
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2001

Implementation of parallel-distributed computation under load Implementation of parallel-distributed computation under load

balancing and fault tolerance balancing and fault tolerance

Gang Wu
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Wu, Gang, "Implementation of parallel-distributed computation under load balancing and fault tolerance"
(2001). Graduate Student Theses, Dissertations, & Professional Papers. 5123.
https://scholarworks.umt.edu/etd/5123

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267576399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5123?utm_source=scholarworks.umt.edu%2Fetd%2F5123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of 1VIONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

* * Please check "Yes" or "No" and provide signature **

Yes, I grant permission ^
No, I do not grant permission _____

Author's Signature c; / .. .̂ V C.. ;7

D ate_______ j f ^ / / o /

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

An Implementation o f Parallel-Distributed
Computation Under Load Balancing and Fault Tolerance

By

Gang Wu

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

in Computer Science

The University of Montana

May 2001

Approved by: -r

erson

Dean, Graduate School

UMI Number: EP40587

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP40587

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Wu, Gang M.S., May 2001 Computer Science

An Implementation of Parallel-Distributed Computation Under Load Balancing and Fault
Tolerance

ri'vj
Director: Donald J. Morton, Jr. Ph.D.

A parallel-distributed computation of master-slave model for application in biophysical
data analysis is designed and developed using Parallel Virtual Machine (PVM) on a set of
specified hosts in this paper. To make this PVM routine robust, fault tolerance is
implemented; it has the ability to monitor all tasks, if it finds a task fails without sending
its result from a slave to master, the task will be spawned by master again. In order to
extract the maximum performance, static load balancing and dynamic load balancing are
implemented, which makes sure all processors are busy doing useful work most the time.

TAB LE O F C O N TE NT S

ABSTRACT.. ii

1. In troduction... 1
1.1 B ackground... 1
1.2 M otivation...2

2. A Brief Introduction to P V M ...5
2.1 What is P V M ... 5
2.2 Why P V M ...6
2.3 How PVM W o rk s..6
2.4 PVM Libraries... 7

2.4.1 Process C on tro l... 8
2.4.2 Inform ation.. 9
2.4.3 Message P assing ..10
2.4.4 Dynamic Configuration..11
2.4.5 Signaling.. 12

3. Design and Implementation of PVM R outine... 18
3.1 D esign ..18
3.2 Im plem entation... 20

4. Correctness and Efficiency of PVM R outine ...30
4.1 T e s t..30
4.2 Results and Com parisons...31

5. Fault Tolerance ..35
5.1 Why Fault Tolerance.. 35
5.2 How to Im plem ent..36
5.3 T e s ts ..38

6. Load Balancing.. 42
6.1 What is Load B alancing.. 42
6.2 How to Im plem ent..43
6.3 D iscuss.. 50

7. Conclusions and Future W o rk ...51

References...54

Appendix 56

1
CHAPTER 1

INTRODUCTION

In this chapter, Dr. Borries Demeler’s work is briefly explained, which is a background

of this project. The motivation of the project and the outline of this report are described

in detail.

1.1 Background

Dr. Borries Demeler is developing an integrated biophysical data analysis software

package called UltraScan in the Department of Biochemistry at University of Texas

Health Sciences Center, San Antonio. UltraScan software would be extremely valuable

for the biophysical characterization of interacting biomolecules and the study of

structure/function relationships to more complex biological systems. In order to develop

the integrated biophysical data analysis. Dr. Demeler used Dosen’t Use Derivatives

(DuD) algorithm [1] for fitting complex models and Monte Carlo method [2] to

implement rigorous statistical error analyses.

On a single computer, it is computationally expensive to perform the integrated

biophysical data analysis in order to be statistically meaningful with Monte Carlo

method. However, a major advantage of the integrated data analysis is that it can easily

be performed in parallel by modularizing the integrated data analysis into many

subprocesses that can be calculated independently of each other. The algorithm can be

1

2

structured such that the outcome of a subprocess is not dependent on the outcome of

other subprocesses. So, it is possible to perform the calculation of each subprocess in

parallel on multiple central processing units that can communicate with each other over a

network. A control process is running on one of them, while parallelisms are computed

on both the local and other nodes. Since some subprocess can be done earlier than others,

in order to save time and make full use of CPUs, once the subprocess is completed in a

processing unit, another subprocess will be sent to the processing unit, this procedure will

be repeated until all subprocesses are finished.

The algorithm is optimized for maximal usage of all CPUs. Therefore, it is a natural

and logical choice to distribute the integrated data analysis over multiple processors. The

computing efficiency of the networked cluster can be further improved by manually

adjusting the number of nodes and the type of simulations run on each node, depending

on their complexity and the particular node’s computing power. Without parallel-

distributed computation, the integrated biophysical data analysis cannot be completed in a

reasonable amount of time

1.2 Motivation

The parallel-distributed computation in Dr. Demeler’s software package is an

important part, which makes the integrated analysis be done in an acceptable time [3].

The goal of this project is to prototype a parallel-distributed computation method for

implementation in Dr. Demeler’s code using Parallel Virtual Machine (PVM) [4], which
2

3

would display the basic idea that Dr. Demeler will use in his data analysis routine,

confirm the correctness and the efficiency of the parallel-distributed computation

compared with a single processor to perform the calculation, and improve its

performance on both fault tolerance and load balancing [5]. This work will be valuable

towards implementing the parallel-distributed computation for Dr. Demeler’s integrated

data analysis routine.

PVM has many advantages, such as portability, scalable parallelism, and robust fault

tolerance, it has been available for several years and became a de facto standard. Message

Passing Interface (MPI) is another method for parallel computing, primarily concerned

with messaging [8]. Because these subprocesses mentioned above are independent, we do

not need to exchange information among them, PVM is selected to implement the

parallel-distributed computation on the Scinet, which is a intra network with 4 Linux

PCs, and Solaris workstations in the Department of Computer Science at the University

of Montana, as well as on the intra network (22 processors) of Biochemistry Department

at University of Texas Health Sciences Center, San Antonio.

In the following chapters, Chapter 2 will give a brief introduction to PVM, which

includes what PVM is, why use PVM, how PVM works, and PVM libraries. Chapter 3

will describe how to design and implement the parallel-distributed computation on a set

of specified nodes in the project. Chapter 4 will show how to verify correctness and

efficiency of the PVM routine, and results of tests and analyses. Chapter 5 and Chapter 6

3

4
will discuss how to improve the PVM routine performance - fault tolerance and load

balancing. Finally, conclusions and future work are indicated in Chapter 7.

4

5

CHAPTER 2
A BRIEF INTRODUCTION TO PVM

In the last chapter, we described why we did the project and its goal, and why we selected

Parallel Virtual Machine. In this chapter, Parallel Virtual Machine is briefly introduced,

including what is PVM, why use PVM, how PVM works, and PVM libraries.

2.1 W hat Is PVM

PVM stands for Parallel Virtual Machine. It is an open source software tool that

enables execution of parallel applications across multiple nodes on a network. With this

software a user can turn a loose group of machines into a parallel computer. PVM runs on

most Linux/Unix machines, and on any network that supports the TCP/IP protocol. PVM

can be started from any one machine. If the user supplies a host file with a list of machine

names, those machines will be added to the PVM configuration at startup. A virtual

console can be brought up on any host in the configuration to monitor the status of PVM.

The user can issue commands from the console to add or delete hosts from the PVM, and

to list active jobs.

PVM has a simple message-passing interface for exchanging data between different

tasks for parallel applications. Each task is identified by a unique task ID. The ID of the

sender and intended recipient are encoded in the message header, and the message is

routed to the appropriate task by the PVM daemons on the source and destination hosts.

5

2.2 Why PVM
6

PVM is a handy, low-cost tool for parallel computing and is also supported on

massively parallel computers. It can not only turn a loosely scattered, under-utilized set

of Unix workstations into a powerful parallel computer, but can also be used to build a

supercomputer from scratch with off-the-shelf processors.

Its portability is the key advantage of PVM. A program written in PVM can run on

almost any hardware in use today, from PCs to supercomputers. This removes the

hardware dependency from the application and reduces the cost for development and

future upgrades. An application can also be developed on a desktop system and then

moved to a supercomputer for production runs.

PVM has a small set of functions that are intuitive and easy to use. It has been

available for several years and gained wide acceptance among technical users, and

became a de facto standard.

2.3 How PVM Works

PVM consists of two main components - a daemon and library interface routines. A

daemon is started on every host in the Virtual Machine. Users' programs need to be

linked with the PVM library at compile time. There are three ways to start a new PVM

6

7
task: run it like any other Unix process; spawn it from the console; spawn it from

another PVM task.

Normally the daemon forks and execs a new process. The process then enrolls in

PVM and gets an ID from the daemon. A TCP socket connection [6] is established

between the task and the daemon. The new task can query the daemon for information on

other tasks and the configuration of the Virtual Machine.

When a task sends a message to another task, the message is usually routed by the

local daemon. The daemon decodes the message header and forwards the message to the

destination host. The daemon on that host then passes the message along to the intended

recipient.

The programming model of PVM is quite simple. A unique ID identifies each task.

From the programmer's point of view, it really doesn't matter where the task is running.

The PVM console gives the user a global view of the Virtual Machine, commands can be

issued there to query the status of any task or to send a signal to a particular task.

2.4 PVM Libraries

There are three PVM libraries: 1) libpvm3.a - Library of C language interface

routines. 2) libfpvm3.a - additionally required for Fortran codes. 3) libgpvm3.a - required

for use with dynamic groups.

7

8
The libraries contain simple subroutine calls that the application programmer may

embed in concurrent or parallel application code, and provide ability to 1) initiate and

terminate processes, 2) pack, send, receive and broadcast messages, 3) synchronize via

barriers, 4) query and dynamically change configuration of the parallel virtual machine.

Library routines do not directly communicate with other processes. Instead, they send

commands to the local daemon and receive status information back. [Note that some

PVM implementations actually allow tasks to communicate directly with each other,

through “channels”. By bypassing the daemons in this manner, there is less overhead.]

We will briefly talk about some important interface routines in libpvm3.a, which include

process control routines, information routines, dynamic configuration routines, signaling

routines, and message passing routines. Most of them are used in the project.

2.4.1 Process Control

Process control routines are used to control processes, such as killing processes, and

spawning processes.

int tid = pvm_mytid(void)

• pvm_mytid() returns the t i d of this process and can be called many times. It

enrolls this process into PVM if this is the first PVM call.

int info - pvm_exit(void)

9

• pvm_exit() tells the local pvmd that this process is leaving PVM. This routine

does not kill the process, which can continue to perform tasks just like any other

UNIX process. Users typically call pvm_exit() right before exiting their C

programs.

int numt = pvm_spawn(char *task, char **argv, int flag, char *where, int ntask, int

*tids)

• pvm_spawn() starts up ntask copies of an executable file task on the virtual

machine, argv is a pointer to an array of arguments to task with the end of the

array specified by NULL. If task takes no arguments, then argv is NULL. The

flag argument is used to specify options, such as PvmTaskDefault and

PVMTaskHost. In this project, PvmTaskHost is used. On return, numt is set to the

number of tasks successfully spawned or an error code if no tasks could be

started.

int info = pvm_kill(int tid)

• pvm_kill() kills some other PVM task identified by t i d . This routine is not

designed to kill the calling task, which should be accomplished by calling

pvm_exit() followed by exit().

2.4.2 Information

9

10
Information routines provide message about the virtual machine and the PVM tasks

running on the virtual machine.

int tid - pvm_parent(void)

• pvm_parent() returns the t i d of the process that spawned this task or the value of

PvmNoParent if not created by pvm_spawn().

int info = pvm_config(int *nhost, int *narch, structpvmhostinfo **hostp)

• pvm_config() returns information about the virtual machine including the number

of hosts, nhost, and the number of different data formats, narch. hostp is a

pointer to a user declaried array of pvmhostinfo structures. The array should be

of size at least nhost. On return, each pvmhostinfo structure contains the pvmd

TID, host name, name of the architecture, and relative CPU speed for that host in

the configuration. To do load balancing, we need to know how many hosts are

used in a virtual machine, so pvm_config() is used to return the number of hosts.

2.4.3 Message Passing

Message passing routines are used to initialize a send buffer, pack a message into a

buffer, send, receive and unpack the message. Sending a message consists of three steps

in PVM.

10

11

First, a send buffer must be initialized by a call to pvm_initsend() or pvm_mkbuf().

Second, the message must be “packed” into this buffer using any number and

combination of pvm_pk*() routines.

Third, the completed message is sent to another process by calling the pvm_send()

routine or multicast with the pvm_mcast() routine.

A message is received by calling either a blocking or nonblocking receive routine and

then “unpacking” each of the packed items from the receive buffer. The receive routines

can be set to accept any message, or any message from a specified source, or any

message with a specified message tag, or only messages with a given message tag from a

given source There is also a probe function that returns whether a message has arrived,

but does not actually receive it.

If required, other receive contexts can be handled by PVM 3. The routine pvm_recvf()

allows users to define their own receive contexts that will be used by the subsequent

PVM receive routines. The pvm_recv() is blocking, which means the routine waits until a

message matching the user specified tid and mesgtag values arrives at the local pvmd. If

the message has already arrived, then pvm_recv() returns immediately with the message.

2.4.4 Dynamic Configuration

We can use dynamic configuration routines to add or delete hosts in the virtual machine.

11

12

int info = pvm_addhosts(char **hosts, int nhost, int Hnfos)

int info = pvmjdelhosts(char **hosta, int nhost, int Hnfos)

• The routines add or delete a set of hosts in the virtual machine. The info is

returned as the number of hosts successfully added. The argument infos is an

array of length nhost that contains the status code for each individual host being

added or deleted. This allows the user to check whether only one of a set of hosts

caused a problem rather than trying to add or delete the entire set of hosts again.

• These routines are sometimes used to set up a virtual machine, but more often

they are used to increase the flexibility and fault tolerance of a large application.

These routines allow an application to increase the available computing power

(adding hosts) if it determines the problem is getting harder to solve. Another use

would be to increase the fault tolerance of an application by having it detect the

failure of a host and adding in a replacement host.

2.4.5 Signaling

Signaling routines can provide information about events, such as if a task exits, if a host

is deleted, and if a host is added.

int info = pvm_notify(int what, int msgtag, int cnt, int tids)

• pvm_noti f y requests PVM to notify the caller on detecting certain events.

12

13

The present options are as follows:

• PvmTaskExit - one notify message for each tid requested. The message body

contains a single tid of exited task.

• PvmHostDelete - one notify message for each tid requested. The message body

contains a single pvmd tid of exited pvmd.

• PvmHostAdd - cnt notify messages are sent, one each time the local pvmd's host

table is updated. The message body contains an integer length followed by a list

of pvmd tids of new pvmds.

In response to a notify request, some number of messages are sent by PVM back to the

calling task. The messages are tagged with the user-supplied msgtag. The tids array

specifies who to monitor when using TaskExit or HostDelete. The array contains nothing

when using HostAdd. If required, the routines pvm_config and pvm_tasks can be used to

obtain task and pvmd tids.

Parameter tids is a cnt length array of task or pvmd tids. It specifies who to monitor when

using TaskExit or HostDelete. The array is not used with the PvmHostAdd option.

Specifying cnt of -1 turns on PvmHostAdd messages until a future notify, a count of zero

disables them. Other number will be the times to notify.

IfpvmjiotifyO is not successful, info will be less than zero. Info is an integer status code.

13

14

If the host on which task A is running fails, and task B has asked to be notified if task

A exits, then task B will be notified even though the exit was caused indirectly by the

host failure.

Example of pvm_notifyO [4]:

/ *

F a i l u r e n o t i f i c a t i o n e x a m p l e

D e m o n s t r a t e s how t o t e l l when a t a s k e x i t s

* /

/ * d e f i n e s a n d p r o t o t y p e s f o r t h e PVM l i b r a r y * /

i n c l u d e < p v m 3 . h>

/ * Maximum n u m b er o f c h i l d r e n t h i s p r o g r a m w i l l spaw n * /

t t d e f i n e MAXNCHILD 20

/ * Tag t o u s e f o r t h e t a s k d o n e m e s s a g e * /

t t d e f i n e TASKDIED 11

i n t m a in (i n t a r g c , c h a r * a r g v [J)

{

/ * n um b er o f t a s k s t o spaw n, u s e 3 a s t h e d e f a u l t * /

i n t n t a s k = 3;

/ * r e t u r n c o d e f r o m pvm c a l l s * /

i n t i n f o ;

14

15

/ * my t a s k i d * /

i n t m y t i d ;

/ * my p a r e n t s t a s k i d * /

i n t m y p a r e n t ;

/ * c h i l d r e n t a s k i d a r r a y * /

i n t chi ld[MAXNCHILD] ;

i n t i , d e a d t i d ;

i n t t i d ;

c h a r *a r g v [5] ;

/ * f i n d o u t my t a s k i d n um b er * /

m y t i d = p v m _ m y t i d () ;

/ * c h e c k f o r e r r o r * /

i f (m y t i d < 0) {

/ * p r i n t o u t t h e e r r o r * /

p v m _ p e r r o r (a r g v [0]) ;

/ * e x i t t h e p r o g r a m * /

r e t u r n - 1 ;

}

/ * f i n d my p a r e n t ' s t a s k i d number * /

m y p a r e n t = p v m _ p a r e n t () ;
15

/ * exit i f t h e r e is some e r r o r o t h e r t h a n Pvm NoPar ent * /

i f ((m y p a r e n t < 0) && (m y p a r e n t != P vm N o P a r e n t)) {

p v m _ p e r r o r (a r g v [0]) ;

p v m _ e x i t () ;

r e t u r n - 1 ;

}

/ * i f i d o n ' t h a v e a p a r e n t t h e n i am t h e p a r e n t * /

i f (m y p a r e n t = - P vm N oP are n t) {

/ * f i n d o u t how many t a s k s t o spawn * /

i f (a r g c == 2) n t a s k = a t o i (a r g v [1]) ;

/ * make s u r e n t a s k i s l e g a l * /

i f ((n t a s k < 1) | [(n t a s k > MAXNCHILD)) { p v m _ _ e x i t () ; r e t u r n

/ * spawn t h e c h i l d t a s k s * /

i n f o = pvm _s paw n (a r g v [0] , (c h a r * *) 0, PvmTaskDebug, (c h a r *) 0,

n t a s k , c h i l d) ;

/ * make s u r e spawn s u c c e e d e d * /

i f (i n f o != n t a s k) { p v m _ e x i t () ; r e t u r n - 1 ; }

/ * p r i n t t h e t i d s * /
16

17
f o r (i = 0; i < n t a s k ; i + +) p r i n t f (" t % x \ t " , c h i l d [i]) ;

p u t c h a r (' \ n 1) ;

/ * a s k f o r n o t i f i c a t i o n when c h i l d e x i t s * /

i n f o = p v m _ n o t i f y (P v m T a s k E x i t , TASKDIED, n t a s k , c h i l d) ;

i f (i n f o < 0) { p v m _ p e r r o r (" n o t i f y ") ; p v m _ e x i t () ; r e t u r n - 1 ; }

/ * r e a p t h e m i d d l e c h i l d * /

i n f o = p v m _ k i l l (c h i l d [n t a s k / 2]) ;

i f (i n f o < 0) { p v m _ p e r r o r (" k i l l ") ; p v m _ e x i t () ; r e t u r n - 1 ; }

/ * w a i t f o r t h e n o t i f i c a t i o n * /

i n f o = p v m _ r e c v (- l , TASKDIED);

i f (i n f o < 0) { p v m _ p e r r o r ("r e c v ") ; p v m _ e x i t () ; r e t u r n - 1 ; }

i n f o = p v m _ u p k i n t (& d e a d t i d , 1 , 1) ;

i f (i n f o < 0) p v m _ p e r r o r (" c a l l i n g p v m _ u p k i n t ") ;

/ * s h o u l d b e t h e m i d d l e c h i l d * /

p r i n t f (" T a s k t%x h a s e x i t e d . \ n " , d e a d t i d) ;

p r i n t f (" T a s k t f x i s m i d d l e c h i l d . \ n " , c h i l d [n t a s k / 2]) ;

p v m _ e x i t () ;

r e t u r n 0;

}

/ * i ’m a c h i l d * /

s l e e p (6 3) ;

p v m _ e x i t () ;

return 0;
17

18

CHAPTER 3
DESIGN AND IMPLEMENTATION OF PVM ROUTINE

In chapter 2, we briefly introduced PVM, and explained why we use PVM. In this

chapter, we will discuss how to design the parallel-distributed computation of the project

and how to implement it using PVM.

3.1 Design

As we know, the integrated data analysis can be modularized into many

subprocesses, and these subprocesses can be calculated independently of each other. In

order to do similar subprocesses, we need to design a similar application as a rapid

prototype, and implement it using PVM, as well as test if it works correctly and

efficiently.

First, an ideal prototype should be selected and designed, which should have the

following features:

1. It takes much longer time to complete the task if a single computer is used to do

the task;

2. The task can be divided into many subtasks that can be done independent from

each other, and the outcome of a subtask is not dependent on the outcomes of

others;

18

19
3. The final result of the task can be defined by these subtasks’ outcomes.

After considering carefully and testing repeatedly, I chose to compute the number of

primes within a given range, for example, calculating the number of primes from 1 to

1000000. Generally, it consumes much time to list primes for a large range. The

following code provided by Dr.Wilson in his C++ course (CS205) is used to check if a

number is a prime[9]:

#,include <iostream.h>

#include <math.h>

mainQ {

int i, div, prime, count=0;

unsigned int x = 1, num = 1;

/ / computer prime numb rs

while (num <= 10000000) {

prime = 1;

div ~ 3;

while (div <= sqrt(num)) {

i f ((num % div) == 0) {

prime = 0;

break;

}

else div += 2;

}

i f (prime == 1) {

20
cout« num « endl;

count++;

}

num += 2;

}

cout « " count = " << count « endl;

return 0;

Second, a PVM algorithm should be designed to implement how to compute the

number of primes for a natural number sequence. The sequence is divided into many

subsequences, and all subsequences have the same length. Master process spawns slave

processes on specified hosts, when one of slave processes finishes its task, which means

it finds the last prime in a subsequence, it sends message and results to master process,

then master process spawns a new process to this host. This procedure will be repeated

until all slave processes that master spawns and sends finish their tasks. In Chapter 6, a

flowchart (Figure 6.2) is shown, including load balancing and fault tolerance. Fault

tolerance and load balancing will be discussed in Chapter 5 and Chapter 6, respectively.

3.2 Implementation

For a natural number sequence, how many primes are there from 1 to 10000000? The

sequence 1 ~ 10,000,000 is divided into 10 subsequences, such as 1 ~ 1000000, 1000001
20

21
~ 2000000, 2000001 ~ 3000000, 3000001 ~ 4000000, 4000001 ~ 5000000, 50000001

~ 6000000, 6000001 ~ 7000000, 7000001 ~ 8000000, 8000001 ~ 9000000, and 9000001

~ 10000000, the total prime number is the sum of the results of the subsequences. By

using PVM, 10 slave processes need to be spawned by master process. Only four hosts

could be used on Scinet when I used it; they were p i, p5, p6, and Scinet. So, concurrently

four slave processes worked. My prime routine at beginning produced four slave

processes and sent data to p i, p5, p6, and Scinet respectively, then it used pvm_nrecv() to

wait for information from slave processes, each slave process returned its host name,

subsequence’s scope, elapsed time, and the number of primes. Once the master received

information from a host, it would spawn a new slave process and send new data to the

host. It would repeat this procedure until 10 slave processes returned their results. Figure

2.1 displays how the master-slave model works and the functions are used. The PVM

prime routine consists of pmaster.C and pslave.C. A result of running it is in Appendix

A.

pmaster.C - Master process, spawns 10 subprocesses and sends them to slave, and

receives message from slave. The following code is used in pmaster.C:

1) Spawn processes and send data to slaves

for (i = 1; i < SpawnNumber; i++) {

/ / spawn task copies

info = pvm_spawn(”pslave" (char**) 0, PvmTaskHost, myhost, 1, &tid[i]);

ifiinfo < 0) pvm_perror("After pvm spawnQ ");

/ / initialize buffer, pack, and send
21

info = pvm initsend(PvmDataRaw);

tf(inf° < Oj pvm j)err or ("After master pvm_initsendQ ");

22

number = i*NUM/Subprocess Number; / / N U M = Sequence Number

pymjaremO
pvm rccvf) '
pyffljJpK0 ,
pvmjmtsendO -

pvnrparentf)
proJecvO
pvm^upkfQ
pvm instsendi
pvm_pk*0

V —eodl'i

Master/Slave Scinet

>■ .

■■ ■■

pvm__inyndO
pvm__>pa'An()
pvm initsend()
pvm_pk*()
pvmsendO
pvm_recvO
pvm_upK"()
pvm_exit()

Slave pi Slave p5 Slave p6

Figure 2.1 A Schematic Diagram of Master-Slave Model and their PVM Functions

22

23

info = pvm_pkint(&number, 1, 1);

iffinfo < 0) pvm_perror("After master pvm_pkintQ ");

info = pvm_send(tid[i], msgtag);

iffinfo < 0) pvm_perror("After master pvm_sendQ ");

}

2) Receive results from slaves and send new tasks to slaves

11 master wait for message from a slave and send a new job

for(i = SpawnNumber; i < - NT ASKS + SpawnNumber - 1 ; i++) {

do {

info - pvm_nrecv(-l, msgtag); / / waiting and receive

if(info<0) pvm_perror("After masterpvm_nrecvQ’);

}while(info == 0);

iffinfo > 0) {

info = pvm jupkint(&slave_id, 1, 1); // slave_id - task id

i f (info < 0) pvm_perror ("After master pvm upkintO for slave Jd") ;

info = pvmjupkint(&sum, 1, 1); / / sum - the number o f primes

i f (info < 0) pvm_perror("After master pvmjupkintQ for sum");

info = pvm_upkint(&start, 1, 1); // start - the first number o f subsequence
23

iffinfo < 0) pvm_perr or ("After masterpvm_upkintQ for start");
24

info = pvm_upkint(&end, 1, 1); / / end - the last number o f subsequesnce

iffinfo < 0) pvm_perror("After master pvm_upkintQ for end");

info = pvm_upkint(&spend, 1, 1); / / spend-tim e is used

i f (info < 0) pvm_perror("After master pvm_upkintQ for spend");

info = pvm_upkstr(&myhost[0]); / / myhost - node is used

i f (info < 0) pvm _perr or ("After master pvm_upkstrQ for myhost”);

if(i > NT ASKS) continue; // receive rest tasks

else { //spawn new copy

info = pvm_spawn("ps lave", (char**) 0, PvmTaskHost, myhost, 1, &tid[I]);

iffinfo < 0) pvm_perror("Afterpvm_spawnQ ");

info = pvminitsend(PvmDataRaw);

iffinfo < 0) pvmjperr or ("After master pvmjnitsendf) ”);

number = i*NUMZSubprocess_Number;

info = pvm _pkint(&number, 1, 1);

24

iffinfo < 0) pvm_perror("After master pvm_pkintQ');
25

info = pvm_send(tid[i], msgtag);

iffinfo < 0) pvm_perr or ("After master pvm_sendQ ");

}

} //end i f

} / / end for

pslave.C - Slave process, receives message from master, finds primes and returns

results to master. Its code is as following:

/ / I'm the slave process-receive and unpack what master sent

if(myptid != PvmNoParent) {

info = pvm_recv(myptid, msgtag);

iffinfo < 0) pvm_perror ("After slave pvm recvO ");

info = pvm_upkint(&list, 1, 1); / / list equals to number

iffinfo < 0) pvm_perror("After slave pvm_upkintQ ");

/ / Pm the slave - calculate sum, then send to master

tl — time(NULL);

sum = 0;
25

p = list - Sequence Number/Subprocess_Number -1;

listl = list - Sequence_Number/Subprocess Number -1;

26

while (p <= list) {

prime = 1;

div = 3;

while (div <= sqrt(p)) {

i f ((p % div) == 0) {

prime = 0;

break;

}

else div += 2;

i
i f (prime == 1) {

sum++;

}

p += 2;

}

t2 = time (NULL) - tl;

info = pvm_initsend(PvmDataRaw);

iffinfo < 0) pvm _perr or ("After slave pvmJnitsendQ');

26

27

//pack mytid so master will know who message is from

info - pvm_pkint(&mytid, 1, 1);

if(info< 0) pvm_perror("After slave pvm_pkint() for mytid");

info = pvm _pkint(&sum, 1, 1);

if(info< 0) pvm _perror("After slave pvm_pkint() for sum");

info - pvm_pkint (delist 1, 1, 1);

/ / listl = list Sequence JNumber/Subprocess fNumber -1

if(info< 0) pvm jperr or ("After slave pvm _pkint() for lis tl");

info -pvm_pkint(&list, 1, 1); / / list = number

if(info< 0) pvm _perr or ("After slave pvm_pkintQ for list");

info = pvm_pkint(&t2, 1, 1); / / 12 is used time

if(info< 0) pvm _perr or ("After slave pvm jpkintQ for t2”);

info = pvm _pkstr(&myhost[0]);

if(info< 0) pvm _perr or ("After slave pvm jpkstrQ for myhost");

info - pvm_send(myptid, msgtag);

i f (info < 0) pvm _perr or ("After slave pvm_send()");
27

28

}

Following PVM functions are used in the PVM routine:

pvm_nrecv(int tid, int msgtag) - Checks for nonblocking message with label msgtag;

The routine pvm_nrecv checks to see whether a message wth label msgtag has arrived

from tid. If tid = -1 and msgtag is defined by the user, then pvm_nrecv will accept a

message from any process that has a matching msgtag.

pvm_upkint(int *ip, int nitem, int stride) - Unpacks the active message buffer into

arrays of integer data type;

pvm_upkstr(char *sp) - Unpacks the active message buffer into arrays of char data

type;

pvm_barrier(char * group, int count) - Blocks the calling process until all processes
in a group have called it;

and pvm_perror(char *msg) - Prints the error status of the last PVM call.

Hosts can be chosen and added and, when tasks are done, the hosts are deleted

automatically, and the routine exits PVM.

Using pvm_nrecv() function is a key part of the PVM routine. Pvm_nrecv() is little

different from pvm_recv().

28

29
The pvm_nrecv() is non-blocking in the sense that it always returns immediately

either with the message or with the information that the message has not arrived at the

local pvmd. It can be called many times to check whether a given message has arrived

yet. If the requested message has not arrived, then pvm_nrecv() immediately returns with

0.

Pvm_recv() is blocking, which means the routine waits until a message matching the

user specified tid and mesgtag values arrives at the local pvmd. If the message has

already arrived, then pvm_recv() returns immediately with the message.

The performance of both pvm_nrecv() and pvm_recv() is tested in the PVM prime
routine.

29

30

CHAPTER 4
CORRECTNESS AND EFFICIENCY OF PVM ROUTINE

In chapter 3, we designed and implemented a parallel-distributed computation using

PVM. In this chapter, we indicate how we tested the parallel-distributed computation’s

correctness and efficiency, and show results of tests and comparisons.

4.1 Tests

In order to confirm the PVM prime routine correct and efficient, we need to compare

it to a non-PVM routine that does the same task, and measure the time of running the

routines. Of course, first, we must guarantee the non-PVM routine works correctly. A

simple way is to test the non-PVM routine with a small range, for example, 1 to 20. So,

we are sure the non-PVM works very well. However, the best way is to prove its

algorithm, but it is not necessary for us to do this for the project; its algorithm has been

proven[9].

Firstly, a single computer, Scinet, was used to calculate the number of primes

between 1 and 10000000 with the non-PVM routine, it took around 1600 seconds, and

664579 primes are found. Two non-PVM routines with different algorithms returned the

number 664579. So, there are 664579 primes from 1 to 10000000.

30

31
Next, we tested the PVM prime routine with two hosts, three hosts, and four hosts

respectively. For PVM prime routine with 4 hosts, it took about 564 seconds and got the

same result - there are 664579 primes between 1 and 10000000. Also pvm_nrecv() was

compared with pvm_recv().

4.2 Results and Comparisons

The outcomes of testing with pvm_nrecv() are listed as following:

Host number Host name Time used Prime Number

1 Scinet 1564 seconds 664579

2 Scinet, p5 1127 seconds 664579

3 Scinet, p5, p6 707 seconds 664579

4 Scinet, p i, p5, p6 564 seconds 664579

The outcomes of testing with pvm_recv() are listed as following:

Host number Host name Time used Prime Number

1 Scinet 1564 seconds 664579

2 Scinet, p5 787 seconds 664579

3 Scinet, p5, p6 577 seconds 664579

4 Scinet, p i, p5, p6 465 seconds 664579

Figure 3.1 shows the relation between elapsed time and the number of processors for

the PVM routine. Obviously, the PVM prime routine works well, and is much faster than

31

32

the no PVM routine. The performance of the PVM routine is fine; if 4 processors are

used, it saves more than 1000 seconds relative to single-processor execution - about 18

1 2 3 4

Figure 3.1 A diagram of relation between
elapsed time and the number of processors

□ pvm_recv()

■ pvm_nrecv()

J Primes

1 2 3 4 5 6 7 8 9 10

Figure 3.2 The number of primes in the ten subsequences

8QQQ0 wisai
70000
60000
50000

30000
20000
10000

0

32

33
minutes, which means it saves 70.3% time. The PVM routine with pvm_nrecv() is 2.77

times faster than the non PVM routine, with pvm_recv() is 3.36 times.

The number of primes in subsequences is also listed as following:

The number of primes The range of subsequence The number of subsequence

78498 primes 1 - 1000000 1

70435 primes 1000001 - 2000000 2

67883 primes 2000001 - 3000000 3

66330 primes 3000001 -4000000 4

65367 primes 4000001 -5000000 5

64336 primes 5000001 - 6000000 6

63799 primes 6000001 - 7000000 7

63129 primes 7000001 - 8000000 8

62712 primes 8000001 - 9000000 9

62090 primes 9000001 - 10000000 10

Note 1: The performance of each node on Scinet system is not high. When Sun Solaris in

CS Department was used to check the prime code, it only took about 279 seconds to list

664579 primes.

Note 2: With the increment of the number of subsequence, the number of primes

decreases (see Figure 3.2). However, it had been proved that there are infinite primes in a

33

34

natural number sequence. The largest known prime is 26972593 - 1. It has 2098960

digits [11]-

The pvm_recv() and pvm_nrecv() work very similar, but the performance of

pvm_recv() is better than that of pvm_nrecv(). One reason may be that pvm_nrecv() is

non-blocking, it may be called a lot of times in a loop to check if a given message has

arrived; the other reason may be that their algorithms are different. Anyway, we will use

pvm_recv() instead of pvm_nrecv() in the project.

34

35

CHAPTER 5
FAULT TOLERANCE

In the previous chapters, we briefly introduced PVM, designed and implemented the

PVM routine, and verified its correctness and efficiency. In this chapter and the next

chapter, we will show how to improve its performance. Fault tolerance is an important

issue of Parallel Virtual Machine [5]. Why we need to consider fault tolerance, and how

to implement it are discussed in this chapter in detail.

5.1 Why Fault Tolerance

Generally, fault tolerance is an extensive issue; we have to deal with fault tolerance

in many applications. We need program and network to be robust. For PVM master-slave

model, fault tolerance is very important. We have to consider fault tolerance.

Since master sends tasks to slaves and receives the results from slaves, if a slave task

crashes for some reason, master could not receive its result, so, the entire task could not

be done. To make the program fault-tolerant, the master has to monitor the tasks that

exited/failed without sending the result back. The master creates some new tasks to do

the work of those tasks.

35

5.2 How to Implement
36

PVM is able to withstand host and network failures. It doesn’t automatically recover

an application after a crash, but it does provide polling and notification primitives to

allow fault-tolerant applications to be built. The virtual machine is dynamically

reconfigurable. PVM provides pvm_notify() routine to notify the caller on detecting

certain events. Here is a brief description of pvm_notify().

pvm notify - Request notification o f PVM event such as host failure.

C int info = pvm_notify(int what, int msgtag, int cnt, int *tids)

what — Type o f event to trigger the notification. Presently one of:

Value Meaning

PvmTaskExit Task exits or is killed

PvmHostDelete Host is deleted or crashes

PvmHostAdd New host is added

msgtag — Message tag to be used in notification.

cnt — For PvmTaskExit and PvmHostDelete, specifies the length o f the tids

array. For PvmHostAdd, specifies the number o f times to notify.

tids — For PvmTaskExit and PvmHostDelete, an array o f length cnt o f task or
36

37
pvmd TIDs to be notified about. The array is not used with the

PvmHostAdd option,

info — Integer status code returned by the routine. Values less than zero

indicate an error.

Since we are interested in finding out when a task fails, we call pvm_notify() after

spawning the tasks. The pvm_notify() call tells PVM to send the calling task a message

when certain tasks exit/fail.

Example Code:

for (i= 0; i < Spawn Number; i++) {

/ / spawn process on a fixed host

info = pvm spawnC'pslave", (char**) 0, PvmTaskHost, hostname [i], 1, &tid[i+l]);

iffinfo < 0) pvm_perror("After pvmjspawnQ ”);

/ / ask for notification when a task exits

iffinfo == 1) status = pvm notifyfPvmTaskExit, TASKEXIT, 1, &tid[i+l]);

i f (status < 0) {pvm _perr or ("notify'); pvm_exit();}

/ / initialize buffer, pack, and send

info = pvmjnitsendfPvmDataRaw);

iffinfo < 0) pvm jperror("After master pvm initsendQ');

37

38

number = (i+l)*NUMZSubprocess_Number;

info = pvm _pkint(&number, 1, 1);

iffinfo < 0) pvm _perror ("After master pvm _pkint() ");

info — pvm_send(tid[i+1], msgtag);

iffinfo < 0) pvm_perr or ("After master pvm_sendQ 1111");

}

Normally we could encounter two situations: one is that a task fails/exits, the other is

that a host crashes or it is deleted from a network. If a task exited before sending back the

message, we need to create another task to do the same job. If a host has been

deleted/suspended from a network, we need to check to see if the tasks running on it has

been finished. If not, we should create new slave tasks to do the work on some other

hosts.

5.3 Tests

In order to confirm the fault-tolerance of my program, the pvm_kill() was used to

kill a process and pvm_delhosts() to delete a host during the period when the program

was executing. To delete a host using pvm_delhosts() is similar to remove a node from a

network by hand. Of course, the program was also tested by unplugging hosts’ Ethernet

cards.

Here is an example of code:
38

39

/ / Spawn process on a fixed host

info = pvm_spawn(”slave",(char**)0,PvmTaskHost,hostname[i] ,1, &tid[i+l]);

iffinfo < 0) pvm_perr or (nAfter pvm_spawn()");

//A skfor notification when a task exits

iffinfo == 1) status =pvm notijy (PvmTaskExit, TASKEXIT, I, &tid[i+l]);

i f (status < 0) pvm_perror("notijy ");

//A skfor notification when a host is deleted

info = pvm_notify(PvmHostDelete, HOSTDELETE, 1, &tid[i+l]);

iffinfo < 0) pvm jperr or ("PvmHostDelete");

//Delete a host from PVM

info = pvm_delhosts(&hostname[i+J], 1, &infos[i+l]);

iffinfo /= 1) pvm_perror ("After pvm_delhosts()”);

//K ill a task

info = pvm_kill(tid[i+2]);

iffinfo < 0) pvm_perror(”kill tid[i+2],r);

After killing tasks and deleting a host, the pvm_notify() routine detected unlucky

events and notified master about the events, so the master would continue to send the
39

40
failed tasks to slaves again depending on the task IDs. We also test fault tolerance with

abort() function. The result of running the program displayed that it has the ability to

handle potential faults. Here is example:

/* 4 tasks start up and distributed across processors */

Tasks 1048578, 262149, 786434, 1310722 were sent.

Unlucky scapegoat was deleted...

Again unlucky Task 262149 is killed...

Task 262149failed and send it again! /* Since task is gone, master creates a new task */

/* Looking for a host with low load */

load average: 0 larch /* larch, and reimel... are machines’ names in CS Department*/

load average: 1.11 reimel

load average: 0 garnet

load average: 0.11 Stillwater

load average: 8.63 juno

select load average: 0 larch to send the task 262149 again ...

Task 786434failed and send it again! /* Since task is gone, master creates a new task */

/* Looking for a host with low load */

load average: 0 larch

load average: 1.11 reimel

load average: 0.02 garnet

load average: 0.12 Stillwater
40

41
load average: 8.66 juno

select load average: 0 larch to send the task 786434 again...

ninepipe is added again!!! /* Since host is deleted, master adds a new host */

My master: Received 78498primes between 1 and 1000000 from task 1048578,

it took 9 second. Its host is garnet.

/* Looking for a host with low load */

load average: 0.23 larch

load average: 1.09 reimel

load average: 0.14 garnet

load average: 0.25 Stillwater

load average: 8.72 juno

load average: 0.5 ninepipe

41

42

CHAPTER 6
LOAD BALANCING

In the last chapter, we discussed fault tolerance. In this chapter, we discuss another

important issue of PVM - Load Balancing [5], why we have to do load balancing, and

how to implement load balancing.

6.1 What is Load Balancing

To extract the maximum performance from the parallel applications, load balancing

is very important. Making sure that each host is doing its fair share of work and that all

processors are busy doing useful work most the time. There are two kinds of load

balancing - static load balancing and dynamic load balancing.

The simplest method is static load balancing. In this method, the problem is divided

up and tasks assigned to processors only once. The partitioning may occur before the job

starts, or as an early step in the application. The size and number of tasks can be varied

depending on the processing power of a given machine. On a lightly loaded network, this

scheme can be quite effective.

When computational loads vary, a more sophisticated dynamic method of load

balancing is required. It is important to keep all nodes busy all the time. This is typically

42

43

implemented as a master/slave program where the master manages a set of tasks. It

sends jobs to slaves as slaves become idle.

6.2 How to Implement

My program works with both static load balancing and dynamic balancing. Before

spawning task processes to slaves, the master does static load balancing, sorts hosts

depending on the load average on the hosts, and selects the hosts with lower load to send

tasks.

During execution, either the master receives the result of a task or the master receives

message of a task fail, then the master does dynamic load balancing, selecting the host

with the lowest load on the virtual machines to send next task.

To obtain load information on the parallel virtual machines, the master spawns slave

processes to all hosts, each slave process uses system call - system() to run uptime

command for its host and generate a file including load information, then reads the file,

extracts the load information, and sends it back to master. Dr. Borries Demeler put

forward a different way [10] to obtain load information using popen() without generating

a file and reading it.

Here is example code:

43

FILE *str;

char *test[80J;

int i = 0;

44

str = popen("/usr/bin/uptime”, ”r");

while ((fscanfrstr, ”%s”, test)) > 0) {

printf("%d: %s\n", i, test);

i++;

}

The uptime command prints the current time, the length of time the system has been

up, and the average number of jobs in the run queue over the last 1, 5 and 15 minutes. In

the program, the load average in the last 1 minute is used.

After getting uptime information, the strtok() function [7] is used to extract load

average message.

Here is example code:

char *al, *a2, *a3, buf, bufout[100], *tok;

FILE *out;

int i = 0, start;

while(Ifeof(out)) {

//get all string from a file
44

fgets(bufout, 100, out);
45

/ / strtok breaks string into “token ” by separated spaces

tok = strtok(bufout, " ");

whileftok !=NULL) {

/ / compare token with string “average: ”

if(strcmp(tok, "average:") == 0)

/ / get the position for load average information

start = i;

if(i== start + 1)

al = tok;

if(i== start + 2)

a2 = tok;

if(i== start + 3)

a3 = tok;

tok = strtok(NULL, ” ");

/++;

}

45

46

Figure 6.1 indicates the steps of load balancing. Step 1: The master spawns

processes to the slaves for obtaining load average for each node. Step 2: The master sorts

nodes depending on load average obtained in each node. Step 3: The master spawns

processes and sends data to the slaves (nodes) that have much lower load average, and

receives the information from the slaves. Step 4: Once the master receives message,

either a task is finished or a task crash, it performs Stepl and selects the lowest load

node. Step 5 The master sends either next task or failed task to the lowest load nodes.

Step4 and Step 5 are repeated until all tasks are done. Figure 6.2 is a brief flow chart of

load balancing and program. The init() is used to initialize program, read host file, and

add hosts; find_balance() is used to obtain load average for each host; collect_info()

collects load information; sort() is used to sort load average and its hostname;

spawnjob() spawns a task copy; and minload() finds the minimum load average.

The result of executing program showed both static load balancing and dynamic load

balancing work very well. Here is example:

The hosts in the virtual machine:

larch, Stillwater, juno, scapegoat, garnet, bannack,

load average: 0.5 Stillwater

load average: 0.55 larch

load average: 0.68 juno

load average: 0.59 scapegoat

46

Master Step 1

Master
Sorts
Nodes

Step 2

Step 3

w ,Master
Selects
Node

Step 4

Step 5

Master

Master

Figure 6.1 Steps of Load Balancing
47

48
load average: 1.09 garnet

load average: 0.87 bannack

After sorting:

Stillwater, larch, scapegoat, juno, bannack, garnet

Tasks 524290, 262149, 1048578, 786434 were sent.

Unlucky scapegoat was deleted...

Again unlucky Task 262149 is killed...

Task 262149failed and send it again!

load average: 0.57 larch

load average: 0.89 garnet

load average: 0.89 bannack

load average: 0.73 Stillwater

load average: 0.92 juno

select load average: 0.57 larch to send the task 262149 again ...

Task 1048578failed and send it again!

load average: 0.83 Stillwater

load average: 0.98 garnet

load average: 0.83 bannack

load average: 0.81 larch

load average: 1.13 juno

48

itsucc,

Show result

and final
solution

Spawn it again
With spawnjob()

Fiud balanceQ

Collect_info()

MinloadO

Loop
Spawbjob()

End Loop

Init()

1 r
Find_balance()

r
Collect_info()

1 r
SortQ

1 r

Collect rafo()

Spawn a new job
With spawnjobO

▼
Fma baianceQ

Minioad()

 4

Success

Figure 6.2 Flowchart of load balancing and program

49

50
During the period when I implemented load balancing, I encountered a strange

problem on Solaris, the process that subprocess performs uptime command, reads load

information, and sends back to master executes too fast to return result to master. Master

always finds tasks exiting before they return results. In order to solve the problem,

pvm_recv() is used in the subprocess to wait until master receives information, once

master receives load information, it will send acknowledgement. In this way, subprocess

exits when it knows master has received its load information.

6.3 Discuss

In fact, to do load balancing is to increase load for each host, particularly for dynamic

load balancing, you have to ask master to send subprocesses to slaves (nodes) for

obtaining load information. Therefore, it is not surprising to find that the performance

with dynamic load balancing is not higher than that without dynamic load balancing on a

lightly loaded network. The program without load balancing makes master send next task

immediately to the host which just completes its task. This procedure also performs an

acceptable load balancing on a lightly loaded homogenous network. Thus, dynamic load

balancing scheme is desirable for a heterogeneous computing environment, because all

nodes in the network do not have identical computation capacities.

50

51

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

In this project, in order to show the basic idea of a parallel-distributed computation of

master-slave model using PVM for the integrated biophysical data analysis, we designed

and implemented a parallel-distributed computation to find primes for a natural sequence

using PVM on a set of specified hosts, and confirmed that the PVM routine was both

correct and efficient. The results of tests indicated that the PVM routine is 3.36 times

faster when running on four processors than the non-PVM routine.

To make the PVM routine robust, we implemented fault tolerance; the program has

the ability to monitor all tasks, if it finds a task fails without sending its result to master,

the task will be spawned by master again. In order to extract the maximum performance,

we implemented static load balancing and dynamic load balancing, making sure all

processors are busy doing useful work most the time.

Scheduling is an important part of load balancing. If the number of nodes on a

heterogeneous network is a very large number, we need a better sorting and selecting

algorithm, such as quick sort and merge sort, otherwise, if the number of nodes is

relatively small number, the speed of a common sorting and selecting algorithm is fast

enough to do scheduling.

51

52
As a result of the project, we believe that PVM can be selected to implement

similar parallel-distributed computation. Dr. Demeler’s integrated analysis routine would

be more efficient if a similar parallel-distributed computing were done.

Two other things that may be considered to do in the future work are that: 1) If the

master pvmd dies then the entire virtual machine shuts down. Is there a way that is able to

find such an event and recover from the event? However, PVM fault detection and

recovery is built on the assumption that master must never crash. 2) If a slave host is

temporarily not connected to the network for some reason, and after a while the host is

connected to the network again, then how the task on the host is handled gracefully.

For 2), however, it is a problem that depends on how long the slave host is not

connected to the network. PVM fault detection originates in the pvmd-pvmd protocol.

When the pvmd times out while communicating with another, it calls hostfailentry(),

which scans waitlist and terminates any operations waiting on the down host. PVM

daemons communicate with each other via UDP and the PVM daemon on a machine

communicates with tasks on the same machine via TCP or via UNIX domain sockets.

The PVM daemons estimate the round trip time to the other daemons. It initially resends

packets after 3 times of the estimated round trip time has elapsed without an

acknowledgement being received. It doubles the retry wait for each additional retry, up to

18 seconds. The round trip time estimate itself is limited to 9 seconds. It will retry at least

9 times before giving up and if it doesn’t receive an acknowledgement after 3 minutes it

considers the other daemon to be unreachable and calls hostfailentry() [4], Therefore,
52

53
after 3 minutes, we have to face to the problem how to recover the daemon on a cluster

if we still need the task on the daemon. In fact, it is not a big issue for my program in the

project, because if the master knows a host dies, it will check whether the task on the host

is finished or not. If not, it will send the task to other host again, and before sending the

task it reconfigures and selects a lowest load host.

53

References
54

1. Ralston and Jennrich 1978, Dud, A Derivative-Free Algorithm for Nonlinear

Least Squares, Technometrics, Vol.20, No.l

2. Michael T. Heath, 1997, Scientific Computing - An Introductory Survey,

McGraw-Hill

3. Dr. Demeler’ proposal and his code 1999

4. A1 Geist et., 1994, PVM: Parallel Virtual Machine, A Users’ Guide and Tutorial

for Networked Parallel Computing

5. S. Petri and H. langendorfer, 1995, Laod Balancing and Fault Tolerance in

Workstation Clusters Migrating Groups of communicating Processes, Operating

Systems Review, Vol. 29, No.4

6. Larry L. Peterson and Brice S. Davie, 2000, Computer Networks, A Systems

Approach, Morgan Kaufmann

7. H.M.Deitel and P J.Deitel, 1994, How C++ to Programming, Prentice Hall

54

55
8. G.A.Geist, J. A. Kohl, P.M. Papadopoulous, 1996, PVM and MPI: A

Comparison of Features, Calculateurs Paralleles, 1996, Vol. 8, No. 2

9. Wilson, Ronald. Spring 1998, Presented in C++ course (CS205)

10. Demeler, Bories. Summer 2000, Personal correspondence

11. Hajratwala, Nayan et.al., 1999, http://www.utm.edu/research/primes/largest.html

55

http://www.utm.edu/research/primes/largest.html

56

Appendix

The result of running PVM prime routine using four hosts with pvm_recv().

scinet-inside:~$ ptest4
mytid: 262146
myptid: -23
myhost: scinet-inside.scinet.prairie.edu
Please enter hostl's name:
p5
p5 is added..
Please enter host2's name:
p6
p6 is added..
Please enter host3's name:
p 1 .scinet.prairie.edu
pl.scinet.prairie.edu is added..

My master: Received 78498 primes between 1 and 1000000 from task 524289, it took 57
second. Its host is p6

My master: Received 70435 primes between 1000001 and 2000000 from task 262147, it
took 95 second. Its host is scinet-inside.scinet.prairie.edu

My master: Received 67883 primes between 2000001 and 3000000 from task 786433, it
took 118 second. Its host is p5

My master: Received 66330 primes between 3000001 and 4000000 from task 1048577, it
took 164 second. Its host is pl.scinet.prairie.edu

My master: Received 65367 primes between 4000001 and 5000000 from task 524290, it
took 152 second. Its host is p6

My master: Received 64336 primes between 5000001 and 6000000 from task 262148, it
took 164 second. Its host is scinet-inside.scinet.prairie.edu

My master: Received 63799 primes between 6000001 and 7000000 from task 786434, it
took 177 second. Its host is p5

My master: Received 63129 primes between 7000001 and 8000000 from task 1048578, it
took 227 second. Its host is pl.scinet.prairie.edu

My master: Received 62712 primes between 8000001 and 9000000 from task 524291, it
took 197 second. Its host is p6

56

57

My master: Received 62090 primes between 9000001 and 10000000 from task 262149,it
took 206 second. Its host is scinet-inside.scinet.prairie.edu

Time elapsed = 465 seconds
Total primes = 664579

P5, p6, and pl.scinet.prairie.edu was deleted ..

mytid: 262146 exiting PVM ...

57

	Implementation of parallel-distributed computation under load balancing and fault tolerance
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.TJuJA

