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A parallel-distributed computation of master-slave model for application in biophysical 
data analysis is designed and developed using Parallel Virtual Machine (PVM) on a set of 
specified hosts in this paper. To make this PVM routine robust, fault tolerance is 
implemented; it has the ability to monitor all tasks, if it finds a task fails without sending 
its result from a slave to master, the task will be spawned by master again. In order to 
extract the maximum performance, static load balancing and dynamic load balancing are 
implemented, which makes sure all processors are busy doing useful work most the time.
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CHAPTER 1 

INTRODUCTION

In this chapter, Dr. Borries Demeler’s work is briefly explained, which is a background 

of this project. The motivation of the project and the outline of this report are described 

in detail.

1.1 Background

Dr. Borries Demeler is developing an integrated biophysical data analysis software 

package called UltraScan in the Department of Biochemistry at University of Texas 

Health Sciences Center, San Antonio. UltraScan software would be extremely valuable 

for the biophysical characterization of interacting biomolecules and the study of 

structure/function relationships to more complex biological systems. In order to develop 

the integrated biophysical data analysis. Dr. Demeler used Dosen’t Use Derivatives 

(DuD) algorithm [1] for fitting complex models and Monte Carlo method [2] to 

implement rigorous statistical error analyses.

On a single computer, it is computationally expensive to perform the integrated 

biophysical data analysis in order to be statistically meaningful with Monte Carlo 

method. However, a major advantage of the integrated data analysis is that it can easily 

be performed in parallel by modularizing the integrated data analysis into many 

subprocesses that can be calculated independently of each other. The algorithm can be
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structured such that the outcome of a subprocess is not dependent on the outcome of 

other subprocesses. So, it is possible to perform the calculation of each subprocess in 

parallel on multiple central processing units that can communicate with each other over a 

network. A control process is running on one of them, while parallelisms are computed 

on both the local and other nodes. Since some subprocess can be done earlier than others, 

in order to save time and make full use of CPUs, once the subprocess is completed in a 

processing unit, another subprocess will be sent to the processing unit, this procedure will 

be repeated until all subprocesses are finished.

The algorithm is optimized for maximal usage of all CPUs. Therefore, it is a natural 

and logical choice to distribute the integrated data analysis over multiple processors. The 

computing efficiency of the networked cluster can be further improved by manually 

adjusting the number of nodes and the type of simulations run on each node, depending 

on their complexity and the particular node’s computing power. Without parallel- 

distributed computation, the integrated biophysical data analysis cannot be completed in a 

reasonable amount of time

1.2 Motivation

The parallel-distributed computation in Dr. Demeler’s software package is an 

important part, which makes the integrated analysis be done in an acceptable time [3]. 

The goal of this project is to prototype a parallel-distributed computation method for

implementation in Dr. Demeler’s code using Parallel Virtual Machine (PVM) [4], which
2



3

would display the basic idea that Dr. Demeler will use in his data analysis routine, 

confirm the correctness and the efficiency of the parallel-distributed computation 

compared with a single processor to perform the calculation, and improve its 

performance on both fault tolerance and load balancing [5]. This work will be valuable 

towards implementing the parallel-distributed computation for Dr. Demeler’s integrated 

data analysis routine.

PVM has many advantages, such as portability, scalable parallelism, and robust fault 

tolerance, it has been available for several years and became a de facto standard. Message 

Passing Interface (MPI) is another method for parallel computing, primarily concerned 

with messaging [8]. Because these subprocesses mentioned above are independent, we do 

not need to exchange information among them, PVM is selected to implement the 

parallel-distributed computation on the Scinet, which is a intra network with 4 Linux 

PCs, and Solaris workstations in the Department of Computer Science at the University 

of Montana, as well as on the intra network (22 processors) of Biochemistry Department 

at University of Texas Health Sciences Center, San Antonio.

In the following chapters, Chapter 2 will give a brief introduction to PVM, which 

includes what PVM is, why use PVM, how PVM works, and PVM libraries. Chapter 3 

will describe how to design and implement the parallel-distributed computation on a set 

of specified nodes in the project. Chapter 4 will show how to verify correctness and 

efficiency of the PVM routine, and results of tests and analyses. Chapter 5 and Chapter 6

3
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will discuss how to improve the PVM routine performance - fault tolerance and load 

balancing. Finally, conclusions and future work are indicated in Chapter 7.

4
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CHAPTER 2 
A BRIEF INTRODUCTION TO PVM

In the last chapter, we described why we did the project and its goal, and why we selected 

Parallel Virtual Machine. In this chapter, Parallel Virtual Machine is briefly introduced, 

including what is PVM, why use PVM, how PVM works, and PVM libraries.

2.1 W hat Is PVM

PVM stands for Parallel Virtual Machine. It is an open source software tool that 

enables execution of parallel applications across multiple nodes on a network. With this 

software a user can turn a loose group of machines into a parallel computer. PVM runs on 

most Linux/Unix machines, and on any network that supports the TCP/IP protocol. PVM 

can be started from any one machine. If the user supplies a host file with a list of machine 

names, those machines will be added to the PVM configuration at startup. A virtual 

console can be brought up on any host in the configuration to monitor the status of PVM. 

The user can issue commands from the console to add or delete hosts from the PVM, and 

to list active jobs.

PVM has a simple message-passing interface for exchanging data between different 

tasks for parallel applications. Each task is identified by a unique task ID. The ID of the 

sender and intended recipient are encoded in the message header, and the message is 

routed to the appropriate task by the PVM daemons on the source and destination hosts.

5



2.2 Why PVM
6

PVM is a handy, low-cost tool for parallel computing and is also supported on 

massively parallel computers. It can not only turn a loosely scattered, under-utilized set 

of Unix workstations into a powerful parallel computer, but can also be used to build a 

supercomputer from scratch with off-the-shelf processors.

Its portability is the key advantage of PVM. A program written in PVM can run on 

almost any hardware in use today, from PCs to supercomputers. This removes the 

hardware dependency from the application and reduces the cost for development and 

future upgrades. An application can also be developed on a desktop system and then 

moved to a supercomputer for production runs.

PVM has a small set of functions that are intuitive and easy to use. It has been 

available for several years and gained wide acceptance among technical users, and 

became a de facto standard.

2.3 How PVM Works

PVM consists of two main components -  a daemon and library interface routines. A 

daemon is started on every host in the Virtual Machine. Users' programs need to be 

linked with the PVM library at compile time. There are three ways to start a new PVM

6
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task: run it like any other Unix process; spawn it from the console; spawn it from 

another PVM task.

Normally the daemon forks and execs a new process. The process then enrolls in 

PVM and gets an ID from the daemon. A TCP socket connection [6] is established 

between the task and the daemon. The new task can query the daemon for information on 

other tasks and the configuration of the Virtual Machine.

When a task sends a message to another task, the message is usually routed by the 

local daemon. The daemon decodes the message header and forwards the message to the 

destination host. The daemon on that host then passes the message along to the intended 

recipient.

The programming model of PVM is quite simple. A unique ID identifies each task. 

From the programmer's point of view, it really doesn't matter where the task is running. 

The PVM console gives the user a global view of the Virtual Machine, commands can be 

issued there to query the status of any task or to send a signal to a particular task.

2.4 PVM Libraries

There are three PVM libraries: 1) libpvm3.a - Library of C language interface 

routines. 2) libfpvm3.a - additionally required for Fortran codes. 3) libgpvm3.a - required 

for use with dynamic groups.

7
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The libraries contain simple subroutine calls that the application programmer may 

embed in concurrent or parallel application code, and provide ability to 1) initiate and 

terminate processes, 2) pack, send, receive and broadcast messages, 3) synchronize via 

barriers, 4) query and dynamically change configuration of the parallel virtual machine. 

Library routines do not directly communicate with other processes. Instead, they send 

commands to the local daemon and receive status information back. [Note that some 

PVM implementations actually allow tasks to communicate directly with each other, 

through “channels”. By bypassing the daemons in this manner, there is less overhead.] 

We will briefly talk about some important interface routines in libpvm3.a, which include 

process control routines, information routines, dynamic configuration routines, signaling 

routines, and message passing routines. Most of them are used in the project.

2.4.1 Process Control

Process control routines are used to control processes, such as killing processes, and 

spawning processes.

int tid  = pvm_mytid(void)

• pvm_mytid() returns the t i d  of this process and can be called many times. It 

enrolls this process into PVM if this is the first PVM call.

int info -  pvm_exit(void)
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• pvm_exit() tells the local pvmd that this process is leaving PVM. This routine 

does not kill the process, which can continue to perform tasks just like any other 

UNIX process. Users typically call pvm_exit() right before exiting their C 

programs.

int numt =  pvm_spawn(char *task, char **argv, int flag, char *where, int ntask, int 

*tids)

• pvm_spawn() starts up ntask copies of an executable file task on the virtual 

machine, argv is a pointer to an array of arguments to task with the end of the 

array specified by NULL. If task takes no arguments, then argv is NULL. The 

flag argument is used to specify options, such as PvmTaskDefault and 

PVMTaskHost. In this project, PvmTaskHost is used. On return, numt is set to the 

number of tasks successfully spawned or an error code if no tasks could be 

started.

int info =  pvm_kill(int tid)

• pvm_kill() kills some other PVM task identified by t i d . This routine is not 

designed to kill the calling task, which should be accomplished by calling 

pvm_exit() followed by exit().

2.4.2 Information

9
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Information routines provide message about the virtual machine and the PVM tasks 

running on the virtual machine.

int tid -  pvm_parent(void)

• pvm_parent() returns the t i d  of the process that spawned this task or the value of 

PvmNoParent if not created by pvm_spawn().

int info = pvm_config(int *nhost, int *narch, structpvmhostinfo **hostp)

• pvm_config() returns information about the virtual machine including the number 

of hosts, nhost, and the number of different data formats, narch. hostp is a 

pointer to a user declaried array of pvmhostinfo structures. The array should be 

of size at least nhost. On return, each pvmhostinfo structure contains the pvmd 

TID, host name, name of the architecture, and relative CPU speed for that host in 

the configuration. To do load balancing, we need to know how many hosts are 

used in a virtual machine, so pvm_config() is used to return the number of hosts.

2.4.3 Message Passing

Message passing routines are used to initialize a send buffer, pack a message into a 

buffer, send, receive and unpack the message. Sending a message consists of three steps 

in PVM.

10
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First, a send buffer must be initialized by a call to pvm_initsend() or pvm_mkbuf(). 

Second, the message must be “packed” into this buffer using any number and 

combination of pvm_pk*() routines.

Third, the completed message is sent to another process by calling the pvm_send() 

routine or multicast with the pvm_mcast() routine.

A message is received by calling either a blocking or nonblocking receive routine and 

then “unpacking” each of the packed items from the receive buffer. The receive routines 

can be set to accept any message, or any message from a specified source, or any 

message with a specified message tag, or only messages with a given message tag from a 

given source There is also a probe function that returns whether a message has arrived, 

but does not actually receive it.

If required, other receive contexts can be handled by PVM 3. The routine pvm_recvf() 

allows users to define their own receive contexts that will be used by the subsequent 

PVM receive routines. The pvm_recv() is blocking, which means the routine waits until a 

message matching the user specified tid and mesgtag values arrives at the local pvmd. If 

the message has already arrived, then pvm_recv() returns immediately with the message.

2.4.4 Dynamic Configuration 

We can use dynamic configuration routines to add or delete hosts in the virtual machine.

11
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int info =  pvm_addhosts(char **hosts, int nhost, int Hnfos) 

int info =  pvmjdelhosts(char **hosta, int nhost, int Hnfos)

• The routines add or delete a set of hosts in the virtual machine. The info is 

returned as the number of hosts successfully added. The argument infos is an 

array of length nhost that contains the status code for each individual host being 

added or deleted. This allows the user to check whether only one of a set of hosts 

caused a problem rather than trying to add or delete the entire set of hosts again.

• These routines are sometimes used to set up a virtual machine, but more often 

they are used to increase the flexibility and fault tolerance of a large application. 

These routines allow an application to increase the available computing power 

(adding hosts) if it determines the problem is getting harder to solve. Another use 

would be to increase the fault tolerance of an application by having it detect the 

failure of a host and adding in a replacement host.

2.4.5 Signaling

Signaling routines can provide information about events, such as if a task exits, if a host 

is deleted, and if a host is added.

int info =  pvm_notify(int what, int msgtag, int cnt, int tids)

• pvm_noti f y requests PVM to notify the caller on detecting certain events.

12
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The present options are as follows:

• PvmTaskExit - one notify message for each tid requested. The message body 

contains a single tid of exited task.

• PvmHostDelete - one notify message for each tid requested. The message body 

contains a single pvmd tid of exited pvmd.

• PvmHostAdd - cnt notify messages are sent, one each time the local pvmd's host 

table is updated. The message body contains an integer length followed by a list 

of pvmd tids of new pvmds.

In response to a notify request, some number of messages are sent by PVM back to the 

calling task. The messages are tagged with the user-supplied msgtag. The tids array 

specifies who to monitor when using TaskExit or HostDelete. The array contains nothing 

when using HostAdd. If required, the routines pvm_config and pvm_tasks can be used to 

obtain task and pvmd tids.

Parameter tids is a cnt length array of task or pvmd tids. It specifies who to monitor when 

using TaskExit or HostDelete. The array is not used with the PvmHostAdd option. 

Specifying cnt of -1 turns on PvmHostAdd messages until a future notify, a count of zero 

disables them. Other number will be the times to notify.

IfpvmjiotifyO  is not successful, info will be less than zero. Info is an integer status code.

13
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If the host on which task A is running fails, and task B has asked to be notified if task 

A exits, then task B will be notified even though the exit was caused indirectly by the 

host failure.

Example of pvm_notifyO [4]:

/ *

F a i l u r e  n o t i f i c a t i o n  e x a m p l e  

D e m o n s t r a t e s  how t o  t e l l  when a t a s k  e x i t s

* /

/ *  d e f i n e s  a n d  p r o t o t y p e s  f o r  t h e  PVM l i b r a r y  * /

# i n c l u d e  < p v m 3 . h>

/ *  Maximum n u m b er  o f  c h i l d r e n  t h i s  p r o g r a m  w i l l  spaw n * /  

t t d e f i n e  MAXNCHILD 20

/ *  Tag t o  u s e  f o r  t h e  t a s k  d o n e  m e s s a g e  * /  

t t d e f i n e  TASKDIED 11

i n t  m a in  ( i n t  a r g c ,  c h a r *  a r g v [ J )

{

/ *  n um b er  o f  t a s k s  t o  spaw n,  u s e  3 a s  t h e  d e f a u l t  * /  

i n t  n t a s k  = 3;

/ *  r e t u r n  c o d e  f r o m  pvm c a l l s  * /  

i n t  i n f o ;

14
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/ *  my t a s k  i d  * /  

i n t  m y t i d ;

/ *  my p a r e n t s  t a s k  i d  * /  

i n t  m y p a r e n t ;

/ *  c h i l d r e n  t a s k  i d  a r r a y  * /

i n t  chi ld[MAXNCHILD] ;

i n t  i ,  d e a d t i d ;

i n t  t i d ;

c h a r  *a r g v [5]  ;

/ *  f i n d  o u t  my t a s k  i d  n um b er  * /  

m y t i d  = p v m _ m y t i d ( )  ;

/ *  c h e c k  f o r  e r r o r  * /  

i f  ( m y t i d  < 0) {

/ *  p r i n t  o u t  t h e  e r r o r  * /  

p v m _ p e r r o r (a r g v [0]  ) ;

/ *  e x i t  t h e  p r o g r a m  * /  

r e t u r n  - 1 ;

}

/ *  f i n d  my p a r e n t ' s  t a s k  i d  number * /  

m y p a r e n t  = p v m _ p a r e n t  () ;
15



/ *  exit i f  t h e r e  is some e r r o r  o t h e r  t h a n  Pvm NoPar ent  * /  

i f  ( ( m y p a r e n t  < 0) && ( m y p a r e n t  != P vm N o P a r e n t ) )  {  

p v m _ p e r r o r (a r g v [0]  ) ; 

p v m _ e x i  t  () ; 

r e t u r n  - 1 ;

}

/ *  i f  i  d o n ' t  h a v e  a p a r e n t  t h e n  i  am t h e  p a r e n t  * /  

i f  ( m y p a r e n t  = -  P vm N oP are n t ) {

/ *  f i n d  o u t  how many  t a s k s  t o  spawn * /  

i f  ( a r g c  == 2) n t a s k  = a t o i  ( a r g v [ 1 ] ) ;

/ *  make s u r e  n t a s k  i s  l e g a l  * /

i f  ( ( n t a s k  < 1) | [ ( n t a s k  > MAXNCHILD)) {  p v m _ _ e x i t ( ) ;  r e t u r n

/ *  spawn t h e  c h i l d  t a s k s  * /

i n f o  = pvm _s paw n (a r g v [ 0 ] ,  ( c h a r * * ) 0,  PvmTaskDebug,  ( c h a r * )  0,  

n t a s k ,  c h i l d ) ;

/ *  make s u r e  spawn s u c c e e d e d  * /

i f  ( i n f o  != n t a s k )  {  p v m _ e x i t ( ) ;  r e t u r n  - 1 ;  }

/ *  p r i n t  t h e  t i d s  * /
16
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f o r  ( i  = 0; i  < n t a s k ;  i + + )  p r i n t f ( " t % x \ t " , c h i l d  [ i ] ) ;  

p u t c h a r ( ' \ n 1) ;

/ *  a s k  f o r  n o t i f i c a t i o n  when c h i l d  e x i t s  * /

i n f o  = p v m _ n o t i f y ( P v m T a s k E x i t , TASKDIED, n t a s k ,  c h i l d ) ;

i f  ( i n f o  < 0) {  p v m _ p e r r o r  ( " n o t i f y " ) ; p v m _ e x i t ( ) ;  r e t u r n  - 1 ;  }

/ *  r e a p  t h e  m i d d l e  c h i l d  * /  

i n f o  = p v m _ k i l l  ( c h i l d [ n t a s k / 2 ] ) ;

i f  ( i n f o  < 0) {  p v m _ p e r r o r  ( " k i l l " ) ;  p v m _ e x i t ( ) ;  r e t u r n  - 1 ;  }

/ *  w a i t  f o r  t h e  n o t i f i c a t i o n  * /  

i n f o  = p v m _ r e c v ( - l ,  TASKDIED);

i f  ( i n f o  < 0) {  p v m _ p e r r o r ("r e c v " ) ; p v m _ e x i t ( ) ;  r e t u r n  - 1 ;  }

i n f o  = p v m _ u p k i n t  ( & d e a d t i d ,  1 ,  1 ) ;

i f  ( i n f o  < 0) p v m _ p e r r o r  ( " c a l l i n g  p v m _ u p k i n t " ) ;

/ *  s h o u l d  b e  t h e  m i d d l e  c h i l d  * /

p r i n t f ( " T a s k  t%x h a s  e x i t e d . \ n " ,  d e a d t i d ) ;

p r i n t f ( " T a s k  t f x  i s  m i d d l e  c h i l d . \ n " ,  c h i l d [ n t a s k / 2 ] ) ;

p v m _ e x i  t  () ;

r e t u r n  0;

}

/ *  i ’m a c h i l d  * /  

s l e e p  ( 6 3 ) ;  

p v m _ e x i  t  () ; 

return 0;
17
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CHAPTER 3 
DESIGN AND IMPLEMENTATION OF PVM ROUTINE

In chapter 2, we briefly introduced PVM, and explained why we use PVM. In this 

chapter, we will discuss how to design the parallel-distributed computation of the project 

and how to implement it using PVM.

3.1 Design

As we know, the integrated data analysis can be modularized into many 

subprocesses, and these subprocesses can be calculated independently of each other. In 

order to do similar subprocesses, we need to design a similar application as a rapid 

prototype, and implement it using PVM, as well as test if it works correctly and 

efficiently.

First, an ideal prototype should be selected and designed, which should have the 

following features:

1. It takes much longer time to complete the task if a single computer is used to do 

the task;

2. The task can be divided into many subtasks that can be done independent from 

each other, and the outcome of a subtask is not dependent on the outcomes of 

others;

18
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3. The final result of the task can be defined by these subtasks’ outcomes.

After considering carefully and testing repeatedly, I chose to compute the number of 

primes within a given range, for example, calculating the number of primes from 1 to 

1000000. Generally, it consumes much time to list primes for a large range. The 

following code provided by Dr.Wilson in his C++ course (CS205) is used to check if a 

number is a prime[9]:

#,include <iostream.h>

#include <math.h> 

mainQ {

int i, div, prime, count=0; 

unsigned int x = 1, num = 1;

/ /  computer prime numb rs 

while (num <= 10000000) { 

prime = 1; 

div ~ 3;

while (div <= sqrt(num)) { 

i f  ((num % div) == 0) { 

prime = 0; 

break;

}

else div += 2;

}

i f  (prime == 1) {
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cout«  num «  endl; 

count++;

}

num += 2;

}

cout « "  count = " << count «  endl; 

return 0;

Second, a PVM algorithm should be designed to implement how to compute the 

number of primes for a natural number sequence. The sequence is divided into many 

subsequences, and all subsequences have the same length. Master process spawns slave 

processes on specified hosts, when one of slave processes finishes its task, which means 

it finds the last prime in a subsequence, it sends message and results to master process, 

then master process spawns a new process to this host. This procedure will be repeated 

until all slave processes that master spawns and sends finish their tasks. In Chapter 6, a 

flowchart (Figure 6.2) is shown, including load balancing and fault tolerance. Fault 

tolerance and load balancing will be discussed in Chapter 5 and Chapter 6, respectively.

3.2 Implementation

For a natural number sequence, how many primes are there from 1 to 10000000? The

sequence 1 ~ 10,000,000 is divided into 10 subsequences, such as 1 ~ 1000000, 1000001
20
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~ 2000000, 2000001 ~ 3000000, 3000001 ~ 4000000, 4000001 ~ 5000000, 50000001 

~ 6000000, 6000001 ~ 7000000, 7000001 ~ 8000000, 8000001 ~ 9000000, and 9000001 

~ 10000000, the total prime number is the sum of the results of the subsequences. By 

using PVM, 10 slave processes need to be spawned by master process. Only four hosts 

could be used on Scinet when I used it; they were p i, p5, p6, and Scinet. So, concurrently 

four slave processes worked. My prime routine at beginning produced four slave 

processes and sent data to p i, p5, p6, and Scinet respectively, then it used pvm_nrecv() to 

wait for information from slave processes, each slave process returned its host name, 

subsequence’s scope, elapsed time, and the number of primes. Once the master received 

information from a host, it would spawn a new slave process and send new data to the 

host. It would repeat this procedure until 10 slave processes returned their results. Figure

2.1 displays how the master-slave model works and the functions are used. The PVM 

prime routine consists of pmaster.C and pslave.C. A result of running it is in Appendix 

A.

pmaster.C -  Master process, spawns 10 subprocesses and sends them to slave, and 

receives message from slave. The following code is used in pmaster.C:

1) Spawn processes and send data to slaves 

for (i = 1; i < SpawnNumber; i++) {

/ /  spawn task copies

info = pvm_spawn(”pslave" (char**) 0, PvmTaskHost, myhost, 1, &tid[i]);

ifiinfo < 0) pvm_perror("After pvm spawnQ ");

/ /  initialize buffer, pack, and send
21



info = pvm initsend(PvmDataRaw);

tf(inf° < Oj pvm j)err or ("After master pvm_initsendQ ");

22

number =  i*NUM/Subprocess Number; / / N U M  =  Sequence Number

pymjaremO 
pvm rccvf) ' 
pyffljJpK0 , 
pvmjmtsendO -

pvnrparentf)
proJecvO
pvm^upkfQ
pvm instsendi
pvm_pk*0 

V —eodl'i

Master/Slave Scinet

>■ .

■■ ■■ 

pvm__inyndO
pvm__>pa'An()
pvm initsend()
pvm_pk*()
pvmsendO
pvm_recvO
pvm_upK"()
pvm_exit()

Slave pi Slave p5 Slave p6

Figure 2.1 A Schematic Diagram of Master-Slave Model and their PVM Functions
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info = pvm_pkint(&number, 1, 1);

iffinfo < 0) pvm_perror("After master pvm_pkintQ ");

info = pvm_send(tid[i], msgtag);

iffinfo < 0) pvm_perror("After master pvm_sendQ ");

}

2) Receive results from slaves and send new tasks to slaves 

11 master wait for message from a slave and send a new job 

for(i = SpawnNumber; i < - NT ASKS + SpawnNumber - 1 ;  i++) {

do {

info -  pvm_nrecv(-l, msgtag); / /  waiting and receive 

if(info<0) pvm_perror("After masterpvm_nrecvQ’);

}while(info == 0);

iffinfo > 0) {

info = pvm jupkint(&slave_id, 1, 1); //  slave_id -  task id

i f  (info < 0) pvm_perror ("After master pvm upkintO for slave Jd") ;

info = pvmjupkint(&sum, 1, 1); / / sum -  the number o f primes 

i f  (info < 0) pvm_perror("After master pvmjupkintQ for sum");

info = pvm_upkint(&start, 1, 1); //  start -  the first number o f subsequence
23



iffinfo < 0) pvm_perr or ("After masterpvm_upkintQ for start");
24

info = pvm_upkint(&end, 1, 1); / /  end -  the last number o f subsequesnce 

iffinfo < 0) pvm_perror("After master pvm_upkintQ for end");

info = pvm_upkint(&spend, 1, 1); / /  spend-tim e is used

i f  (info < 0) pvm_perror("After master pvm_upkintQ for spend");

info = pvm_upkstr(&myhost[0]); / /  myhost -  node is used 

i f  (info < 0) pvm _perr or ("After master pvm_upkstrQ for myhost”);

if(i > NT ASKS) continue; //  receive rest tasks 

else { //spawn new copy

info = pvm_spawn("ps lave", (char**) 0, PvmTaskHost, myhost, 1, &tid[I]); 

iffinfo < 0) pvm_perror("Afterpvm_spawnQ ");

info = pvminitsend(PvmDataRaw);

iffinfo < 0) pvmjperr or ("After master pvmjnitsendf) ”);

number = i*NUMZSubprocess_Number; 

info = pvm _pkint(&number, 1, 1);

24



iffinfo < 0) pvm_perror("After master pvm_pkintQ');
25

info = pvm_send(tid[i], msgtag);

iffinfo < 0) pvm_perr or ("After master pvm_sendQ ");

}

} //end  i f  

} / /  end for

pslave.C -  Slave process, receives message from master, finds primes and returns 

results to master. Its code is as following:

/ /  I'm the slave process-receive and unpack what master sent 

if(myptid != PvmNoParent) {

info = pvm_recv(myptid, msgtag);

iffinfo < 0) pvm_perror ("After slave pvm recvO ");

info = pvm_upkint(&list, 1, 1); / /  list equals to number 

iffinfo < 0) pvm_perror("After slave pvm_upkintQ ");

/ /  Pm the slave - calculate sum, then send to master 

tl — time(NULL); 

sum = 0;
25



p  = list -  Sequence Number/Subprocess_Number -1; 

listl = list -  Sequence_Number/Subprocess Number -1;

26

while (p <= list) { 

prime = 1; 

div = 3;

while (div <= sqrt(p)) { 

i f  ((p % div) == 0) { 

prime = 0; 

break;

}

else div += 2;

i
i f  (prime == 1) { 

sum++;

}

p  += 2;

}

t2 = time (NULL) - tl;

info = pvm_initsend(PvmDataRaw);

iffinfo < 0) pvm _perr or ("After slave pvmJnitsendQ');
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//pack mytid so master will know who message is from  

info -  pvm_pkint(&mytid, 1, 1);

if(info< 0) pvm_perror("After slave pvm_pkint() for mytid"); 

info = pvm _pkint(&sum, 1, 1);

if(info< 0) pvm _perror("After slave pvm_pkint() for sum"); 

info -  pvm_pkint (delist 1, 1, 1);

/ /  listl = list Sequence JNumber/Subprocess fNumber -1 

if(info< 0) pvm jperr or ("After slave pvm _pkint() for lis tl");

info -pvm_pkint(&list, 1, 1); / /  list = number 

if(info< 0) pvm _perr or ("After slave pvm_pkintQ for list");

info = pvm_pkint(&t2, 1, 1); / / 12 is used time 

if(info< 0) pvm _perr or ("After slave pvm jpkintQ for t2”);

info = pvm _pkstr(&myhost[0]);

if(info< 0) pvm _perr or ("After slave pvm jpkstrQ for myhost");

info -  pvm_send(myptid, msgtag);

i f  (info < 0) pvm _perr or ("After slave pvm_send()");
27
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}

Following PVM functions are used in the PVM routine:

pvm_nrecv(int tid, int msgtag) -  Checks for nonblocking message with label msgtag; 

The routine pvm_nrecv checks to see whether a message wth label msgtag has arrived 

from tid. If tid = -1 and msgtag is defined by the user, then pvm_nrecv will accept a 

message from any process that has a matching msgtag.

pvm_upkint(int *ip, int nitem, int stride) -  Unpacks the active message buffer into 

arrays of integer data type;

pvm_upkstr(char *sp) - Unpacks the active message buffer into arrays of char data 

type;

pvm_barrier(char * group, int count) -  Blocks the calling process until all processes 
in a group have called it;

and pvm_perror(char *msg) -  Prints the error status of the last PVM call.

Hosts can be chosen and added and, when tasks are done, the hosts are deleted 

automatically, and the routine exits PVM.

Using pvm_nrecv() function is a key part of the PVM routine. Pvm_nrecv() is little 

different from pvm_recv().
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The pvm_nrecv() is non-blocking in the sense that it always returns immediately 

either with the message or with the information that the message has not arrived at the 

local pvmd. It can be called many times to check whether a given message has arrived 

yet. If the requested message has not arrived, then pvm_nrecv() immediately returns with 

0.

Pvm_recv() is blocking, which means the routine waits until a message matching the 

user specified tid and mesgtag values arrives at the local pvmd. If the message has 

already arrived, then pvm_recv() returns immediately with the message.

The performance of both pvm_nrecv() and pvm_recv() is tested in the PVM prime 
routine.
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CHAPTER 4 
CORRECTNESS AND EFFICIENCY OF PVM ROUTINE

In chapter 3, we designed and implemented a parallel-distributed computation using 

PVM. In this chapter, we indicate how we tested the parallel-distributed computation’s 

correctness and efficiency, and show results of tests and comparisons.

4.1 Tests

In order to confirm the PVM prime routine correct and efficient, we need to compare 

it to a non-PVM routine that does the same task, and measure the time of running the 

routines. Of course, first, we must guarantee the non-PVM routine works correctly. A 

simple way is to test the non-PVM routine with a small range, for example, 1 to 20. So, 

we are sure the non-PVM works very well. However, the best way is to prove its 

algorithm, but it is not necessary for us to do this for the project; its algorithm has been 

proven[9].

Firstly, a single computer, Scinet, was used to calculate the number of primes 

between 1 and 10000000 with the non-PVM routine, it took around 1600 seconds, and 

664579 primes are found. Two non-PVM routines with different algorithms returned the 

number 664579. So, there are 664579 primes from 1 to 10000000.
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Next, we tested the PVM prime routine with two hosts, three hosts, and four hosts 

respectively. For PVM prime routine with 4 hosts, it took about 564 seconds and got the 

same result -  there are 664579 primes between 1 and 10000000. Also pvm_nrecv() was 

compared with pvm_recv().

4.2 Results and Comparisons

The outcomes of testing with pvm_nrecv() are listed as following:

Host number Host name Time used Prime Number

1 Scinet 1564 seconds 664579

2 Scinet, p5 1127 seconds 664579

3 Scinet, p5, p6 707 seconds 664579

4 Scinet, p i, p5, p6 564 seconds 664579

The outcomes of testing with pvm_recv() are listed as following:

Host number Host name Time used Prime Number

1 Scinet 1564 seconds 664579

2 Scinet, p5 787 seconds 664579

3 Scinet, p5, p6 577 seconds 664579

4 Scinet, p i, p5, p6 465 seconds 664579

Figure 3.1 shows the relation between elapsed time and the number of processors for 

the PVM routine. Obviously, the PVM prime routine works well, and is much faster than
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the no PVM routine. The performance of the PVM routine is fine; if 4 processors are 

used, it saves more than 1000 seconds relative to single-processor execution -  about 18

1 2  3 4

Figure 3.1 A diagram of relation between 
elapsed time and the number of processors

□  pvm_recv() 

■  pvm_nrecv()

J Primes

1 2 3 4 5 6 7 8 9  10

Figure 3.2 The number of primes in the ten subsequences

8QQQ0 wisai
70000
60000
50000

30000
20000
10000

0
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minutes, which means it saves 70.3% time. The PVM routine with pvm_nrecv() is 2.77 

times faster than the non PVM routine, with pvm_recv() is 3.36 times.

The number of primes in subsequences is also listed as following:

The number of primes The range of subsequence The number of subsequence

78498 primes 1 - 1000000 1

70435 primes 1000001 - 2000000 2

67883 primes 2000001 - 3000000 3

66330 primes 3000001 -4000000 4

65367 primes 4000001 -5000000 5

64336 primes 5000001 - 6000000 6

63799 primes 6000001 - 7000000 7

63129 primes 7000001 - 8000000 8

62712 primes 8000001 - 9000000 9

62090 primes 9000001 - 10000000 10

Note 1: The performance of each node on Scinet system is not high. When Sun Solaris in 

CS Department was used to check the prime code, it only took about 279 seconds to list 

664579 primes.

Note 2: With the increment of the number of subsequence, the number of primes

decreases (see Figure 3.2). However, it had been proved that there are infinite primes in a
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natural number sequence. The largest known prime is 26972593 -  1. It has 2098960 

digits [11]-

The pvm_recv() and pvm_nrecv() work very similar, but the performance of 

pvm_recv() is better than that of pvm_nrecv(). One reason may be that pvm_nrecv() is 

non-blocking, it may be called a lot of times in a loop to check if a given message has 

arrived; the other reason may be that their algorithms are different. Anyway, we will use 

pvm_recv() instead of pvm_nrecv() in the project.
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CHAPTER 5 
FAULT TOLERANCE

In the previous chapters, we briefly introduced PVM, designed and implemented the 

PVM routine, and verified its correctness and efficiency. In this chapter and the next 

chapter, we will show how to improve its performance. Fault tolerance is an important 

issue of Parallel Virtual Machine [5]. Why we need to consider fault tolerance, and how 

to implement it are discussed in this chapter in detail.

5.1 Why Fault Tolerance

Generally, fault tolerance is an extensive issue; we have to deal with fault tolerance 

in many applications. We need program and network to be robust. For PVM master-slave 

model, fault tolerance is very important. We have to consider fault tolerance.

Since master sends tasks to slaves and receives the results from slaves, if a slave task 

crashes for some reason, master could not receive its result, so, the entire task could not 

be done. To make the program fault-tolerant, the master has to monitor the tasks that 

exited/failed without sending the result back. The master creates some new tasks to do 

the work of those tasks.
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5.2 How to Implement
36

PVM is able to withstand host and network failures. It doesn’t automatically recover 

an application after a crash, but it does provide polling and notification primitives to

allow fault-tolerant applications to be built. The virtual machine is dynamically

reconfigurable. PVM provides pvm_notify() routine to notify the caller on detecting 

certain events. Here is a brief description of pvm_notify().

pvm notify - Request notification o f  PVM event such as host failure.

C int info = pvm_notify( int what, int msgtag, int cnt, int *tids)

what — Type o f event to trigger the notification. Presently one of:

Value Meaning

PvmTaskExit Task exits or is killed 

PvmHostDelete Host is deleted or crashes 

PvmHostAdd New host is added

msgtag — Message tag to be used in notification.

cnt — For PvmTaskExit and PvmHostDelete, specifies the length o f the tids 

array. For PvmHostAdd, specifies the number o f times to notify.

tids — For PvmTaskExit and PvmHostDelete, an array o f  length cnt o f  task or
36
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pvmd TIDs to be notified about. The array is not used with the 

PvmHostAdd option, 

info — Integer status code returned by the routine. Values less than zero 

indicate an error.

Since we are interested in finding out when a task fails, we call pvm_notify() after 

spawning the tasks. The pvm_notify() call tells PVM to send the calling task a message 

when certain tasks exit/fail.

Example Code:

for (i= 0; i < Spawn Number; i++) {

/ /  spawn process on a fixed host

info = pvm spawnC'pslave", (char**) 0, PvmTaskHost, hostname [i], 1, &tid[i+l]); 

iffinfo < 0) pvm_perror("After pvmjspawnQ ”);

/ /  ask for notification when a task exits

iffinfo == 1) status = pvm notifyfPvmTaskExit, TASKEXIT, 1, &tid[i+l]); 

i f  (status < 0) {pvm _perr or ("notify'); pvm_exit();}

/ /  initialize buffer, pack, and send 

info = pvmjnitsendfPvmDataRaw); 

iffinfo < 0) pvm jperror("After master pvm initsendQ');
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number = (i+l)*NUMZSubprocess_Number; 

info = pvm _pkint(&number, 1, 1); 

iffinfo < 0) pvm _perror ("After master pvm _pkint() "); 

info — pvm_send(tid[i+1], msgtag); 

iffinfo < 0) pvm_perr or ("After master pvm_sendQ 1111");

}

Normally we could encounter two situations: one is that a task fails/exits, the other is 

that a host crashes or it is deleted from a network. If a task exited before sending back the 

message, we need to create another task to do the same job. If a host has been 

deleted/suspended from a network, we need to check to see if the tasks running on it has 

been finished. If not, we should create new slave tasks to do the work on some other 

hosts.

5.3 Tests

In order to confirm the fault-tolerance of my program, the pvm_kill() was used to 

kill a process and pvm_delhosts() to delete a host during the period when the program 

was executing. To delete a host using pvm_delhosts() is similar to remove a node from a 

network by hand. Of course, the program was also tested by unplugging hosts’ Ethernet 

cards.

Here is an example of code:
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/ /  Spawn process on a fixed host

info = pvm_spawn(”slave",(char**)0,PvmTaskHost,hostname[i] ,1, &tid[i+l]); 

iffinfo < 0) pvm_perr or (nAfter pvm_spawn()");

//A skfor notification when a task exits

iffinfo == 1) status =pvm notijy (PvmTaskExit, TASKEXIT, I, &tid[i+l]); 

i f  (status < 0) pvm_perror("notijy ");

//A skfor notification when a host is deleted 

info = pvm_notify(PvmHostDelete, HOSTDELETE, 1, &tid[i+l]); 

iffinfo < 0) pvm jperr or ("PvmHostDelete");

//Delete a host from PVM

info = pvm_delhosts(&hostname[i+J], 1, &infos[i+l]); 

iffinfo /= 1) pvm_perror ("After pvm_delhosts()”);

//K ill a task

info = pvm_kill(tid[i+2]);

iffinfo < 0) pvm_perror(”kill tid[i+2],r);

After killing tasks and deleting a host, the pvm_notify() routine detected unlucky

events and notified master about the events, so the master would continue to send the
39



40
failed tasks to slaves again depending on the task IDs. We also test fault tolerance with 

abort() function. The result of running the program displayed that it has the ability to 

handle potential faults. Here is example:

/* 4 tasks start up and distributed across processors */

Tasks 1048578, 262149, 786434, 1310722 were sent.

Unlucky scapegoat was deleted...

Again unlucky Task 262149 is killed...

Task 262149failed and send it again! /* Since task is gone, master creates a new task */ 

/* Looking for a host with low load */

load average: 0 larch /* larch, and reimel... are machines’ names in CS Department*/

load average: 1.11 reimel

load average: 0 garnet

load average: 0.11 Stillwater

load average: 8.63 juno

select load average: 0 larch to send the task 262149 again ...

Task 786434failed and send it again! /* Since task is gone, master creates a new task */

/* Looking for a host with low load */

load average: 0 larch

load average: 1.11 reimel

load average: 0.02 garnet

load average: 0.12 Stillwater
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load average: 8.66 juno

select load average: 0 larch to send the task 786434 again... 

ninepipe is added again!!! /* Since host is deleted, master adds a new host */ 

My master: Received 78498primes between 1 and 1000000 from task 1048578, 

it took 9 second. Its host is garnet.

/* Looking for a host with low load */

load average: 0.23 larch

load average: 1.09 reimel

load average: 0.14 garnet

load average: 0.25 Stillwater

load average: 8.72 juno

load average: 0.5 ninepipe
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CHAPTER 6 
LOAD BALANCING

In the last chapter, we discussed fault tolerance. In this chapter, we discuss another 

important issue of PVM -  Load Balancing [5], why we have to do load balancing, and 

how to implement load balancing.

6.1 What is Load Balancing

To extract the maximum performance from the parallel applications, load balancing 

is very important. Making sure that each host is doing its fair share of work and that all 

processors are busy doing useful work most the time. There are two kinds of load 

balancing -  static load balancing and dynamic load balancing.

The simplest method is static load balancing. In this method, the problem is divided 

up and tasks assigned to processors only once. The partitioning may occur before the job 

starts, or as an early step in the application. The size and number of tasks can be varied 

depending on the processing power of a given machine. On a lightly loaded network, this 

scheme can be quite effective.

When computational loads vary, a more sophisticated dynamic method of load 

balancing is required. It is important to keep all nodes busy all the time. This is typically
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implemented as a master/slave program where the master manages a set of tasks. It 

sends jobs to slaves as slaves become idle.

6.2 How to Implement

My program works with both static load balancing and dynamic balancing. Before 

spawning task processes to slaves, the master does static load balancing, sorts hosts 

depending on the load average on the hosts, and selects the hosts with lower load to send 

tasks.

During execution, either the master receives the result of a task or the master receives 

message of a task fail, then the master does dynamic load balancing, selecting the host 

with the lowest load on the virtual machines to send next task.

To obtain load information on the parallel virtual machines, the master spawns slave 

processes to all hosts, each slave process uses system call -  system() to run uptime 

command for its host and generate a file including load information, then reads the file, 

extracts the load information, and sends it back to master. Dr. Borries Demeler put 

forward a different way [10] to obtain load information using popen() without generating 

a file and reading it.

Here is example code:
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FILE *str; 

char *test[80J; 

int i = 0;

44

str = popen("/usr/bin/uptime”, ”r"); 

while ((fscanfrstr, ”%s”, test)) > 0) { 

printf("%d: %s\n", i, test); 

i++;

}

The uptime command prints the current time, the length of time the system has been 

up, and the average number of jobs in the run queue over the last 1, 5 and 15 minutes. In 

the program, the load average in the last 1 minute is used.

After getting uptime information, the strtok() function [7] is used to extract load 

average message.

Here is example code:

char *al, *a2, *a3, buf, bufout[100], *tok;

FILE *out; 

int i = 0, start; 

while(Ifeof(out)) {

//get all string from a file
44



fgets(bufout, 100, out);
45

/ /  strtok breaks string into “token ” by separated spaces 

tok = strtok(bufout, " ");

whileftok !=NULL) {

/ /  compare token with string “average: ” 

if(strcmp(tok, "average:") == 0)

/ /  get the position for load average information 

start = i; 

if(i== start + 1) 

al = tok; 

if(i== start + 2) 

a2 = tok; 

if(i== start + 3) 

a3 = tok;

tok = strtok(NULL, ” ");

/++;

}
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Figure 6.1 indicates the steps of load balancing. Step 1: The master spawns 

processes to the slaves for obtaining load average for each node. Step 2: The master sorts 

nodes depending on load average obtained in each node. Step 3: The master spawns 

processes and sends data to the slaves (nodes) that have much lower load average, and 

receives the information from the slaves. Step 4: Once the master receives message, 

either a task is finished or a task crash, it performs Stepl and selects the lowest load 

node. Step 5 The master sends either next task or failed task to the lowest load nodes. 

Step4 and Step 5 are repeated until all tasks are done. Figure 6.2 is a brief flow chart of 

load balancing and program. The init() is used to initialize program, read host file, and 

add hosts; find_balance() is used to obtain load average for each host; collect_info() 

collects load information; sort() is used to sort load average and its hostname; 

spawnjob() spawns a task copy; and minload() finds the minimum load average.

The result of executing program showed both static load balancing and dynamic load 

balancing work very well. Here is example:

The hosts in the virtual machine:

larch, Stillwater, juno, scapegoat, garnet, bannack,

load average: 0.5 Stillwater

load average: 0.55 larch

load average: 0.68 juno

load average: 0.59 scapegoat
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load average: 1.09 garnet 

load average: 0.87 bannack 

After sorting:

Stillwater, larch, scapegoat, juno, bannack, garnet 

Tasks 524290, 262149, 1048578, 786434 were sent.

Unlucky scapegoat was deleted...

Again unlucky Task 262149 is killed...

Task 262149failed and send it again! 

load average: 0.57 larch 

load average: 0.89 garnet 

load average: 0.89 bannack 

load average: 0.73 Stillwater 

load average: 0.92 juno

select load average: 0.57 larch to send the task 262149 again ...

Task 1048578failed and send it again!

load average: 0.83 Stillwater

load average: 0.98 garnet

load average: 0.83 bannack

load average: 0.81 larch

load average: 1.13 juno
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Spawn a new job 
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▼
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Minioad()
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Success

Figure 6.2 Flowchart of load balancing and program
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During the period when I implemented load balancing, I encountered a strange 

problem on Solaris, the process that subprocess performs uptime command, reads load 

information, and sends back to master executes too fast to return result to master. Master 

always finds tasks exiting before they return results. In order to solve the problem, 

pvm_recv() is used in the subprocess to wait until master receives information, once 

master receives load information, it will send acknowledgement. In this way, subprocess 

exits when it knows master has received its load information.

6.3 Discuss

In fact, to do load balancing is to increase load for each host, particularly for dynamic 

load balancing, you have to ask master to send subprocesses to slaves (nodes) for 

obtaining load information. Therefore, it is not surprising to find that the performance 

with dynamic load balancing is not higher than that without dynamic load balancing on a 

lightly loaded network. The program without load balancing makes master send next task 

immediately to the host which just completes its task. This procedure also performs an 

acceptable load balancing on a lightly loaded homogenous network. Thus, dynamic load 

balancing scheme is desirable for a heterogeneous computing environment, because all 

nodes in the network do not have identical computation capacities.
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CHAPTER 7 
CONCLUSIONS AND FUTURE WORK

In this project, in order to show the basic idea of a parallel-distributed computation of 

master-slave model using PVM for the integrated biophysical data analysis, we designed 

and implemented a parallel-distributed computation to find primes for a natural sequence 

using PVM on a set of specified hosts, and confirmed that the PVM routine was both 

correct and efficient. The results of tests indicated that the PVM routine is 3.36 times 

faster when running on four processors than the non-PVM routine.

To make the PVM routine robust, we implemented fault tolerance; the program has 

the ability to monitor all tasks, if it finds a task fails without sending its result to master, 

the task will be spawned by master again. In order to extract the maximum performance, 

we implemented static load balancing and dynamic load balancing, making sure all 

processors are busy doing useful work most the time.

Scheduling is an important part of load balancing. If the number of nodes on a 

heterogeneous network is a very large number, we need a better sorting and selecting 

algorithm, such as quick sort and merge sort, otherwise, if the number of nodes is 

relatively small number, the speed of a common sorting and selecting algorithm is fast 

enough to do scheduling.
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As a result of the project, we believe that PVM can be selected to implement 

similar parallel-distributed computation. Dr. Demeler’s integrated analysis routine would 

be more efficient if a similar parallel-distributed computing were done.

Two other things that may be considered to do in the future work are that: 1) If the 

master pvmd dies then the entire virtual machine shuts down. Is there a way that is able to 

find such an event and recover from the event? However, PVM fault detection and 

recovery is built on the assumption that master must never crash. 2) If a slave host is 

temporarily not connected to the network for some reason, and after a while the host is 

connected to the network again, then how the task on the host is handled gracefully.

For 2), however, it is a problem that depends on how long the slave host is not 

connected to the network. PVM fault detection originates in the pvmd-pvmd protocol. 

When the pvmd times out while communicating with another, it calls hostfailentry(), 

which scans waitlist and terminates any operations waiting on the down host. PVM 

daemons communicate with each other via UDP and the PVM daemon on a machine 

communicates with tasks on the same machine via TCP or via UNIX domain sockets. 

The PVM daemons estimate the round trip time to the other daemons. It initially resends 

packets after 3 times of the estimated round trip time has elapsed without an 

acknowledgement being received. It doubles the retry wait for each additional retry, up to 

18 seconds. The round trip time estimate itself is limited to 9 seconds. It will retry at least 

9 times before giving up and if it doesn’t receive an acknowledgement after 3 minutes it

considers the other daemon to be unreachable and calls hostfailentry() [4], Therefore,
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after 3 minutes, we have to face to the problem how to recover the daemon on a cluster 

if we still need the task on the daemon. In fact, it is not a big issue for my program in the 

project, because if the master knows a host dies, it will check whether the task on the host 

is finished or not. If not, it will send the task to other host again, and before sending the 

task it reconfigures and selects a lowest load host.
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Appendix

The result of running PVM prime routine using four hosts with pvm_recv().

scinet-inside:~$ ptest4 
mytid: 262146 
myptid: -23
myhost: scinet-inside.scinet.prairie.edu 
Please enter hostl's name: 
p5
p5 is added..
Please enter host2's name:
p6
p6 is added..
Please enter host3's name: 
p 1 .scinet.prairie.edu 
pl.scinet.prairie.edu is added..

My master: Received 78498 primes between 1 and 1000000 from task 524289, it took 57 
second. Its host is p6

My master: Received 70435 primes between 1000001 and 2000000 from task 262147, it 
took 95 second. Its host is scinet-inside.scinet.prairie.edu

My master: Received 67883 primes between 2000001 and 3000000 from task 786433, it 
took 118 second. Its host is p5

My master: Received 66330 primes between 3000001 and 4000000 from task 1048577, it 
took 164 second. Its host is pl.scinet.prairie.edu

My master: Received 65367 primes between 4000001 and 5000000 from task 524290, it 
took 152 second. Its host is p6

My master: Received 64336 primes between 5000001 and 6000000 from task 262148, it 
took 164 second. Its host is scinet-inside.scinet.prairie.edu

My master: Received 63799 primes between 6000001 and 7000000 from task 786434, it 
took 177 second. Its host is p5

My master: Received 63129 primes between 7000001 and 8000000 from task 1048578, it 
took 227 second. Its host is pl.scinet.prairie.edu

My master: Received 62712 primes between 8000001 and 9000000 from task 524291, it 
took 197 second. Its host is p6
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My master: Received 62090 primes between 9000001 and 10000000 from task 262149,it 
took 206 second. Its host is scinet-inside.scinet.prairie.edu

Time elapsed = 465 seconds 
Total primes = 664579

P5, p6, and pl.scinet.prairie.edu was deleted .. 

mytid: 262146 exiting PVM ...
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