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INTRODUCTION

This thesis deals with the problem of improving an 
approximation to the inverse of a matrix by the method of 
successive iterations. Two basically different techniques 
will be introduced and compared.

The first method is well known and often is referred to 
as the Newton method. The second method is a natural ex
tension of the successive overrelaxation iteration technique 
for solving systems of linear equations. However, to the 
author's knowledge, this technique has not been applied to 
matrix inversion before.

Since the theory of successive overrelaxation and 
similar iterative methods for solving systems of linear 
equations is well developed, much background material will 
be omitted. The reader may find an excellent reference 
in [1].
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CHAPTER 1 

THE NEWTON ITERATION TECHNIQUE

Iclo Preliminaries
In order to introduce the techniques, some definitions 

are listed. Let A=(a^j) be an n x n matrix, then A is said 
to be non-negative. write A?0, if all of its components are 
non-negativeo A is said to be hermitian if A is equal to its 
conjugate transpose and A is positive definite if all of its 
eigenvalues are positive. The spectrum of A,or(A), is the 
set of all eigenvalues of A.

Definition 1.1. Let the spectral radius of A, denoted 
by P (A) , be defined as P (A) =max [ |A j|| A (T(A) ] .

Definition 1.2. Let X be an n x 1 column vector with 
components x^,...,x^, then the euclidean norm of X is defined

i n i
||x||

Definition 1.3. Let A=(a^j) be an n x n matrix, then 
the spectral norm of A is defined by

llxlh
lo2o Newton*s Method

Let A= (a. . ) be an n x n matrix and suppose G,^A ,1] K
(i.e. Gĵ  is approximately equal to A ). Let «SGj^=A -Ĝ  ̂

(1-1)
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Then A= <a "^) (G^+&G^) ^

{14-G-VGk)

So AGj^=(I+G” t̂fGĵ )
Make the approximation

(I+g " V gj )̂ “^= (I-Gj^^^Gj^)

Then AGj^=I-G~^^Gj^.
Solving for iGĵ  yields

^Gk=Gj^(I-AGj^) . (1-2)
Substituting this back into e q (1-1) yields

a "^*Gĵ +Gĵ (I-AGj^) . (1-3)
This equation suggests the following iteration scheme.

Gĵ +Gĵ  (I—AGĵ ) k=0 , 1, . . . r 
which can be rewritten as

Gk^.i=^Gk(I+Ek) k=0,l,. .. , (1-4)
where E^=l-AG^o

This is the Newton iteration technique for improving an
approximation to the inverse of a matrix. The following
theorem states the necessary and sufficient conditions for 
convergence of the method.

Theorem I d ,  Let A be an n x n, non-singular matrix
with Gq-A If Gj^is defined as in eq (1-4) for k=l,2,,.. ,

then limit G^=A ^ if and only if P(Eq )<1.
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=I-AGk_i(I-AGk_i+I)

=I-2AGk.i+(AGk_i)^

= (I-AGk_i)^

=4-1-

)c
So E,=E^ . =E^ „=..o=E^ . Now limit G,=A ^ if and only ifk k-1 k-2 0 K-* k
limit <ÎG, =0, where O is the n x n matrix with all 0 com-K—> »o k
ponents, Note that A&G, =A (A ^-G, ) =I-AG, * So limit S G,=J». J*v J"\. Jv

A ^ (limit E, )=A (limit E? ) =0 if and only if limit E? = 0 .K— ^  K-+ «0 0 ((—►®o 0
But it is well known that if B is an n x n matrix, limit B^=0
if and only if P(B)<1, [1,13]. Thus it follows that limitK— » ®o u
-O if and only if P (E^) < 1.

Since Newton's method converges if and only if 
P(Eq )<1, it is important to know what conditions on Gq are 
sufficient to insure that P(Eq )<1, for this will be a 
measure of the overall usefulness of the method. To arrive 
at such a set of conditions it will be helpful to define 
another matrix norm.
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Definition l,4o If A= j) is an n x n matrix then the
max norm, N(A), of A is defined by

N (A) =n (max (a . J ) o 
i, jIt is easily verified that this is indeed a norm and that 

||a || ^ N (A) for an arbitrary matrix A.
Theorem lo2= Let A=(aj^j) be an n x n matrix, then 

P (A) ^ ||a || .
Proof : Let , then there exists a non-zero

column vector X such that AX=AX= So ||a x || = {] A x|| = (Aj*|jx|| ,
and IIa x II =|A| . But IIa x II , IIa II • ||x|| = ||a ||II ĵji I jqj  ̂ II ̂11
So |A|<||a || for allA««r(A). Thus P (A) ||a || . It now
follows that P (A) <  IIa II 4 N (A) or P (A)<n (max la. . I ) .. . « X3I

f jThus if N(Eq )<1, then P (Ê )<1 and Newton's method will
convergeo But because E^ is, in general, a full matrix
with no special properties, it is very hard to find a more
practical sufficient condition. So, in order to be assured
that Newton's method will converge, Gq must be a good enough
approximation of A ^ to make the elements of E^ uniformly 
small in magnitude, i.e. if EQ=(e^j) is n x n then jej^jj<l/n
for all Ki,j^no This condition is usually hard to satisfy, 
particularly if n is large. Because of this it is often 
impossible to use Newton's method.

Also, close examination reveals that two matrix multi
plications are required per iteration, which is very time 
cornsuming is n is large. Thus it is often impractical to
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6

use Newton’s method, even if it does converge.
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CHAPTER 2

THE SUCCESSIVE OVERRELAXATION TECHNIQUE

It was shown that the Newton iteration method converges 
to A""̂ y for any non-singular matrix A, as long as the initial 
approximation Gg is close enough to A <, But it was pointed 
out that it is often very difficult to find such a Gg. Also, 
if n is very large*, the time required for an iteration will 
render the method, for all practical purposes, uselesso In 
light of this, it would be worthwhile to develop an iterative 
technique which is faster and does not depend on the initial 
approximation for its convergence.

The iterative method that will be developed in this 
chapter partially fulfills both of these objectives= By 
taking advantage of the special properties of a certain class 
of matrices, ioe. those matrices that arise from finite 
difference approximations to boundary value problems for 
ordinary differential equations and elliptic partial differ
ential equations, it will be shown that this method converges 
or diverges independent of Gg «

It should be pointed out that matrices of this type are 
sparse, i.e. they have a large number of zero entries. In 
fact, they are usually tridiagonal or five diagonal matrices.
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8

Also they are usually diagonally dominant. That is, the ab
solute value of the diagonal elements is greater than or equal 
to the sum of the absolute values of the other nonzero entries 
in that row or column.

Let A=(a^j) be an n x n, non-singular matrix so that 
A  ̂exists, then AA ^=1. Let A=D-E-F where D is a diagonal 
matrix, E is lower triangular and F is upper triangular.
Then

(D-E-F)a "^=I
d a “^-(E+F)a “^+i

(E+F)a “^+d “^. (2-1)
This equation suggests the following iteration scheme:

Gm^l=D~^(E+F)Gj^-t-D”^ m=0,l, , (2-2)
where Gq is an arbitrary approximation to A . This is a
generalization of the point-Jacobi iteration method for
solving systems of linear equations.

Theorem 2.1. If A=(a^-) is an n x n matrix and G^ is
defined by e q (2-2) for m=0,l,..= , then limit G =A if and
only if P(B)<1 where B*=d “^(E+F).

Proof: Let E =A~^-G be the error matrix for the m'thm m
iterate. Then,

-1 -1 -1=BA +D -BG t-D m—1
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So E =BE -=B^E s ■=B*'^ . But limit G =A ^ if and onlym m-l m-2 0 in
if limit E =0, Now, limit E = (limit B^)E-=0 if and only if MA—» m KiA— 4 oo m M — > 0 0 u
limit B^=0, since in general E ^ O .  But limit B^=0 i£ and only
MA— »00 U Ml— > 0 0

if P(B)<1.
E q (2-2) can be rewritten as

- H  ( for i=l,---- n and13 k=l\^ii/ ^ii
M i

j=l,..., n, (2-3)
where is the Kronecker delta. In general, all the com
ponents of must be saved in order to compute the com
ponents of o So it would seem intuitively attractive to
replace each old component by the corresponding new one as 
soom as a new element is computed. This not only will reduce 
storage requirements for the computer, but also should pro
duce better results. Using this procedure on e q (2-2) pro
duces the equation

(2-4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

for n and n, or,

+ It
for 1=1,oo., n and j=l,..., n. (2-5)

In the last two equations the are to be computed
by columns, left to right, in filling up the matrix .
In matrix notation e q (2-5) becomes

Gm+i=(D-E)“^ F G m + ( D - E ) m = 0 ,1,... « (2-6)

Let L^=(D-E) ^F, for reasons which will be apparent later, 
and call the Gauss-Seidel matrix. E q (2-6) is a generali
zation of the Gauss-Seidel iteration method for solving 
systems of linear equations.

Now, in conjunction with immediate replacement, an 
acceleration parameter w could be introduced into the pro
cess by letting e q (2-4) define an intermediate component

^ij and then generating by taking a weighted
average of g and g^?^ . This can be written as.

- (m+l)9ij a te) t
(2-7)
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11

g^m+1) _ (i_w)g^^) + wgf o (2-8)

Substitution of e q (2-7) into eq (2-8) yields

W i 1 9 k (2-9)z: [l̂Ak=i+l \®ii I

or

-

f tn %
W  • z H  **’ 4 ' (2 — 10)k=&+l ^3

In matrix notation this becomes
(D-wE) [ ( 1-w)D+wF]G^+Wl m=0,l,o.. , (2-11)

or, Gj^^^=(D-wE) (l-w)D+wF]Gj^+w(D-wE) m=0 ,1, . . .

Let L^=fD-wE)"^[(1-w)D+wF] and K=w(D-wE)“ .̂
(2-12)

Then G^_^^=L^G^+K m=0,1, . . . . (2-13)
Note that if w=l, L becomes the Gauss-Seidel matrix L, ,w I
and e q (2-12) reduces to e q (2-6). E q (2-13) is a generali
zation of the successive overrelaxation iteration method for 
solving systems of linear equations.

Theorem 2.2= If A=(aj^j) is an n x n, non-singular matrix
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12

and G is defined by eq (2-13) for m=0,l,o<,® then limit G =“I m
A ^ if and only if P{L^)<lo

The proof of this theorem is completely analogous to the 
proof of theorem 2=1 and will, therefore, be omitted.

Now, the obvious question at this point is, does 
e q (2-13) always converge when e q (2-2) does and vice versa?
To answer this question the following theorem is presented 
without proof [1,70].

Theorem 2.3. (Stein—Rosenberg) Let A=(a^^j) be an n x n 
non-singular matrix and let A=D—E-F, where D is a diagonal 
matrix, E is lower triangular, and F is upper triangular. 
Suppose B=D (E+F) is non-negative with zero diagonal entries, 
and let L^-(D+E) F . Then one and only one of the following 
mutually exclusive relations is valid:

1, P(B)=P(L^)=0
2, 0<P (L^XP (B)<1
3. 1=P(B)=P(L^)
4. KP(B) (P(L^) .

So the iteration techniques of e q (2-2) and e q (2-6) are either 
both convergent or both divergent, and when they both con
verge P(L^)<P(B). Thus it seems clear that the method of 
e q (2-6) should converge iteratively faster, i.e. more con
vergence per iteration than the method of e q (2-2), when they 
con ve rge,
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The reason that the acceleration parameter w was intro
duced into e q (2—6) was so that it could be chosen in such a 
manner that P would be minimi î>:ed. This choice of w
would give an optimal convergence rate for the method of 
e q (2-13). It would seem that the task of finding the w^ 
such that P 1 4 P f o r  all real w might be difficulto 
Howevery it can be shown, £1,110], that w^ is a known 
function of P ÇB) and that in many cases good estimates of
P(B) can be determined. In any case, the following theorem 
due to Ostrowski will help to locate w^ [1,77],

Theorem 2,4. Let A=D-E-E* be an n x n hermitian matrix 
where D is hermitian and positive definite and D-wE is non
singular for 04w<2 o Then P(L^)<1 if and only if A is posi
tive definite and 0<w<2,

It is the experience of the author that it is usually 
not hard to find a value for w such that e q (2-13) converges 
faster than e q (2-13) converges faster than e q (2-6),

A few concluding remarks are in order. As promised, the 
iteration technique of this chapter does not depend on tha 
initial approximation for its convergence, but depends only 
on the matrix to be inverted. Also only one matrix multi
plication is required per iteration for e q (2-13) as compared 
to two for Newton's method, thus making the time for an 
iteration significantly less.
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SUMMARY

The appendix contains an example derived from a finite 
difference approximation to an ordinary differential equation 
The author realizes that this example is not as good a test 
as should be used^ but was forced into this small scale 
problem by limitations imposed by a small computer= None the 
less, this example points out the potential of the techniques 
of Chapter 2»

In order to compare the method of e q (2-13) with Newton *s 
method the same initial approximations were used for both 
methods, with Gq being chosen, in each case, so that P(Eq )<1., 
It was found that Newton's method would do very little con
verging for a few iterations and then converge very rapidlyo 
On the other hand, the method of e q (2-13) converged at a 
more uniform ratec It is the author's conjecture that 
Newton's method requires the components of the error matrix 
to be reasonably uniform in magnitude before it begins to 
conve rge rapi dly.

In all test cases the method of e q (2-13) performed 
iterations nearly twice as fast as Newton's method and took 
less time to reach a specified degree of accuracy » But 
perhaps best results could be obtained by using e q (2-13) for 
a few iterations and then switching to Newton's methods, to
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take advantage of the higher order convergenceo
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APPENDIX

Example: Take the following boundary value problem.
-Y" + X Y = f(x) O^xCl Y(0) Y(l) = 0

Divide [0,1] by n-1 points x^, into n equal intervals, with 
x^-x^_^=h. Denote Y(x^) by Y^, then approximate ~Y? by

—Y  —Yi i+1 i-1« This will lead to the following matrix

—  2 —equation AY = h F where

A =

^1
-1

-1 0
-1 0

0
0

-1 -1

-1

with So — 2 + x?h^
X  X

Y =

Y, F,1 1
o
• and F = •

•
°
^n-1

It is the matrix A of which the inverse is to be found. It 
will not be shown here, but A has special properties which
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insure that P(B)<1, in e q (2-2) [1,164], Thus the iteration
scheme of e q (2-13) will converge. However, in order that the 
process of e q (2-13) might be compared with Newton's method, 
a Gq must be found so that P(Eq )<1.

Theorem: If A is a non-singular, n x n matrix and if 
Gq = aA* with a = l/(Tr(AA*)), then P ( E q ) C 1 ,  where 

n
Tr(A) = 2Z a, . . i-1

Proof is trivial and is omitted [3,84],
Three programs and their selected output are listed.

The following is a summary of each program.
Program 1: The output is not listed, but this program

produces the matrix Gq as defined in the above theorem.
This was done for n=3,4,9,19.

Program 2 : The output of program one is used as in
put for this program. It performs the iterations prescribed 
by Newton's method. At the end of each iteration it prints
the iteration number m, along with M(E^) where E = I-AG ̂ m m m

is taken as the norm,and M(E ) = 1 ( max |e j ?  I) i
n I4l<n i=ll«j^]

Program 3: It uses the same input as program two and
performs the iterations specified in e q (2-13). The output 
is in the same format.

Also listed in the output of programs two and three.
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although not direct output of either, is the time, in se
conds, required to carry out an iteration and the total time, 
ioe. (number of iterations) x (time required per iteration)o
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PROGRAM NOol (CALCULATES INITIAL APPROXIMATIONS) 
DIMENSION A (40,40)

1 READ 2,N
2 FORMAT(13)H=N

NM1=N-1 
NM2=N-2 
DO 5 1=1,NMl 
DO 5 J=1,NM1 

5 A(I,J)=0.0 
SUM=0 e 0 
DO 10 1=1,NMl 
XI=I 
XI=XI*H
S=2,+(XI*H)**2 
SUM=SUM+S**2 

10 A(I,I)=S
SO 15 1=2,NMl 
A(I,I-l)=-lo 

15 A(I-l,I)=-lc FL=2*NMl-2 
SUM=SUM+FL 
SUM=lo/SUM 
DO 20 1=1,NMl 
DO 20 J=1,NM1 

20 A(I,J)=SUM*A(I,J)
D025 1=1,NMl 

25 PUNCH 30,(A(I,J),J=1,NM1)
30 FORMAT(5Fl6o8)

GO TO 1 
END
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PROGRAM NO.2 (NEWTON ITERATION SCHEME)
DIMENSION G (20,20),A G (20,20),STOR(20)

1 READ 2,N
2 FORMAT(I3)

READ 3,CLOS
3 FORMAT(FIO.8)H=N

H=l./H 
NM1=N-1 
NM2=N-2 
PUNCH 4

4 FORMAT(9HITERATION ,5X,20HNORM OF ERROR MATRIX,/) 
ISW=0

5 DO 6 1=1,NMl6 READ 7,(G(I,J),J=1,NM1)
7 FORMAT(5Fl6o8)
8 2=NM1DO 10 J=1,NM1

AG(1,J)=G(2,J)-(2.+H**4)*G(1,J)
10 AG(NMl,J)=G(NM2,J)-(2.+Z**2*H**4)*G(NM1,J)

DO 15 1=2,NM2 
DO 15 J=1,NM1 
XI=I XI=XI*H
S=2.+(XI*H)**2 

15 AG(I,J)=G(J~1,J)+G(I+1,J)-S*G(I,J)
DO 20 1=1,NMl

20 AG(I,I)=AG(I,T)+1.
IF(SENSE SWITCH 1)21,22

21 PAUSE
22 DO 25 J=1,NM1 

STOR(J)=0.0 DO 25 1=1,NMl
25 STOR(J)=STOR(J)+ABSF(AG(I,J))

BIG=STOR(l)
DO 30 J=2,NMl 
IF(BIG-STOR(J))2 8,30,30 

2 8 BIG=STOR(J)
30 CONTINUE 

BIG=BIG/Z 
PUNCH 35,ISW,BIG

35 FORMAT(3X,I3,10X,E14.8)
IF(SENSE SWITCH 1)33,34

33 PAUSE
34 IF(BIG-CLOS)1,1, 36
36 DO 37 1=1,NMl
37 AG(I,I)=AG(I,I)+lo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

DO 40 I=*1,NM1
DO 40
TaO.O
DO 39 KT*1,NM1

39 T=T+G(I,KT)*AG(KT,J)40 G(I,J)=T 
ISW=ISW+1 
GO TO 8 END
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OUTPUT (NEWTON ITERATION SCHEME) 
N=3TIME=4 SEC 
TOTAL TIME=32 SEC
ITERATION NORM OF ERROR MATRIX

0 .37458976E+00
1 .37569636E+00
2 .35958460E+00
3 ,31733761E+00
4 .23635084E+00
5 .12055866E+00
6 ,28100900E-01
7 .15570500E-02
8 .35233333E-05

N=4
TIME=8 SEC
TOTAL TIME= 80 SEC
ITERATION NORM OF ERROR MATRIX

0 .28383015E+00
1 .28443630E+00
2 c27676670E+00
3 .27223217E+00
4 .25039517E+00
5 .21139401E+00
6 .13673536E+00
7 .49057062E-01
8 .49237400E-02
9 .36140000E-04

10 .12750000E-06

N=9
TIME=65 SEC
TOTAL TIME= 910 SEC
ITERATION NORM OF ERROR MATRIX

0 .11963981E+00
1 „12399858E+002 „12611528E-fOO

12445198E+nn
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N=19

4 .12869220E+00
5 .13076338E+006 .13148124E+007 ol3163276E+00
8 .12722893E+00
9 .10997794E+0010 .74386558E-01

11 .28744808E-0112 .33295055E-02
13 .30195555E-04
14 .27777777E-06

1=472 SEC
lL TIME=8024 s e c

LATION NORM OF ERROR MATRIX
0 .54510247E-01
1 .55948873E-01
2 o57806963E-01
3 .59050800E-01
4 .58978163E-01
5 .60845178E-01
6 .62431621E-01
7 .63990100E-01
8 o64941710E-01
9 .66709115E-01

10 .67830710E-01
11 .65780700E-01
12 =64038321E-01
13 .56260200E-01
14 .37891149E-01
15 .14200916E-01
16 ol4423831E-02
17 «93547368E-05
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PROGRAM NO. 3 (ITERATION SCHEME OF E Q (2-13)) 
DIMENSION G(20,20),AG(20,20),STOR(20)

1 READ 2,N
2 FORMAT(13)

READ 3,CLOS
3 FORMAT(FIG.8)

READ 4,W
4 FORMAT(F9.6)H=*N

H=1./H 
ISW=0 NM1=N-1 
NM2=N-2 
PUNCH 8

8 FORMAT(9HITERATION,5X,20HNORM OF ERROR MATRIX/) 
DO 5 1=1,NMl

5 READ 6 , (G(I,J),J=1,NM1)
6 FORMAT(5F16.8)
9 Z=NMl

DO 10 J=1,NM1
AG(1,J)=G(2,J)-(2 »+H**4)*G(1,J)

10 AG(NMl,J0=G(NM2,J0-(2o+Z**2*H**4)*G(NM1,J)
DO 15 1=2,NM2 
SO 15 J=1,NMl 
XI=I 
XI=XI*H
S=2.+(XI*H)**2 

15 AG(I,J)=G(I+1,J)+G(I-1,J)-S*G(I,J)DO 20 1=1,NMl 
20 AG(I,I)=AG(I,I)+1.

DO 25 J=1,NM1 
STOR(J)=0 =0 
DO 25 1=1,NMl 

25 STOR(J)=STOR(J)+ABSF(AG(I,J))
BIG=STOR(l)
DO 30 1=2,NMl 
IF(BIG-STOR(I))28,30,30 

2 8 BIG=STOR(I)
30 CONTINUE 

BIG=BIG/Z 
PUNCH 35,ISW,BIG

35 FORMAT(3X,I3,10X,E14,8)
IF(SENSE SWITCH 1)36,37

36 PAUSE
37 IF(BIG-CLOS)1,1,3838 DO 50 J=1,NM1 

T=G(2,J)/(2o+H**4)
IF(J-l)40,39,40
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39 T=T+l./(2c+H**4)
40 G(1,J)=(1.-W)*G(1,J)+W*T 

DO 45 I=2,NM2
XI=I 
XI»XI*H 
S=2.+(XI*H)**2 
T=(G(I-1,J)+G(I+1,J))/S 

42 T«T+1./S
45 G(I,J)«(lc-W) *G(I,J)+W*T 

S=2.+Z**2*H**4
T»G(NM2,J)/S 
IF(J-NMl)47,46,47

46 T«T+1,/S
47 G(NMX,J)- (lo-W)*G(NM1,J)+W*T50 CONTINUE 

ISW=ISW+1
IF (SENSE SWITCH 1)51,951 PAUSE 
GO TO 9 
END
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OUTPUT (ITERATION SCHEME OF E Q (2-13)) 
N=3
W=1.17
TIME=3 SEC
TOTAL TIME=24 SEC
ITERATION NORM OF ERROR MATRIX

0 o37458976E+00
1 e26455359E+00
2 ,10052566E+00
3 .23602453E-01
4 .55798833E-025 .10484000E-02
6 „21687666E-037 .35586666E-04
8 .69266666E-05

N=4
W=l,25TIME=5,2 SEC 
TOTAL TIME=57.2 SEC
ITERATION NORM OF ERROR MATRIX

0 o28383015E+001 .24335178E+00
2 «14898773E+00
3 =59841937E-01
4 ol9431190E-01
5 .72220500E-02
6 o22082350E-02
7 o7X759750E-03
8 .23440750E-03
9 o70127500E-04

10 .22407500E-04
11 o68975000E-05
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N=9
W=1.525
TIME=25 SEC
TOTAL TIME=525 SEC

AT ION NORM OF ERROR MATRIX
0 «11963981E+001 .14078226E+002 oll232760E+003 .97341346E-01
4 c 81115827E-01
5 .62447542E-016 .45164391E-01
7 o 304236B6E-01
8 ol7l74392E-019 o 71125233E-02

10 .49689344E-02
11 o29644733E-0212 .16702388E-02
13 «94705000E-03
14 .51271333E-0315 o25750333E-03
16 «15433333E-03
17 c 87398888E-04
18 e 49837777E-04
19 o23220000E-04
20 ,13006666E-04
21 .70166666E-05
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N=19
W=1.724
TIME=106 SEC
TOTAL TIME=4452 SEC
ITERATION NORM OF ERROR MATRIX

0 o54510247E-01
1 - 82655489E-012 .71076631E-01
3 .61784473E-01
4 «53859926E-015 .51234519E-01
6 o48399633E-01
7 o45072432E-01
8 o 41399411E-01
9 .37453810E-0110 »33503374E-01

11 .29602665E-01
12 .25798135E-01
13 .22127237E-01
14 .18617649E-01
15 ol5287269E-01
16 ol214404lE-01
17 .92355736E-02
18 o63247510E-02
19 .337R1968E-02
20 «28641078E-02
21 «2288100ÜE-02
22 .17985652E-02
23 ol3984789E-02
24 .10729542E-02
25 .82034000E-03
26 .63016157E-03
27 .48294263E-03
28 o 36869526E-03
29 •27533842E-03
30 „20081684E-03
31 «14606684E-03
32 .11829368E-03
33 .93737368E-04
34 .72193157E-04
35 o53774736E-04
36 .41087894E-04
37 o31515789E-04
38 o23650526E-04
39 ,16802105E-04
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40 ol3l77368E-04
41 «10048421E-0442 .76084210E-05
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