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Lin, Ming-Ta, M.A. July 1992 Environmental Studies

A Study of the Effect of Ozonization on Humic Acids 
and the Removal Efficiency of Humic Acid-Copper
Complexes with the Coagulation/Filtration Method (55 pp.)

Director: Douglas G. Klanip

Humic substances are widely distributed over the earth’s surface. They are 
operationally categorized into three fractions: fulvic acids (soluble under all pH 
conditions); humic acids (only soluble when pH >2); and humins (insoluble under all 
pH conditions). Humic substances are capable of complexing with organic and 
inorganic chemicals in the environment. Due to the presence of carboxylic and 
phenolic groups, they are specifically capable of complexing with metals. Complexes 
of humic substances with metals may precipitate under appropriate conditions.

In water treatment processes, humic substances and metals are both target 
materials for removal. Simultaneously removing humic substances and metals by 
complexation/coagulation mechanism may be a competitive approach to the 
conventional methods for humic substance and metal removal, such as ion exchange 
and aluminum hydroxide coagulation methods.

Ozonization of humic substances may produce carboxylic acid groups, which 
to a large extent account for the humic substances’ complexation capacity with metals. 
The objective of this study is to study the effects of ozonization on a humic acid (HA) 
and its removal efficiency of copper.

An Aldrich commercial HA is used in this study. The total acidity, total 
organic carbon (TOC), and aromatic content (ACC) of the HA samples treated with 
different ozone doses are studied. The copper removal efficiency of these differently 
treated HA samples are also examined.

The results of this study indicates that the total acidity of this HA only slightly 
increases with ozone dosage. The TOC, AOC, and copper removal efficiency 
decrease with ozone dosage. It is concluded that ozonization of the HA used in this 
study does not significantly increase carboxylic groups, and in fact decreases the 
removal efficiency of copper.
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INTRODUCTION

I. HUM IC SUBSTANCES

Humic substances are widely distributed over the earth’s surface in soils, 

waters, and sediments. They also play a central role in sludge and wastewater in 

treatment processeŝ  2>. Thus, since the 1970s, they have greatly interested natural 

scientists and a great amount of effort has been directed to the study of these 

materials regarding their chemical/physical properties and their significance to the 

environment and human health. Nevertheless, knowledge about humic substances is 

still obscure in certain areas due to their heterogeneous nature, which precludes 

fundamental studieŝ ;.]).

GENERAL BACKGROUND:

The term "humic substances" refers to a group of organic materials in the 

environment that result from the decomposition of living matterQ,4). They are high- 

molecular-weight, polyelectrolytic macromolecules. "None of them (humic 

substances) comes close to isolating a material that could be referred to as pure humic 

substance in the classical meaning of the term pure chemical or even a group of 

chemicals )̂". They are operationally categorized into three fractions: fulvic acids, 

humic acids, and humin  ̂5 6). Fulvic acid is defined as the fraction of the humic 

substances that is soluble in water under all pH conditions, while humic acid is the 

fraction that is not soluble under acidic condition (pH<2), but is soluble at higher pH 

values. Humin is the fraction that is insoluble under any pH condition.

1
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2

The molecular weight of humic acids ranges from a few hundred to several 

million Dalton; greater than that of fulvic acids, which ranges from 100 to 10,000 

Dalton. The molecular weight of humin is considered to be greater than humic 

acidS(2,j,7)-

The distribution of humic substances depends upon the nature of the media. P. 

MacCarthy reported that about 50% of the dissolved organic carbon in uncolored 

surface waters of the United States consists of humic substanceŝ ). Typically, 90% of 

the dissolved humic substances in natural water consist of fulvic acids, and the 

remaining 10% consist of humic acids )̂. In soils, humic acids are in large excess over 

the fulvic acidS(2). Manka’s study reported about 70% fulvic acids and 30% humic 

acids in dissolved humic substances of secondary effluents )̂.

The biochemistry of the formation of humic substances in nature is one of the 

least understood aspects of humus chemistry(g). However, Stevenson̂ ,) summarized 

four pathways for the formation of humic substances proposed by several other 

researchers in the past. A figure was developed to outline these pathways (Figure 1).

Stevenson concluded that the major pathway for humic substance synthesis in 

most soils is through condensation reactions involving polyphenols and quinoneŝ g). 

Because the whole sequence of reactions involves so many variables, including 

qualities of the original biomass, the heterogeous nature of humic substances results.

In general, chemical characteristics of humic substances vary with their 

origin(2 .3 .g.9). For example, elemental composition of the soil humic acids from Ottawa 

in Ontaria, Canada was reported to be 53.5% C, 34.0% O, 6.2% H, 5.5% N, and
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PLANT RESIDUES

TRANSFORMATION BY MICROORGANISMS MODI n  ED 
UCNINS

UG NIN
DECOMPOSITION

PRODUCTS

AMINO
COMPOUNDSSUGARS POLYPHENOLS

QUINONES QUINONES

Figure 1, Pathways of Formation of Humic Substanceŝ ).

0.8% S(,o), while the humic acids from Okefenokee Swamp, Georgia, contained 52%

C, 43% O, 4.3% H, 0.56% N, and other trace elemental contents, such as P and Ŝ ). 

In all cases, C and O are the major elements by weight in humic substances. Table 1 

shows the general elemental composition of humic and fulvic acids determined by M. 

Schnitzer and S. U. Khan in 1972(5). Compared to fulvic acids, humic acids have 

lower oxygen but higher C contents. The oxygen in humic acids occur as a structural 

component of the nucleus, e.g. ester or ether linkages, while oxygen in fulvic acids 

are more often in different functional groups, i.e. COOH, OH, and C=0(g).

In spite of the complicated nature of humic substances, the major functional 

and structural groups have been well defined(5). They include amino, amine, amide, 

alcohol, aldehyde, carboxyl, carboxylate, enol, ketone, keto acid, unsaturated 

carbonyl, anhydride, imine, ether, ester, quinone, hydroxyquinone, peptide, 

methoxyl, and phenol(5  ,). Degradation methods were utilized by most researchers to 

fingerprint the structural fragments of a humic or fulvic acid. A typical example is the 

study performed by J.R. Hass using potassium permanganate to oxidize humic
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Elemental Composition 
(% by Weight) HA FA

C 50—60 40—50
0 30-35 44-50
H 4-6 4-6
N 2-4 <1-3
S 1-2 0-2

Table 1. Elemental Composition of HA and FA(%. 

substances. The oxidation products were identified with GC/MS, and the original 

structural fragments were determined in accordance with these oxidation productS(H).

Given the abundant C and O content in humic substances, oxygen-containing 

groups are dominant and mainly account for the environmental significance of humic 

substances.

Humic and fulvic acids behave as weak polyproton acids in solutions due to 

the dissociation of the acidic functional groups, carboxylic acids and phenols. Total 

acidity of humic acids, which results primarily from carboxylic and phenolic acid 

groups and a minor portion of enolic acids, falls into a range from 3.5 to 8  meq/g of 

HA(, gj2 ,1 3,14). Of this total acidity, about 60-80% is attributed to carboxylic acids in 

humic acids.

Chemical structure is ill-defined for humic substances. Several attempts have 

been made by researchers to develop a satisfactory and representative formula, but 

none of them proves entirely satisfactory(,). A hypothetical structure is shown in 

Figure 2. Significant functional groups include free and bound phenolic OH groups, 

quinone structures, N and O as bridge units, and COOH groups on aromatic ringS(g). 

It has also been suggested that hydrogen bonds occur as linkage between functional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



COOH COOH :00H OHHO
COOH

C H -C H jHO
COOHOH OH

OH

Figure 2. Example of Hypothetic Structure of Humic Acid^ .̂

groups holding together the aromatic components to form a polymeric stnicture( 6  g,.

ROLE OF HA IN  THE ENVIRONMENT:

In spite of their relative non-toxicity to the environment, humic substances 

play an important role in the environment due to their wide distribution and their 

strong affinity and reactivity to environmental pollutants- organics and inorganics. 

This is caused by their strong complexation capacity with neutrals and ions  ̂g ,3). 

Neutral organic molecules "dissolve" into the humic substance phase- within the 

hydrophobic functional groups. For example, PCBs, Polyaromatic Hydrocarbons 

(PAHs), and pesticides, are found to bond to dissolved and colloid humate and 

thereby enhance their distribution in the environment  ̂g

Ions complex with specific functional groups found in humic substances. In 

surface and pore waters, humate-complexed metals constitute an important portion. 

For example, Hiraid, et. al., reported 60 - 70% of copper was found to be associated 

with humic and fulvic acids in the river they studied̂ s).
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Humic substances may occur in aquatic and subsurface systems in forms of 

dissolved organic carbon, colloids, or organic coatings on the surfaces of clay 

minerals. They affect the migration and spéciation of contaminants by: 1) mobilizing 

pollutants by forming soluble humate complex, 2 ) immobilizing pollutants by forming 

insoluble humate complex, coprecipitating with aquatic colloid, or adsorbing onto 

mineral surface, and 3) undergoing redox reactionfj j u.is.w.i?.».!?)- These mechanisms 

involve physicochemical reactions, such as adsorption, coagulation, coordination, 

acid-base reactions, etc. Additionally, due to the Sequent interactions within 

solid/aqua interface, humic substances play an extremely important role in soil and 

groundwater environments.

In subsurface systems, humic substances coat on clay surfaces via 1) physical 

adsorption or van der Waals forces, 2) electrostatic bonding, 3) hydrogen bonding, 

and 4) coordination's 2o.2 d- The coating adsorbs the solute moving through porous 

materials with complex or electrostatic bonding and immobilizes the solute. Humate 

colloids bonding with pollutants may also be immobilized via physical filtration by the 

porous materialS(,9 ). These mechanisms retard solute dispersion in groundwaters, and 

may cause underestimation of the boundary of solute dispersion in aquifers if the 

effects of humate are not taken into account̂

Bonding of organic and inorganic chemicals to humic substances can alter the 

bioavailability of the chemicals )̂. Several studies suggest that the presence of humic 

substances decreases the availability of metals to plants through complexation and 

adsorption )̂. Carson, et. al., found the avoidance reactions of Atlantic salmon to
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copper decreased by a factor of about 5 with respect to copper concentration if 20 

mg/L humic acids was added to soft water^j). Presumably, complexation of copper by 

humic substances decreases the amount of copper in the free copper ion and copper 

hydrate forms.

Humic substances also act as reduction reagents. Humic acids were reported to 

reduce ionic mercury to elemental mercury, and convert MnO/^ into Mn*^, Cr̂ O?  ̂

into Cr*^, Fe^’ into Fe"̂ ,̂ etc.(gj4 ). The E* for humic acids redox reaction was 

estimated to be 0.70 V(,4 ,. Compared to other reduction reagents in the environment, 

such as NO] (NO  ̂/NOy E'=0.94 V) and S0 4 *̂  (SO4  VH2 S E'=0.36 V), humic 

substances are significant.

n . METALS BONDING TO HUMIC AND FULVIC ACIDS

Over the past two decades, the bonding of metals to humic and fulvic acids has 

been widely studied by researchers. Various studies have focused on stability and 

structure of the complex, properties of bonding, and kinetics of complex formation. 

Due to the polyelectronic nature and heterogeneity of humic and fulvic acids, much 

uncertainty still exists regarding this topic. However, some general characteristics 

have been identified.

MECHANISM OF METAL-HA BONDING:

Humic and fulvic acids bond with metals by complexation  ̂g). This capability 

is largely attributed to carboxylic, phenolic, and carbonyl groups with minor
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involvement of amino, and imino groupS(s.6 .8 .2 2 .2 3)-

At least two types of chelating sites of HA were identified. They are salicylic- 

type chelation, which involves one carboxylic and one phenolic group coordinating 

with a cation; and phthalic-type chelation, in which a cation complexes with two 

carboxylic groups (See Figure 1 2.2 2). The bonding sites are rarely identical in 

geometry and complex capacity. The chelation could occur on the sites 1) on the same 

aromatic ring, 2) on the same polymer molecule, but not on the same ring, or 3) 

between two polymer moleculeso». In the third case, the cation bridge between two 

macromolecules could result in coagulation of a humate-metal complexQ2 .z7).

Accordingly, the structure of metal-HA complex is not limited to the bidenate 

complexes shown on Figure 3. For example, Khalili reported a polymeric graphite­

like structure of soil Cu-HA complex by using X-ray powder diffraction technique(i2).

In an aquatic system, water molecules may compete with complex ligands of 

HA to bond with metals ions. As a consequence, some metals could complex with HA

OHOH

c-oT 2 +Cu Cu
OH

2 *

Figure 3. Salicylic and Phthalic Complex of HA with Cû ,,
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in the form of hydrated ions, that is, as outer sphere complexes, under certain 

conditions. Several investigators reported that Mn(II) was bound in fully hydrated 

form [Mn(H;0)6^^] (only by electrostatic bonding) with humic substanceS(,o). Fe(III) 

was found to bond by inner sphere complexation where the coordination water 

molecules are displaced by ligands of

STABILITY OF METAL-HA COMPLEX:

The factors responsible for the stability and quantity of metal-HA complex 

formation are pH, ionic strength, metal and HA concentrations, metal species, 

molecular weight and functional group content of HA.

The effect of pH on the stability of metal-HA complex is substantial owing to 

the effect of proton concentration on the dissociation of the acidic groups of HA. The 

stability constant and quantity of metal-HA complex formation decrease dramatically 

with decreasing pH values<,o.i2 .,6 .i8 .2 4 .2 5 .2 6).

Different metals also show different HA complex stability. The orders of 

various metals’ affinity to HAs have been reported by several researchers and the 

results differ depending on the conditions studied. Broadly speaking, divalent metal 

ions have greater affinity to HAs than monovalent ions and less than that of trivalent 

cations,; g). For divalent metals, Fe, Cu, Pb, and Zn rather than Co and Mn were 

generally believed to complex preferentially with HA(g_,o,i8)-

Randhawa, et. al., concluded that the complex of Zn associated with phenolic 

OH groups and weekly acidic COOH is less stable than that involving strongly acidic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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COOH groups. Similar results of copper was obtained by Khanna, et. al̂ gj. The 

stability of a metal-HA complex increases with the dissociation tendency of the 

associated acidic group.

Several studies suggested that the stability of metal complexes with humic and 

fulvic acids is strongly related to the metal/HA (or FA) ratio^ zg ^)- Results of Nor 

and Cheng’s study indicated that at low levels of added copper (0.1 mg/L), each Cu 

ion was capable of displacing approximately one proton, whereas when Cu was 

increased to 1.0 mg/L, a nearly stoichiometric displacement of 2.1 protons for each 

Cu ion occurred, and no further increase in proton displacement occurred when Cu 

addition was continuedq )̂. Nor attributed this to the existence of sites that vary in 

their affinities for Cu^  ̂and/or the formation of various Cu-HA chelates of different 

linkage. Davies, et. al., reported that the strength of metal-HA binding increases with 

a decrease in the amount of metal applied ,̂. In the study of Bresnahan, et. al., where 

Cu solution was titrated with FA, they found that when the Cu/FA ratio is large (the 

beginning of the titration), the more numerous weaker sites predominate^s).

Bresnahan's interpretation was that under such high Cu/FA condition, water is 

more competitive as a ligand and possibly only two FA donor atoms are bonded to 

each Cu^ .̂ The excess Cu^  ̂would tend to cause ligand dissociation of the 

quadridentate chelation into weaker bidentate sites as presented in Figure 4. Referring 

to Nor and Bresnahan’s studies, chelation of HA with metals could change the 

configuration of the metal-HA complex and eventually vary the stability constant of 

the complex. Bresnahan concluded that the structural change could bring more
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functional groups to the surface of the HA molecule where they can act as ligands 

after the first Cu*^ addition̂ za). However, the fluctuation of the stability constant with 

metal and HA concentrations is one of the factors complicating the study of the 

stability constant of metal-HA/FA complex.

Piccolo and Stevenson concluded that for Cu^ ,̂ covalent bonding is formed at 

low levels of metal ion additions, but that bonding becomes increasingly ionic as the 

material becomes saturated with the metal̂ , ,2 )- A similar conclusion was made by 

McBride(io). This effect simultaneously decreases the stability of the metal-HA 

complex, while more chelating sites are utilized by metal ions in the system as metal 

concentration increases.

Stevenson also noted that some investigators have challenged the ability of 

humic substances to form highly stable complexes with metal ions on the basis of 

steric hinderance(g). For example, Ephraim, et. al., reported that the conditional 

stability constant of their studied fulvic acid complex with Cu (II) at pH 7 was on the 

order of lÔ pg). Compared to that of nitrilotriacetic acid, which is on the order of 10*̂  

under similar condition, the stability of metal-HA/FA is relatively low^,).

CO,

o,c-

c«
0 ";

Figure 4. Transformation of Cu-HA Complexation Due to Variance of Cu/HA
RatiO(23).
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SOLUBILITY OF METAL-HA COMPLEX:

Humic and fulvic acids form both soluble and insoluble complexes with 

polyvalent cations, depending on the degree of saturation (i.e. concentrations of 

cations and HA/FA). Because of their high acidities and relatively low molecular 

weights, metal complexes with fulvic acids are more soluble than those of humic 

acidS(g).

Metal ions can affect the solubility characteristics of humic and fulvic acids in 

two ways. When metal ions are added into HA solution, the charges resulting from 

dissociation of functional groups of HA are neutralized by salt formation. The 

electrostatic repulsion between the polyelectrolyte is reduced, and thus, the solubility 

is reduced. A metal ion is also c ^ b le  of complexing with different HA molecules to 

link the complexed molecules as a bridge. Once the chain-like structure grows, the 

metal-HA complex coagulateŝ *). As mentioned earlier, this bridging effect could be 

enhanced when metal/HA ratio is small ]̂). In most cases, the neutralization 

mechanism seems to dominate, although no direct study supports this conclusioupo).

m . OZONIZATION OF HUM IC ACIDS

Ozone has been widely used to remove dissolved organic carbons (DOC) in 

drinking water treatment processes (esp. Europe) since Rook (1974) first reported that 

chloroform was found by chlorination of naturally-colored waterŝ g ̂ o).

MECHANISMS OF HA OZONIZATION:
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In water, ozone may react directly with dissolved solutes, or it may decompose 

to form secondary oxidants such as • OH radicals, which then themselves immediately 

initiate chain reactions with solutes. Solutes are classified into three categories: 

initiators which lead to the formation of • OH radicals; promoters, which maintain 

radical chain reactions; and scavengers, which cause termination of chain 

reactionS(3 ,,3 2). At initiation stage, ozone reacts either directly with solutes forming

• Oj' or with OH ions in water to form superoxide anions ( • 0% ) and hydroperoxyl 

(H O ;') radicals. At propagation stage, O, decomposes upon protonation forming

• OH radicals, and these react with organic solutes. At this point, reactions with 

organic solutes may react via two pathways: 1) conversion of • OH into the highly 

selective • 0 % to react with more organic solutes and thus promote the chain reaction, 

and 2) reaction with OH to form an organic radical which adds O;, eliminates 

HO; ' / ' O; in a base-catalized reaction, and then terminates the reaction once stable 

products are formed (see Figure 5)q;). As a result, organic solutes (e.g. humic acids) 

act as an initiator, promoter, and scavenger in a ozonization reaction.

A. Form ic ocid
;oM

0 «O h  MjO

11 \  J ,0 -
O î

f»»*

•02 '

“ •0

Methonol
•OH M,0

H jC O H

02

— V (,C
' cm

•0 ;-

B ' BH

Figure 5. Termination of Chain Reactions by Organics in HA Ozonization^;).
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Couiibaly and Jensen summarized the mechanisms of ozonization involving 

organic substances as follows<3 3):

Molecular Reactions

Mo.i +  O3 stable products 

Initiation Reactions

i 4- O3  ' OH +  stable products

O3 +  OH 0 ; +  HO2

Propagation Reactions

Mp i +  • OH HO; +  stable products

O3 +  O; +  H2 O -  -OH + OH +  2 O2

O3 +  -O H -H O ;*  +  O2  

HO;' = H+ + O;

Termination Reactions

Ms i +  • OH stable products

Where:

M djI substrates which react with ozone to produce stable products (i.e. non­

radical or stable radical),

M, j: substrates (other than OH ) which react with ozone to produce »0H

(initiators),

Mpi: substrates which react with OH to produce HO;* (promoters), and

Mgj: substrates which react with OH to produce stable products

(scavengers).
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REACTIONS AND EFFECTS OF HA OZONIZATION:

In the 1960s, a series of studies conducted by Bematek, Frengen, et. al., 

confirmed that ozonization of phenols produced smaller fragments of carboxylic acids 

and secondary byproducts such as CO, 00%, and H2O2 0 4 .3 7). The examples presented 

in Figure 6  indicate that different mechanisms are involved in ozonization, and result 

in various categories of products. For one phenolic group, ozonization can generate 1- 

4 carboxylic acid groups. If  only one carboxylic acid group is generated from one 

phenolic group, for instance, the total acidity of the sample is not improved.

Reactions of ozone with carbon-carbon double bonds, including aliphatic and 

aromatic carbons, were reported to produce aldehydes and hydrogen peroxide(3 2 ,3 g,3 9)-

,CHO
OH +  CO; +  HCOOH +  H ;0 ;

CHO

COOH COOH
I
CHO

OH

COOH

COOHOH

OH
COOH

2 HCOOH
COOH

OH
COOH

CO; +  HCOOH
CHO

OH
COOK

2 HCOOH +  H ;0 ;
CHO

Figure 6 . Mechanisms of Ozonization of Phenolŝ ^̂ .,?).
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H ,0
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hydrogen
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Figure 7. Mechanisms of Ozonization of C=C Double Bondqgy

Figure 7 is the mechanism concluded by Nakamuro, et. al., representing the 

ozonization of C =C bonds.

In water treatment processes, ozone is employed after a rapid filtration and 

coagulation process, and then followed by adsorption with a material such as active 

carbon to remove the biodegradable products before distribution̂ )̂. Eventually, the 

major goals of ozonization are to remove the color (turbidity) and break up the DOC 

to a biodegradable level rather than removing the total DOC in the raw water(4 ,).

The study by Kruithof, et. al., indicated that, at a maximum ozone dosage of 

about 2.0 mg Oj/mg DOC, 80% of the UV absorbance was eliminated, and less than 

20% of DOC was removed. The percentage of DOC removal, i.e. conversion of 

DOC to CO;, is dependent on the type of humic substances in the water̂ )̂.

Clem, et. al., reported that carboxyl groups seemed to be an end product of 

the ozonization of humic acids and further attack on this group appeared to proceed
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very slowly. Additionally, phenols were more reactive with ozone than were other 

aromaticS(,3). Aliphatic carboxylic compounds were reported to be important end 

products of HA ozonizationq,^;^]). In the study of Ueno, et. al., approximately 0.6 

mg 0 3 /mg TOC was used to ozonize humic acids, and the products were identified. 

They were formic acid, oxalic acid, glyoxal acid, and mesoxelic acid(4 2). In other 

studies, minor products such as aldehydes, CO;, and H^O; were also found when 

ozone dosages were similar or greater than Ueno’s study,,3 ,3 8 .3 9 .4 2 .4 3).

Besides altering the chemical characteristics of HA, ozonization converts HA 

molecules into fractions of molecules with smaller molecular weights. The study 

performed by Anderson, et. al., provided a clear illustration showing the effect of FA

3 0  

2  5 

20  

I 5 

I 0  

0 5

m * > 30.000 
(ED 30jD00>mw >10.000
■ i  10.000 >mw> 1,000 
ËE3 m * < 1,000

. . .  »

0 01 0 5  0 7  4 0

OZONE DOSAGE { — "' mmole C '

Figure 8 . Effect of Ozonization on the Size Fractions of FA,**).
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ozonization on different molecular-size portions of the FA samplê **). As presented in 

Figure 8 (4 4), there was a loss of organic carbon from all molecular size fractions at all 

ozone dosages, and carbon loss is relatively greater from the large size fractions. At 

low doses (0.4 mg O /̂g TOC) intermediate size fractions (10,000 >M .W . >  1,000) 

increase in relative abundance(4 4).

The amount of ozone consumed in ozonization increases with pH of the 

solution, and was reported by Xiong, et. al., to be proportional to the initial 

concentrations of HA and ozone applied ,̂), while Anderson reported no significant 

correlation of these factors with the quantity of ozone consumed in his study(4 4 ,.

rv . THEORY AND STUDY OBJECTIVES:

As mentioned earlier, humic acids can be precipitated through complexing with 

transition metals when an appropriate condition is reached, considering concentrations 

of metal ions and HA, pH of the system, etc. Ozonization of humic acids produces 

carboxyl groups which are considered to be capable of metal chelation, although 

ozonization also breaks HA molecules into smaller fragments.

Given the facts above, it is reasonable to assume that the total acidity of humic 

acid could be improved through ozonization. However, the effects ozonization has on 

complexation characteristics (stability and quantity of complexed metal) is unclear. If  

an appropriate ozone dosage was applied to maintain the quantity of molecules with 

effective size to be coagulated, one may expect more metals to be removed from 

solution through complex/coagulation than using the un-ozonized HA. On the other
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hand, if the HA molecules break up too much, coagulation will be difficult.

Humic substances and heavy metals are both target materials in water 

treatment process. Unlike most other oxidants, ozone produces much less toxic 

residue. It would be advantageous to use ozone as an oxidant to improve the removal 

efficiency of humic substances and heavy metals simultaneously. However, the effect 

of ozonization on metal-HA interaction is unknown.

The objective of this study is to identify the total acidity fluctuation of a humic 

acid with various ozone doses, and then examine the copper removal efficiency of the 

ozonized HA. By comparing the alteration of acidity and copper removal efficiency, 

we will show which effect of ozonization, increased acidity and metal binding or 

ligand size degradation, dominates.

The reason that the focus of this study is placed upon humic acids is the 

relatively high molecular weight of HA compared to FA, which facilitate the removal 

efficiency through coagulation/filtration mechanisms. Although the usefulness of using 

a commercial HA as a representative HA was questioned by several researcherS(4 j), a 

commercial humic acid (Aldrich HA) is used in this study rather than an extract of a 

natural sample. Since the methodology of this study involves only internal 

comparisons of a HA sample, the weaknesses of commercial HA claimed by some 

researchers are not considered important in this study.
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METHODOLOGY AND MATERIALS

I. PREPARATION OF HA STOCK SOLUTION

1. Weighed out 7.0 g of solid humic acid (Aldrich Chemical Company, Catalog 

No. H I 675-2), placed in a 1-L beaker, and added about 750 ml of distilled 

water. Sealed the beaker and flushed the headspace with N; gas to protect HA 

from air oxidation.

2. Lowered the pH meter into the solution, stirred for 24 hrs under N .̂ Due to 

the pH-dependent solubility of HA, the pH value of HA solution was 

maintained at (7 ±  0,1) with small additions of 0.1 N sodium hydroxide. The 

addition of sodium hydroxide was as minimal as possible to avoid alkaline 

degradation of HA which may occur when the pH is greater than 8  (g).

3. Once the pH of HA solution stabilized within 0.1 - 0.2 unit after 24 hr 

stirring, solution was centrifuged and filtered with vacuum suction (filter paper 

No.54). The residual remaining on the filter was repeatedly rinsed with 

distilled water.

4. The solution was diluted to 1000 ml, stored in a 1-L polyacetyl bottle, and 

placed in a refrigerator.

5. To quantify the amount of dissolved HA, the used filter papers with filtered 

residue were collected, oven-dried at 70'C overnight and placed in a 

desiccator at room temperature for several hours. The amount of dissolved 

HA would be the initial weight of solid HA plus filter papers minus the dried

20
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filter paper with HA residue.

n. OZONE FLOW CALIBRATION

The major purpose of this process was to examine if the amount of ozone 

generated was linear with respect to the application time. Furthermore, this operation 

was used to obtain a standard curve for the amount of ozone versus ozonization 

period to determine the quantity of ozone consumed by HA ozonization in the next 

step.

1. Placed 30 ml (the same amount as the HA solution about to be used in the

subsequent experiments) of distilled water in a l(X)-mL test tube and setup in

the reaction chamber. The setup of the ozonization reaction chamber is shown 

in Figure 9.

2. Ozone was created by a high-voltage ozone generator. Since the AC field of

the generator can destroy as well as produce ozone, the outlet gas would be 

mixture of O3 /O2  gas, and the ozone concentration in the mixture was low dj,,

3. Prepared 40 ml of KI solution (20 g/L) and placed in the reaction chamber to

absorb the ozone which runs through and out of the reaction chamber. The 

O3/I reaction is as follow:

O3 +  2H+ +  21 #  O2 4- H 2 O 4- I2

4. The O 3 / O 2  gas was applied through a gas dispersion into the sample at a flow

rate of approximately 5 ft^/hr, and the voltage of the ozone generator was 

fixed at 50 Volts.
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Figure 9. Setup of Reaction Chamber for Ozonization.
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5. Nitrogen gas was applied from the bottom of the reaction chamber to carry the 

unreacted ozone and produced gasses from the reaction chamber to the 

absorbent during ozonization (see Fig. 9). Once the ozonization was complete 

(within desired period), nitrogen gas was applied from both the gas dispersion 

and the bottom of the reaction chamber for 3 minutes to expel the 

dissolved/residual ozone and possible gas products into the absorbent.

6 . The oxidized KI solution (I )̂ was then titrated with standardized sodium 

thiosulfate solution to quantify the absorbed ozone (lodometric Method) (4 6).

The sodium thiosulfate was standardized against a K̂ Cr̂ O? standard.

7. Various ozonization periods were tried. They were 2, 4, 6 , and 8  minutes 

respectively in this experiment. Each run was repeated three times.

The amount of absorbed ozone by mg is: (48.0 * N * V)/2, where 48.0 is the 

molecular weight of ozone, N is the normality of sodium thiosulfate, and V is the 

volume of titrated Nâ SgÔ  solution by mL.

This method was also used to determine the amount of ozone consumed by HA 

ozonization.

in. HA OZONIZATION

1. Placed 30.0 mL of HA solution in a 100-mL test tube and setup in the reaction 

chamber.

2. Repeated steps 1 - 5 in part I I— "Ozone Flow Calibration".

3. Displaced the gas in the test tubes with Nj, capped with a stopcock and stored
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in the refrigerator,

4. The blanks were run right after the corresponding sample following the 

procedures of "Ozone Flow Calibration".

5. The amount of ozone consumed by HA ozonization was the amount of ozone 

collected in blank ozonization minus that in HA ozonization.

IV . ACIDITY TITRATION

The method used to determine the total acidity of HA samples is adopted from the 

Baryta adsorption method (g,. The acidity determined with this method accounts for 

the COOH plus phenolic and/or enolic-OH of the humic acids. Because of the slight 

acidity distinction between samples, both the concentration of Ba(0 H) 2  and HCl 

solution were about 0.04 N. Whereas in the Baryta adsorption method, they are 

saturated and 0.1 N, respectively.

1. The oxidized sample in part n was added to 10.00 mL of 0.04 N Ba(OH); 

solution and the headspace was flushed with

2. Three blanks were also prepared by adding 5.0 mL of the same BafOH); 

solution to 30 mL of distilled water.

3. The treated samples were shaken overnight, and then filtered through 0.1 ^m 

filter membrane into a 150-mL beaker. The residue was rinsed thoroughly with 

CO; free distilled water.

4. The filtrate was titrated with standardized 0.04 N HCl solution to pH 8.4. The 

titration was carried out under N;(,), because the presence of O; may lead to
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erroneous results, and the presence of CO; may cause barium carbonate

precipitation.

The acidity of the humic acid can be expressed as:

Q = (A +  B - N * D ) / P ---------------(Eq.l)

Where Q is the total acidity of sample (meq/g),

A is the amount of NaOH added per 30.0 ml of HA stock solution 

(meq),

B is the amount of Ba(OH);(^ added in 30.0 ml of sample (meq),

N is the normality of HCl (meq/ml),

D is the volume of HCl titrated to bring the pH to 8.4 (ml), and 

P is the amount of HA dissolved in 30.0 ml of HA solution (g).

V. COPPER REMOVAL CAPACITY BY HA COMPLEX

Approximately 240 ml of each kind of HA sample (different level of oxidation) 

were required for these experiments. The reaction chamber was only 30 mL, so eight 

batches of each sample type were combined and mixed after ozonization. The 

consistency of the quantities of consumed ozone by batches oxidized within the same

period was well maintained within an relative error of 10 %. Humic acids ozonized

for 2, 4, and 6  minutes were prepared following the procedure in parts I and II. The 

same amount of HA which was not ozonized was also prepared. The prepared HA 

solutions were used as soon as possible.

A 400.5 ppm copper stock solution quantified by Inductively Coupled Plasma

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Spectroscopy was prepared by dissolving 1.35 g of Cu(NOj)2 *2 H2 0  in 1 L of 

deionized distilled water, and then stored in the refrigerator for further use.

1. 30.0 ml of the prepared HA solution was placed in a 100-ml test tube, 1 ml of 

the 400.5 ppm copper solution was added, and the total volume adjusted to 50 

ml.

2. The pH value of the solution was adjusted to pH 5.0 ± 0 . 1  with a drop of

saturated sodium acetate. The main reason that this step requires pH 5 is to 

avoid the formation of copper hydroxides.

3. The prepared Cu-HA solution was equilibrated for 48 hours.

4. After the equilibration, the Cu complexed HA was allowed to settle, and the

whole solution filtered through 0.1 urn filter. The filtrate was then analyzed 

with Inductively Coupled Plasma Spectroscopy.

5. Steps 1-4 were repeated by adding 1, 2, ....7  ml of Cu solution into the HA

samples. Each type of HA solution was treated in this way.

The amount of copper removed with humic acid complex was considered to be 

the initial amount of Cu added to the solution minus the amount of Cu in the filtrate.

V I. TOTAL ORGANIC CARBON

The total organic carbon of the original and oxidized humic acids was 

measured by a Coulometric Inc., model 5011, Carbon Dioxide Coulometer combining 

model 5040, Sealed Ampoule Oxidation Apparatus. This analysis involved placing a 

proper amount of sample in an ampoule, sealed with oxidant, then heated in a
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autoclave to convert the organic carbon into carbon dioxide. The ampoule was then

opened in an ampoule breaking apparatus and the carbon dioxide was carried into the

CO; coulometer for CO; coulometric titration.

1. The humic acid samples were prepared as in part I &  III. The oxidized HAs 

were ozonized for 2 , 4 , 6 ,  and 8  minutes respectively.

2. 1.0 ml of HA sample was placed in a clean ampoule, which had been heated at 

500*C overnight to remove any organic materials that may be present.

3. 3.0 ml of distilled water and 0.2 ml of 12% H3PO4  were added to bring the 

pH below 2 to remove the inorganic caiton in the sample.

4. The sample was purged with purified oxygen for 10 minutes at a flow rate of 

approximately 50 cc/min per ampoule.

5. A scoop of potassium persulfate (about 0.2-0.3 g) was then added to each 

ampoule as oxidant and the ampoules are sealed with 0;-H; flame right after 

the above steps were completed.

6 . The sealed ampoules were placed in a rack and heated in an autoclave at 

121*C, and 20 psi for 18 hours.

7. The cooled ampoule was opened in the sealed breaker allowing the purified air 

(passed through a 45% KOH solution) carrying the CO; gas through the 

Stannous Chloride Scrubber and Silver Scrubber to remove potential 

interferences and into the coulometer, where the coulometric titration took 

place.

The standard used in this analysis was glycine with a concentration of 25.3
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fig/ml. The standard is prepared by placing 4.0 ml of standard solution in an 

ampoule, and repeating the steps for sample preparation. Each sample (standard and 

HAs) is duplicated.

The main advantage of this method is that large samples (containing 100-300 ng 

organic carbon) can be used providing low detection limits.

V I. AROMATIC CARBON DEGRADATION

According to the study by Traina, et. al., UV Spectroscopy is an effective method 

to estimate the aromatic organic carbon (ACC) content of humic acids (4 7 ). Hence this 

method was used to determine the aromatic carbon content in the various humic acid 

samples.

1. The humic acid solutions were prepared for UV absorptivity measurements by 

taking 2.0 ml of treated HA solution, adding a drop of 0.05 M NaCl solution, 

and diluting to 25.0 ml.

2. The solution was then adjusted to pH 7.0 ±  0.1 by small addition of 0.1 M  

NaOH with micropipet.

3. All samples are triplicated and allowed to equilibrate for 24 hours for UV 

spectroscopy analysis.

4. A Beckman model DU-6 , UV-VIS spectrophotometer, equipped with a 1.0 cm 

path length cell, was used to measure the absorbance of each sample at a 

wavelength of 272 nm. The wavelength of 272 nm is in the region of 

overlapping t  t*  transitions for phenolic arenes, benzoic acid, polyenes,
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and polycyclic aromatic hydrocarbons with ring numbers of two or more (4 7 ). 

The detected absorptivity of each sample was compared with the corresponding 

TOC value obtained in part V. Decreasing ratio of ACC/TOC would imply the 

degradation of aromatic carbon in the humic acid after ozonization.
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RESULTS AND DISCUSSION

I. QUANTITATIVE ANALYSIS OF OZONE FLOW

Because ozone is unstable in water̂ **), the purpose of this analysis was to 

examine the stability of ozone flow applied to HA samples in distilled water, and 

establish a blank curve for the estimation of the ozone quantity consumed by HA 

ozonization.

Table 2 shows that for the amounts of ozone collected within various periods, 

the standard errors of the means (SJ vary from 0.37 (0.8 %) to 1.37 mg (4.5 %), 

and the ozone flow seemed to be more stable at longer collecting periods. The 

variation of the stability of ozone flow with collecting periods may result from the re- 

installation of the reaction chamber between samples. In the process, the ozone flow 

was directed, via a two-way switch, to a polyvinyl bottle with approximately 3(X) mL 

of saturated KI solution, while ozonization was not proceeding. This could disturb the 

steady state of the ozonization system due to

the pressure difference between the sample solution (30 mL) and the saturated KI 

solution when the ozone flow was first directed back to the reaction chamber.

Ozonization Period Amount of Ozone Collected
(min) (mg)
2 14.84 ± 0.42
4 30.14 ± 1.37
6 46.64 ± 0.37
8 63.28 ± 0.52

Table 2. Amount of Oj Collected Within Various Periods.

30
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The blank curve equation was established by plotting the data using the linear 

regression method (see Figure 10). The R squared value of this regression is 1.0, 

which indicates a satisfactory stability of ozone flow within the examined period ( 8  

minutes). The ozone flow was determined as 8.1 mg 0 3 /min (slope of the regression 

line).

n . ESTIMATION OF OZONE CONSUMPTION

To determine the ozone consumption by HA solution we posed two questions: 

1 ) how much ozone introduced into the solution was consumed by water, and 2 ) how 

much reacted with the humic acid.

Coulibaly and Jensen’s study indicated that the consumption of ozone by 

distilled water increased almost proportionally with the application periods at a rate of 

approximately 0.25 mg Oa/L-min^jj,. For 30 ml of distilled water (the volume of each 

sample in this study), the ozone consumption is approximately 0.0075 mg/min., 

which is within the errors of measurements of this study. Therefore, we decided to 

neglect the quantity of ozone consumed by water in this study, and followed the 

methodology utilized by other researchers to estimate the ozone consumption,*,). 

However, it must be noted that the amount of ozone consumption reported in this 

study could exceed the amount of ozone that actually reacted with the humic acid.

The ozone consumption was considered to be the difference between the 

amount of ozone collected after reacting with the HA solution for the designated 

period and the corresponding value of the blank curve previously obtained. The
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Ozonization Period Ozone Consumption
(min) (mg/g HA)
2 0.104 ± 15.2%
4 0.149 ± 9.1%
6 0.219 ± 6.2%
8 0.255 ± 5.4%

Table 3. Ozone Consumption of HA Ozonization 

results are shown in Table 3 and plotted in Figure 11.

As presented in Figure 11, no obvious cut-off of the curve was observed. The 

ozone consumption of the same amount of HA increases gradually with ozonization 

period, and a little larger consumption rate is found in the early stages of the 

ozonization. This observation correlated to that of other researchers’^, 4 4). The amount 

of ozone consumed by HA solution within 2 minute ozonization is approximately 0.1 

mg 0 3 /mg HA, where it is 0.26 mg 0 3 /mg HA for samples ozonized for 8  minutes.

A notable phenomenon observed while ozonizing the humic acid samples was 

that the color of HA solution gradually faded from the original dark brown to a pale 

straw color as the ozonization periods increased. This could imply the decrease of the 

HA colloid concentration or alteration of the chemical characteristics of the HA 

solution. Foams on top of the HA solution were also observed within seconds after 

ozone was applied.

The results also show relatively higher standard errors than that of other 

researchers’^,). In addition to the complicated chemistry of HA ozonization, the 

instability of ozone consumption may result from operational errors, such as the 

inconsistency of the rate of Nj supply used to expel residue after the ozonization.
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Therefore, instead of a rigorous result, we can only report the ozone consumption as 

estimated values.

ra . TOTAL ORGANIC CARBON AND AROMATIC CARBONS

As demonstrated previously, two major pathways lead to the degradation of 

organic carbon by ozonization of HA solution: 1) ozone reacts with carboxyl groups 

on smaller molecules and converts them into carbon dioxide; and 2 ) ozone attacks 

phenolic groups and produces carboxylic acids and carbon dioxide. As our result 

shows (see Table 4 and Figure 12), the reaction seemed to proceed more drastically in 

the early stages of ozonization. This observation does not correlate to some of other 

researchers’ ( 4  4 1) applying similar or greater ozone dosages than ours, but agrees with 

Anderson’s observation(4 4). Anderson attributed this difference to the different reaction 

conditions and gas dispersion. Xiong, et. al., who used the dissolved ozone method,

i.e. certain amount of ozone is dissolved in water and then mixed with HA, did not 

report such an observation ,̂). For the dissolved ozone method, the concentration of 

ozone decreases as reaction proceeds, where the ozone concentration is approximately

Ozonization 
Period(min)

TOC
(mg/L)

UV Absorbence 
(cm'i/myL'HA)

UV Absorb/TOC

0 180.0 0.659 0.00366
1 169.2 0.555 0.00328
2 159.2 0.485 0.00303
3 150.4 0.412 0.00274
4 148.4 0.402 0.00271
5 146.1 0.386 0.00264
6 145.7 0.335 0.00223

Table 4. Degradation of TOC and AGO
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constant for the gas dispersion method during the reaction. In this study, 

approximately 6 % of TOC was removed when HA was ozonized for 1 minute, and 

only 13.5% was removed after 6  minutes of ozonization,

Ozonization degrades the aromatic organic compounds (AOC) of HA via two 

major pathways: 1) ozone attacks C=C double bonds to form aldehydes and hydrogen 

peroxide; and 2 ) ozone reacts with phenolic groups forming carboxylic acids and 

carbon dioxide. Following the methodology of Trainâ ?̂), a UV wavelength of 272 nm 

was used in this study to determine the relative content of aromatic compounds in the 

samples.

Our result indicates that about 16% of aromatic compounds were removed 

after 1  minute of ozonization, and approximate 50% was removed by ozonizing the 

HA for 6  minutes. A relatively larger removal efficiency at early stage of ozonization 

was also observed, which is in agreement with the results reported by other 

investigatorS(4 .4 i,4 4). A difference of our observation from others’ (see Figure 13) is 

that there is an increase of the removal rate at 6  minutes, which may imply further 

effective reduction of aromatic compounds would occur if ozonization were carried on 

for longer period of time.

By comparing the results of TOC and AOC, we found the AOC/TOC ratio 

decreased as ozonization continued (see Figure 14). Based on the pathways discussed 

above, this result suggests the pathway which converts C=C double bonds into 

aldehydes and hydrogen peroxide was significant in the HA ozonization. It shows that 

this pathway competes with, and may even dominate, the oxidation of phenolic groups
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into carboxylic acids.

rv . TOTAL ACIDITY

The total acidity of the humic acid used in this study was determined as 7.3 

meq/g HA, which fell into the range reported in other studieŝ .g ,2 ,3 1 ,4 g). The total 

acidity of the ozonized HA did not significantly increase with the amount of ozone 

applied. In addition, our preliminary study indicated that with 2 minutes of 

ozonization at an ozone supply rate similar to that of this experiment, the pH of 

distilled water was reduced to 6.5. With a maximum of 8  minutes of ozonization, the 

pH was reduced to 4.5, and no further significant shifting of pH occurred as 

ozonization continued. A similar result was reported by Coulibaly and Jensonq%. The 

solution with a pH of 4.5, could account for about 0.03 meq/L of acidity. Compared 

to the uncertainty of acidity measurement, the acidity attributed to the ozonization of 

distilled water is within the range of errors. Therefore, it was not subtracted from our 

observed total acidity of the samples. Our results indicate that the acidity of HA does 

not decrease while the humic acid is degraded by ozonization. The result is shown in 

Table 5 and plotted in Figure 15.

One of the major pathways by which ozonization of HA could generate

Ozonization Period 
(min)

Total Acidity 
(meq/g HA)

0 7.274 ± 0.0064
2 7.338 ± 0.0030
4 7.374 ± 0.0081
6 7.404 ± 0.0046
8 7.468 ± 0.0442

Table 5. Total Acidity of HA Samples with Different Levels of Ozonization
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carboxylic acids is the reaction of ozone with phenolic groups. With one phenolic 

group, ozonization could produce 1-4 carboxylic acids, which means for every 

phenolic group, possibly 0-3 more acidic group are generated undergoing this 

pathway. Comparing the result of the TOC analysis to that of total acidity, the higher 

TOC degradation rate in the early stages of ozonization is not associated with a higher 

total acidity improvement. As a consequence, we may presume that in these stages, 

the phenols carboxylic acids reactions, which produce less carboxylic acids ( 1  or 2 ) 

dominate over the reactions which produce more carboxylic acids (3 or 4). In 

addition, considering the relative content of phenolic groups in HAs (20-30% of total 

acidity), and the ozone dosages applied in this study, the observation of insignificant 

increase in total acidity through ozonization suggests that the phenols -* aldehydes 

reaction is important or may even dominant in the ozonization of HA.

Referring to the literature and the previous discussion, we conclude that 

ozonization of HA has the following effects on humic acid chemistry; 1) as evidenced 

by the loss of TOC, some carboxylic acid groups, probably from the lower molecular 

weight fraction, are converted to carbon dioxide; 2) the AOC/TOC result suggests 

there is an increase in the relative abundance of aliphatic compounds in the system; 3) 

there is no overall increase of acid functional groups, indicating that the ozonization 

of a single phenolic groups leads either to a single carboxylic acid group or aldehyde 

formation.

V. COPPER REMOVAL EFFICIENCY
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It has been widely accepted that materials passing through a 0.45 fxm filter in 

an aqueous system are functionally defined as "dissolved". In reality, some materials 

matching this definition do exist in aqueous systems in colloid form rather than truly 

dissolved substances. Therefore, we chose 0.1 /im as the threshold, defining that 

particles which fail to pass through a membrane with this pore size are not dissolved.

In our results (see Table 6  and Figure 16), given the same amount of humic 

acid and copper concentration, the quantity of copper removed decreases as the ozone 

doses increase. This observation is in agreement with those reported by Jekel and 

Recherche, et. al., Both of these researchers used Al(OH); as a coagulant to remove 

HA and FA with the assistance of preozonization of the HA and FA under 

approximately neutral condition (pH 7 -7 .4 )(4 i 4 g), while our study was carried out 

under mild acidic condition (pH 5). The ozone doses of this study are also lower than 

those used by Jekel and Recherche.

Recherche attributed the decline of metal-HA removal after the ozonization of 

HA to the reduction of molecular size of the HA by ozonization. With the separation 

method applied in this study (filtration), our result shows that even under such slight 

ozone doses, the amount of Cu-HA complex molecules captured by filtration still 

decreased i.e. the HA molecular size degrades too much. For the HA samples 

ozonized for 6  and 8  minutes, virtually no copper is removed via filtration of the Cu- 

HA complexes.

In all cases (untreated, 2-, and 4-minute-ozonized HAs) with the approximate 

HA concentration of 1.00 g/L, the amount of copper removed seems to reach a
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maximum when initial concentration reaches 72.2 mg/L. For the untreated HA, 

the maximum removal is 10.8 mg Cu/g HA, while for the HA treated with 2 and 4 

minute ozonization, a maximum of 8.9 and 5.0 mg/L of copper is removed, 

respectively.

For all the HA samples, the removal of Cu-HA complex increases with the 

concentration of free copper. This agrees with the concept mentioned by Stevenson;») 

that the formation of insoluble metal-HA complex depends upon the degree of 

saturation of both Cu*^ and HA. Since the increment of the amount of copper 

removed becomes minimal when Cu^̂  concentration approaches 72.2 mg/L, the 

complex sites are assumed to be saturated at this point period.

Referring to the reactions in Figure 6 , ozonization of HA may also result in 

the increase of aliphatic compounds in the system. In contrast to multi-ring aromatics, 

the carboxylic acid groups on aliphatic compounds are capable of complexing to 

copper with ring members, and form more stable complexes;; »). Since the complex

Initial unozonized 2 min Ozonized 4 min Ozonized
Cu HA HA HA

(mg/L) (mg/L) (mg/L) (mg/L)
8.0 4.7 0.9 0.0

16.0 7.7 2.9 1.2
24.1 8.5 5.4 1.8
32.1 9.0 6.1 1.9
40.1 9.9 7.3 3.4
48.1 9.5 7.6 3.6
56.1 9.7 8.1 3.9
64.2 10.6 8.6 4.7
72.2 10.8 8.9 5.0

Table 6 . Amount of Copper Removed by HA Complex
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sites in the solution seem to be saturated, the competition between aliphatic and 

aromatic sites is not considered to be a ruling factor on our results.

The degradation of TOC has a minor effect on the reduction of removal 

efficiency. Since the portion of TOC reduced is minimal and the loss of TOC is 

assumed to affect the small molecules, which are less likely to remove copper in the 

first place.

The buffer (sodium acetate) added for the preparation of HA samples may 

cause the competitive complexation between HA ligands and acetate groups. The 

stability constant of acetate-Cu complexation (K,) is 10̂  where that of HA-Cu is 

estimated to be 10 -̂10*. However, the amount of added sodium acetate is consistent 

and minimal (one drop) for each sample, so the effect of acetate-Cu complexation is 

not considered crucial on our results.
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CONCLUSION

Due to the complicated nature of the humic acid-copper system, a complete 

description of all the relevant chemical reactions is not possible- there are too many 

factors influencing the system. We have discussed some of the more obvious ones, 

but others may also come into play. We focused on one aspect of humic acid-copper 

interaction: the influence of ozonization on the complexation and filtration of humate- 

copper complexes.

Two possible effects resulting from the ozonization of humic acid are to 

increase carboxylic acid groups and/or to break down the humic acid molecules into 

smaller fragments. In this study, only a slight increase of acidity with increasing 

ozone dosage was observed. The amount of removable HA-Cu complex declined 

substantially within the same range of ozone dosage. It appears the disintegration of 

the large HA molecules, rather than any increase in acidic functional groups, controls 

the HA-Cu removal efficiency.

Further investigation, such as a comparison of the fluctuation of HA molecular 

size distribution with ozone dosage, or quantitative analysis of the HA-Cu complex 

against ozone dosage with an Ion Selective Electrode or similar techniques may 

provide a clearer illustration of the reactions. In terms of copper removal, larger 

humic acids may be preferred with this ozonization approach since the ozonization 

breaks down humic acid molecules.

In regard to environmental fate, ozonization of humic substances could break

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

up the molecules into smaller fragments whose metal complexes are more mobile than 

the original. This may enhance the bioavailability and mobility of both humic acids 

and metals once they complex. This is of interest for water treatment systems which 

utilize ozone as a disinfectant.
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