examiners

i.,zJ Moban,

De% Graduate School

AJC R 1987

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: EP36923

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

M,
Dissartation Publishing

UMI EP36923
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1
Introductior . . . . . . ¢ + v v v 4 0 e e e .
CHAPTER II
Section 1: Lattice Formuiations of The
Generalized Theorem . . . . . . . . . . .
Section 2: Linear Ring Formulation of the
Generalized Theorem and the Characterization
oifClosedIdeals. e o o o s o e e s e o
CHAPTER III
Two Classical Proofs of The Weierstrass Theorex.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[ =4

n

\

+
.



CAaPTER I

IRTRODUCTION

The Weierstrass Approximafion Theorem states, "Let £
be a continuous function on a compact interval of R and with
values in R, Then f can be uniformly approximated by poly-
nomials.” M. H., Stone generalized this theorem by placirg
less restriction on the range and domain of f, and also by
showing f can be approximated by a family of functions which
are not necessarily polynomials. Stone formulated his gen-
eralization, as he states, by answering the following ques-
tion, "What functions can be built from the functions of =
prescribed family by the application of the algebraic op-
erations (addition, multiplication, and multiplication by
real numbers) and uniform passages to the 1imit?"

Stone answers this question by beginning with a
compact space X, and the family X of all continuous func-
tions on X. He selects a prescribed subfamily X, of X ,
and determines what properties of the functions in ¥, are
transmitted by the algebraic operations and uniform pas-
sages to the limit. PFor example, he showed that if all
functions in 3; had a value of zero at a point x in X,
then every function generated from 3L‘by the algebraic

operations and uniform passages to the limit also had a
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value of zero at tke point x., By doing this e could ce-
termine what prescribed subfamily is needed to gersrate a..
continuous functions over a compact domain,

If we apply Stone's generalized theorem to the pre-
scribed subfamily X., where X, contains the two functions
£,(x) = 1 and £,(x) = x for all x in a compact interval,
then all the polynomials will be generated by the algedbraic
operations and all continuous functions will be generated
when we apply uniform passage to the limit to the family ol
polynomials, From this, we can see that we can obtain the
Weierstrass Theorem from Stone's generalized theorem. We
can also see that from a very small prescribed subfamily a
much more inclusive family can be generated.

The second chapter of this paper will presert the
theorems and their proofs, that M. H. Stone used ir gener-
alizing the Weierstrass Theorem. There will be two sec-
tions in this chapter. The first section will generalize
the Weierstrass Theorem by using the algebraic operations,
uniform passages to the limit, and the lattice operations
of taking the maximum and minimum of two or more functions.

The second section will treat all continuous func-
tions on a compact set as a linear algebra with addition
and multiplication as the ring operations and multiplica-
tion by real numbers as the scalar nultiplication. This

section will also deal with the characterization of closed
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icdeals.

Throughout the second chapter the following notation
and definitions will be used.

Definition: Algebraic operations: addition, multi-

plication, and multiplication by real numbers,
Definition: Uniform passage to the limit: A se-~

quence (f ) of functions on & subset D of H to K is said
to converge uniformly on D to & functiomn f if for every
€ > O there is a natural number N such that if n > K then
l£ (x) - £(x)] < € for all x in D.

Definition: Iattice operations: Taking the maxi-

nur and minimum of two or more functions. This will be de-
noted by,

fUg-=mnax(f, g) and £ N g = min(f, g).
fUgand £ N g will be the functions h and k respectively
where

h(x) = max(£(x), g(x)) and kx(x) = min(f(x), g(x)) for
all x,

Definition: Bounded function: A function f with

domein D is said to be bounded if there exists a natural
number M such that I£(x)!| < M for all x in D,
Definition: Compact Space: A set X is said to be

compact if, whenever it is contained in the union of a col-
lection g} = [Gh} of open sets, then it is also contained in
the union of some finite number of the sets in g} .
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Kotation:
X A compact space.
x Family of all continuous functions on X
}; Prescribed subfamily of }‘ .

(K The family of functions generated from ¥, by the
algebraic operations.

i.(?.) The family of functions generated from I. by the
lattice operations.

d.(3)  The family of functions generated from (&) by
uniform passages to the limit.

Ul L) The family of all functions generated from W%,
by uniform passages to the limit.

(%) The family of all functions generated from ¥, by
the algebraic operations, uniform passages to the
limit, and the lattice operations.

¥.(x,y) The family of functions obtained by restricting
every function in ¥, by suppresing all points in
X except the two points x and y. That is
Folx, y) = {(£(x), £zt e X, }.

%.(x,y)s The closure of ¥(x, y).

The following theorems must hold throughout the sec-
ond chapter and so they will be stated and proved here.

Theorem 1: If f is a continuous function on a com-
pact space X, then f is bounded on X,

Proof: Suppose f is not bounded on X, then for each
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natural number n there exists a point X, in X with

e(x )| > a. Since X 18 bounded, the sequence (x ) ts
bounded, hence it follows from the Bolzano-Welierstrass
Theoren that there is a subsequence of (x ) which converges
to an element x. Since x, € X for n € N, the point x be-
lorgs to the set X. Hence, f is continuous at x, 80 £ is
bounded by |f(x)] + 1 on a neighborhood of x. This contra-
dicts the assumption that lf(xn)l > n; therefore f is
bounded.

Theorem 2: If f is a continuous function at a point
a tren |f| is also continuous at a.

Proof: f is continuous at a impiies that for € > O
there exist a &€ > O such that if |x - al < &, then
|£(x) - £(a)] < €. By the triangular inecuality we nave

He(x)] - 1£(adll < 1£(x) - £(a)l < €.

Therefore |f| is continuous at a.

Theorem 3: Let X be a compact space. Iet ¥ be the
family of all continuous real functions defined on X. ILet
%, be a prescribed subfamily of ¥ . Let WR) be the fam:ily
of functions generated from ¥, by the algebraic operations
and by uniform passages to the limit. Then Uf)<= ¥ and
WUCE)) = UKD,

Proof: First we will show W(ZX,) < F. Since the
elements of 11*(5L) are algebralc combirations of functions
in ¥,, then must show that if f, g € 3. and « € R, then
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£+ g, £g, and af are continuous. Sirce £ axi g e

t

T, thex £ and g are cortifuous. This implies that f:x & > 2
there exists a ¢, and a &, such that if la - x' ¢t =

\

min(& 62), ther l£(x) - £(a)! < € azd Iglx) - gla) <« =

1
Therefore:
[£(x) + g(x) - 2(a) - glad| < if£{x} - £(a)! +
'g(x) - gla)! < 2¢ anc £+ g is continucus.
Also, I[f(x)glx) - f£(adgla)! = !(£(x)glx) - £ix.glea)) +
£(x)gla; - flaiglali <
I£(x)g(x) - £(x)gla)! + !£(x>gl{al - £{agla) =
I£(x) | 1g(x) - gla) + lgla)!|£lx) - £la)"
Since f is continuous on a compact space thern f 18 Trunies,
Therefore, there exists a natural number M such tha~
le(x)] < X
Therefore, if Ix - al < & then [f(x)glx) - 2{a gia)’ «
e + |gla)le and £g is cortiruous.
Also laf(x) - af(a)! = la!lf(x) - £(a)] < lale. Therefore,
af is continuous, We must now show that if (£ ) Is 3 ce-
guence of continuous functions which converge un formly +-
a function f, then f is continuous. Bince (f > converges
uniformly on X to £, then for € > O there exists a rasural
number N such that if n ¢ N then !fn(x) - f{x)i ¢ g feroars

x in X, Since £, is continuous then for € > O there exis~:

a &€ >0 such that if |x - a| < & then £, {x) - £, "al! ¢

M

Since a in X then !£,(a) - £(a)| < €.
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Therefore:

£, (a) - £(a)i<3e and £ is continuous.

Trerefore, W (%)= ¥ .

To show U(UCE)) = U(DR) is to show W{R) is cicses
under the algebraic operations and uniform passages Tc TLe
limit.

Let £ and g belong to U( 3, ); then there exist z2querces
(2.0 and (g ) in W, (%) such that (£ — £ and (g . —>¢
uniformly. This implies that for € > O there exisTs &
ntural number K such that if n > K, thex ! {x) - £lx; < <
and Ig (x) - g(x)| < €.

Therefore

roN L.
f \x, - 3\x., -

?fn(x) + gn(x) - f(x) - glx)! <

41

’gn(x) - g(x)! < 2¢ and (£, «+ g,) —> I + g whickh impl:ie
£+ gis in UK.

Also £ (x)g (x) - (glx)] = 12 (xg {x) - fn(x:g(x: -

“n
£ (xdg(x) - s{xiglxil ¢

?’n(x)!!gn(x) - gl + 1glxdite (x) - £{x0 < 2=

)]

-
A

[4

since fn ané g as corntinuous functions on the compac®t sp
X are abounded by some natural number M, IThere
(£ g,) —> fg which implies fg is in U(R].
Also !afn(x} - af(x)] = Ia!lfn(x> - flxil < 'a'e. Trere-
fore, a{f_) —>af which izplies af is in ulg,..

et £ e a function such that there exist a seszusrncs
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tn U(E) sucn that (£,) —>f uniformly. This implies tkat
for € > O there exist a natural number KN such that if - > X,

then !fn(x) - f(x)| ¢ € for all x in X. Let (fn ) be a
X

subsequence of (fn) such that 3-n (x) - £(x)! ¢ == o 232
k 2

k. Since f, 1s in U( %) for each k, there exist a seguence
k

(gkm) in WU,(3,) such that (g]m) —-)fnk uriformly. Iet

(gkmd> be a subsequence of (g, ) such that

‘ - l - - vy S o A

‘5km4(1) fnk(x)l < 53T for eack j. Select a subsecuernce
J

(skmk)‘ Then
t i ¢ (o
g, (x) - £ ¢ ig, (x) - £ (X + [£ (x) - £(x} <
km, kmy Dy Dy
1, =
Zk*l 2k+1 EK
1

and by choosing k large enough, EE is less thar any giver
e > 0.
Therefore ¢ is in U(E.).

Tris completes the proof of the theorem.
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and £ N g are continuous. Therefore L (%) = % .
Let £ arc g bvelong to & (F). We need to show that £ U g
and £ N g belong to L(Z%.). Since f and g belong to L(F)
there exist secuences of functions (fn) and (gn) in L(R)
such that (f ) —>f an¢ (g ) —>g uniformly. This implies
that for € > O there exists a natural number N such that
if n > K, then lfn-fl < € and tgn-gt < € for all x in
X, Therefore
ltvg-f Ugl =l1/2(f + g+ £ - gl) -

2(s, + g + if - gy i)l
<10t -zt +1(g-gl+Il2-gl-I£, -gll
< 1a(le - fn| +lg-gl + If - g+ lg - gn!)
=t -1l +lg-gl <2 and (£, Ug) —>£U g vwhich
implies £ U g is in & (%). By a similar method f N g is
in d(2,). By similar method we can show (%) is closec
under the algebraic operations. Therefore &( LB -
LR,

The following theorem determines what functions be-
long to ((Q.).

Theorem 5: Let X be a compact space, 2 the family
of all continuous (necessarily bounded) real functions on
X, 3, an arbitrary subfamily of X , ané (%) the family
of all functions (necessarily continuous) generated from

F, Dby the lattice operations and uniform passage to the

i1imit. Then a necessary and sufficient conditiorn for =a
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function £ in ¥ to be in L (%) is that, whatever the
points x, y in X and whatever the positive number €, there
exists a function f__ obtained by applying the lattice oper-

xy
tions alone to 3‘. and such that

[£(x) - rn(x)l < € and |£(y) - fn(y)l < €.

Proof: Let f belong to L(%,), then there exists a
sequence of functions (fn) in (%) such that (fn) —_ f
uniformly. This implies that for x, y in X, there exist
a natural number n such that |f£(x) - £ (x)| < ¢ and
12(y) - £.(3)] < €.

Conversely, let G = {zl£(z) - fxy(z) < €}, where

x is fixed. Gy is open since f and fxy are continuous

which implies f - fxy is continuous, also

-1
- o< (f - rxthyJ < €, which implies (f - fI:Y) (-o, €)

is open but (f - fxy)_l(-m y E) = G, therefore, G  is open.
By hypothesis x and y are in Gy, so that the union of all

the sets Gy is the entire space X. Since X is compact,

there exists a finite number of points, Fir cevs Tpr such

that the union of the sets Gyl, coey Gy is still the en-
n
t x. = U U .o e U *
ire space let g fxyl fxyz fxyn This
implies that for any z in X there exists a natural numbdber
k such that z is in (}y which implies
k

g (2) > qu(z) > £(2z) - e.

We also have, since x is fixed, that

fxy(x) < f(x) + ¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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vhich implies that g (x) < f(x) + € since all the (x) <
k

£(x) + € by the way the try 's were chosen. We now work in
k

a similar manner with the functions By~ Let

B, = {zlsx(z)lgx(z) < £(z) + €}. x 4is in H,, so that the
union of all the sets Hx is the entire space X, The sets
Hx are open by using the same reasoning as was used on the
sets Gy. Since X is compact, there exists points Xys eees

x, such that the union of the sets Hxl. coed H;n is still

the entire space X. Let

h = n ... nN .
®x, .y
Then we see that for any z in X we have z in ka for a

suitable choice of k and hence

n(z) < gxk(z) < 1(2) + €.
Now since we have that

g (2) > £(z) - ¢
for all x and all z, we then have

h(z) > £(z) - ¢
for all z. Therefore, we have |£(z) - h(z)| < € for all z
in X, Now since only the lattice operations have been used
in constructing the functions &y and h from the functions
f,y» these functions are all in il( %). Therefore f is in
L&),

From theorem 5 we have the following corollaries:

Corollary 1: If ¥ has the property that, whatever

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the points x, y with x £ y, in X and whatever the real num-
bers a and B, there exists a function f_ in 2, for which
£, (x) = a and £,(y) = B, then (%) - 2. 1n other words,
any continuous function on X can be uniformly approximated
by lattice polynomials in functions belonging to the pre-
scribed family 3&.

Proof: Let f belong to X . Let x, y be any two
points in X such that x # y. f£(x) and f(y) are real num-
bers, therefore there exists a function fo in T, such that
£,(x) = £(x) and £ _(y) = £(3) which implies that
If (x) - £(x)] < € and lfo(y) - £(y)| < € which, by theorem
S, implies f is in L (%,).

Corollary 2: If a continuous real function f on a

compact space X is the limit of a monotonic sequence (fn) of
continuous functions, then the sequence converges uniformly
to f.

Proof: Let % be the totality of functions occur-
ring in the sequence (fn). Then L,( %) = %, since mono-
ticity implies that fn U fn coincides with one of the two
functions f and £, while £ N f coincides with the other.
From the hypothesis we know that

lim fn(x) - £(x)
n >0

for every x, which shows that the condition of theorem 5
is satisfied. Hence f is in J(%).

Theorem 5 tells us that whether a given function f
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can be approximated in terms of the prescribed family 2,
is dependent on the way in which £ and %, behave on pairs
of points in X. By using the notation 2£,(x, y) and
%o (x, y)a as defined in the introduction, we can restate
theorem 5 in the following form: If f is in 3 , then ¢
is in {(%,) if and only if

(£(x), £(3)) is in Blx, y)»
for every pair of distinct points x, y in X.

Theorem 6: Let X be a compact space, ¥ the family
of continuous functions on X, and %, a subfamily of 3 which
is closed under the lattice operations and uniform passage
to the limit. Then QL is completely characterized by the
system of planar sets F.(x, y)e = L(x, y).

Proof: Our hypothesis that F= L (P shows that
F.(x, y) has %.(x, y)» as its closure. Let us suppose
that

B, - LY, =¥
and that % ,(x, y)e = O(x, y)s for all pairs of points
X, ¥ in X. Then the conditions for f in ¥ to belong to 2.
are identical with those for it to belong ‘O, hence ¥, and
JEL coincide.

In view of the equations for f U g and £ N g, which
express the lattice operations in terms of the linear oper-
ations and the single operation of forming the absolute

value, we may take the specified algebraic operations to
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be simply addition, multiplication by real numbers, and for-
mation of absolute values. The family L (%) of all func-
tions which can be constructed from ¥, in P vy applica-
tion of the lattice operations and uniform passage to the
limit is still obtainable in two steps, the first being
algebraic and the second by uniform passage to the limit.
As shown in theorems 3 and 4, £.(2) is closed under the
operations used to generate it.

The following theorem is an analog of the results
contained in theorems 5 and 6.

Theorem 7: Let X be a compact space, 2 the family
of all continuous real (necessarily bounded) functions on
X, % an arbitrary subfemily of P , and L(2Z) the family
of all functions (necessarily continuous) generated from
by the linear lattice operations and uniform passage to the
limit. Then a necessary and sufficient condition for a
function £ in P to be in L () is that f satisfy every
linear relation of the form eg(x) = Bg(y), aB > 0, which
is satisfied by all functions in ¥,. If %, is a closed
linear sublattice of P — that is, if B = L (%) — then
2, 1is characterized by the system of all the linear rela-
tions of this form which are satisfied by every function be-
longing to it. The linear relations associated with an ar-
bitrary pair of points x, y in X must be equivalent to one
of the following distinct types:
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(1) g(x) = 0 and g(y) = 0;
(2) g(x) = 0 and g(y) unrestricted, or vice versa;
(3) g(x) = g(y) without restriction on the common
value;
(4) g(x) = rxg(y) or g(y) = Ag(x) for a unique
value A, O < A < 1.
Proof : Suppose the functions in ¥, satisfy the
relation af(x) = Bf(y) for all f in ‘¥,. Then we will
show that the functions in { (%) satisfy the same relation.
Let £ and g belong to ¥, , then af(x) = Bf(y) and
ag(x) = Bg(y) where aB > 0. PFrom this it is obvious that
al(f(x) + g{x)) = B(£(y) + gly)), a(b£(x)) = B(&£(y)) where
¢ is real, and alf(x) + g(x)| = Bl£(y) + g(y)|. PFrom this
it is seen that if f is in &, (%), then af(x) = B2(y) for
aB > 0. Let f belong to (%) then there exists a se-
quence of functiocms (f ) in d,(%) such that (t)) —>1¢
uniformly. This implies that (f_(x)) —> £(x) ana
(fn(y)) —> £(y). Since £, is in 4,(%) tor each n, then
af (x) = Bf (y), and since a(f (x)) —>af(x) and
B(z (y)) —> B£(y), then for € > O there exists a natural
number N such that if n > N then laf (x) - af(x)| < € and
|Bf_(3) - B£(3)| < €. Therefore,
laf(x) - BL(z)| = laf(x) - af (x) + Bt (y) - B2(y)l
S lag(x) - af (x)! + IBf (y) - B2(y)I
< 2e.
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Therefore, af(x) = Br(y).

Lot "% = L(R). Since L(Z) is closed under the
lattice operations and uniform passage to the limit, then 1L
is. Therefore theorem 6 will be used to prove this theorem.
The planar set 'Q(x, y), where x and y are arbitrary points
in X, must be the entire plamne, a straight line through the
origin, or the one-point set consisting of the origin alone.
This appears at once when we observe that if

(a, B) ¢ Xx, 3,
then there exists a function f in 'O such that f(x) = a
and £(y) = B. But since f is in "G , then Af 1s in 'De
and Af(x) = Aa and Af(y) = AB which implies that (g, AB)
is in ‘Q(x, y) for every A. We also have that if (a, B)
and (y, 6) are in '(x, y), then there exist two func-
tions f and g such that £(x) = a, £f(y) = B, g(x) = v, and
g(y) = &, Since f and g are in '9.. then £ + g is in o
and (£ + g)(x) =a + vy and (£ + g)(y) = B + & which implies
that (@ + v, B + &) 18 in Q(x, y). PFrom this we see
that Q(x, y) is a closed subset of the plane, and we have
V(x, 7) = Vlx, y)«. When Yx, y) is a straight line
through the origin, we write its equation as af = Bx and
observe that

(B, a) ¢ Qx, y).
Since U, is closed under the operations of forming absolute

values, we see that
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(181, lal) e Ux, ¥).
Therefore by using the equation for '9.(:, y) we get af = PBn
which implies alf| = Blal which implies aBlB| = 821al >0
which implies that af > O. When 'g,(x, y) consists of the
origin alone, we have the case enumerated as (1) in the
statement of the theorem. When “Q(x, y) is a straight
line through the origin we have case (2) if it coincides
with one of the coordinate axes, case (3) if it coincides
with the bisector of the angle between the positive coordi-
nate axes, and case (4) otherwise. When "9,(:, y) is the
entire plane, there is no corresponding linear relation, of
course. Theorem 6 shows that 'Q is characterized by the
sets
B(x, y) = Qx, y)e
In other words that f in 9 belongs to 9 = o (%) if anda
only if
(£(x), £(y)) ¢ N(x, y) for all x, y.

Since ?. < '9. y it is clear that the conditions thus im-
posed on the functions in ¥.(3,) are satisfied by the
functions in 3,

From this theorem we obtain the following corol-
laries.

Corollary 1: In order that d(2) contain a
nonvanishing constant function, it is necessary and suf-
ficient that the only linear relations of the form
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og(x) = Bg(y), af > 0, satisfied by every function in X,
be those reducible to the form g(x) = g(y).

Proof: It is obvious that of conditions (1)-(4) in
Theorem 7, only condition (3) can be satisfied by a non-
vanishing constant function.

Corollary 2: In order that L (HB) = P, it is
sufficient that the functions in Q satisfy no linear rela-
tion of the form (1)-(4) of Theorem 7.

Proof: If every function in P, satisfied any of the
relations (1)-(4), then by Theorem 7 every function in (3o
would satisfy the same relation which would imply every
function in ¥ would satisfy the same relation which is a
contradiction. Therefore the corollary holds.

In order to state a further corollary, we first in-
troduce a convenient definition.

Definition: A family of arbitrary functions on a

domain X is said to be a separating family (for that do-
main) if, whenever x and y are distinct points in X, there
is some function f in the family with distinct values f(x),
£(y) at these points.

Corollary 3: If X is compact and if % is a sepa-
rating family for X and contains a nonvanishing constant
function, then i(%) = 9 .

Proof: Since %, contains a nonvanishing constant

function, the only conditions of (1)-(4) satisfied by
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every function in Q. are those of the form (3) because of
Corollary 1. But since 2 is a separating family, no
linear relation of the form g(x) = g(y), where x # y, is
satisfied by every function in ?. . Therefore, from
Corollary 2 we obtain the desired results.

Corollary 4: 1If 3‘. is a separating family, then so
18 7 . If 7 is a separating family and A(2) = F,
then P, 1is also a separating family.

Proof: ¥, is a separating family implies L) is
a separating family and £(%) e 2 . Therefore, 2 is a
separating family. oL (%) « F impiies that L is not sub-
ject to conditions (1)-(4) which implies ¥, is not subject
to condition (3) which implies %, is a separating family.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SECTION 2
LINREAR RING FORMULATIORS OF THE GENERALIZED THEOREM ARD
THE CHARACTERIZATIOR OF CLOSED IDEALS

As stated in the introduction, in this section we
will treat the family of all continuous functions on a com-
pact domain X, as a linear ring. By definition a linear
ring is an algebra. The ring operations for 2 will ve the
addition and multiplication of functions and the scalar
multiplication will be multiplication by real numbers. By
use of Theorem 3 it is an easy proof to show that 2 is a
linear ring. Since by Theorem 1 we know that all functions
in ¥ are bounded, the material in the introduction applies
to this section.

In order to prove the principal theorem of this
section, we will introduce and prove the following theorem.

Theorem 8: If € is any positive number and [a, B]
any real interval, then there exists a polynomial p(¢) in
the real variable £ with p(0) = O such that !l ¢l - p(2)] < ¢
for @ < § < B.

Proof: If & = O is not in the given interval [a, B],
then we can take p(g) = 8§ if & > 0 and p(g) = -8 if £ < O
and then we are done. If O is in the interval [a, B] then
there is no loss of generality irn confining our attention to

intervals of the form [-y, y] where vy > O, since the given
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interval [a, B) can be included in an interval of this form
by letting v > max. It is also sufficient to study only the
case of the interval [-1, 1] since, if q(n), q(0) = 0, is a
polynomial such that

I al - aln)l < e/

for -1 < n < 1, then

p(8) = yq(e/y), p(0) = O,
is a polynomial such that Il &1 - p(8)| | € for -y < § < v.
To see this, note that each & in [-y, v] can be expressed in
the form yn, for =1 < n < 1, which implies n = §/y. There-
fore Il nl - q(n)| < €/y implies that |l &/yl - q(g/y which
implies vlE/y! - q(2/y)| < € which implies, since y > O,
that Bl - vq(g/y)| < € and since p(¢) = vq(g/y), then for
each £ in [y, vl, IEl - p(8)| < € and p(0) = 0.

We shall obtain the desired polynomial q for the in-
terval -1 < n < 1 as a partial sum of the power series de-
velopment for /1 - § where § = 1 - n2.

We will begin by defining a sequence of constants

a, recursively from the relations

1
(!l =
1 1
o =3 I oy = F@ey ) togme o e v oy ey)
It is obvious that @, > 0. Putting

n

Op = § Oy
we can show inductively that 9, < 1. We have o, =a; = % < 1.
We assume o, < l, which implies
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n+l i+j=k

p

Accordingly the positive term series kg;ak converges to a

sum o satisfying th:}tnequality 0 < 1; and the power series
e o

converges uniformly for Ix| < 1 to a continuous function

o(x). To identify the function o(x) with the function

1 - /T =X, we prove that o(x), like 1 - /T - X, is a solu-

tion of the equation f£(x)(2 - f£(x)) = x. Looking at the

partial sums of the power series Ior o(x), we observe that

n n n
i
(i 184X 1y - ng 4T J) . 22 “k J aja.x .
25 ad® - 2 fom* -
i+
z
kgi,dgpaiadx
i 1
- +J>n+ aiadxi*d
iSivJS_n

in accordance with the definition of the coefficients o -

The final term here can now be estimated as follows:

i+3>n+l +J i+3>n+l Lo el i+%-k
| xi @a, < I @@, <
1<1 J<n 1<1 j<n k-n+l 1,3 >1
2
k-nﬁ'lak

A8 n tends towards infinity, this term tends towards zero,
and passage to the limit in the identity above accordingly
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yields the relation o(x)(2 - o(x)) = x. Therefore, for
each x such that -1 < x < 1, we have o(x) = 1 + /T - x.
Here we decide upon the choice of sign by showing that
a(x) < 1 is an inequality incompatible with the positive
sign. It is evident that o(l) = 1, independently of the
choice of sign, and hence that kgiak « 0(1) = 1. 1Inas-
much as a, 18 positive, it follows that o(x) < o(lxl) <
o(1) = 1, as we intended to show. It is now clear that

the power series for /1 - x is given by

o o

/T=Xx=1-o0(x) =1- kglakxk = I (1 - x).
Taking n so that -1 < n <1, we have 0 <1 - n< 1 and
hence

Inl =vn° =1-o0(1-92) = kglak(l - (1 - 92D,
the series being uniformly convergent. The general tern
of this series is a polynomial in n which vanishes for
n = 0. Hence we can take a suitable one of its partial
sums as the required polynomial q(n), completing the proof.

The next thedrem is the principal result concerning
the generalization of the Weierstrass theorem for the
linear ring operationmns.

Theorem 9: ILet X be a compact space, 2 the family
of all continuous real functions on X, 3. an arbitrary sub-
family of 2, and WU(P) the family of all functions (neces-
sarily continuous) generated from Z by the linear-ring
operations and uniform passage to the limit. Then a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

necessary and sufficient condition for a functior f in.f
to be in UY(H) 1s that £ satisfy every linear relation of
the form g(x) = 0 or g(x) = g(y) which is satisfied by all
functions in Q. . It ﬂ is a closed linear subring of 1 -
that 18, if % = UW(L) — then 3, is characterized by the
system of all linear relations of this kind which are satis-
fied by every function belonging to it. In other worde, %,
is characterized by the partition of X into mutually cis-
Joint closed subsets on each of which every function in 1.
is constant and by the specification of that one, if any,
of these subsets on which every function in ¥, vanishes.

Proof: Since X is compact, the functions in U(%)
are bounded. Let f belong to U(%); then £ is bounded.
This implies there exists numbers a and B such that
a < £f(x) < B for all x in X. By the preceding thecrem,
we can find a polynomial p (§) such that il &l - p (g <

P8

for @ < § < B where p(0) = 0. It is clear that p (f) is
in UCHK) since p_(£) 1s linear combinations of f and U(K)
is closed under the algebraic operations. Since

a < £(x) < B and Hgl - p (&)} < % for @ < § < B, ther
He(x)l - p (£(xDI < %'ror all x in X, Hence |f! is the
uniform limit of the functions p (f). Referring to the
formulas max(g§, n) = 1/2(% +n + |8 -~ n|) and min(g, n) =
1/2(¢ + n - 1¢ = nl), connecting the operations U and N
with the operations of forming the absolute value, we now
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see that whenever f and g are in U(%), then so also are
fUgaend £Ng. But this implies U (%) is closed under
the linear lattice operations as well as under the ring
operations and uniform passage to the limit. Therefore the
characterization of closed linear sublattices of ¥ , as
stated in Theorem 7, applies to U (£). It is easy to see
that none of the characteristic linear relations can be of
type (4) described there, since, if every function in U(£)
were to satisfy a linear relation of the form g(x) = vg(y’,
we would find for every f in U(%,) that, £° being also ir
U (Z), the relations

£(x) = az(y) and £2Q) - lfz(y) hold. These imply
lzta(y) - Afa(y) ssd we conclude that f(y) = O for every £
in U(%) or that A = 0, 1. Thus we conclude that £ is in
W (L) 1f and only if it satisfies all the linear rela-
tions g(x) = 0 or g(x) = g(y) satisfied by every function
in %,.

The first characterization of the closed linear sub-
rings of f{ given in the statement of the theorem follows
immediately. As to the second characterization, we remark
first that the relation = defined by putting x & y if and
only if f(x) = £(y) for all f in § is odviously an equiva-
lence relation in X: x » y implies x ® y; x ¥ y implies
y ¥ x; xsyand y ¥ z implies x # 2z, Consequently, X is

partitioned by this equivalence relation into mutually
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disjoint subsets, each a maximal set of mutually equivalent
elements. The set of all points y such that x = y is just
that member of the partition which contains x. Since this
set is the intersection or common part of all the sets

x = (y; £(x) = £(y))

for the various functions f in %, and since each set X,
is closed by virtue of the continuity of f, we see that the
equivalence class containing x is closed. If x and y are
in distinct partition classes, then there exists.a function
£ in ¥, such that f(x) # £(y), since otherwise we would
have x ® y and the two given partition classes could not te
distinct. If a partition class contains a single point x
such that f(x) = O for every f in ¥, , then all its points
obviously have this property. On the other hand, at most
one partition class can contain such & point since, if x ard
y are points such that £(x) = 0, £(3) = O for every f in %,.
then £(x) = £(y) for every £ in %, , x =y, and x and y are
in the same partition class,

We cannot expect that an arbitrary partition of X
into mutually disjoint closed subsets can be derived in the
manner just-described from some closed linear subring 2
of P . However, partitions obtained from distinct closed
lipear subrings are necessarily distinct-except in the case
where one subring consists of all the functions in ¥ whick

are constant on each partition class and the other congist:
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of all those functions which are in the first subring and Iin
addition vanish on one specified partition class, Thus we |
see that a closed linear subring is specified by the parti-
tion of X into the closed subsets on each of which all its
members are constant and the specification of that particu-
lar partition class, if any, on which all its members van-
ish. |

From this theorem we have the following useful
corollaries.

Corollary 1: In order that WU(%) contain a non-
vanishing constant function, it is necessary and suffi-
cient that for every x in X there exists some f in %.
such that £(x) £ O.

Proof: The corollary is an immediate consequence
of theorem 9.

Corollary 2: If %, is a separating family for X,
then U (L) either coincides with ¥ or is, for & uniguely
determined point x,, the femily of all functions f in %
such that r(xo) « 0. Conversely, if ¥ is a separating
tamily for X, and U(ZL) either coincides with ¥ or is thr«
family of all those £ in ¥ which vanish at some fixed
point x_ in X, then % is a separating family.

Proof: If ¥ is a separating family, so also are U %’
and & . Hence the partition classes associated with U(%
must each consist of a single point. It follows that WU(Z,)
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must be as indicated. Conversely, when 3 is a separa-
ting family and W($) is as stated, then W(%s) is a sepa-
rating family. If it were not, every f in W(%) would
vanish at some point X, and there would exist distinct
points x and y in X such that fo(x) - fo(y) for every f_
in WU (P). Consider now an arbitrary function f in ¥ .
Clearly, the function fo defined by putting

£,(z) = £(2) - £(x))

is continuous and vanishes at x . Thus f_ is in UL,
the equation fo(x) - to(y) is verified, and in consequence
£(x) = £(y). Thus we find that f(x) = £(y) for every f ir
2 , against hypothesis. 8ince U($) is a separating
family, ¥, must be also. Otherwise, of course, there would
exist distinct points x, y in X such that f _(x) - £,(37 for
every f_ in %, ; and then the equation £(x) = £(y) wouid
hold for every f in U(%) contrary to what was just esta>-
lished.

For the next two theorems, we will think of @ as
a lattice, that is the only operations we will take into
consideration will be the operations U and N, We will Ce-
fine an ideal as follows,

Definition: ¥, is an ideal of ¥ , if %, is a norn-
void subclass of 9 and if £, g are in ?ﬁ, and h is in 2,

then £ U g and £ N h are in %, .
The second condition of this definition is equivaler+
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to the requirement that % should contain h whenever it con-
tains £ and £(x) > h(x) for every x. This is true since on
the one hand if f(x) > h(x) for all x, then £ N h = h, &and
on the other hand, £ > £ N h for all h, Therefore, h is in
mo .

We now have the first theorem stating the charac-
terizations of the closed ideals in ¥ .

Theorem 10: Let } be the lattice of all contirnuous
real functions on a compact space X, Q. an arbitrary sub-
family of g ’ Fo the extended-real function defined on X
through the equation P (x) = ;gir(x), and ‘Q the family cf

all those functions f in ¥ such that £(x) < P (x) for every
x in X. When & is void, P (x) = - for every x and Q 1s
void. Otherwise, ’D. is the smallest closed ideal contairn-
ing 9‘,; further, ;’. is a closed ideal if and only if

P, = Y. A closed ideal P, is characterized by the asso-
clated function F .

Proof: As indicated in the theorem, we permit +
and - ooto appear as values of Fo’ when necessary. Suppose
2. 1is void, this implies that P (x) = - cosince if F(x) >
- ®, then there would exist a function f such that F (x) >
£(x) which would imply that £(x) belongs to % , which is a
contradiction since %, is void. P (x) = - wimplies T, is
void since if 0, is not void, there exists a function f in ¥
such that £(x) < P_(x) which implies f£(x) < - ccwhich is a
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contradiction. Suppose % is pot void; then there exists
an £ in ¥ such that f£(x) > ~w which implies there exists a
g in # such that g(x) < £(x) which implies g(x) < Fo(x)
which implies g is in '9, . Suppose ?a is a closed ideal.
By Theorem §, %, is characterized by the set % (x, y)» as
a closed sublattice of ¥ . Pirst of all, it is evident
that F(x, y) and hence also its closure %(x, y)s must
be contained in the set of points (a, B) such that a < F_{(x’
and B < F (x). Ilet € > O, then there exist functions f and
g in 3 such tnat £(x) > F (x) - € and g(y) > P (y) - € for
any prescribed pair of points x, y in X. The function
h=fUGgis in the ideal To and satisfies the relations

h(x) > £(x) > Fo(x) - € and h(y) > g(y) > Fo(y) - €,
Thus (h(x), h(y)) is a point in Alx, y) and
In(x) - F (x)| < € and In(y) - F ()] < ¢,
so that (F_(x), 2. (y)) 18 in 2(x, y)¢ which implies
(F (x), F (3)) is a limit point of x, y).
Now we establish the fact that £ is in ¥, when
£(x) ¢ F (x) for every x. Let f, be the function in ¥ de-
fined by putting
£.(x) = £(x) - €, € > 0.
If x, y are arbitrary points in X, and h in £ such that
n(x) > £.(x) = £(x) - ¢, b(y) > £.(y) - e,
then the function f,_ = h N f_ belongs to the ideal %o

xy
and has the property that
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£(x) - fxy(x) = € and f(y) - fq(y) = €.

By Theorem 5 we conclude that f is the uniform limit of
functions in the closed ideal ¥, and hence that f itself is
in ?. . We have now shown that 'Q.c 2. . Since .roa
by construction, we conclude that 3‘. - 'go under the present
hypothesis.

Returning to the case where 3, is an arbitrary non-
void femily, we consider a closed ideal ¥, containing X .
Evidently Ql has an associated function Fl such that
P,(x) > F (x) for every x. Otherwise, if F,(x) < F_(x)
for some x, then there would exist a function f in 3’. such
that F,(x) < f(x) < P (x) which would imply %, 15 not in
2., wnich is contrary to hypothesis. From the fact then,
that F,(x) > P (x) for every x, we can conclude that

91 - ’91 330
Therefore 'O, 18 the smallest closed ideal containing Fo .
With this the proof of the theorem is complete.

Next we shall consider the case where 2 is treated
as a linear lattice, the algebraic operations allowed in-
cluding the linear operations as well as the two lattice
operation. Here an ideal is to be defined as a nonvoid
class closed under the allowed algebraic operations and en-
Joying the additional property that it contains with f every
g such that

lg(x)l < I£(x)|
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Theorem 11: Let ¥ be the linear lattice of all the

continuous real functions on a compact space I, let %, ve ar
arbitrary nonvoid subfamily of F, let xo be the closed set
of all those points x at which every function f in ?. van-
ishes, and let &be the femily of those functions f in 3
which vanish at every point of Xo. Then rﬂ, is the smallest
closed ideal containing }o ;and 3’. is a closed ideal if anc
only if 2 = '5. . A closed ideal I. is characterized by
the associated closed set Io; in particular, Tc = '9., = T

if and only if Io is void.

Proof : It is evident that U, is & closed ideal con-
taining 3, . For example, if f is in 'Boand lg(x)! < 1£(x2
for every x, then g vanishes everywhere on Io and therefore
belongs to '9, . If 3, is a closed ideal we can show that
go = '9. . To do 8o we refer to Theorem 7 and consider
what linear relations of the form indicated there cam be
satisfied by every function in 1'0 . Obviously the pairs of
points x, y which have one or both members in xo are of no
further interest, as the corresponding linear conditions are
those of types (1) and (2), the effect of which has already
been taken into account through the introduction of the
closed set Io. Turning to the case where x and y are dis-
tinct points not in Io, we first remark that if we have
£(x) = £(y) for every £ in F , then no effective restriction
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is implied by the linear relation correspording to the pair
of points in question. Assuming therefore that g is a func-
tion in § with g(x) # g(3), we may suppose without loss of
generality that g(x) = 1, g(y) = O, for we may replace g if
necessagy by the function h defined through the equation

n(x) - S-S5

for all z in X. Since x is not in Xo there is a function £
in % such that £(x) # 0. We may suppose without loss of
generality that £(x) > 1 for we may replace £ is necessary
by the function h = af with a suitable value of a. The
function h = I£] n |gl is now seen to be in the ideal %o
and to satisfy the equations h(x) = 1, h(y) = 0. Accor-
dingly, no linear relation of the type (3) or type (4) is
satisfied by h. Hence the linear relations which charac-
terize go as a closed linear sublattice of % reduce effec-
tively to those implicit in the statement that every func-
tion in % vanishes throughout X . It follows that %o - .
Obviously if % is an arbitrary nonvoid family and E. is

a closed ideal containing .4'.. then the associated closed
set Xl is part of Io; and 31 = '91 3'90 . This completes
the proof of the theorem.
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CHAPTER III
TWO CLASSICAL PROOFS OF THE WEIERSTRASS
APPROXTMATION THEOREM

[
Definition: let f be a function with domain I =

[0, 1] and range in R. The n®

h Bernstein polynomial for £
is defined to be
n
. - n _ n-k
(1) B(x) = B (x; £) = g £(e/n)(Px(1 - x)
Bernstein Approximation Theorem: Let f be contin-

uous on I with values in R. Then the sequence of Bermstein
polynomials for f, as defined above, converges uniformly on
I to 1.
Proof: The Binomial Theorem asserts that
n
n n n-k
(s + £)2 = 3 (R)akeRk,
If we let 8 = x and t = 1 - x we obtain
n
n n-x
1= g, (51 - T,
Multiplying this equation by f£(x) we get
n
n n-k
£(x) = L F 1) (DxF(1 - x)77E,
Therefore, we obtain the relation
n
n \n-k
£(x) = B (x) = g (£(x) - I(k/n)}(k)xk(l - x)
from which it follows that
o n \n-k
(2) 1£(x) - B (®)] ¢ g 1£(x) = £0/2)1 (D1 - xO*7X,
Now f is bounded, say by M, and also uniformly continuous.
Note that if k is such that k/n is near x, then the corres-
ponding term in the sum (2) is small because of the contimuirty
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of f at x; on the other hand, if k/n is far from x, the fac-
tor involving f can only be said to be less than 2¥ arc any
samllness must arise from the other factors. We are led,
therefore, to breax (2) into two parts: those values of k
where x - k/n is8 small and those for which x - k/n is large.

et € > O and let & be as in the definition of uni-
form continuity for f. It truns out to be convenient to
choose n 80 large that

(3) n > sup(6™, M/e?),
and break (2) into two sums. The sum taken over those k for
which Ix - k/nl < n~W/* < & yields the estimate

De (E - D2 g e g (PG - 0P K e
The sum taken over those k for which |x - k/nl > n~/4 thae
is, (x - x/m) > Y2 can be estimated by usirg the for-
mula

(1/2)x(1 - x) = G (x - Wa)2(DEQ - 057K,
Por this part of the sum in (2) we obtain the upper bounc

2 -
p QL - xPF - an g EE KRG ()R - xR
k k (x - x/n)

<M /A g (x - k2@ - )R

< 2t /3 (1/ox(1 - x)} ¢ 2,
P

since x(1 - x) < 1/4 on the interval I. Recalling the de-
termination (3) for n, we conclude that each of these two

parts of (2) is bounded above by €. Hence, for n chosen iz
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(3) we have
l2(x) - B (x)] < 2¢,
independently of the value of x. This shows that the se-
quence (Bh) converges uniformly on I to f.

Weierstrass Agproxination Theorem: ILet f be a con-

tinuous function on a compact interval of R and with values
in R, Then f can be uniformly approximated by polynomials.

Proof: If f is defined on [a, b], then the functicr
g defined on I = [0, 1] by

g(t) = £((b - a)t + a), t in I,
is continuous. Hence g can be uniformly approximated by
Berstein polynomials and a simple change of varialbe yiells
a polynomial approximation to f£. We have |g(t) - B (t)| < ¢
for 0 < t < 1. Since x = (b - a)t + &, then t = F—=.
Therefore
£(x) = g(f—3) and 0 < =4 < 1
From this we see that
l1£(x) - B, (F— a)l - | g(x = a) - B, (x = a)l < €.

The following proof of the Weierstrass Theorem is attridbuted
to Landau.

Proof: To prove this, we assume that the interval
a < x <D lies wholly in the interior of the interval
0 < x < 1; thus, two numbers a and B may be found with
O<ac<ac<bcB<l. Ve may suppose that the function
£(x), which is by assumption continuous in the interval
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a < x < b, has been extended continuously to the entire in-
terval a < x < B.
Let us now consider the integral
2n
= ! -
Iy = Ji(1 = v9) av.
Now, if &€ is a fixed number in the interval O < & < 1, and
if we set
n
* ] 2

we assert that

J'
1lim 2 = 0,
n -9&71.'—1

which means that for sufficiently large n the integral from
O to & forms the dominant part of the whole integral from O
to 1. In fact, forn > 1,

' _ o) - 1
Jn > fo(l v) dv m ’

n n n
AR -vave -8 (1-8) < (1-82,
Bd n
35 < (o + 101 - &)
n
anc hence

lim
R >0

= 0'

O 98

We now assumé a < x < b and from the expressiors

-

] n
J £(w)1 - (u - x)°) au (n=1,2, ....,

(x) = &
o' [1(1 - v3)%au

which are polynomials in x of degree 2n whose coefficients

are quotients of definite integrals., We shall show that
they afford the desired approximation.
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By making the substitution u = v + x we find for the
numerator

fif(u)[l - (u - x)alndu - fﬁ::r(v + x)[1 - vzlndv
- j;Ex + [g M fg—x

=1, + I+ I,
where the positive number & in the interval O < &€ < 1 will
be suitably fixed later. The integral 12 may be trans-
formed to
n n
I, = £(x) 201 - v®) av + L2y + 1) - £)IQ - v2) av

n
- 22(x)(3 - I + [fl2(v + x) - 2D - ¥P) av.
Because of the uniform continuity of f£(x) in the interval
@ < x< B it is possible, for arbitrarily small € > O, to
choose 8 & = 5(e) in the interval 0 < & < 1, depending
only on €, such that, for |vl < &€ and a<x< b,
'£(v - x) - £(x)| < €. It then follows that
& 248 8, 2\2
I[elt(v + x) - £(x)1(1 - v°) avl < € [g(1 - v°) av

1 n
el 1-v¥)av

- ZeJn.
Purthermore, if M is the maximum of |f(x)! for a < x < B
we obtain
& 2.8
IT,0g< M [ (1 = v°) av = M3Z,
1 2,2
lel < M fb (1 - v°) av = HJ:.
Therefore, since the denominator in Pn(x) is equal to 27 ,
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an(x) - g(x)] < 2M ;ri- + €,

Since lim (J:/Jn) = 0, the right side may be made less than
2e by a suitable choice of n; thus f(x) is indeed approxi-
mated by P_(x) uniformly in the interval a < x < b.
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