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Abstract

Waddell, Amy M., M.S. Geology

Cordilieran Partitioning and Foreland Basin Evolution as recorded by the 
Sedimentation and Stratigraphy of the Upper Cretaceous Carten Creek and 
Golden Spike Formations, Centra I-Western Montana

Committee Chair: Marc S. Hendrix, Ph.D.

Recent stratigraphie and sedimentologic study of Upper Cretaceous 
nonvolcanic units in the Garrison, MT area provides more detailed 
interpretation of the upper-middle Carten Creek and lower Golden Spike 
formations. The facies and deposystems associated with these synorogenic 
formations record both foreland basin evolution, south of the Lewis and Clark 
Line (LCL), and the structural deformation of western Montana's fold-thrust belt. 
Sublithic-feldspathic sediment contained in the Coniacian-Santonian Carten 
Creek Formation eroded from the western orogenic wedge and allied Idaho 
Batholith. Upper-middle Carten Creek deposits represent a marginal-marine 
meandering-fluvial system that records a more terrestrial character upsection. 
The Campanian Golden Spike Formation is an amalgamation of interbedded 
volcanic and sublithic-nonvolcanic deposits. Opposing paleoflow of volcanic 
and nonvolcanic units (Gwinn and Mutch, 1965; Mackie, 1986) and abundant 
clasts of Mississippian Madison limestone suggest that Golden Spike 
sediment derived from the Elkhorn Mountain Volcanics, Sapphire Tectonic 
Block and uplift along the LCL. Depositional environments of the lower Golden 
Spike include eastward-facing alluvial fans, a southward-flowing fluvial system 
and a westward-spreading volcanic-alluvial apron. Lava flows and lahars 
(volcanic-debris flows) comprise the volcanic-alluvial deposits within the 
Golden Spike: reinterpretation of the unique megaconglomerate facies 
suggests deposition by multiple lahars that incorporated nonvolcanic detritus 
through superficial erosion. Overall, the Carten Creek Formation is part of a 
time-transgressive progradational shoreline that was presumably located in 
the foredeep depozone and extended north to south across western Montana, 
whereas the Golden Spike Formation represents wedge-top deposition within 
the eastward-propagating Cordillera. Golden Spike lava beds and lahar 
megaconglomerate suggest that concurrent volcanism related to the Elkhorn 
Mountain Volcanics occurred about 80-83Ma within the wedge-top depozone. 
The late Cretaceous stratigraphie sequence constrains the inception of uplift 
along the Lewis and Clark Line and subsequent partitioning of the foreland 
basin to early Campanian time.
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Purpose

Sedimentologic and stratigraphie analyses of late Cretaceous 

sedimentation in western Montana are limited immediately south of the Lewis 

and Clark line. Previous research efforts apparently avoided the region due to 

structural overprinting and lack of biostratigraphic indicators. This thesis is an 

attempt to provide new detailed sedimentologic and stratigraphie data that 

better define the environmental and regional interpretations of the upper Carten 

Creek and lower Golden Spike formations. As part of a larger project, analysis 

of these synorogenic formations will better constrain the inception of late 

Cretaceous structural deformation within the Cordillera. Specifically, this 

research considers'the role of the Lewis and Clark line in the evolution of 

western Montana’s foreland basin system.

Location

The Coniacian to Campanian Carten Creek and Campanian- 

Maastrichtian Golden Spike formations outcrop around Garrison, MT (Powell 

County), approximately 70 miles southeast of Missoula. Analyzed exposures 

primarily occur in T9N-R10W, but two localities outcrop in section 33 of T1ÜN-
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R10W and section 11 of T9N-R9W (Figure 1). South-facing roadcuts of the 

upper-middle Carten Creek Formation, localities 1 and 2, respectively occur 

-0.6 and 9.2km east of Garrison along State Highway 12 in the Little Blackfoot 

River valley.

The lower Golden Spike Formation generally outcrops along road and 

railroad-cuts that are easily accessible off Interstate 90 in the Clark Fork River 

valley. Southeast and east-facing outcrops of basal nonvolcanic strata occur 

along Brock Creek at -0.3 (Locality 3) and 1.5km (Locality 4) north of the 

Phosphate Exit. An impressive southwest-facing outcrop of the 

megaconglomerate facies occurs -1.2km west of town-center along Garrison’s 

Frontage Road (Locality 5). The quarried, southeast hillside of locality 5. 

presently used as a junkyard, exposes interbedded volcanic and nonvolcanic 

strata. Locality 6, -0.5km southeast of the Phosphate Exit and 0.3km northwest 

of Independence Creek, comprises a northeast-facing railroad-cut of sandy 

cobble conglomerate overlying the megaconglomerate facies. Additional 

exposures of sandy cobble conglomerate occur along the southeast hillside of 

locality 6.



Figure 1: Geologic Map of and Research Localities in Garrison, Montana and vicinity
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Regional Geology 

Introduction

The late Mesozoic collision between the North American and Farallon 

plates formed a north-south trending Cordilieran fold and thrust belt. Thrusting 

in western North America shortened the craton in excess of 100 kilometers 

(DeCelles and Mitra, 1995; Pang and Nummedal, 1995). Crustal deformation 

resulting from compression included Cretaceous Sevier-style (“thin-skinned”) 

thrusting and late Cretaceous to early Tertiary Laramide-style (“thick-skinned”) 

basement uplift (Dickinson et al., 1988). Eastward propagation of thrust plates 

resulted in an 800 to 1,650km wide foreland basin that extended from the Arctic 

to the Gulf of Mexico (Figure 2) (Jordan, 1981; Weimer, 1984; Schwartz and 

DeCelles, 1988; Pang and Nummedal, 1995). Uplift along the western margin 

acted as the dominant sediment source of the late Cretaceous foreland basin 

(Weimer, 1984).

According to stratigraphie and radiometric data, thrust movement related 

to the Sevier Orogeny in western Montana began about 100 Ma during the late 

Albian Age (Ruppel et al., 1981). Beginning in Campanian time, eruptions from 

the Elkhorn Mountain Volcanics, located east of the orogenic front in central- 

western Montana, supplied andesitic lava flows and volcaniclastic debris to the 

basin (Figure 3) (Gwinn, 1965; and Mutch, 1965; Wilson, 1970; Ruppel et al., 

1981; Mackie, 1986). Repetitive shifts in deposition, from east to west, reflect
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Figure 2: Paleogeographic map of late Cretaceous North America 

(from Gill and Cobban, 1966 in Rice, 1980)
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late Cretaceous Interplay between sources of sediment and subsidence rates 

(Gwinn, 1965).

Lewis and Clark Line

Slanting across the Idaho-Montana Cordillera, the Lewis and Clark Line 

(LCL) forms a shear boundary between two major thrust slabs that underwent 

differential movement (Wallace, 1990; Sears, 1988; 1994; Sears et al., in 

review). The LCL extends -400km from near Wallace, ID to east of Helena, MT 

with a varying width of 30 to 50km, respectively (Ross et al., 1955; Sears, 1988; 

Sears et al., in review; Wallace, 1990). An en echelon set of southeast- 

plunging anticlines and synclines occur along the northeastern edge of the 

LCL and reflect shallow flexural slip levels (Gwinn, 1965; Mackie, 1986; Sears 

et al., in review). This folding, extending from Drummond to Helena (Ross et 

al., 1955), suggests that northeast-southwest compression accompanied 

crustal shear during the fragmentation of the Cordillera.

Two fundamentally different interpretive models have been suggested 

for the LCL (Figure 4), historically known as the Montana Lineament. Wallace 

et al. (1990) suggested that the LCL is a broad dextral shear zone created by 

differential shortening between the northern and southern regions. Sears 

(1988, 1994; Sears et al., in review) suggested that the LCL is a major 

Cretaceous transpressional shear zone related to clockwise thrust plate



A. Wallace model: Lewis and Clark Dextral Megashear Zone
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rotation. His model proposed that, from Campanian to Paleocene time, the 

southern thrust slab experienced sinistral shear against the northern plate. 

Sears et al. (in review) interpret dextral movement along faults of the LCL as 

post-Paleocene tectonic overprinting.

The rotational model (Sears et al., in review) suggests that compression 

along the LCL caused shallower strata to fold and deeper material to plastically 

flow upward into a “flower structure” (after Sylvester, 1988). In addition, Sears 

(1988; 1994) contends that the Belt Basin was thrust northeast over a 

southwest facing structural ramp that underlies the LCL at depth. This implies 

that the LCL delineates the restored northeastern boundary of the Belt Basin.

Partitioned Cordillera

Late Cretaceous uplift along the LCL fragmented the Idaho-Montana 

Cordillera into northern and southern thrust zones (Wallace, 1990; Sears,

1988; 1994; Sears et al., in review). North of the LCL, the Lewis-Eldorado- 

Hoadley thrust plate formed the Disturbed Belt, an arcuate region of closely 

spaced thrust faults and folds (Sears, 1988; 1994; Sears et al., in review).

South of the LCL, the Sapphire Tectonic Block and subsequent Lombard- 

Elkhorn thrust plate comprised the Overthrust Belt (Ruppel et al., 1981;

Schwartz and DeCelles, 1988; Sears, 1988; 1994; Sears et al., in review). My 

research concentrates on Santonian to Campanian sedimentation south of the 

LCL and east of the Sapphire plate (Figure 5).
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The Garnet and Flint Creek Ranges define the northern and eastern 

crumpled boundaries of the Sapphire thrust plate, respectively (Figure 6). Both 

ranges contain tight folds and intrusions of granitic magma that presumably 

moved east along thrust faults (Ruppel et al., 1981; Alt and Hyndman, 1986). 

Garnet Range thrusting in the east began sometime after 88Ma, yet ceased in 

the west before ~82IVIa (Ruppel et al., 1981). A granodiorite pluton in the 

western Garnet Range, known as the Garnet Stock (-82-79 Ma), cut thrust 

faults and intruded into a syncline along the LCL.

The 15 to 21km thick Sapphire Block apparently slid east off the rising 

Idaho batholith and emplaced during the late Cretaceous time (Hyndman,

1977; 1979; Ruppel et al., 1981). According to Ruppel et al. (1981), the lower 

member of the Elkhorn Mountain Volcanics (80-83Ma) and intrusion of the 

Boulder Batholith (74-80Ma) constrain the age of thrust faulting in the Lombard- 

Elkhorn thrust zone. However, Robinson et al. (1968) demonstrated that the 

main period of Lombard-Elkhorn thrusting involved the Elkhorn Mountain 

Volcanics and occurred between 76Ma and the late Eocene. Regardless, 

Ruppel et al. (1981) contended that emplacement of the Lombard-Elkhorn 

plate was coeval with movement on the eastern part of the Sapphire plate.

The LCL has a history of subsidence and sedimentation from the 

Proterozoic to recent times and is presumably a Precambrian zone of 

weakness (Peterson, 1981; Winston, 1986). The Sapphire Tectonic Block, 

Garnet Range, Flint Creek Range and Elkhorn Mountain Volcanics induced
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localized subsidence along the LCL during late Cretaceous time (Gwinn, 1961 

in 1965). The depression, known as the Clark Fork Sag, crosses folding 

trends of the Garnet and Flint Creek ranges (Figure 6) (Gwinn, 1965; Mackie, 

1986).

Foreland Sedimentation

Cretaceous deposits preserved in Montana form a westward thickening 

clastic wedge as a result of foreland subsidence. Near Garrison, the 

Campanian Golden Spike Formation overlies 10,360 meters of Precambrian 

and Phanerozoic deposits (Figure 7) (Gwinn, 1960 in Mackie, 1986; Peterson, 

1981). The southwestern flank of the N45°W trending Garrison anticline 

accommodates about 5,880 meters of Cretaceous strata (Gwinn, 1965). 

Montana’s thickest Cretaceous sequence, approximately 6,240 meters, lies 

between Drummond and Garrison (Gwinn, 1960 in Mackie, 1986; Gwinn,

1965). However, it is uncertain if structural repetition south of the LCL affects 

the thickness of the Cretaceous sequence. In comparison, the thickness of the 

Cretaceous sequence preserved near Wolf Creek, east-northeast of the LCL in 

the Disturbed Belt, is 2,940 meters (Schmidt, 1963 in Gwinn, 1965).
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Previous Investigations

Age and Correlation

The southwest limb of the Garrison anticline, related apparently to late 

Cretaceous - early Tertiary compression along the LOL, exposes both Garten 

Creek and Golden Spike strata (Mackie, 1986). W. A. Cobban (in Wallace, 

1990) concluded an BBMa basal age for the Carten Creek based on Coniacian 

mollusks. Upsection, the formation lacks sufficient biostratigraphic data for 

age determination (Gwinn, 1965; Wallace, 1990). However, the overlying 

Golden Spike restricts the Carten Creek’s upper boundary age to, at youngest, 

early Campanian (Wallace, 1990). Andesitic volcanics within the Golden Spike 

correlate with the BO to B3 Ma lower member of the Elkhorn Mountain Volcanics 

(Gwinn and Mutch, 1965; Ruppel et al., 19B1; Mackie, 19B6). Mackie’s (19B6) 

identification of the freshwater ostracod, Staringia, supports Golden Spike 

deposition extending into the Maastrichtian Age.

Numerous synorogenic conglomerates, of approximate age to the 

Golden Spike, outcrop along the entire length of the Rocky Mountain thrust belt 

(Figure B) (Wilson, 1970; Ruppel et al., 19B1; Mackie, 19B6). In Montana, 

sedimentary units that are time-correlative with the Golden Spike include the 

southwestern Beaverhead Conglomerate, north-central Two Medicine 

Formation and central Livingston Group (Figure 3) (Gwinn, 1965; Gwinn and 

Mutch, 1965; Wilson, 1970; Ruppel et al., 19B1; Mackie, 19B6; Wallace, 1990;



17

• WSSCM.4 T, KL£N4
CCLDCN SPIKE FM. 
(3,000 FEET) gtjrre

CEINTRAU 
M ONTANA  
ROCK IBS

sa (H GO Î  a S3 a

EARLY
tertiary  CGL 

( ICO FEET)

, KRILEY f m ,
’  ') (8 0 0  ♦FEET)

tCXLLÛN ,

BQICman atLiMCS

£JVf/iS

ff*A L U 5

"8EAVERREA0 CGL.* 
t 1,000 ♦ FEET)

1 .4 ^  SPWINX CGL. (3 .0 0 0 *FEET) 
±^#r\WMESTQNEj^88LE CGLtOOFEFT)

 1

MCMÛ4
mOUOOfS

BEAVERHEAD ANO MONIQA FOflMATK^S 
( 10.0 0 0 * FEET)

0 © a CO I

mrwiN£ALL,S
mP0C4r£U0

C B N T R A U
R O C K / B S

W G V.

IDAHO
• fa lls

K£MM£K/t i

coor

HAREBELL FM. ft 
g  PINYON CGL. 

(8.300 ♦FEET)

H08ACK FM. 
(M.OOO*FEET:

LANOC/t

EVANSTON FM. 
^(i.SOO FEET)

J*OCK 
*SP»tftC5

V \ / T OM/ NG

I t

OCC£N I  E  / /  ^

CGU ?2oSTe°et) "  a  OKI  B S

M t L / -----------------------SALr utF£ a r t ! m

(3.000 ♦ FEET) Î o ^

Figure 8: Upper Cretaceous and Paleocene synorogenic conglomerates 

distributed along the Rocky Mountain fold-thrust belt — maximum unit thickness 
recorded in parentheses, (from Wilson, 1970)



18
Sears et al., in review). Local exposures of the Carten Creek and Golden Spike 

formations only exist east of the Sapphire Block and south of the LCL (Gwinn, 

1965).

Carten Creek Formation

Gwinn (1965) referred to an 1,820m section of the Colorado Group, 

overlying the Turonian-Coniacian Jens Formation, as the Carter Creek 

Formation. However, the type locality lies -1.6km east of Carten Creek (T10N- 

R10W) near Goldcreek, MT. Subsequent publications initiated a change in 

nomenclature to the more appropriate Carten Creek Formation (Ruppel et al., 

1981; Wallace et al., 1990; Sears et al., in review).

Gwinn (1965) described the base of the Carten Creek as -90m of planar 

laminated to low-angle cross-stratified sandstone thinly interbedded with 

shale. The basal sandstone contains brackish molluskan fauna that includes: 

Cardium cf. Ç. pauperculum, Volviceramus involutus, Pleuriocardia, 

Cymbophora arenaria, Tellina(?), Corbula, Scaphites and Placenticeras 

benningi (Gwinn, 1965; W. A. Cobban in Wallace, 1990). Brackish water fauna 

locally occur in the succeeding 1,200m section of green, gray, and tan 

sandstone, siltstone, shale and mudstone. Siliceous-rich sandstone, siltstone 

and mudstone interbed within this medial section above 273 meters. Dacite- 

andesite pebble conglomerate lenses occur in the upper medial section. 

Reddish gray, greenish gray and gray to buff sandy mudstone and siltstone
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form the remaining 530m of the Carten Creek Formation. However in eastern 

outcrops of the upper Carten Creek, red beds are rare and brackish fauna 

sections are again common.

The Carten Creek Formation, composed of brackish and local 

freshwater deposits, signifies the final regression of the Cretaceous Sea from 

central-western Montana (Gwinn, 1965). Gwinn (1965) interpreted the basal 

mollusk-bearing deposits as nearshore marine and varicolored beds as 

terrestrial in origin. Repetitive brackish and fresh water deposits suggest the 

vacillation of depositional environments (Gwinn, 1965).

Golden Spike Formation

In 1883, the east and west ends of the Northern Pacific Railroad line 

joined near the mouth of Independence Creek, in section 9 of T9N-R10W, 

south of the Clark Fork River. The driving of a golden spike commemorated the 

transcontinental connection. The Golden Spike Formation is named after this 

historic event (Figure 9) (Gwinn and Mutch. 1965).

Northeast trending high-angle faults, presumably related to localized 

extension along the LCL, form the northwest and southeast boundaries of the 

16km long Golden Spike Formation (Gwinn and Mutch, 1965; Mackie, 1986). 

Gwinn and Mutch (1965) first described the Campanian Golden Spike as 

interfingering nonvolcanic and volcanic deposits that thicken from west to east.



Figure 9: The Golden Spike Formation is named after the gold spike used to 
commemorate the 1883 joining of the eastern and western ends of the Northern Pacific 
rail-line. The type section (Gwinn and Mutch, 1965) is not far from Independence Creek 
where the historic event took place.
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1,210 to 2,425m respectively (Figure 10). Paleocurrent indicators, variations in 

composition, and unit thickness indicate the Golden Spike Formation had 

multiple sediment sources (Gwinn and Mutch, 1965; Mackie, 1986). Primary 

source areas were the Sapphire Block and the Elkhorn Mountain Volcanics.

The Sapphire thrust plate formed the western depositional margin of and 

provided nonvolcanic sediment to the Golden Spike (Gwinn, 1965; Gwinn and 

Mutch, 1965; Mackie, 1986; Waddell and Webb, 1997). The Elkhorn Mountain 

Volcanics supplied andesitic material from the east (Gwinn and Mutch, 1965; 

Mackie, 1986). The northwest-southeast trending nonvolcanic deposits 

collected in the Clark Fork Sag and interfingered with volcanic material flowing 

from southeast to northwest (Gwinn, 1965; Gwinn and Mutch, 1965; Mackie, 

1986).

At its northwest end, the Golden Spike is composed of 97 percent 

nonvolcanic quartz, quartzite, chert and carbonate rock debris (Gwinn and 

Mutch, 1965). Nonvolcanic beds pinch out towards the southeast where 

volcanic-related deposits dominate (Gwinn and Mutch, 1965; Mackie, 1986). 

Extrusive and brecciated volcanic strata constitute 3% of the formation around 

Brock Creek, but comprise approximately 60-70%, 4.5km southwest, near Rock 

Creek (Gwinn, 1965; and Mutch, 1965).

Gwinn and Mutch (1965) identified six stratigraphie units in the Golden 

Spike Formation (Figure 11): (1) The “basal conglomerate unit" comprises a 

-140m section of nonvolcanic pebble conglomerate and chert-rich sandstone
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that vertically Interbed with siltstone and mudstone. Two to four thick cobble 

conglomerate intervals also occur within this basal unit. (2) A thick 

amalgamation of volcaniclastic and nonvolcanic deposits characterize the 

-"635m “lower mixed unit”. Poorly indurated megaconglomerate, known as the 

“chaos beds", occurs 150 to 210m above the unit’s base. The “chaos beds” 

subunit is an unsorted mixture of nonvolcanic and volcanic, pebble to boulder 

sized detritus in a fine grained volcaniclastic matrix. A few thin lava flows and 

isolated stromatolitic algal limestone deposits also occur within the “lower 

mixed unit”. (3) The -275m thick “middle lava unit” contains aphanitic and 

porphyritic-aphanitic andésite flows that locally interbed with autoclastic flow 

breccias. Lava flows contain calcic plagioclase phenocrysts in the more 

porphyritic sections. Clinopyroxene phenocrysts also occur in Golden Spike 

volcanic specimens, but are less common. (4) Poorly exposed deposits of the 

-580m thick “middle mixed unit” are similar to those of the “lower mixed unit” 

with few exceptions. Interbedded nonvolcanic, volcaniclastic, and lava flows 

typify this unit. Nonvolcanic cobble conglomerate, thicker volcanic breccias, 

and one crystalline tuff occur higher in the section. The “chaos beds” 

megaconglomerate does not recur in the “middle mixed unit”. (5) The “upper 

lava unit” is an -160m thick section of at least three aphanitic andésite flows 

that locally appear porphyritic. Volcaniclastic deposits also interbed with lava 

flows in this unit. (6) The final 285m, of the Golden Spike Formation, is a poorly 

exposed repetitive sequence of nonvolcanic and volcanic interbeds, known as 

the “upper mixed unit”. Nonvolcanic lithologies include sandstone, siltstone,
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and mudstone. However, volcaniclastic breccia, sandstone, siltstone, and 

mudstone apparently dominate the unit. Several porphyritic andésite flows and 

thin welded tuffs also occur high in the section.

Gwinn and Mutch (1965) noted that only a small percentage of the 

volcanic rocks in the Golden Spike appeared pyroclastic in origin. Most 

volcaniclastic material is matrix-rich and presumably deposited through 

mudslides, landslides, and water (Gwinn, 1965; and Mutch, 1965). Gwinn and 

Mutch (1965) interpreted the megaconglomerate "chaos beds' as a single 

large-scale landslide, possibly induced by a seismic shock, that resulted from 

Elkhorn Mountain volcanism. Mackie (1986) proposed that a hot lahar, or 

volcanic-debris flow, deposited the megaconglomerate in a single layer.

Nonvolcanic deposits tend to be better sorted and more distinctly 

bedded than the volcanic rocks, yet display extreme textural and compositional 

immaturity (Gwinn and Mutch, 1965; Mackie, 1986). Previous interpretations of 

nonvolcanic facies include braided stream and meandering river deposits on 

an eastern-sloping, piedmont-valley flat complex (Gwinn, 1965; Gwinn and 

Mutch, 1965; Mackie, 1986). The intermittent silt and shale layers of this 

formation are presumed to be overbank deposits as they also grade laterally 

into river channel deposits (Gwinn and Mutch, 1965).
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Methods of Study

Facies Analysis

Both the Carten Creek and Golden Spike formations tend to outcrop 

poorly. The few, well-exposed sections that exhibited the least amount of 

structural overprint were utilized for sedimentologic and stratigraphie analysis. 

Favorable sections were measured at submeter resolution, while field 

observations of outcrops not well suited for section measurement were 

recorded on photomosaics. Locally, trough crossbedding and imbricated 

clasts supplied paleocurrent data. Designation of lithofacies was based on 

key assemblages of sedimentary structures and textures in both formations. 

Facies identification subsequently enabled the interpretation of depositional 

environments.

Compositional Research

Representative samples of the Carten Creek and Golden Spike 

formations were selected for thin section analysis either randomly or 

incrementally at several meter scale within measured-section and photo

mosaic outcrops. Thin sections of the sampled sandstone, pebble 

conglomerate, and conglomerate-matrix were analyzed for provenance 

information. Point counting of thin sections followed a modified Gazzi-
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Dickinson method (Dickinson, 1970) in which the lithologies of 500 grains 

were systematically identified. Provenance information for the Golden Spike 

Formation also comes from the lithologie identification of >1 cm clasts in two 

conglomeratic facies. Totally, ten clast counts (CB CC1-6 and SCC CC1-4) 

were conducted on Golden Spike megaconglomerate and sandy cobble 

conglomerate.

Due to the nature of conglomerate exposure, sampling for clast counts 

included two types of procedures: random starting-point and systematic 

census. Clast counts sampled from random starting-points were conducted 

on all sandy cobble conglomerate (SCC CCI-3) and one exposure of 

megaconglomerate (CB CC6). Generally, the megaconglomerate facies (CB 

C C I-5) underwent systematic sampling that involved taking a census of clasts 

within a 1x1 meter station. Although stations were marked along base of the 

megaconglomerate outcrops due to the inherent danger of loose rock, the 

samples obtained include a variety of lithologies and appear representative of 

lateral deposits exposed uphill. Depending on station selection, immense 

clasts could potentially comprise an entire square meter block. Some counts 

are clast compilations from individual stations in direct contact with one 

another. For instance, CB CCI inclusively tabulates a 1x2m block, and CB 

CC2&3 are censuses of 1x3m blocks.

Due to extreme clast-size variability in Golden Spike conglomerates, 

both lithology and diameter measurement were recorded in clast counts. 

Compositional percentages were first calculated based on the total presence
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of lithology in count and then recalculated for lithologie population proportional 

to clast size. However, initial counts (CB 001-3 and SCO 004) reported data 

in only three clast-diameter categories: 1-6cm (small), >6cm-<50cm 

(medium), and >50cm (large). Data from succeeding clast counts included, 

along with lithology, all long and intermediate clast axes to better represent any 

volumetric differences. To enable comparison of all clast count results, 

numeric weights were applied to lithologie totals in the medium and large 

categories of preliminary counts (08 001,2&3 and SCO 004) relative to the 

smaller category value. Data from the later, more size-descriptive clast counts 

was used to set these numeric weights by determining a ratio of area covered 

by clasts within the three size-factions.

Specifically, clasts from the subsequent counts were arranged by long- 

axis length into the same small, medium and large size categories initially 

identified. Since the megaconglomerate facies incorporates pebble to boulder 

sized clasts, the median-clast length was obtained and computed as median- 

area in centimeters for each size-faction in OB 004,5&6. Mean-area in 

centimeters was calculated for SOO 001,2&3 from the total clast-coverage of 

the small and medium categories because extremely large clast sizes do not 

occur in the sandy cobble conglomerate. Within a count, the areas compiled 

for each size-faction were converted into a dimensionless ratio with respect to 

the smallest category -  i.e., the areas of categories 1, 2 and 3 were divided by 

category Ts area. Ratios that derived from clast counts performed on the 

same conglomerate facies were then averaged to establish one set of numeric
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weights. Ultimately, lithologie totals from the medium and large categories of 

CB CC1,2&3 were multiplied by 11 and 384, respectively, while the medium 

size-faction value in SCC CC4 was weighted by 4.
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Sedimentology and Stratigraphy

Introduction

Profiles of the Carten Creek and Golden Spike formations include 

lithofacies descriptions, environmental interpretations, provenance analyses, 

and a regional synopsis. Lithofacies and environmental discussions reflect 

data obtained from measured sections (Carten Creek - Figure 12; Golden 

Spike - Figures 21, 23 and 26) and photomosaics (Carten Creek - Appendix 

plates la-f; Golden Spike - Appendix plates 2, 3, 4a-c, 5 and 6a & b). This 

study focuses on the upper-middle interval of the Carten Creek Formation and 

the lower third of the Golden Spike Formation (“basal conglomerate” and “lower 

mixed” units by Gwinn and Mutch, 1965) as recorders of late Cretaceous 

foreland basin evolution.

Lithofacies of the Upper-Middle Carten Creek Formation

Coarse - Very Coarse Sandstone with Volcanic-Pebbles

Tan lithic-feldspathic sandstone containing dacite-andesite pebbles 

characterizes this facies (Locality 1 in Figure 1). Sandstone is coarse to very- 

coarse grained; grains are moderately sorted and commonly angular to 

subround. Tabular sandstone beds commonly exhibit large-scale planar
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foresets and local planar laminations. Subround volcanic pebbles and 

subangular silty mudchips mantle planar foresets and accumulate above 

denudation surfaces.

Volcanic pebbles are abundant and typically_<2cm in diameter, but 5- 

6cm pebbles are not uncommon. Silty mudchips occur locally and are highly 

variable in size, ranging between ^0.6 to 15 centimeters. Carbonized wood 

fragments are rare and similarly vary in size.

Coarse-grained bases generally erode slightly into underlying black 

shale deposits. The pebbly sandstone of this facies generally grades vertically 

into a medium to coarse grained sandstone with large-planar foresets, planar 

laminations, and local trough crossbedding. Black shale also sharply overlies 

the upper contact of deposits in this facies.

Fine to Very-Coarse Sandstone with Local Mudchip Conglomerate

Tan to white, feldspathic-rich sandstone in this facies contains subround 

to angular grains and is moderately sorted. Deposits commonly fine upward 

from coarse to fine grained sandstone, but greenish gray to tan mudchip 

conglomerate and very-coarse sandstone is present at the base of some beds. 

Mudchip conglomerate comprises abundant light to dark gray silty-mudchips in

a lithic-feldspathic matrix.

Deposits containing abundant large-scale trough crossbedding (Figure 

13) comprise the majority of this facies. Locally, medium to very-coarse 

grained beds contain large-scale planar foresets, planar laminations, and
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Figure 13: Large-scale trough crossbedding abundantly occurs in the fine-coarse 
sandstone facies of the upper-middle Carten Creek Formation (Locality 1 ). Rock hammer 
used for scale.

F ig u re  14: Mudchip-rich sandstone scouring into underlying shale in the Carten Creek 
Formation (Locality 1 ). Two large wood particles are outlined to ease observation. Camera 
lens cap in upper-right of photo provides scale.
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sparse dacite-andesite pebbles. In rare exposures, the planar laminations are 

convoluted and trough topsets are preserved.

Mudchips, particles of carbonized wood, clay drapes, and very-coarse 

sand grains commonly mantle trough crossbeds, planar foresets, planar 

laminations, and denudation surfaces. Basal deposits also contain abundant 

mudchips, wood debris, and local tool marks. Likewise, wood particles and 

fine mudchips commonly appear in the scour pits of linguoid and sinuous 

ripples that locally occur on top of trough-crossbedded deposits. The 

subround to angular mudchips greatly vary in size; most are <3cm in diameter, 

but diameters >10cm are not uncommon in conglomerate sections.

Sandstone deposits are tabular to wedge shaped and several to tens of 

meters wide. Thickness of trough-crossbedded sandstone sections varies 

notably but apparently does not exceed 9 meters. Beds mainly composed of 

planar and convoluted laminations range up to ~2.5m thick. Deposits with 

large-scale planar foresets are <0.4m thick and commonly occur near the 

volcanic-pebble sandstone facies. Locally, mudchip-rich sandstone vertically 

interbeds with thin (<0.25cm) layers of dark gray clayey siltstone.

Basal contacts are irregular and commonly erode into the underlying 

finer grained rock types (Figure 14). This facies either grades upward into 

siltstone and mudstone or is sharply overlain by black shale (Localities 1 and 2 

in Figure 1). Stacked fine to coarse sandstone deposits also occur laterally

and vertically.
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Massive Siltstone - Fine Sandstone

Greenish tan, greenish gray, and purple siltstone to fine grained 

sandstone generally characterizes this facies, but tan medium grained 

deposits also occur locally. Fine sandstone contains subround to angular 

grains that display moderate sorting. Beds commonly maintain constant grain 

size or fine upward, but rarely coarsen upward. Intermittent with the shale and 

mudstone facies, deposits commonly occur as tabular beds and lenses,

<1.2m and <0.5m thick respectively, although beds occurring in the Carten 

Creek measured section are locally several meters thick. Other thin (<0.25m) 

beds of fissile clayey-siltstone locally interfinger with coarser grained rock 

types.

Typical deposits have an irregular or well-defined scoured base and 

appear massive. Locally beds contain clay drapes, small and large scale 

trough crossbeds, basal mudchips, carbonized wood fragments, and/or planar 

laminations. Rare topsets of trough crossbedding are exposed in outcrop. 

Rippled bed tops, climbing ripples, convoluted laminations, basal black chert 

pebbles, and siltstone concretions also appear rarely in this facies.

Massive Silty Shale

Massive silty shale is dark greenish-gray to black, fissile and organic- 

rich. Beds are generally <2.5m thick, but shale also occurs as thin drapes on 

foresets and denudation surfaces. The erosion of shale by overlying coarser- 

grained deposits resulted in great variation of bed thickness within this facies.
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Accordingly, thin beds and lenses of massive siltstone and very fine-fine 

sandstone occur within thick deposits of shale. Locally, shale beds contain 

carbonized wood fragments and scattered nodules of dark gray micrite. A rare 

layer of nodular micrite occurs at -88m within the Carten Creek’s measured 

section (Figure 12).

Mottled Silty Mudstone

Greenish tan, brownish gray, and reddish brown silty mudstone to clayey 

siltstone predominate much of the upper Carten Creek Formation (after Gwinn, 

1965). Deposits appear locally mottled with red discoloration. Mudstone 

thickness ranges from several meters to only a decimeter due to the same 

erosive processes affecting the massive shale facies. Micritic nodules, 

typically <2cm and locally -5cm in diameter, are common in the mudstone 

facies.

Lithofacies of the Lower Golden Spike Formation

Matrix-Supported Megaconglomerate Facies

The Golden Spike Formation contains spectacular megaconglomerate 

that outcrop along the Frontage Road in Garrison, Montana and Interstate 90 at 

the Phosphate Exit (Localities 5 and 6 in Figure 1). Gwinn and Mutch (1965) 

first described the poorly sorted, matrix-supported megaconglomerate as the 

“chaos beds.” Stacked megaconglomerate deposits outcrop along a roadside
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exposure in Garrison, MT and are approximately 155 meters thick. (Appendix 

plate 4a-c). Gwinn and Mutch (1965) measured unit thickness of the 

megaconglomerate along the type-section, -0.9km northeast of Garrison, to be 

approximately 62 meters. Thickness of the Garrison exposure may be 

artificially high due to structural repetition, but is consistent with the overall 

westward thickening of the Golden Spike Formation.

This lithofacies contains pebble to boulder sized clasts in a fine grained 

matrix. Matrix texture varies between clay and poorly sorted very-fine sand. 

Matrix material comprises 75-80% of the megaconglomerate at the base 

(Garrison Frontage Road Locality) and increases to 85-90% both upsection 

and westward (South Phosphate Exit Locality - Appendix plate 5).

Clasts range in shape from round to angular, but are dominantly 

subround. The largest clast (“Moby Dick” - Figure 15) measures 17.2 x 4.4 

meters and is likely cannibalized from underlying white sandstone deposits of 

the Golden Spike. Subangular, red-brown clasts composed of volcaniclastic 

breccia are approximately 5 to 7 meters in diameter. Large boulder sized and 

volcanic clasts are more prevalent to the east in deposits along the Garrison 

Frontage Road than in the south Phosphate Exit exposure.

Although individual beds are difficult to detect within this unit, contacts 

are observable over short distances. For example, the remnant of a mottled 

paleosol horizon beneath “Moby Dick” (Figure 16) suggests bedding. Bedding 

within the Chaos Beds is also evident from several interfingering lava and 

volcaniclastic flows.
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Figure 15: Megaconglomerate of the lower Golden Spike Formation (Locality 5) containing 
clasts that greatly range in size. The 17m long, white sandstone boulder in center of photo is 
the largest clast observable in the facies. Dark volcaniclastic boulders are also visible in the 
photo. People - one man circled - congregating at base of outcrop provide scale.
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F ig u re  16: Mottled mudstone layer beneath large white clast 
("Moby Dick") is one of few bedding indicators in the 
megaconglomerate facies of the lower Golden Spike Formation 
(Locality 5). Black outline is added to distinguish the remnant 
paleosol from surrounding matrix-supported conglomerate 
deposits. Stratigraphie up from right to left side of photo and 
scale indicated by decimeter increments on staff.
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Sandy Cobble Conglomerate Facies

Sandy cobble conglomerate characterizes portions of the lower Golden 

Spike Formation (Appendix plates 5 and 6a & b). Stacked conglomerate of this 

facies varies from clast-rich with matrix support to fully grain-supported (Figure 

17); matrix support is typically moderate to poor. Tabular and lens shaped 

deposits of tan sandstone define bedding within the conglomerate deposits 

(Figure 18).

Clast sizes range from pebble to cobble. In exposures underlying the 

megaconglomerate deposits (Localities 3 and 4 in Figure 1), clast diameters 

do not typically exceed 25 centimeters. In deposits directly overlying the Chaos 

Beds clast diameters are larger but generally less than 40 centimeters 

(Locality 6 in Figure 1). Clast and sand grain shapes range from subangular to 

subrounded.

Within the sections of grain-supported conglomerate, imbricated and 

horizontally oriented clasts are common (Figure 19). Clast imbrication also 

occurs locally in the matrix-supported conglomerates (Figures 20a&b). Matrix 

is poorly sorted and composed of very-fine to coarse sand and pebbles.

Vertical grain-size transitions, from conglomerate to overlying 

sandstone, are both gradational and sharp (Figure 21). Gradational transitions 

begin with moderately matrix-supported conglomerate that becomes more 

grain-supported upsection. Grain-supported conglomerate may contain 

imbricated cobbles and is commonly overlain by pebbly coarse-grained
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Figure 17: Sandy cobble conglomerate 
varying between clast-rich with moderate 
matrix-support to fully grain supported. 
Conglomerate near bottom of photo is matrix 
poor, but matrix-support increases higher in 
outcrop (Locality 4). Rock hammer for scale.

Figure 18: Bedding in sandy cobble conglomerate of the Golden 
Spike Formation designated by a lens-shaped interbed of tan 
sandstone (Locality 3). Part of another sandstone bed is visible in 
photo at the base of the outcrop. Rock hammer for scale.

6
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Figure 19: Grain-supported bed within the sandy cobble 
conglomerate facies of the lower Golden Spike Formation 
(Locality 4) is more homogeneous in texture than underlying 
matrix-supported bed (contact dashed). Clast imbrication in 
grain-supported conglomerate is most apparent In upper-right 
corner of photo. Rock hammer for scale.
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Figure 20: Clast imbrication in matrix-supported sandy cobble 
conglomerate of the Golden Spike Formation (A. - Locality 4;
B. - Locality 6). Scale provided by rock hammer and mechanical 
pencil in A and B, respectively. ___________________



Figure 21 :
Golden Spike Formation 

Measured Section Involving 
Sandy Cobble Conglomerate (SCC) Facies 

Scale of stratigraphie column is in meters.
"X" indicates covered zone.
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Figure 22: Sandstone lens in sandy cobble conglomerate of the Golden Spike Formation 
(Locality 6). Cobbles from conglomerate commonly protrude into overlying sandstone 
lenses and tabular beds. Camera lens cap at bottom-center of photo denotes scale.
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sandstone. Sharp contacts are characterized by moderately matrix-supported 

conglomerate overlain by decimeter scale beds of medium sandstone with 

planar laminations or trough crossbedding. Cobbles commonly protrude from 

underlying conglomerate beds into overlying sandstone deposits (Figure 22).

Clast-Supported Pebble Conglomerate Facies

Bluish gray, sublithic conglomerate occurs in broad, shallow scours 

approximately 10-15m wide and less than 50cm thick (Appendix plates 2 and 

3). Conglomerate vertically grades into sandstone, and laterally interfingers 

with siltstone and shale (Localities 4 and 5 in Figure 1; Figure 23). Grain- 

support is typical. Pebbles are subround to subangular and generally <3cm in 

diameter. Indurated pebbles commonly deform rip-up mud clasts contained in 

conglomerate beds. Sorting ranges from moderate to poor. Trough crossbeds 

and clay drapes occur locally.

Very-Fine to Coarse Grained Sandstone Facies

Sublithic sandstone of this facies comprises subround to angular grains 

that are moderately sorted. Grain size fines upward from coarse to very-fine 

within deposits. Medium to very-coarse grained sandstone beds commonly 

contain trough crossbeds with subround pebbles locally mantling foresets. 

Finer sandstone beds are generally planar laminated, but may show low-angle 

trough crossbedding. In general, beds are tabular, broad wedge, and small
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(<1m wide) lens shaped. However, lenticular sandstone deposits are 

commonly finer grained than the other bed types.

Tan to greenish tan sandstone beds interfinger with the sandy cobble 

conglomerate facies and exhibit planar laminations and trough crossbeds. 

Tabular tan sandstone occurring downsection of the megaconglomerate facies 

is <1.4m thick. Similar beds exposed upsection of the megaconglomerate are 

commonly thin (<40cm). Lens shaped deposits of tan sandstone are typically 

less than 35cm thick and pinch out in or mantle the top of an underlying sandy 

cobble conglomerate bed.

Sandstone occurring in gradational contact with the clast-supported 

pebble conglomerate facies is commonly bluish gray, but locally outcrops white 

or light gray. Analysis of cut and polished float block slabs indicates planar 

laminations, trough crossbeds, pebble lags, clay drapes, rip-up mud clasts, 

and/or fluid escape structures are present in bluish gray sandstone deposits 

(Figures 24 and 25). Bluish gray sandstone beds are generally laterally 

continuous at the scale of the outcrop (-10m) and do not exceed 1.5m in 

thickness.

Massive Siltstone - Very Fine Sandstone Facies

Sublithic shaley-siltstone to silty-sandstone comprises this facies which 

is commonly associated with bluish-gray sublithic sandstone. Shaley-siltstone 

locally contains scattered very-fine sand grains. Very-fine sandstone and 

siltstone grains are subround and moderately sorted. Beds are greenish gray
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LA



52

.‘W

10

stratigraphie
Up

Rip-up
Mud
Clasts

cm

Planar
Crossbeds

DenudatTdn
Surface

(Low Angle) Trough Crossbeds

Mud Clasts

Figure 25: Schematic Diagram of Sedimentary Structures in Float Slab 1E 
of the Lower Golden Spike Formation



53
and appear massive due to an opaque weathered coating. Deposits occur in 

lens shaped or tabular forms with variable thickness that does not exceed 85 

centimeters.

Basal contacts can be either erosive or gradational. Some siltstone to 

very-fine sandstone deposits have irregular bases and scour into underlying 

shales and mudstones. Erosive sandstone beds locally contain micritic 

nodules similar to those encased in the surrounding shale deposits. Other 

deposits in this facies fine upward from the underlying coarser sandstone 

deposits. Upper contacts of siltstone beds typically grade into mudstone facies 

and may contain fragments of carbonized plant debris.

Massive Shale Facies

The shale facies is generally gray in color, but may locally be reddish- 

brown or reddish-gray. Massive shale beds are typically one to two meters 

thick, but alternating 5 - 10cm beds of shale and greenish-gray siltstone also 

occur locally. Shale beds commonly contain calcareous nodules composed of 

dark gray micrite. Nodules, typically 1 to 3cm in diameter, have a white or 

lighter gray weathering rind on the surface and septarian cracks in the center. 

Cracks are filled with dark gray calcite spar.

Mottled Mudstone Facies

Mottled green-purple to red silty mudstone deposits are typically 

associated with the shale and siltstone facies. An erosional remnant of
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mottled mudstone occurs beneath the largest clast, nicknamed “Moby Dick”, in 

the megaconglomerate facies (Locality 5 in Figure 1). Beds are typically <10cm 

thick, but may reach 90cm locally. Basal contacts are gradational with 

underlying siltstone and silty shale. Upper contacts are commonly irregular 

and appear erosive. Deposits contain numerous calcareous nodules and 

sparse carbonized wood.

Algal Limestone Facies

Gwinn and Mutch (1965) described two exposures of algal limestone 

with ostracod debris in the Golden Spike's "lower mixed unit'. One outcrop of 

light gray, sparry biomicrite is illustrated in Figure 23. Stromatolites within this 

exposure vary between 2 to 10cm wide and are oval shaped.

VolcanicA/olcaniclastic Facies

Thick (>10m) volcanic deposits intertongue with the matrix-supported 

megaconglomerate in Garrison, MT and at the Phosphate Exit localities 

(Appendix plates 4a-c and 5). Interfingering of volcanic and volcaniclastic 

material also occurs with other nonvolcanic units underlying the 

megaconglomerate facies (Figures 23 and 26), but apparently at a lesser 

(<5m) scale. Common rock types include porphyritic andésite, autoclastic 

breccia, and matrix-supported volcaniclastic breccia. Volcanic deposits 

(typically andésite and welded breccia) contain blocky plagioclase and
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platy biotite crystals. Plagioclase observed In porphyritic andésite is commonly 

zoned.

The matrix-supported, volcaniclastic breccia commonly contains 

euhedral biotite, hornfels chips, zoned plagioclase crystals, and irregularly 

rounded microcrystalline felsic clasts. Plagioclase crystals appear either 

resorbed or broken. The subangular-subrounded felsic clasts are inversely 

graded in one deposit (Figure 23) from 2mm to 20cm. Matrix material of these 

deposits is clay sized. Beds are generally grayish-green, but may also appear 

dark gray or reddish brown.
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Environmental Interpretation of Lithofacies

Fluvial Deposition

Mudchip-rich sandstone (Carten Creek Formation) and clast-supported 

pebble conglomerate (Golden Spike Formation) vertically grade into coarse- 

medium sandstone and represent high-energy thalweg deposits within a 

channel sequence. Mudchips dispersed in trough-crossbedded channel 

deposits presumably eroded off banks and levees, although the reworking of 

clay drapes could also account for many clasts. Lenses of mudchip-rich 

sandstone may locally represent catastrophic levee breaches in the Carten 

Creek Formation. Repetitive, upward-fining basal lag and trough-crossbedded 

deposits in the Carten Creek and Golden Spike formations (Figures 12 and 23) 

are consistent with the point bar model of meandering rivers (Walker, 1984).

Vertical changes in grain size and sedimentary structures represent 

velocity gradation within the channel deposits of both formations. Scoured and 

coarse-grained bases with local tool marks (Carten Creek Formation) suggest 

current velocity along the channel floor was in the upper flow regime during 

peak flood time (Walker, 1984; Boggs, 1995). Planar laminations and dune 

foresets indicate the average discharge velocity was within the upper-lower 

flow regime (Boggs, 1995). Clay drapes between beds, on foresets, and along 

denudation surfaces indicate periodic and significant reductions in current flow.

Wood particles and mudchips constitute a significant part of the Carten 

Creek’s bedload. The rare preservation of trough topsets, in channel deposits,
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indicates the Carten Creek river system routinely was highly concentrated in 

sediment (Collinson and Thompson, 1982). Accordingly, local convoluted 

laminations, related to liquefaction, suggest high rates of sand deposition 

(Collinson and Thompson, 1982).

Coarser-grained channel units grade upward into siltstone and laterally 

interfinger with shale and mudstone (Appendix plates 1a-f, 2, and 3). Lateral 

accretion surfaces, dipping approximately 10 to 15 degrees, imply high- 

sinuosity in the fluvial system of the Carten Creek Formation. Extensive 

consummation of the cut-bank, suggested by abundant mudchips, also 

supports meandering. The Golden Spike fluvial deposits lack lateral accretion 

surfaces. However, the waning flow velocity, represented by upward fining 

sequences, suggests low-sinuosity channel migration and bar aggradation 

occurred in the lower Golden Spike.

Tabular beds of siltstone to fine sandstone, present in both formations, 

erode underlying shale deposits and represent intermittent high energy events 

such as crevasse splays. Deposits commonly appear massive, but local beds 

in the Carten Creek Formation exhibit mudchips, small-scale troughs, planar 

laminations, and ripples. Overbank sequences also reflect rapid deposition by 

the rare preservation of trough topsets and climbing ripples.

Local finer-grained beds are attributable to, but not required of, chute 

development. One possible deposit that erodes lateral accretion surfaces 

occurs from 119.6 to 120.5m in the Carten Creek measured section. Black 

chert pebbles are locally present at gradational contacts in Golden Spike
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siltstone and imply sporadic velocity increases that may relate to poorly 

developed chutes.

Four sequences comprising large-scale planar foresets, horizontal 

laminations, rare convoluted laminations, and local trough crossbeds occur 

low in the Carten Creek measured section. These units, comprising the 

volcanic-pebble sandstone and portions of the fine to coarse sandstone facies, 

suggest longitudinal and/or chute-convergence bars. Greenish gray to black 

shale generally underlies and sharply caps bar sequences.

In both formations, massive shale represents flood plain development 

within a fluvial system. Upper shale bed contacts tend to be irregular due to 

erosion by overlying coarser units. Chert, jasper, and quartzite pebbles locally 

occur near the top of Golden Spike shale deposits and imply deposition related 

to an ensuing high energy event. Lenses of very-fine grained sandstone and 

siltstone within shale beds suggest distal or small crevasse splays. Mottled 

mudstone beds represent paleosol horizons that developed on floodplain and 

bar surfaces in both formations. The micritic nodules, or caliche, are the result 

of calcium enrichment (Mack and James, 1992). Caliche development occurs 

when precipitation rates are too low to adequately flush carbonate through the 

soil horizon (Reeves, 1976 in Gavin, 1986) or when the water table fluctuates 

(Mack and James, 1992).

Tan tabular sandstone interfingering with the Golden Spike’s sandy 

cobble conglomerate facies indicates consistent water currents and may
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represent either braided stream development on or under-laden flood waters 

that flowed over an alluvial fan surface. According to Johnson (1965), flood 

waters relatively free of solid material often follow major debris flow waves and 

may remobilize and deposit sediment. Smaller tan sandstone lenses may 

also represent rills and gullies created by rain erosion (Blair and McPherson, 

1994).

Noncohesive Debris Flow Deposition

The sandy cobble conglomerate facies of the Golden Spike Formation 

was deposited in a high energy environment by highly sediment-concentrated 

events. Some deposits, albeit suggestive of fluvial deposition, may also 

represent sandy noncohesive debris flows (Figure 27). According to Kelin 

Whipple (personal communication, 1997), sandy debris flows are highly 

susceptible to material separation during flow. The separation of sediment 

within a flow creates a debris snout, intermittent waves of concentrated 

material and a wet tail (Johnson, 1965). Stacked conglomerate beds suggest 

repetitive debris snout and/or wave deposits within an alluvial fan system 

(Johnson, 1965). Lens shaped sandstone beds imply the winnowing and 

remobilization of finer grained material by succeeding waves of the same 

debris flow episode (Johnson, 1965). Accordingly, debris flow dewatering 

could produce enough clear water flow to rework finer grained sediment. 

However, underlying sand and gravel deposits may absorb water released
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during debris flow ‘freezing’ (Jahns, 1949 in Johnson, 1965).

Video footage of Japan’s Sakura Island in the 1980’s shows that flow 

partitioning leaves the debris flow’s tail a sediment concentrated slurry 

deprived of coarser debris. According to Johnson (1965), water content within 

a flow progressively increases with distance behind the debris flow snout. An 

increase in water content could change the tail of a sandy debris flow into a 

hyperconcentrated flow (Figure 28). Hyperconcentrated flows are defined by 

Smith and Lowe (1991) as “non-Newtonian fluid-solid mixtures possessing 

little or no strength and generating deposits intermediate in nature between 

those of debris flows and dilute streamflows.”

A hyperconcentrated tail could potentially produce sedimentary features 

traditionally associated with fluvial systems. While this remains to be 

demonstrated by lab experimentation, witnessed debris flow events are known 

to have left deposits that appear fluvial in origin (Kelin Whipple, personal 

communication, 1997). For example, the 1995 floods that mobilized debris in 

the Blue Ridge Mountains of Virginia deposited imbricate clasts both in matrix 

and grain support (Figures 29a&b). Similarly, Johnson (1965) described a 

conglomerate unit with touching pebbles in silty matrix and a pebble-cobble 

conglomerate unit with platey clast imbrication on the Surprise Canyon alluvial 

fan in Panamint Valley, California.
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Figure 29: Matrix-supported conglomerate with imbricated 
clasts was deposited by witnessed debris flows in the Blue Ridge 
Mountains of Virginia due to heavy rainfall in 1995. Analysis of 
these deposits is incorporated in a dissertation project by Scott 
Eaton (man in photos) through the University of Virginia.
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Lahar and Volcanic-related Deposition

Crude bedding within the thick matrix-supported megaconglomerate of 

the Golden Spike Formation indicates that a single depositional event, as 

previously interpreted (Gwinn and Mutch, 1965; Mackie, 1986), is improbable. 

Rather, I interpret the megaconglomerate facies to be multiple subaerial 

debris-flow deposits. Although the megaconglomerate contains nonvolcanic 

clasts, matrix material representative of a magmatic arc provenance and 

abundant individual volcanic clasts suggest lahars were the dominant 

depositional mechanism. Multiple lahar deposits suggest a volcanic alluvial 

fan environment created the megaconglomerate facies.

Mackie's (1986) interpretation that the megaconglomerate resulted from 

hot lahar deposition is suspect. He cites only individual clast deformation as 

evidence of high temperature. While I concur that some clasts are distorted 

and jointed, my field analysis cannot confirm any influence of heat. Movement 

along conjugate joints clearly offset and deformed duraclasts (Figure 30). 

Collisions with indurate pebbles during debris flow deformed dark gray shale 

and siltstone clasts (Figure 31). Furthermore, no clear distinction between 

baking and weathering rinds is evident, and most clasts are free of external 

coatings.

Although lahars are typically clay-poor (Smith and Lowe, 1991), 

superficial erosion may explain both the clay-rich content and the nonvolcanic 

detritus within the megaconglomerate facies. Clay within a lahar originates 

from diagenetic alteration of metastable volcanic grains, hydrothermally altered
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Figure 30: Faults occurring in Golden Spike megaconglomerate deform and offset large 
clasts (Locality 5). The sheared clast depicted in photo is outlined for better illustration, and 
arrows depict direction of movement along fault. Camera lens cap in center of photo 
provides scale.

Figure 31 : Dark gray, muddy siltstone clast (dashed outline) in Golden Spike 
megaconglomerate (Locality 5) was deformed by a more resilient clast (solid outline) during 
debris-flow movement. Acid bottle, used for scale, is 8cm tall.
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source material, and the consolidation of soil during flow (Palmer and others, 

1991; Smith and Lowe, 1991). Since debris flows characteristically engulf and 

incorporate loose material encountered along their paths (Johnson, 1965), 

volcanic-debris flows may contain nonvolcanic clasts from the surrounding 

landscape (Smith, 1991). Intermixing of lahars with nonvolcanic-debris flows 

from the western thrust front is also feasible as lahars can travel many tens of 

kilometers (Palmer and others, 1991; Smith and Lowe, 1991).

Modes of transport for the volcanic/volcaniclastic facies in the Golden 

Spike Formation include lava and volcaniclastic flows. Matrix-supported, 

volcaniclastic breccia likely represents lahar deposits as suggested by Gwinn 

and Mutch (1965). Clasts of hornfels embodied in breccia are presumably 

baked mud chips and suggest the volcanic-debris flows were hot. The 

characteristic green color is diagnostic of chloritization affecting the metastable 

volcanic debris (Tucker, 1991). X-ray diffraction of clay particles conducted as 

adjunct analysis to this research corroborates the presence of chlorite.



68
Provenance Analysis of Lithofacles

Introduction

Framework-grains in the Carten Creek and Golden Spike formations are 

compositionally comparable with relatively few exceptions. Mackie (1986) 

thoroughly characterized the specific composition of framework-grains in his 

description of the Golden Spike's sedimentary petrology. In general, the 

mineral grains recognized in thin section include: monocrystalline quartz, 

polycrystalline quartz, chert, potassium feldspar, plagioclase, biotite, 

muscovite, chlorite, pyroxene, and accessory “heavy” minerals. Volcanics, 

plutonics, sandstone, siltstone, limestone, dolomite, quartzite, and micaceous 

schist comprise the detrital lithic fraction identified during point counting. 

Porphyritic andésite is the primary igneous component, but granite grains also 

occur in Carten Creek specimens. Compositional data from point counts are 

plotted on ternary diagrams as percent ratios of quartz, feldspar, and various 

lithic fragments (Figures 33-36). The proximity of compositional data to fields 

outlined in the ternary diagrams (after Dickinson and Suczek, 1979) provides a 

basis for the interpretation of tectonic setting and provenance for both 

formations.

Clast counts conducted in this study provide a detailed provenance 

history of the megaconglomerate and sandy cobble conglomerate facies in the 

Golden Spike Formation. Lithologie data from clast counts are reported in two 

ways (Figure 37a): 1) compositional percentage based on population, where



69
each occurrence of a clast registers as one count, and 2) composition 

proportionally related to the sample area covered by clasts. The difference 

between population-based and area-related percentages indicates the effect 

that highly variable clast sizes have on compositional calculations. In general, 

a small (<5%) positive or negative difference exists between the two 

percentages calculated for specific lithologies represented in a count, although 

about 10% of the lithologie groups yield differences of -10%. Positive 

differences mean the lithologie percentage based on simple clast recurrence 

within a count is less than the proportion related to clast area and negative 

differences indicate the opposite (Figure 32). When substantial, negative 

differences imply that Golden Spike clasts of a specific lithology average 3.5cm 

in diameter as determined from the median long-axis of category 1 clasts 

within counts. Strong positive differences (>10%) illustrate that the average 

clast diameter within a lithologie population is >3.5cm, and may exceed 50cm. 

Vertical change in the mean clast size of a given lithology likely reflects tectonic 

activity, the unroofing trends of sediment sources and residence time of clasts 

within the environment. Therefore, only the lithologie percentages related to 

area are graphed (Figure 37b) for compositional comparison of the major 

conglomerate facies in the Golden Spike Formation.

Carten Creek Formation

Sandstone composition of the upper-middle Carten Creek Formation 

varies between lithic-feldspathic, subfeldspathic, and sublithic. Well-rounded
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quartz grains with broken silica-overgrowths occur locally and represent 

recycled sediment. Monocrystalline quartz with straight and sweeping 

extinction is pervasive in thin section but polycrystalline quartz, chert and local 

chalcedony is also present. Twinned plagioclase forms large blocky crystals 

that are consistently (sub)angular. Lithic fragments include dacite, porphyritic 

andésite, granite, quartzite, limestone, sandstone, siltstone and rare 

micaceous schist. Limestone grains, commonly deformed due to compaction, 

comprise solid micrite with local sparite-filled cracks. Two sandstone grains 

noted in thin section contain round quartz particles in a fine grained matrix and 

likely derived from a mature arenite. Less common minerals observed include 

biotite, muscovite and rare (sub)round clinopyroxene.

Point count data indicate that sandstone commonly contains 9% matrix 

and 23% cement on average. Bent and fragmented micas locally constitute 

pseudo-matrix. Sparite and poorly formed silica overgrowths occur along grain 

boundaries, but calcite is the primary cement.

Since partial replacement by calcite commonly obscures plagioclase 

identification, cement estimations may include an unknown proportion of 

framework-grains. However in counting, close attention was given to the 

identification of plagioclase grains that were either partially or completely 

replaced by calcite. Furthermore, thin sections displaying heavy alteration of 

framework grains were eliminated from statistical analysis.

Framework-grain compositions suggest that a continental volcanic 

system eroded in association with exposed older lithofacies to form the upper-
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middle Carten Creek Formation. Compositions of sandstone plotted on a QtFL 

diagram illustrate that the majority of sediment in the Carten Creek derived 

from a recycled orogen (Figure 33a). However, the feldspar-rich bar and 

thalweg deposits are representative of a magmatic arc provenance that is 

slightly outside the field defined by Dickinson and Suczek (1979). Analysis of 

compositional data on a QmFLt diagram depicts both a mixed source and 

repetitive changes in provenance from transitional arc to transitional recycled- 

orogen (Figure 33b). Mixed and transitional provenance types suggest a close 

association between the arc and recycled orogen sources.

The composition of Carten Creek sandstones is slightly discordant with 

QpLvpLsm tectonic fields (Figure 33c). Nonetheless, over half of the 

specimens congregate in or near the designated collision suture and fold- 

thrust belt setting, and three represent an arc orogen. The implication that 

erosion of a subduction complex relates to Carten Creek sedimentation is 

inconsistent with the known, Cretaceous tectonics of western Montana. 

Divergence of Carten Creek compositions from designated tectonic fields is 

presumably related to atypical volcanism within the foreland system. Similarly, 

Graham et al. (1993) described modern sands in the basins of western China 

eroding from a collision suture and fold-thrust belt source that compositionally 

reflect a relict volcanic-tectonic setting.
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Golden Spike Formation 

Point Count Analysis

In the lower Golden Spike Formation, sandstone and sandy cobble 

conglomerate compositions plot in the recycled orogen provenance on QtFL 

and QmFLt diagrams (Figure 34a&b). In general, the framework-grain 

compositions of these facies denote a transitional recycled-orogen source, like 

that represented in the Carten Creek. Composition of matrix and sandstone 

interbeds in sandy cobble conglomerate locally represent a lithic recycled- 

orogen provenance due to an increased proportion of carbonate grains (Figure 

34b). The more quartzose composition of some fluvial sandstones likely 

reflects superior weathering of sediments within the meandering river system 

(Figure 34a).

Megaconglomerate matrix moderately differs in composition from the 

other lower Golden Spike deposits as illustrated in QtFL and QmFLt diagrams. 

Specifically, the composition of matrix in megaconglomerate represents both 

recycled orogen and magmatic arc sources (Figure 34c). On the QmFLt 

diagram, some megaconglomerate matrix compositions suggest a transitional 

recycled-orogen provenance. Comparing all samples of Golden Spike facies 

that plot within this provenance field, megaconglomerate matrix is similar in 

composition to the meandering-fluvial deposits, but is more quartzose than the 

matrix and sandstone interbeds in the sandy cobble conglomerate. The 

compatible composition of megaconglomerate matrix and underlying fluvial
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sandstones supports the idea, proposed in this work, of deriving the 

megaconglomerate’s nonvolcanic component from superficial intraformational 

erosion.

On the QpLvpLsm diagram, the composition of megaconglomerate 

matrix represents an arc-orogen (Figure 35c) that corresponds to extensive 

Elkhorn Mountain volcanic activity in the region (Gwinn and Mutch, 1965). A 

collision suture and fold-thrust belt tectonic setting is also depicted in the lower 

Golden Spike Formation by the compositions of basal fluvial sandstone, sandy 

cobble conglomerate matrix and sandstone interbeds (Figure 35a). However, 

fluvial sandstone compositions in the “lower mixed unit” (after Gwinn and 

Mutch, 1965) plot outside the designated QpLvpLsm tectonic fields like the 

Carten Creek Formation. Although unlike the Carten Creek, these Lvp-rich 

deposits presumably reflect the early influence of Elkhorn Mountain Volcanics 

(Figure 35b).

Clast Count Analysis

Clast counts conducted on the Golden Spike provide detailed 

information on the rock-types and formations exposed in the fold-thrust belt. 

With local exception, limestone and quartzite clasts dominate both the sandy 

cobble conglomerate and megaconglomerate facies. The various nonvolcanic 

rock formations span the Precambrian, Paleozoic and Mesozoic Eras 

Clast of dark gray crinoidal sparmicrite and fossiliferous sparite 

(grainstone) are abundant in Golden Spike conglomerates and probably
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eroded from the Mississippian Madison Formation. Massive, dark gray 

sparite/micrite clasts could have also derived from the Cambrian Silver Hill and 

Red Lion formations. Regardless, trilobite-bearing micrite noted in sandy 

cobble conglomerate indicates the presence of the Red Lion Formation.

Clasts of gastropod-ostracod rich sparite probably derived from limestone 

units in the Cretaceous Kootenai Formation. Lastly, hematitic intrasparite with 

blocky biomicrite clasts and local glauconite grains is an unidentified enigma 

that occurs in three clast counts in very small percentages and likely is of 

Paleozoic age.

Quartzite clasts in the Golden Spike are fine to coarse grained and 

typically red, pink or orangish brown in color although white, tan, dark gray and 

green quartzite also occurs. Erosion of the middle Proterozoic Bonner 

Formation is evident in the Golden Spike by the red-pink, subfeldspathic 

quartzite clasts with local ripple crossbeds and red argillite rip-up chips. Other 

sources of quartzite represented in Golden Spike conglomerates potentially 

include the Proterozoic Mt. Shields, Pilcher and Garnet Range formations. 

Brown and white subfeldspathic meta-arenite with local glauconite grains, 

derived from the Cambrian Flathead Formation, also comprises part of the 

quartzite population. (However, some white clasts of identical composition 

retain a sandstone texture, i.e. no sutured quartz grains, and therefore were not 

included as quartzite during lithology percentage calculations.)

Chert and tan dolomite constitute moderate proportions in Golden Spike 

conglomerates (Figure 37a). Chert is predominantly black and commonly
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spiculitic. Other chert clasts are red, green, gray and white. Black chert 

potentially eroded from the Mississippi Madison, Permian Phosphoria and 

Cretaceous Kootenai formations. A possible source of the red and green chert 

is the middle Proterozoic McNamara Formation. The Dunkleberg Member of 

the early Cretaceous Blackleaf Formation also may have provided varicolored 

cherty porcellanite debris. Tan, white and pink sucrosic sparite and dolomite 

likely eroded from the Pennsylvanian Amsden Formation. Dark gray crystalline 

dolomite is representative of the Cambrian Hasmark Formation.

Sandstone and siltstone clasts in the Golden Spike conglomerate facies 

include various lithologies. The Pennsylvanian Quadrant Formation 

presumably supplied white fine grained arenite to the Golden Spike, although 

some clasts could also come from white sandstone deposits in the Cambrian 

Flathead Formation. Red to pink, subfeldspathic-lithic arenite likely eroded 

from red sandstone units in the Cretaceous Kootenai Formation. Green 

sublithic-feldspathic arenite with pink orthoclase is present in two sandy cobble 

conglomerate counts, but remains unidentified by formation. Large bluish-gray 

sublithic arenite and pebble conglomerate clasts, exclusively occurring in the 

megaconglomerate facies, eroded from meandering-fluvial deposits in the 

Golden Spike and denote cannibalization of the formation. Compositional 

comparison of “Moby Dick” to meandering-fluvial sandstone strongly implies 

that the megaconglomerate's largest clast also eroded from the Golden Spike 

Formation (Figure 36) — specifically, the lower “lower mixed unit" (after Gwinn
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and Mutch, 1965). Erosion of the relatively soft Cretaceous Colorado Group 

provided the black shale and siltstone to the Golden Spike megaconglomerate.

Comparison between the lithologie percentages of conglomerate facies 

distinguishes overall erosional trends (Figure 37b). After initial decreases of 

--10%, fluctuating quartzite proportions remain relatively consistent but chert 

percentages gradually decrease throughout the lower Golden Spike.

Proportion of limestone increases in the megaconglomerate facies and ranges 

among 45 - 65% upsection, except where large boulders of cannibalized 

sandstone affect the area-based percentages. Increased proportions of 

sandstone contained in the megaconglomerate facies reflect immense clast 

dimensions more often than physical abundance. Dolomite, however, 

generally disappears in megaconglomerate, while volcanic proportions show a 

distinctive increase. Conversely in the sandy cobble conglomerate, dolomite is 

common and volcanics dwindle.

Changing percentages of lithology relate to the tectonic setting affecting 

the conglomerate deposits. The relative abundance of limestone suggests 

uplift and constant erosion of a carbonate-bearing source. Potential sources 

include uplift along the Sapphire thrust margin and/or the Lewis and Clark Line 

(LCL). Vein quartz and marble may represent hydrothermal and contact 

metamorphic zones within the Garnet Range. Volcanic pebbles in sandy 

cobble conglomerate eroded from an arc located within the fold-thrust belt, as 

discussed for the ternary compositional plots. The Elkhorn Mountains are the



Cobble Count Quartzite Percentage Chert Percentage Limestone Percentage Dolomite Percentage
Sample # (by Count) (by Area) (difference) (by Count) (by Area) (difference) (by Count) (by Area) (difference) (by Count) (by Area) (difference)
see CC1 31.2 42.6 11.4 25.8 22.5 -3.3 20.7 17.6 -3.1 2.5 2.0 -0.5
see CC2 31.2 25.7 -5.5 22.0 8.5 -13.5 34.8 31.0 -3.8 9.2 32.4 23.2
CB CC1 19.4 13.5 -5.9 11.8 10.9 -0.9 49.7 48.1 -1.6 0 0 0
CB CC2 17.5 19.9 2.4 9.0 10.3 1.3 66.7 61.4 -5.3 0 0 0
CB CC3 29.8 10.8 -19 3.0 0.6 -2.4 61.7 18.4 -43.3 0 0 0
CB CC4 20.7 14.9 -5.8 10.6 3.1 -7.5 53.4 60.6 7.2 0 0 0
CB CC5 28.9 30.6 1.7 8.6 7.7 -0.9 48.2 46.1 -2.1 0.4 0.6 0.2
CB CC6 8.8 4.0 -4.8 13.2 12.4 -0.8 42.7 33.8 -8.9 4.4 2.8 -1.6
see CC3 5.6 5.0 -0.6 2.8 1.1 -1.7 63.4 65.2 1.8 26.8 26.1 -0.7
sec CC4 22.9 24.4 1.5 10.9 6.0 -4.9 51.2 55.5 4.3 4.6 6.4 1.8
Cobble Count Volcanics Percentage Sandstone Percentage Siltst./ArgitI Percentage
Sample # (by Count) (by Area) (difference) (by Count) (by Area) (difference) (by Count) (by Area) (difference)
see CC1 1.0 3.2 2.2 16.1 9.0 -7.1 0 0 0
sec CC2 0.9 0.2 -0.7 0.9 1.8 0.9 0 0 0
CB CC I 6.5 7.4 0.9 1.6 5.8 4.2 1.1 2.1 1
CB CC2 6.4 4.9 -1.5 0.4 3.5 3.1 0 0 0
CB CC3 4.0 0.7 -3.3 1.0 69.4 68.4 0.5 0.1 -0.4
CB CC4 8.4 15.4 7 1.4 2.3 0.9 0 0 0
CB CC5 6.9 6.7 -0.2 3.0 4.9 1.9 2.6 1.9 -0.7
CB CC6 1.5 1.0 -0.5 19.1 40.4 21.3 0 0 0
see CC3 0 0 0 0 0 0 0 0 0
see CC4 1.1 0.6 -0.5 6.3 5.4 -0.9 0 0 0
Cobble Count Vein Quartz Percentage Marble(?) Percentage Micritic Nodule Percentage
Sample # (by Count) (by Area) (difference) (by Count) (by Area) (difference) (by Count) (by Area) (difference)
sec CCI 1.5 1.3 -0.2 1.0 2.0 1 0 0 0
see CC2 0 0 0 0.9 0.4 -0.5 0 0 0
CB CC I 0 0 0 7.6 9.6 2 2.2 2.5 0.3
CB CC2 0 0 0 0 0 0 0 0 0
CB CC3 0 0 0 0 0 0 0 0 0
CB CC4 0.5 0.4 -0.1 4.9 3.2 -1.7 0 0 0
CB CC5 0.4 0.7 0.3 0.9 0.9 0 0 0 0
CB CC6 0 0 0 0 0 0 10.3 5.5 -4.8
see CC3 0 0 0 1.4 2.6 1.2 0 0 0
see CC4 0 0 0 2.9 1.6 -1.3 0 0 0
Figure 37a: Actual percentages of lithologies present in the sandy cobble conglomerate and megaconglomerate facies of the Golden Spike 

Formation; clast counts listed in facing stratigraphie order from top to bottom. Differences relate to the effect of clast size on percentage computation.
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predominant volcanic influence on the megaconglomerate facies. (Of note, 

many large volcanic boulders were missed by stations during systematic 

sampling; therefore, volcanic clast content may be under represented in the 

megaconglomerate facies.) Increasing proportions of sandstone, 

siltstone/argillite and micritic nodules within the megaconglomerate further 

support superficial erosion of the landscape by lahars.
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Summary of Deposition 

in Late Cretaceous Central-Western Montana

Increased sediment supply, related to middle-late Cretaceous uplift of 

the orogenic wedge, created the Carten Creek Formation and initiated the final 

regression of Cretaceous seas from the Clark Fork Valley area (Gwinn, 1965). 

Consequently, the thick Carten Creek sequence records both marine and 

terrestrial deposition. Biostratigraphic control on lower marine units implies a 

Santonian to earliest Campanian age for subsequent fluvial deposits in the 

upper-middle Carten Creek Formation.

Transition upsection from a brackish-marine environment and presence 

of longitudinal bar forms suggest that the meandering fluvial system 

represented in the upper-middle Carten Creek comprises part of a deltaic 

environment (Figure 38). Rivers drained dominantly to the south as 

represented by the primary direction of paleoflow in outcrop CCI (Locality 1 in 

Figure 1; Figure 39a&b) However, bearings routinely vary up to 180® within 

deposits and paleoflow depicted in the Carten Creek photomosaics (CC2 - 

Locality 2 in Figure 1) suggest more eastward flow (Figure 39c). The abundant 

variation in discharge direction presumably relates to the highly-sinuous 

geometry of the meandering river system.

Abundant volcanic detritus combined with recycled sediments in the 

upper-middle Carten Creek is atypical of foreland sedimentation as implied by
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the designated provenance fields of Dickinson and Suczek (1979). Yet, early 

Cretaceous intrusion of the Idaho batholith and related-volcanism occurred 

within the Cordillera of western North America (Mallory, 1972). Composition of 

the Carten Creek Formation compares to that of the Idaho arc-terrain (Ziebell, 

1943) except for scarce, well-rounded clinopyroxene that presumably eroded 

from another source.

Portions of the Idaho batholith’s Atlanta lobe dated between 85 and 95 

Ma (Bennett and Kiilsgaard, 1983) sufficiently predate deposition of the upper- 

middle Carten Creek Formation. Evidence for volcanic eruption of the Idaho 

arc-terrain also exists in the Atlanta lobe (Myers and Carlson, 1982). Rocks in 

the Bitterroot lobe of the Idaho batholith suggest no volcanic activity (D.W. 

Hyndman, personal communication, 1997) although -12km of overburden 

eroded away to expose present structural levels (Hamilton, 1983; Jordan and 

Rodgers, 1994).

Tectonic loading from late Cretaceous uplift of the Sapphire, Garnet and 

Flint Creek ranges locally subsided the Clark Fork Sag (Gwinn, 1965; and 

Mutch, 1965; Mackie, 1986). This isolated basin provided sufficient 

accommodation space for the thick Golden Spike Formation (Mackie, 1986). 

Mackie (1986) suggested the Clark Fork Sag is a pull-apart basin because of 

the northeast-trending normal faults that form the northwestern and 

southeastern boundaries of the Golden Spike outcrop belt.
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Whether those transtensional features along the Lewis and Clark Line 

(LCL) are syndepositlonal to or succeeded formation of the Golden Spike is not 

clear. However, normal faulting related to Eocene Basin and Range extension 

is common in western Montana. Furthermore, the facies assemblage of the 

Golden Spike Formation is inconsistent with that of a pull-apart basin (Miall, 

1984).

The variety of lithologies present in the Golden Spike Formation is 

representative of a recycled orogen provenance associated with local 

syndepositional volcanic activity. Numerous nonvolcanic clasts, including 

debris of the Belt Supergroup, originated from the Sevier thrust front to the west 

(Gwinn, 1965; and Mutch, 1965; Mackie, 1986; Reynolds, 1986). I submit that 

uplift along the LCL to the north/northwest provided detritus from the 

Mississippian Madison Formation and accounts for much of the abundant 

limestone clasts. Volcanic material in the Golden Spike Formation derives 

from the early Campanian Elkhorn Mountains to the east and indicates that 

deposition of the Golden Spike began around 80-83Ma (Gwinn, 1965; and 

Mutch, 1965; Ruppel et al., 1981; Mackie, 1986).

Detritus that shed east into the Clark Fork Sag originally mantled the 

Cordilleran hinterland and presumably traveled to the Sapphire thrust front by 

way of a fluvial system. Fluvial channel conglomerates containing pebble to 

boulder sized clasts locally outcrop in the Cramer Creek area along the LCL 

(Reynolds, 1986). These stream deposits are compositionally consistent with 

nonvolcanics in the Golden Spike Formation and compare in age at 82Ma
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(Reynolds, 1986). Well-rounded quartzite and chert clasts In Golden Spike 

conglomerates underwent weathering and perhaps other episodes of thrusting 

prior to their current depositional location. A fluvial system within the Sapphire 

plate and along the western uplifts of the LCL provides possible explanation for 

the numerous subround to subangular duraclasts in the Golden Spike 

Formation.

The Golden Spike Formation began as an alluvial pediplain locally 

dissected by a low-sinuosity fluvial system (Figure 40). Alluvial fan deposition 

corresponds to eastward propagation of the Sevier thrust plate as indicated by 

the general eastward dispersal of debris flows (Figure 41a). The inception or 

increase of movement along the Lombard-Elkhorn thrust (Ruppel et al., 1981) 

buckled the surface in the east and likely encouraged the predominant 

southwestern flow of the Golden Spike’s meandering fluvial system (Figure 

41b).

Alluvial fan facies include noncohesive debris flow and braided stream 

deposits. The meandering fluvial sandstone and pebble conglomerate 

laterally and vertically interfinger with crevasse-splay siltstone, floodplain shale 

and paleosol mudstone. Interfingering of alluvial fans with the meandering 

fluvial system occurs from two to four times in the basal Golden Spike 

Formation (Gwinn and Mutch, 1965).

Volcanics gradually occur upsection (“lower mixed unit” of Gwinn and 

Mutch, 1965) and interfinger with nonvolcanic meandering fluvial strata. 

Volcanic-related deposits, including lava flows and lahars, originated in the
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Elkhorn Mountain Volcanics that palinspastic restoration suggests were ~30km 

east of the Sapphire thrust front (J. W. Sears, personal communication, 1997).

A Campanian angular unconformity, beneath the Elkhorn Mountain Volcanics, 

occurs within the Lombard-Elkhorn plate (Viele and Harris, 1965) and implies a 

contemporaneous relationship between thrust plate movement and volcanic 

eruption (J. W. Sears, personal communication, 1997).

During the advent of volcanics within the Golden Spike, nonvolcanic 

meandering river deposits also locally interfingered with matrix-rich pebble 

conglomerate (Figure 23). The pebble conglomerate deposit contains clasts 

with diameters of -0.5 to 2cm and Is compositionally consistent with alluvial 

fan facies downsection. The silty-clay matrix and overall thin (-40cm) bedded 

geometry suggest the pebble conglomerate is the distal extent of a 

noncohesive debris flow.

The megaconglomerate facies directly overlies and apparently erodes 

nonvolcanic fluvial sandstone and pebble conglomerate (Figure 42). 

Megaconglomerate closely follows the initial appearance of volcaniclastics in 

the Golden Spike Formation and resulted from Elkhorn Mountain lahars and 

local lava flows spreading over the landscape (Figure 43). Fracturing of the 

caldera, due to eruptive processes, and debris avalanching may account for the 

large volcanic boulders embodied in the megaconglomerate facies.

Superficial erosion, by lahars, incorporated nonvolcanic debris and mud 

into the megaconglomerate. Cannibalized clasts from the lower Golden Spike 

fluvial deposits indicate erosion of the formation occurred syndepositionally



Figure 42: Base of lahar-related megaconglomerate exposed with underlying meandering- 
fluvial sandstone and pebble conglomerate on the east-side of Locality 5. Scale indicated by 
decimeter increments on staff.

g



Early Campanian (80-83Ma)

Lewis and Clark

Elkhorn 
Volcanics

Sapphire Tectonic 
Block

Lombard-Elkhorn Thrust Plate

□ pe
Belt Supergroup □ Pz and Mz 

Undifferentiated
Alluvial Fan 

Deposits
Lahar

Deposits

10

Kilometers

Figure 43: Schematic tectonic and environmental setting of megaconglomerate deposition in the 
lower Golden Spike Formation. Lahars and lava flows from the Elkhorn Mountain Volcanics spread 
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(1965) and isotopic record in Ruppel et al. (1981).
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due to uplift and exposure associated with the active regional tectonics. The 

most probable sources of large pebble-conglomerate, sandstone and siltstone 

boulders are the crustal buckling zone induced by Lombard-Elkhorn plate 

movement in conjunction with intruding magma and uplift along the LCL. 

Erosion of relatively soft Colorado Group sediments by volcanic-debris flows 

presumably explains some variation in the matrix texture and provenance 

composition. Considering the proximity of the Elkhorn Mountain Volcanics, far- 

reaching lahars perhaps also engulfed material from western nonvolcanic- 

debris flows. Incorporation of nonvolcanic clasts into the volcanic-debris flows 

led to the chaotic nature of this unique unit.

In deposition succeeding the megaconglomerate facies, nonvolcanic 

alluvial fans prograded eastward into the basin and suggest renewed tectonic 

activity along the Sapphire thrust (Figure 44). Mackie (1986) initially proposed 

late Cretaceous episodes of Sapphire thrust movement due to provenance 

cycles recorded in Golden Spike nonvolcanic sandstones. J. W. Sears 

(personal communication, 1997) postulates that the eastern volcanic eruptions 

may have created a structural zone of weakness between the Sapphire and 

Lombard-Elkhorn thrust zones. A decrease in crustal strength in the region of 

Golden Spike deposition supports reactivated thrust movement of the Sapphire 

plate (DeCelles and Mitra, 1995).

The remainder of the lower Golden Spike formation includes poorly 

exposed beds as described in upper sections of the “lower mixed unit" (Gwinn 

and Mutch, 1965). A reconnaissance survey noted andesitic lava, autoclastic



Early-Middle Campanian

□ p€ □ 0

Lewis and Clark Line

Elkhorn Mtrv 
VolcaniS*

Sapphire Tectonic 
Block ^

Lombard-Elkhorn Thrust Plate

10Pz and Mz am  Alluvial Fan p-si Lahar
Belt Supergroup I— I Undifferentiated “  Deposits lSJ Deposits Kilometers

Figure 44: Schematic tectonic and environmental setting of lithofacies immediately succeeding 
megaconglomerate deposition in the lower Golden Spike Formation. Nonvolcanic detritus, comprised in 
alluvial fans, prograded eastward over volcanogenic deposits. The reappearance of nonvolcanic material 
suggests renewed tectonic activity in the western thrust front.
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breccia and mud-rich lahar deposits interfingering with nonvolcanic fluvial 

sandstone, siltstone, shale and mudstone. Only one other nonvolcanic cobble 

conglomerate occurs in the Golden Spike Formation and is located in the 

“middle mixed unit” (Gwinn and Mutch, 1965). This general lack of coarser 

grained nonvolcanic conglomerates suggests a reduction of tectonic activity 

within the Sapphire Block.
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Implication of Local Stratigraphy on Regional Geology

Opinions differ regarding Cordilleran partitioning and sediment 

dispersal in the late Cretaceous foreland basin (Gwinn, 1965; Schwartz, 1982; 

Dickinson et al., 1988; Sears, 1988; et al., in review; Wallace et al., 1990). 

Deposition typically was wide-spread although foreland basin subsidence was 

disparate and basement uplift, occurring as early as mid-Cretaceous time, 

produced disconformities (Schwartz, 1982; Dickinson et al., 1988; Pang and 

Nummedal, 1995). Wallace et al. (1990) proposed that uplift along the LCL 

separated the foreland basin during latest Cenomanian to early Turonian time. 

However, I find the stratigraphie basis of their age interpretation suspect and 

believe Sears’ (1988) suggestion of early Campanian partitioning in the fold- 

thrust belt to be most plausible.

Wallace et al. (1990) allege that the Carten Creek Formation derived 

from uplift along the LCL because it contains clasts of blue-green argillite that 

eroded from the Grey son Formation. Provenance analysis conducted for this 

research disclosed no Grey son argillite in any Carten Creek deposits. I 

suggest that the clasts in question were either local mudchips that underwent 

contact-metamorphism from subsequent sill intrusion or green dacite.

According to Wallace et al. (1990), the southern paleocurrent direction 

indicated in Carten Creek deposits is also the result of uplift along the LCL. My 

research, like Gwinn's (1965), contends that the Carten Creek Formation 

derived its sediment from the erogenic wedge to the west. Predominant river
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discharge to the south is curious, but likely attributes to high sinuosity in the 

meandering-fluvial system rather than to a northern provenance.

I resubmit Gwinn’s (1965) conviction that early late-Cretaceous 

deposition correlates across western Montana. For instance, coastal 

deposition of the Santonian Virgelle sandstone (Larson, 1986), a member of 

the Milk River Formation, complements the marginal-marine fluvial system 

proposed for the upper-middle Carten Creek Formation. Depositional 

environments of the Virgelle include barrier-beach, tidal-inlet channel and 

brackish marsh (Rice, 1980; Larson, 1986; McCrory and Walker, 1986; Cheel 

and Leckie, 1990). Carten Creek and Virgelle sandstones are compositionally 

similar (Figure 45). Both units comprise tan to white sandstone with abundant 

trough crossbedding, silty mudchips and fossil wood fragments (Rice, 1980; 

Larson, 1986; McCrory and Walker, 1986; Cheel and Leckie, 1990). Likewise, 

floodplain facies in the upper Carten Creek Formation also correspond to 

lagoon and marsh deposits in the Milk River’s Deadhorse Coulee Member that 

overlies the Virgelle (McCrory and Walker, 1986). Other coastal sandstone 

deposits of similar lithology to the Carten Creek involve the Campanian Two 

Medicine (lower sandstone facies), upper Campanian Judith River and 

Maastrichtian Horsethief formations (Viele and Harris, 1965; Rogers, 1993). 

Since many lithostratigraphic deposits are diachronous from west to east in the 

foreland basin, correlation of sandstone units suggests a wide-spread time- 

transgressive progradational shoreline punctuated by the cyclic encroachment 

of late Cretaceous seas.



Figure 45:
Composition and Tectonic Provenance Comparison 

between Upper-Middle Carten Creek and Virgelle Sandstones
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The shoreline prograded east at ~80km/Ma (Gill and Cobban, 1973 in 

Rice, 1980) during Virgelle deposition due to the ample supply of sediment 

carried by river systems (Rice, 1980). Distributary deltas forming along the 

Cretaceous coast were reworked by wave and tidal activity as identified in the 

Milk River Formation (Rice, 1980; Larson, 1986; McCrory and Walker, 1986; 

Cheel and Leckie, 1990). Longshore drift in the Cretaceous seaway generally 

flowed south, but reversals occurred seasonally (Rice, 1980; Parrish et al., 

1984; Cheel and Leckie, 1990). Since Larson (1986) reported northeastern 

longshore sediment-transport during Virgelle deposition near Wolf Creek, 

Montana, Santonian Carten Creek fluvial deposits potentially represent part of 

the deltaic system seasonally feeding the Virgelle sandstone (Figure 46).

Propagation of the western orogenic wedge into central-western 

Montana locally increased structural deformation. Elevated tectonic activity is 

represented by erosion and dramatic textural difference between formations. 

Detailed sedimentologic and stratigraphie research suggests that foreland 

deposition across the LCL was uninterrupted until early Campanian time. 

Impressive textural and compositional contrasts within the Campanian Golden 

Spike Formation reflect multiple sediment sources that include the Sapphire 

Tectonic Block, Elkhorn Mountain Volcanics and uplift along the LCL.

Subsidence of the Clark Fork Sag behind the active, contemporaneous 

Lombard-Elkhorn thrust margin implies that the Golden Spike Formation
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modified from Cheel and Leckie (1990).
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developed in a wedge-top depozone (Figure 47) (DeCelles and Giles, 1996). 

Consistent with sedimentation atop an orogenic wedge, the Golden Spike 

Formation thins west in the direction of the thrust belt and thickens east toward 

the craton (Gwinn and Mutch, 1965; DeCelles and Giles, 1996). Accordingly, 

cannibalization of and multiple unconformities involving Golden Spike strata 

are important characteristics of wedge-top deposits (DeCelles and Giles, 

1996).

Regional and local unconformities possibly created through eastward 

propagation of the late Cretaceous orogenic wedge include the following:

1) Campanian Golden Spike deposits rest in slight angular unconformity above 

more gently dipping beds of the Santonian Carten Creek Formation (Gwinn and 

Mutch, 1965; Mackie, 1986). 2) Near the mouth of Brock Creek, tilted basal 

Golden Spike deposits lie directly beneath volcanic breccias in the formation’s 

uppermost “lower mixed unit” (Gwinn and Mutch, 1965). According to Gwinn 

and Mutch (1965), this intraformational unconformity may explain the 

disappearance of megaconglomerate in sections 4 and 5 of T9N-R10W north 

of the Clark Fork River. However, the lack of megaconglomerate in the 

northwest may also be attributed to a lateral facies change. 3) In the 

southwest, Golden Spike beds dip towards the southwest and are flatly 

overlain by early Miocene unconsolidated sediments (Gwinn and Mutch, 1965; 

Mackie, 1986), although this second regional unconformity could also be the 

result of post-Cretaceous extension.
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Correlative deposition of Beaverhead conglomerate above active 

contemporaneous thrusts (Perry and Sando, 1982) suggests that the wedge- 

top depozone regionally extended southward, although localized basement 

uplift partially complicated the fold-thrust belt in south-western Montana 

(Weimer, 1984; Dickinson et al., 1988). Wilson (1970) described deposits of a 

major southeast-flowing meandering-river system in the Beaverhead 

Formation that compare compositionally and texturally to fluvial facies of the 

lower Golden Spike. Apparently, transverse drainage of the wedge-top basin 

continued south toward Monida, Montana during Campanian time.

Fluvial deposits in the lower Golden Spike Formation provide clues to 

the climatic conditions present during deposition. Stratigraphie indicators of 

climate include local red oxidized paleosols, desiccated caliche nodules and 

mud drapes in sandstone. Specifically, caliche development represents 

sporadic or insufficient rainfall generally between 100 and 600mm/yr (Lorenz, 

1986; Varricchio, 1993). Lorenz (1981) and Gavin (1986) interpreted similar 

stratigraphie features present in the correlative Two Medicine Formation as 

indicative of a seasonal, semi-arid climate with warm temperatures and a long 

dry season. A seasonal dry climate and prevalent wind direction from the west 

suggest that the Cordillera produced a rainshadow effect over late Cretaceous 

deposition in the foreland basin (Carpenter, 1987 in Rogers, 1991; Varricchio, 

1993).
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Conclusions

•  The upper-middle section of the Carten Creek Formation developed 

during Santonian time in a marginal-marine meandering-fluvial system as 

suggested by multiple point-bar sequences overlying basal, Coniacian 

brackish water deposits. Carten Creek sandstone is generally 

characterized by abundant trough crossbedding, rip-up mud chips and 

woody debris. Lateral accretion surfaces are common and suggest the 

high-sinuosity of channels within the formation. The proximity of the Carten 

Creek river system to a deltaic environment is also implied by local 

longitudinal bar forms.

•  Provenance analysis of the Carten Creek Formation indicates that the 

sublithic-feldspathic sediment eroded from the Sevier orogenic wedge to 

the west. Lithic framework-grains of dacite and andésite record earlier 

volcanism within the fold-thrust belt that is presumably related to the Idaho 

Batholith.

•  Reinterpretation of lower Golden Spike deposits suggests that sandy 

cobble conglomerate and megaconglomerate resulted respectively from 

noncohesive nonvolcanic-debris flows with local reworking by braided 

streams and multiple, superficially erosive lahars. The megaconglomerate 

facies specifically records lahar deposition related to a concurrent volcanic- 

event occurring in the foreland basin system. Other Golden Spike facies
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represent a low-sinuosity meandering-river that drained the Clark Fork Sag 

towards the south and may connect to a similar fluvial system in the 

correlative Beaverhead Formation.

•  Compositional analysis of lower Golden Spike sandstone and 

conglomerate implies various provenance for the formation. Previous work 

by Gwinn and Mutch (1965) and Mackie (1986) also reported multiple 

provenance as evidenced by opposing paleocurrent directions of the 

interbedded volcanic and nonvolcanic strata. Three sources of Golden 

Spike sediment include the Sapphire Tectonic Block, Elkhorn Mountain 

Volcanics and uplift along the Lewis and Clark Line.

• Collectively, the Carten Creek and Golden Spike formations record 

Coniacian to Maastrichtian deposition in the Northern Rocky Mountain 

foreland basin of central-western Montana. Lithostratigraphic correlation 

with other late Cretaceous shoreface and near-shore deposits, such as the 

Santonian Virgelle Sandstone, implies that Coniacian-Santonian Carten 

Creek rivers provided sediment to a wide-spread, time-transgressive 

progradational shoreline. The Campanian to Maastrichtian Golden Spike 

Formation represents wedge-top deposition above the Sevier fold-thrust 

belt that was punctuated by active volcanism in the foreland basin. This 

succession of late Cretaceous deposition in central-western Montana 

suggests that uplift along the Lewis and Clark Line and subsequent 

partitioning of the Cordillera occurred during the early Campanian Age.
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Suggestions for Future Study

These areas of study would provide additional insight into the Carten 

Creek and Golden Spike formations:

•  Detailed characterization of the lower Carten Creek Formation including 

interpretation of deposystems and provenance analysis.

•  Characterization and mapping of individual volcanogenic flows and 

deposits in the Golden Spike Formation.

•  Reconstruction by lithofacies assemblage of the Garrison-area geologic 

maps made by Gwinn and Mutch (1965) and Mackie (1986).

•  Magnetostratigraphic survey of clasts in the megaconglomerate facies of 

the Golden Spike Formation to determine lahar temperature during 

deposition.
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AW Kvc 4-7 Garr. meas. sect. -75m 149 40 27 18 73 10 9 7 10 92 65 500
AW Kvc 4-8 Garr. meas. sect. -92m 119 56 45 9 58 11 11 12 14 4 5 106 50 500
AW Kvc 4-9 Garr. meas. sect.-114m 95 72 80 4 35 11 6 22 1 30 11 90 43 500
AW Kvc 4-10 Garr. meas. sect 130m 82 64 83 3 35 21 11 22 2 30 1 2 77 67 500
AW Kvc 4-11 Garr. meas. sect.-140m 178 64 39 5 36 19 7 11 18 1 1 69 52 500

AW Kvc 5-1 photomosaic plate le&f 109 53 53 2 15 15 9 7 8 17 1 1 14 112 84 500
AW Kvc 5-2 photomosaic pi. Id.e&f 127 62 57 13 27 20 13 22 2 17 2 2 103 32 1 500
AW Kvc 5-3 photomosaic pi. 1c&d 172 64 49 5 29 15 2 6 1 1 2 2 111 32 500
AW Kvc 5-4 photomosaic plate 1e 113 36 56 7 48 30 16 13 17 2 1 1 3 106 51 500
AW Kvc 5-5 photomosaic plate 1b 73 21 22 7 168 9 12 2 1 5 8 3 3 90 76 500
AW Kvc 5-6 photomosaic plate la&b 34 8 10 5 189 10 42 4 2 4 9 1 1 2 159 20 500
AW Kvc 5-7 photomosaic plate la 26 2 12 1 128 50 81 5 7 1 1 168 18 500

AW Kcc 1A random-Warm Springs 114 53 57 15 20 32 9 3 16 1 1 2 116 61 500
AW Kcc IB random-Warm Springs 153 47 32 21 24 10 6 21 1 6 1 105 71 2 500
AW Kcc 1C random 130 34 33 4 27 14 18 2 1 4 5 2 177 49 500

VIRGELLE SANDSTONEI
AW Kv 1-1 Route 278 readout 88 38 21 6 63 36 17 4 1 7 8 3 177 30 1 500
AW Kv 1-2 Route 278 roadcut 100 31 17 8 57 27 24 2 3 7 7 6 196 15 500
AW Kv 2-1 Route 200 roadcut 118 58 21 89 8 32 6 3 2 2 142 17 2 500
AW Kv 3-1 Hoodoo locale 132 63 30 1 55 20 33 5 3 4 1 4 6 3 116 24 500



POINT COUNT DATA

Sample# CM F LT QT F L CP LVP LSM CM P K P/F %Mica %hvy %CaC03

CARTEN CREEK FRM |
AW Kv 4-1 50,3 19.0 30.7 64.9 19.0 16.0 50.0 35 2 14.8 72.5 19.2 8.2 0.7 0 2 0.0 0.0

AW Kv 4-2A 54.7 5.2 40.1 82.8 5.2 11.9 69.6 26 8 3.6 91.3 8.3 0.5 0.9 0.0 0.0 0.4
Sid. Dev. 3.1 9.8 6.7 12.7 9.8 2.9 13.8 5.9 7.9 13.2 7.8 5.5 0.2 0.1 0.0 0.3

AW Kvc 4-3 27.7 43.2 29.2 51.1 43.2 5.8 68.8 16.7 14.6 39.1 56.7 4.3 0.9 1.8 0.2 0.0
AW Kvc 4-4 10.4 42.6 47.0 32.5 42.6 24.9 27.7 48.0 24.3 19.6 78.0 2.4 1.0 0.4 0.2 0.0
AW Kvc 4-5 40.7 27.4 31.9 65.4 27.4 7.2 65.2 18.3 16.5 59.8 34.1 6.1 0 8 1.0 0.0 0.0
AW Kvc 4-6 39.0 16.5 44.4 74.0 16.5 9.5 61.6 14.0 24.4 70.2 20.5 9.3 0.7 0.6 0.0 0.0
AW Kvc 4-7 43.4 26.5 30.0 65.9 26.5 7.6 65.0 18.4 16.5 62.1 30.4 7.5 0.8 0.0 0.0 0.0
AW Kvc 4-0 35.5 20.0 44.5 69.9 20.0 10.1 67.8 14 8 17.4 64.0 31.2 4.8 0.9 0.8 1.0 0.0
AW Kvc 4-9 25.9 10.6 63.5 75.5 10.6 13.9 65.2 7.3 27.5 70.9 26.1 3.0 0.9 0,0 0.0 0.2
AW Kvc 4-10 23.2 10.7 66.1 73.2 10.7 16.1 62.8 13.7 23.5 68.3 29.2 2.5 0.9 0.4 0.0 0.4
AW Kvc 4-11 47.1 10.8 42.1 79.1 10.8 10.1 65.2 16.5 18.4 81.3 16.4 2.3 0.9 0.2 0.0 0.0

Sid. Dev. 13.7 22.8 9.1 19.8 22.8 3.0 2.5 0.1 2.7 29.9 28 4 1.4 0 0 1.1 0.1 0.0

AW Kvc 5-1 37 7 5.9 56.4 80.3 5.9 13.8 65.4 14.8 19.8 86.5 11.9 1.6 0.9 0.2 2.8 1.6
AW Kvc 5-2 35.1 11.0 53.9 72.7 11.0 16.3 61.7 17.1 21.2 76.0 16.2 7.8 0.7 0.4 0.0 0.4
AW Kvc 5-3 48.7 9.6 41.6 83.9 9.6 6.5 76.9 116 11.6 83.5 14.1 2.4 0.9 0.8 0.0 0.0
AW Kvc 5-4 33.4 16.3 50.3 65.7 16.3 18.0 54.8 27.4 17.9 67.3 28.6 4.2 0.9 0.4 0.6 0.0
AW Kvc 5-5 22.0 54.7 22.5 36.6 54.7 8.8 64.2 31.3 4.5 29.4 67.7 2.8 1.0 2.2 0.6 0.0
AW Kvc 5-6 10.7 61.2 28.1 17.7 61.2 21.1 22.5 65.0 12.5 14.9 02.9 2.2 1.0 0.4 0.0 0.4
AW Kvc 5-7 0.3 41.3 50.3 15.1 41.3 43.6 8.9 83.4 7.6 16.8 82.6 0.6 1.0 0.2 0 2 0.0

Sid. Dev. 20.8 25.1 4.3 46.1 25.1 21.0 40.0 48.5 8.6 49.3 50.0 0.7 0.1 0.0 1.8 1.1

AW Kcc 1A 35.5 4.7 59.8 74.8 4.7 20.6 57.6 27.2 15.2 88.4 11.6 0.0 1.0 0.4 0.0 0.6
AW Kcc IB 40.6 14.3 37.1 80.3 14.3 5.4 68.1 13.8 18.1 77.3 12.1 10.6 0.5 1.4 0.0 0.0
AW Kcc 1C 47.8 11.4 40.8 73.9 11.4 14.7 63.2 30.2 6.6 80.7 16.8 2.5 0.9 0.4 0.0 0.2

Sid. Dev. 0.7 4.8 13.4 0.6 4.8 4.1 4.0 2.1 6.1 5.4 3.6 1.8 0.1 0.0 0.0 0.3

VIRGELLE SANDSTONE)
AW Kv 1-1 31.3 24.6 44.1 53.7 24.6 21.7 50.4 45.3 4.3 56.1 40.1 3.8 0.9 2.2 0.0 0.0
AW Kv 1-2 35.3 23.0 41.7 53.4 23.0 23.7 43.2 45.9 10.8 60.6 34.5 4.8 0 9 1.2 0.0 0.0
AW Kv 2-1 35.0 26.4 38.6 60.2 26.4 13.4 61.7 31.3 7.0 57.0 43.0 0.0 1.0 0.4 0.0 0.0
AW Kv 3-1 38.0 16.1 45.8 65.7 16.1 18.2 58.9 33.5 7.6 70.2 29.3 0.5 1.0 2.6 0.0 0.0

Sid. Dev. 4.8 6.0 1.2 8.5 6.0 2.5 6.0 8.3 2.3 10.0 7.7 2.3 0.0 0.3 0.0 0.0

00



POINT COUNT DATA

Sample# Location/description 0  m Q p Cht. K P Lv Lp Lcl Lnoncl Lmsed Lm unid L bt ms chi pyrx heav. Cmt Matr. UnidT O K

GOLDEN SPIKE FRM
80 19 24 1 3 1 7 3 31 5 2 80 235 50 0Aw Kgs 1 34 pebble mudstone

AW Kgs 1-40 Moby Dick 21 8 56 19 9 12 35 16 3 1 108 21 2 500
AW Kgs 1-4 Moby Dick 142 57 19 3 12 74 17 1 2 102 71 500

AW Kgs IE float ss (east Loc. 5) 103 50 39 3 1 75 10 8 8 115 86 2 500
Aw Kgs 1-33A east Loc. 5 white ss 132 6 3 13 12 22 27 19 1 169 39 3 500
Aw Kgs 1-33B east Loc. 5 white ss 76 65 38 14 12 64 30 7 1 140 52 1 500
Aw Kgs 1-21 east Loc. 5 fluvial ss 110 40 83 1 34 5 4 24 5 1 3 168 1 9 3 500
Aw Kgs 1-23 east Loc. 5 fluvial ss 212 43 32 2 1 25 4 2 1 1 137 39 1 50 0
Aw Kgs 1-24 east Loc. 5 fluvial ss 159 29 19 5 5 22 3 6 5 4 1 1 180 58 3 500
AW Kgs 1-25 east Loc. 5 fluvial ss 162 24 15 7 5 1 7 4 5 6 2 1 1 183 67 1 50 0
AW Kgs 3-4 Loc. 4 fluvial ss 144 39 88 22 8 2 1 2 29 20 70 66 500
AW Kgs 3-5 Loc. 4 fluvial ss 147 46 65 14 4 2 4 7 15 2 100 93 1 500
Aw Kgs 3-6 Loc. 4 fluvial ss 98 35 88 21 10 1 1 8 20 35 2 4 1 96 70 1 500

AW Kgs 2-11 ss in Loc. 6 SCO 119 63 71 6 4 1 8 34 2 1 112 70 500
AW Kgs 3-1 ss in Loc. 4 SCO 83 24 1 7 8 20 4 9 68 28 1 3 93 106 50 0
AW Kgs 3-2 ss in Loc. 4 SCO 109 79 71 25 8 3 8 1 4 7 1 1 8 8 59 50 0
AW Kgs 3-3 ss in Loc. 4 SCO 115 49 85 27 22 3 24 18 1 1 1 1 62 90 1 50 0
AW Kgs 4-1 ss in Loc. 3 SCO 118 89 90 2 2 1 1 0 1 32 2 96 57 50 0

AW Kgs 1-7 Loc. 5 matrix 27 10 12 6 57 90 8 1 1 29 7 2 6 15 70 146 4 50 0
AW Kgs 1-2 Loc. 5 matrix 102 18 20 1 1 23 20 6 7 21 2 2 5 2 4 3 217 1 50 0
AW Kgs 1-16 Loc. 5 St. 0+1 malrx 38 8 5 2 24 89 5 5 3 6 25 287 3 5 0 0
AW Kgs 1-17 Loc. 5 St. 1+2 matrx 160 27 22 5 22 62 8 6 2 76 104 6 50 0
AW Kgs 1-37 Loc. 5 St. 3+1 matrx 64 13 14 3 8 1 7 5 5 4 1 6 9 29 4 3 50 0
AW Kgs 1-41 Loc. 5 matrix plate 2 50 13 21 2 71 81 6 3 1 2 2 3 3 1 2 34 193 3 50 0
AW Kgs 2-12 Loc. 6 CB matrix 66 20 22 44 50 6 1 10 6 3 3 3 51 21 4 1 50 0

AW Kgs 2-2 s hill Loc 6 s e e  mlrx 96 61 54 3 8 45 12 1 7 8 3 95 98 500
AW Kgs 3-7 s hilt Loc 6 s e e  mtrx 95 1 9 95 4 11 30 75 46 2 77 46 500
AW Kgs 4-2 s hill Loc 6 s e e  mtrx 86 28 94 4 1 1 46 50 47 3 91 40 500

\0



POINT COUNT DATA

Sample# CM F LT QT F L QP LVP LSM QM P K P/F %Mica %hvy %CaC03

GOLDEN SPIKE FRM

Aw Kqs 1-34 43 .2 2.2 54 .6 69 .2 2.2 28,6 43.4 20.2 36.4 95.2 3.6 1.2 0.8 0.0 0.0 6.2

Sid. Dev. - - - - - - - - - - - - - - - -

AW Kgs 1-40 59.2 5.7 35.1 80.4 5.7 13.9 58.1 39.5 2.3 91.2 5.0 3.8 0.6 0.2 0.0 0.0

AW Kqs 1-4 43 .4 4.6 52 .0 67 .3 4.6 28.1 44 .7 53.5 1.8 90.4 7.6 1.9 0.8 0 .0 0.0 0.0

Sid. Dev. 11.2 0.8 12.0 9.3 0.8 10.1 9.5 9.9 0.4 0.5 1.9 1.3 0.2 0.1 0.0 0.0

AW Kgs IE 34 .7 1.3 64 .0 67 .3 1.3 31.3 48 .9 46 .7 4.4 96.3 0.9 2.8 0.3 0.0 0.0 0.0

Aw Kgs 1-33A 45 .7 11.8 42 .6 72.0 11.8 16.3 62 .3 37.7 0.0 79.5 13.3 7.2 0.6 0.0 0.0 0.0

Aw Kgs 1-33B 24 .8 8.5 66 .7 60.8 8.5 30.7 50.5 46.1 3.4 74.5 11.8 13.7 0.5 0.0 0.2 0.0

Aw Kgs 1-21 35 .5 0.3 64 .2 76.8 0.3 22.9 62.8 19.9 17.3 99.1 0.9 0.0 1.0 0.0 0.0 4.8

Aw Kgs 1-23 65 .8 0.9 33 .2 89.8 0.9 9.3 70.8 27.4 1.9 98.6 0.5 0 .9 0.3 0 .0 0.2 0.0

Aw Kgs 1-24 61 .9 3.9 34 .2 82 .5 3.9 13.6 57.1 29 .8 13.1 94.1 3.0 3.0 0.5 0.4 0.0 1.2

AW Kgs 1-25 65 .6 4.9 29.6 83 .8 4.9 11.3 54.9 29.6 15.5 93.1 2.9 4.0 0.4 0.4 0.0 1.0

AW Kgs 3-4 39 .6 6.0 54.4 79.9 6.0 14.0 64.1 5.1 30 .8 86 .7 13.3 0.0 1.0 0.0 0.0 5.8

AW Kgs 3-5 48 .4 4.6 47 .0 89.8 4.6 5.6 77.6 4.2 18.2 91.3 8.7 0.0 1.0 0.4 0.0 1.4

Aw Kqs 3-6 29 .9 6.4 63 .7 78.0 6.4 15.5 59.4 5.3 35 .3 82.4 17.6 0.0 1.0 0.8 0.2 4.0

Std. Dev. 3.4 3.6 0.2 7.6 3.6 11.1 7.4 29.3 21.8 9.8 11.8 2.0 0.5 0.6 0.1 2.8

AW Kgs 2-11 37.5 1.9 60 .6 90.5 1.9 7.6 70.5 2.1 27.4 95.2 4.8 0.0 1.0 0.2 0.0 0.0

AW Kgs 3-1 27 .6 2.7 69 .8 50.5 2.7 46 .8 19.8 9.7 70.5 91.2 8.8 0.0 1.0 0.0 0.0 13.6

AW Kgs 3-2 31 .0 7.1 61 .9 86 .9 7.1 6.0 69.1 5.1 25.8 81 .3 18.7 0 .0 1.0 0.2 0.0 0.2

AW Kgs 3-3 33.3 7.8 58.8 77.4 7.8 14.8 66 .3 12.4 21 .3 81.0 19.0 0 .0 1.0 0.4 0.0 0.0

AW Kqs 4-1 34.0 0.6 65 .4 94.8 0.6 4.6 78.9 1.3 19.8 98.3 1.7 0.0 1.0 0.0 0.0 0.2

Sid. Dev. 2.5 0.9 3.4 3.0 0.9 2.1 5.9 0.6 5.3 2.2 2.2 0.0 0.0 0.1 0.0 0.1

AW Kgs 1-7 10.5 24 .5 65 .0 19.1 24.5 56.4 13.8 61 .3 25 .0 30 .0 63 .3 6.7 0.9 1.6 3.0 5.8

AW Kgs 1-2 44 .3 14.8 40 .9 60 .9 14.8 24.3 40.4 27 ,7 31.9 75.0 16.9 8.1 0.7 1.4 0.4 4.2

AW Kgs 1-16 21.2 14.5 64 .2 28.5 14.5 57.0 11.6 83 .9 4.5 59.4 37 .5 3.1 0.9 0.0 1.2 1.0

AW Kgs 1-17 51.0 8.6 40 .4 66.6 8.6 24.8 39.2 56 .0 4.8 85 .6 11.8 2.7 0.8 0.0 0.0 1.2

AW Kgs 1-37 48.1 8.3 43 .6 68 .4 8.3 23 .3 50.0 40.7 9.3 85 .3 10.7 4.0 0.7 0.0 0.2 1.0

AW Kgs 1-41 18.9 27 .7 53.4 32.6 27.7 39.8 24.6 63 .0 12.3 40 .7 57 .7 1.6 1.0 0.8 0.4 2.4

AW Kqs 2-12 28.9 19.3 51.8 50.0 19.3 30.7 36.5 48 .7 14.8 60.0 40 .0 0.0 1.0 1.2 0.0 2.0

Std. Dev. 13.0 3.7 9.4 21.9 3.7 18.2 16.1 8.9 7.2 21.2 16.5 4.7 0.1 0.3 2.1 2.7

AW Kgs 2-2 31.3 3.6 65.1 71.3 3.6 25.1 58.4 28 .9 12.7 89.7 7.5 2.8 0.7 0.0 0.0 3.4

AW Kgs 3-7 25.2 1.1 73.7 67.6 1.1 31.3 41.3 4 .0 54 .7 96.0 4.0 0.0 1.0 0.0 0.0 15.0

AW Kqs 4-2 23 .3 1.1 75.6 69.1 1.1 29.8 44 .2 4.0 51.8 95.6 4.4 0.0 1.0 0.0 0.0 10.0
Std. Dev. 5.6 1.8 7.4 1.6 1.8 3.3 10 0 17.6 27.7 4.1 2.1 2.0 0.2 0.0 0.0 4.7
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Clast Count Sampling Localities

Garrison, MT Quadrangle ~ Montana-Powell Co.
T9N-R10W  

Contour Interval 80 Feet

Phosphate Exit

Garrison Junction Exit

O  Megaconglomerate Stations (CB)

B  Sandy Cobble Conglomerate Stations (SCC)

Interstate 90 Railroad

Secondary Roads Clark Fork River



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CCI : Population Totals

Lithology 1x1 1.5x1 1 .5 x 1 .5 2x1 2 x 1 .5 2x 2 2.5x1 2 .5 x 1 .5 2 .5 x2 2 .5 x 2 .5 3 x 1 .5 3x2 3 x 2 .5 3 x 3  3 .5 x 1 .5  3 .5 x2 3 .5 x2 .5 SubTTL^

Red Quartzite t 1 2 1 2 3 1 1 1 13

Other Quartzite 2 1 4 2 1 1 1 2 1 15
Limestone 1 4 1 3 1 1 3 5 1 2 22
Bll( Chert 1 1 3 3 t 1 2 1 1 4 2 1 1 22
Other Chert 1 2 1 1 5
Volcanics
Dolomite 1 1 1 3
Veih Quartz t 2 3
Marble?(pink qrav spar)
Red/pink sublithfeld ss 1 2 1 2 1 1 5 1 14
White & pink subfeld ss 1 1
Green sublithfeld ss 1 1 3 5
Wh/gry subli.fel. ss/meta 1 2 1 1 2 1 8

Subtotal; 3 8 5 7 12 13 2 7 7 2 3 13 11 2 1 12 3 t i t

L itho logy 3 .5 x3 3 .5 x 3 5 4 x 2 4 x 2 .5 4 x 3 4 x 4 4 .5 x 2 .5 4 .5 x 3 4 .5 x 3 .5 4 .5 x 4 5x 2 5 x 2 .5 5x 3 5 x 3 .5  5x 4  5x 5 5 .5 x3 SubTTL:
Red Quartzite 2 1 3
Other Quartzite 1 t 1 1 1 2 7
Limestone 2 2 4 1 2 1 1 1 1 15
BIk Chert 3 t 1 3 1 2 t 1 13
Other Chert 1 1 1 3
Votcanics
Dolomite 1 t
Vein Quartz
Marble?(pink qrav spar) 1 1 2
Red/pink sublithfeld ss 3 1 2 1 1 1 1 1 1 1
White & pink subfeld ss
Green sublithfeld ss
Wh/gry subli.fel. ss/meta

Subtotal: 7 1 1 8 8 t 3 3 4 3 1 t 3 4 5 1 1 55

K)W



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CCI ; Population Totals

Litho logy 5 .5 x 3 .5 5 .5 x 4 5 .5 x 4 ,5 5 .5 x5 5 .5 x 5 .5 6x 3 6x 4 6x 4 .5 6x5 6 x 5 .5 6 x 6 SubTTL:

Red Quartzite 
Other Quartzite 
Limestone

2 1
1 1

2
1
1

5
3
1

Bllr Chert 
Other Chert 
Volcanics

t 1 1
1
t

1 1 5
1
1

Dolomite 
Vein Quartz 
Marble?(Dink qrav spar)

t 1

Red/pink sublithfeld ss 
White & pink subfeld ss 
Green sublithfeld ss
Wh/gry subli.fel. ss/meta

Subtotal: 2 1 1 1 1 2 4 t 2 1 1 17

Litho logy 6 .5 x 3 6 .5 x 4 6 .5 x 5 7 x 3 .5 7 x 4 .5 7 x 5 7.5X6 8 x 4 .5 9 x 5 9 .5 x 5 1 1 .5 x 1 0 SubTTL: TOTAL:

Red Quartzite 
Other Quartzite 
Limestone

1

1

2 t 1 t

1 1
1 t

6
2
3

2 7
2 7
41

13.6%
13.6%
20.7%

BIk Chert 
Other Chert 
Votcanics t

1
1

1
1
1

41
10

2

20.7%
5.1%
t.0%

Dolomite 
Vein Quartz 
Marble?(pink orav soar)

5
3
2

2.5%
1.5%
1.0%

Red/pink sublithfeld ss 
White & pink subfeld ss 
Green sublithfeld ss

1 1 26
1
5

13.1%
0.5%
2.5%

Wh/gry subli.fel. ss/mela 8 4.0%
198| 100%

Subtotal: 1 1 2 t 2 2 t 1 2 1 1 15



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CCI Area-based Totals and Ratios

WGTRATtOr 1 Category 1

CLAST DIMENSION; 4:3 3.5x3.5 5x3.5 4.5x3 5x3 4x4 4 5x3.5 5.5x3 5x3.5 4.5x4 6x3 5.5x3.5 5x4 5.5x4 6x4 5 5x4 5 5x5 6x4.5 5.5x5 6x5 SubTTL:
TO^AL;
CLAST AREA:

e
9.43

1
9.63

1
9.93

3
10.6

3
11.79

1
13.57

4
13.37

1
12.96

4
13.74

3 2 2 
14.14 14.14 15.12

5
15.71

t
17.36

4
16.95

I
19.44

1
19.63

1
21.21

t
21.6

2
23.56

4 9
SubTTL:

TOTAL: 75.36 9 .62 9 82 31.6 35.34 12.57 49  48 12.96 54 96 42 42 28 28 30.24 78 55 17.28 75.4 19.44 19 63 21.21 2 1 .6 47 12 6 93 .08

AREA% 1 
CLAST DIMENSION: 
CLAST AREA:

4:3
9.43

3.5x3.5 
9.63

5x3.5
9.93

4.5x3
10.6

5x3
11.76

4x4
12.57

4 5x3 5 
12.37

5.5x3
12.96

5x3.5
13.74

4.5x4 6x3 5 5x3.5 
14.14 14.14 15.12

5x4
15.71

5.5x4
17.29

6x4
18.95

S.5x4.5 
19.44

5x5
19.63

6x4.5
31.21

5.5x5
21.6

6x5
23.56 SubTTL:

Red Quartzite 2 2 2 t 1 8

Other Quartzite t 1 2 1 1 1 7

Limestone 4 2 t t t t 1 11

BMt Chert 3 t t 2 t t t 1 t t

Other Chert 1 t 2

Volcanics t 1

Dolomite t 1

Vein Quartz

Maible'>(pink gray spar) t t 2

Red/)»nk sublithfeld ss 1 2 1 t 1 6

White & pink subfeld ss

Green sublithfeld ss

Wh/gry subli.fel. ss/meta



SANDY-COBBLE-CONGLOMERATE CLAST COUNT SCC CCt : Area-based Totals arrd Ratios

WGT RATIOS 1 Category 1

CLAST DIMENSION: 1x1 I.S x l 2x1 1.5x1.5 2.5x1 2x1.5 2.5x1.5 2x2 3x1.5 2.5x2 3.5x1.5 3x2 2 5x2 5 3.5x2 3x2.5 4x2 3.5x2.5 3x3 4x2.5 5x2 3.5x3 4.5x2.5 SubTTL:
TOTAL:
CLAST AREA:

3
0.79

8
1 1 0

7
1 5 7

S
1.77

2
1.96

12
2.35

7
2.95

13
3.14

3
3.53

7
3.93

1
4.12

13
4.71

2
4.91

12
5.5

1 1 
5.09

1
6.20

3
6.07

2
7.07

8
7.85

1
7.05

7
0.25

3
0.04

131
SubTTL:

TOTAL: 2.37 9.44 10 99 8 85 3 92 28.2 20.65 40.82 10.59 27.51 4 12 61 23 9.82 66 64.79 6.28 20 61 14.14 62.8 7.85 57.75 26.52 565.25

AREA% 1
CLAST DIMENSION: 
CLAST AREA:

1x1
0,79

1.5x1
1.19

2x1
1.57

1.5x1.5 
1.77

2.5x1
1.96

2x1.5
2.35

2.5x1.5 
2.95

2X2
3.14

3X1.5
3.53

2.5x2
3.93

3.5x1.5 
4.12

3x2
4.71

2.5x2.5 
4.91

3.5x2
5.5

3x2.5
5.09

4x2
6.20

3.5x2.5 
6.07

3x3
7.07

4x2.5
7.05

5x2
7.05

3.5X3
0.25

4.5x2.5 
0.04 SubTTL:

Red Quartzite 1 1 2 2 3 1 1 t 1 13

Other Quartzite 2 1 4 1 2 1 1 2 1 1 1 1 18

Limestone 1 4 1 1 3 1 3 2 5 1 2 2 1 27

Gtk Chert 1 3 1 3 1 1 1 2 4 1 1 2 1 1 3 1 27

Other Chert 1 2 1 1 1 1 7

Volcanics

Dolomite 1 1 1 3

Vein Quartz 1 2 3

Marble7(pink gray spar)

Red/pink sublithfeld ss 1 1 2 1 2 5 1 1 3 1 1 19

White & pink subfeld ss 1 1

Green sublithfeld ss t 1 3 5

Wh/gry subli.lel. ss/mela 1 2 1 1 1 2 8



SANDY COBBLE CONGLOMERATE CLAST COUNT - SCC CCI : Area-based Totals and Ratios

WGT RATIOS 1 Category 1 Category 2
Calegt!fï_t Categpiy_2 CateaorvJ

CLAST DIMENSION; S.SiS.S BtiS.S 6k6 6.5:3 7:3.5 6.5:4 7x4.5 6.5 :5 7:5 6:4.5 7 .5:6 9:5 0.5:5 11.5:10 SubTTL TOTAL: Category TTL: 183 15

TOTAL: I 1 1 1 1 1 2 2 2 1 1 2 t 1 18 198 Cat. Area TTL: 1336.28 472.42 0

CLAST AREA: 23.7S 2S.92 26.27 15.32 16.24 20.42 24.74 25.53 27.46 26.27 35.34 35.34 37.31 90.32 SubTTL TOTAL: Cat. Mean Area: 7.30 31 49 0

TOTAL: 23 76 25.92 28 27 15.32 19.24 20 42 49 48 51 06 54.98 28 27 35 34 70.68 37.31 90 32 550.37 1808.7 Ratio; 1| 4|

AREA% 1
CLAST DIMENSION: S.SxS.S *:S  5 6 :6 6.5:3 7:3.5 6.5:4 7:4.5 6 .5 :5 7 :5 6x4.5 7.5:6 6 :5 9.5:5 11.5:10
CLAST AREA: 23.76 25 92 26.27 15.32 16.24 20.42 24.74 25.53 27.49 26.27 35.34 35.34 37.31 90.32 SubTTL: TOTAL:

Med. Area & Dim.: Med. Ava. Area Percentage:
Red Quartzite 1 1 t 2 t 6 27 15.12

5 .5 :3 5
408.24| 29.7

Other Quartzite 1 t 2 27 5.5 148.51 10.8
3.5:2

Limestone 1 t 1 3 41 5.89
3:2.5

241.491 _L Z J

BIk Chert 1 1 1 3 41 5.89 241.491 17.6
3:2  5

Other Chert 1 t to 6.68 66.81 4.9
avg 3.5:244:2.5

Votcanics t 1 2 21.8 43.61 3.2
ava 6:447:4 5

Dolomite t 1 5 5.5 2 7 . 5 t _ 2.0
3.5:2

Vein Quartz 3 5.89 17.671 1.3
3:2.5

Marble?|pink gray spar) 2 14 04
avo 4.5x3.545:4

26.08| 2.0

Red/pink sublithfeld ss 1 1 26 3.63 94.381 6.9
avg 2:243.5:1.5

White & pink subfeld ss 1 1 57 1.57| 0.1
2:1

Green sublithfeld ss 5 5.5
3.5:2

2 7 . 5 r 2 0

WtVgry subli.fel. ss/mela 8 3.54 28.321 2.1
ava 2:242.5:2

1375.141 1 0 0



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CC2: Population Totals

Lithology 1.5x1 2x1 2x1 .5  2 .5x1 .5  2 .5x2 2 .5 x2 .5  3x1 .5  3x2 3x2.5 3x3 3 .5x2 3 .5x3  4 x 2 .5  4x3 4 x 3 .5  4 .5 x3  4 .5 x3 .5  5x2.5 SubTTL

Red Quartzite 
Other Quartzite 
Limestone

1 1 1 1 1 1 1

BIk Chert 
Other Chert 
White calcareous ss

22

Volcanics
Pink sucrosic spar/mic 
Dolomite
Marble? (blocky spar) 
Hema spar w/mic cl

Subtotal: 6 8 1 8 1 1 65

Lithology 5x3 5x3.5  5x4 5x4.5  5 .5x3  5 .5 x4 .5  5 .5x5 6x2 .5  6x3 .5 6x4 6x 4 .5  6x5 6x6  6 .5x4  6 .5 x 5  7x4  7x4 .5 6x3 SubTTL:

Red Quartzite 
Other Quartzite 
Limestone

t

BIk Chert 
Other Chert 
White calcareous ss
Volcanics
Pink sucrosic spar/mic 
Dolomite
Marble? (blocky spar) 
Hema soar w/mic cl

Subtotal: 1 4 4 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 27

Lithology 8x5 8x7.5 8 .5 x6 8.5x8 9x9 9.5x4 9.5x6 10x6 10x9 10 .5x6 11x3.5 11x9 13x7 17x8 17x12 17x14 SubTTL: TOTAL:
Red Quartzite 1 1 2 18 16.5%
Other Quartzite 1 1 1 3 16 14.7%
Limestone 1 1 1 1 1 1 6 36 33.0%
BIk Chert 23 21.1%
Other Chert 1 0.9%
White calcareous ss 1 0.9%
Votcanics 1 0.9%
Pink sucrosic spar/mic 1 0.9%
Dolomite 1 1 2 1 1 6 10 9.2%
Marble? (blocky spar) 1 0.9%
Hema spar w/mic cl 1 0.9%

to il 100%
Subtotal: 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 17



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CC2: Areatased Totals and Ratios

WGT RATIOS 1 Calagory t

CLAST DIMENSION: 1.511 2 l1 2X1.5 2.5X1.5 3x1.5 2.5x2 3x2 2 .5x2 .5 3.5x2 3x2 .5 3x3 4x2 .5  3 .5x3 4x3 5X2.5 4 .5x3 4x3.5 5x3 8x2.5 4 .5x3 .5 5.5x3 5x3.5 5x4 6x3.5 SubTTL:
TOTAL:
CLAST AREA:

3
1.1»

4
1.57

6

2.35
2

2.05
2

3.53
8

3.03
5 5 

4.71 4 * 1
5

5.5
5

5 . 8 *
4

7.07
1 2  

7 .85 8.25
a

* .4 2
1

* 8 2
t

10 .6
t

1 1
1

11 .78
1

11.78
2

12.37
1

1 2 * 8
4

13.74
4

15.71
1

16 .4»
77

SubTTL;
TOTAL 3.54 6.28 14.1 5.9 7 06 31.44 23 55 24.55 27.5 29 45 28.28 7.85 16.5 75.36 9.82 10 6 11 11.78 11.78 24.74 12.96 54.96 62.84 16.49 528.33

AREA%
CLAST DIMENSION: 
CLAST AREA:

I . S i l
1.15

2X1
1.57

2x1.5
2.35

2.5x1.5 
2 * 5

3x1.5 
3 53

2.5x2
3 * 3

3x2 2 .5x2.5 
4.71 4 *1

3.5X2
5.5

3x2 .5
5 . 8 *

3x3
7.07

4x2 .5  3 .5x3  
7 .85 8.25

4x3
* 4 2

5x2.5
* 8 2

4.5x3
10.6

4x3.5  
1 1

5x3
11.78

6X2.5
11 .78

4 .5x3 .5  
12 .37

5.5x3
1 2 * 6

5x3.5
13.74

5x4
15.71

6X3.5
1 6 .4 * SubTTL:

Red Quartzite 1 1 1 1 1 1 2 1 1 t 1 t 1 14

Ottier Quartzite 1 t 1 1 2 1 2 1 10

Limestone 1 1 1 2 1 1 4 1 t 3 t 1 1 1 3 2 25

BIk Chert 2 4 1 4 3 2 t 2 1 1 1 22

Other Chert 1 1

White calcareous ss

Volcanics 1 1

Pink sucrosic spar/mic 1 1

Dolomite t 1

Marble? (blocky spar) 1 1

Hema spar w/mic cl 1 1



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CC2: Area-based Totals and Aaltos

WGT RATIOS 1 Category 1 Calagory 2

CLAST DIMENSION: $14.S 6X4 5 5x4 S 6x4.5 5.5x5 6x5 6x6 6x3 6.5x4 7x4 7x4.5 6.5x5 9.5x4 11x3.5 6x5 6.5X6 9.5x6 6x7.5 10x6 10.5x6 6.5x6 9x9 10x9 SubTTL;
TOTAL:
CLAST AREA.

1
1T.»7

2
U.SS

1 2 
16.44 21.21

1

21.6
1

23.56
1

26.27
1

16.65
1

20.42
I

21.90
1

24.74
2

25.53
1

29.65
1

30.24
1

31.42
1

40.06
1

44.77
I

47.12
2

47.12
1

49.46
t

53.41
1

63.62
1

70.69
27

SubTTL;
TOTAL: 17.67 37.7 19.44 42.42 21 6 23.56 28 27 18.85 20 42 21.99 24 74 51.06 29.85 30 24 31.42 40.06 44.77 47 12 94.24 49.48 53.41 63.62 70.69 882 62

AREA% 1
CLAST DIMENSION: 
CLAST AREA:

$ 4  $ 
17.67

6x4
IS.as

5 5x4 5 6x4.5 
16.44 21.21

5.5x5
21.6

6x5
23.56

6X6
26.27

6x3
16.65

6.5x4
20.42

7x4
21.99

7x4.5
24.74

6.5x5
25.53

9.5x4
29.65

11x3.5
30.24

6x5
31.42

6.5x6
40.06

9.5x6
44.77

6x7.5
47.12

10x6
47.12

10.5x6
49.46

6.5x6
53.41

9x0
63.62

10X9
70.69 SubTTL

Red Quartzite 1 1 1 1 4

Ottwr Quartzite 1 1 1 1 4

Limestone 1 1 1 1 1 1 1 1 1 9

BIk Ctiert 1 1

Other Chert

While calcareous ss 1 1

Volcanics

Pink sucrosic spar/mic

Dolomite 1 t 1 1 1 2 1 8

Marble? (blocky spar)

Hema spar w/mic cl



SANDY COBBLE CONGLOMERATE CLAST COUNT SCC CC2: Area-based Totals and Ratios

WGT RATIOS ! Calagory 2
Category 1 Cateoofv 2 Cateoorv 3

CLAST DIMENSION. 13*7 1 1 : * 1 7 :8 1 7 :1 2 1 7 :1 4 SubTTL: TOTAL: Category TTL: 86 23
TOTAL: 1 1 1 1 1 S 109 Cat. Area TTL: 7 t8  99 1295.13 0
CLAST AREA; 71.47 77 .75 105.81 150 .22 1 8 5 .*2 SubTTL: TOTAL: Cat Mean Area: 8.36 31.26 0

TOTAL: 71.47 77.75 106 81 160 22 186.92 603 17 2014.12 Ratio: T 4 |

AREA% 1
CLAST DIMENSION; 1 3 :7 1 1 : * 1 7 :8 1 7 :1 2 1 7 :1 4
CLAST AREA; 71.47 77.75 105.81 150 .22 185 .02 SubTTL; TOTAL:

Med. Area 8 Dim : Med Avq Are; Percentage:
Red Quartzite 18 6 29 1 t3 .22L 8.0

avg 3 5:283:3
Other Quartzite 1 1 16 t5.71 251 3 6 [ 17.7

5:4
Limestone 1 1 36 11.78 424 0 8 [ 29 9

avq 5:386:2.5
BIk Chert 23 4.71 I08 .3 3X 7.6

3 :2
Other Chert 1 12.96 12.96^ 0.9

5 5:3
White calcareous ss 1 25.53 25 5 3 [ 1.8

6 .5:5
Volcanics 1 2.35 2 3SL 0.2

2:1.5
Pink sucrosic spar/mic 1 9.42 9 .4 2 f 0.7

4:3
Dolomite 1 10 45.95 459 5 [ 32.4

avq 9.5:688:7.5
Martrle? (blocky spar) 1 5.5

3.5:2
5.5| 0.4

Hema spar w/mic el 1 5.5 5 .S [ 0.4
3.5:2

1417.751 100

U>O



MEGACONGLOMERATE CLAST COUNT - CB CCI ,2 and 3:
Populafion and Area (Weighted) Totals

CB CCI - 1x2 sq. m Category 1 Category 2 Category 3 Weighted
Lithology (1-6cm) (>6-<S0cm) (>50cm) Percent Percent
Red Quartzite 26 4 16.2 12.4
Other Quartzite 6 3.2 11
Limestone 74 18 49.7 48.1
Black Chert 13 3 8.6 8 1
Other Chert 5 1 3.2 2.8
Volcanics 9 3 6 .5 7.4
Black Argillite 1 1 1.1 2.1
Marbiel?) 10 4 7.6 9.6
Micritic Nodule 3 1 2 2 2.5
Sublithic/cherty ss 3 1.6 5.8

lOO.Ol 100.0
Sub Totals: 147 38 0
Total: 185|
Weighted Sub Totals: 147 418 0
Weighted Total: 5 6 5 |

CB CC2 - 1x3 sq. m ]  Category 1 Category 2 Category 3 Weighted
Lithology <1 6cm) (>6><S0cm) (>50cm) Percent Percent
Red Quartzite 55 1 11.5 10.5
Other Quartzite 26 3 6.0 9.4
Limestone 319 5 66 .5 59.6
Black Chert 37 1 7.8 7.7
Other Chert 5 1 1.2 2 .6
Volcanics 31 6.4 4.9
Black Argillite 0 .0 0 .0
Pink sucrosic sparite 1 0.2 1.8
Micritic Nodule 0 .0 0 .0
Sublithic/cherty ss 2 0.4 3.5

l o o .o l 100.0
Sub Totals: 473 14 0
Total: 1 4*7i
Weighted Sub Totals: 473 154 0
Weighted Total: 1___ 6271

CB CC3 • 1x3 sq. m J Category 1 Category 2 Category 3 Weighted
Lithology (1-6cm) (>6*<50cm) (>50cm) Percent Percent
Red Quartzite 3 3 5 18.9 7.9
Other Quartzite 21 1 10.9 2.9
Limestone 116 8 61.7 18.4
Black Chert 5 2 .5 0.5
Other Chert 1 0 .5 0.1
Volcanics 8 4.0 0.7
Black Argillite 1 0.5 0.1
Marble(?) 0 .0 0 .0
Micritic Nodule 0.0 0.0
Sublithic/cherty ss 2 1.0 69.4

lOO.Ol 100.0
Sub Totals: 185 14 2
Total: 1 2 0 1 |
Weighted Sub Totals: 185 154 768
Weighted Total: 1 11071

U>



MEGACONGLOMERATE CLAST COUNT - CB CC4: Population Totals

Lithology 1x1 1.5x1 1 .5 x 1 .5  2x1 2 x 1 .5  2 x 2  2 .5 x 1 .5  2 .5 x 2  2 .5 x 2 .S 3 x 1 .5  3 x 2  3 x 2 .5  3 x 3  3 5x2 3 .5 x 2 .S 3 .5 x 3  3 .5 x 3 .5 4x 2 SubTTL:
Red Quartzite 
Other Qtzite 
Limestone

15
2

37

7
5

30

9
4

22
1

13

2
1

14 11

46
14

163
BIk Chert 
Other Chert 
Vein Quartz

17
5

30
8
2

Volcanics 
Sublithic ss 
Hematized ss

2 2 
1

25
3
1

17Marblef?)

Subtotal: 84 58 19 44 18 26 1 1 12 309

Lilhotogy 4 x 2 .5  4x3 4 x 3 .5  4 .5 x 2  4 .5 x 3  4 .5 x 3 .5  4 .5 x 4  4 .5 x 4 .5  5x2  5 x 3  5 x 3 .5  5x 4  5 x 4 .5 5x5 5 .5 x 3  5 .5 x 3 .5  5 ,5 x 4  5 .5 x 4 .5 SubTTL:
Red Quartzite 
Other Qtzite 
Limestone

3

1 1

1 8
4

24
BIk Chert 
Other Chert 
Vein Quartz
Volcanics 
Sublithic ss 
Hematized ss
Marfale(?)

Subtotal: 11
Litho logy 6 x 2 .5 6X3 6 x 3 .5 6 x 4 6 x 5 6 x 5 .5 6x6 6 .5 x 4 7x 5 8 x 6 .5 9x6 14x11 5 0 x 2 3 SubTTL: TOTAL:
Red Quartzite 1 1 55 15.0%
Other Qtzite 1 1 1 3 21 5.7%
Limestone 1 1 1 3 1 1 1 9 196 53.4%
BIk Chert 31 8.4%
Other Chert 8 2.2%
Vein Quartz 2 0.5%
Volcanics 1 1 31 8.4%
Sublithic ss 1 1 4 1.1%
Hematized ss 1 0.3%
Marble{?) 18 4.9%

3 6 7 | 100%
Subtotal: 1 1 1 1 1 3 1 1 1 1 1 1 1 15

43

LVW



MEGACONGLOMERATE CLAST COUNT ■ CB CC4:
Area-based Totals and Ratios

WGT RATIOS .1 Category 1

CLAST DIMEN: 1x1 1.5x1 2x1 1.5x1.5 2x1.5 2.5x1.5 2x2 3x1.5 2.5x2 3x2 2 .5 x 2 5 3.5x2 3x2.5 4x2 3.5x2.5 3x3 4.5x2 4x2.5 5x2 3.5x3 4x3 3 .5 x 3 5 4.5x3 SubTTL:
TOTAL:
CLAST AREA:

84
0 .79

58
1.19

3
1.57

19
1.77

44
2 .35

1
2.95

18
3.14

1
3 .53

7
3.93

11 
4,71

26
4.91

5
5.5

2
5.99

3
6 .29

12
6.97

5
7 .07

t
7 .07

3
7.95

1
7.95

5
9.25

11 
9 .42

5
9 .62

5
10.6

330
SubTTL:

TOTAL: 66.36 68.44 4 71 33.63 103 4 2 95 56 52 3 53 27 51 51 81 127.66 27 5 11.78 18.84 82.44 35.35 7.07 23 55 7.85 41.25 103 62 48.1 53 1006.87

AREA%
CLAST DIMEN: 
CLAST AREA:

1x1
0 .79

1.5x1
1.19

2x1
1.57

1.5x1.5  
1.77

2x1.5
2.35

2.5x1.5  
2.95

2x2
3.14

3x1.5
3.53

2.5x2
3.93

3x2
4.71

2.5x2.5  
4.91

3.5x2  
5 5

3x2.5
5.99

4x2
6.29

3 .5 x 2 5
6.67

3x3
7.07

4.5x2
7 .07

4x2.5
7.85

5x2
7.95

3.5x3
9.25

4x3
9.42

3 .5 x 3 5
9 .62

4.5x3
10.6 SubTTL:

Red Quartzite IS 7 2 8 9 2 2 1 1 3 3 53

Olher Qtzite 2 5 4 1 1 1 1 1 16

Limestone 37 30 t 7 22 1 • 13 1 4 8 14 2 2 2 11 3 1 1 2 5 3 1 171

BIk Chert 17 5 1 1 4 1 1 1 31

Other Chert 5 2 1 8

Vein Quartz t 1 2

Volcanics 6 2 3 1 2 4 2 t t 2 1 2 27

Sublithic ss 2 1 3

Hematized ss 1 1

Marbie(?) 1 6 4 2 2 1 1 1 18

U>



MEGACONGLOMERATE CLAST COUNT CB CC4
Area-based Totals and Ratios

WGJ RATIOS___ Category 1 Category 2

CLAST DIMEN: 4x3.5 5x3 6x2.5 4.5x3.5 5.5x3 5x3.5 4.5x4 6X3 5.5x3.5 5x4 4.5x4.5 6x3.5 5x4.5 5x5 5.5x4 6x4 5.5x4.5 6x5 6x5.5 6x6 6.5x4 7x5 SubTTL;
TOTAL:
CLAST AREA;

1
1 i

t
11.75

1
11.78

1
12.37

2
12.96

3
13.74

1
14.14

t
14.14

1
15.12

4
15.71

1
15.9

1
16.49

2
17.67

1
19.63

3
17.28

t
18.85

1
19.44

1
23.56

3
25.92

1
28.27

1 1 
20.42 27.49

33
SubTTL:

TOTAL: 11 t1.76 11.78 12-37 25 92 41.22 14.14 14 14 15 12 62 04 16 9 16.49 35.34 19 63 51 84 18.05 19.44 23.56 77.76 28.27 20.42 27 49 575.3

AREA%
CLAST DIMEN: 
CLAST AREA:

4x3.5
11

5x3
11.78

6x2.5
11.78

4 .5 x 3 5
12.37

5.5x3
12.96

5x3.5
13.74

4.5x4
14.14

6X3
14.14

5 .5 x 3 5
15.12

5x4
15.71

4.5x4.5  
15.9

6x3.5
16.49

5x4.5
17.67

5x5
19.63

5.5x4
17.28

6x4
18.85

5.5x4.5  
19.44

6x5
23.56

6x5.5
25.92

6x6
28.27

6.5x4 7x5  
20.42 27.49 SubTTL;

Red Quartzite 1 1 2

Other Qtzite 1 1 1 1 4

Limestone 1 1 1 1 3 1 1 t 2 1 1 2 1 2 3 1 23

BIk Chert

Other Chert

Vein Quartz

Volcanics 1 1 1 1 4

Sublithic ss

Hematized ss

Marbiel?)



MEGACONGLOMERATE CLAST COUNT - CB CC4:
Area-based Totals and Ratios

WGT RATIOS 1 Category 2 Category 3
Category 1 Category 2 Category 3

CLAST OttWEN; 8x6.5 9x6 14x11 50x23 SubTTL: TOTAL: Median Dimension: 2xt.5 8x6.5 50x23
TOTAL; 1 1 1 1 4 367 Category TTL: 361 5 1
CLAST AREA: 40.84 42.41 120.95 903.21 SubTTL; TOTAL; Median Area: 2.35 40.84 903.21
TOTAL: 4 0 0 4  42 41 120,95 903 21 1107.41 2689.58 Ratio: 1| 17 384

AREA% 1
CLAST DIMEN: 8x6.5 9x6 14x11 50x23
CLAST AREA: 40.84 42.41 120.95 903.21 SubTTL TOTAL:

Med Area & Dim.: Med. Avq. Area: Percentaqe:
Red Quartzite 55 1.77 97.351 9.9

1.5x1.5
Ottier Qtzite 1 1 21 2.35 49 351 5.0

2x1.5
Limestone 1 1 2 196 3.05 597.81 60.6

avq 2.5x1 582x2
B\k Ctieit 31 0.79 24.491 2.5

1x1
Ottier Ctiert 8 0.79 6 32l 0.6

1x1
Vein Quartz 2 2.16 4.321 0.4

avq 1.5x182x2
Volcanics 31 4.91 152.2l| 15.4

2.5x2 5
Subllttiic ss 1 1 4 5.3 21 2| 2-2

avg 2x1.583.5x3
Hematized ss 1 0.79 0.79f 0.1

1x1
Marblef?) 18 1.77 31.861 3.2

1.5x1.5

1 985 6 ^ 100



MEGACONGLOMERATE CLAST COUNT - CB CCS: Population Totals

Lithology 1x1 1.5x1 1 . 5 x 1 . 5 2x1 2 x1 . 5  2X2 2 .5x1  2 . 5 x1 . 5 2.5X2  2 . 5X2 . 5  3 x 1 . 5  3 x2 3 x2 . 5 3 x 3 3 .5x1 3 . 5 x1 . 5 5 x3 . 5 SubTTL:
Red Quartzite 2 1 1 2 1 2 1 2 4 4 1 1 21
Other Quartzite 1 1 1 3 1 1 1 1 10
Limestone 7 3 1 5 4 1 3 13 4 3 2 6 2 2 56
BIk Chert 2 1 1 1 1 1 1 8
Other Chert 2 1 3
Volcanics 1 1 2 1 1 t 1 1 9
Vein Quartz
Sublithfeld ss 1 1 2
Dolomite
Blocky spar/marble? 1 1
VVhite sucrosic sparite 1 1
Black siKstone 1 1
Tan metasiltst. w/C03 cem 1 1 2
Hematitic spar w/mic cist

Subtotal 2 10 6 5 11 7 1 10 18 6 5 9 14 5 1 4 -1 114

Lithology 3 .5 x 2 3 . 5 x2 . 5 3 .5X3 3 . 5 x 3 . 5 4 x 2  4X2 . 5  4 x 3  4 x3 . 5 4 x4  4 . 5 x2  4 .5 x 2 . 5  4 . 5 x3 4 . 5 x3 . 5 4 .5 x 4 5x2 . 5 5 x 3 7X5 SubTTL:
Red Quartzite 2 1 2 2 3 3 1 1 1 1 1 7
Other Quartzite 1 1 1 1 4
Limestone 4 5 6 3 7 1 1 1 2 30
BIk Chert 1 1 1 3
Other Chert 2 1 1 4
Volcanics 1 1
Vein Quartz 1 1
Sublithfeld ss 1 1
Dolomite 1 1
Blocky spar/marble?
While sucrosic sparite 1 2 3
Black siltstone
Tan metasiltst w/C03 cen 1 1 1 3
Hematitic spar w/mic cist

Subtotal: 10 1 4 68

U)



MEGACONGLOMERATE CLAST COUISTT - CB CCS Population Totals

Lithology 5x4 5 x4 . 5 5 .5x2 . 5 5 .5X3 5 . 5 x 3 . 5 5 . 5 x4  5 .5 x 4 . 5  6 x4  6 x4 . 5 6 . 5 x 3  5 6 . 5 x 4 6 . 5 x 4 . 5 6 . 5 x5 6 . 5 x6 6 . 5 x 6 5 7 x3 . 5 SubTTL;
Red Ouailzite 1 1 t 1 1 5
Olher Ouartzile t 1 1 3
Limestone 2 1 2 2 1 2 1 1 1 1 1 15
BIk Chert 1 1 2
Other Chert
Volcanics 2 2
Vein Quartz
Sublithleld ss 1 1
Dolomite
Blocky spar/marble? 1 1
White sucrosic sparite
Black siltsione
Tan metasiltst. w/C03 cem
Hematitic spar w/mic cist

Subtotal: 2 1 5 1 3 2 1 2 3 1 3 1 t 1 1 1 29
Lithology 7 x 6 7 . 5 x5 . 5 7 . 5 x 6 8 x5 . 5 8 x 6 8 x6 . 5  8 x7  8 . 5 x 5 . 5  9 x8 9 x8 . 5 9 . 5 x4 . 5 9 . 5 x 6 5 1 0x 9 1 4 x 8 1 4 . 5 x 9 . 5 3 0 x 2 0 SubTTL; TOTAL:
Red Quartzite 1 1 t 1 1 1 6 50 21.6%
Other Quartzite 1 7 7.3%
Limestone 1 2 1 1 1 6 107 46.1%
BIk Chert 0 13 5.6%
Other Chert 7 3.0%
Volcanics 1 1 1 1 4 16 6 9%
Vein Quartz 1 0.4%
Sublithfeld ss 1 1 1 3 7 3.0%
Dolomite 1 0.4%
Blocky spar/marble? 2 0.9%
White sucrosic sparite 4 1.7%
Black sillslone 1 0.4%
Tan metasiltst w/C03 cem 5 2.2%
Hematitic spar w/mic cist 1 1 1 0.4%

232I 100%
Subtotal: 1 2 1 1 1 2 1 2 t 1 2 1 1 1 1 1 20

OJ-J



MEGACONGLOMERATE CLAST COUNT - CBCC5;
Area-based Totals arrd Ratios

_ V ^  RATOS____________1 Category 1

CLAST DIMENSION; 111 I .S a l 2x1 1.5x1.6 2.5x1 2x1.5 3.5x1 2.5x1.5 2x2 3X1.5 2.5x2 3.5x1.5 3x2 2 5x2.5 3.5x2 3x2.5 4x2 3 5x2 5 3X3 4.5X2 4X2.5 3.5x3 4.5X2.5 4x3 SubTTL:
TOTAL
CLAST AREA:

2
0.79

10
1.18

S
1.57

6
1.77

1
1.96

1 1 
2.35

1
2.75

10
2.95

7
3.14

5
3 53

18
3.93

4
4.12

9 6 7 
4.71 4.91 5.5

14
5.89

1
6.28

6
6.87

5
7.07

1
7.07

6
7.85

10
8.25

1
8.84

14
9.42

160
SubTTL:

TOTAL: 1.58 t i e 7.85 10.6? 1.96 25.85 2.75 29.5 21.98 17 65 70.74 16.48 42.39 29 46 38 5 82 46 6 28 41.22 35 35 7 07 47.1 82.5 8 84 131.88 771.81

AREA% 1 
CLAST DIMEN:
CLAST AREA:

111
0.79

15x1
1.18

2x1
1.57

1.5x1.5 
1.77

2.5x1 
1.96

2x1.5
2.35

3.5x1 
2.75

2 5x1 5 
2.95

2x2
3.14

3X1.5
3.53

2.5x2 
3 93

3.5x1.5 
4.12

3X2 2.5x2.5 3.5x2 
4.71 4.91 5.5

3x2.5
5.89

4x2
6.28

3 5x2.5 
6.87

3x3
7.07

4.5x2
7.07

4x2.5
7.85

3.5x3
8.25

4 5x2 5 
8.84

4x3
9.42 SubTTL:

Red Quartzite 2 1 1 2 2 1 1 1 4 2 2 4 1 1 3 2 3 33

Other Quartzite 1 1 1 1 3 t 1 1 1 11

Limestone 7 1 3 1 5 3 4 3 13 2 2 4 4 6 5 2 3 6 7 81

81k Chert 2 1 1 1 t 1 1 1 9

Other Chert 2 1 2 1 6

Volcanics t 1 2 1 t 1 1 1 1 10

Vein Quartz

Sublithfeld ss 1 1 1 3

Dolomite 1 1

Blocky spar/marble? 1 1

White sucrosic spar 1 1

Black siltstone 1 1

Tan metasiltst. W/C03 cem 1 1 1 3

Hematitic spar w/mic cist

U)
00



MEGACONGLOMERATE CLAST COUNT CBCC5:
Area-based Totals and Ratios

WGT RATIOS 1 

CLAST DIMENSION: 9.S«3.5 5x2 5 4.5x3 5.5x2.5 4x3.5 5x3 4.5x3.5 4x4

Category t 

5.5x3 5x3.5 4.5x4 5.5x3 5 5:4 5.5x4 5x4.5 6x4 5 5x4 5 6x4.5 6.5x3.5

Category 2 

7x3.5 6.5x4 6.5x4.5 SubTTL:
TOTAL: 2 2 3 5 4 t 3 2 1 t 4 3 2 2 1 2 1 3 I 1 3 1 48
CLAST AREA: 9.62 9.92 10.6 10.6 1 1 11.76 12.37 12.57 12.96 13.74 14.14 15.12 15.71 17.26 17.67 16.65 19.44 21.21 17.67 19.24 20.42 22.97 SubTTL:
TOTAL: 19 24 19.64 31.9 54 44 11.78 37.11 25.14 12 96 13 74 56.56 45.36 31.42 34.56 17 67 37 7 19 44 63.63 17.87 19 24 61.26 22.97 697.09

AREA% 1
CLAST DIMEN: 3.5x3.5 5x2.5 4.5x3 5.5x2.5 4x3.5 5x3 4.5x3.5 4x4 5.5x3 5x3.5 4.5x4 5.5x3 5 5x4 5.5x4 5x4.5 6x4 5 5x4 5 6x4.5 6.5x3.5 7x3.6 6.5x4 6.5x4.5
CLAST AREA; 9.62 9.62 10.6 10.6 1 1 11.76 12.37 12.57 12.96 13.74 14.14 15.12 15,71 17.26 17.67 16.65 19.44 21.21 17.67 19.24 20.42 22.97 SubTTL:

Red Quartzite 2 t t 1 t 1 1 1 9

Ottier Quarlzlte 1 t t I 1 1 6

Limestone 2 1 1 t 1 2 2 2 2 1 1 t 1 1 19

BHt Chert t 1 1 3

Olher Chert t 1

Volcanics 2 2

Vein Quartz 1 1

Sublithleld ss 1 1

Dolomite

Bloctry spar/marble? t t

While sucrosic spar t 2 3

Blacit siltstone

Tan metasiltst. w/C03 cem 1 1 2

Hematitic spar w/mic cist

U)
VO



MEGACONGLOMERATE CLAST COUNT - CBCC5:
Area-based Totals and Ratios

WGT RATIOS________

CLAST DIMENSION;

J
«5x5 7x5 6.5x5 7.5x5.5 7x6 6 5x6 5 ».Sx4.S 8x5.5 7.5x6

Category 2 

8.5x5.5 6x6 6x6.5 8x7 » 5x6.5 8x6 9X8.5 10x8 14x8 14.5x8.5 30x20 SubTTL; TOTAL:
TOTAL 1 1 1 2 1 1 2 I 1 2 1 2 1 t 1 t 1 1 t 1 24 232
CLAST AREA: 25.53 27.4» 30.63 32.4 32.»» 33.18 33.58 34.56 35.34 36.72 37.7 40.84 43.08 48.5 56.55 60.01 70.6» 87.86 106.1» 471.24 SubTTL: TOTAL:
TOTAL: 25 53 27.49 30 63 64.6 32.99 33.te 67 16 34 56 35.34 73.44 37.7 8 1 6 6 43.98 48.5 56.55 60.01 70.69 87.96 108.19 471.24 1491.62 2960.52

AREA% 1
CLAST DIMEN: «5x5 7x5 6.5x6 7.5x5.5 7x6 6 5x6 5 » 5x4 5 8x5.5 7.5x6 8.5x5.5 8x6 6x6.5 8x7 8.5x6.5 9X8 8X8.6 10x8 14x8 14.5x8.6 30x20
CLAST AREA; 25.53 27.4» 30.63 32.4 32.»» 33.16 33.58 34.56 35.34 36.72 37.7 40.84 43.88 46.5 56.55 60.01 70.6» 87.96 108.1» 471.24 SubTTL: TOTAL:

Red OuBitzite 1 1 1 1 1 1 1 1 8 50

Other Ouartzlte 17

Limestone t t 1 2 1 1 7 107

BIk Chert 1 1 13

Olher Chert 7

Volcanics 1 1 1 t 4 16

Vein Quartz 1

Sublithleld ss t 1 1 3 7

Dolomite 1

Blocky spar/marble? 2

White sucrosic spar 4

Black siltstone 1

Tan metasiltst. w/C03 cem 5

Hematitic spar w/mic cisl t 1 1



MEGACONGLOMEflATE CLAST COUNT - CBCC5:
Area-based Totals and Ratios

WGT RATIOS 1
Caleaofv 1 Cateaorv 2 CüteflOIV 3

CLAST DIMENSION: TOTAL: Median Dimension: 3.5X2 8x5 5 4 9 5x4 5
TOTAL; 232 Category TTL: 202 30 0
CLAST AREA: TOTAL: Median Area: 5.5 34 07 0
TOTAL: 2960.52 Ratio: t | 6|

AREA% 1
CLAST OIMEN;
CLAST AREA: TOTAL:

Med. Area & Dim.: Med. Avg. Are; Percentage
Red Quartz tie 50 7.46 3 7 3 r  ■■ 24.1

avg 4.5x264x2.5
Other Ouartzite 17 5.89 100 13l 6.5

3x2.5
Limestone 107 5.89 630 23l 40.7

3x2.5
61k Chert 13 4.71 61.231 4.0

3x2
Other Chert 7 8 25 57 75| 3.7

3.5x3
Volcanics 16 6.48 103 eel 6.7

avo 3x2.543x3
Vein Quartz 1 11 111 0.7

4x3.5
Sublithfetd ss 7 10.8 75 el 4.9

5 5x2.5
Dolomite 1 9.42 9.421 0.6

4x3
Blocky spar/marble'’ 2 6.58 13.161 0.9

avg 2x1.545.5x2 5
White sucrosic spar 4 12,37 49.481 3.2

avg 4 5x344 5x4
Black siltslone 1 1.57 1.571 0.1

2x1
Tan metasiltsl. W/C03 cen 5 5 5 2 7 .^ 1.8

3.5x2
Hematitic spar w/mic cist 1 33.58 33.58! 2.2

9.5x4.5
1 1547.33! too



MEGACONGLOMERATE CLAST COUNT - CB CC6: Population Totals

Litho logy 1 5 x 1 2x1 2x1.5 2x2 2.5x1 2.5x1.5 2.5x2 2 .5 x 2 5 3x1.5 3x2 3x2.5 3x3 3.5x2 3.5x3 4x3 4x3.5 4.5X2 4.5X3 4.5x4 SubTTL:

Red Ouartzite 1 2 1 4
Rd/org subfeld metass 1 1 2
Limestone 2 1 1 1 1 1 3 3 3 1 1 2 1 21
BIk Chert 1 1 1 1 1 5
Other Chert 1 2
Micritic Nodule 1 2 1 1 1 6
Volcanics 1 1
Sublithield ss(blu gry) 2 1 1 4
Dolomite 1 1 1 3
White sublith ss w/jas 1 1
Hema soar w/mic cl 1 1

Subtotal: 6 3 3 2 1 2 10 1 1 5 3 1 1 1 3 3 2 1 1 50

Litho logy 5x2.5 5x3 5x3.5 5x4 5 5x2.5 5.5x4 5.5x4.5 6x3.5 6x4 6.5x5 7x4 7.5x4 8x6.5 13x8 32X25 42x8 SubTTL: TOTAL:
Red Ouartzite 4 5.9%
Rd/org subfeld metass 2 2.9%
Limestone 1 1 1 1 1 1 1 7 28 41.2%
BIk Chert 1 1 2 7 10.3%
Other Chert 2 2.9%
Micritic Nodule 1 1 7 10.3%
Volcanics 1 1.5%
Sublithield ss(blu gry) 1 1 1 1 1 1 1 1 8 12 17.6%
Dolomite 3 4.4%
White sublith ss w/jas 1 1.5%
Hema spar w/mic cl 1 1.5%

6 8 | 100%
Subtotal; 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18



MEGACONGLOMERATE CLAST COUhfT CBCC6
Area-based Totals and Ratios

WGT RATIOS 1 Category 1

CLAST DIMEN: I.S iil 2x1 2.5x1 2X1.5 2.5x1 .5 2x2 3x1.5 2.5x2 3x2 2 5x2.5 3.5x2 3x2.5 3x3 4.5x2 3.5x3 4x3 5x2.5 4.5x3 5.5x2  5 4x3.5 5x3 5x3 .5 4.5x4 5x4 6x3 .5 SubTTL:
TOTAL:
CLAST AREA:

6

I t *
3

1.57
1

1 .9 *
3

2.35
2

2.95
2

3.14
1

3.53
10

3.93
5

4.71
1

4.91
1

5.5
3

5 * 9
1 2 

7 .07 7.07
t

8.25
3

9.42
2

9.82
1

10.6
1 3 

10.8 11
2

11.78
1

13.74
1

14.14
1

15.71
1

16.49 SubTTL:
TOTAL 7.08 8.28 1.98 7.05 5,9 6.28 3.53 39.3 23 55 4 91 5.5 17.67 7.07 14.14 8 25 28 26 19 64 10 . 6 10.8 33 23.56 13.74 14.14 15 71 16 49

AREA%____________ 1
CLAST OIMEN:
CLAST AREA;

1 5 x t
1 .1 *

2x1
1.57

2.5x1
1.98

2x1.5
2.35

2.5x1.5  
2.95

2x2
3.14

3x1.5
3.53

2.5x2
3.93

3x2
4.71

2 .5x2 .5  
4.91

3.5x2
5.5

3x2.5
5 * 9

3X3 4.5x2  
7 .07 7.07

3.5x3
* 2 5

4x3
9.42

5x2.5
9 * 2

4.5X3
10.8

S.5X2.5 4x3.5  
10.8 11

5X3
11 .78

5x3.5
13.74

4 .5x4
14.14

5X4
15.71

8X3.5
16.49 SubTTL:

Red Ouartzite 1 2 1 4

RrVorg subfeld metass 1 1 2

Limestone 2 1 1 1 1 1 3 3 1 3 1 1 2 1 1 1 24

eni Chert 1 1 1 1 1 1 1 7

Other Chert 1 1 2

Mkyilic Nodule 1 2 1 1 1 1 7

Volcanics 1 1

Sublithield ss(blu gry) 2 1 1 1 1 6

Dolomite 1 1 1 3

While sublith ss w/jas 1 1

Hema spar w/mic cl 1 1



MEGACONGLOMERATE CLAST COUNT CBCC6:
Area-based Totals and Ratios

WGTRATtOS 1 Category 1 Category 2
Category 1 Caleoorv 2 Caleoorv 3

CLAST OIMEN: 5 5 :4  6 :4 S.5 :4 .5 7 :4 7 .5 :4 6 .5 :5 8 :6 .5 1 3 :8 4 2 :8 3 2 :2 5 SubTTL TOTAL: Median Dimension: 3:2 8x6.5
TOTAL: 1 1 1 1 1 1 1 1 1 1 to 68 Category TTL: 61 7 0
CLAST AREA; 17.26 16.65 19.44 21 .99 23 .56 25.53 40.64 81.68 2 63 .69 626 .32 SubTTL TOTAL: Median Area; 4.71 40 84 0
TOTAL: 17 28 18.85 19.44 21 99 23 56 25.53 40 84 81.68 263 89 620 32 1141.38 1485.79 Ratio: '1 9 |

AREA% 1
CLAST OIMEN: 5 .5 :4  6 :4 5 5 :4  5 7 :4 7 .5 :4 6 .5 :5 6 :6 .5 1 3 :8 4 2 :6 3 2 :2 5
CLAST AREA: 17.26 16.65 16.44 21 .99 23 .56 25 .53 40 .84 81 .68 263 .69 626 .32 SubTTL: TOTAL:

Med. Area & Dim.: Med. Avo. Area Percentage:
Red Ouartzite 4 3.93 15.72L 3.1

2.5:2
Rd/org subfetd metass 2 2.36 4 .7 2 [ 0.9

avg 1 5x153:1 5
Limestone 1 1 1 1 4 28 5.7 159 6 [ 31.9

avg 3 5:253:2.5
Blit Chert 7 8.25 57.751 11.5

3.5x3
Other Chert 2 2.16 4 3 2 [ 0.9

avg 1 5x152x2
Micritic Nodule 7 3.93

2.5x2
2 7 .5 l f 5.5

Volcanics 1 4.91 4.9 i L 1.0
2 5:2.5

Sublithield ss(blu gry) 1 1 1 1 1 1 6 12 16.5 1 9 8 [ 39.6
avg 4.5:456:4

Dolomite 3 4.71 14 .n C 2.8
3x2

White sublith ss w/jas 1 3.93 3.93L 0 .8
2-5x2

Hema spar w/mic cl 1 9.42 9 4 2 [ 1-9
4x3

1 500 O il 100



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CC3: Population Totals

L ith o lo g y 1x1 2 .5 x 1 2 .5 x 2 2 .5 x 2 .5 3 x 2 3 x 2 .5 3 x 3 3 .5 x 2 .5 3 .5 x 3 3 .5 x 3 .5 4 x 2 4 x 2 .5 4 x 3 4 x 3 .5 S ubTtL
Red Ouartzite 
Other Ouartzite 
Limestone 2 1 1 2 2 1 2 3 1

1

2
1
2 2

1
1

21
BIk Chert 
White Marble 
Wh/qry dolomite

1

1 1 1 1 1 1

1

1 1

2

8
Red sucrosic sparmicrite 1 1

Subtotal; 2 2 2 1 2 2 2 3 4 1 1 5 4 3 3 4

L ith o lo g y 4 x 4 4 .5 x 2 .5 4 .5 x 3 .5 5 x 3 5 x 3 .5 5 x 4 5 x 4 ,5 5 x 5 5 .5 x 3 6 x 2 .5 6 x 4 6 x 5 6 .5 x 4 .5 7 x 4 S ub TtL
Red Ouartzite 
Other Ouartzite 
Limestone 2 1 1

1
2 1 1 1

1

1 3

1
1

13
BIk Chert 
White Marble 
Wh/qry dolomite t 1 1 1 2 1

1 1
7

Red sucrosic sparmicrite 1 1

Subtotal: 3 1 2 2 1 5 1 1 1 1 1 1 1 3 2 4

L ith o lo g y 8 x 5 8 x 7 8 .5 x 4 9 x 5 9 x 5 9 x 7 1 1 x 7 1 1 x 8 1 4 x 1 0 7 x 5 7 x 6 7 x 7 7 .5 x 5 SubTtL: TO TA L:
Red Ouartzite 
Other Ouartzite 
Limestone 2 1 1 1 1 1 1 1 1 1 11

2
2

4 3

2.8%
2.8%

60.6%
BIk Chert 
While Marble 
Wh/qry dolomite 1 1 1 1 4

2
1

1 9

2.8%  
1.4%  

26 .8%
Red sucrosic sparmicrite 2 2.8%

71 100%
Subtotal: 2 1 1 1 1 1 1 1 1 2 1 1 1 1 5

&



SANDY COBBLE CONGLOMERATE CLAST COUNT - SCC CC3: Area-based Totals and Ratios

WGT RATIOS 1 Category 1

CLAST DIMENSION: 1x1 2.5x1 2.5x2 3x2 2 5x2 5 3x2.5 4x2 3.5x2.5 3x3 4x2.5 3.5x3 4.5x2.5 4x3 3.5x3 5 4x3.5 5x3 6x2.5 4.5x3.5 4x4 5.5x3 5x3.5 SubTTL
TOTAL;
CLAST AREA:

2
0 .79

2
1.96

2
3.93

2 1 
4.71 4.91

2
5.89

1
6.29

3
6.97

2
7.07

5
7 .95

4
9 25

1
9 .94

4
9.42

1
9.62

3 
1 1

2
11.79

1
11.79

2
12.37

3
12.57

1
12.96

1
13.74

45
SwbTTL

TOTAL 1.58 3.92 7.86 9 .42  4 91 11 78 6 28 20 61 14.14 39.25 33 8.84 37 68 9 62 33 23 56 11.78 24.74 37.71 12.96 13.74 366 .38

AREA% I 
CLAST DIMENSION: 
CLAST AREA:

1x1
0.79

2.5x1
1.96

2.5x2
3.93

3x2 2 5x2.5 
4.71 4.91

3x2.5
5.99

4x2
6.29

3.5x2.5  
6.87

3x3
7.07

4x2.5
7.95

3.5x3
9.25

4.5x2.5  
8 .84

4x3
9.42

3 5x3.5 
9.62

4x3.5  
1 1

5x3
11.79

6x2.5
11.78

4.5x3.5  
12.37

4x4
12.57

5.5x3
12.96

5x3.5
13.74 SubTTL

Red Ouartzite 1 1 2

Other Ouartzite 1 1

Limestone 2 1 1 2 2 1 2 1 2 3 1 2 2 1 2 1 26

BIk Chert 1 1 2

White Marble

Wb/gry dolomite 1 1 1 1 1 1 1 1 1 1 1 1 12

Red sucrosic spar/mic 1 1 2

WGTRATtOS 1 Category 1 Category 2

CLAST DIMENSION: 5x4 5x4.5 6x4 5x5 6 :5 7x4 .5x4.5 9.5x4 7x5 7.5x5 9x5 7x6 9x5 7x7 9x6 9x7 9x7 11x7 11x9 14x10 SobTTL: TOTAL:
TOTAL
CLAST AREA:

5
15.7

1
17.67

1
16.85

1 1 
19.6 23.56

3
21.99

1
23

1
26.7

2
27.49

1
29.45

2
31.42

1
32.99

1
35.34

1
39.49

1
42.41

1
43.99

1
49.49

1
60.49

1
69.11

1
110

28
SubTTL:

73
TOTAL:

TOTAL: 78,6 17,67 18.85 19.6 23 .56 65.97 23 26.7 54 98 29.45 62.84 32.99 35.34 38.48 42.41 43 .98 49.48 60.48 69.11 109 .96 903 .4 1269 8

AREA% 1 
CLAST DIMENSION: 
CLAST AREA:

5x4
15.7

5x4.5
17.67

6x4
19.95

5x5 6x5  
19.6 23.56

7x4 .5x4 .5  
21.99 23

9.5x4
26.7

7x5
27.49

7.5x5
29.45

9x5
31.42

7x6
32.99

9x5
35.34

7x7
39.46

9x6
42.41

9x7
43.99

9x7
49.49

11x7
60.49

11x9
69.11

14x10
110 SubTTL: TOTAL:

Red Ouadzite 2

Other Ouartzite 1 1 2

Limestone 2 1 1 1 3 1 1 1 2 1 1 1 1 1 1 19 45

Bik Chert 2

While Marble 1 1 1

Wh/gry dolomite 2 1 1 1 1 1 7 19

Red sucrosic spar/mic 2



SANDY-COBBLE-CONGLOMERATE CLAST COUNT • SCC CC3: Area-based Tctats and Ralios

WGT RATIOS 1
Caieqonr 1 Cateooa^ Caleoorv 3

CLAST DIMENSION: TOTAL: Category TTL: 54 19
TOTAL: 73 Cat. Area TTL: 524.64 745.14 0
CLAST AREA: TOTAL; Cat. Mean Area; 9.72 39.22 0
TOTAL: 1269.78 Ratio: »l 4|

AREA% i
CLAST DIMENSION:
CLAST AREA: TOTAL:

Med. Area & Dim : Med. Avq. Area Percentage:
Red Ouartzite 2 9 82 19 64| 2.2

avg 4x2.566x2.5
Other Ouadzile 2 12 57 2S.14| 2.8

avg 4x365x4
Limestone 45 12 57 

4x4
565 6S| 62.8

81k Chert 2 4.9t 9.82| I t
avg 2 5x164x2 5

White Marble 1 22 97 22.97[ 2.6
6.5x4.5

Wh/gry dolomite t 9 12.37 235.03[ 26.1
4.5x3 5

Red sucrosic spar/mic 2 10.9 21.81 2,4
avg 4x364.5x3 5

900.051 100



SANDY-COBBLE-CONGLOMERATE CLAST COUNT - SCC CC4: 
Population and Area (Weighted) Totals

Lithology
Category 1 

(1-6cm)
Category 2 

(>6-<50cm)
Category 3 
(>50cm) Percent

Weighted
Percent

Red Ouartzite 8 2 5.7 5.1
Other Ouartzite 20 10 17.2 19.2
Limestone 57 28 48.9 54.2
Black Chert 17 9.8 5.4
Other Chert 2 1.1 0.6
Volcanics 2 1.1 0.6
Dolomite 4 4 4.6 6.4
Marble(?) 5 2.9 1.6
Grn-pnk ss/siltstone 5 2.9 1.6
Subfeldlith ss 4 2 3.4 3.8
Whi/gry suer, sparmic 4 2.3 1.3

100.0 100.0
Sub Totals: 128 46 0
Total: [ 174|
Weighted Sub Totals: 128 184 0
Weighted Total: \ 312|
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