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INTHCDUCTICN

A mathematical theory, to be of practical value, must 
obviously provide theoretical counterparts’ for the real 
phenomena which it purports to describe. Mathematical 
probability theory is no exception. Since probabilistic 
methods are now being used extensively in varied applica­
tions to real situations, it seems reasonable to inquire as 
to just what links the theory of probability to the real 
world. The probability theoretic concept that provides the 
necessary link with reality is the Weak Law of Large Numbers, 
sometimes called the "law of averages," and is formulated 
in mathematically precise terms in Theorem III.10, Khintchine*s 
Theorem, in the sequel.

Essentially, what the Weak Law says in real terms is 
this: If we perform an experiment a large number of times
and observe the frequency of the occurrence of a particu­
lar event, then there is a very large probability that the 
fraction of times the event occurs will differ only slightly 
from the true probability of the event. Thus, if we toss 
a coin a large number of times and observe the fraction of 
the tosses which result in the occurrence of heads, we can 
be quite sure that this fraction will differ little from the 
true probability that a head will occur on a single toss.

It is not, however, the intent of this paper to con­
sider the application of the mathematical "law of averages"
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to the real world. The basic purpose of our discussions of 
the Weak Law and related theorems is to indicate the con­
ditions under which they apply to theoretical situations. 
Nevertheless, the importance of the theorems to be considered 
derives not only from the contribution they make to prob­
ability theory, but also from their wide applicability in 
statistical analyses of actual situations.

As evidence of important theoretical and real implica­
tions we consider briefly two of the theorems proved in 
Cttapter III, Theorem III, 15, the Lindberg-Lé^vy Theorem, 
shows that if we have a sequence of identically distributed 
independent random variables, then, subject to certain 
conditions, sums and means of sums of these variables have 
asymptotically normal distributions. This theorem enables 
us to draw inferences based on a consideration of the means, 
without unduly concerning ourselves with the distribution 
of the variables themselves.

Theorem III.17, the Liapounoff Theorem, states that, 
under certain very general conditions, the sums of random 
variables are approximately normally distributed, even if 
the variables do not necessarily have identical distributions. 
For example, I.Q,. scores are based on answers to a sequence 
of questions, iSach of which is worth a specified number of 
points. An Individual test score is the sum of the points
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a person receives for each question. If the results of differ­
ent questions are independent, then the Liapounoff Theorem 
says that the test scores are approximately normally distributed, 
despite the fact that the number of points a person scores on 
question one, for example, may have a decidedly different 
distribution than the number scored on question two.

In the discussions that follow, the author assumes a 
knowledge of probability and statistics at the level of 
Feller*" [5], Cramer [1], or comparable works; and a famili­
arity with measure and integration theory at the level of 
Munroe [6]. The notation employed in this paper conforms 
to the notation used in [2] and [5],

For ease of reference, several theorems and definitions 
are included in this introduction.

Let 8 be a measure space, with measure ^  . (In the 
literature of probability theory, 8 is called a sample space if 
^(8)T"1. i We define a random variable % on 8 as a real valued 
measurable function whose domain is 8.

The random variable % induces a measure F on the class 
of measurable sets of real numbers; for the inverse image 
under X of any measurable set T of rea,l numbers is a 
Xt-measurable set of 8. We define the measure of T by 
P(T) - CX”^(T)3,

*"Numbers in square brackets refer to the numbers of the references in the list of references cited on page 42.
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Let P be the measure defined above. We associate with 
P a non-decreasing point function F(x), called a distribu­
tion function, such that for any finite interval (a,b] we 
have* F(b) - F(a) => P(a < x b). It can be shown that F is 
uniquely determined except for an additive constant; 
further, F(x) is everywhere continuous to the right. If 
P is a probability measure, F may be chosen such that 
lim F(x) = 1, lim F(x) » 0.X-» oo X ^  — oo

Thus, with each random variable X we associate a 
distribution F(x) defined by F(x) = P[X 5 xj.

Theorem A ([S] page 66): If 1 ^  g^(x) = g(x) exists,
except on a set of P-measure zero, in a measurable set S 
of real numbers, and if |g^(x)| < G(x) for all v and all x 
in S, where G(x) is a function integrable with respect to 
F on S, then g(x) is integrable with respect to F on 8, and

lip i gy(x)dF = g{x)dF.V ^  oo J ^
8

Theorem B ([S] pages 73-74): If F and 0 are non­
decreasing functions in [a,b], have no common discontinuities, 
and have only a finite number of discontinuities all of which 
are In (a,b), then

GdF.dFQ -
m m

FdG +
éia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem C ([8] page 138): Let g(x) be continuous on
[a,b] and let J be a sequence of functions such that 
is a distribution function for each n, and lim F^(x) = F(x)
Then

lim \ g(x)dF n-> oo I n

b

a
g(x)dF*

Definition D; An Interval (a,b) will be called a 
continuity interval of the function F(x) if a and b are 
continuity points of F(x).
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CHAPTER I

We consider in this chapter some of the modes of con­
vergence of sequences of random variables.

Let j be a sequence of random variables defined on 
the same sample space S for which a probability measure P 
has been defined. Let X be another random variable defined 
on S.

Definition. I.l: We say that J converges to X with
probability one if

P[lim X« = X] = n-> cx)
Definition 1.2: The sequence ^X^j converges in mean

square to the random variable X if lim E [ ( X _ - X ) = 0.n-ÿ oo
Definition 1.3; The sequence |^X^jconverges in prob­

ability to the random variable X if, for every 6 > 0,
lim P[|X„-X|>€] - 0.n-> oo f n I

An important property of convergence in probability is 
that no moments need exist before it can be considered, 
which is quite evidently not the case with convergence in 
mean square. (Our interest centers on convergence in 
probability and convergence in distribution--defined in 
1.4. )

In measure theory language, convergence with prob­
ability one is almost everywhere convergence, while conver­
gence in probability is convergence in measure.
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Applying one form of Chebyciiev*s inequality we obtain 
that, for any £ > 0,

p . E [(X^-X)2],
Thus convergence in mean square implies convergence in 
probability.

We are primarily concerned with convergence in distri­
bution, defined as follows:

Definition 1.4: A sequence of distribution functions
is said to be convergent if there exists a non­

decreasing function F(x) such that
lim F„(x) = F(x) n-> oo ^

in every continuity point of F(x). (This form of conver­
gence is sometimes called essential convergence.)

Theorem 1.5 [2]: Let be a sequence of random
variables with corresponding distribution functions 
Suppose lim F„(x) ** F(x) is a distribution function. Letn-f oo

be another sequence of random variables, and suppose 
converges in probability to a constant c. Put

Çn = * ^n. fn = - ^n. Yn = ^  .

Then the distribution function of tends to F(x-c). 
Further, if c > 0, the distribution function of tends to 
F(-§), while that of tends to F(cx). If c c  0, the 
distribution function of tends to 1 - F(^), while that 
of y„ tends to 1 - F(cx).n

Proof : We prove the assertion for c > 0. The
other proofs are similar. Let x be a continuity point of
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F(cx), and denote by F^(x) the distribution function of 
i.e. Fĵ (x) = < x) . Then we must show that

lim F (x) = lim P [ ^  6 x] = F(cx). n-> oo ^ n-» oo ^n
We consider the set of all points in the plane

2such that —S .1 X. This set can be written as the union 
Yn "of two disjoint sets, and defined by the inequalities

ZnSni* Yn - cl^e

®ng* “  - |Yn ” c]>£.n

Thus,
P(S„) = P{SnJ + P(S^^).ni-

Clearly, 8̂ ^̂  is a subset of the set of points on the plane
for which |Yn - c|>£* By hypothesis, lim P[ |Y_, - c|>£]=0 

I I n —> oo I ^  I
for any £>0. Hence for any £ > 0, P ( ) -» 0 with increas­
ing n.

Further, it is seen that P(S_^^) is enclosed between 
the bounds P[Z^ S ( o- 6 )x, jYĵ  - c| ̂  £ J and P[Z^ ̂  (c+£)x, 
|Yjrj - o| e]. (Figure 1).

c-e

Figure 1
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Now P[X^ £ (0 + 6 )z] = F^[ ( c 2 ^ )z]. Each of these 
bounds differs from (o + 6 )x] by a quantity less than
P[I - o I > €]. For, we have that 0 ^ F^[ (0 - e )x]
- P[Xn é (c - e )x, |Y^ - c| > 6 ] = P[Xn <  (c - 6  )x,
r^n "* ®[ ^ ^  P[ |Y^ - cj > £ ] .  A similar consideration
gives the corresponding relationship for Fĵ [ ( c + é. )x]. But 
P[ Yĵ  - c| > e] tends to zero for any 6 by hypothesis; hence
we may make P ( )  as close as we please to F{cx), and the
theorem is proved.

Theorem 1.6 [2] : Every sequence F̂jĵ (x)j of distribu­
tion functions contains a convergent subsequence. The 
limit function F(x) can always be determined so as to be 
everywhere continuous on the right.

Proof : Let r̂ ,̂ rg,... .be an enumeration of the
rationale, and consider the sequence F̂_jj(r3_l̂  . Since 
0 < (r^) - 1* the Bolzano-Weierstrass property of the
real numbers tells us that the sequence has a limit point. 
Thus contains a convergent subsequence. This is
the same as saying that the sequence ^Fĝ (x)̂  contains a 
subsequence which converges for the particular value 
X  = r^# By the same argument, Ẑ _ contains a subsequence 
Zg which converges fo r x = r^ and x = r^. We fihd that 
similarly, Zg contains a subsequence Zg convergent for 
X = r^, X = rg and x = rg. We continue in this manner, 
obtaining a contracting sequence Ẑ̂ ^̂  such that Z^ always 
contains a subsequence convergent for x = r^....,
X “ r^^2 ' We may form a sequence Z whose nth element is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the nth element of clearly, Z converges for all rational
values of x.

Reindexing, for simplicity, let the members of Z be
Fi(x), and put = Cĵ , i = 1, 2,,.,
We always will have c^ 5 1, and since is a non-decreasing
function for every n, we will have (r^)

^  Tfc. benoe that Jim^ 1'*'
°i — ®k whenever r^ ̂  rĵ.*

We now define a function F(x) for all real x by
F{x) = inf c^ for all r^ >  x.

That F(x) is bounded follows from the fact that is
bounded* That F(x) is monotone non-decreasing is seen
from the following: Let x* > x. Then ^r ^i > % j
contains ĵ r̂ j r^ > x*j • Hence F(x) = ̂ inf Cj^|r^> xj 6
^inf c^jrj^> x*j = F(x’)» which is the desired result*

F(x) is also everywhere continuous to the right* To
show this, let 6 > 0 be given. Since F(x^) = ĵ inf Cĵ | r^ > x^j ,
we can choose r̂  such that c< - F (x )< 6* Let ̂  = r̂  - x ;-̂ o o ° -̂ o
when X - x c g , x € (x , r± ), and, since F(x) is monotoneO O J.Q
non-decreasing, F(x ) 5  F(x) ^  c. • Thus, F(x) - F(x )-sl€,o j-Q w
and right continuity is established.

We now show that in every continuity poiiit of F(x), 
we have

lim F (x) = F(x), n-f oo “
so that the subsequence Z is convergent* If x is a con­
tinuity point of F(x), then for a given € ?■ 0 we may choose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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h 7* 0 sucJa that

and
F(x+h) - F{x}< t

F(x) - F(x-h) -c J
Let and be rational points situated in the open inter­
vals (x-h,x) and (x,x+h) respectively; we find, making use
of the monotonicity of F, that

F(x-h) ^ é F(x) £ Cjj.£ F(x+h).
For every n, we have
(1.7) F^(r^) i F^(x) é F^(r^),
by the mono tonic it y of Fĵ ; but

lim F (r. ) = c. , and lim F (r, ) = c. . n^oo ^ 1 ^ n-» oo ̂  ^ ^
Since F(x+h) - F (x-h)< 6- and Flx-h) ^ Cĵ  ̂  F(x) 5 c^-6
F(x+h), c^ - • By (1.7 j we have

lim F (r ) £ lim F (x) £ lim F (r ), n-> oo n 1 n-3> oo n n-̂  oo n k
or

Thus.both F(x) and lim F (x) lie between c. and c, , hence  ̂ n-? oo n i k

|f (x ) - lim F (x)|' n-i> oo n

but £ is arbitrary, so the sequence Z is convergent.

ReprocJucecJ with permission of the copyright owner. Further reproctuction prohibitect without permission.



CHAPTER II

In our discussion of characteristic functions and 
their application we shall encounter integrals of the type

r
(II.1) u(t) = g(x,t)dF(x),

S
where t is a real parameter, S a given measurable set. We 
shall require certain theorems concerning continuity, 
differentiation, and integration of such functions of t,
In what follows we assume that g(x,t) is a complex valued 
function and that, for each fixed t considered, the real 
and imaginary parts of g(x,t) are Borel measurable functions 
of X which are integrable over S with respect to F(x).
Proofs of the following three theorems can be found in [S], 
pages 66-70.

Theorem II.2 - Continuity: If, for almost all values
of X in S, the function g(x,t) is continuous with respect 
to t at t^, and if for all t in some neighborhood of t^ we 
have jg(x,t)| < (x ), then u(t) (II,1) is continuous for

^o* i*®•»

lim
J

g(x,t)dF(x) = g(x,t^)dF(x).

12
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Theorem II.3 - Differentiation: If, for almost all
values of x in S and for a fixed value of t, the following 
conditions are satisfied:

1) The partial derivative ^ exists,

8) o<|h|<h„,
hç independent of x,

then

u*(t) « J g(x,t)dF(x)
S

exists and equals

Theorem II.4 - Integration: If, for almost all values
of X in S, the function g(x,t) is continuous with respect 
to t in the finite open interval (a,b) and satisfies the
condition g(x,t) -c Gg(x) for all t in (a,b)» then

b r
u(t)dt « g(x,t)dF(x) dt

exists and equals

g(x,t)dt dP{x).

Further, if the above conditions are satisfied for every 
finite interval (a,b), and if, in addition, we have
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then
po

u(t)dt
-ÔÔ

oo

“CX3

g(x,t)dt d?(x).

We proceed now to a consideration of the characteristic 
function of a random variable.

Definition II.5: Let X be a random variable, let F(x)
be its probability distribution function, and let t be a 
real number. The function

oo

If) (t) « E(e^^^) = \ e^^^dF(x)

is called the characteristic function of the random variable 
X.

As we Shall see, from a knowledge of the characterlstlo 
function of a random variable one may obtain complete 
knowledge of its distribution function. The purpose of this 
section is to examine the nature of this correspondence.

The characteristic function has the following properties:

, , f1) I (f»(t)|< \ dF(x) « 1,
“OO

2) Cp (-t) “ (p
3) (p (0) - 1,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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4) (Ç {t) is continuous,
5) If the kth order moment of the distribution exists, 

then Lp [t) is k times differentiable with respect 
to t, and, for 0 &  v 6 k,

oo

-OO

6) Under the conditions of property 5),y  ̂!(t) is 
continuous for all real t, and

oo

Ç? )(O) = i^ \ x^dF(x), V = 1,2,..,k.

Hence, in the neighborhood of t = 0, we have, by
the Maclaurin expansion,k

(II.6) I ip(t) = 1 + \  •“  (i t + o(t^),
v=l

k fwhere lim  = 0, and = \ x^dF(x).ty 0 t j
-oo

To show the validity of (11,6), we first let f(t) be 
a real valued function of the real variable t, and we 
suppose that f(t) has k continuous derivatives in some 
neighborhood of t = 0, Then, by the Maclaurin expansion, 
we obtain that k-1

tit) flati o - e < l ./  nt ki
n=0
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Thus,
k _

f (n
kl

f (t ) = ► f ( 0 ) ^ f (et) - f(fe)(Û)

n =0
But f (t ) is continuous at t=0, so f^^^(et) - f (0 ) 0
as t r> 0. We may thus write

o ( t^ }where lim = 0.t-O t
For the case where f{t) = (fit) is a complex valued 

function of the real variable t we decompose f{t) into 
real and imaginary parts; i.e. f(t) = f t ) + i f g( t ).
We then apply the above argument for real valued functions 
to f-j_{t) and fg(t) separately, and the validity of II.6 
follows directly.

Properties 1), 2), and 3) follow from the definition 
of the integral. Property 5) follows from Theorem 11,3, 
while 4) and 6) follow from Theorem II.2,

From the above discussion it follows that the 
characteristic function of any function g(X) which is a 
random variable is the mean value of e^tg(][) ̂ case
g(X) = aX + b, the characteristic function becomes
(11.7) g(git(aX+b) j = çitaXj , e^^%(at) .

Further, the "standardized variable” has the charac­
teristic function
(11.8) E(e^^(%^) ) = E (e"^^ •
Suppose now that we have n independent random variables 
Xi, Xg,... with characteristic functions^,( t),.,.,
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t ). Then the characteristic function of the sum 
n

Cp(t) = E(e^^ ^  ^k) = E(1T
^  k=l

Since the are independent,

(II.9) (pit) = T T

X *= / is
k=l

(pit) = I T  E(e^^^k) = J T  (pjt) 
k=l k=l

In the discussion which follows we will make use of
( '

some of the properties of the following functions:
T

2 r sin ht
(11.10) s(h,T) = 7 \ t dt, and

(11.11) c(h,T) = f 1 dt,
0

where h is real and T > 0. It is immediate that c(h,T) - Oj 
and

s(-h,T) = -s(h,T), c(-h,T) = c(h,T).
If we let u = ht, then, for h > 0,

hT hT
2 r h sin u du 2 P sin t 

s(h,T) = ?  \  Û---  "ET = ¥ — I—  dt.é ' 4
standard treatises ([5] pages 247-S)'show that

dt
0
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is bounded for all u >  0 ; furthermore,
u
\ sin t TT lim \ — r—  = 2 .

U->CX5 J

Lemma 11,12: s(h,T) is bounded for all real h and T>0, 
and for arbitrary fixed cf an(% cT * ,

Î1 uniformly for h > 0, 0 for h = 0, .
-1 uniformly for h ^ 0,

Lemma 11,13: For each real h, lim o(h,T) = h ,T-^co ' '
Proof: By an integration by parts,

hf
,. 2h \ sin t .. 2 1-oos hTo(h,T) = —  \ — J—  at - . ---5---- .

0
Thus,

lim c(h,T) = h lim s(h,T) = I hi T-^oo T^oo ' '

We now proceed to the first theorem showing the 
relation between the characteristic function of a random 
variable and its distribution function.

Theorem 11,14: If (a-*h,a+h) is a continuity interval
of the distribution function F(x), then

T
F(a+h) - F(a-h) = lim % I f t)dt,T^oo " J

»T
Proof: We write

J “ Ï ^ e-iat^(t)4t
-T
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“ \ --g-—  G-lat at eltz dF(x).

Since

IT \ t
-T

sin ht git(x-a) sin ht

for all x,t, the conditions of Theorem II.4 are satisfied, 
and we may interchange the order of integration. Thus

oo r- T
at

-oo L  -T
dF

1
T

DO

-O O

sin htt [cos t(x-a) + i sin t(x-a)]dt dF

2
IT

oo

<H30

sin ht^ cos t(x-a)dt dF - \ g(x,T)dF,

where
%

g(x,T) ^ \ coa(x-a)t dt#

By a standard trigonometric substitution, we have

e(x,T) « 1  r sin(x-a+h)t .. 1  C slnCx-a-hlt.■“ •  ..li— . ^t - ' :IT dt

1 1 
*2 S(x-a+h,T) “ g S(x-a-h,T)
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We have, by Lemma 11.12,
^ 0 for x <  a - h,
2  for X ® a - h,

lim g(x,T) =‘ il for a - h < x c a  + h,T-» oo ^
"2 for X = a + h,
^0 for X >  a + h.

Hence jg(x,T)| is bounded by some absolute constant, and we 
may apply Theorem A. Thus, since F(x) is continuous at 
X = a ^  h, we obtain from a consideration of the Darboux sums 
that

a+h
lim J “ \ dF(x) = F (a+h) - F(a-h),T-» oo \

a-h
and the theorem is proved.

The theorem shows that if two distributions have the 
same characteristic function, then they have the same vari­
ation on every interval which is a continuity interval for 
both distributions; but then, since the functions are both 
bounded by 1, they are necessarily identical ([2] page 58).

We have established the one to one correspondence which 
exists between distribution functions and characteristic 
functions. We now proceed to show that, under certain 
conditions, the transformation by which we pass from a 
distribution function F(x) to the corresponding characteristic 
function Cpit) is a continuous transformation, i.e. 
ni°«) " F(x) and lÿn (^^(t) = C^(t) are equivalent.
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Lemma 11,15: For any real a and h > 0, we havef 7
\ [ï(a+z) - r(a-z)] 42 = ^  \ ^  e-“ ®(^(t)at.
0 -si
Proof: Let

oo
1  I l-cos ht ,, (

^ 1  “ 7 1 --- ^ -- e-ita at \ eltx aF(x) ;
-oo ~oo

hence
oo %

t
-ÔO

the interchange of order of integration being justified as 
in Theorem 11,14,

We thus have

__ T  1-008 ht
^ 1  “ îr \ (3.F(x) \ [cos t(x-a) + i sin t(x-a)]dt

“OO - w

'r *r
1  I I cos t(x-a) - cos ht cos t(x-a)= - \ dF(x) \ ^2 dt

-oo "OO
OO
r .sin t(x-a) sin t(x-a)cos ht_..+ i \ [-^ ----------]dt.

-oo

The last integral is zero, since the integrand is an odd 
function and is integrable. Applying a standard trigono­
metric substitution, we obtain that
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SX) oo

1  ■ ir
2  I __ . I 2  003 t(x-a) - cos(x-a-h)t - cos(x-a+h)t

dF(x) \ ---------- — -------------------------------
2 t‘ dt

oo

= ir \ clF(x)
oo

3. ^  r 2 COS t ( x -a  ) -2 
2*ir dt

oo oo
2  ( 1 -cos (.x-a+h ) t .. 2 \ l-cos( x-a-h) t ..

* T \ 1-2 + T l 1:3 at

But, by (11.11)
OO

^  ̂  dt = 0 (x-a+h,T) = [x-a+h( ,

oo

^  \ at = c( X-a-h,Tj = I x-a-h I ,

and
QP oo

2 \ 2  0 0 S t(x-a) - 2
ir dt = - 2

2 1-003 t(x-a)
ir dt

= -2*c(x-a,T) = -2jx-a •
Thus

"OO

'2 I x -a  I + I x -a + h l + I x -a -h [  
2 dF(x)

When X a-h or x > a+h, ^ — [x__a__^ = o,
that = Oo On the other hand, when a-h < x c a+h,

so

ReprocJucecJ with permission of the copyright owner. Further reproctuction prohibitect without permission.



25

a a+h
^  (x~a+h)dF(x) + j (h+a-x)cLF(x) • 
a-h a

Let Gj_ = x-(a-h), Gg = h+a-x. By Theorem B,

f TJl = \ G^aFCx) + i G^dF(x)

a-h a
f a+h

= F(a)*h - \ F(x) dx + (-F(a)*h) + \ F(x}dx
a-h a

a a+h
F(x)dx + 1 F(x)dx,

^ h  aa a.h
We let X = a-u In \ F(x)dx and x = a+u in \ F(x)dx and

a'̂ h
find that 

0
“ r F (a-u) du + ^ F (a+u) du

h 0f= \ [F(a+u) - F(a-u)] du,
0

and the lemma is proved.
Theorem 11,16*. Let |f ĵ(x )| be a sequence of distribu­

tion functions and |"Cp̂ (t)j the corresponding sequence of 
characteristic functions. A necessary and sufficient condi­
tion for the convergence of the sequence ^Fn(x)j to a
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distribution function F(x) is that, for every t, the sequence 
n( converges to a limit Cfit) which is continuous at

t = 0. Where this condition is satisfied, the limit (^(t) 
is identical with the characteristic function of the limit- 
ii]g distribution function F(x).

Proof: We first prçve the condition is necessary.
Suppose F^(x) F(x). We will show that

lim n-» oo

oo
gitx - \ e^^^dF(x) = 0 ;

-oo -oo

i.e., thatÇ?^(t) converges to a characteristic function. It 
follows from Theorem C that,for any finite interval(a,b)^ 
we have

b b
lim \ e^tx dF„(x)
n-ÿ oo n eitx dF(x).

a a
We choose a and b, continuity points of F(x), such that 
F(x) <  & when x - a ,  and F(x) > 1 - -7 , when x Z  b. Now
we choose n so large that ] Fĵ (fe) - F(b)[ 7»
F^(a) - F (a )I < and

dFn(x) dF(x) €c 7.

Then
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î-oo 
ai

oo
eltx dF^(x) _ \ dF(x)itx

-OO

gitx clF(x) dF^(x) - \ dF(x)

oop ?+ \ 4ï.^(x) + \ dF(x) •
b b

But,

-oo

ar
dFj (̂x)

-
eitx

j-oo
ap

F^(a), and dF(x)

dF^(x) < \ dF^(x)
-oo

7
-oo

further.
oo oo

^  j  dF^(x) 
b
oo

l-F^(b), and eitx dF(x) 6  l-F(b) < -ÿ" .

By choice of n, |F^(a)[ < |F̂ (̂a) - F(a)| + |F(a)|<f- + ^  
Similarly, we find that F̂ (̂b) ^  , Thus,

2c
“T"*
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oo oo
dF^(x) - \ dF(x)

-oo -oo
Since £ is arbitrary, necessity is proved.

To prove sufficiency we assume that for every t,Cp^{t) 
tends to a limit(jp(t) which is continuous for t = 0 , and we 
prove that P^(z) tends to a distribution function F(x).

By Theorem 1,6, the sequence |^F^(x)j contains a conver­
gent subsequence whose limit is a non-decreasing function 
F(x), where F(x) may be determined so as to be continuous 
on the right. We show first that F(x) is a distribution 
function. Since we have 0 ^ F(x) ^  1, it is sufficient to 
prove that F(+oo) - F(- oo) = 1, From Lemma 11,15, we have, 
putting a = 0 ,

h h 0

[F^ (z) - F„ (-z)]dz =% F^(z)dz -
0 -0

OO
1
ir

1 -cos ht (jp^(t)dt.
-<X)

The integrands F (z) and F_ (-z) are uniformly bounded by
^  V

“ F(x) a,e., since F(x) has only a count-1 , and lim V
able number of discontinuities on these intervals. Thus
Theorem A applies, and we have 

h
lim \ [F„^(z) - Fj^(-z)]dz = I F(z) 

0 0
dz - I F{z)dz,
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Since t)| 6 1 , (f21 (t) is dominated by the func­
tion — , which is Integrable over (-00,00); thus, by 
Theorem A,

00
1  I 1-008 ht._ ,  ̂ 1  r 1-003 ht ,

H “o o \  Yn_(t)dt - IT \ ^  Cp{t)it,

Dividing by h, we obtain

I \ F(z)dz - I \ F(z)dz - ^  \
- 0 0

We let z " uh, r " th, and obtain

 ̂1 F(z)dz - è I '(z)dz 
0 -1

- \ [F(uh)i - F(-uh)]du

00
1 [ .l̂ cog._g ,r. 

r®IT \ „s V(hl dr.

We now allow h to tend to infinity. Then,
1 1 .

lim 1 [F(uh) - F(-uh)]du ■ \ [F(oo) -F(- o©)]dun-# 00 J J

" F (00) - F(- 00) ■
On the other hand, by hypothesis if {̂ ) is oontinuous for 
r ■ 0 , BO that (§} tends, for every r, to the limit ^ ( 0 ). 
But by hypothesis Cp{0) - l ÿ ^ y ^ ( O ) , and % ( 0 ) - 1 for 
every n# Again applying Theorem A, we have
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r ‘r
1  I l-cos r , .r. 1  1 1 -cos r . .\ — — - ÎF \ --- (^(0 )dr = 1 .

Thus,
F(+ oo) — F (- oo) = 1.

Since O ^ F ( x )  ^ 1, we must have F(+oo) = 1, F (-oo) = 0, 
and the limit function F{x) of the sequence ^F^(x)^ is a 
distribution function. By the first part of the proof, it 
follows that lim^j^(t) = Cpit) is necessarily the charac­
teristic function of F(x).

We now consider another convergent subsequence of 
|^F^(x)j , and denote the limit of the new subsequence by
F*(x), assuming this function to be determined so as to be 
continuous to the right. In the same way as above, we may 
show that F*(x) is a distribution function. But by 
hypothesis the characteristic functions of the new subse­
quence have, for all values of t, the same limit (pit) 
as before. Cpit) is thus the characteristic function of 
both F(x) and F*(x); hence, according to the uniqueness 
theorem (11.14), we have F(x) = F*(x) for all x.

Therefore every convergent subsequence of F^(x) has 
the same limit F(x). Further, ^Fj^(x)| itself converges 
to F(x) in all continuity points of F(x). For 
suppose not. Then there must be a continuity point Xq of 
F(x) and an € ?- 0 such that for every N there exists an 
n > N such that |f^(Xq) - F(x^)| >  6  * Thus the set
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= pn(xo)| |Fn(xo) - F(xq)I > € J is an infinite set 
of real numbers. The corresponding sequence of functions 
has, by Theorem 1 .6 , a convergent subsequence J .
We have already established that every convergent subse­
quence of ^Fjj(x)j converges to F(x) in continuity points 
of F(x). We must therefore have j.im^ F^^^(Xq ) = F (Xg),
which contradicts the assumption that |Fjî (Xq ) - F(Xq )| i e
for all V. We conclude that ^F^(x)^ converges to F(x) on
the set of continuity points of F(x).
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CHAPTER III

The main results of this chapter are Theorem III.6, deal­
ing with the convergence in distribution of a random variable 
with a binomial distribution to a random variable with a 
Poisson distribution, and Theorems III.15 and 111,17, both 
variations of the Central Limit Theorem. Brief discussions 
of the pertinent properties of the binomial. Poisson and 
normal probability distributions have been included for 
ease of reference.

Let us first consider a random experiment in which we 
Vvill denote by E an evenu with fixed probability p of 
occurring on any given trial. Let a series of n indepen­
dent trials of the experiment be performed, and define a 
random variable attached to the kth repetition, as
follows :
/^TT 1 A V if E occurs at the kth repetition (prob-llllo ) k iability p),

(.0 otherwise (probability = 1-p ),
Then the random variable

n
(IIIo£) X,. - 7 Yk

k^l
denotes the total number of occurrences of E in the n 
repetitions of rhe experiment,

30
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Theorem III.3 [2]: Consider n repetitions of a random
experiment, and let Yjj. be defined by (III. 1), and by 
(III,2 ). The the probability distribution of is given by

P[X^=r] = (?) p^q^"^.
Proof: The c.f. for Yĵ  is

2
Cpy^(t) = Pj = p + q.

0 = 1

Therefore, 10[^(t) = (e^^.p+q)^. We thus obtain, by the 
binomial expansion,that

Cfxntt) = (eit.p+q;n . V (g) pr^n-r.gitr.
r=l

But this is the characteristic function of a variable which
takes on values r = 0 ,1 ,2 ,...with the probabilities

Fp “ (r)
By the one to one correspondence between distribution 
functions and characteristic functions, we thus conclude that

P[X^=r] = (?) p^q^-^, 
as asserted. The distribution just derived is called the 
binomial distribution.

Before obtaining an important result concerning the 
binomial distribution, we discuss briefly the Poisson 
distribution.

Definition III.4: If the distribution function of a
random variable X is specified by

P[X=k] = ^ —  , k = 0,1,2,...,
X is said to have a Poisson distribution.
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/ieltrA consideration of the Maclaurin expansion for e 

shows at once that the c.f. for the Poisson distribution is
oo

(III.5) (t) = ^  ^
r= 0

Theorem III. 6  [2]: Let Ĵ Xĵ ĵbe the sequence of binomially
distributed random variables defined in (III.2). Then if 
n-> DC in such a way that np^-» ^(constant), the distribution 
of approaches the Poisson distribution with parameter A . 

Proof: The c.f. for X^ was found to be
tp^(t) = ( e ^ S ^ + q P =  [ 1  +p^(e^^~l)]^.

Thus
iPn(t) = [1 + % ( e ^ ^ - l )  ]n^

n
But, np^-^ A as n-» oo, thus we may write np^ = A + »̂ (n) ,
where (n) -> 0 as n ->oo. Hence

- [1 - jn _
Letting r^(n)(ei't-l) = cX (n) and /^(e^^-l) = , we

have, by the binomial expansion,
fp„ (  t ) =  (l + f  )“ + [  ( 1  ) ( l + S ) + ( I ) ( n - g ) “ - 2  ( 2 ! ^ )  2^.. . + ( 2 S ^ )

We show that the quantity in brackets converges absolutely 
to 0. Let
z(n) = [(i)(lJ^)“'^|^4^| + (2 )(l-^#)|*^|®+... + l‘4 ^ r ] .
Since (l+î *)̂ :£ for k £ n, and since ( r - rl when r
is a positive integer not exceeding n,
z(n)<U(n)|e'^tl | ].
But, for sufficiently large n, |cA^(n)| c 1, so that 
z(n) /cX(n C l  + "g; + "si +...+ nl 3 —  lĉ (h)j ^ .
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Thus,
lim z(n) = 0 , n-» oo

and
lim t) = e^^-Dn—> oo ■“■

Expression (1X1,5) shows this to be the c.f, of a random 
variable with the Poisson distribution, and the theorem is 
proved.

Suppose,a random variable % is defined such that X almost 
always assumes a constant value c. This distribution func­
tion of this variable is the function E(x-c) defined by

(III.7) Ï J  o!
A consideration of the definition of the characteristic
function of X shows that (^ (t ) = e®^^. The following theorem
shows a relation between convergence in distribution and
convergence in probability to a constant.

Theorem III, 8  [5] : Let X̂̂  ̂j be a sequence of random
variables, with corresponding distribution functions ^Fu(x)^,
Then X^ converges in probability to a constant c if
lim E„{x) = F(x-c), where F(x-c) is defined by (111,7), n-$ oo u

Proof: P[| - c| > C  ] = P[X^i >  c +€. ] + P[Xj^-^ c - 6-3
= 1 - F^(c+€) + Fjj(o-G+0),

But by hypothesis, lim F (x) = F(x-c), Hencen-> oo "
lim PClXn-cl > £ ]  = 1 - lim Fj,(c+e) + lim Fn(c-£+0) » 0,n-» oo I n I n*̂  oo “ n-» oo
as asserted by the theorem,

A stronger theorem than the converse is true:
Theorem 111,9 [5]: Let ^X^ j and |̂ F̂ (x) j be as in the
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previous theorem. If converges in probability to a ran­
dom variable X, with d.f. F(x), then converges to F{x).

Theorem III.10 (Khlntchine) [2]: Let ^X^j be a sequence
of Identically distributed Independent random variables, and
suppose E(X^) = m exists. Then the random variable n
%  = E  ^  Xjj. converges In probability to m. 

k=l
Proof: Let Cp(t) be the c.f. corresponding to the

common distribution of the Xĵ . Then, according to (II.9)
tand (II.7) the c.f. of X Is [Cp(n)3^« By property 6 ) of 

the c.f., we have
CP(t) = 1  + mit + o(t);

Thus, for any fixed t,
- [ 1  + 4 ^  + o(l)]“
. [ 1  + ]“ .

n
Hence, ^

[ f i » "  - 1 1 -. I I .

By Theorem 11.16, is the c.f. for some random variable,
since e^^^ Is continuous at t = 0. The assertion of the 
theorem thus follows from Theorem III.8 , Theorem 11.14, and
(III.7).

The Important result In each of the.Theorems IIIJ.5,111.17 
in the following discussion Is that, subject to very general 
conditions regarding their distributions, certain commonly 
encountered sequences of random variables converge In 
distribution to the normal distribution.
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The standard normal distribution function is defined by

f _t 2

'■oo

The mean value of the distribution is zero, the standard 
deviation is 1 , as seen by

99 99

{I1 I»1 1 ) (x) /pTT \ ® ^ dt.

~w~xe dx = 0

-oo -oo
and

oo oo ^2

x^d (|) (x) = ~^=- \ x^e ^ dx = 1'2ir
-oo -oo

13
Theorem III.12; The characteristic function of ^  (x)

T  -r(_P ( t) = 1 e^^^d ̂ (x) = e ^ .
-oo

Proof; We have

f  7Lp(t) = \ I gltx-x2/2^^_
-OO "%0

Completing the square on the exponent, we obtain
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(III.13) Cpi t )

36

(z-it)^ _ t£
e 2  • e 2  dx

-oo

= e 2 1
t/2¥ e

-oo

R.-R.
Figure 2.

A consideration of the integral
.2

e “ dz.y W
Si2

4
where C = LJ C, (Figure 2 ), shows that the value of the last 

i=lintegral of (III.13) is 1, and the theorem is proved.
We extend the notions of the previous paragraphs as 

follows.
Definition III.14. The random variable %  is said to be 

normally distributed with mean m and standard deviation cr if 
the distribution function of X is ^

1  i  (2 :2 ).1  c r ~
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It follows that the variable has the distribution
function (̂  (x), hence the characteristic function e ^  , 

We finally consider the Central Limit Theorem. 
Theorem III.15(Lindberg-Levy) [2]: Let be a

sequence of identically distributed independent random 
variables with mean m^ and standard deviationcT^^. Let 
random variables X and X be defined by

V  1 V(III.16) X = > Xĵ , and X  = H .
k=l k=l

Then the d.f. of the random variable

X-nmq
crqi/'n

converges to$(x), defined by III.11.
(It follows that the d.f. of the random variable

m^
cri/yn

converges to ( z). )
Proof: Since the Xĵ  are identically distributed, it

follows that the random variable X, defined by (III.16), 
has mean m = nm^ and standard deviationcr^c^-Zn. We con­
sider the variable

X-m X-nmi
cr = o-nZn- = (X^^-m^)
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Denote by (^( t ) the characteristic function of the devia­
tions by F ( x ) and t ) the distribution
function and characteristic function of the variable .
Then by (1 1 ,9 ),

Now, the first two moments of the variable are 0 and
gcr2  respectively. Thus by property 6 ) of the characteristic 

function,
Cp^(t) = 1  - t^ + o(t^).
'tjSubstituting c7-jyn~—  b we obtain

V’.(t) = U  - I I
Where t^(n,t) tends to 0 for each fixed t as n^ cx3. Thus, 
for each t, as n->oo,

* e ^ ,
which, by Theorem 111,12, is the characteristic function of 
ÿ (x). We thus conclude that for each x, F(x) <§(x), and 
the theorem is proved.

Theorem 111,17 (Liapounoff ) [2]: Let be a sequence
of independent random variables, and denote by m^, and
Py , respectively the mean, standard deviation and third 
absolute moment about the mean of Let

_n
m(n) = \  m V*

v=l
n

"^(n) = >
v=l
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and

n

^{l) " y Pv "
v=l

2Suppose that p-y is finite for every v. Then, if the condition

°
is satisfied, the distribution function of the random

. , _ X-m(n) variable ^  ;— r , where(n)
n

_V“ 1

converges to ^  (x).
In the proof that follows, the quantities 0^ will 

always be such that |0 ĵ] 5  1 .
Proof: We let be the c.f. of the v-th deviation,

Xy - m^, and C^(t) be the c.f. of the standardized random 
variable

V=1
Then

If we can show that for every t, lim = e then the
n*^ oo '

theorem follows immediately from Theorem 11.14.
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From the Maclaurin expansion

eiz _ ÿ " ,
r = 0

where k is a positive integer, z real andjo^j^l, we obtain, 
for k = 3 ,

C/?^(t) = E(e^^f^v“°iv) }

1 -

2 6
* ©P »

2 Cl 6

t%-| ^
-'t I) ® 2  ‘ -,S. ' —

p3tS. V , we obtain

Further, = (1 -

t4cr̂letting z = -  V + q

i o g ^ ^ ( a - ^  = log (i+z).
P(n)Since, by hypothe sis, crj^  ̂  1, for sufficiently large 

values of n, we have

Pv /
0 -(n) -  CT(n)

It can be shown ([2] pages 175-6} that cr^ ̂  p^ for every v.

2 <̂ (n) S'^n)
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 ̂ e, . .

Thus,
- 4 7 ^ 5  )•

Hence z -> 0 as n oo for every fixed, t . In particular, we 
may choose n so large that I z I <. in which case

2
log (1+z) = z - ““  {!-■§ z + ■§■ z^ - ■§ z^ + ....)

2

= z + 0g z^ •
Hence,

log iP = log (1+z)

Summing for v =l,2,...,n, we have

log Lpit) = - § -  + Gg 2 ^  (-L|i- + 0 g ( | -  + i-|J- )®).
3 (:i) 2

As n oo, £-Lsl 0, thus log (j)( t) for every fixed t.

Hence, as n oo, Cfit) e 2 , and the theorem is proved.
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