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Colchicine Induced Multiple Drug Resistance In C-6 Glioma (80pp.) 

Director; Charles L. Eyer, Ph.D. 

Multiple drug resistance (MDR) is a common problem that occurs with repeated exposure 
to some anticancer drugs. MDR is produced by increased synthesis of an active transport 
system that lowers intracellular levels of a variety of anticancer drugs. Colchicine has 
been shown to induce MDR in several cancer cell lines. Cancer treatment with taxol has 
been complicated by the the induction of MDR with repeated exposure. C6 glioma 
represents a well characterized model of the most common human brain tumor. We 
investigated the ability of colchicine to induce resistance to taxol in this cell line. Our 
research focused on three objectives: a), to determine whether drug resistance to taxol 
can be induced by colchicine in a C6 glioma cell line. b). to determine colchicine-
induced changes in protein content, stress response, and key enzyme levels (heme 
oxygenase (HO), glutamine synthetase (GS), and cyclic nucleotide phosphohydrolase 
(CNP). c). to determine whether drug resistance can be reversed by verapamil — a known 
inhibitor of the multiple drug resistance transport system. 

Drug resistance was verified by comparing the EC50 values of both the control and 
colchicine treated cells upon exposure to increasing concentrations of taxol. Colchicine 
applied for a 24 hour period at a concentration of 480 ng/ml induced drug resistance to 
taxol in the C-6 glioma cell line, as evidenced by a greater than 14 fold increase in taxol's 
EC50. The resistant strain also exhibited is an increase in the amount of protein per cell; 
and increased HO activities. Drug resistance was reversed by verapamil. These studies 
show that colchicine has induced resistance to taxol and that the resistance appears to be 
related to the induction of the multiple drug resistance receptor. 
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INTRODUCTION 

a. Drug Resistance: 
Oncologists agree that one of the important unsolved problems in cancer 

treatment is drug resistance. This includes both intrinsic resistance at the time of initial 

chemotherapy and acquired drug resistance. In general terms, acquired drug resistance 

may result from alterations in host drug metabolism, from spread of tumor cells to sites 

poorly accessible to chemotherapy ("sanctuary sites"), and/or from biochemical changes 

at the cellular or subcellular level (Perez et. al, 1993). (TABLE 1.) 

Table 1. Mechanisms Of Resistance To Chemotherapy 

Host factors 
Altered pharmacokinetics 
Decreased drug absorption-activation 
Enhanced drug excretion-degradation 
Altered binding-transport proteins 

Host-tumor factors 
Metastasis of cells to "sanctuary sites" 

Cellular factors 
Decreased drug accumulation 

Decreased influx or increased efflux 
Altered cellular metabolism 
Decreased activation or increase degradation 

Cytoplasmic-nuclear inactivation 
Glutathione / Metallothioneins / ? proteins 
DNA repair / tolerance to DNA damage 
Altered cellular target 

To investigate the basis of drug resistance, drug-resistant cell lines have been 

isolated by exposing various cancer cell lines to increasing amounts of chemotherapeutic 

1 



antibiotics, for example, adriamycin; the resistant cells that are isolated are frequently not 

only resistant to adriamycin but may be cross-resistant to most naturally occurring 

antibiotics. The simultaneous resistance to many different structurally unrelated drugs is 

called multiple drug resistance (MDR). MDR includes resistance to many natural 

products isolated from plants (e.g. Taxol, colchicine) and microorganisms. Multiple drug 

resistance does not appear to extend to agents synthesized in the laboratory such as 

cisplatin, cytosine arabinoside, cyclophosphamide, and methotrexate (Gottesman and 

Pastan, 1988). (TABLE 2). 

Table 2. Drugs In The Multiple Drug Resistance Group 

ANTICANCER DRUGS OTHER DRUGS 

ACTINOMYCIN D COLCHICINE 
DAUNOMYCIN EMETINE 
DOXORUBICIN ETHIDIUM BROMIDE 
ETOPOSIDE (VP-16) GRAMICIDIN D 
MITOXANTRONE MITHRAMYCIN 
TAXOL PUROMYCIN 
VINBLASTINE VALINOMYCIN 
TENIPOSIDE (VM-26) 
VINCRISTINE 

The drugs in the MDR group do not share a common mechanism of action; some 

affect microtubules and some inhibit DNA, RNA, or protein synthesis. The biochemical 

basis of this type of resistance came from studies showing that MDR cells accumulated 

less drug (Dano, 1973; Ling and Thompson, 1974). Drug entry appeared to be normal, 

but the cells had acquired the capacity to pump out the drugs (Fojo, et. al, 1985). There 
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was no good precedent for a single transport protein that could pump such structurally 

diverse drugs out of cells. 

One common feature of the drugs in the MDR group is that they are moderately 

soluble in both water and lipid (amphipathic). The solution to how a single transport 

protein or proteins could pump out such structurally diverse drugs from cells came when 

the gene responsible for MDR (MDR 1-also known as p-glycoprotein) was isolated from a 

very highly drug-resistant cell line derived from a cervical carcinoma (Robinson, et. al., 

1986; Chen, et. al, 1986). 

With the isolation of a full-length cDNA for the MDRl gene, it was possible to 

transfer the MDRl cDNA into drug-sensitive cells and confer resistance. Because the 

introduction of a single gene in a drug-sensitive cell led to resistance to adriamycin, 

vinblastine, actinomycin D, taxol, and colchicine, it was concluded that a single 

membrane protein must be able to transport a wide variety of drugs that are structurally 

dissimilar (Pastan, et. al, 1988). 

The first step in drug chemotherapy is the transport of the drug from an aqueous 

extracellular environment into the lipid environment of the plasma membrane. From here 

the drugs can diffuse into the cytoplasm and nucleus where their cytotoxic action occurs. 

The drugs may encounter the p-glycoprotein transporter to pump them back out of the 

cell (Comwell, et. al, 1986, 1987). Recent data support the idea that the pump 

recognizes and expels drugs directly from the plasma membrane (Raviv, et. al, 1990). 

Many drugs that have no antineoplastic activity are also substrates for the multiple 

drug transporter and can competitively block the transport of the cytotoxic drugs (Pastan 
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and Gottesman, 1991). When present in excess, these inhibitors overcome MDR by 

preventing the multiple drug transporter from removing adriamycin, vinblastine, 

colchicine or other cytotoxic agents from resistant cells (TABLE 3). 

Table 3. Drugs Currently In Trial To Reverse Multiple Drug 
Resistance 

Calcium channel blockers Phenothiazines 
R- & L- Verapamil Quinidine 

Cyclosporine A and its & Quinine 
analogs Reserpine 

Hydrophobic Cephalosporins Yohimbine 

Dalton and coworkers studied multiple drug resistance expression in multiple 

myeloma and showed that patients who no longer responded to a regimen including 

vincristine, adriamycin, and dexamethasone did become responsive when treated with 

verapamil. Some patients developed a transient remission (Meister, 1985). 

A ^^P-cDNA probe to measure MDRl RNA levels and antibodies was used to 

determine the function and precise cellular location of the multiple drug transporter 

(Thiebaut, et. ai, 1987; Fojo, et. ai, 1987). The transporter has been detected in the 

liver, kidney, large and small intestines, pancreas, brain, testes, and adrenal cortex. Since 

the substrates for the multiple drug transporter are natural products found in plants and 

microorganisms, researchers believe the transporter evolved as a protective mechanism to 

prevent the entry of toxic compounds from the intestine or to remove toxic compounds 

via the bile and urine if they were absorbed. In addition, the transporter prevents 

compounds from entering the brain (perhaps as part of the blood-brain barrier) and the 

testis (Pastan and Gottesman, 1991). 
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Colchicine is an alkaloid that can be obtained from two members of the lily 

family: autumn crocus and glory lily (Ferguson, F.C., 1952). Colchicine binds to tubulin 

and thus prevents its polymerization into microtubules. This antimitotic property disrupts 

the spindle apparatus that separates chromosomes during metaphase (Wallace, S.L., et. 

al, 1970). Colchicine has been used to induce drug resistance and to investigate the 

properties of multiple drug resistance in human ovarian cancer cells and in transfected 

mouse cell cultures (Ling, V., et. al, 1974; Podda, et. al, 1992). 

Taxol, a taxane alkaloid, is the major active species of extracts derived from the 

bark of the Pacific yew, Taxus brevifolia (Wani, M.C., et. al, 1971). The mechanism of 

action of taxol has been demonstrated to be unique, constituting tubulin polymerization 

and stabilization of microtubules rather than the depolymerization reported for the classic 

antimicrotubule agents vincristine and colchicine (Schiff, P.B.,, et. al, 1979). Cross 

resistance of taxol with other natural products has been demonstrated in vitro (Gupta, 

R.,1985). 

Verapamil is one of several drugs currently in clinical trials to reverse the multiple 

drug resistance associated with cancer chemotherapy (Pastan, L, and Gottesman, M., 

1991). The 1-stereoisomer, is used clinically as a calcium channel blocker. Verapamil 

appears to inhibit the efflux of toxic chemotherapeutic drugs by acting as a substrate of P-

glycoprotein, thereby, allowing drugs like vincristine, colchicine, and taxol to remain 

within the cell and exert their cytotoxic action (Racker, E., et. al, 1986). 

b. Heat shock proteins / stress response: 
A major question in molecular biology is how cells cope with rapid changes in 

their environment, such as exposure to elevated temperatures (heat shock), heavy metals. 
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toxins, oxidants, drugs, bacteria, and viruses. It has become clear that all living 

organisms share a common molecular response that includes a dramatic change in the 

pattern of gene expression and the elevated synthesis of a family of heat shock or stress-

induced proteins (Morimoto, et. al, 1990; Lindquist, et. al, 1988). 

i) Background and Signiflcance 

Immediately after a sudden increase in temperature, all cells—from the simplest 

bacterium to the most highly differentiated neuron—increase production of a certain class 

of molecules that buffer them from harm. When biologists first observed that 

phenomenon 30 years ago in Drosophila cells (Tissieres, et. al., 1974), they called it the 

heat shock response. Subsequent studies revealed that the same response takes place 

when cells are subjected to a wide variety of other environmental assaults, including toxic 

metals, alcohols (Neuhaus-Steinmetz, et. al, 1993), and many metabolic poisons 

(Schlesinger, 1990—TABLE 4). 

Table 4. Inducers Of Stress Response Family Members 

Environmental Pathophysiologic Other 

-Heat 

-Heavy metals 

-Organics 

-Oxidants 

-Microbial 
infections 

-Tissue trauma 

-Genetic lesions 

-Cell cycle 

-Embryonic 
development 

-Cell differentiation 

-Hormone stimulation 

-Microbial growth 

The ability to respond to environmental challenges is a fundamental requirement 

for the survival of all living organisms. This is consistent with the observation that one of 
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the mechanisms by which cells respond to such signals (the heat shock/stress response), 

and many of the proteins that are synthesized as components of this response are highly 

conserved among widely divergent organisms. For example, the major heat shock 

protein, Hsp 70, has about 50% of its sequence conserved between E. coli and human, 

and some domains are 96% similar. (Surdon, 1986 and Lindquist, 1986). 

The Hsp 70 proteins (heat shock protein—molecular weight approximately 70,000 

dalton) are needed for import of several proteins into eukaryotic cell organelles. Other 

Hsp 70 family members act inside these organelles, as does a protein that belongs to a 

different family of heat shock proteins, the Hsp 60 or GroEL group. For import into the 

organelle, it is proposed that Hsp 70 unfolds the partially folded polypeptide so that it can 

be translocated through a membrane pore (Hightower, 1980). Consistent with this role 

are data showing that Hsp 70 like protein can bind to and, in the presence of ATP, 

dissociate protein complexes. Among these are clathrin-coated vesicles, a X 

bacteriophage DNA replication complex, nucleolar proteins that have become insoluble 

as a result of heat shock and immunoglobin heavy chains formed in the absence of light 

chains. 

In most stressed cells, the newly made Hsp 70 localizes in the nucleus and the 

nucleolus where it is tightly complexed in an insoluble form that is partially solubilized 

by ATP. The nucleolus is the site of ribosome assembly and is unusually thermal 

sensitive. It is suggested that Hsp 70 binds to proteins that are incompletely folded in the 

preribosome assembly unit and protects them from irreversible denaturation. 
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Another family of heat shock proteins, Hsp 60's, also form complexes with 

polypeptides and has ATPase activity. In contrast to the postulated unfolding and 

disassembly role of most Hsp 70's; Hsp 60's participate in the folding and assembly of 

polypeptides. Based on this property, they have been referred to as chaperonins 

(Hemingsen, et. al, 1988). In the eukaryote, the Hsp 60's are localized in cytoplasmic 

organelles such as mitochondria and chloroplasts. 

A third heat shock protein family is the Hsp 90 (approx. 90,000 daltons) group. In 

the eukaryote Hsp 90 is abundant in normal cells, is highly phosphorylated on serines and 

threonines, and is localized in the cytoplasmic compartment of the cell. A small fraction 

of it translocates to the nucleus after heat shock. Like the Hsp families noted above, Hsp 

90 complexes with a variety of normal cellular proteins (TABLE 5). 

The most thoroughly studied are the glucocorticoid receptors that are maintained in 

inactive conformation bound to Hsp 90 until activated by the hormones. Several kinases 

are transiently complexed with this heat shock protein, most notable are the tyrosine 

kinases encoded by oncogenes. Another kinase, one that phosphorylates the eukaryote 

translation-initiation factor eIF-2a subunit, is activated by Hsp 90. The cytoskeletal 

proteins, actin and tubulin, are associated noncovalently with Hsp 90. Hsp 90's may also 

function as a chaperonin. Microfilaments and microtubules (which are affected by both 

colchicine and taxol) are not unusually sensitive to stress although a prolonged and severe 

heat shock modifies both structures. In contrast, the intermediate filament network is 
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very thermal sensitive (Parcell and Sauer, 1989). It is believed that the Hsp 90 protects 

and aids in the recovery of these cytoskeletal systems. 

Table 5. Proteins Complexed With HSP 
HSP 70 Family HSP 90 Family Hsp 60 (GroEL) 

Family 
-clathrin-coated -glucocorticoid -À, phage collars 

vesicles receptor -ribulose-p2 
-prepro a factor -tyrosine kinases carboxylase/ 
-nucleolar -eIF-2a kinase oxygenase heavy 

proteins -yeast protein chain 
-IgG Heavy chain kinase C -cytochrome c 
-p53 tumor -tubulin -Fl-ATPase 

antigen -actin -temperature-
-DNA replication sensitive mutants 

initiation 
-complex 

(phage,plasmid) 
-calmodulin 
-SV40 T-antigen 
-microtubules 
(P-intemexin) 

In addition to improper polypeptide folding, heat shock leads to a plethora of 

changes that are dependent on both the intensity of the stress and on the cell system. 

These include effects on macromolecular synthesis, on levels of cations, on states of 

protein phosphorylation, on metabolic pathways, and on cytoskeleton networks (Parcell, 

et. al., 1989). 

ii) Interaction between MDR and the stress response 

Chin, et. al, (1986) reported that exposure of a renal adenocarcinoma cell line to 

heat shock or sodium arsenite increased MDRl mRNA levels (Chin, K-V., et. al, 1990). 

In a separate study in which a hepatocarcinoma cell line HepG2 was treated with sodium 
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arsenite about a twofold increase of MDRl mRNA was observed (Kioka, et. al, 1992). 

Heat shock at 45°C for 10 minutes also increased the level of MDRl mRNA. Heat shock 

at 42°C for 1-2 hours, also had a marginal effect. 

Thermotolerance, resistance to oxidative stress, and induction of stress proteins 

were examined in a panel of 10 human tumor cell lines (Steels, et. al, 1992). This 

research showed that a heat shock of 42.5°C for 30 min. was sufficient to induce 

tolerance to a subsequent heat stress of 43.5°C for 3 hr. in four human cell lines. The 

initial heat shock itself was not lethal (100% survival). The heat stress alone resulted in 

20-40% survival in four of the cell lines. Induction of Hsp 70 was evident in HeLa and 

two melanoma cell lines two (2) hours after heat shock. However, this treatment did not 

induce other Hsp's (Hsp 28, Hsp 90). 

iii) Heme oxygenase 

Heme oxygenase is an enzyme which catalyzes the oxidative conversion of heme 

(iron-protoporphyrin-K Fe-heme) to the linear tetrapyrrole biliverdin by insertion of two 

oxygen atoms into the tetrapyrrole ring adjacent to the alpha-methene bridge (Trakshel, 

et. al, 1988) (FIGURE 1). 

The oxygen atoms utilized in this reaction are derived from two separate 

molecules of oxygen. An additional molecule of oxygen is used to convert the alpha-

methene carbon to carbon monoxide. During this process the central iron atom is 

released. The microsomal origin of the enzyme was first described by Tenhunen, et. al, 

in 1968. The substrate and kinetic characteristics of the enzyme in microsomes were 

defined thereafter (Maines, 1984). 
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Heme oxygenase has been resolved into two isozymes, designated HO-1 and HO-

2, appearing in several tissues including brain (Cruse and Maines, 1988). HO-1 and HO-

2 appear to be products of different genes (Trakshel and Maines, 1989). They differ 

immunologically and physically and show species diversity (Shibahara, et. al, 1987). 

Similarities have been observed with respect to cofactor requirements for activity, 

sensitivity to inhibitors, as well as substrate used, i.e., hematin, hematoheme, and 

cytochrome c. Both forms of the enzyme require NADPH-cytochrome c (P-450) 

reductase, NADPH, or NADH, and O2 for activity. The activity of both forms can be 

inhibited by potassium cyanide, sodium nitrite, and carbon monoxide. Both forms cleave 

the tetrapyrrole molecule exclusively at the alpha meso bridge to form biliverdin IX 

alpha-isomer. Both forms utilize hematin and hematoheme as substrates but not intact 

cytochrome c. HO-1 is also a heat shock protein (Dwyer, et. al, 1989). The rat HO gene 

contains a functional heat shock element consensus sequence in its promoter region 

(Mitani, et. al, 1989). It is inducible by a variety of stressful conditions including 

hyprerthermia (Keyse and Tyrell, 1987), ultraviolet radiation, hydrogen peroxide (H2O2), 

sodium arsenite, (Keyse & Tyrell, 1989; Taketani, et. al, 1989), cadmium (Taketani, et. 

al, 1989), and hemin (Yoshida, et. al, 1988, Stocker, 1990). It has been postulated that 

since heme oxygenase is a sensitive indicator of oxidative stress in some cells (Fligiel, et. 

al, 1984), it can possibly protect cells by elevating intracellular bilirubin, which is an 

antioxidant (Stocker, et. al, 1987 
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Figure 1. Metabolic Fate Of Heme 

C. C-6 Glioma Cells As The Model System 
Gliomas are prominent nervous system tumors that have received considerable 

experimental scrutiny in the disciplines of oncology and molecular biology (James, et. al, 

1989; Kinzler, et. al, 1987). The C6 Glioma, which is chemically induced from rat brain, 

has generally been designated as an astrocytoma (Benda, et. al, 1968; Benda, et. al, 

1971; & Embree, et. al, 1971). Research has shown that C-6 Glioma cells 

transdifferentiate or phenotypically change as a function of cell passage. With time, these 

cells develop more astroglial and less oligodendroglial characteristics, as measured by 

their decreased expression of 2',3'-cyclic nucleotide 3'-phosphohydrolase 

(CNP)(E.C.3.1.4.1) and increased glutamine synthetase (GS)(E.C.6.3.1.2) activity 
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(Parker, et. al, 1981; Parker, 1989). GS is used as a characteristic enzyme marker for 

astroglial cells (Norenberg and Martinez-Hernandez, 1979) and CNP as an enzyme 

marker for oligodendrocytes (Poduslo and Norton, 1972). 

Rat C-6 glioma cells were chosen for this study to investigate glioma cell 

properties and function because of the consistency of expression, degree of 

characterization, and the dependability of culturing conditions of the C-6 cell line 

(Pfeiffer, et. al, 1977; Vemadakis, et. al., 1986). 

D.Intracellular Markers 

i) Glutamine synthetase 
Studies have shown that the glutamine synthesis (GS) antigen in the adult brain is 

exclusively localized to astrocytes (Norenberg and Martinez-Hernandez, 1979). These 

findings were consistent with those demonstrating high glutamine synthetase activity in 

astrocytes cultures (Schousboe, et. al, 1977). This cytosolic enzyme is distributed 

approximately equally in both fibrous and protoplasmic astrocytes. A number of 

experimental workers emphasize the key role of astrocytes in ammonia detoxification and 

in the metabolism of the putative neurotransmitters y-amino-butyric acid and glutamic 

acid ( Henn & Hamberger, 1971; Norenberg, 1976; Schrier & Thompson, 1974) 

(FIGURE 2 ). 
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Figure 2. Glutamine Synthetase Reaction 

Glutamine synthetase is considered as a reliable astrocyte marker for establishing 

cellular identification in tissue culture, developmental studies, studies involving 

neoplastic transformation and differentiation, and as a means of monitoring astrocytes in 

pathological states (Norenberg and Martenez-Hemandez, 1979). 

it) 2',3'Cyclic nucleotide,3'-phosphohydrolase (CNP) 
(EC.3.1.4.1) 

Cyclic nucleotide phosphohydrolase (CNP) is an enzyme or a series of related 

enzymes capable of hydrolyzing ribonucleoside 2',3'-cyclic phosphates. The enzyme is 

not capable of hydrolyzing intemucleotide bonds nor is it capable of cleaving the more 

well known 3',5'-cyclic phosphates. (FIGURE 3). The cellular location of the enzyme 

has been used as an important tool for neurochemists (Zanetta, et. al, 1972). Cyclic 

nucleotide phosphohydrolase was first shown to be present at high concentrations in 

myelin rich neural fractions and thus became a marker for myelin. The reason for this 
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localization became evident later as CNP was found to be localized in high 

concentrations in the oligodendrogiial cell plasma membrane. Therefore, CNP has 

become an important marker for oligodendroglia (Prohaska, et. al, 1973). 

CNP 

HOCjH 2 

c" 

+H20 

HOCH 

\c 
0 P.-

„L 

ADENOSINE 2',3' CYCLIC 
MONOPHOSPHATE 

ADENOSINE 2* 
MONOPHOSPHATE 

Figure 3. CNP Reaction 
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e. Specific Objectives 
Whether a correlation exits between heat shock or the stress response and drug 

resistance in the rat C-6 Glioma cell line has not been reported. We have investigated the 

heat shock / stress response and drug resistance in the C-6 Glioma cell line with the 

following objectives: 

(I). To determine whether a drug resistant cell line can be induced with colchicine. 

(II). To characterize differences in the protein content, stress response, and key 

enzyme levels in the parent (control) and colchicine treated cells. 

(III). To determine whether the drug resistance seen with colchicine pretreatment 

can be reversed by verapamil. 



MATERIALS AND METHODS 

I. CELL CULTURE: 

C6 glioma cells were started from a locally maintained cell line. Cells were 

recultured approximately every 10 days. Passages used for these studies were taken 

from passages 70 to 81. Cells were maintained in either Coming (or equivalent) 75 

cm^ flasks or multiple well culture flasks. Usual culture conditions involved growing 

cells in D-MeM/F-12 medium fortified with 10% fetal bovine serum, penicillin (100 

ug/ml), streptomycin (100 ug/ml), and fungizone (250 ug/ml). The medium was 

changed every 2-3 days, while being maintained at 37°C in a humidified atmosphere 

of5%C02. 

IL REAGENTS AND DRUGS: 

Chemicals, reagents, and drugs were obtained from the indicated sources. Rat 

C-6 Glial tumor cells (American Type Culture Collection Rockville, Md). 

Acrylamide, N,N,-methylenebis acrylamide (BIS), Trizma base, tetrasodium 

ethylenediamine tetraacetic acid (EDTA), N,N,N',N'-tetramethylene amine 

(TEMED), Ammonium persulfate [(NH4)2S208], Sigma 7-9 tris, b-mercaptoethanol 

(2ME), glycine, glycerol, bromphenol blue, SDS molecular weight markers (14,000-

70,000), SDS molecular weight markers (30,000-200,000), Deferroxamine mesylate. 

Bovine serum albumin, Hemin chloride-bovine, b-Nicotinamide adenine dinucleotide 

phosphate (b-NADPH), Biliverdin dihydrochloride,Protein, total-micro-Brilliant blue 

G, Bovine serum albumin standards, Tris-HCL (buffer). Tris maleate (buffer). 

17 
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monophosphate (2'-AMP), Alkaline phosphatase. Ammonium molybdate, Imidazol 

hydrochloride (buffer), 1-glutamine, hydroxylamine, Adenosine 5' diphosphate 

(ADP), g-glutamyl-hydroxymate (L-glutamic acid- g-monohydroxymate). Colchicine, 

Verapamil, (Sigma Chemical Co.; St. Louis, Mo.). Potassium chloride (KCl), 

Sodium bicarbonate (NaHCOs), Sodium phosphate monobasic (NaH2P04) Potassium 

phosphate monobasic (KH2PO4), Potassium phosphate dibasic (K2HPO4), Sodium 

hydroxide (NaOH), Hydrochloric acid (HCL), Magnesium chloride (MgClz 4H2O), 

Ferric chloride (FeCl]), Sodium chloride (NaCl), Sulfuric acid (H2SO4), Sodium 

Arsenate (Na2HAs04), Sucrose, Manganese chloride (Mncl2 8H2O), Trichloroacetic 

acid (TCA), Isopropyl alcohol (Isopropanol), Methyl alcohol (methanol), Benzene, 

Isobutyl alcohol (Isobutanol), Glacial acetic acid, (Fisher Chemical, Fair Lawn, NJ.). 

Trypan blue stain (0.4%), Earle's balanced salt solution (BBSS), Dulbecco's modified 

Eagle's medium (D-MEM/F-12), Penicillin-Streptomycin 5000 units/ml. Fungizone 

(Amphotericin B 250 ug/ml & Sodium deoxycholate 205 ug/ml). Trypsin (2.5%), 

(Gibco Laboratories, Life Technologies, Inc.). Taxol (Calbiochem, Lajolla, Ca.), 

Sodium Dodecyl Sulfate (BHD British House, Poole BH15 ITD, England). 

III. EXPERIMENTAL PROTOCOL: 

a. Development of a Drug Resistant Cell Line 
Rat C-6 Glioma cell cultures were used throughout this research project. Cells 

were grown and maintained in Coming (or equivalent) 75 cm^ flasks and six-well 

culture plates. The cells were grown in D-MEM/F-12 medium fortified with 10% 
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fetal bovine serum, Penicillin (100 ug/ml). Streptomycin (100 ug/ml), and Fungizone 

(250 ug/ml Amphotericin B & 205 ug/ml Sodium deoxycholate). The medium was 

changed every 2-3 days while being maintained at 37°C in a humidified atmosphere 

of 5%%. 

Sets of six 6-well plates were incubated over a 7-10 day period. When 

microscopic examination had shown that confluent growth had been achieved, the 

cells were subjected to varying concentrations (250-2000 ng/ml) of colchicine 

dissolved in D-MEM/F-12 medium for a twenty four hour period. Each 6-well plate 

contained one well that was used as a solvent control. At the end of the 24 hour 

treatment period, the D-MEM/F-12 media was aspirated and the cells were harvested 

by adding 1.0 ml isotonic 0.25% trypsin. The trypsinized cells were then pipetted into 

separate prelabeled tubes containing 2-3 volumes of ice cold D-MEM/F-12 medium. 

The response of the cells to colchicine was then assessed by microscopically counting 

the cells (as described in Appendix B-Trypan Blue Cell Counting Procedure). The 

EC50 of colchicine (the dose in which there is a 50% inhibition of growth of the cells) 

was determined by using the Pcnonlin software program. Correlation coefficient (R-

values) were 0.9 or better for EC50 determination. 

b. Assessment of Drug Resistance 
Six-well culture plates were exposed to the EC50 concentration of colchicine 

for 24 hours. Drug exposure was then terminated and the cells were grown to 

confluence in the standard D-MEM/F-12 medium. Drug resistance was assessed by 

subjecting the cells to varying concentrations (100-5000 ng/ml) of taxol. Cells were 



20 

harvested and counted as described previously. Taxol EC50 values were determined 

for both the colchicine treated cells and the control (PNT) cells. 

c. Induction of Stress 
Confluent cultures of the colchicine treated and parent (control) cells were 

subjected to heat stress by incubating them at 42° C for 30 minutes. 24 hours later the 

cultures were harvested and counted. Cells were then prepared for protein and 

enzyme determinations (see part 4). 

d. Assays Procedures 
The details of the analytical procedures are described in Appendix B. 

i) Cell Counts: 
Two hundred microliters (200 ul) of the previously trypsinized cell suspension 

was pipetted into a tube containing 300 ul of 0.85% saline and 500 ul Trypan blue. A 

sufficient volume of the Trypan blue cell suspension was transferred to a 

hemacytometer. All of the cells in each of the four comer and center grids were 

counted for each sample. The average number of cells obtained was multiplied by 5 

to correct for the dilution factor. To obtain the number of cells per milliliter in the 

original solution, the corrected number was multiplied by 10"^ (Bauer H, et.al., 1975). 

ii) Protein Analysis: 
A microprotein technique (Sigma cat.#610-A) that employs Brilliant Blue G 

was used (Bradford, 1976). The Brilliant Blue G dye (Coomassie Blue) reacts almost 

immediately with protein to form a blue colored protein dye complex. The amount of 

color produced is proportional to the protein concentration. In the assay procedure, 

the C-6 Glioma cell homogenates along with protein standards were first solublized 

by heating at 80°C for 10 minutes in 0.05N NaOH. After neutralization with 1.2 IN 
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HCL, the blanks, standards, and samples were reacted with protein dye solution. The 

absorbance (O.D.) of each was measured at 595 nm. The amount of protein in each 

sample was calculated from the slope of the regressed line in which the absorbance 

(O.D.) was plotted against the concentration mg/ml) of the protein standards. 

iii) Heme Oxvsenase Activity 
The enzymatic procedure used was the spectrophotometric method to measure 

the formation of bilirubin (Tenhunen et. al, 1968) as modified by Lincoln et.al. 

(1988). The method relies on the use of the endoplasmic reticular fraction of the C-6 

Glioma cell homogenate and the addition of previously isolated rat liver cytosolic 

fraction as a source of biliverdin reductase (see Heme Oxygenase Assay-Appendix 

B). Hemin was then added to the reaction mixture. The presence of heme oxygenase 

in the C-6 Glioma cell homogenates, oxidatively catalyzes the conversion of hemin to 

bilirubin. Subsequently, the presence of biliverdin reductase and ^-Nicotinamide 

adenine dinucleotide phosphate (p-NADPH) in the reaction mixture reduced 

biliverdin to bilirubin. The conversion of hemin via the two step process to bilirubin 

was measured spectrophotometrically at 453nm. The heme oxygenase activity 

(umol/min) was determined from a standard curve prepared with bilirubin standards. 

The heme oxygenase activity was expressed as pmol/min/mg of protein. 

iv) Glutamine Synthetase Activity (GS): 
GS was assayed by the colorimetric method of Meister (1985). In this 

procedure, the enzymatic activity in the C-6 Glioma cell homogenates and prepared 

standards were followed by the use of the y-glutamyl transfer reaction in which 

glutamine synthetase catalyzes the conversion of L-glutamine in the presence of 
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hydroxylamine, catalytic quantities of Adenosine 5' diphosphate, and inorganic 

arsenic to y-glutamylhydroxymate; which gives a characteristic color reaction upon 

addition of ferric chloride. The absorbance (O.D.) for each of the standards and 

samples was measured spectrophotometrically at 555nm. The y-

glutamylhydroxymate activity (umol/min) was determined from a standard curve 

prepared with y-glutamylhydroxymate. The y-glutamyl- hydroxymate activity was 

expressed as nmol/min/mg protein. 

v) 2 '3 '-Cyclic Nucleotide 3 'Phosphohydolase (CNP) Activity: 
The procedure used was the spectrophotometric method to measure the 

formation of 2'-adenosine monophosphate(Prohaska et. al, 1973). Aliquots of C-6 

Glioma cell homogenates and standards were incubated with 2%3'-cyclic adenosine 

monophosphate to yield 2'-adenosine monophosphate. Alkaline phosphatase was 

added to cleave inorganic phosphate from the 2'-adenosine monophosphate. The 

inorganic phosphate was reacted with ammonium molybdate and then the complex 

was extracted in isobutahol/benzene (1:1). The yellow color produced in the organic 

layer was then measured spectrophotometrically at 410nm. The 2%3'-cyclic 

nucleotide phosphohydrolase activity (umol/min) was determined from a standard 

curve prepared with of 2'-adenosine monophosphate standards. The CNP activity 

was expressed as umol/min/mg of protein. 

vi) Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 
(SDS-PAGE) 
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The SDS-PAGE procedure used utilized the tris-glycine discontinuous system 

(Laemmli, 1970) as modified by Dr. Ralph Judd (1987,1988). C-6 Glioma cell 

homogenates, including the parent strain, the colchicine treated strain, and cultures 

exposed to heat shock, were subjected to SDS-PAGE ( as described in Appendix B) 

along with commercially prepared molecular weight protein markers. After fixing in 

50% methanol; 7% acetic acid: 43% distilled water, the proteins were visualized with 

Coomassie Brilliant Blue R. The technique was used for this study to visually assess 

the presence of heat shock proteins including Hsp 32 (heme oxygenase), Hsp 70, and 

Hsp 90. 

e. The Effect Of Verapamil On Drug Resistance 
Four twenty-four well culture plates containing the colchicine treated strain 

were treated with varying concentrations (1 uM, 5 uM, and 10 uM in D-MEM/F12 

medium) of verapamil for 24 hours. At the end of 24 hours, the colchicine treated 

cells (including appropriate controls) was subjected to varying concentrations (100-

2000 ng/ml) of taxol for 24 hours. Finally, the cells were trypsinized, harvested and 

then placed in Trypan blue stain. Cells were then counted microscopically to 

determine the effects of taxol on cell growth. 

f. Statistics 
Student t-tests were used to determine significant differences between the 

parent (control) cells and the colchicine treated cells. ANOVA and Scheffe's tests 

were used to determine significant differences among multiple treatment means (both 

stressed and unstressed), p < .05 = significant difference. PCnonlin was used to 

determine EC50 values for taxol. 



RESULTS 

OBJECTIVE I:. To determine whether a drug resistant cell line can be induced 
with colchicine. 

Throughout this study, the Trypan Blue exclusion staining technique was used 

to determine cell viability. While colchicine decreased cell counts, no indication of 

cell death nor cellular debris was detected. 

Figure 4 shows the effect of varying concentrations of colchicine on cell 

counts. Cell counts decreased from 87.3 ± 3.3 % of control at a concentration of 250 

ng/ml to 33.6 ± 3.0 % of control at a concentration of 2000 ng/ml. A PCnonlin 

statistical program was used to calculate the ECsoof colchicine (480 ng/ml). 
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Figure 4. Effects of colchicine on cell counts All values are mean ± s.e.m. 
Each data point represents n =6. Cell counts decrease from 87.3 ± 3.0% of 
control at 250 ng/ml to 33.6 ± 3.0% of control at a concentration of 2000 
ng/ml. 
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An additional effect of colchicine was noted in a small study (N = 2), 

comparing the total number of cells counted at 24 hour intervals in the control cells 

(PNT) and the colchicine treated cells (CLT). Results shown in Figure 5 indicate that 

cell counts, after exposure to colchicine for 24 hours, decreased for approximately 72 

hours. At ninety six (96) hours, cell counts in the colchicine treated cells is 

approximately equal to that of the control cells (PNT). 
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Figure 5. Effect of colchicine pretreatment on cell counts. PNT = control cells; 
CLT = colchicine treated cells. Each point represents the mean value, n = 2. At 
96 hours both the control and colchicine treated cell counts were at 
approximately 9.0 x 10^ cells per flask. 

Taxol was much less effective in cells previously exposed to colchicine 

(Fig.6). The control cells shows less resistance to taxol (decrease in the mean cell 

counts as a % of control) than the colchicine treated cells. The taxol concentration 



ranged from 0-2000 ng/ml in the control cells and ranged from 0-5000 ng/ml in the 

colchicine treated cells. Using a PCnonlin statistical program, the taxol EC50 in the 

parent (control) cells was determined to be 82.0 ± 23.5 ng/ml. The taxol EC50 in the 

colchicine treated cells was determined to be 1490.3 ± 157.7 ng/ml. Values are 

expressed as mean + 95% confidence interval. 

- + - PNT CLT 

100 

20 -

50 100 1000 6000 

CONCENTRATION (ng / ml)) 

Figure 6. Effect of taxol on cell counts. PNT = control cells (EC50 = 82 ± 
23.5 ng/ml). CLT = colchicine treated (EC50 = 1490.3 ± 157.7 ng/ml). % 
control values = mean ± s.e.m. EC50 values = mean ± 95% confidence 
interval. 
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Objective H: To characterize differences in the protein content, stress response, 
and key enzyme levels in the parent (control) and colchicine treated cells. 

a. Heat shock proteins: 

Cell cultures from both treatments, stressed (heat shocked) and unstressed, 

were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). Visual examination of Coomassie stained gels (pages 34-37) showed the 

presence of several bands with similar molecular weights to the heat shock proteins— 

Hsp 28, Hsp 60, Hsp 70, Hsp 90. A band having a molecular weight of 

approximately 32 kDa (Hsp 32 -heme oxygenase) was apparent on all gels. 

However, a perceptible increase in the well known heat shock protein Hsp 70 was not 

observed on either the stressed or the unstressed cultures. Densitometric scans were 

performed which compared the stressed colchicine treated cells(CLT + HS) to a 

known, commercially prepared, protein standard molecular weight marker mixture. 

The densitometric scan on the gel from the colchicine treated cells showed the 

presence of several peaks having similar retention times to the peaks seen on the scan 

of the molecular weight marker mixture. However, induction of stress (increase in 

Hsp 70 or Hsp 32) was not observed on the scan from the colchicine treated cells, 

(pages 38-39). 

b. Protein content: 

Measurement of the amount of protein per cell indicated a significantly higher 

concentration in the colchicine treated cells (3.73 ± .15 x 10 ^ ug per cell). The 

amount of protein in the control cells was 3.2 ± .20 xlO'^ ug per cell (Fig. 7). 
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c. Heme oxygenase (HO): 

Colchicine pretreatment increased HO activity (58 + 3 pmol/min/mg protein) 

(Fig 8). Heme oxygenase activity in the unstressed control cells was determined to be 

(33 ± 7 pmol/min/mg protein). Heat shock treatment significantly increased heme 

oxygenase activity in the control cells (60 ± 6 pmol/min/mg protein). HO activity 

appeared to increase when the CLT cells was heat shocked (53 ± 7 pmol/min/mg 

protein), however no significant difference was detectable (p = .059). 

I I PNT rarai CLT 

5 

^ 4 h 

Figure 7. Effect of colchicine on cellular protein content (ug protein x 10"^) 
per cell. Cells harvested 24 hours after colchicine removed from medium. 
Values are mean ± s.e.m. * = significant difference (p < 0.05). PNT and 
CLT are defined in Fig. 5. 
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PNT+HS CLT+HS 

Figure 8. Effect of colchicine and heat shock on heme oxygenase activity. 
PNT and CLT are defined in Fig. 5. HS = heat shock. Bars not sharing a 
common letter are significantly different ( p< 0.05). All values are mean ± 
s.e.m. n = 6. 
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d. Glutamine synthetase (GS): 

PNT+HS CLT+HS 

Figure 9. Effect of colchicine and heat shock on glutamine synthetase 
activity. No significant difference in GS activity was noted between the 
PNT, PNT + HS, and the CLT treated cells.PNT, CLT and HS are defined 
in Figs. 5 & 8. See Fig. 8 for explanation of statistics. 

Glutamine synthetase in the unstressed control cells (PNT) was determined to 

be 2.0 ± 0.2 nmol/min/mg protein . GS activity in the stressed control cells (PNT + 

HS) was 2.0 nmol/min/mg protein. In the unstressed colchicine treated cells (CLT) 

no significant increase in GS activity was noted (2.17 ± 0.17 nmol/min/mg protein). 

A significant increase (p < .05) in GS activity was determined in the stressed 

colchicine treated cells (CLT + HS)(2.83 ± 0.17 nmol/min/mg protein). No statistical 
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significance was noted between the control cells, the stressed control cells, or the 

colchicine treated cells (Fig. 9). 

e. Cyclic Nucleotide Phosphohydrolase (CNP): 

Colchicine did not significantly increase CNP activity (Fig. 10). No significant 

difference was noted between the unstressed control cells (PNT) and the 

unstressed colchicine treated cells (CLT)(0.218 ± 0.015 umol/min/mg protein). 

The CNP activity in the stressed colchicine cells were significantly higher than 

either the stressed or unstressed control cells. Heat stress did not significantly 

increase the CNP activity in the colchicine treated cells (0.249 ± 0.006 

umol/min/mg protein vs. 0.218 ± 0.015 umol/min/mg protein in CLT), although 

the former value was significantly higher than values obtained with the control 

cells. 

CLT+HS PNT+HS 

Figure 10. Effect of colchicine and heat shock on CNP activity. Only the 
stressed colchicine treated cells showed increased CNP activity.See Fig. 8 for 
details of legends and statistics. 
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Objective III: To determine whether the drug resistance seen in the colchicine 
treated strain can be reversed by verapamil. 

The colchicine treated cells were pretreated with varying concentrations of 

verapamil (1 uM, 5 uM, & 10 uM). A significant increase in cell counts was seen in 

the colchicine treated cells in the presence of 10 uM of verapamil (Fig. 11). 
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Figure 11. Effect of verapamil on cell counts in the CLT cells. Cells exposed 
to 1,5, or 10 uM verapamil for 24 hours prior to counting. * = significantly 
different from other concentrations (p < 0.05). Values are mean ± s.e.m. n =6. 

Verapamil, at a 10 uM concentration, was effective in decreasing colchicine 

resistance to taxol (Fig. 12). Figure 13 compares the effects of verapamil on taxol 

ECso values in the colchicine treated cells to the original EC50 data shown in Figure 6. 

The taxol EC50 of passage 81 was 9103 ± 2088 ng/ml; at 1 uM verapamil 

pretreatment the 
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Figure 12. Effect of verapamil (1, 5, and 10 uM) on the CLT strain's response 
to taxol. 10 uM verapamil significantly decreases the colchicine resistance to 
taxol.See Fig. 8 for details of statistics. 

taxol EC50 was 676 ± 240 ng/ml; at 5 uM verapamil pretreatment the taxol EC50 was 

439 ± 56 ng/ml; and at 10 uM verapamil pretreatment the taxol EC50 was 72 ± 50 

ng/ml. By comparison, the taxol EC50 in the control cells was 82 ± 23 ng/ml; and the 

taxol EC50 in the colchicine treated cells was 1490 ± 158 ng/ml. Verapamil produced 

a concentration-dependent reversal in the colchicine-induced drug resistance to taxol. 

This reversal was essentially complete in presence of 10 uM verapamil. 
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Figure 13. Effects of verapamil on the response of CLT to taxol. EC50's for 
Passage 81 were determined following exposure to the indicated concentration of 
verapamil. CNTL = CLT cells not exposed to verapamil. CLT and PNT are 
defined in Fig. 5. Bars represent mean ±95 % confidence interval. Values for 
Passage 70, both PNT and CLT, are shown on the right side of the graph. 
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Fig. 14. Separation of proteins after heat shock (42°C for 

30 minutes) by SDS-Page. Lane 1, SDS-Page Molecular Weight 

marker standard I; lanes 2-7, parent strains I-VI; lane 8, 

SDS- Page molecular weight marker standard II; lane 9, SDS-

Page molecular weight marker standard III. 
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Fig. 16. Terms are the same as in figures 14 and 15, except 

that SDS-PAGE molecular weight marker standard II was not 

run. 
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Fig. 18. Conditions of scan are as noted above. 

Concentration of proteins in the SDS-PAGE molecular marker 

standard were at approximately 1 microgram per microliter. 
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Fig. 19. Conditions of Gel scan are noted above. 



DISCUSSION 

Objective I: To determine whether drug resistant cell line can be induced with 
colchicine. 

The data shown in Figure 4 was used to determine the concentration of 

colchicine to be used for further studies on drug resistance. The calculated colchicine 

EC50 value of 480 ng/ml was selected to induce drug resistance in this C-6 glioma 

model. The concentration of colchicine chosen initially inhibited cell growth during 

the 24 hour exposure. Seventy-two (72) hours after removal of the colchicine, the C-

6 glioma cell growth had returned to a level (9.0 x 10^ cells per 75 cm^ flask) which 

was not significantly different from the control (9.14 x 10^ cells per 75 cm^ flask) 

(Fig. 5). In addition, the EC50 concentration did not appear to be lethal to the glioma 

cells. 

Podda, et. al. (1992) reported that colchicine kills MDR-negative cells. 

However, they also did not see cell death in cell cultures which were continuously 

exposed to colchicine for 3 days. Kane and Gottesman, (1993), reported that in 

colonies continuously exposed to colchicine for 7-14 days, drug sensitive cells were 

not killed by colchicine but were prevented from dividing. 

Previous studies have shown colchicine to be a MDR inducible drug (Podda, 

et. al, 1992). In the presence of colchicine, cells that are not multiple drug resistant 

become multinucleated and cell division is inhibited. Cells that express MDR 

become resistant to the drug. By increasing the selective pressure (colchicine 

concentration) on those cells, they express progressively more MDR gene product to 
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1988) or by enrichment for cells in a population that already express high levels of 

MDR (Kane, et. al, 1989). 

Evidence that colchicine treatment induced drug resistance in C-6 glioma is 

strongly indicated by the shift of the taxol concentration response curves (Fig. 6) and 

the 15-fold increase in EC50 . Our study is apparently the only study known that has 

established taxol EC50 values in C-6 glioma. This level of resistance is higher than 

that seen by other investigators in different cell lines. Kelland, et. al, (1992) 

compared the cytotoxic properties of taxol in nine human ovarian carcinoma cell 

lines. They reported that exposure of the ovarian carcinoma cell lines to taxol for two 

(2) hours showed a 3-9 fold increase in taxol EC50; whereas, a continuous 96-hour 

exposure revealed a 2-6 fold increase. In comparing our study to Kelland's, it is 

apparent that the taxol EC50 concentrations may vary significantly from cell line to 

cell line. Differences may best be explained by the studies of Pastan, et. a/., (1991) in 

which several fold differences may be seen based on the degree of expression of p-

glycoprotein. Tumors derived from colon, kidney, liver, and pancreas usually have 

high levels of p-glycoprotein (MDRl), a reflection of the high level in the normal 

cells from which the tumor arose. Expression of the MDRl gene is sometimes high 

in leukemias, lymphomas, and some other cancers derived from tissues that do not 

normally express the gene. Increased MDRl expression has been observed in drug-

resistant leukemias, myelomas, ovarian cancer, breast cancers, sarcomas, and 

neuroblastomas (Goldstein, et. al, 1989), and has often been predictive of 

unresponsiveness to treatment. 
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Our results indicate that we have developed drug resistant C-6 glioma cells. 

Noting that the control and CLT cells differ in their response to taxol, our next step 

then was to characterize changes in certain key intracellular components. 

Objective II: To characterize differences in the protein content, stress response, 
and key enzyme levels in the control and colchicine treated cells. 

a. Heat Shock Proteins: 
Our results, using SDS-PAGE, showed the presence of several electrophoretic 

bands, on Coomassie stained gels, having similar molecular weights to the heat shock 

proteins—Hsp 28, Hsp 60, Hsp 70, and Hasp 90. Commercially prepared protein 

standard molecular weight marker mixtures were analyzed in conjunction with the 

stressed and unstressed parent and colchicine treated strains. A band having a 

molecular weight of approximately 32 kDa (possibly Hsp 32—heme oxygenase) was 

apparent on all gels. Visual examination of the gels was insufficient in determining 

clear differences in protein electrophoretic patterns between the control cells and the 

colchicine treated cells. A densitometric scan on the gel from the stressed colchicine 

treated cells showed the presence of several peaks having similar retention times to 

the peaks seen on the scan of the molecular weight marker mixture. The induction of 

stress, as characterized by increases in peak areas at retention times similar to 

compounds having molecular weights at 32 kDA or 70 kDA, was not observed (pages 

38-39). 

At the present time, two isoforms of heme oxygenase exist; HO-1 and HO-2 — 

both forms having nearly identical molecular weights. HO-1 apparently is the only 
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inducible form (Maines, et. al, 1985). Taketani, et. al, (1989) were not able to 

distinguish the isoforms of heme oxygenase in rat liver fractions using gel 

electrophoresis without [^^S] methionine labeling of the proteins and immunoblotting. 

Trakshel and Maines (1989) used antibodies to characterize differences in rabbit HO-

1 and HO-2. Neither, the [^^S] Methionine labeling of proteins nor antibodies to HO-

1 or HO-2 techniques were available in our lab at the time this study was carried out. 

b. Protein content 
One of the criteria used in this study to characterize differences between the 

control and colchicine treated cells was the amount of protein per cell. Our study 

showed a significant increase in the amount of protein per cell in the colchicine 

treated cells (3.73 ± 0.15 x 10"^ ug per cell) versus the amount of protein found in the 

control cells (figure 7). The amount of protein per cell in our control cells (PNT) 

(3.20 ± 0.15 X 10 ̂  ug per cell) was almost double the level reported by Parker, et. al, 

(1980) in a 2-B clone C-6 glioma cell line (1.86 ± 0.13 x 10^ ug per cell). The 

difference in the two protein levels may be due to the fact that our glioma cell line 

was from the American Culture Collection. This line may express a higher level of 

protein than the 2-B clone. 

c. Heme Oxygenase (HO): 
Dwyer, et. al, (1992) characterized heme oxygenase as a stress protein that is 

inducible by heat shock (stress). In our cell cultures (passage #70) harvested 24 hours 

after heat stress, a heat shock response was clearly demonstrated by the increase in 

heme oxygenase activity. Basal HO activity in the untreated control cells (PNT) was 

33 ±7 pmol/min/mg protein (Fig. 8). Heat shock (stress) increased HO activity 
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approximately 2-fold in both the control (PNT + HS) and the colchicine treated cells 

(CLT + HS). In addition, the unstressed colchicine treated cells (CLT) showed 

approximated a 1.5 fold increase in HO activity, indicating that colchicine also 

induced a stress response. 

Dwyer, et. ai, reported a 1.9 fold increase in HO activity in rat forebrain 

astrocytes after a 20 min. heat stress. They also noted a 7 fold increase in HO activity 

after 2 hours of heat stress. In both instances cells were harvested four (4) hours after 

a heat stress of 42°C. Ewing, et. ai, (1992) reported a 20 fold increase in HO 

activity in rat brain after a 20 minute heat stress at 42°C. Cells in their study were 

harvested six (6) hours post treatment. Our data indicates that a typical heat stress 

response has occurred, i.e., approximately a doubling in HO activity as a result of 

heat stress. In our laboratory, cells were harvested 24 hours after a heat stress of 42°C 

for 30 minutes. It is apparent that the extent of the activity may be related to the 

severity of the insult (length of time of the stress 15 min, 30 min, 2 hour, etc.) or the 

types of tumor cells analyzed (Steels, et. al, 1992). 

Our results also indicated that colchicine causes an increase in HO activity in 

C-6 glioma. This increase seems to parallel drug resistance; at least there appears to 

be some correlation between drug resistance and increased HO activity in cell cultures 

at passage #70. This correlation may or may not exist for cell passage #81 since 

enzyme activity was not determined in these cells. Our data does show, however, that 

cell passage #81 was even more resistant than the colchicine treated cells at cell 

passage #70. The correlation between drug resistance and increased HO activity seen 
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at cell passage #70 may be a result of the induction of the multiple drug resistance 

gene (MDRl) in response to heat shock. Kioka, et. al. (1992) has reported that heat 

shock does increase MDRl levels in a drug-resistant mouse tumor cell line. 

d. Glutamine Synthetase Activity (GS): 
Glutamine synthetase is considered an enzyme marker for astroglia. This C-6 

glioma strain often appears to change more towards astroglial character as it ages 

(Parker, et. al., 1980). At cell passage #21, Vemadakis,er. al. (1986) noted GS 

activity of approximately 1.25 nmol/min/mg of protein for C-6 glioma cells grown 

10-14 days in culture. At cell passage #70, used in our study, the GS activity of the 

cells was 2.0 ± 0.2 nmol/min/mg protein (Fig. 9). Vemadakis, et. al, (1986) reported 

a GS activity at cell passage #82 of approximately 3.7 nmol/min/mg protein in C-6 

glioma. The GS activity seen in the unstressed control cells (PNT) at cell passage #70 

might be expected as it is intermediate between the older and younger cultures 

reported by the Vemadakis group. 

The results of our study indicate that GS does not respond to heat stress or 

colchicine in the same manner as heme oxygenase. The GS activity in our cell passage 

#70 does not appear to have paralleled drug resistance. There are no reports in the 

literature to indicate that GS is a heat shock protein inducible by stress. Studies have 

shown that various compounds, i.e., glucocorticoids (Pishah and Phillips, 1980), 

sodium butyrate (Weingarten, et. al, 1981), ^-adrenergic agonists and dibutyryl 

cyclic AMP (Browning and Nicklas, 1982) induce GS activity in C-6 glioma. It may 

be that colchicine by itself slightly induces GS activity, while heat stress provides 

some uncharacterized additive factor. There was no increase in GS activity in the 
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parent strain subsequent to heat stress. Our results did show a significant increase in 

GS activity in the heat-shocked colchicine treated cells (CLT + HS), however, no 

increase in GS activity was seen in the control cells, and colchicine did not 

significantly increase enzyme activity in the absence of heat shock (Fig. 9). 

e. Cyclic Nucleotide Phosphohydrolase Activity (CNP): 
Colchicine treatment did not appear to change CNP activity (Fig. 10). The 

activity in the stressed colchicine treated cells is not different from the control, but it 

does respond somewhat to heat stress. There appeared to be a decline (i.e., there was 

no increase) in CNP activity when the parent strain was heat stressed. It is uncertain 

why the parent strain did not respond to heat stress, but the behavior of CNP is similar 

to that seen with GS. 

Parker, et. ai, (1980) reported the CNP activity in unstressed C-6 glioma of 

cell passage #88 to be 0.125 ± 0.009 umol/min/mg of protein and at cell passage #26 

to be 0.688 ± 0.032 umol/min/mg of protein. Results obtained in this laboratory for 

CNP activity at cell passage #70 in the control cells (PNT) were 0.207 ± 0.018 

umol/min/mg of protein. The CNP activity determined in our control cells may be 

decreasing toward the level found by Parker, et. al., at cell passage #88. Based on 

Parker's data showing a loss of CNP activity with increased passages, these values 

would be expected at our intermediate passage number. 

The activities of CNP, an enzyme marker for oligodendrocytes, and glutamine 

synthetase, an enzyme marker for astrocytes, were compared. In order to determine 

whether our cell line was becoming more astroglial in character (undergoing 

transdifferentiation) our data was compared to the results reported by Parker, et. al., 
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for early (21 to 26) and late (82 to 88) C-6 glioma cell passages. The comparison was 

undertaken to assess the increase in GS and the decrease in CNP seen with aging 

(transdifferentiation); although, we only looked at one point in time. Parker, et. al, 

have indicated that since the CNP activity was markedly high and that of GS was low 

in the early passages and that this relation was reversed in the late passages; their 

findings suggested a transdifferentiation of C-6 glioma cells with passage. At our 

passage #70, the GS/CNP ratio in the control cells was approximately 10:1. Parker, 

et. al.,'s GS/CNP ratio for cell passages #21-26 was approx. 1.5; 1. At cell passages 

#82-86, the GS/CNP ratio was approximately 30:1. The ratio seen after heat stress to 

the control cells (PNT + HS) was approximately 11:1. The GS/CNP ratio was 

approximately 10:1 in the colchicine treated cells (CLT) and approximately 11:1 in 

the heat stressed colchicine treated cells (CLT + HS).Two things are apparent from 

our data. One is that the cells that we used have GS/CNP ratios that agree fairly well 

with Parker's work. The second point is that neither heat shock nor colchicine did 

much to change this ratio. 

Colchicine treatment significantly increased heme oxygenase activity and 

produced drug resistance. These findings suggest the possibility of using HO as a 

marker of drug resistance. Neither GS nor CNP activities appear to parallel the 

induction of drug resistance, and these enzymes are not predictive of the onset of drug 

resistance. 

Objective III: To determine whether the drug resistance seen in the colchicine 
treated cells can he reversed by verapamil 
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Verapamil presumably acts by inhibiting the activity of the multiple drug 

receptor and restoring the cytotoxic activity of drugs like adriamycin, vincristine, and 

taxol within the cell (Dalton, et. al, 1989). 

Our studies showed that verapamil, in the absence of taxol, appears to have 

induced a significant increase in cell counts (approximately 20% over control) when 

cells (at passage #81) were pre treated with lOuM verapamil (figure 11). However, 

figure 12 shows that even though cells exposed to 10 uM verapamil showed an 

increase in cell counts, this concentration still increased the sensitivity of the CLT cell 

line to taxol. In addition, the lower concentrations that did not appear to affect cell 

counts (1 uM and 5 uM), also reduced the taxol EC50 toward that seen in the control 

cells. 

Schmidt, et. al, 1988 studied the effects of verapamil by itself on human 

medulloblastoma, pinealblastoma, glioma, and neuroblastoma cell lines. They found 

that growth rates of these tumor cells were inhibited 10-100% by concentrations of 

10-100 uM verapamil. Our results indicate that verapamil by itself, does enhance cell 

counts, at least in the colchicine treated cells, at concentrations up to the lowest value 

in their study (10 uM). 

The fact that the addition of verapamil sensitized our colchicine treated cells 

to taxol (decreased cell counts) provides further evidence that colchicine has induced 

multiple drug resistance in this glioma cell line. The ability of verapamil to inhibit 

the activity of the multiple drug receptor and restore the cytotoxic action of taxol has 

previously been documented by Dalton, et. al (1989). 
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In addition, our results show that blocking of the MDR receptor by verapamil 

is concentration dependent. Similar findings have been reported by Twentyman, et. 

al, 1990 in studies utilizing a panel of multiple drug resistant mouse tumor cell lines. 

They studied the relationship between resistance to adriamycin, vincristine, 

colchicine, etoposide and resistance modification by verapamil and cyclosporin A 

(Table 3). The latter two agents are inhibitors of the multiple drug transporter. When 

present in excess, these two inhibitors compete for the multiple drug resistance 

receptor, thereby slowing the disappearance of chemotherapeutic agents from resistant 

cells. 

Twentyman, et. ai, (1990) used concentrations of 3.3 uM and 6.6 uM 

verapamil in multiple drug resistant mouse tumor cell lines. They found that the 

effect of 3.3 uM verapamil on the MDR cell lines was no greater that that of the 

parent line. By comparison, studies in our laboratory showed that 1 uM verapamil 

was effective in sensitizing our colchicine treated cells to taxol. Therefore, it appears 

that taxol is more effective in our C-6 glioma cell line than in the cell lines studied by 

Twentyman, et. al, (1990). 

Differences were noted in the taxol EC50 between the colchicine treated cells 

(1490 ng/ml at cell passage #70) and the colchicine treated cells—no verapamil 

pretreatment (9103 ng/ml at cell passage #81) (figure 13). These differences in EC50 

values may be a reflection of the differences in cell passage (passage #70 versus 

passage #81) or the differences may reflect the variation in the times which the two 

cell passages were harvested. Cell passage #70 was grown to confluence 
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(approximately 10 days) prior to harvesting. Cell passage #81 was harvested 48 hours 

after the start of verapamil treatment. It is also possible that taxol may be more 

effective or have a more substantial affect on cells during the log phase of growth. 

Therefore, a direct comparison between the two colchicine treated passages is 

difficult. 

A comparison of calculated EC50 values (Fig. 13) demonstrated the 

effectiveness of verapamil in reversing colchicine induced drug resistance by taxol. 

The EC50 of taxol was reduced 14-fold; by exposure to 1 uM verapamil. At 5 uM 

verapamil pretreatment, the taxol EC50 was diminished 20-fold. The taxol EC50 was 

decreased 125-fold to 72 ng/ml when cells were pretreated with 10 uM verapamil. 

This EC50 value of 72 ng/ml is comparable to that found with the control cells (taxol 

EC50- 82 ng/ml). This indicates that verapamil at a concentration of 10 uM 

completely reversed drug resistance in the colchicine treated cells. Since verapamil is 

known to inhibit multiple drug resistance, this evidence supports a MDR mechanism 

for the induction of drug resistance to taxol by colchicine in C-6 glioma. 

CONCLUSIONS: 

(1). Colchicine applied for a 24 hour period at a concentration of 480 ng/ml can 
induce drug resistance to taxol in a C-6 glioma cell line 

(2). This resistance is characterized by: 
a. An increase in the amount of protein per cell. 
b. Increased heme oxygenase activity. 
c. Of the three enzyme tested, only heme oxygenase correlated well with 

drug resistance 

(3). Colchicine - induced resistance to taxol is reversed by verapamil and therefore is 
likely due to the induction of the multiple drug resistance receptor. 
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Cell Culture/ Enzyme Activity Assay Protocol 

Harvest cells- 0.25% Trypsin (5.0 ml per 75cm^ flask; 
1.0 ml per well in 6 well plate; and 0.5 ml per well 

in 24 well plate) 

Pipet trypsinized cells in X2- X3 volumes 
ice cold F-12 media 

Cell count(s) 
(200ul) 

Centrifuge- decant off supernatant media. Re-suspend in 5.0 ml EBBS 
(Earle's balanced salt solution). Vortex briefly; centrifuge at 
approximately 2500 rpm for 5 min. Repeat procedure. Finally, 
re-suspend pellet in 5,0 ml EBBS. Pipet solution into prelabeled 
1.5 ml Eppendorf tubes as follows : 

I 
1.0 ml 

suspension 
1.0 ml 

suspension 
1. 0ml 

suspension 

I 
1.0 ml 

suspension 

I 
1. 0ml 

suspension 

SDS-PAGE HO ASSAY BRADFORD GS ASSAY CNP ASSAY 
PROTEIN 

Centrifuge tubes on high setting in Beckman Microfuge for approximately 3 0 
seconds. Decant off supernatant. Re-suspend cells in appropriate volume 
of buffer as follows 

SDS-PAGE 
lOOul 

pH 7 4 Harvest buffer 
0.25M Sucrose,20mM 
Tris HCL 

HO ASSAY PROTEIN ASSAY GS ASSAY 
200ul 

pH 7.4 Microsomal 
buffer;0 IM Pot 
Phosphate, 
20% glycerol 
ImM EDTA 

150ul 
pH 7.3 PBS 

CNP ASSAY 
800ul 
PBS : Imidazole 

buffer 

200ul 
0 32M crose 

QUICK-FREEZE each tube ASAP in liquid nitrogen or dry-ice acetone or 
isopropanol bath. 
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CELL COUNTING PROCEDURE 

Reagents : 
Trypan Blue- 0.4% in 0.85% saline 
0.85% sodium chloride (saline) 
Trypsinized cell suspension in cold F-12 media 

Instruments : 
Hemacytometer Fisher model 
Olympus model M021 stereomicroscope 
200-1000ul variable volumetric pipettor and tips 

Procedure : 
1). Into pre-labelled culture tubes the following solutions 

were pipetted: 
a. SOOul trypan blue dye 
b. SOOul 0.85% saline 
c. 200ul cell suspension in F-12 media 

2). Each tube was vortexed briefly. 

3). Using a pasteur pipet transfer sufficient enough volume 
of cell suspension to fill each grid in a hemacytometer 
by capillary action. 

4) . All of the cells in each of the four corner and center 
grids were counted for each sample. 

5). To obtain the average cell number, the total number of 
cells counted was divided by the number of grids 
counted. 

6) . This number was multiplied by 5 to correct for the 
dilution factor. 

7) . To obtain the number of cells per milliter in the 
original solution, the number obtained in step 6 
above was multiplied by 10*. 
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BRADFORD PROTEIN ASSAY PROCEDURE 

Reagents : 
Phosphate buffered saline: pH 7.3 O.OIM 
NaOH solution: 0.05N 
HCL solution: 1.21N 
Bovine serum albumin protein standards: 15,3 0,5 0 mg/dl in 

saline. 
Cell homogenate: suspended in phosphate buffered saline. 
Protein assay solution: Prepared by mixing 1 volume of 

protein dye reagent with 9 volumes deionized water in a 
plastic container. 

Instruments : 
80 °C water bath 
0-4°C ice bath 
Bausch Sc Lomb spectronic 2 0 
Eppendorf variable volumetric pipettors with disposable 

tips 
vortex mixer 

Procedure : 
1). 0.1 ml each of protein standards, samples, and 

distilled water as a blank were hydrolyzed in 
tubes containing 600 ul 0.05N NaOH by heating at 
80°C for lOmin. 

2). After heating the tubes were immediately placed in an 
ice bath for 5 min. 

3). The solutions were then neutralized with 1 drop 
(approx 

50ul) of 1.21N HCL. 
4). 50ul each of the previously hydrolyzed standards, 

samples 
and blank were pipeted into tubes containing 2.5ml 
protein assay solution. 

5). Each tube was mixed thoroughly by vortexing briefly. 
6). The tubes were equilibrated at room temperature for 

3min. prior to transferring to a cuvette. 
7). The absorbance [O.D.] of the standards and samples 

vs the blank were measured at 5 95nm. 
8). The amount of protein in each sample was estimated 

from the slope of the regressed line in which the 
absorbance [O.D.] was plotted against the 

concentration 
(mg/ml) of the protein standards. 
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HEME OXYGENASE ASSAY 

Reagents : 
Potassium phosphate buffer: 0.IM K2HPO4, pH 7.4 
Deferroxamine: lOOmM stock solution, 65.7mg in 1.0ml 

K2HPO4 buffer 
Bovine serum albumin: ImM stock solution, 66.0mg in 1.0ml 

K2HPO4 buffer 
Hemin (Hemin chloride): ImM stock solution, 6.5mg in 0.IM 

K2HPO4 buffer:0.IN NaOH (9.5:0.5) 
^-Nicotinamide adenine dinucleotide phosphate ((8-NADPH) : 

lOOmM stock solution, 74.3mg in 1.0ml 0.IM K2HPO4 
buffer 

Bilirubin: ImM stock solution, 5.85mg in 10ml O.IM K2HPO4 : 
O.IN NaOH (9.5:0.5) 

Biliverdin: ImM stock solution, 5.82mg in 10ml O.IM 
K2HPO4 : 0 . IN NaOH (9.5:0.5) 

Cell homogenate buffer: O.IM K2HPO4, 20% (v/v) glycerol, 
ImM EDTA, pH 7.4 

C-6 glioma cell homogenate: previously prepared and frozen 
(see cell culture/ enzyme activity protocol) 

Rat liver cytosol: previously prepared and frozen, source 
of biliverdin reductase. 

Instruments : 
37°C water bath 
Gilford Stasar III spectrophotomer with temperature 
controlled flow through cuvette 
Conical shaped teflon cell homogenizer and drill 

Procedure : 
1). Cell suspension(s) and one milliter of rat cytosolic 

fraction were removed from -20°C freezer and allowed to 
thaw. 

2). The cell suspension was homogenzed using a teflon 
homogenizer. 

3). Into 12 X 75mm culture tubes the following reaction 
mixtures were pipeted: 

Reactant Amount of Stock Solution to pipet 

5mM Deferroxamine 
2 5uM Hemin 
15uM Bovine serum albumin 
*lmM NADPH 
C-6 glioma cell homogenate 
Rat cytosolic fraction 
O.IM K2HPO4 buffer 
*Note: (see step 4 below) 

50 ul 
25 ul 
15 ul 
10 ul 
200ul 
50 ul 
650ul 
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4). The reaction mixture was preheated without NADPH at 37°C 
for 5 min. 

5). 10 ul NADPH was added and the mixture was gently 
vortexed and then aspirated into the spectrophotometer. 

6). The absorbance (AO.D.) was measured at 1 min. and again 
at 15 min. at a wavelength setting of 453nm. 

7). The Heme oxygenase activity (nM/min) was estimated by 
multiplying the rate of change in absorbance (AO.D./min) 
by the inverse of the slope of the regression line in 
which absorbance (O.D.) was plotted against bilirubin 
standards(nM): 

AO.D./min x nM/O.D.(inverse slope)= nM/min 

8). After correction for the total amount of protein in the 
original sample volume, Heme oxygenase activity was 
expressed as pmol/min/mg protein 
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GLUTAMINE SYNTHETASE ASSAY 

Reagents : 
Lysis buffer: lOmM Imidazol HCL, 0.5mM EDTA, pH 7.0 with 
HCL 
Imidazol-HCL: IM, pH 7.2 with HCL 
L-glutamine: 0.25M in distilled HjO 
Manganese chloride: 4mM in distilled HgO 
Hydroxylamine : 1.25M in distilled H^O, make fresh each 
time 
Sodium Arsenate: 200mM in distilled HgO 
Adenosine 5'Diphosphate (ADP): 8mM in distilled HjO 
Ferric chloride: 0.37M FeCLj, 0.67M HCL, 0.20M 
trichloroacetic acid 
Gamma-glutamyl-hydroxymate (L-glutamic acid gamma-
monohydroxymate): 5mM in PBS/lysis buffer 
Phosphate buffered saline; O.OIM, pH 7.30 
Previously prepared and frozen aliquot of C-6 glioma cells 

(see cell culture/ enzyme activity assay protocol) 

Instruments : 
0-4°C ice bath 
37°C water bath 
Teflon tissue homogenizer & drill 
Bausch & Lomb Spectronic 2 0 spectrophotometer 
Damon lEC HN-S Centrifuge 
Vortex 

Procedure : 
1). Frozen cell suspensions were thawed and homogenzed in 

PBS/lysis buffer (1:1). 
2). Tubes were labelled in triplicate for samples, 

standards, and blanks. 

Standard 
tunoles gamma-6H 

Vol. of 5mM 
soin. 
to add 
(.005uM/ul) 

Vol. of 
PBS/lysis 
buffer (ul) 

0 Oui 250ul 

. 02 4 246 

. 05 10 240 

. 10 20 230 

.20 40 210 

.30 60 190 

.40 80 170 
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3). To each of the blanks, 250ul of PBS/lysis buffer (1:1) 
was added. 

4). The standard curve was set up as follows: 

5). To the sample tubes, 250ul of cell homogenates were 
added. 

6). The reaction mixture was prepared as follows: 

for 40 tubes for 60 tubes 

L-glutéunine 4 . 0ml 6 . 0ml 

Imidazole 2 . 0ml 3 . 0ml 

ADP 1. 0ml 1. 5ml 

MnCLj 1. 0ml 1. 5ml 

Hydroxy1 amin 1. 0ml 1. 5ml 

NaAs 1. 0ml 1. 5ml 

7). 25Oui of the reaction mixture was added to each tube; 
blanks, standards, and samples. 

8). Each tube was vortexed briefly and then placed in a 37°C 
water bath for 3 0 minutes. 

9). After the 3 0 minute incubation period the tubes were 
placed in an ice bath. 

10) 0.5ml FeCLj solution was added to each tube, vortexed 
and then centrifuged at approx. 2000rpm for 5 minutes. 

11).The FeCLj solution containing the gamma-glutamyl-
hydroxymate (yGHjwas measured spectrophotometrically at 
555nm. 

12) .The absorbance (O.D.) of the FeCL^ solution for each of 
the standards and samples were recorded and corrected 
for the absorbance of the blanks. 

13).The 7-glutamyl hydroxymate activity (uM/min) was 
estimated by multiplying the rate of change in 
absorbance (AO.D./min) by the inverse of the slope of 
the regressed line in which absorbance (O.D.) was 
plo t t e d  a g a i n s t  v a r y i n g  c o n c e n t r a t i o n s ( u m o l e s )  o f  y -
glutamyl hydroxymate: 

AO.D./min x uM/O.D. (inverse slope)= umol/min 

14).After correction for the total amount of the protein in 
the original sample volume (800ul), the y-glutamyl 
hydroxymate was expressed as umol/min/mg protein. 
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2',3'-CYCLIC NUCLEOTIDE 3'-PHOSPHOHYDROLASE (CNP) ASSAY 

Reagents : 
Sucrose; 0.32M in distilled HjO 
Tris-HCL: 0.20M, pH to 7.5 
Sodium Deoxycholate: 1% solution in distilled HjO 
Tris-maleate : 50tnM, pH to 6.2 
Tris-HCL: 0.3 0M containing 21mM MgCLj, pH 9.0 
2',3'-cAMP: 7.5mM, in Tris-maleate buffer. Made fresh the 

day of the assay 
Alkaline phosphatase: approximately 0.7 alkaline 
phosphatase units/ lOOul of 0.30M Tris-HCL containing 21mM 

MgCLj 
Isobutanol/Benzene: (1:1) mix equal parts of these 
reagents 
Ammonium molybdate: 1.5% in 0.5N HgSO^ 
H2SO4 solution: 0. 5N 

Instruments : 
Teflon tissue homogenizer 
90°C water bath 
30°C water bath 
Bausch & Lomb Spectronic 2 0 spectrophotometer 
0-4°C ice bath 
C-6 glioma cell suspension, previously isolated and frozen 

(see cell culture/ enzyme activity assay protocol) 
Beckman Microfuge B 

Procedure : 
1). Previously frozen aliquots of cell suspensions were 

thawed and then centrifuged at high speed for 6 0 seconds 
in a Beckman microfuge. 

2). The supernatant was discarded and the resulting pellet 
was homogenized in 200ul 0.32M sucrose. 

3). lOOul 0.2M Tris-HCL, pH 7.5 and 200ul 1% Na deoxycholate 
was added to the homogenate. 

4). The homogenates were placed in an ice bath for 10 
minutes. 

5). 150ul of distilled water was added to each and then the 
samples were re-homogenized. 

6). Using 5ml conical tubes, three blanks were set up by 
adding 180ul 50mM Tris-maleate, pH 6.2 to each of the 
tubes. 

7) . Samples were set upin triplicate by adding 13Oui 50mM 
Tris-maleate,pH 6.2 and 50ul homogenate to the 
appropriate number of tubes. 

8). 20ul of substrate (7.5mM 2',3'-cAMP) was pipetted into 
each tube. Each tube was then briefly vortexed. 

9). The tubes were then placed in a 30°C shaking water bath 
for 20 minutes. 

10).After incubation the tubes were first, plunged into a 
90°C water bath for 1 minute and then, returned to the 
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30°C water bath for 5 minutes to cool down. 

11).A standard curve for 2'-AMP was set up as follows: 

Standard 
uMoles 2'-AMP 

Vol. of 5mM 2'-
AMP 
(0.005uM/ul) 

Vol. of Tris-
maleate 
buffer,pH 6.2 
(ul) 

0 0 200 

0 . 025 5 195 

0 . 050 10 190 

0 . 100 20 180 

0 .200 40 160 

0 .250 50 150 

0.300 60 140 

0 .400 80 120 

0 .500 100 100 

0 . 750 150 50 

1 . 000 200 0 

12). lOOul of alkaline phosphatase was added to each tube. 
13). Each tube was vortexed briefly, and then placed in a 

30'C water bath for 2 0 minutes. 
14). After incubation 1.5ml of isobutanol/benzene (1:1) and 

1.5ml of 1.5% ammonium molybdate was added to each 
tube. 

15). Each tube was vortexed for approx. 20 seconds and then 
centrifuged for 5 min. at 2000rpm. 

16). Color production was measured spectrophotometrically at 
410nm. 

17). The 2',3'-CNP activity (uM/min) was estimated by 
multiplying the rate of change in 
absorbance(AO.D./min.) by the inverse of the slope of 
the regressed line in which absorbance (O.D.) was 
plotted against varying concentrations (umoles) of 2'-

AMP standard: 

AO.D./min x umol/O.D. (inverse slope)= 
umol/min. 
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18). After correction for the total amount of protein in the 

original volume (650ul), the 2',3'-CNP activity was 
expressed as umol/min/mg protein. 
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RAT LIVER CYTOSOL FRACTION 

Reagents : 
Sodium chloride: 0.15M in distilled water 
Tissue buffer: 0.25M sucrose, 20mM Tris-HCL, pH7.4 

Instruments : 
Refrigerated centrifuge 
Brinkman LJ-65 ultra-centrifuge 
Potter-Elvehjem tissue homogenizer 

Procedure : 
All preparative steps were performed at 4°C or on ice 

1). Livers from Sprague-Dawley rats were soaked in 
approximately 50ml cold 0.15M NaCL. 

2). Approximately lOgms of diced liver was homogenized in a 
Potter-Elvehjem homogenizer in 4 vol. tissue buffer, 
pH7.4. 

3). The homogenate was then centrifuged at 5,000g for lOmin. 

4). The 5,000g supernatant fraction was then ultra-
centrifuged at 24,000 rpm for 1 hour. 

5) . The resultant supernatant cytosolic fraction was then 
divided into 1.0ml aliquots and immediately frozen in 
liquid Ng until needed for the assay procedure. 
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SODIUM DODECYL SULFATE-POLYACRYLAMIDE GEL ELECTROPHORESIS 
(SDS-PAGE) 

Reagents : 
Stock solution: 30% Acrylamide: 0.8% N,N-Methylene bis 
acylamide (Bis) 

Trisma base 
Tris Running buffer: 1.875M, pH 8.8 
HCL solution: concentrated 
Tris Stacking buffer: l.OM, pH 6.8 
Ethylenediamine tetraacetic acid (EDTA): 0.2M in distilled 
HzO 
N,N,N',N'-tetramethylene amine: TEMED, neat 
Ammonium persulfate: 10% in distilled HgO 
Running buffer: pH 8.3, Sigma 7-9 Tris, glycine. Sodium 
dodecyl sulfate (SDS) 

Solubilizing solution: 2x, 10% SDS, 2 ^-mercaptoehtanol, 
glycerol, IM tris (pH 6.8), distilled HgO, 
Bromophenol blue 

Fixer/Destainer: 50% methanol, 7% glacial acetic acid, 43% 
distilled water 

Stain: Coomassie Brilliant Blue R, 0.25% in 
fixer/destainer 

Previously prepared and frozen aliquot(s) of C-6 glioma 
cells 
(see cell culture/ enzyme activity assay protocol) 

Commercially prepared SDS-PAGE molecular weight markers 

Instruments : 
Extech Model 671 pH Meter 
Lab Line magnetec stirrer 
100"C Oven 
Hoefer Scientific SE600 Vertical Slab Gel Electrophoresis 
Unit 
E-C Model EC60 0 Power Supply 
Mettler Model 1200 Balance 
5 Oui Syringe 

Procedure : 
A. Preparation of the Separating Gel 
1). The SE6 00 Vertical Slab Gel Unit was assembled in the 

casting mode using 1.0mm spacers. 
2). A 12.5% Separating gel was prepared by pipeting the 

following solutions, in order, into a 12 5ml Erlenmeyer 
flask : 

a) Acrylamide: BIS (30gm:0.8gm) 12.5ml 
b) 1.875M tris, pH 8.8 6.0ml 
c) 0.2M EDTA 0.3ml 
d) distilled HgO 10.9ml 
e) TEMED .015ml 
f) 10% NH4 persulfate 0.3ml 

3). The solution was immediately pipeted into the sandwiches 
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to a level about 4.0cm from the top. 
4). The gel was overlayed gently with approximately 0.3ml 

distilled water. 
5). The solution was allowed to polymerize for 20-30 

minutes. 
6). After 30 minutes the overlay was poured off and excess 

water removed with Whatman no. 1 filter paper. 

B. Preparation of the Stacking Gel 
1). The Stacking Gel was prepared by pipeting the following 

solutions, in order, into a 125ml Erlenmeyer flask: 
a) Acrylamide: BIS (30gm:0.8gm) 2.5ml 
b) l.OM tris, pH 6.8 1.9ml 
c) 0.2M EDTA 0.15ml 
d) distilled HgO 10.3ml 
e) TEMED 7.5ul 
f) 10% NH4 persulfate 0.15ml 

2). The 1.0mm spacer comb was inserted into the sandwich. 
3) . The Stacking gel was gently pipeted into the sandwich 

taking care to remove all air bubbles from around the 
spacer. 

4). The Stacking Gel was allowed to polymerize for 20-30 
minutes. 

C. Preparation of Cell Homogenate 
1). Equal volumes of cell homogenate and 2X Solubilizing 

Solution 
were combined in a test tube. 

2). The tube was placed in a boiling water bath for 
approximately 90 seconds to denature the proteins with 
SDS. 

D. Loading and running the Gels 
1) . The comb(s) were gently removed from the gels. 
2). Each well was rinsed with Running buffer. 
3). Using a 50ul syringe the sample(s) (cell homogenates 

equivalent to 10-20ug protein) and the standard 
molecular weight markers were underlayed in the 
appropriate 
well. 

4). The Gel Sandwiches were then assembled into the buffer 
chamber, according to manufacture specifications, and 
the appropriate volume of Running Buffer, pH 8.3 added. 

5). The lid was placed on the unit and the unit connected to 
the power supply. The power supply was run at a constant 
current of 50 mA 

6) . The gels were electrophoresed with constant cooling and 
stirring until the marker dye had reached the bottom of 
plate. 

E. Staining and Destaining the Gels 
1). After disassembling the gels from the sandwiches, the 

gels were fixed in Fixer/Destainer solution for 4 hours 
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on a rotary shaker. 
2). The proteins in the gel were visualized by staining with 

the Coomassie Blue staining solution for 30 minutes and 
then repeatedly destaining with Fixer/Destainer 
solution. 

3). The position of the Heat shock proteins- hsp 32, 70, & 
90 were compared by visual comparison to the known 
molecular weight markers. 
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