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INTRCDUCTICN

A mathematical theory, to be of practical value, must
obviously provide theoretical counterparts for the real
phenomena which it purports to describe. Mathematical
probability theory is no exception. Since probabilistic
methods are now being used extensive}y in varied applica-
tions to real situations, it seems reasonable to inquire as
to Jjust what links the theory of probability to the real
world. The probability theoretic concept that provides the
necessary link with reality is the Weak Law of Large Numbers,
sometimes called the "law of averages," and is formulated
in mathematically precise terms in Theorem IIT.10, Khintchine's
Theorem, in the sequel.

Essentially, what the Weak Law says in real terms is
this: If we perform an experiment a large number of times
and observe the frequency of the occurrence of a particu-
ler event, then there is a very large probability that the
fraction of times the event occurs will differ only slightly
from the true probability of the event. Thus, if we toss
a coin a large number of times and observe the fraction of
the tosses which result in the occurrence of heads, we can
be quite sure that this fraction will differ little from the
true probability that a head will occur on a single toss.

It is not, however, the intent of this paper to con-

sider the application of the mathematical "law of averages"
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to the real world. The basic purpose of our discussions of
the Weak Law and related theorems is to indicate ‘the con-
ditions.undgr which they apply to theoretical situations.
'Nevertheleséj the importance 6f the theorems to be considered
derives not only from the contfibution’they make to prob-
ability theory, but also from their wide applicability in
statistical analyses of actual situatioﬁs.

As evidence of important theoretical and real implica-
tions we consider briefly two of the théoféms proved in
C&apter III. Theorem III.15, the Lindberg-L&vy Theorem,
shows that if we have a sequence of identically distributed
independent random variébles, then, subject to certain
conditions, sums and means of sums of these variables have
asymptotically normal distributions. This theorem enables
us to draw inferences based on a consideration of the means,
without unduly concerning ourselves with the distribution
of the variables themselves.

Tﬁeorem ITII.17, the Liapounoff Theorem, states that,
under certain very general conditions, the sums of random
variables are approximately normally distributed, even if
the varlables do not necessarily have identical distributions.
For example, I.Q. scores are based on answers to a sequence
of questions, gach of which is worth a specified number of

points. An individual test score is the sum of the points
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a person receives for each question. If the results of differ-
ent questions are ilndependent, then the Liapounoff Theorem
says that the test scores are approximately normally dlstributed,
desplite the fact that the number of points a person scores on
qQuestion one, for example, may have a decidedly different
distribution than the number scored on question two.

In the disousslons that follow, the author assumes a
knowledge of probabllity and statlstics at the level of
Feller [3], Cramér [1], or comparable works; and a famili-
arity with measure and integration theory at the level of
Munrce [8], The notation employed in this paper oonrorgs
to the notation used in [2] and [3].

For ease ¢of reference, several theorems and definitions
are inocluded in thls introduction.

Let 3 be a measure space, with measure 4 . (In the
liqdrature'or pfobability theory, S 1s called a sample space if

- M(SY"l.) We define a random vaeriable X on S as a real valued

measurable funotion whose domaln 1s S.

The random varlable X induces a measure P on the oclass
of measurable sets of real numbers; for the inverse image
under X of any measurable set T of real numbers 1s a
M -measurable set of S, We define the measure of T by
P(T) = 4 [x"H(T)]W

LNumbers in square brackets refer to the numbers of
the references in the list of references oited on page 42,
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Let P be the measure defined above, We associate with
P a non-decreasing point function F(x), called a distribu-
tion function, such that for any finite interval (a,b] we
haveeF(b) - F(a) = Pla <« x = b)., It can be shown that F is
uniquely determined except for an additive constant;
further, F(x) 1s everywhere continuous to the right. If
P 1s a probability measure, F may be chosen such that
%iﬁm F(x) = 1, %iﬁqx?(x) = 0,

Thus, with each random variable X we assoclate a
distribution F(x) defined by F(x) = P[X < x].

Theoreﬁ A ([2] page 86): If 1%m gv(x) = g(x) exists,
except on a set of P-measure zero, in a measurable set S
of real numbers, and if lgv(x)l < G(x) for all v and all x

in S, where G(x) is a function integrable wlith respect to

F on S, then g(x) is integrable with respect to * on S, and

%iﬁm gy(x)aF = g{x)4r,
S S
Theorem B ([2] pages 73-74): If F and G are non-
decreasing functions in [a,b], have no common dl scontinuities,
and have onlf a finite number of discontinuities all of which
are in (a,b), then
b b

AFG = f raG + f G4ar.,
a a

a
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S

Theorem C ([8] page 138): Let g(x) be continuous on
[a,b] and let {Fn} be a sequence of functions such that F_
is a distribution function for each n, and 1%m Fn(x) = F(x).
Then

b b
lim Xg(x)dl“‘n = J g(x)ar.,

a a

Definition D: An interval {(a,b) will be called a

continuity interval of the function F(x) if a and b are
continuity points of F(x).
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CHAPTER I

We consider in this chapter some of the modes of con-
vergence of sequences of random variablese.

Let {Xn}'be a sequence of random wvariables defined on
the same sample space S for which a probability measure P
has been defined. Lst X be another random variable defined
on S,

Definiticn I.l: We say that {Xh} converges to X with
probability one if

Pliim X, = X] = 1,
n=>» oo

Definition I.2: The sequence {Xn} converges in mean
square to the random variable X if lim E[(Xth)zj = O,
n-y oo
Definition I.3: The sequence {Xn;converges in prob-
ability to the random variable X if, for every € > 0,

lim PL|X -X|>€] = 0.

An important property of convergence in probability is
that no moments need exist before it can be considered,
which is gquite evidently not the case with convergence in
mean square. (Qur interest centers on convergence in
probability and convergence in distribution«-defined in
lo4.)

In measure theory language, convergence with prob-
ability one is almost everywhere convergence, while conver-

gence in probablility is convergence in measure,

8
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Applying one form of Chebychev's inequality we obtaln

that, for any€ > 0,

P [lxn—Xl>e]£ é'z - E [(x,-X)%].
Thus convergence in mean square implies convergence in
probabllity.

We are primarily concerned with convergence in distri-
bution, defined as follows:

Definition I.4: A sequence of distribution funections
{Fn(x)} 1s said to be convergent if there exists a non-
decreasing function F(x) such that

%iﬁx’Fn(x) = F(x)
in every continuity point of FP(x). (Thls form of conver-
gence 1s sometimes called essential convergence.,)

Theorem I.5 [2]: Let {an be a sequence of random
variables with corresponding distribution functions SFn(x)}.
Suppose %35” Fo(x) = F(x) is a distrivbution function. Let
Yn be another sequence of random variables, and suppose Yh
converges in probability to a constant c. Put

§n=Xn+Yns7n=Xn -Yn,yn=%.
Then the distribution function of { tends to F(x-c).
Further, 1f ¢ > 0, the distribution function °f'ln tends to
F(%), while that of ¥, tends to F(ox). If ¢ < 0, the
distribution function of q = tends to 1 - F(3), while that
of b}n tends to 1 - F(cx).

Proof: We prove the assertion for‘Yh, ¢ > 0. The

other proofs are similar. Let x be a continuity point of
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F(cx), and denote by F,(x) the distribution function of ‘Yn;

i.e. F (x) = P(2, < x). Then we must show that

. i
i = lim P < = .
25 Falx) = 3l Flyy = %) = Flex)

We consider the set S, of all points in the (Xn,Yn) plane

such that -‘?-1- < X, This set can be written as the union
n
of two disjoint sets, Snl and Sna, defined by the inequalities
Xn
Syt g, =% |Tn - o|=€;
X
S . -—n'- < X Y - G .
nNo Y, :| n l?E

Thus,

P(Sy) = P(sy,) + P(Sy,).

Clearly, Sna 1s a subset of the set of points on the plane
for which ,Yn - c]>-€. By hypothesis, %gﬂm P[th - c[>€]=0
for any € >0, Hence for any€& > 0, P(Sng) - 0 with increas-
ing n.

Further, it is seen that P(Shl) is enclosed between
the bounds P[X, < (c- € )x, |Yn - c[é € Jand P[X, € (ct+t€)x,

|Tn - c| £ €l. (Figure 1).

Yn
.Yr‘ - ‘,l'i X"\
C+é I -
/
A N = J
(C-&)% €+elx Xn
Figure 1
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Now P[X < (e + ¢ )x] = Fpl(c + € )x]. Each of these
bounds differs from F [(c * € )x] by a quantity less than
P[|Yh - cl > €]. For, we have that 0 < F [(c - ¢)x]

- P[x, < (c -e)x,IYn -c|>€] = P[Xy < (c ~€)x,

rYn - c[ >e] <P[ lYn - cl >€j. A similar consideration
gives the corresponding relatiénship for Fpol(c +€ )x]. But
P[|Yh - c|:> €] tends to zero for any € by hypothesis; hence
we may make P(Snl) as close as we please to F(ex), and the
theorem 1s proved.

Theorem I.6 [2] : Every sequence {Fn(x)} of distribu-
tion functions contains a convergent subsequence, The
1imit funection F(x) can always be determined so as to be
everywhere continuous on the right.

Proof: Let ry, rg,s...be an enumeration of the
rationals, and consider the sequence {Fn(rllz e« Since
0 £ Pu(ry) < 1, the Bolzano-Welerstrass property of the
real numbers tells us that the sequence has a limit point.
Thus {Fn(rl)} contains a convergent subsequence. This is
the same as saying that the sequence {Fn(x)} contains a
subsequence Zq which converges for the particular value
X =TI By the same argument, Zl contains a subsequence
Zz which converges for x = ry and x = ry. We find that

8imilarly, Z_, contains a subsequence Z5 convergent for

2
X =ry, Xx =rg and x = rzg. We continue in this manner,
obtaining a contracting sequence {Zn} such that 2z, always
contains a subsequence Zn+l convergent for x = Treeee,

X = i We may form a sequence Z whose nth element is
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the nth element of Z clearly, Z converges for all rational

nd
values rqy of X.

Reindexing, for simplicity, let the members of Z be
Fi(x), F5(x)y.., and put iim Folry) = c4, 1 =1, 2,...
We always will have Cy < 1, and since Fn is a non-decreasing
function for every n, we will have Fn(ri) < Fn(rk) if
ry < ry, hence that %_i?moo Fn(ri) < gij_:?moo Fn(rk); i.e,
¢y =< Cyx whenever ry < ry.

We now define a function F(x) for all real x by

F(x) = inf c¢; for all rj > x,

That F(x) is bounded follows from the fact that {ci} is
bounded. That F(x) is monotone non-decreasing is seen
from the following: Let x' > x. Then {rilri > x}
contains {ri| ry > x'} . Hence F(x) ={inf cilri> x}f_
{inf ci‘ri > x'} = F(x'), which is the desired result.

F(x) is also everywhere continuous to the right. To

show this, let € > 0 be given. Since F(xo) ={inf ci!ri7x°},

we c¢an choose r-

; such that cio - F(xo)4 €. Let §= rio- Xq$

o
when x - X, < §, X€ (xo, ry ), and, since F(x) is monotone
o

non-decreasing, F(xo) < F(x) < ¢; » Thus, F(x) - F(x,)<€,
o

and right continuity is established.
We now show that in every continuity point of F(x),
we have

lim F _(x) = F(x),
nyeco 1

so that the subsequence Z is convergent. If x is a con-

tinuity point of F(x), then for a given € > 0 we may choose
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h > 0 such that
F(x+h) - Flx)< -g- ,

and

F(x) - F(x-h)< -§= .

Let ri and rk be rational points situated in the open inter-

vals (x-h,x) and (x,x+h) respectively; we find, making use
of the monotonicity of ¥, that
F(x-h) < c; £ F(x) £ ¢ < F(x+h).
For every n, we have
(I.7) Fn(ri) < Fn(x) = Fn(rk)’
by the monotonicity of Fn; but
lim P _(r.) = c¢., and 1im F _(r.) = c,.
-y co n 1 i? n-r co n( k) k

Since F(x+h) - F(x-h)< & and Fl{x-h) = c;

i € F(x) = Cp <

F(x+h), ¢ - e¢x <€+ By (I.7] we have

lim P (r.) < 1im F (x)<« lim F (r ),
i n~»>occ n noo n k

nN=-cco n
or
. £ < .
°1 = %gnoan(x) - ck
Thus,both F(x) and lim P (x) lie between ¢, and ¢ _, hence
n-Yeo n i k

[F(x) - lin F (x)| <é&;
N0 1N

but € is arbitrary, so the sequence Z is convergent.
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CHAPTER II

In our discussion of characteristic functions and

their application we shall encounter integrals of the type

(Ir.1) u(t) = |g(x,t)ar(x),

S
where t is a real parameter, S a given measurable set. We
shall require certaln theorems concerning continuity,
differentiation, and integration of such functions of t.
In what follows we assume that g(x,t) 1ls a complex valued
function and that, for each fixed t conslidered, the real
and imaginary parts of g(x,t) are Borel measurable functions
of x which are integrable over S with respect to F(x).
Proofs of the following three theorems can be found in [2],
pages 66-~70,

Theorem II.2 - Continuity: 1If, for almost all values
of x in S, the function g(x,t) 1s continuous with respect
to t at t,, and if for all t in some neighborhood of to we
have Ig(x,t)|<:Gl(x), then u(t) (II.l) is continuous for
t = to; i.e.,

lim glx,t)aF(x) = g(x,to)dF(x).
£t J
S

12
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Theorem II.3 - Differentiation: If, for almost all
values of x in S and for a fixed value of t, the following
conditions are satisfied:

1) The partial derivative éﬁ%gtﬁl exists,

g(x,t+h)-g(x,t)
h

h, independent of x,

2) | < Go(x) for 0< [b|< g,

then
4
u'(t) = 3¢ |el(x,t)ar(x)
3
exists and equals hgélgngEll ar(x).
S

Theorem II.4 - Integration: If, for almost all values
of x in S, the function g(x,t) is continuous with respect
to t in the finite open interval (a,b) and satisfies the
condition [g(x,t)| < Gg(x) for all t in (a,b), then

b
u(t)dt = glx,t)aF(x)| 4t

exlsts and equals
b

gix,t)dat [dF(x).

Further, 1f the above conditions are satlsfied for every

finite interval (a,b), and if, in addition, we have
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;K |g(x,t)\ dt < G4(x),

oG

o0
S u(t)dt = X g{x,t)dt| ar(x).

=00

then

We proceed now to a consideration of the charasteristic
function of a random variable.
Definition II,5: Let X be a random varlable, let F(x)
be its probabllity distribution function, and let ¢t be a
real number. The function
o
(p(t) = E(eltX) S eltxgr(x)
-5
19 called the characteristic function of the random variable
X
As we shall see, from a knowledge of the characterlistloe
function of a random variable one may obtain complete
knowledge of 1its distribution funetion. The purpose of thils
section 1s to examine the nature of this correspondence,
The characteristie function has the followlng properties:
o0
1) |(p(t)|sSdF(x) = 1,
-0

2) @ (-t) = @17
3) CP(O) - l.
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4) (p(t) is continuous.,
5) If the kth order moment of the distribution exists,
then.QD(t) is k times differentiable with respect
to t, and, for 0 £ v < k,
o0
{V)(s) = 17 S xVelt%ar(x),
-5
8) TUnder the conditions of property 5),qﬂvkt)is
continuous for all real t, and

o0

(p(V)(o) = 3V xvdF(x), v=1,2,..,k.

Hence, in the neighborhood of t = 0, we have, by

the Maclaurin expansiocn,
k

(II.6) ,, Y(t) =1+ Z él{- (18)V + o(t¥),
v=1
oo
where %}’:% 9—5;‘13- =0, and &\, = g xVar(x).
=30

To show the validity of (II.6), we first let f£(t) be
a real valued function of the real varlable t, and we
suppose that £(t) has k continuous derivatives in some

neighborhood of t = 0., Then, by the Maclaurin expansion,

k-1
£{(t) = g .fi_iz_(_o_Ltna-ﬂﬂ).tk’ Ocecl.
n=0

we obtain that

ki
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Thus,
k
e(t) = E rindo)en | rlk)(er) - p(k)(0) i
ni k!
n=0

But f(k)(t) is continuous at t=0, so (k) (et) - £(k)(0) » O
as t » O, We may thus write

rK(ex)-£X(0)

k! &€ = o(t"),
k
where 1lim Qii—l = 0,
t-0 £

For the case where f(t) = ((t) is a complex valued
function of the real variable t we decompose £(t) into
real and imaginary parts; i.e. £(t) = fl(t) + 1 f£,(%),

We then apply the above argument for real valued functions
to fl(t) and fz(t) separately, and the validity of 1I.6
follows directlye.

Properties 1), 2), and 3) follow from the definition
of the integral. Property 5) follows from Theorem II.3,
while 4) and 6) follow from Theorem II.Z2.

From the above discussion it follows that the
characteristic function of any function g(X) which is a

itg(X)

random variable is the mean value of e In case

g(X) = aX + b, the characteristic function becomes

eit(ax+b)) itb. eltaX’ = eitb(p(a‘b).

(II.7) E( = E(e
X-m

Further, the "standardized varlable" "5 has the charac-

teristic function

(11.8) B(elt(ZR)) o p (625 . omitm) o o-itmiply,

Suppose now that we have n independent random variables

X1, Xo,eeesXn, With characteristic functions@ (t),...,
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(pn(t). Then the characteristic function of the sum

(p(t) = B(el® 5: k) = E("l%' o1t Xky,

Since the Xi are independent,

(11.9) @) = TT BeXFx) = T (o, (¢).
k=1 k=1 ' ¥

In the discussion which follows we will make use of

P

some of the properties of the following functions:

T
2 ( sin ht
(I1.10) g(h,T) = 7 t  dt, and
T
2\ 1- ht
(IT.11) ¢(h,T) == S _CL:-,J'%_‘ at,
0

where h is real and T > O, It is immediate that c(h,T) = O,
and

s(-h,T) = =s({h,T), c(-h,T) = ¢(h,T).
If we let u = ht, then, for h > 0,

hT hT
2 h sinu du 2 sin t
s{h,T) = 7 u " =T t dt.
0

Standard treatises ([5] pages 247-8) show that

u

sin t
j‘ m dt

0
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is bounded for all u > 0; furthermore,

u
sin ¢ T

lim _ = e [ 3

U= o0 v 2

Lemma II,12: s(h,T) is bounded for all real h and T >0,
and for arbitrary fixed § and J°',

. 1l uniformly for h >,5-,> 0,
lim s(h,T) =9 O for h = O, K
T oo -1 uniformly for h £ §< O.

Lemma IT.13: For each real h, lim e¢(h,T) = |n].
\ T oo
Proof: By an integration by parts,
hT
2h sin t 2 l-cos hT
c(h,T) =% & g -7 eTTTo .
0
Thus,
lim ¢(h,T) = h lim s(h,T) = |h|.
=2 00 T-» oo _

We now proceed to the first theorem showing the
relation between the characteristic function of a random
variasble and its distribution function,

Theorem II.l14: If (a-h,a+h) is a continuity interval
of the distribution function F(x), then

T
1 sin ht
F(a+h) - F(a-h) = lim = \ — ¢ e~1%8yp(t)at.
T>oco 7
T
Proof: We write
T
1 sin ht
J=7 S“T"" e~i8b(p(t)at
-T
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M e-iat at eitx dF(X).

= L
T t

R

Since

sin ht glt(x-a)|

: sobt| < [

t

for all x,t, the oonditions of Theorem II.4 are satisfled,

and we may interchange the order of integration. Thus

o0
7 "'":rL'r' X Eﬂ%_r}.t. olt(x-a) 44 lap
=00 =T
oo
1 sin ht

- S § [cos t(x~a) + 1 sin t(x-a)ldt |4F
0 | T
[0 o)

-f 5 f ain bt o t(x-a)dt| aF = g(x,T)4r,
00 0

where
T
g(x,T) s=-$ g_i_%_l_l_g cos{x-a)t at.

By a standard trigonometric substitution, we have

T
1| sin(x-ath)t 1\ sin(x-a-h)t
g(x,T) =7 T at - 7 S at
0
1
= % S(x—&*‘h,T) - _2-' S(x"a"’h’T).
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We have, by Lemma II.lZ2,

[O for x < a - h,

Y
s for x a =-nh,

lim g(x,T) = Jl fora - h<x<a + h,
T-» o

5 for x = a + h,

\O for x > a + h,
Hence Ig(x,T)l is bounded by some absolute constant, and we
may apply Theorem A. Thus, since F(x) is continuous at

X =a *+ h, we obtaln from a consideration of the Darboux sums
that
ath
%iﬁn Jd = g dF(x) = F(a+h) - F(a=h),
a2
and the theorem is proved.

The theorem shows that if two distributions have the
same characterlstic function, then they have the same vari-
ation on every intervel which is a continuity interval for
both distributions; but then, since the functions are both
bounded by 1, they are necessarily identical ([2] page 58).

We have established the one to one correspondence which
exists between dlstribution functions and characteristic
functions. We now proceed to show that, under certain
conditions, the transformation by which we pass from a
distrivution function F(x) to the corresponding characteristic

function (p(t) 1s a continuous transformation, i.e.

%ﬁﬁ&>Fn(x) = F(x) and %ign Pnlt) = (p(t) are egulvalent,
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Lemma IT.15: For any real a and h > 0, we have

h

(o]
1 l-cos ht _
X [F(a+z) - F(a-z)] dz = = S_——-"—'tg e~1%a, (t)at.
0 =50
Proof: Let

o0 o0
1 ( 1-cos nt
Iy =7 | = 48 eitaas eltx ar(x);
-0 -~0

hence

8

1 l-cos ht
Ty =7 | aF(x) | T oa— eltix-algy,

-0
the interchange of order of integration belng justified as
in Theorem II.l4.

We thus have

1 l-cos ht
Iy = o ar(x) Py [cos t(x-a) + i sin t(x-a)lds
-0
o0 o0
1 cos t(x-a) - cos ht cos t(x-a)
= aF(x) 2 dt
T t
=00
o0
.4 [sin g(x-al _ sin t(xgglcos ht]dt.
t t
-0

The last integral is zero, since the integrand 1s an odd
function and is integrable, Applying e standard trigono-
metric substitution, we obtain that
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o0 (o @]
2 2 cos t(x- - cos{x-a-h)t = ¢ -a+h)t
7, =2 | ar(x) os tlx-a) = sosl ) os{x-gth)t .,
: T 2t
0
o0 o0
2 12( 2cos t(x-a)=-2
=T dF(x)| 27 £2 at
o0 o0
2 l-cos(x-a+h)t 2 l-cos{x-a-h)t
0 0

But, by (II.ll),

l-cos(x-a+h)t
t2

O—8 of -

2 l-cos(x-a-h)t
= g dt = ¢(x-a-h,T) = |x-a-h| ,
and
[+, =] o0
2\ 2 cos t(x-a)-2 2| l-cos t(x-a)
TS 52 dat = -2.'”5 tz dt
0
= =2ec(x-a,T) = -2|x-a|.
Thus
w2 | W -g - ] -
3 =§ 2]x-a|+ |x-a+h| +|x~a-h| A (x).
1 2
-0
- -a|+ |x-a-h| +|x-a+th
When x < a-h or x 2 a+h, 2] x-al éx a-h| !x | = 0, so

that J, = O. On the other hand, when a-h < X < a+h,
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o

ath
J, = | (x-a+h)dF(x) + (h+a-x)aF(x).

a-h a

H
o
ot
(]
[

= x-(a=h), Gy = h+a-x. By Theorem B,

a a+h

oy
'—l
|

G,4aF(x) + GodF (x)
a=-h a
ath
F(a)eh - F(x) dx + (~F(a).h) + F(x}ax
a=-h

a+h

F(x)ax + F(x)dx.

)

a-h a
ath

a
We let x = a-u in ~g F(x)dx and x = a+u in F(x)dx and
a=h

f

£ind that
0 h
J, = F(a-u)du + S F(a+u)du
0

[F(a+u) =~ F(a=u)] 4u,

Ol pl—

and the lemma 1s proved.

Theorem II.1l6: Let {Fn(x)} be a sequence of distribu-
tion functions and.{qh(t)} the correspondl ng sequence of
characteristlc functions. A necessary and sufficlent condi-.

tion for the convergence of the sequence {Fn(x)} to a
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distribution function F(x) is that, for every t, the seqﬁénce
QJ?n(t)] converges to a limit (p(t) which is continuous at
t

O. Where this condition is satisfied, the limit (p(t)
is identical with the characteristic function of the limit-
ing distribution function F(x).

Proof: We first prove the condition is necessary.

Suppose F,(x) » F(x). We will show that

1lim
n~» co

oo s 0]
S ellbx dF (x) - g elt%ar(x) | = 0;

i.e., thatQDn(t) converges to a characteristic function. It

follows from Theorem C that,for any finite interval(a,b),

we have
b
lim S eltx an(x) = S eltx ar(x).
n-» oo .
a

We choose a and b, continuity points of F(x), such that
€
F(x) < % when x < a, and F(x) > 1 - %, when x = b. Now
=5
we choose n so large that | F (h) - F(v}| < 7,
, €
IFn(a} - E(a)|-< 5, and

€
e ar(x) | < 7.

P20
ct
™

b
itx
a

Then
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oo oo
+ S e1t% ar (x)| + S 1T ar(x)| .
b b
But,
a a a
& eltX gF (x)| < g I'eitx[ ar,(x) < S dF  (x)
-3 -0 =)
a
= Fn(a),‘ and g eltx dF(x) = F(z) < % 3
-
further,

‘g eltX ar (x) 5j dFp (x)
b b

eltX 3p(x)

M

= 1-F,(b}, and < 1-F(b) <

ol—8

€
7

~im

2e,
7

By choice of n, |Fp(a)|] = [Fy(a)- Fla)|+|F(a)]<$ +

Similarly, we £ind that F_(b) < §§— Thus,
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(o)

g eitx an(x) - S eitx ar(x)

Since € is arbitrary, necessity is proved.

To prove sufficiency we assume that for every t,(Pn(t)
tends to a 1imit( (t) which is continuous for t = O, and we
pro%e that F,(x) tends to a distribution function F(x).

By Theorem I.6, the sequence {Fn(x)} contains a conver-
gent subsequence whose 1limit is a non-decreasing function
F(x), where F(x) may be determined so as to be continuous
on the right. We show first that F(x) is a distribution
function. Since we have 0 < F(x) < 1, it is sufficient to
prove that F(+ o) - F(- ) = 1, PFrom Lemma II.15, we have,

putting a = O,

h h 0
X [an(z) - an(—z)]dz = S an(z)dz - an(z)dz
0] 0 =0

o0
=‘% S 1= cos ht Qan(t)dt.
-0

The integrands an(z) and F, ( z) are uniformly bounded by

1, and lim Fn (x) = P(x) a.e., since F(x) has only a count-
v v
able number of discontinuities on these intervals. Thusg

Theorem A applies, and we have

h h
%_j;moog [an(z) - an(-z)]dz = S F(z)dz ~ | F(z)dz.
0 0 -
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Since |LPn(t)l = 1, _J;:g_z_g__l’_l_!i_ ¥, (t) 1s dominated by the func-
v

ticn 32225—23 » Wwhich 1s integrable over (-cc,00); thus, by

t
Theorem A,

o0
1 l-cos ht 1 l-cos ht
Mo T 2 Lpnv(t)at =7 \ " {2 (p(t)at,
Dividing by h, we obtain

£ | Plzlaz - § \ F(z)az = i 33-:9%3-5—9(/(*;)&.

We let z = uh, r = th, and obtain

?lfj( F(z)az -1‘1{' F(z)dz = \ [F(uh) = F(=-uh)Jdu

0 -
l o0
- SL%—"; 20 ar.

We now allow h to tend to inflinlty. Then,
1

é_i,mw [F(uh) = P(=-uh)]du = § [F(oo) =F(~ oo)ldu

L F(QO) - F(- ao)-
On the other hand, by hypothesis Cﬂ(ﬁ) ie continuous for
r = 0, so that qa(ﬁ) tends, for every r, to the limit (£(0).

But by hypothesis (P(0) = lim & (0}, and ¢F,(0) = 1 for
every n. Again applying Theorem A, we have
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(o o]
1 l-cos r r 1 l-cos r
im & \ T —@({ar =5 |\ T 35— (lo)a
So0 T 2 b (R) WS 2 (P()r
-0

1.

Thus,

F(+ o0) = F(- o0) = 1.

Since 0 = F(x) < 1, we must have F(+ ) = 1, F(- o) = 0,
and the limit function F(x) of the sequence {Fn(x)g is a
distribution function. By the first part of the proof, it
follows that 1%m90nv(t) = QQ(t) is necessarily the charac-
teristic function of F(x).

We now consider another convergent subsequence of
{Fn(x)} , and denote the limit of the new subsequence by
F*(x), assuming this function to be determined so as to be
continuous to the right. In the same way as above, we may
show that F'(x) is a distribution function. But by
hypothesis the characteristic functions of the new subse-
quence have, for all values of t, the same limit (Y (%)
as before. (p(t) is thus the characteristic funetion of
both F(x) and F'(x); hence, according to the uniqueness
theorem (II.l4), we have F(x) = F'(x) for all x.

Therefore every convergent subsequence of Fn(x) has
the same 1limit F(x). Further, i?n(x)} itself converges
to F(x) in all continuity points of F(x). For
suppose not. Then there must be a continuity point x, of
F(x) and an € > O such that for every N there exists an

n > N such that 'Fn(xo) - F(x_,)| = €+ Thus the set
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@hw(x°)} = {Fn(xo)]|Fn(xo) - F(xo)‘ifi} is an infinite set
of real numbers. The corresponding sequence of functlons
has, by Theorem I.6, a convergent subsequence {FnVK(x)} .
We have already established that every convergent subse-
quence of {Fn(x)} converges to F(x) in continuity points
of F(x). We must therefore have k%ﬂx)FnVK(xo) = F{xo),
which contradicts the assumption that ,an(xo) - F(xo)lz =
for all v. We conclude that {Fn(x{} converges to F(x) on

the set of continuity points of F(x).
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CHAPTER IIX

The main results of this chapter are Theorem III.&, deal-
ing with the convergence in distribution of a random variable
with a biromial distribution to a random variable with a
Poisson distribution, and Theorems III.15 ard III.17, both
variations of the Central Limit Theorem. Brief discussions
of the pertinent properties of the binomial, Poisson and
normal prcbability distributions have been included for
ease of reference,

Let us first consider a random experiment in which we

will denote by E ain event with fixed probability p of

]

ocecurring on any given trial. Let a series of n indepen-
dent trials of the experiment be performed, and define a
random variable ¥, , attached to the kth repetition, as

follows:

_ (1 if E occurs at the kth repetition (prob-
(ITI.1) ¥k = {ability D),
0 otherwise (probability g = 1-pl.

Then the random variable

(IIT.2) X, = E Y,

k=1
denotes the total rumbser of occurrences of E in the n

repetitions of the experiment.

30
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Theorem III.3 [2]: Consider n repetitions of a random
experiment, arnd let Yy be defined by (III.l), and X, by
(ITI.2). The the probability distribution of X, is given by

P{X =r] = () pToPT.
Proof: The c.f. for Yk is
2
Py, () = ZEZ ettVE py = o't p 4+ q.
j=1
Therefore,(fkn(t) = (eit.p+q)n. We thus obtain, by the
binomial expansion, that
n
LPXh(t) = (elb.p+q)n = :E; (B) prgh-r.eitr,
r=1 |
But this is the characteristic function of a variable which
takes on values r = 0,1,2,...with the probabilities
P. = (r) pFqP~T
By the one to one correspondence between distribution
functions and characteristic functions, we thus conclude that
P[X =r] = (7) pTa™ 7,
as asserted, The distribution just derived is called the
binomial distribution.

Before obtailning an important result concerning the
binomial distribution, we discuss briefly the Poisson
distribution.

Definition III.4: If the distribution function of a
random variable X is specified by

plx-k] = A=A

k! d
X is said to have a Polisson di stribution.

K = 0,1,2,000,
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itr
A consideration of the Maclaurin expansion for e"e

shows at once that the c.f. for the Poisson distribution is
o0
(III.5) @ (t) = 2 AT o-Altr o gA(e1®-1)
r=0
Theorem III.6 [2]: Let {Xn}be the segquence of binomially
distributed random variables defined in (IIT.Z2). Then if
n-ecc in such a.way that np,- A(constant), the distribution
of X, approaches the Poisson distribution with parameter A.
Proof: The c.f. for Ih was found to be
(Pa(t) = (eiTp +a)yi= [1 +p (el®-1)]7,
Thus
Pa(t) = [1+ 2pale’™1) ga
n

But, np - A as n-»oco, thus we may write np, = A+ q(n),

whe re r((n) -> 0 as n -»>o. Hence

it_
(_Qn(t) [1 + /\+q\(n31(e 1) 1,

Letting Q‘n)(eit-l) = d(n) and A(eit-l) =y , we

have, by the binomial expansion,
o, (6)=(1+) P+ [ (F) (148 P71 @fRL) (B) (1B P2 2B 24 L (8L Py,

We show that the gquantity in brackets converges absolutely

to 0. Let
2(n) = [(3) (148271282 () (21 d8h [dé—l|2+...+‘2‘-§-)']n
Since (l+whk<' d¥l ror k £ n, and since (% ) ;: when r

is a positive integer not exceeding n, 1

z{n) =lci(nfe¥1 +|d§_l.| + | 2L | +...+|——n—n—l—(—)- | 1.

" But, for sufficiently large n, <Ak(n)| < 1, so that
2(n) <[P IL + 5y + By +euer B1 12 Jkin)] &2
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Thus ,

lim =z(n) = O,

- oo
and

e af = AMelto1)

SRR -
Expression (III.5) shows this to be the ¢.f. of a random
variable with the Poisson distribution, and the theoreh is
proved.

Suppose.a random variable X is defined such that X almost

always assumes a constant value ¢. This distribution func-

tion of this variable is the function F(x-c) defined by

- = {0 1f x < ¢
(ITII.7) F(x-c) 11f x5 o

A consideration of the definition of the characteristic
function of X shows that (P (t) = 1t The following theorem
shows a relation between convergence in distribution and
convergence in probability to a constant. -

Theorem III.8 [5]: Let {Xn} be a sequence of random
variables, with corresponding distribution functions {Fn(x)g.
Then Xh converges in probability to a constant ¢ if

lim P _(x) = F(x-c), where F(x-c) is defined by (III.7).
N9 o0 I

Proof: P[|X, - c|z€] =P[X,= ¢c +€] + P[X,< ¢ -€]
= 1 - F (c+€) + F(c-€+0),
But by hypothesis, lim Fn(x) = F(x-c). Hence

n-» co
1im P[|X,-¢| = €] = 1 - lim Fp(c+€) + lim Fp(c-€+0) = O,
n-» co n- co nN-=> oo
as asserted by the theorem.
A stronger theorem than the converse is true:

Theorem IIX.9 [5]: Let {Xn% and{Fn(x)g be as in the
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previous theorem., If X, converges in probability to a ran-

dom variable X, with d.f. F(x), then F,(x) converges to F(x).
Theorem III.10 (Khintchine) [2]: Let {Xn} be a sequence

of ldentically distributed independent random variables, and

suppose E(xn) = m exists. Then the random variable
n

X %1' Z X, converges in probability to m.
k=1
Proof: Let Lp(t) be the c.f. corresponding to the
common distribution of the X, . Then, according to (II.9)
and (II.7) the c.f. of X is [qo(%)]n. By property 6) of
the ¢c.f., we have
(P(t) = 1 + mit + o(t);
Thus, for any fixed ¢,

' t
[Cp(E)1® = (1 + B o<-§-)1n
= [1 + E%E + °(§)iﬁ 1" .

Hence,

t
t. .n mit+o(y) mit
M [P@T = pm =g -

By Theorem II.16, e®it j5 the ¢.f. for some random variable,
since M1V 15 continuous at t = 0, The assertion of the
theorem thus follows from Theorem III.8, Theorem II.l4, and
(I11.7).

The important result in each of the. Theorems III.5,IIT.17
in the following discussion is that, subject to very general
conditions regarding thelr distrivbutions, certain commonly
encountered sequences of random variables converge in

distribution to the normal distribution.
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The standard normal distribution function is defined by

¢ -
(IIT.11) & (x) =E ge 2 at.

The mean value of the distribution is zero, the standard

deviation is 1, as seen by

and
oo oo 2
24 _ 1 2. 2 -
g x q:' (x) o X x“e dx 1.
=30 -0
Theorem IIT.l2; The characteristic function of 4) (x)
is

n

L(t) = Seitxd@(x) e 2,

Proof: We have

() = S eitxdfﬁ(x) = 7-:2% oit¥-x2/24,

Completing the square on the exponent, we obtain
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T (x-it)2 _t2
(IIT.13) (P(t) = j

L
VET

-0
t2 1 _(x-1t)%
= 6 & . == 2
e Tor e dx .
-0

—Reit Cz R+t
€y ¢,
-R Ca R
Figure 2.
A consideration of the integral
_z2
Vlﬁ e 2 dz,
Cc
4
where C = (~)Ci (Figure 2), shows that the value of the last
i=1

integral of (III.13) is 1, and the theorem is proved.

We extend the notions of the previous paragraphs as
follows.

Definition III.l14. The random variable X is said to be
normally distributed with mean m and standard deviation o 1if

.the distribution function of X is s

L qmm.
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It follows that the variable ;O:El-l- has the distribut%gn
functioné(x), hence the characteristic function e 2 .,
We finally consider the Central Limit Theorem.
Theorem III.l15(Lindberg-Lévy) [2]: Let {Xn} be a
sequence of ldentically distributed independent random
variables with mean m, and standard deviationo™;. Let
random variables X and X be defined by
n n
(IIT.18) X = Zxk, and X = % C X .
k=1 k=1
Then the 4.f. of the random variable
X-nmy
Bz
converges to (}(x), defined by III.1ll.

(It follows that the d.f. of the random variable

f-—ml
T1/vA

converges to 49 (x).)

Proof: Slnce the X, are ldentically distributed, it
follows that the random variable X, defined by (III.1l8),
has mean m = nm, and standard deviation0‘=oifﬁ. We con-

sider the variable

n

X-m  X-nmj 1

g =dyvm = 93vA (Xpe-my ) e
k=1
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Denote by (/,(t) the characteristic function of the devia-
tions X, -m,, and by F(x) and (P (t) the distribution
function and characteristic function of the variable %;g .

Then by (II.9),

pplt) = [P oz T
Now, the first two moments of the variable Xk—ml are 0 and
2
o1 respectively. Thus by property 6) of the characteristic
function,

1l 2
Lpl(t) =1 =591 t

Substituting ?3.7%— for t we obtain

2 n
o) = [1 -, a@elys

Where Q}n,t) tends to O for each fixed t as n» o. Thus,
for each t, as n-roo,
£

(ﬂx(t) >e 2 .
which, by Theorem III;lz, is the characteristic function of
%’(X). We thus conclude that for each x, F(x) = é(x), and
the theorem is proved.

Theorem IIT.17 (Liapounoff) [2]: Let {Xh} be a seqQuence
of independent random variables, and denote by My, Ty and
ﬁé, reSBectively the mean, standard deviation and third
absolute moment about the mean of Xﬁ. Let

n

m(n) = % mg,

v=1

n
2 2
“(n) = E Ty
v=1
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n
3 3
P(n) < ZE: Py

=1

and

<

Suppose that pg is finite for every v. Then, if the condition

is satisfied, the distribution function of the random

X~m§n!

variable o (n) °? where
n

X = E Xy,
v=1

converges to é (x}).

In the procof that follows, the quantities ©; will
always be such that [e;] = 1.

Proof: We let q&v(t) be the c¢.f. of the v-th deviation,
Xy - my, and (f(t) be the c.f. of the standardized random

variable

X=m(n) _ _1
o (n) o(n)

N

(Kv“mv-) )

v=1l
Then
(t) ="Frqo (—oe
(10 v=1 v U'(n) t2

If we can show that for every t, %%%m () = e E_, then the
theorem follows immediately from Theorem II.l4.
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From the Maclaurin expansion

k-1
E r ks ?
r=0

where k is a positive integer, z real andleol < 1, we obtain,

for k = 3,
P (t) = BE(elt(Xy-my)y
2 - 2 3 - 3
= E(l _ t (Xv m-v') + Glt (gv mv) )
2 3,3
= 1 = v 0-3 + 92 o pvt .
e 6
t t2-g patS
Further,(f . (gmy) = (1- Y + 0, « =¥V ); so
v'O0(n o2 2 3 17 ’
29(n) ¥ n)
tEU'z 5t5
letting z = - __Sé_ + 92 s pV z we obtain
29 n) 691 n)

1ogCPv(af%T = log (1+z).

p(n)
Since, by hypothesis, o‘—‘(—n—)é. 1, for sufficiently large

values of n, we have

It can be shown ([ 2] pages 175-6) that g3, « py for every v.

Thus,

Z gspgtz 92'- péti .
29(n) 6%(n)
_pZ (gstz v o Pv 5 )
vz 2 2 “o(n) B e
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t
Since Py 4_1’ o == pvz (95 + 94 - ..LZ_L._).
Y & 2
Thus,
2 2 o)
t [t] .
Pty e tE )

Hence z - 0 as n 9o for every fixed t. In particular, we

may choose n so large that |z]< %, in which case

2
Z 2
10g (l+Z)=Z—_2—.(l"‘:§;Z+ZZ2—%Z5+ -ooo)
2
- - i, L
-z+962(1+2+4+....)
_ 2
= gz + 96 Z .
Hence,
t
log (ﬁv(o——‘) = log (1+z)
2+ 8 33 ’
(n) (n) (n}
3~
- [3) 92 6 ¢

Summing for v=1,2,...,0, We have

2 3 3 2 3
- _ X P(n) (Jtl_ v, 18l 2
3 . (n) 5
As n 3 oo, p(g) < 0, thus log(ﬁ(t) > ﬁ%— for every fixed t.
I(n)
2

Hence, as n ¥ oo, (f(t) »e 2 , and the theorem is proved.
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