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Votava, Petr, M.S., September 1997 Computer Science

Object-oriented design and implementation of the Ecosystem Information System (EIS) 
using Java (72 pp.)

Director: Ray Ford, Ph.D.

The Ecosystem Information System (EIS) is used by ecosystem modelers to create, 
modify and access data repositories. The information in the EIS repository is organized 
hierarchically using object-oriented principles. Many problems associated with the 
current version of EIS led to an evaluation process that pointed out the need for the 
redesign of the current system in a more object-oriented fashion. The redesign of the EIS 
system was completed using Booch’s [5] object-oriented methodology. The design was 
completed at a time when Java, a new object-oriented programming language from Sun 
Microsystems, was showing promising support for robust and platform independent 
implementation of object-oriented design. After risk assessment and testing, Java became 
the implementation language for a new version of the EIS system.



Table of Contents

1. Introduction 1

1.1 Overview..................................................................................................  1

1.2 P roblem s................................................................................................ .. 2

1.3 Proposed Solutions ........................................................................L 4

1.4 Why Java? ....................................................................................5

2. Background * 6

2.1 Object-Oriented Design Definition ........................................... .... 6

2.2 A Spiral Model of Software Development ................................... 10

2.3 Ecosystem Information System (EIS) ...............................................  12

2.4 Spiral Model in EIS Development ...............................................  13

3. Object-Oriented Design of the Ecosystem Information System (EIS) 15

3.1 Notation ................................................................................................... 15

3.1.1 Views of the System .....................   15

3.1.2 Booch’s Notation for Object-Oriented Design...................... 16

3.1.2.1 Class Diagrams Notation ................................... 16

3.1.2.2 Object Diagrams Notation ................................... 19

3.1.2.3 State Transition Diagrams N o ta tio n ...................... 20

3.1.2.4 Interaction Diagrams Notation ...................... 20

3.2 Design ................................................................................................... 21

3.2.1 Identification of Classes and Relationships ...................... 21

3.2.2 Class Diagrams.........................................................................  22

3.2.3 Object Diagrams ............................................................  29

3.2.4 State Transition Diagrams ................................................ 30

3.2.4.1 EIS Hierarchy. ...............................    30

iii



3.2A.2 Syntax Tree ............................................................  32

3.2.4.3 Symbol Table............................................................  32

3.2.4.4 Parser .......................................................... 32

3.2.4.5 Graphical User Interface ..................................  34

3.2.4.6 EIS Hierarchy N o d e ...............................................  35

3.2.4.7 Node Description ............   36

3.2.5 Interaction Diagrams of Key Scenarios .....................  37

3.2.5.1 Creating New EIS Hierarchy Node ...................... 37

3.2.5.2 Adding New Node to the EIS Hierarchy -. 39

3.2.5.3 Modifying Existing Node of the EIS Hierarchy.. .  40

3.2.5.4 Saving EIS Hierarchy .................................    40

3.2.5.5 Opening Existing EIS Hierarchy ....................... 43

3.2.5.6 Exporting EIS Hierarchy .................................... 43

3.2.5.7 Importing EIS Hierarchy .................................... 44

4. Implementation 47

4.1 Implementation Language: Why Java? ...............................................  47

4.2 Implementation Problems and Solutions........................................   50

4.2.1 The EIS P a rse r...........   50

4.2.2 Java 1.1 Conversion ............................................................. 51

4.2.3 Input/Output .........................................................................  52

4.3 Implementation and Distribution Structure ..................................  53

4.4 Conclusions and Status .........................................................................  54

Appendix A. Class Specifications 55

Appendix B. JavaCC Example 64

Appendix C. BNF for EisParser 66

Bibliography 72



List of Figures

2.1 Spiral Model of EIS development .................................................................. 14

3.1 Class Icon   17

3.2 Abstract Class    18

3.3 Class Relationship .......................................................... i . . .  18

3.4 Class Category ..........................................................i. . . . 18

3.5 Object Icon     19

3.6 Object Relationships , - ‘   19

3.7 State Icon       20

3.8 State Transitions   20

3.9 Ecosystem Information System Top-Level Class Diagram ..........................  23

3.10 EIS Hierarchy Class Diagram   24

3.11 Symbol Table Class Diagram   25

3.12 Syntax Tree Class Diagram    26

3.13 Class Diagram of Descriptions of EIS Objects     27

3.14 Top-Level El S Obj ect Diagram   28

3.15 State Transition Diagram for EIS Hierarchy   31

3.16 State Transition Diagram for Syntax Tree   33

3.17 State Transition Diagram for Symbol Table     33

3.18 State Transition Diagram for Parser   34

3.19 State Transition Diagram for Graphical User Interface (GUI) ..........................  35

3.20 State Transition Diagram for EIS Hierarchy Node   35

3.21 State Transition Diagram for Node Description   36

3.22 Interaction Diagram: Create New Object   38

3.23 Interaction Diagram: Adding Node to EIS Hierarchy   39

3.24 Interaction Diagram: Modifying Existing EIS Hierarchy Node   .................... 41

3.25 Interaction Diagram: Saving EIS Hierarchy   42

V



3.26 Interaction Diagram: Opening EIS Hierarchy   42

3.27 Interaction Diagram: EIS Hierarchy Export    45

3.28 Interaction Diagram: EIS Hierarchy Import   46

vi



Chapter 1

Introduction

1.1 Overview

The Ecosystem Information System (EIS) is an object-oriented system that supports the 

creation of a distributed repository of ecosystem and natural resource information. The 

EIS repository is organized into hierarchies which are formed using an object-oriented 

framework, where classes contain data descriptions, instances are the datasets, and 

methods are the data transformations. One of the main goals of EIS is to provide data 

managers with a tool for data organization and dissemination which has both local and 

WWW interfaces, so that the database can be created and maintained locally, but certain 

parts can be shared with the outside world.

EIS has been built using object-oriented technology, specifically object-oriented 

analysis and design, and so the overall system is a collection of objects that interact with 

each other. This is in accordance with object-oriented analysis and design, which focuses 

on decomposing a complex system into a set of interacting objects. There are several 

problems that this type of design aims to solve. First it tries to reduce the complexity of 

large systems by focusing on objects, rather than on algorithms, as the building blocks for 

these systems. Second, it attempts to achieve flexibility of system implementation with 

respect to changes in requirements. This is accomplished through encapsulation and 

modularity. Last but not least, it tries to achieve a greater level of confidence in the 

correctness of the software, which in turn reduces the risks that are inherent in developing 

complex software systems.

1



But object-oriented design and analysis cannot be viewed separately from the 

evolution of the whole software system. This overall process is best described by a model 

such as Boehm's spiral model [6] which shows different stages of the development as 

being revisited in an iterative fashion. This is in contrast to the traditional waterfall 

model, where each stage of development is expected to be visited only once. Thus, the 

spiral model more closely reflects the reality in which requirements can change many 

times during the development process, and consequently some parts of the design and 

implementation must also change several times during the lifetime of the system.

1.2 Problems

Although the current implementation of the EIS is already being used, it is still in a 

nonterminal stage of the development process according to the spiral model. There are 

several problems with the current system (labeled "version 2.2") that limit its usability in 

many ways.

First is the problem of maintainability. There are almost 70,000 lines of code in 

the system, with almost no documentation other than high level design descriptions, so it 

is getting to the point where it is very hard for one or more developers to maintain the 

whole system. Second is the problem that the object-oriented design was translated into a 

more traditionally structured implementation. Mixing these two methodologies on such a 

large system has caused numerous problems during the system maintenance, particularly 

when making modifications due to changes in requirements. These deficiencies are not so 

much the fault of the designers and developers o f the original system, as much as 

problems with the tools that were available to them. The worst problems were caused by 

the graphical user interface (GUI). This was entirely written in XMotif which does not 

interface well with C++ classes. Moreover, the GUI code was generated using the Teleuse 

GUI generator, which generates C code in a somewhat cryptic structured manner. The 

result is that the GUI is very difficult to modify and maintain manually, due to its large 

size (almost 45,000 lines) and unusual structure. Lex and yacc also do not have



particularly good interfaces to C++ and since they were used to implement the EIS 

language processor, the code from the language processor also fails to match the object 

oriented design structure. Last, Sun RPC was used to implement a communication layer 

between server and clients, and was the source o f many problems related to robustness 

and security explained below.

Another problem embedded in the current version of the system is a set bf major 

security holes. These would enable a potential attacker to perform read/write operations 

on any files that have the same ID (user) or GID (group) as the user running the server. In 

order to assess the severity of this problem, I experimented with simple "attacks", and 

was able to easily download the password file and overwrite the .rhosts file on a system 

running the EIS server. These security problems definitely deserve attention, because of 

the EIS requirement that the system be distributed over the network.

Another of the big issues with all large complex software systems, including EIS, 

is the problem of portability. In the current version of EIS only portability with other 

Unix systems was addressed during the development. As a result, EIS would be 

extremely hard to port to run on either a PC (under Windows95 or WindowsNT), or on a 

Macintosh computer.

Other aspects of a software system that are very important from the user's point of 

view are robustness and error recovery. In other words, how often does the program 

crash and what are the results o f such a crash? Clearly, users will be very reluctant to use 

a system which wipes out its entire database when it crashes. The current version of the 

EIS system has some robustness problems resulting from RPC problems, and also 

because it was implemented in C/C++ without explicit support for exception handling.

The final problem of concern arises with the allocation of resources in the current 

version of the system. The main problem is that large blocks of memory are allocated on 

the startup of the system, regardless of their usage. This poses a severe limit on the
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number o f objects that the system can use, which can become a problem when the system 

is running on a machine with limited resources (especially a small amount of memory).

1.3 Proposed Solutions

First, it is important to realize that we are entering another iteration of the spiral model in 

the development of EIS. The maintainability of the system can be improved dramatically 

by using the object-oriented design to redesign components which have been identified as 

problem areas in the evaluation of the current system. Note, that the entire system does 

not have to be redesigned, but there are several parts that are specifically problematic in 

the current system. These include the GUI, symbol table, language processor, and the 

entire WWW interface.

Several general problems with EIS also need to be addressed. There are several 

possibilities for dealing with the security problems. The first one is to maintain the 

system in a single-user mode. In that way no part is directly accessible through a network, 

and so the system cannot be compromised (this is essentially how EIS is currently being 

used). Given this approach, it is still possible to globally distribute EIS information by 

extending the WWW interface to register hierarchies that were created locally with a 

designated EIS/WWW server, which then takes care of the distribution using a standard 

HTTP protocol. This seems the most feasible way to fix security problems. Other, more 

sophisticated alternatives exist, mainly implementing some kind of encryption/digital 

signature system in both the EIS client, and EIS server, using a scheme such as 

JavaBeans or Netscape SSL. It is my opinion however, that these alternatives would be an 

"overkill" based on what we are trying to achieve.

The problem of portability can best be solved by changing the language for the 

system implementation to a language and corresponding tools and libraries that are more 

platform independent than C/C++ with XMotif. The choice of today's developers seems 

to be Java, which uses platform independent libraries for key functions (including GUI
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management) and creates platform independent bytecode. Even though the language is 

still in development, it exhibits numerous features that seem to fit very well into the 

overall requirements on the system. More details on the recommendation to use Java as 

the language for the next version o f EIS implementation are given below.

The proposed solution to resource allocation problems is to redesign the,system 

with emphasis on dynamic rather than static allocation of resources, and with more 

attention facing towards garbage collection and general resource management. ; ;

1.4 Why Java?

There are many reasons why I recommend use of Java for the implementation o f the new 

version of EIS. First is a strong connection between Java, object-oriented design and 

object-oriented programming. Java supports all aspects of object-oriented design and 

clearly exhibits all the properties of object-oriented programming language, which makes 

it a strong candidate for the language of choice. It also addresses the key portability issues 

already mentioned, which seem very important in today's world where the more systems 

the application can run on, the better. Next is the feature of foremost importance, Java's 

ease of integration with World Wide Web facilities. In moving EIS from a distributed 

system to a system which attains its distribution facility through links to the WWW, the 

integration between EIS and the Web becomes critical. Since Java programs can be 

packaged as either applications (running locally) or applets (running remotely through 

Web browser), a lot of work can be saved in designing the Web interface from a scratch 

to replace the current prototype of "cgi bin" scripts. Last, but not least, Java is simple 

relative to C++, which should result in simpler code, easier maintainability, and ability 

for the implementer to focus less on the implementation details and more on consistency 

with the design. Also since Java has become extremely popular over the last several 

months, a large number of tools and libraries exist for this language which exhibit 

features of portability, simplicity, and so on.



Chapter 2

Background

2.1 Object Oriented Design Definition

In every engineering discipline the purpose of a design is to provide an intermediate 

generic representation of requirements that will map easily into implementation. In this 

sense, software engineering is no different. However, in the case o f software engineering 

the design cannot be viewed separately from the rest of the development process, because 

of issues that are specific to software development. One of the main differences that 

makes the software development process unique is the fact that the requirements can 

change over the lifetime of the system, and the design (and the designer) has to be able to 

deal with it. Other related difficulties result from the rapidly changing base technology, 

the perception that software is easy to change, and inherent complexity of software 

systems.

Over the years there have been numerous design methods that have gained 

popularity, ranging from top-down structured design to data-driven design. Aspects of all 

of these design techniques have been combined and evolved to form the object-oriented 

design method. We can start with the formal definition, which states

"Object-oriented design is a method o f  design encompassing the process o f  

object-oriented decomposition and a notation for depicting both logical and physical as 

well as static and dynamic models o f the system under design" [5]

The most important part of the definition is the notion of object-oriented decomposition, 

which makes object-oriented design very different from other approaches. Classes and 

objects, rather than algorithms or procedures, are used as the basic building blocks o f the

6
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design. To restate the definition in other words, object-oriented design focuses on 

identifying classes and objects and their relationships in a complex system.

But what is an object? What is a class? Every object can be identified by three 

attributes: state, behavior, and identity. The state of an object is determined by its static 

properties (for example the types o f its variables) and dynamic, current values of each of 

these properties (for example, values of its variables). It is good practice to encapsulate 

the state of the object and provide methods for its manipulation, rather then providing 

direct access to its properties. This has the advantage that it makes the application design 

independent of the object's intemahrepresentation, which makes the design more flexible. 

The behavior of an object represents its visible and testable activity. In other word it 

defines how an object is perceived to act and react in terms of its state change, when 

actions are performed on it from the outside. Lastly, the identity of an object is a property 

that distinguishes the object from any other object.

The concept of object and class is tightly related, because each object is an 

instance of some class. However, there are also important differences between an object 

and a class. An object is a concrete entity that exists in time and space, but a class is an 

abstract description of the characteristics common to its objects. So in other w ords,"... 

class is a set o f  objects that share a common structure and a common behavior.[ 5]" 

Another difference is that classes are mainly static, that is their existence, relationship, 

and semantics are fixed before execution of a program, but objects are created and 

destroyed dynamically during the program execution. From the designer's point of view a 

class is an important entity, but class descriptions alone do not constitute the design of the 

system. Since the classes do not exist in isolation, it is necessary to identify the 

relationships among the classes and the objects in the system. This is very important step 

in object oriented design, because these interactions define the overall behavior o f the 

system.
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Though different object-oriented design methodologies differ on the details, most 

agree that there are six different kinds of relationships that can be used to describe critical 

class/class, class/object, and object/object interactions: association, inheritance, 

aggregation, using, instantiation, and metaclass. The discussion below uses the specific 

interpretation given by Booch[5] for each of these relationships. Note that each 

relationship has a formal set-theoretic definition, but we generally give a more intuitive 

description here.

Association refers to a bidirectional semantic dependency between two classes.

For example, there is an association between students and courses offered by school, 

which in terms of cardinality is many-to-many association, meaning that each student is 

taking many courses and each course is attended by many students. Inheritance is a 

relationship among classes, in which a subclass is identified as one which shares all the 

structure and behavior of its superclass (or parent class), though the subclass may have 

additional properties not possessed by the parent. Aggregation defines the whole/part 

relationship between classes, where instance of one class (C|) can be an attribute of 

another class (C2). In this case class C, is the part of the class C2 which represents the 

whole. A client-server interaction is depicted in the using relationship, in which one class 

is requesting services of another class. Each of the above is a class/class relationship, 

which means that if there is a relationship R between classes C, and C2, then any object 

O, of C, and 0 2 of C2 have the same relationship R.

To add a higher level of abstraction and genericity, instantiation and metaclass 

relationships are used. Instantiation is a relationship between a parametrized class (also 

called a generic class) and its instances. A parametrized class is an abstract class that 

must be instantiated before objects can be created, and so it serves as a template for other 

classes. Last of the relationships mentioned above is metaclass, which is a class whose 

instances are themselves classes. This relationship treats classes as objects that can be 

manipulated.



In object-oriented design, the goal is to identify classes and objects, and their 

relationships, from the vocabulary of the problem domain. Most o f the time these key 

concepts are represented by nouns in any descriptive text. This differs from structured 

algorithmic design, in which we first look for the active verbs in the description of the 

problem domain, which identify the flow of execution. When considering the object- 

oriented design of a complex system, there are two main tasks to be completed by the 

designer. First, the designer must identify the classes and objects from the vocabulary of 

the problem domain. Second, the designer must identify the relationships among the 

classes and objects that express the requirements of the problem. In the terms of 

implementation, the classes and objects are called the key abstractions, and the 

relationship structures are the mechanisms of the design and implementation.

So what are the overall reasons for using object-oriented development over 

classical structured development? The main benefits come from the characteristics of the 

object model, which exploits the expressive power o f object-oriented programming 

languages, encourages the reuse of software components, leads to systems that are more 

resilient to change, reduces development risk, and appeals to the working of human 

cognition [5].

However there are also two main drawbacks in using object-oriented 

methodology. First, the performance cost related to the communication overhead between 

two objects in object-oriented programming language can be higher than a function 

invocation in a procedural language. Second is the inherent cost of switching to a new 

technology. Despite of these drawbacks, the benefits of object-oriented technology 

usually far outweigh the risks associated with the drawbacks mentioned above [5].



2.2 A Spiral Model of Software Development
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Object-oriented design and analysis cannot be, however, viewed separately from, the 

evolution of the whole software system. This overall process is best described by a model 

such as Boehm's spiral model [6].

The spiral model is an example of an software process model, which describes the 

order of the stages to be completed during the process, the transition criteria for; 

advancing from one stage to another, and the repetitive or iterative nature of the 

process/subprocesses. Software process models are especially important for large 

development projects, because they function both as management and descriptive tools 

that specify the order in which the major tasks should be performed, and that allow 

information about what was done to be placed in proper context. Many different models 

o f software development have been proposed, and they have all gradually evolved 

towards a form like that used in the spiral model or its derivations.

What makes spiral model so different from traditional process flow models? The 

main difference is that the spiral model is risk-driven rather than document- or code

driven. It also eliminates many problems associated with the other models while taking 

advantage of their strengths. A typical cycle of each spiral consists of several activities. 

First, the designer identifies an objective of the next portion of the product, such as 

performance or robustness. Next, he evaluates the alternatives for development of this 

part. These alternatives can be for example, design, reuse, or purchase the part in 

question. Next, the designer identifies and evaluates the constraints associated with the 

alternatives. The next step is to evaluate the alternatives with respect to the objectives and 

to the constraints, identify areas o f project risks, and evolve a strategy for resolving these 

risks. Finally, the designer chooses an approach and executes and evaluates appropriate 

task.



This risk-driven approach to each subset of the spiral model steps allows the 

designer to choose the particular software development approach that is best suited for 

this project, or even for just this phase of development whether it is specification- 

oriented, simulation-oriented, or prototype-oriented. This implies that most of other 

software development models can be accommodated within the process flow of the spiral 

model.

Finally, the way that the spiral model deals with maintenance phase of the 

software development process differs substantially from the approach of most other 

models. In many models the maintenance phase is separate from the rest of the 

development flow, which lumps a potentially vast set of activities involving changing 

specifications, redesign, and re-implementation into "maintenance". In the spiral model, 

maintenance is simply an ongoing spiral (or spirals) in which the specifications, design, 

and implementation issues are continually reevaluated in the changing context. In 

practice, using the spiral model requires the designer to overcome several difficulties, 

such as matching the spiral to details of contract software, developing risk-assessment 

expertise, and the further elaborating spiral model steps [6]. Despite the problems 

described above, I think that the benefits of the spiral model outweigh the difficulties, 

because of the risk-driven nature of the model that enables us to evaluate our options 

before we start each phase, and thus preventing us from costly changes into the design



2.3 Ecosystem Information System (EIS)
1 2

The Ecosystem Information System (EIS) is an object-oriented system designed to 

support the creation of repositories o f ecosystem and natural system information. EIS 

allows data managers to build an index to a heterogeneous collection of datasets in an 

intuitive (object-oriented) fashion. It also provides assistance in translating this index into 

a Web accessible form. For the data manager, EIS indices formalize relationships 

between datasets using traditional hierarchical classification principles long used in 

biological and spatial systems. For the user, EIS hierarchical indices provide a structure 

that supports use of standard Web' software to browse and query the collection of 

datasets.

EIS indices are constructed using traditional hierarchical classification principles, 

expressed in terminology taken from object-oriented modeling techniques. A class 

definition identifies the properties that are unique to a particular type of dataset. A class 

hierarchy defines an inheritance relationship among classes. Class descriptions thus 

hierarchically organize the shared and unique properties of various datasets. Once this 

classification framework is established, a specific dataset can be attached as an instance 

of a particular class. A dataset transformation is defined generically as a function on class 

instances. An implementation of this logical function is called a method.

A modeler builds an index using the following approach. First, he identifies 

classes of datasets that share well-defined properties and lists these properties. Second, 

the modeler identifies relationships among classes based on which properties are held in 

common and which are unique. Next, he registers each dataset as a member of a 

particular data class, and finally, he registers each program that manipulates dataset as a 

method of a function defined on a particular class of datasets.



2.4 Spiral Model in EIS Development
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The development process for EIS has been managed and can be described using the spiral 

model. The first design started in 1993. Since then several spirals have been completed. A 

diagram of the entire process is shown in Figure 2-1. The first spiral was completed when 

the first prototype was finished. This system featured a simple grammar for class and 

object descriptions, rudimentary language processing, with no static semantic restrictions, 

no user interface, no distributed objects, and no Web integration [2].

In the second spiral of development, this prototype was improved by adding a 

user-friendly graphical interface [3], and by looking at how the system could be extended 

to accommodate distributed objects. This scheme was designed, partially implemented 

and integrated in the second prototype [3]. A weakness of the second prototype was that 

the processing of the EIS description language remained partially incomplete, lacking 

effective static semantic constraints imposed on the hierarchies created by the system.

In the third spiral, the language deficiency was "fixed" formally by definition of 

an attribute grammar for the system, which extended the language to include the formal 

definition of semantic constraints. The third prototype integrated this checking with GUI 

enhancements and other improvements [1]. This version was the first real release of an 

executable system that was used outside of the department. However, various security 

problems were embedded in the implementation of the distributed part of the system, and 

it was not suitable for general release.

The project described here starts at the beginning of the fourth spiral. The main 

requirement at the beginning of this stage was to extend the EIS functionality to provide 

an interface to the World Wide Web. A partial version of a Web interface was created and 

embedded in the third EIS prototype, using C, C++ and CGI-scripts. However, with the 

emergence of Java as a platform independent, Web interface programming language, it 

seemed worthwhile to try to evaluate its importance in EIS evolution. Thus, this project
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Figure 2-1
Spiral Model of the EIS Development

starts with an evaluation of the feasibility of changing the implementation of EIS to Java. 

It seemed that with the features of Java, which will be discussed in more detail in Chapter 

4, and the variety of tools that are available for development of Java-based applications, 

the re-design and re-implementation of the EIS system was feasible, and would provide 

significant long term advantages to ongoing EIS development.



Chapter 3

Object-Oriented Design of Ecosystem Information System 
(EIS) 

3.1 Notation

3.1.1 Views of the System

Before starting to describe the design o f the Ecosystem Information System (EIS), it is 

necessary to introduce the notation that will be used throughout this chapter. Notation is a 

very important part of any design, whether it is in the form of blueprints in civil 

engineering, or in the form of diagrams in software development process. Its main 

purpose is to present the design in a manner that is more formal than written description, 

easier understood than source code listing, and more generic than a programming 

language.

Each software system can be described in several different ways. First, there is the 

logical view, which describes the abstract composition of the system in a form of key 

abstractions and mechanisms that logically define the system. Second, there is the 

physical view, that describe the concrete hardware and software composition of the 

system. There is, however, another dimension in describing any software system. Since 

software systems are dynamic systems, it is appropriate to distinguish between describing 

the system’s structure (static view) and the system’s behavior (dynamic view). These two 

views are complementary, because the behavior of a system cannot be defined without 

structure, and likewise structure by itself does not tell us much about the dynamic 

behavior.

This chapter concentrates on describing the logical view of the system in both 

static and dynamic forms using the form of Booch[5] diagrams whose notation is briefly

15
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described below. The current implementation of the system is described in greater details 

in Chapter 4.

3.1.2 Booch’s Notation for Object-Oriented Design

As described above, there are different views of the system, and thus there are several 

different types of diagrams. The presentation here uses four of the diagrams described by 

Booch, namely:

• Class Diagrams

• Object Diagrams

• State Transition Diagrams

• Interaction Diagrams

3.1.2.1 Class Diagrams Notation

Class diagrams are used to show the existence of classes and their static and logical 

relationships within the system. The class icon is shown in Figure 3-1, in a form of 

“cloud” with dotted borders to indicate the abstractness of a class definition. Each class 

must have a name, and may have a set of attributes, operations, and constraints. An 

attribute may have a name, a class, or both, and optionally a default value. The notation 

for these entities is as follows:

• A Attribute name only

• : C Attribute class only

• A : C Attribute name and class

• A : C = E Attribute name, class, and default expression
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/ C lass nam e 
attributes 

operations!) (. 
V. {constraints} )

F ig u re  3-1 
C la s s  Icon

Operations are presented in following manner:

• N() Operation name only

• R N(Arguments) Operation name, return class, and formal arguments

Another type of class is an abstract class, whose icon is depicted in Figure 3-2. Since 

classes are hardly ever isolated in a system, we need some means to show the 

relationships among classes that were discussed in Chapter Two. These relationships are 

shown in Figure 3-3. In addition, the linkages for association and aggregation can be 

adorned with the cardinality of the relationship as follows:

1 Exactly One

N Unlimited number

0 . . N Zero or more

1 ..N One or more

0 .. 1 Zero or one

3 ..7 Specified range

1 . .3,7 Specified range or exact number
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C lass nam e 
attributes 
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{constraints} ;

V  ,.

F ig u re  3-2 
A b s tra c t C la s s

F ig u re  3-3 
C la s s  R e la tio n sh ip

In a large systems there are usually so many classes that the class diagram can become 

overwhelming. To reduce details, the system view can be presented in the form of higher 

level class diagrams using “class category” icon shown in Figure 3-4. A class category is 

essentially a cluster of classes logically grouped together. There is a direct 

correspondence between the class category in the Booch’s notation on the abstract level 

and the concept of packages (of classes) in the Java programming language on the 

physical level. The relationships among the class categories are depicted in the form of 

“using” notation, denoting one category’s dependencies on the other class’ categories.

C ategory nam e 
c la sse s

A sso c ia tio n

In h e ritan c e
S p e c if ic --------------- —.-...—■ ► G eneral

W hole •---------- — ------------ Part

Client o y§!H2---------  Supplier

F ig u re  3-4 
C la s s  C ateg o ry
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1: methodCalK) . _
Client -----------------------— ► Supplier

Figure 3-6 
Object Relationships

3.1.2.2 Object Diagrams Notation

Object diagrams are used to show the existence of objects and their relationships in the 

logical design of the system. In other words, object diagrams are used to represent a set 

o f possible interactions among objects in the system. The icon for object is shown in 

Figure 3-5. The names of objects follow the same convention as names for attributes, 

namely :

• A Object name only

• :C Object class only

• A : C Object name and class

The notation for object relationships is shown in Figure 3-6. Because objects 

communicate via method invocations, the relationship shows the direction o f the 

invocation using an arrow, labeled with the operation invoked. Generally object diagrams 

show entire set of possible invocations among the objects. Optionally, sequence numbers 

can be shown on the arc in diagrams that try to show the sequence of events in a 

particular scenario.

Object nam e 
attributes

Figure 3-5 
Object Icon
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nam e

actions

V________ J

event/action

Figure 3-7 Figure 3-8
State icon State Transitions

3.1.2.3 State Transition Diagrams Notation
. *■

State transition diagrams are used to describe dynamic behavior of individual objects. 

They show the external events that cause an object to change its internal state, and the 

internal actions that result from this change. There are two main parts to these diagrams: 

states and state transitions. A state (Figure 3-7) represents the cumulative results of 

object’s behavior. Each state should have a name that is unique for all the states within 

this particular object, and an optional list of actions associated with this state. A state 

transition (Figure 3-8) represents a change of state in an object. The change is usually 

triggered by some event, and subsequently an action is performed which changes the 

internal state of the object.

3.1.2.4 Interaction Diagrams Notation

Interaction diagrams are used to trace a particular sequence of object interactions that 

occur during execution of particular scenario. The main difference between an object 

diagram and an interaction diagram is that in an interaction diagram it is easier to see the 

exact order of messages exchanged between objects. The reason for using both diagrams 

is that interaction diagrams do not scale well when the number o f objects increases — 

object diagrams are much more readable in this case, because they omit the ordering 

details.
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3.2 Design

3.2.1 Identification of Classes and Relationships

As described in Chapter Two, the key to object-oriented design is identification;Of 

relevant classes and their relationships. This task has been first started during the analysis 

phase of this project, and it has been described by Ron Righter in [2].

The EIS system has been described in the previous chapter. This description was, 

however, done from the user’s point of view. This is useful for the analysis, but is not 

sufficient for more detailed description of the internal structure of the system. This 

section describes the classes and objects that were identified during the analysis and their 

function in the system. The complete formal description of the crucial classes is covered 

in Appendix A.

From the system requirements we know that all EIS operations are performed on 

objects that are part of a hierarchy, so hierarchy is an ideal candidate for a class. In order 

to assure correct syntax of hierarchies, a context free language was developed to specify 

the EIS syntax. The grammar was then used to automate language processing in the form 

of a parser which accepts a proposed object description and verifies its syntax. Thus 

parser is another important object in the EIS system. It is, however, just a tool for 

enforcing the correct syntax. In order to store the structure of the objects of the hierarchy 

in a persistent way, syntax tree objects are generated and saved by the parser. In addition 

to syntax structure of the objects in the system, a set of semantic rules has been developed 

to provide for better system integrity [1]. The semantic rules, which are concerned with 

consistent use of identifiers defined in the hierarchy, can be easily checked by consulting 

symbol table objects that are also generated by the parser. But what is the input to the
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parser? The input is an object that represents a textual description of the object created by 

user. Lastly, a user has to be able to create these object descriptions in some way. To aid 

the user in doing so, a graphical user interface (GUI) is provided, which leads the user 

through the process of creating the objects and organizing them, as described in Chapter 

Two.

3.2.2 Class Diagrams

In order to better depict the higher level design of the system, the top-level class diagram 

in Figure 3-9 shows the relationship among the class categories. The relationships shown 

in this figure are package “using” dependencies rather than specific class relationships. 

The main driver of the system is the graphical user interface (GUT), which is used to fill 

descriptions of objects, pass these to the parser, which generates symbol table and syntax 

tree objects that are subsequently stored in the hierarchy. In case of a syntax or semantic 

error, the parser or hierarchy generates an exception which is displayed to the user 

through the GUI.

Figure 3-10 shows class diagram for the EIS Hierarchy in more detail. The 

Hierarchy class consists of a set of instances of HierarchyNode, each of which has 

exactly one instance of SyntaxTree and exactly one instance of SymbolTable. The 

hierarchy class is further associated with the SemanticError class, because it can throw a 

semantic error exception when performing semantic checks. It is also associated with 

HierarchylO class, which provides the interface between the hierarchy and the filesystem.
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GUI
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0 ----------------------- Sem anticError
ParseE rror

Parser
ASCII_CharStream
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JJE isP arserC alls

Token

Svmbol Table Syntax Tree
Sym bolTable Syntax Tree

Sym bolT ableR ecord N ode (A)
EntryType Sim pleNode

Figure 3-9
E cosystem  Information System Top-Level C lass Diagram
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E isH ierarchy lO ,;
EisHierarchy / Sem antic  Error

\ EisHierarchy 
Node

Symbol Table / Syntax T ree /

F ig u re  3-10
EIS Hierarchy C lass Diagram

A more detailed view of the SymbolTable and SyntaxTree classes is depicted in 

Figures 3-11 and 3-12, respectively. The SymbolTable class is an aggregate of instances 

o f SymbolTableRecord, and is associated with the EntryType class that defines constants 

used by the symbol table. Similarly, the SyntaxTree class includes multiple instances of 

SimpleNode, which is a subclass of an abstract class Node. Both SyntaxTree and 

SymbolTable classes are used by the Parser class.

Because the GUI class serves mainly as a driver for the rest of the system, it is not 

of great interest from the design point of view, and so the last class category described in 

the form of class diagrams is the Description. The three main classes in this category are 

EisClassDesc, EisInstanceDesc, and EisMethodDesc. Instances o f these classes serve as a
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P a rse r

o...

Sym bolT able  _  ,  . _  >. Entry Type
—1----------------- .. Defines entry Type ------ 1—

Symbol Table 
Record

F ig u re  3-11
Symbol Table Class Diagram

textual representation of key objects used in the system, EIS classes, instances, and 

methods. Since all three classes share several attributes, namely keyword and document 

descriptions, they are subclasses of the AbstractNodeDesc class that aggregates these 

common attributes. Additionally, EisClassDesc aggregates classes that serve as 

descriptions of constants, functions, variable definitions and assignments, parameter 

definitions and assignments, and type definitions. Similarly, instances of EisInstanceDesc 

include descriptions of variable and parameter assignments. The structure of this class 

category is shown in Figure 3-13. Class diagrams in Figures 3-9 through 3-13 represent a 

static logical view of the system structure without any reference to its behavior. The 

dynamic view of the system is described in subsequent sections and diagrams.



Syntax  Tree

Node

Sim ple Node

Figure 3-12
Syntax Tree Class Diagram
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F ig u re  3-13
C lass Diagram of Descriptions of EIS Objects
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3.2.3 Object Diagrams

Object diagrams shows the existence and the relationships among the class instances in 

the system. These diagrams can be divided into two classes. First, there is the top-level 

object diagram, which represents a high level view of the system. This object diagram is 

shown in Figure 3-14, and it shows all the possible messages that are exchanged among 

the objects in the form of method invocation.

From Figure 3-14 we can see that there are two active objects in the system, 

EisGui, and Parser. EisGui is the user interface object that leads the user through the 

process o f manipulating the EIS database; The user can fill out the object Description 

through the EisGui object, and EisGui subsequently transfers the Description together 

with the control to the Parser object. Parser checks the syntax of the Description object, 

and generates the SyntaxTree and the SymbolTable objects by adding nodes and symbol 

table entries to them. When the Parser is done, control is transferred back to the EisGui 

object, which can query the Parser and extract the SyntaxTree and the SymbolTable 

objects and perform a user specified operation on the EisHierarchy object.

A second type of object diagrams shows only that subset of objects and messages 

that are specific to a certain scenario, for example showing the flow of control and data 

among objects that participate when an object is added to a hierarchy. As mentioned at 

the beginning of this chapter, the information depicted in these diagrams is almost 

identical to the information shown in the interaction diagrams, which are used later in the 

chapter to present all important scenarios.
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3.2.4 State Transition Diagrams

State transition diagrams show the state space of a given class. This section presents the 

state transition diagrams for the most important classes of EIS. They are:

•  EIS Hierarchy

•  Syntax Tree

•  Symbol Table

•  Parser
. * '

•  Graphical User Interface (GUI)

•  Description

•  EIS Hierarchy Node

3.2.4.1 EIS Hierarchy

The state transition diagram of the EisHierarchy is shown in Figure 3-15. This is probably 

the most complex state transition diagram, because it shows all the states of the most 

important class in the system. At system start, the hierarchy is empty. It can become 

initialized (or non-empty) by either going through the opening stage, or by creating a new 

hierarchy and filling in initial information. From the initialized state, it can add, modify, 

delete, import, save, or export nodes. The meaning of these states are fairly obvious.

When a node is added or modified, it is necessary to perform semantic checks. If 

semantic checks do not fail, control is transferred back to the previous state. However if 

there is a semantic error, a failure occurs and the user is notified about the problem. Note 

that the import state can not follow directly to the semantic checks stage, because first all 

nodes of the hierarchy have to be imported, and then during validating all the nodes must 

be checked for semantics.
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Figure 3-15
State Transition Diagram for EIS Hierarchy
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3.2.4.2 Syntax Tree

The state transition diagram in Figure 3-16 shows the states and state transitions o f the 

SyntaxTree object. When created, the syntax tree is empty. It becomes non-empty through 

the process o f adding nodes. If a failure occurs during the addition of a node to the tree, 

the error is reported to the user. An important state of the tree is when it is traversing its 

nodes, transferring them into string representation needed for export. Note that there is 

no stage in which nodes are deleted. The reason for this is the fact that the syntax tree is 

created by the parser, which only adds nodes to the tree during the parsing. The nodes 

cannot be modified outside the context of the parser, otherwise it could result in 

syntactical inconsistency.

3.2.4.3 Symbol Table

The SymbolTable becomes non-empty when it is initialized with standard records. Next 

its state can change through adding, deleting, and retrieving of records. The last possible 

state in which the symbol table can pass through is local semantic checking, during which 

local symbols are resolved, and checked for semantic correctness. The state transition 

diagram for symbol table is in Figure 3-17.

3.2.4.4 Parser

The parser is another interesting object whose state transition diagram is shown in 

Figure 3-18. What makes the parser interesting is the fact that it is one of the active 

objects that can be found in the EIS system. When it is created, it stays in an idle state 

until a request comes to parse an input stream, which transfers the parser into the parsing 

state in which parsing itself is performed. There are two other states through which the
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State Transition Diagram for Symbol Table

parser goes during the parsing stage, creating the syntax tree, and creating the symbol 

table. If an error occurs, failure is reported and parser returns to idle state.
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State Transition Diagram for Parser

3.2.4.5 Graphical User Interface

The graphical user interface (GUI) is another active object in the system. After it is 

initialized, it waits for user input. When the input arrives, it handles user request 

accordingly. In some cases, for example when user adds or deletes an object from the 

database, it triggers a change to update the display. The state transition diagram for the 

graphical user interface is shown in Figure 3-19.
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State Transition Diagram of EIS Hierarchy Node

3.2.4.6 EIS Hierarchy Node

Figure 3-20 shows the three possible states in which EIS Hierarchy Node can occur. At 

the beginning it is empty, subsequently it is filled, and finally it is added to the hierarchy.
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3.2.4.7 Node Description

Node description is the last important object to be described. The key states are empty, 

non-empty, adding attributes, and converting to stream. The last state is very important, 

because it converts the node description that has been filled in by the user to an input 

stream that is used as an input into the parser. The state transition diagram for node 

description is in Figure 3-21.

Clear Convert to 
StreamAdd Attribute Ok

Ok

Add Attribute

Adding attributes Non-Empty

Converting to 
streamEmpty

Figure 3-21
State Transition Diagram of Node Description
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3.2.5 Interaction Diagrams of Key Scenarios

3.2.5.I Creating New EIS Hierarchy Node

The interaction diagram in Figure 3-22 shows the process of creating a new node of the 

EIS hierarchy. The entire process starts at EisGui object. It first queries its own display to 

find out which node is currently selected - the current node will become parent p f  the new 

EIS node. The name of the parent node is passed to NodeDescription object. Next, the 

user fills out the description of the hew node through series of dialogs, which are not 

shown in this diagram in order to make it more readable. The exact dialog is not of 

particular importance in overall system operation, yet it can be very important to fine tune 

the interface to meet the user’s expectations [8].

At this point there exists a NodeDescription object that contains the description of 

the new EIS node. Since the parser operates on streams, the NodeDescription object 

converts its own representation into a stream which is subsequently forwarded to the 

Parser object. The Parser processes the stream token by token. During this process it fills 

up both the SyntaxTree and the SymbolTable objects. If a syntax error occurs during the 

parsing, the Parser creates a ParseError object which enables the system to propagate the 

error message to the user through the EisGui. If the Parser processes the entire stream 

without an error, control is returned to the EisGui, along with the symbol table and the 

syntax tree. EisGui sets additional attributes of the EisHierNode object, and finally sets 

the newly created symbol table and syntax tree to the EisHierNode object to complete the 

creation process.
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Figure 3-22
Interaction Diagram: Create New Object
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Figure 3-23
Interaction Diagram: Adding Node to EIS Hierarchy

3.2.5.2 Adding New Node to the EIS Hierarchy

The previous section explained the process of creating a new EIS node. Figure 3-23 

depicts the process of adding this newly created node to the hierarchy. First, semantic 

checks are performed in the context of the hierarchy. If a semantic error occurs, 

EisHierarchy creates a SemanticError object that propagates back to the EisGui to be 

displayed to the user. If there are no semantic errors, a new EisHierNode is passed to the 

EisHierarchy for addition as a child of the previously determined current (parent) node.
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3.2.5.3 Modifying Existing Node of the EIS Hierarchy

Figure 3-24 captures the process of modifying existing node in the EIS hierarchy. First 

EisGui identifies the name of the node that user wants to modify based on the selection in 

its own display. Next, EisHierarchy is asked for the description of the node. The 

Description is filled based on the information in the SymbolTable object of the 

EisHierNode that user wishes to modify. After the Description is filled, control returns 

back to the EisHierarchy, then to the EisGui. After the Description is modified by the 

user in the user interface, the object is processed by the Parser object in the same fashion 

as in the scenario in Figure 3-22. This processing is necessary, because both syntactic and 

semantic consistency must be checked following any modification. Some of the details of 

the parsing process are omitted, because they are identical to the ones in Figure 3-22. 

After the processing completes successfully, the newly created symbol table and syntax 

tree objects are returned and subsequently added to the modified EisHierNode. Finally, to 

check for global semantic consistency, semantic checks are performed on the modified 

node in the context of the EisHierarchy. On successful completion the node is modified 

within the hierarchy.

3.2.5.4 Saving EIS Hierarchy

The process of saving of an EIS hierarchy is a very simple one. First, the user selects a 

file where he/she wants the hierarchy to be saved. Next, EisGui sets the filename attribute 

in the EisHierarchy object, and also sets the hierarchy as saved by setting the appropriate 

boolean attribute of the EisHierarchy object. In the last step, the entire EisHierarchy 

objects is passed to the EisHierarchylO object which performs the file output operation. 

The state transition diagrams of the saving process is shown in Figure 3-25.
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Figure 3-24
Interaction Diagram: Modifying Existing EIS Hierarchy Node
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3.2.5.5 Opening Existing EIS Hierarchy

The process o f opening an existing EIS hierarchy is the dual process to the save function. 

First, the user decides which hierarchy to open through the input to the EisGui. Next, 

EisHierlO object retrieves the requested EIS hierarchy, and returns it back to the EisGui. 

Finally, the EisGui displays the hierarchy structure based on information obtained from 

the EisHierarchy object. This scenario is shown in Figure 3-26.

3.2.5.6 Exporting EIS Hierarchy
, «*

When the EIS hierarchy is exported, its textual description is saved to an external file. 

This is in contrast to the save process, in which the entire EIS hierarchy object (including 

the symbol table and the syntax tree) is saved in binary form. For export, the user is asked 

by the EisGui for the name of the file into which the EIS hierarchy is to be exported and 

for the type of export (text or HTML). Next, the EisGui requests the EisHierarchy object 

to return its textual (or HTML) representation. There is a significant difference between 

the process o f transforming the hierarchy to text format and transforming it to HTML 

format. The textual description is obtained directly from the SyntaxTree object of each 

EisHierNode via a syntax tree traversal; the resulting file should be syntactically correct 

description of the hierarchy if later imported. On the other hand, the HTML format does 

not necessary have to conform to EIS language specification, but rather it has to be 

formatted for the use in a Web browser. For this reason, SymbolTable object is used to 

create the HTML description, because it has easier access to the symbols of the hierarchy. 

During this process, all the nodes of the EIS hierarchy are converted into the appropriate 

format, but for simplicity there is only one instance of the EisHierNode used in the 

interaction diagram in Figure 3-27. Finally, the node description propagates up to the 

EisGui, and is passed to the EisHierlO object which outputs it into a file.
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3.2.5.7 Importing EIS Hierarchy

The last scenario described in this chapter is the importing of an EIS hierarchy. When a 

hierarchy is imported, its textual description is separated into individual nodes by the 

EisHierlO object. These nodes are being parsed in manner previously described by the 

Parser, returning the syntax tree and symbol table objects. Next, a new EisHierNode 

object is created using the generated syntax tree and symbol table, and added to the: . 

EisHierarchy. The main difference between this process and adding a user created node 

to the EIS hierarchy is in the semantic checks. When a new node is created by the user 

through the user interface, semantic checks are performed before the node is actually 

added to prevent a semantic inconsistency being introduced into the hierarchy. However, 

when the hierarchy is being imported, we cannot perform the semantic checks one node at 

a time, because one node may depend on other object in the hierarchy that has yet to be 

imported. For this reason, the hierarchy is first populated with nodes, and then is 

validated by performing semantic checks on all the nodes in the hierarchy context. If a 

semantic error occurs, the whole hierarchy is discarded and user is informed about the 

nature of the error. An interaction diagram showing the process o f importing EIS 

hierarchy is depicted in Figure 3-28.
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Figure 3-27
Interaction Diagram: Hierarchy Export
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Chapter 4
Implementation

4.1 Implementation Language : Why Java ?

When deciding on the implementation details of this project, the first thing that had to be 

decided was the implementation language: The two main competing choices were C++ 

and Java. C++ was the language of the original EIS, and so it could have been possible to 

reuse some parts of the code. However, in my opinion using C++ would not have solved 

many problems associated with the previous release of EIS. Java on the other hand, 

seemed to be a promising new language that many people thought of as the “next big 

thing”, but at the time this project started there were many questions as to whether or not 

Java would really deliver what it promised. Therefore, I tested Java thoroughly before 

deciding to go forward with the implementation in this language. This part of my work 

can be thought of as a risk assessment phase of the spiral model, followed by prototyping 

effort.

There were several specific tasks that I tested during the Java evaluation phase of 

the development effort, including the following.

•  Is Java really platform and architecture neutral?

•  Does its interpreted nature have a negative effect on the performance?

•  How effectively does the Java Virtual Machine (VM) deal with resource 

management?

•  How robust is the Java VM?

•  What is the learning curve for a C/C++ programmer to become proficient in 

Java?

•  How easily is it integrated into a WWW?

4 7
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These were the questions, and here I present the answers that I have found during my 

research.

I had the opportunity to test my Java programs on many different platforms and 

achieved good results. The platforms that were available to me during this process were:

•  RS6000 with AIX4.1

•  PentiumPRO 200 with Windows NT4.0

•  Pentium 133 with Windows 95

•  SGI Octane with IRIX6.4

Since Java is an interpreted language, there were a lot of questions about whether 

its performance is suitable for high performance computing. I designed several tests, then 

compared Java solutions with comparable C++ implementations. The results of two of 

these simple tests were indicative of the results in general. The first test is a simple 

program that indirectly calls a locally defined function 109 times. The results of this test 

are rather mixed. If only a Java interpreter is used, the program’s execution time is more 

than 10 times slower that the same C++ program. However, when Java interpretation is 

replaced by use of a Just-in-Time (JIT) compiler, which is available with most Java 

Development Kits (JDK) starting with version 1.1, the performance improves to a level 

almost comparable with C++, running only about 1.5 times slower. A second test 

involves implementation of a matrix addition operation, using very large matrices 

(200MB per matrix). This experiment confirms the results of the first test, that Java 

performance is roughly comparable to C++ when JIT is used.
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The second experiment, however, shows an even more important aspect of Java, 

which is its dynamic resource management. During this test, memory was repeatedly 

allocated and deallocated, but the speed o f the program is not much affected, showing 

that Java can deal efficiently with dynamic memory management. One of the strengths of 

Java over C++ is its built in facility for dynamic resource management and automatic 

garbage collection. This, while still not perfect, helps a great deal in the implementation 

of dynamic systems like EIS. Dynamic resource manipulation is the source of mbst errors 

in C++ programs, because the programmer has to do all resource management. . ; 

Programming errors are very hard to trace and have negative impact on the robustness of 

the system. In Java, dynamic resource manipulation is done much more robustly, and thus 

the systems that are build using Java can be made more robust with less programming 

effort.

Since the syntax of Java is very similar to the syntax of C++, the time to learn this 

new language should be relatively short for C++ programmers. Moreover, Java enforces 

the rules o f object-oriented programming much more strictly than C++, making Java 

good language for the implementation of systems that were designed using object- 

oriented methods. Finally, Java provides direct support for integration into the World 

Wide Web (WWW). This is very important for the EIS development, because one of the 

long term goals has been its full integration into the Web. Unfortunately, the current 

implementation of EIS does not have a Web interface for reasons that will be described 

later in this chapter.

Based on the evaluation described above, I decided following this evaluation of 

Java to go forward with using it as the implementation language for the EIS.
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4.2 Implementation Problems and Solutions

4.2.1 The EIS Parser

At the beginning of the project, there was an important implementation issue - the 

implementation of static semantic checking for the EIS language in a manner cohsistent 

with the formal checks defined in the EIS attribute grammar. Since this grammar defines 

the exact structure of the language used to define objects in an EIS hierarchy, the solution 

to this problem is crucial for the implementation phase. In the previous versions of EIS, 

language processing was implemented using lex and yacc. One possible solution to this 

problem was to keep and improve the lex and yacc implementation of the EIS grammar, 

and access it through the native method interface provided by Java. There were two main 

difficulties associated with this solution. The complexity of the implementation would 

increase considerably, but more importantly the availability of lex and yacc on Unix 

systems only would completely defeat one of the reasons for using Java - portability.

Fortunately, there is another solution to this problem. In fall of 1996, Sun 

Microsystems developed an automated parser generator written entirely in Java and 

producing Java source code. It first appeared under the name Jack, but later was changed 

to JavaCC (in tradition of yacc, Java Compiler Compiler). JavaCC provides the 

programmer with an interface that is much more intuitive than lex and yacc. One of the 

powerful features of this language processing tool is the means of propagating 

information up the parse tree. In yacc information is passed up the parse tree using global 

variables labeled “$$”. In JavaCC all non-terminals are implemented using functions, 

which can be used to return values up the parse tree to the calling object. An example 

grammar used to illustrate JavaCC processing is shown in Appendix B.

There is another important feature that distinguishes JavaCC from yacc. While the 

parser generated by yacc is a bottom-up LALR parser, JavaCC 'generates a top-down
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LL(k) parser [9]. This has an impact on the type of grammars that each parser can handle. 

Top-down parsing can be viewed as attempt to find the leftmost derivation of the input 

string, which means that it generates the parse tree in pre-order fashion starting at the 

root. Because of this parsing strategy, top-down parsers cannot handle left-recursive 

grammars, i.e. grammars in which there is a derivation A => A a for some string a. The 

grammar that was used to enforce the correct syntax of the EIS objects includes left- 

recursive productions. This was not a problem in the previous versions of the system, 

because yacc generates a bottom-up parser which handles left-recursive grammars 

without problems. We can solve this problem by eliminating left recursion from the 

grammar as shown in[9]. The modified grammar is shown in Appendix C.

4.2.2 Java 1.1 Conversion

One of the problems that was not possible to anticipate at the beginning of the 

development process and during the risk analysis, was the transition between different 

versions of Java. In early 1997 Sun released the new Java 1.1 version. There have 

previously been several different releases o f Java 1.0, but none of them have brought such 

dramatic changes into the API (Application Programming Interface) as Java 1.1. Apart 

from several cosmetic changes, such as changes to names of some methods in the API 

classes, Java 1.1 included a complete redesign of the event model. This change causes 

many problems with an existing Java-based user interface. The event model in Java is 

concerned with the handling of events that are generated through the java.awt libraries, 

such as pushing buttons, moving the mouse, or hitting a key. When Java 1.1 was released, 

almost the entire EIS graphical user interface was completed. There were two possible 

courses of action from this point on: to continue with the Java 1.0 implementation, or to 

change the entire system to version 1.1.1 chose to convert the EIS implementation to Java 

1.1, mainly to make it more up-to-date. Adapting to the change in the event model thus 

caused a big setback in the implementation timetable. However, this seems to be a good
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choice, because it appears that Java 1.1 will become the industry standard. While my 

decision may show better in the long run, it was not the best possible short term solution 

for two main reasons. First, it caused a major setback in the EIS implementation, since I 

had to re-write most of the event handling functionality that was already present at the 

EIS system when Java 1.1 was released. Second, I overestimated the speed with which 

Java 1.1 would become widely available. As a result, the current implementation of EIS 

is a standalone application, without a Web interface, because there is currently no Internet 

browser that supports Java 1.1.

4.2.3 Input/Output

One of the big implementation problems in the previous version of EIS was the 

implementation of the Input/Output (I/O) functions. The I/O structure used to allow 

hierarchies to be saved/restored to/from disk storage was very complex and unstable, and 

it has caused various runtime problems. Java solves this implementation issue by 

providing an API for high level I/O as a part of its java.io library. This interface provides 

object level I/O, meaning that I/O can be performed directly on class instances 

independently o f their internal structure. This simplifies greatly the I/O for the EIS 

system, in which the programmer had to laboriously extract the components o f objects of 

EIS hierarchy, which are complex nested objects containing nodes, symbol tables, syntax 

trees and other attributes. The only problem with the Java solution is in adapting to EIS 

object changes, i.e. if the source code changes and is re-compiled, it is no longer possible 

to restore hierarchy objects that were saved with the old object definitions. However, in 

this case it is possible to export the EIS hierarchy in textual, rather than object, form 

using the old version, then import it as text, reparse it, and save it using the new version 

of EIS.
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4.3 Implementation and Distribution Structure

Java “packages” are sets of classes that are logically grouped together. By using 

packages, the implementation structure can be divided into smaller, self-contained units 

to form the EIS library. These packages are:

defines several generic components used by the GUI 

defines the description of the nodes in the EIS hierarchy 

defines the Graphical User Interface of the EIS system 

defines the parser of the EIS system 

: defines the symbol table for EIS hierarchy nodes

: defines the syntax tree for the EIS hierarchy nodes

defines several utilities that are used by the other packages

• eis.beans :

•  eis.desc :

•  eis.gui :

•  eis.parser :

•  eis.symbol_table

• eis.syntax_tree

• eis.util :

This structure implements the notation of “class category” described in Chapter 3 and 

depicted in Figure 3-9. In addition to these packages, the system includes a simple driver 

object which is used to start up the system by instantiating the EisGui.

The whole EIS implementation is designed to be distributed using the ja r  utility 

provided by the new JDK1.1. This utility can archive the entire implementation into a 

single file which can be distributed as a library. Since ja r  is part of Java, it provides a 

platform independent distribution solution. Also with the distribution comes a simple 

installation script that creates the database directory, and sets the appropriate environment 

variables used by the system.
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4.4 Conclusions and Status

The goals of this project set in Chapter 1 were completed, including the complete re

design of the EIS system and its implementation. The new version, EIS 3.0 solves many 

problems of the previous versions by providing more robust and portable system that 

pays attention to dynamic resource management, a more secure system, and more 

consistent and complete language processing. Of the principle goals set at the beginning 

o f this project, only that of providing a Web interface was not completed. This failure is 

temporary due to the lack of support for Java 1.1 in current Internet browsers. I expect the 

this deficiency can be corrected easily when this support is available.



Appendix A - Class Specifications

Name:

Definition:

Attributes:

Methods:

AbstractNodeDesc

Superclass of the main description classes. 
Contains common attributes and methods.

name String
parentjiame String
description String
d o c jis t Vector
keyw djist Vector
empty boolean

setName{S>Xnng name) boolean
getName () String
setParentName{String name) boolean
getParentNameQ String
setDescription(Stving desc) boolean
getDescriptionQ String
addDocument{String name, String location) boolean
getDocumentsQ Vector
addKeyword(String keyword) boolean
getKeywordsQ Vector
setEmpty{boolean empty) boolean
isEmptyO boolean
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Name: EisHierNode

Definition: Building block of EIS hierarchy structure.

Attributes: nodeName String
String
int

nodeDescription
nodeType
nodeDepth
nodeEmpty
nodeParent
nodeChildren
nodeSyntaxTree
nodeSymbolTable- *'
nodeDocuments
nodeKeywords

Vector
Vector

int
boolean
EisHierNode
Vector
SyntaxTree
SymbolTable

Methods: EisHierNodeQ
aw/g«7b(EisHierNode node) 
setNodeName(String name) 
getNodeName ()
setNodeDescription(Sthng desc) 
getNodeDescriptionQ 
setNodeType(yat type) 
getNodeTypeQ
addNodeDocument{EisDocumentDesc desc)
getNodeDocumentsQ
addNodeKeyword(EisKeywordDesc desc)
getNodeKeywordsQ
setNodeDepth(i nt depth)
getNodeDepthQ
setNodeSymbolTable(SymbolTable st)
getNodeSymbolTableQ
setNodeSyntaxTree(SyntaxTree st)
getNodeSyntaxTreeQ
setEmpty(boolean empty)
isEmptyQ
clearQ
^etPare«t(EisHierNode parent) 
getParentQ
addChild(EisHiQTNode child) 
getChildAtimi index) 
getNumChildrenQ 
deleteChildiml index)

boolean
boolean
String
boolean
String
boolean
int
boolean
Vector
boolean
Vector
boolean
int
boolean
SymbolTable
boolean
SyntaxTree
boolean
boolean
boolean
boolean
EisHierNode
boolean
EisHierNode
int
boolean



deleteChild(Sthng name) : boolean
isEqual(EisHierNode node) : boolean
isRootQ : boolean
isLeaJO : boolean
toStringQ : String
printQ : boolean



Name: EisHierarchy

Definition: Main object of the EIS system. Contains syntactical and
semantic description o f the system.

hierCreator : String
hierDescription : String
dateCreated : Date
JileName ■ * : File

Methods: EisHierarchy()
newHierQ : boolean
■S'e/i?oot(EisHierNode root) : boolean
getRootQ : EisHierNode
setEmpty{boolean empty) : boolean
isEmptyQ : boolean
needSave(boolean save) : boolean
isSavedQ : boolean
hasFileQ : boolean
setFile(File name) : boolean
getFileQ : File
setHierName(String name) : boolean
getHierNameQ : String
setHierDescription(String desc) : boolean
getHierDescriptionQ : String
getHierCreatorQ : String
getHierDateQ) : String
getCurrentNodeQ : EisHierNode
setCurrentNode(EisHlevNode node) : boolean
addChild(EisHlerNode node, String parent) : boolean
deleteNode(String name) : boolean
getUnboundParamList( String startNode) : Vector
getUnboundVariableList(String startNode) : Vector
doSemanticChecks(EisHiQTNode node,

String parent) : boolean
toStringQ : String
printQ : boolean
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Name:

Definition:

Attributes:

Methods:

EisHierlO

Defines methods for interaction between hierarchy objects 
and the filesystem.

out : ObjectOutputStream
in : ObjectlnputStream

file  : File

boolean 
EisHierarchy 
EisHierarchy 
EisHierNode 
boolean 
boolean

boolean

boolean

save(EisHierarchy hier, File file) 
open(File file) 
import(File file) 
importNodeQFile file) 
ex/?or/7bc/(EisHierafchy hier, File file) 
exportHTML(EisHieraichy hier, File file) 
exp or tNode Tex/(Ei sHierN ode node,

File file)
exportNodeHTML(EisEierNodQ node,

File file)



Name: SymbolTableRecord

Definition: Defines single entry in the symbol table structure.

entry Status int

Methods: SymbolTableRecordQ
setTag(String tag) : boolean
getTagQ : String
setEntryType(int type) : boolean
getEntryTypeQ : int
setTypeDenoterimt typeDenoter) : boolean
getTypeDenoterQ : int
addArgument(yat arg) : boolean
getArgumentsQ : Vector
setRetTypeiini retType) : boolean
getRetTypeQ : int
setConst Val «e(S tring const Value) : boolean
getConstValueQ : String
setParamType(String paramType) : boolean
getParamType () : String
addArrayIndex(String lower, String upper) : boolean
getArraylndexListQ : Vector
addRecordFieldId(int id) : boolean
getRecordFieldListQ : Vector
setStatus(int status) : boolean
getStatusQ : int
toStringQ : String
printQ : boolean
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Name: SymbolTable

Definition: Stores symbols defined in a context of each node in hierarchy.

Attributes: SymbolTable Vector

Methods: SymbolTable()
clearQ : boolean
getNumRecordsQ : int
getRecordimt index) : SymbolTableRecord
addRecord(Symbo\TableRecord rec) : boolean
removeRecord(in\ index) : boolean
lookup(String id) : int
lookupAdd(Stnng id) : int
getType(String id) : int
addSetType(Stnng typeName) : boolean
addFwdDeclListiyctor idList) : boolean
addlntUsesListQJ ector idList) : boolean
addParamDecl(String id, String type) : boolean
addParamBind(Stnng id l, String id2) : boolean
addTypeDefn(String name, int type) : boolean
addVarDefn(Vector idList, int type) : boolean
addConstantDefn{String id l, String id2,

String value) : boolean
addFuncDefn(String name, Vector arguments,

String retValue) : boolean
addArgDecl(int type) : boolean
addArrayTypeiy ector indexList, int type) : boolean
addRecordFieldType(V ector idList,

int type) : boolean
addRecordTypeiyector fieldList) : boolean
addStvarBind(Stnng id, String value) : boolean
getlntUsesListQ : Vector
getFwdDeclListQ : Vector
getParamDeclListQ : Vector
getBoundParamListQ : Vector
getVariableDeclL ist() : Vector
getBoundVariableListQ : Vector
getTypeListQ : Vector
getConstListQ : Vector
getFunctionListQ : Vector
getTypeStringimt record) : String
toStringQ : String
printQ : boolean



Name: SimpleNode

Definition: Represents a single node in the syntax tree structure

children : Vector

nodeType : int

Methods: SimpleNodeQ
SimpleNode(Sinng id, int type)
clearQ : boolean

jjtCreate(Stving id, iht type) : Node
jjtSetParent(Node parent) : boolean
jjtGetParentQ : Node
jjtSe tType(int type) : boolean
jjtGetTypeQ : int
jjtAddChild{Node node) : boolean
jjtGetChildimt index) : Node
jjtGetNumChildrenQ : int
setInfo(Object info) : boolean
getlnfoQ : Object
toStringQ : String
printQ : boolean



Name: SyntaxTree

Definition:

Attributes:

Methods:

Defines the syntax of each node in the EIS hierarchy

rootNode : SimpleNode
empty : boolean

SyntaxTreeQ
SyHtae7>ee(SimpleNode root)
clearQ : boolean
axs7g«7Vee(SimpleNode root) : boolean
setEmpty{boolean empty) : boolean
isEmptyQ : boolean
toStringQ : String
printQ : boolean
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Appendix B - JavaCC Example

E -> TE ’
E’ -> + T E’ | e
T -> F T ’
T’ -> * F T’ | e
F -> ( E ) | id

JavaCC implementation:

PARSERJBEGIN(TestParser) 
public class TestParser 
{

public static void main(String[] args) throws ParseError 
{

TestParser parser = new TestParser(System.in); 
parser.EQ;

}
}
P ARSER_END(T estParser)

IG N O R E IN B N F:
{}
{

U  U

| “\t”
| “\n”

}

TOKEN:
{}
{

<PLUS : “+” >
| <MULTIPLY : “*” >
| <LEFT_PAREN : “(“ >
| <RIGHT_PAREN : “)” >
| < ID : [“a” - “z”, “A” - “Z”] ([“a” - “z”, “A” - “Z”, “0” -

}
“ 9 ” ] ) *  >
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void E () :
{}

TQ E_prime() <EOF>

void E_primeO :
{}

( <PLUS> TQ E_prime() )*

void TQ :
{}

F() T__prime()

void T__primeO :
{}
{

( <MULTIPLY> F() T_prim'e() )*

void F () :
{}
{

<LEFTJPAREN> E() <RIGHT_PAREN> 
| <ID>

}



Appendix C - BNF for EisParser

CombinedSyntax ::= ( ClassDefn
| InstanceDefn 
| MethodDefn )* 

<EOF>

ClassDefn ::= <CLASS>
<IDENTIFIER>
<OF>
<IDENTIFIER> 

InterfaceUses 
ForwardDeclaration 
BindParameter 
ParameterDeclaration 
Description 
MixedDeclarationList 
BindStateV ariables 
Keywords 
Document 

<END_CLASS>

InstanceDefn ::= <INSTANCE>
<IDENTIFIER>
<OF>
<IDENTIFIER> 

BindParameter 
Description 
B indStateV ariables 
Keywords 
Documents 

<END INSTANCE>
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MethodDefn ::= <METHOD>
<IDENTIFIER>
<OF>
<IDENTIFIER>

<TO>
<IDENTIFIER>
Path
Description
Keywords
Documents

<END_METHOD>

Path ::= <PATH>
<STRINGJLITERAL>

< a *

ForwardDeclaration ::= ( <FORWARD_DECL>
IdentifierList 

<END_FORWARD_DECL> )*

InterfaceUses : := ( <INTERFACE_USES>
IdentifierList 

<END_INTERFACE_USES> )*

ParameterDeclaration ::= ( <PARAM_DECL>
ParameterDeclarationList 

<END_PARAM_DECL> )*

ParameterDeclarationList ::= <IDENTIFIER>
<COLON>
ParameterType
ParameterDeclarationList_prime

ParameterDeclarationList__prime ::= ( <SEMI>
<IDENTIFIER>

<COLON>
ParameterType 

ParameterDeclarationList_prime )*

ParameterType ::=<CLASS>
| <TYPE>
| <CONST>
I <FUNCTION>



BindParameter ::= ( <PARAM_BIND>
BindParameterList 

<END_PARAM_BIND> )*

BindParameterList ::= <IDENTIFIER>
<ASSIGNOP>
<IDENTIFIER>
BindParameterList_prime

BindParameterListj)rime ( <SEMI>
<IDENTIFIER>
<ASSIGNOP>
<IDENTIFIER> 

BindParameterList_prime )*

MixedDeclarationList ::= ( MixedDeclaration
<SEMI>

MixedDeclarationList )*

MixedDeclaration :: = TypeDefn
| YarDefn 
| ConstantDefn 
| FunctionDefn

BindStateVariables : := ( <STVAR_BIND>
B indState V ariablesList 

<END_STVAR_BIND> )*

BindStateVariablesList ::= <IDENTIFIER>
<ASSIGNOP>
ValueOrld
BindStateVariablesList_prime

BindStateVariablesList_prime ::= ( <SEMI>
<IDENTIFIER> 

<ASSIGNOP> 
ValueOrld 

B indState VariablesList_prime )*

ValueOrld ::= <IDENTIFIER> 
| Value



TypeDefn := <TYPE>
<IDENTIFIER>
<ASSIGNOP>

TypeDenoter

V arDefn : := <V AR>
IdentifierList
<OF>
TypeDenoter

ConstantDefn :~<CONST>
<IDENTIFIER>
<COLON>
<IDENTIFIER>
<AS'SIGN0P>
Value

FunctionDefn <FUNCTION>
<IDENTIFIER>
<LEFT_PAREN>
ArgumentList
<RIGHT_PAREN>
<COLON>
<IDENTIFIER>

ArgumentList ::= ArgumentDeclaration
ArgumentList__prime 

| ArgumentList_prime

ArgumentList_prime ::= ( <COMMA>
ArgumentDeclaration 

ArgumentList_prime )*

ArgumentDeclaration ::= TypeDenoter

TypeDenoter ::= <IDENTIFIER> 
| NewType

NewType ::= ArrayType 
| RecordType 
| SetType

RecordType ::= <RECORD_ST ART> 
FieldList 

<RECORD END>



FieldList := RecordSection
FieldList_prime

FieldList__prime ::= ( <SEMI>
RecordSection 

FieldList_prime )*

RecordSection

ArrayType

IndexTypeList

::= IdentifierList 
<COLON>
TypeDenoter

::= <ARRAY>
; - * <LEFT_SQUARE_BR> 

IndexTypeList 
<RIGHT_SQUARE_BR> 
<OF>
TypeDenoter

::= IndexType
IndexT ypeList_prime

IndexTypeList_prime ( <COMMA>
IndexType

IndexType

LowerBound

UpperBound

SetType

IndexTypeList_prime )*

::= LowerBound
<DOTDOT>
UpperBound

::= Value 
| <IDENTIFIER>

::= Value 
| <IDENTIFIER>

<SET>
<OF>
BaseType

BaseType <IDENTIFIER>



Keywords ::= ( <KEYWORDS> 
KeywordsList 

<END_KEYWORDS> )*

KeywordsList <STRING_LITERAL>
KeywordsList_prime

KeywordsList_prime ::= ( <SEMI>
<STRING_LITERAL> 

KeywordsList_prime )*

DocumentDefhList ::= DocumentDefn
DocumentDefhList_prime

DocumentDefhList_prime ::=(<SEMI>
DocumentDefn 

DocumentDefnList_prime )*

DocumentDefn ::= <DOCUMENTNAMELOC>

Documents := ( <DOCUMENTS> 
DocumentDefhList

<END_DOCUMENTS> )*

<IDENTIFIER>
<STRING_LITERAL>

| <DOCUMENTATION>
<STRING LITERAL>

Value ::= <INTEGER_LITERAL>
| <FLOATING_POINT_LITERAL> 
| <STRING_LITERAL>
| <CHARACTER_LITERAL>
| Boolean

IdentifierList ::= <IDENTIFIER>
IdentifierList_prime

IdentifierList_prime ::= ( <COMMA>
<IDENTIFIER>

IdentifierList_prime )*

Description ::= <MULTI_LINE_STRING_LITERAL> 
| <STRING_LITERAL>

Boolean := <TRUE> | <FALSE>
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