
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

1986 

Analyzing a frame-based information system using the relational Analyzing a frame-based information system using the relational 

and entity-relationship data models and entity-relationship data models 

Bruce James McTavish 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
McTavish, Bruce James, "Analyzing a frame-based information system using the relational and entity-
relationship data models" (1986). Graduate Student Theses, Dissertations, & Professional Papers. 5097. 
https://scholarworks.umt.edu/etd/5097 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5097&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5097?utm_source=scholarworks.umt.edu%2Fetd%2F5097&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


COPYRIGHT ACT OF 1976

- T h i s  i s  an u n p u b l i s h e d  m a n u s c r ip t  i n  w h ic h  c o p y r i g h t  sub­

s i s t s ,  Any f u r t h e r  r e p r i n t i n g  o f  i t s  c o n t e n t s  must be a p p ro v e d

BY THE AUTHOR,

Ma n s f i e l d  L i b r a r y

Un i v e | s i t y  of  Mo n t a n a  

Da t e  : 1 9



ANALYZING A FRAME-BASED INFORMATION SYSTEM USING 

THE RELATIONAL AND ENTITY-RELATIONSHIP DATA MODELS

By

Bruce James McTavish

B. S., Washington State University, 1978

Presented in partial fulfillment of the requirements 

for the degree of 

MASTER of SCIENCE in COMPUTER SCIENCE 

University of Montana 

1986

Approved by

Chairman, Board of Examiners

De€?v Graduate School ^

Date



UMI Number: EP40561

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation PBb&bfeg

UMI EP40561

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition ©  ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106 - 1346



McTavish, Bruce J., M.S., August 1986 Computer Science

Analyzing a Frame-Based Information System Using 
The Relational and Entity-Relationship Data Models (72 pp.)

Director: Alden H. Wrigh

The importance of modeling the structure of data is increasing as the 
complexity and size of data bases grows. This importance has created a 
demand for more expressive and yet easy to understand data models. A 
data model is an abstract view of a collection of data. This abstract view  
should provide a clear picture of what the items of interest are in a given 
application as well as showing how the items are related to one another. 
The relational model and the entity-relationship model are two data models 
that will be studied and utilized in this paper. These tw o models have been 
used primarily for modeling systems which were implemented in traditional 
file structures (files which contain records which are made up of fields).

Recently, the author was involved in a project which resulted in an 
information entry and retrieval system implemented in Lisp. The primary 
data structure used was the frarne. Each individual frame is an entity, and 
the frame is made up of slots containing information about that entity. This 
is similar to a record which is made up of fields and which may also 
represent an entity. Frames are an outgrowth of work done in artificial 
intelligence (Al). The Al community has its own set of data modeling tools 
and techniques and these were the techniques used in developing this 
project.

The goal of this paper is to explore the use of the more traditional data 
modeling techniques to model an artificial intelligence based 
implementation construct. In particular, this paper will study the use of the 
relational and Entity-Relationship data models, to model a fram e-based  
information management system.



Table of Contents

Abstract ii
Table of Contents iii
List of Figures v
List of Tables vi
Acknowledgments vii
1. INTRODUCTION 1

1.1. The Subject Area. 1
1.2. The Problem To Be Solved. 4
1.3. The Framework of This Research. 6

2. The Relational Data Model of FIRESYS. 10
2.1. Background on the Relational Model. 10
2.2. The Components of the Relational Model. 10

2.2.1. The Relation 10
2.2.2. Domains, Attributes and Tuples 11
2.2.3. The Primary Key 13

2.3. Normalization of Relations. 13
2.3.1. Partial and Transitive Dependencies 15
2.3.2. The Three Normal Forms 19

2.3.2.1. First Normal Form 19
2.3.2.2. Second & Third Normal Form 23

2.4. The Data To Be Modeled 24
2.4.1. The Entity Relations. 24
2.4.2. The Relationship Relations. 26
2.4.3. Additional Relations. 29

2.5. Summary for the Relational Model 31
3. The Entity-Relationship Data Model. 32

3.T Background on the Entity-Relationship Model. 32
3.2. The Components of the Entity-Relationship Model. 33

3.2.1. Entities, Entity-sets, Relationships, & Relationship-sets 33
3.2.2. Roles, Attributes, & Value-sets 35
3.2.3. Existence and Identity Dependencies 36
3.2.4. Primary Keys 38

3.3. The Entity-Relationship Diagram 39
3.4. Normalization as Applied to the E-R Model. 42
3.5. The Entity-Relationship Model of FIRESYS 42
3.6. Summary of the Entity-Relationship Model 45

iii



4. Comparison of the Relational and Entity-Reiationship Models with the 46
Existing FIRESYS Structure

4.1. A model of the Existing FIRESYS. 46
4.1.1. Some History of FIRESYS 46
4.1.2. Frames and Slots 49
4.1.3. The Model and the Implementation 51
4.1.4. The FIRESYS Model 52

4.2. The Relational Model vs. The Implemented FIRESYS 53
4.3. The Entity-Reiationship Model vs. The Implemented FIRESYS 57

5. Summary and Conclusion 61
Appendix A. List of Entities and Attributes in FIRESYS 66
Appendix B. The Frame-Based Hierarchy of FIRESYS 71
Appendix C. The ERD of FIRESYS 72
Bibliography 74

iv



List of Figures

Figure 3-1: The Basic Entity-Reiationship Diagram. 40
Figure 3-2: An Identification Dependency in the ERD. 40
Figure 3-3: Attributes in the ERD. 40
Figure 3-4: The E-R Diagram for FIRESYS. 44
Figure 4-1: The FIRESYS model of FIRESYS. 54

v



List of Tables

Table 2-1: Relations for Primary Objects in the FIRESYS Model 25
Table 2-2: Relationship Relations in the FIRESYS Model. 27
Table 2-3: Additional Relations Relating to SPECIES 30
Table 2-4: Additional Relations Relating to HABITAT-TYPE 31

vi



Acknowledgments

Thanks to Dr. Alden Wright. You are an inspiration to your students by being 

such a curious, eager to learn student yourself.

To Greg Hume, Jim Mitchell, and Mohomad (Saiid) Paryavi, my fellow FIRESYS 

team members: It has been a very special and rewarding experience working with 

each one of you. We made a GREAT team!

A very special thank-you to my wife Annie. You have helped me see the 

value of life, and the benefits of hard work and dedication. You have also put me 

through school! I love you Annie.

Funding for this project was provided in part through a grant from the 

Intermountain Fire Sciences Lab, in Missoula, Montana.

vii



Chapter 1

INTRODUCTION

1.1. The Subject Area.

Managing information effectively is becoming more and more important in 

every working environment. The incorporation of the computer into the business 

world has changed the means of information management from one of index cards 

and file cabinets to one of data base management systems and other computer 

software programs. The need for efficient, useful information entry and retrieval 

systems is growing dramatically as greater numbers of people want access to ever 

increasing volumes of data.

The concept of the data base was born to address this need. Martin (Martin, 

1976/ p. 4) defines a data base as

...a collection of data designed to be used by different programmers...

The intent is to store the data independent of any programs that access it. This 

step in the evolution of information management made it easier for new  

applications programs to access the data since the data were stored in a uniform, 

controlled manner.

This need for information systems has driven the data base designer1 to

1The data base designer is the person(s) who develops and implements the programs that make up 
a data base management system, or DBMS.

1



2

develop tools and techniques for storing and accessing this growing volume of 

information. The data base designer develops a complete set of programs which 

access, store, allow the viewing of and provide the security for a data base. This 

overall set of programs is called a Data Base Management System (DBMS).

A number of models have been developed to provide the data base systems 

analyst2 with a logical view of the data to be stored in a data base. This logical 

view makes it easier to see what facts are being stored and how all of the facts 

relate to one another. The logical view has no concern for the implementation 

details of any one DBMS. A name for this overall logical description of a data 

base is schema. A schema describes all of the types of data that will be stored, 

and shows the connections or relationships between the data items (Martin, 1976).

The data base systems analyst is not the only person that needs to 

understand the logical arrangement of the data in the computer. The user must 

also be able to understand and communicate his or her logical view of the data. 

This is particularly important for the person representing the user when a new  

system is first being developed. This person and the systems analyst must be 

able to express their ideas about the logical data base structure. These ideas will 

include what information should be stored in the computer and how all of the 

information is related. A data model will help provide a uniform format to aid in 

this communication. Data modeling tools are therefore an important link between

2The data base systems analyst is a data base expert who interacts with the end user of a data  
base system and makes the decisions about how to utilize the data base in the most productive 
manner.



3

the data base systems analyst and the user.

The evolution of ideas and concepts in data modeling has included a process 

of abstracting further away from the physical implementation of the data base and 

has aimed more at describing the objects or entities and their relationships. This 

has allowed the user who is unfamiliar with computer data structures to still 

communicate easily with a data base systems analyst. The user is able to talk 

about his domain as he normally does, for example, indicating that part A is 

related to process B in a certain way. This is in contrast to a user having to 

understand some implementation concerns such as pointers or indexed files. 

Whenever there is better communication between individuals, the outcome of a 

project will be improved.

There have been many models developed to help define how a data base is 

organized. Some earlier models included CODASYL (Codasyl, 1973), the 

hierarchical model (Tsichritzis & Lochovsky, 1982), and the network model 

(Tsichritzis & Lochovsky, 1982). These models are used as a conceptual tem plate  

in which the data elements and their relationships may be presented. However, 

these earlier models were closely related to the actual machine representation and 

this reduced their effectiveness and power as a data model (Martin, 1975). As the 

models have evolved over the past 25 years they have become easier to  

conceptualize, easier to modify once a model is constructed, and able to represent 

many levels of complexity (Martin, 1976). This has made it easier for an untrained 

end user to sit down with a data base systems analyst and confirm the details of 

what data go into the data base in what format and with what relationships. There



is still a need for even more expressive and more powerful data models to handle 

the computerization of more and more complicated types of information. (Bic 8» 

Gilbert, 1986, Carlson 81 Arora, 1985). The artificial intelligence community is 

attempting to use computers for much more sophisticated applications such as 

natural language processing and expert systems. Improved models are needed to 

reflect this level of sophistication.

New developments and ideas have had a continuous effect on the field of 

information management. The artificial intelligence (Al) community is one source 

of these new concepts. Many Al systems have been developed that store data in 

frames with slots, rather than the more traditional format of files of records with 

fields (Fikes & Kehler, 1985). A group of individual frames which store the same 

type of data may be looked at as similar to a file with a group of individual 

records. The slots, which when grouped together make up the frame, are similar 

to the fields which make up a record in a file. Less work has been done in the 

area of modeling fram e-based information systems vs. modeling the traditional file 

of records representation. Modeling a frame-based system is the area of interest 

for this paper.

1.2. The Problem To Be Solved.

The intent of this study is to show how two of the more recent modeling 

techniques can be used to model a frame-based information entry and retrieval 

system, or data base. The two models are the relational model, as originally 

presented in (Codd, 1970), and the Entity-Reiationship model as originally



5

presented in (Chen, 1976). Recently the author was involved in a project to 

develop an information entry and retrieval system whose long term objective was 

to evolve into an expert system. It was felt that a fram e-based environment in 

Lisp would be the most practical and easily modifiable system. This system, code- 

named FIRESYS, has since been implemented.

The initial design for this system was done via a tree structured hierarchy of 

the various types of frames (see Appendix B) together with a listing of the frames 

with their respective slots (see Appendix A. This appears to have done a

satisfactory job of organizing the information. There was no formal attempt to

utilize any data base tools or techniques as design aids since the original plan was 

to build an expert system and not a data base. It was felt that an expert system  

required a different set of development tools than did a data base. A network 

structure was intentionally avoided during the early design due to its increased 

complexity over a tree structure. The tree structure together with the other 

factors involved in the development of the system provided plenty of complexity at 

the time. It is now felt that by using an established data model to analyze and 

evaluate this system, the design team and the end users will be able to understand 

the system more easily and completely. Also, the inclusion of the network 

complexity into the model will enable the FIRESYS project to more fully implement 

the users long term needs. It is hoped that the continuing FIRESYS team will use 

the results from this paper to realize this improvement.

The information system that this thesis will examine was developed between

June of 1985 and July of 1986. The work was sponsored by a grant from the



Northern Intermountain Fire Sciences Lab, a division of the USDA. A group of four 

Computer Science graduate students from the University of Montana, including the 

author, under the guidance of Dr, Alden Wright, a Computer Science faculty 

member, was hired to develop a prototype system. The area of interest for this 

system was fire and its use in forest and on range lands. It was felt that there 

was a lack of expertise in the area of how fire can be used to improve an area of 

range or forest land. An expert system seemed to be a solution to this problem.

After several months of interaction between the fire lab personnel and the 

prototype team it was decided that the fire lab was not ready for an expert 

system. There was no expert to interact with and it was unclear just what data or 

knowledge was available to put into an expert system. The decision was made 

that an information entry and retrieval system was needed. With this type of a 

system the users could collect and enter the data that was available. As the data 

is being collected it will become more obvious just what data is available. It will 

then be easier to construct the expert system. Due to the uncertainty of what 

data would be entered, a very flexible system that could be easily modified was 

desired. The concepts of an object-oriented environment and packages were  

incorporated to facilitate the objective of a flexible system.

1.3. The Framework of This Research.

The system being evaluated, FIRESYS, has already been implemented so this 

study may be considered a reverse engineering approach to the design of a data 

base. While one would not want to promote this style of design in most



7

situations, it seems appropriate to the current project for the following reasons. 

The goal of FIRESYS was to build a prototype information system. To accomplish 

this the basic specifications for the problem were determined and a working 

prototype system was developed. The results of this prototype included answers 

to many of the questions about how the system would actually operate. Another 

result was the raising of more questions which needed to be addressed. This is 

where the reverse engineering comes in. The prototype helped to clarify some 

answers and raise more questions. Once the new questions are answered, it is

possible to go back to the beginning and more completely specify the

requirements for the system. One of the problems encountered during the system  

development was the fact that the commissioning personnel at the firelab did not 

have a clear, consistent idea of what they wanted the system to do. This made it 

very difficult to obtain a precise specification of the project from which to proceed. 

In this regard, a prototype was clearly the ideal way to go into this venture. The 

process of building a prototype forces some questions to be answered during the 

development of the prototype. Also, more questions are raised as a result of the 

prototype, and through this process a more complete set of specifications can be 

established.

In a clearly defined business environment for example, essentially all of the 

facts are understood and most questions are answered, before any code is written. 

The process of handling a payroll program is quite exact and the specifications are 

precise. Payroll is a very well understood domain for computerization. The

FIRESYS project was more experimental in nature. Many questions and their



8

answers were not known until the initial prototype system was presented to the 

users. These new questions can now be dealt with and answers obtained. The 

changes to the system that are desired due to the new answers are more easily 

incorporated while the system is still relatively small and more modifiable.

Now that a system does exist it can be evaluated. What was done correctly 

can be acknowledged and what was done incorrectly can be altered. Thus the 

prototype development together with reverse engineering is very appropriate for 

this project. This paper's analysis of the structure of the data base that was built 

will help FIRESYS grow into a more soundly constructed system.

The goals of this paper are to:

*  Model the structure of the FIRESYS data via the relational data model 
and then via the Entity-Reiationship data model.

*  Compare these two models with the model that was used for the 
implementation of FIRESYS.

*  Determine if the relational and Entity-Reiationship data models are 
suitable for modeling a fram e-based system, such as FIRESYS, and if 
so, state what improvements they may bring to the FIRESYS project.

The remainder of this paper is outlined as follows:

*  Chapter 2 is the development of a relational model of FIRESYS

* Chapter 3 is the construction of an entity-relationship model

*  Chapter 4 will present a model of the existing FIRESYS and compare
the relational and Entity-Reiationship models to this model of the
implementation of FIRESYS.

*  Chapter 5 is a presentation of suggested modifications to FIRESYS 
based on the findings of this paper. There are also some concluding 
remarks on how well the relational and entity-relationship models can



9

be applied to a fram e-based representation of an information 
management system.

9



Chapter 2

The Relational Data Model of FIRESYS. 

2.1. Background on the Relational Model.

The relational model was first presented formally in (Codd, 1970). Since then 

many people, including Codd, have expanded on the initial ideas and there is a 

very strong following for this method of modeling data. This model has made a 

large step away from the physical machine representation and is a more 

abstracted, logical view of the data. As Codd put it in his abstract (Codd, 1970/ p. 

9)

Future users of large data banks must be protected from having to 
know how the data is organized in the machine (the internal 
representation).

2.2. The Components of the Relational Model.

2.2.1. The Relation

The primary tool used in the relational model is referred to as a relation. To 

show the logical structure of a relation an abbreviated format is used. When 

presenting a relation complete with values a table format is used. The table 

format is considered a mathematical relation which may be defined as:

R £ { [ e 1f e2 en] | e; £ E.}.

This says that a relation R is a subset of the Cartesian product of its domain

10



11

sets. The domain sets in the previous example are the set of E;'s. In other words,

given the sets Ev E2 En (which do not need to be distinct sets), R is a relation on

these sets when it is a set of n-tuples where each tuple's first element e, is from  

Ev its second element e2 is from E2, and so on (Codd, 1970).

One major difference between the mathematical relation and the data base 

relation is that the data base relation is time varying. Over the course of time, 

data are added, deleted and modified in the data base relation. Another difference 

between the mathematical and the data base relation is the ordering of the n - 

tuples. The ordering of the elements in the n-tuple of a mathematical relation 

must not be altered. In the relational model this ordering is not a critical factor as 

long as each member of the n-tuple can be uniquely identified by its attribute 

name. The attribute names are provided in both the table and the abbreviated 

formats of the relation. Examples of both of these formats are presented shortly.

2.2.2. Domains, Attributes and Tuples

A domain can be defined as a general set of values from which specific 

values can be taken. The purpose of the values is to describe some property of 

an object. For example, from the domain of “integers between 1 and 120" values 

can be obtained to specify age, speed, or floor-number. From the domain of 

"character strings of less than 40 characters" values to specify a person's name, 

the scientific name of a plant, or a habitat-type name can be generated. An 

attribute is a semantically meaningful named domain, such as age, scientific-name, 

or habitat-type-nam e.

When a relation is presented in a table form at the attributes are the column



12

headings across the top of the table. Each attribute within any one relation must 

have a unique name and all entries in that column must be from the domain of the 

named attribute. A relation in a table format with some actual data values is now 

presented.

relation name: SPECIES

scientiflc-name abbreviation common-name

Sitanion hystrix SIHY squirreltail
Bromus tectorum BRTE cheatgrass
Festuca idahoensis FEID Idaho fescue

The name of the relation is given, the attribute names are at the head of each 

column, and the primary key column (primary keys are covered later) is underlined. 

Each row in a table relation is called a tuple. Each tuple is a unique object or 

entity and the elements of the tuple are descriptive attributes about the object. 

The values for each attribute are derived from specific domains. The 

generalization of the individual entities is called the entity type.

In the abbreviated format, the attribute names follow the relation name and 

are enclosed in parenthesis. An example of the abbreviated format, or the 

intention of a relation, would be:

SPECIESfscientific-name, abbreviation, common-name, ...)

The name of the relation is SPECIES. The list of attributes includes scientific- 

name, which is the primary-key for the relation (primary keys will be discussed 

later), as well as abbreviation, common-name, and others. The primary key 

attribute name is underlined.



13

2.2.3. The Primary Key

An important feature in a relation is the primary key. Each tuple within the 

relation must be uniquely identifiable. This is done via the primary key. The key 

may be one attribute or it may be a group of attributes. It may even be an 

artificially generated attribute, strictly for the purpose of being the primary key. 

The primary key in the SPECIES relation given above is scientific-name. Each 

species of plant has one scientific name and each scientific name is related to one 

and only one species of plant. This creates a o n e -to -o n e  mapping between a 

species and a scientific name. This way a species can always be uniquely 

identified by its primary key, the scientific-name.

For a more complete presentation of the formalities of the relational model 

the reader is directed to (Codd, 1970, Martin, 1975, Martin, 1976, Tsichritzis & 

Lochovsky, 1982).

2.3. Normalization of Relations.

One very important process in creating a relational model of a data base is 

normalization (Maier, 1983). The normalization process replaces relationships 

between data with relationships within a two-dimensional table (Martin, 1975). 

This table is also called a relation, (see section 2.2.1) For example, a user may 

specify a set of relationships between data items in the following manner.

*  a given species of plant may be found in several habitat-types

*  any given habitat-type can be found in only one cover-type

*  a given cover-type may be found in several ecosystems



14

A means of breaking this possibly confusing set of statements into a d istinct 

clear description is needed. The normalization process helps to achieve this goal. 

Normalization replaces this seemingly confusing set of connections between data 

entities with several easy to understand relations. Each relation presents one 

relationship that needs to be clearly understood. There is a well defined way to  

join the relations back together temporarily so that the original collection of 

relationships may be viewed as one group if that is desired.

The result of normalization is a set of relations which provide a user- 

oriented logical view of the data. This view of the data can be implemented in a 

variety of ways, and the user does not need to know the method of

implementation. This set of relations is known as the logical schema. It is a

logical description of the data and the relationships in a data base. A very 

important advantage of normalized relations is the fact that they can be adapted to  

changes very easily. As the data base grows and changes over time, new kinds of 

data may be added to the data base and new views of the data may be developed 

for new users. Usually, these changes will not affect the existing views nor the 

existing applications programs that access the data. Even changes in the physical

representation may be made without the need to revise the user's view of the

data. This feature is very desirable in a data model as it saves lots of money and 

time in future modifications.



15

2.3.1. Partial and Transitive Dependencies

There are two concepts that need to be defined in order to appreciate what 

is happening in the normalization process. These are partial dependency and 

transitive dependency. Examples will be used to help explain these concepts. 

Partial dependencies will be presented first.

One of the relations that is used in the FIRESYS project is SEASON- 

SEVERITY-SPECIFIC-FIRE-EFFECTS, or SSSFE. Let us assume, for the sake of this 

example, that the relation is as follows.

SSSFE(scientific-name, season, severity, 
ave-tem p-this-season, fire-effects)

The attribute ave-tem p-th is-season would, by its very meaning, be functionally 

dependent upon the value of the season attribute. In other words, given a season 

value, there will be one value that would be the ave-tem p-th is-season. Season is 

one of the components of the primary key in the SSSFE relation. A v e -te m p -th is - 

season depends upon a part of the primary key value for its value, hence the name 

partial dependency. This is an undesirable trait in the data base since the same 

temperature value would be redundantly stored with every tuple that had a 

particular season as part of the key. Aside from the storage considerations of 

redundancy, if the value of ave-tem p-this-season needed to be changed, it must 

be changed in every place it was stored. This is the problem of consistency of 

data. The following example illustrates this problem.



16

relation name: SSSFE

scientific-name season severity ave-temp-this-season fire-effects

Let us assume that a new study was done and it was determined that the 

ave-tem p-th is-season for spring should actually be two degrees higher than the 

current value. All occurrences of that value wherever they occurred in the relation 

would need to be changed. A better solution, and one which would remove the 

partial dependency, would be to create a new relation called SEASON-AVERAGE- 

TEMP. This relation would store a list of seasons together with the average 

temperature for that season. The season attribute would then be in both the 

SSSFE and the SEASON-AVERAGE-TEMP relations while the ave-tem p-th is-season  

attribute would be in only the SEASON-AVERAGE-TEMP relation. The new

relations would be as follows.

SSSFE(scientific-name, season, severity, fire-effect) 
SEASON-AVERAGE-TEMP(season. ave-tem p-this-season)

cheatgrass
cheatgrass
wheatgrass
wheatgrass

spring mild 
summer hot 
spring mild 
spring hot

67
87
67
67

killed
killed
damaged
killed

and the tabies would look like this.



17

relation name: SSSFE

scientific-name season severity fire-effects

cheatgrass spring mild killed
cheatgrass summer hot killed
wheatgrass spring mild damaged
wheatgrass spring hot killed

relation name: SEASON-AVERAGE-TEMP

season season-ave-temp

winter 22
spring 67
summer 87
fall 56

When the value for ave-tem p-this-season for spring needed to be changed there 

would be one change made in the data base and everything else would be up to 

date.

As a reminder to the reader, there is no ave-tem p-th is-season attribute in 

the actual SSSFE relation for FIRESYS. Also, an important note here is that in 

order for there to be a partial dependency the primary key of the relation must be 

a multiple key. That is, there must be more than one attribute in the key in order 

for some non-key attribute to be partially dependent upon the key of the relation.

Transitive dependency is the other concept to be discussed. Let us again set 

up a hypothetical relation to satisfy the needs of our example. Assume the 

following relation exists.



SPECIES(scientific-nam e, flower-color, pollinating-insect)

18

Let us also assume the following: the value of scientific-name, the primary key in 

SPECIES, determines the value of flower-color; flower-color, a non-key attribute, 

determines the value of pollinating-insect. There is now a non-key attribute 

whose value is dependent upon another non-key attribute. Pollinating-insect is 

dependent upon flow er-color. This situation is similar to that of partial 

dependency, but now neither of the attributes is a part of the primary key. The 

following table clearly shows the redundancy involved in a transitive dependency.

relation name: SPECIES

scientific-name flower-color pollinating-insect

rhodeii dendroni red
azaleaii plantii yellow
rosei prettyi red
carnation! yellowi yellow

The removal of the transitive dependency is accomplished by creating a new 

relation. The new relation would be flowercolor-pollinatinginsect. It would contain 

a list of colors together with the insect that pollinates that color of flower (this is 

a contrived relationship between color and insects). The flow er-co lor attribute 

would then be in both relations and the pollinating-insect attribute would be only 

in the colorofflower-pollinatinginsect relation, as shown below.

red-bellied-bee
yellow-bellied-fly
red-bellied-bee
yellow-bellied-fly



19

relation name: species

scientific-name flower-color

rhodeii dendroni red
azaleaii plantii yellow
rosei prettyi red
carnation! yellowi yellow

relation name: flowercolor-pollinatinginsect

flower-color pollinating-insect

yellow yellow-bellied-fly
red red-bellied-bee

2.3.2. The Three Normal Forms

There are three levels of normalization that are applied to relations. They

are first normal form, second normal form and third normal form.

2.3.2.1. First Normal Form

Achieving first normal form involves setting up a table with all of the desired 

attributes for an entity type across the top of the table. These become the 

headings for the columns. Next, the data is input as tuples, and these make up the 

rows in the table. This table must meet the following five properties, in order for 

it to be in first normal form. (Martin, 1976):

1. Each entry in a table represents one data-item; there are no
repeating groups.



20

2. They are column-homogeneous; that is, in any column all values 
are derived from the same domain.

3. Each column is assigned a distinct name; a unique attribute name

4. All rows are distinct; duplicate rows are not allowed, the primary 
key helps insure uniqueness.

5. The ordering of the rows and columns can be changed without 
affecting either the information content or the semantics of the 
data, the columns must be column-homogeneous and the rows 
must be distinct, but the ordering of both is insignificant.

The first property listed requires some additional discussion as it raises the 

following question. When is something a repeating group and when is it simply a 

group of values? The problem involves an attribute that contains a list of values. 

This situation occurs several times in the FIRESYS data. For example, within one 

species there may be a list of common-names. A table representation of this 

example would like like this.

relation name: SPECIES
/

scientific-name common-name abbreviation color ...

Sitanion hystrix squirreltail SIHY green ...
rabbittail
birdtail

Bromus tectorum cheatgrass BRTE tan
stealgrass

Festuca idahoensis Idaho fescue FEID brown ...

A list of values is not allowed in first normal form which means that this table is 

not in first normal form. There is a list of common names for two of the species 

in the table. There are two ways of handling an attribute which has a list of



21

values.

*  Treat the list as one item, in which case the attribute can remain a 
non-key attribute of the relation. In respect to our example of a 
species with a list of common-names, there would still be only one 
tuple for a given species.

*  Treat each component of the list as an individual item, in which case it 
becomes a part of the primary key. From our example, this would 
cause a new tuple to be created for each com m on-nam e stored.

The results of the first method would be a relation just like the one in the

previous example except that the com m on-nam e attribute should probably be

renamed list-of-com m on-nam es. These common name values are now not

suitable to use as a means of identifying or locating these tuples in the example

relation or any other tuples in any other relations. The value for the lis t-o f-

common-names attribute should be thought of as the totality of the list, as

opposed to a list of distinct values.

The second method given above involves creating a new tuple for each

common name value in the list. The result is an additional relation as shown by

the following example. Note that the SPECIES relation still exists, but does not

contain any common name values. The new relation now contains the com m on-

name attribute.

relation name: SPECIES

scientific-name abbreviation color ...

Sitanion hystrix SIHY green ...
Bromus tectorum BRTE tan •«,
Festuca idahoensis FEID brown ...



22

relation name: SPECIES-COMMON

scientific-name_______ common-name

Sitanion hystrix squirreltail
Sitanion hystrix rabbittail
Sitanion hystrix birdtail
Bromus tectorum cheatgrass
Bromus tectorum stealgrass
Festuca idahoensis Idaho fescue

How to handle this problem can be a difficult decision. The main factor in 

this decision should be how the user envisions the items in the list being used. If 

the items in the list will be used as a means of identifying any tuple in any 

relation, then the list should not be kept as one item. Instead, a new relation 

should be established and each item in the list is a component of one tuple. If the 

items in the list are strictly data values that are related to an entity, and they will 

not be used as a means of identifying that entity, then it is probably acceptable to 

leave the items in a list.

Another factor in the decision of how to handle a list of values concerns the 

possibility of other attributes that might be associated with the values in the list. 

If new attributes will be associated with the list of values, then the second method 

should be employed. It will be relatively easy to add any new attributes to the 

new relation with each list item in its own tuple. In contrast, it would be much 

more difficult to incorporate any newly desired attributes and associate them with 

individual elements of a list, if the first method were used and the items were all 

in one list.



One concern which is at the implementation level involves the attribute field 

length. Most data base implementations require a fixed length field to be specified 

for each attribute. In determining this size, the maximum length of a value should 

be used, within reason. When an attribute is made up of a list of items, it may be 

difficult to determine how many items to allow for. Also, once the maximum  

length is determined, can that much storage space be afforded for this attribute? 

The storage space may also be a factor in the decision of how to handle a list of 

items.

2 .3.2 .2 . Second & Third Normal Form

Second normal form is obtained when a relation is in first normal form and 

there are no partial dependencies of non-key attributes on primary key attributes, 

(see section 2.3.1 for a presentation of partial dependencies.)

Third normal form is achieved when a relation is in second normal form and 

there are no transitive dependencies of non-key attributes on primary key 

attributes, (see section 2.3.1 for a presentation of transitive dependencies) A data 

base in third normal form will be minimally redundant and will avoid update 

anomalies. Update anomalies are the result of additions, deletions, or 

modifications to the data base which leave inconsistencies or conflicting values. It 

is very desirable to avoid update anomalies in a data base operation.

A full detailed description of the normalization process will not be presented 

in this paper. The relational model of FIRESYS will be given, and the third normal 

form properties will be described.



24

2.4. The Data To Be Modeled

A prototype system has already been implemented for FIRESYS. Through 

this development a fairly well defined list of data items, together with the 

relationships between the data, has been generated. For a full listing of these data 

items and their relationships the reader is directed to Appendix A.

There are five major entity types of interest. There are other entity types 

whose importance to the overall structure of the FIRESYS data is less important. 

A brief view of these other entity types, and how they relate to the five major

entity types, will be presented in section 2.4.3. The primary entity types are:
*  Ecosystems

*  Cover-types

*  Habitat-types

*  Species

*  Season-Severity-Specific Fire Effects

2.4.1. The Entity Relations.

A relation is created for each of the objects or entity types of importance to  

FIRESYS. A list of attributes is associated with each object. From this list, a 

primary key is selected. Each of the relations is presented in third normal form, 

and this fact will be detailed for each relation. This presentation of the data 

assumes that for any attribute containing a list of values the entire list is treated  

as a single value, (see section 2.3.2.1 for a discussion of a list of values in an 

attribute.)



25

Table 2-1  shows the relations with the attributes of interest for the five 

primary objects. The primary key is the underlined attribute. Only a few of the 

actual attributes for these relations are shown in order to keep the presentation 

simple.

Table 2-1: Relations for Primary Objects in the FIRESYS Model

ECOSYSTEM(ecosvstem -nam e, classification-key, 
kuechler-vegetation-types, ... )

COVER-TYPES(cover-type-nam e. site-characteristics, 
vegetative-composition, ... )

HABITAT-TYPES(habitat-type-nam e, distribution, 
successional-trends, ... )

SPECIES(scientific-nam e. life-form , abbreviation, ... )

SEASON-SEVERITY-SPECIFIC-FIRE-EFFECTS(
season, severity, scientific-name, 
effect, certainty-factor, ...)

The relations in Table 2-1  are in third normal form. The following facts 

support this claim. All values of each attribute in each relation are fully dependent 

upon the entire primary key of that relation. For example, in the COVER-TYPES 

relation with the key cover-type-nam e, ail other attributes, some of which are not 

shown, depend entirely upon the value of cover-type-nam e. There are no partial 

dependencies and there are no transitive dependencies. In fact, there could not be 

any partial dependencies since the primary key is a single attribute value.

The ECOSYSTEM, HABITAT-TYPES and SPECIES relations also have single 

attribute primary keys. The values for all of the attributes in these three relations



26

depend entirely upon the value of their respective key. Due to their having only a 

single attribute key, none of these relations has any partial dependencies. Since 

the values for all of the remaining attributes is determined strictly by the value of 

the respective primary key, there are no transitive dependencies. Based on these 

factors, the ECOSYSTEM, HABITAT-TYPES, and SPECIES relations are also in third 

normal form.

The primary key for the SEASON-SEVERITY-SPECIFIC-FIRE-EFFECTS relation 

is made up of three attributes. All of the remaining non-key attributes are fully 

dependent upon the combined values of the three part primary key. In other 

words, once the three primary key attribute values are determined, there is only 

one possible value for each of the remaining attributes. Therefore there are no 

transitive dependencies. None of the non-key attribute values can be determined 

until all three primary key values have been established. This means that there are 

no partial dependencies. This shows that the SSSFE relation is in third normal 

form.

2.4.2. The Relationship Relations.

Another set of relations is required in order to represent some of the 

relationships that the user is interested in. A separate relation is needed to

represent the following two facts.

1. a cover-type may exist in more than one ecosystem

2. an ecosystem may contain more than one cover-type

This is an example of a m any-to-m any relationship between ecosystems and



27

cover-types. This same type of m any-to -m any relationship needs to be shown 

between habitat-types and species. The relations for these relationships are 

shown in table 2-2.

*

Table 2-2: Relationship Relations in the FIRESYS Model.

ECOSYSTEMS-COVERTYPES(ecosvstem-name, cover-type-nam e)

HABITATTYPES-SPECIES(habitat-tvpe-nam e. scientific-nam e, 
species-percent-cover-in-hab, fire-effects, ...)

The purpose of the first relation is the following. Given an ecosystem -nam e, 

find all the cover-types that exist in that ecosystem. First, all tuples in the 

ECOSYSTEMS-COVERTYPES relation with the desired ecosystem -nam e are located. 

Then the cover-type-nam e attribute can be read from each of these tuples. This 

provides a list of cover-types that exist in a given ecosystem. With the same 

relation it is possible to determine in which ecosystems a given cover-type might 

be found. The first step is to locate in the ECOSYSTEMS-COVERTYPES relation all 

tuples with the desired cover-type-nam e. The list of ecosystem -nam e attributes 

associated with the selected cover-type-nam es can then be read.

The same two types of searches may be done with the HABITATTYPE- 

SPECIES relation. Other information is provided in the HABITATTYPE-SPECIES 

relation. The species-percent-cover-in-hab attribute is an attribute of the 

relationship between the species and habitat-type entity types. It is not an 

attribute of either of the two individual entity-types that the relation is dealing 

with.



28

If there is information desired about the species that exist in a particular 

habitat-type, it can be found in the following manner. First the habitat-type  

entries in the HABITATTYPE-SPECIES relation are located based on the habitat- 

type-nam e. Then the scientific-name attribute associated with each habitat-type  

is read. Each scientific-name can then be looked up in the SPECIES relation, and 

the desired information on the species can be examined.

These relations in Table 2 -2  are also in third normal form. In the case of the 

ECOSYSTEMS-COVERTYPES relation there are only primary key attributes. This 

precludes any chance of there being either partial or transitive dependencies. In 

the HABITATTYPE-SPECIES relation, the non-key attributes shown are fully 

dependent upon both elements of the primary key for their value. This means that 

there are no partial or transitive dependencies.

An additional relationship relation will be presented that deals with the 

problem brought up in section 2.3.2.1. That problem involved a list of values for 

one attribute. In the original presentation of the entity relations in section 2.4.1, 

the assumption was made that all lists of values for a single attribute would be 

treated as a single item. The other m eans,of handling a list of items is to 

separate the items in the list and create new tuples for each item, (see section 

2.32-1) The relations that are a result of this other method will be presented now.

A list of common-names for a given species needs to be represented. 

Common name is an attribute that may be used in order to locate a particular 

species tuple. The elements in the list of common-names will be separated and 

additional tuples will be created in the first normal form table. Through the



29

normalization process this eventually creates another relation. The resulting 

relation would look like this.

SPECIES-COMMON (species-name, com m on-nam e)

This relation will determine the values for the com m on-nam es associated with a 

given species-name. This relation will also provide the species-name when given 

a common-name. More than one species name may be known by the same 

com m on-nam e and a species may have more than one com m on-nam e. This is 

why the primary key is made up of both attributes. Due to the fact that both 

attributes are part of the primary key, there is no chance for partial or transitive 

dependency. Hence, this relation is also in third normal form. This type of a 

relation is a common result of an initial list of values being separated into 

additional tuples.

2,4.3. Additional Relations.

Through the development of the prototype it was observed that the five 

primary entity types had a large volume of information stored with them. For 

example, there were as many as forty attributes to be associated with the species 

entity type. In order to provide the user with a more convenient organization of 

the data these forty or so attributes were broken into a group of entity types of 

their own. A new relation was created for each of these new entity-types. This 

partitioning of the data was not based on the needs or requirements of the 

relational model nor on the normalization process. It was done for the sake of 

simplifying the organization of the data into smaller conceptual blocks which are



30

easier for the user to deal with. These additional relations are being presented 

separately due to their lack of importance to the overall data model of FIRESYS 

from the relational point of view.

There are five relations that are directly related to the SPECIES relation. All 

five have as their primary key, scientific-name. They may be considered an 

extension of the SPECIES relation. They are in third normal form, as all of the 

attributes of each relation are fully functionally dependent upon the scientific- 

name primary key. The five relations are presented in Table 2-3.

Table 2-3: Additional Relations Relating to SPECIES

PISTRIBUTION-AIMD-OCCURREIMCE(scientific-name,
BLM-physiographic-region, SAF-cover-type, ...)

VALUE-AND-USE(scientific-name. palatability, cover-value, ...)

BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS(scientific-name. 
growth-form , raunkiaer-life-form , ...)

FIRE-APAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES(scientific-name. 
lyon-stickney-fire-survival-strategy, 
row e-m ode-of-persistence, ...)

FIRE-EFFECTS(scientific-name. fire-effect-on-p lant, 
plant-response-to-fire, ...)

There are an additional two relations that apply to the HABITAT-TYPE relation 

just as the previous five relations applied to the SPECIES relation. These two are 

given in Table 2-4.



31

Table 2-4: Additional Relations Relating to HABITAT-TYPE

HABITAT-MAIMAGEMEIMT-CONSIDERATIQIMS(habitat-tVPe-nam e.
livestock-range, wildlife—habitat, ...)

HABITAT-FIRE-ECOLOGY-AND-EFFECTS(habitat-tvpe-nam e.
im m ediate-fire-effects-on-com m unity, 
long-term -com m unity-response-to-fire, ...)

2.5. Summary for the Relational Model

The relational model has proved itself to be more powerful and complete 

than the simple tree-structured model that was used for FIRESYS. (see section 

4-1  for the model of FIRESYS). It is a relatively straightforward process to 

establish the relations and normalize them. The structure of the data has been 

made very clear by using a logical well defined model. The users presented the 

data in a very unstructured arrangement and, through the use of the relational 

model, the data became organized into a precise unambiguous structure. This 

shows that there are benefits of using a well organized data model such as the 

relational model. It forces a clear picture of the data to be drawn, including what 

data items are involved and what relationships exist between various data items. 

The model is created without any of the complexity of the access paths or the 

implementation process. This allows all of the concentration and study to go to  

the data structure alone. This is an important separation of activities in the 

development of a data base system.

31



Chapter 3 

The Entity-Relationship Data Model.

3.1. Background on the Entity-Relationship Model.

The Entity-Relationship, or E-R, model was presented primarily in (Chen, 

1976). The ideas of entities and relationships have been dealt with before, but 

Chen presented the entire model as a well thought out concept. One of the 

motivating factors for Chen's work was the desire to represent more semantic 

information along with a list of data items and their relationships. Some 

interesting semantics of data would include the following.

*  two data items are related, but more than that, one of them depends 
upon the other to justify its existence

*  again, two data items are related, but one of them can be identified, 
only through the identification of another item

An example of the first case would be that a certain species of plant depends

upon the existence of some habitat-type in order for the species to be a valid

entry in the FIRESYS data base. For the second case, the SSSFE entities are not

uniquely identified until the species name to which it is related has been provided.

These are facts about the data that the user is interested in and it is desirable for

a data base to be able to know and represent these facts.

There is much support for the inclusion of relationships, as well as entities,

as distinct components of a data model. An analogy is presented in (Hartzband &

32



33

Maryanski, 1985) that equates the tables of the relational model to nouns in a 

language, in terms of their expressive power. Hartzband and Maryanski then state 

that the addition of relationships to the data model is similar to the addition of 

verbs to a language. It creates a much more descriptive capability in the data 

base model. Chen, in (Chen, 1976), makes the claim that the separation of entities 

and relationships in the data model makes it easier to identify functional 

dependencies among data items. This helps to provide a better understanding of 

the true relationships between data items. Determining functional dependencies 

also aids in achieving the equivalence of the relational model's third normal form.

3.2. The Components of the Entity-Relationship Model.

3.2.1. Entities, Entity-sets, Relationships, & Relationship-sets

The primary components of the E-R model are entities and relationships. 

Chen, in (Chen, 1976/ p. 10), makes a very simplistic definition of them both.

An en tity  is a "thing" which can be distinctly identified.
A relationship  is an association among entities.

Examples of entities would include a specific person, company, event or species of 

plant. Examples of relationships would include father-son, departm ent-m anager or 

habitattype-species.

Entities are members of entity-sets on the basis of a test predicate. Peter 

Ng, in (Ng, 1981/ p. 86), defines an entity-set in the following way:

Let e denote an entity, which is an object that can be distinctly 
identified. An entity -set E is defined as E = {e|pfe)}, where p is the 
aforementioned test predicate.



34

Entity-sets do not need to be mutually disjoint. That is, a member of one 

entity-set may be a member of another entity-set. For example, a specific person

may be a member of the entity-set MALE and also a member of the entity-set

PERSON. Entity-sets are the logical grouping of a set of entities.

Relationships are members of relationship-sets. A relationship-set is a 

mathematical relation among n entities which are themselves members of en tity - 

sets. The mathematical definition as presented in (Tsichritzis & Lochovsky, 1982/ 

p. 177-178) is:

If RS is a relationship-set, it can be defined as:

■R S S{tev e2 enl  | e, £ E^

where e ( is an entity that is a member of the entity-set Er

It is important to note that [ev e2,...,en] is an ordered tuple and also a relationship.

The individual relationship is a member of the relationship-set.

Entities, entity-sets, relationships and relationship-sets will be presented in

the following examples. Sitanion hystrix is the name of a species of plant and as

such, it is an entity. The collection of all species would constitute an entity-set. 

A possible predicate test for this entity-set could be that "x is a species if x is 

listed in the FIRESYS computer files". Another example of an entity might be a 

habitat-type named Artemesia arbuscula/Poa sandbergii (abbreviated to AAPS). 

The collection of all habitat-types would make another entity-set. A possible 

predicate test for this set might be that "x is a habitat-type if x is in the FIRESYS 

computer files".

A relationship exists between AAPS and Sitanion hystrix, since the species



35

Sitanion hystrix is found growing in the AAPS habitat-type. A relationship-set 

exists between the entity-set made up of species and the entity -set made up of 

habitat-types. The relationship-set is a subset of the Cartesian product of these 

two entity-sets. That is, it would be a set of species -  habitat-type pairs such 

that the species did grow in the habitat-type that it was paired with. The pair 

[Sitanion hystrix, AAPS] would be a relationship which is an element of the 

species-habitat-type relationship-set.

One problem that must be dealt with in the E-R model is the determination 

of whether something is an entity or a relationship (Bic & Gilbert, 1986). For 

example, is a marriage a relationship between two entities of type person, Or is 

marriage an entity with attributes of husband and wife. It really depends upon the 

intended use of the data base and the decision is up to the data base designer. It 

is a subjective decision and one that can haunt the data base designer if it is 

made incorrectly.

3.2.2. Roles, Attributes, & Value-sets

The concept of a role can eliminate the need for a tuple to be an ordered list 

of entities. A role is the purpose or function that an entity serves in a relationship. 

For example, in a species-habitat-type relationship two roles can be identified. 

They are individual-plant and plant-grouping. Many times the role played will have 

the same name as the entity itself. A role is different than an attribute of an entity 

or an attribute of a relationship. A role is the function that an entity plays in a 

relationship.

Entities and relationships do have attributes that may be thought of as the



36

descriptive components or information relating directly to the entity or relationship. 

The values that an attribute brings into an entity-set or relationship-set come 

from a value-set. A value-set serves basically the same purpose as the domain in 

the relational model. In the E-R model, an attribute is a function which maps from  

an entity-set or relationship-set, to a value-set or the Cartesian product of value- 

sets. Chen describes it formally in (Chen, 1976 /  p. 12) as: 

f: E. or R. -> V . or V ,  X V., X ... X V.i . i . i  i l  i2 in

Constraints may be placed on the values allowed in a value-set. For 

example, a value-set may be defined as "the set o f BLM Physiographic Regions", 

which would constrain the values to that set of region names that the BLM (Bureau 

of Land Management) has set forth.

The number of items allowed in a relationship is another factor that is 

presented in the E-R model. A relationship may be one-to -one, o ne-to -m any or 

m any-to-m any. This information is given explicitly, and is another way in which 

the E-R model gives more of the semantics of the enterprise being modeled.

3.2.3. Existence and Identity Dependencies

Two semantically helpful features that can be expressed in the E-R model 

are the existence dependency and the identification dependency. The existence 

dependency deals with the fact that sometimes one piece of data in a data base is 

valid only if another piece of data exist. An example would be that the existence 

of the species entities depends upon the existence of an associated habitat-type. 

|f all of the habitat-types in which a given species are found are eliminated from



37

the data-base, then the given species must also be eliminated. If the habitat to 

species relationship was a one-to -m any relationship, then if the one habitat-type  

that a species grew in were eliminated, then the species would also need to be 

eliminated. Dealing with this concept explicitly in the data model helps to insure 

that the data-base correctly represents the real world as much as possible. The 

dependent entity-set, in this case the species entity-set, is termed a weak entity - 

set and the relationship involved is termed a weak relationship-set.

The other dependency, the identification dependency, is another real world 

fact whose semantics can be shown in the E-R model. Life is full of entities 

where the means of identifying them is by saying that they are related to some 

other entity. For example, in FIRESYS, there are a great number of Season- 

Severity-Specific-Fire-Effects (SSSFE), but in order to give any of them any valid 

meaning they need to be related to a specific species. The SSSFE entities are 

identified by associating them, or relating them, with a species.

In any case where there is an identity dependence there is also an existence 

dependence. In this case, this means that if a given species is deleted from the 

data base, then the related SSSFE's must also be deleted. A lone SSSFE is a 

meaningless, unidentifiable entity without its species. Due to the fact that an 

identity dependence implies an existence dependence, anytime there exist an 

identification dependence there exist a weak entity-set and a weak relationship- 

set.

There can be an existence dependence without an identity dependence. For 

example, the species entity-set is dependent upon the habitat-type-set for its



38

existence, but any species can be uniquely identified by its own species-name.

In contrast to the weak entity-sets and weak relationship-sets there exist 

regular entity-sets and regular relationship-sets. When an entity is not dependent 

upon another entity for its existence, the entity-set is called a regular entity-set. 

When the entities that are involved in a relationship-set are all regular entities, the 

relationship-set is termed a regular relationship-set.

Listing these types all at one, there are regular and weak entity-sets and 

regular and weak relationship-sets. The ecosystem entity-set is the only regular 

entity-set in FIRESYS. All of the other entity-sets have an existence dependency 

and so are all weak entity-sets. All of the relationship-sets involve at least one 

weak entity-set and therefore they are all weak relationship-sets.

3.2.4. Primary Keys

One more concept in the E-R model is that of the primary key. As was the 

case in the relational model the primary key in the E-R model is a unique means 

of identifying an individual item out of a group of items. In an entity-set it would 

be the means of selecting a specific entity from an entity-set. For example, in the 

SPECIES entity-set, a specific species of plant can be uniquely identified by using 

the species-name. The species-name is the primary key and will always be a 

unique string of characters for each species. In a relationship-set, the primary key 

is made up of the primary key of each of the entity-sets that are involved ih the 

relationship.

It is not a requirement that every entity-set have a primary key in the E-R 

model. In the case of an identity dependent entity-set there is no means of



39

uniquely identifying any of the entities without the use of a relationship with 

another entity-set. The dependent entities do not have a primary key. Once the 

relationship is established the dependent entities are able to be uniquely identified, 

though unique identification is not a requirement of the identity dependent entity- 

set itself.

3.3. The Entity-Relationship Diagram

The means of presenting the E-R model is primarily through the Entity- 

Relationship Diagram, or ERD. Most of the concepts that are involved in the ERD 

have been presented. The means of diagraming these concepts will now be given.

Entity-sets are pictured as labeled rectangles in the ERD. Relationship-sets 

are shown as labeled diamond shapes. These two objects are connected by arcs 

to show which entity-sets are involved in which relationship-sets. Figure 3-1  

gives a simple example of these ideas. It involves the species and habitat-type  

entity-sets which are related by the habitat-species relationship-set. Note the 

letters next to the arcs. These letters indicate that this is a m any-to -m any  

relationship. This tells us that a given habitat-type may contain many species and 

also that a given species may be a member of many habitat-types.

Another important fact is that the arc from the habitat-species relationship- 

set to the species entity-set is a directed arc. Also, there is an E in the 

relationship-set diamond, and the species box is a double box. This is how the 

existence dependency is denoted in the ERD.

To show that one entity depends upon another entity for its identification a



40

INDIVIDUAL
PLANTS

PLANT-
GROUPINGS

SPECIES
HABITAT-

TYPES

Figure 3-1: The Basic Entity-Relationship Diagram.

SPECIES SSSFESPECIES

figure 3-2: An Identification Dependency in the ERD.

SPECIES

COMMON-
NAME

ABBREVIATIONSPECIES-
NAME

4-LETTER -
ABBREVIATION

COMMON-
NAME

SCIENTIFIC-
NAME

Figure 3-3: Attributes in the ERD.



41

similar notation is used, except that an ID, rather than an E, is placed in the 

relationship between the entity-sets. An example of this identity dependence is 

shown in figure 3 -2 .

Roles are presented in the ERD by labelling the arc between an entity-set 

and the relationship-set. An example of this can be seen in figure 3 -1 . The 

habitat-type is shown to be serving the plant-grouping function or role while the 

species is serving the individual-plant role. To someone looking at this ERD who 

does not know what a habitat-type is, these role names give more semantic 

meaning and may help the reader to understand what the purpose of the 

relationship is.

Attributes are shown on the ERD by circles, as in figure 3 -3 . The attribute 

name is shown next to the connecting arc, while the value-set name is given 

inside the circle. The two names may be the same but when the value-set shows 

some constraint or general quality of the attribute, it will use a different name. 

The mapping between entity-sets or relationship-sets and their corresponding 

value-sets can also be shown. The example in figure 3 -3  shows that one species 

may have multiple common-names, while one species will only have one 

scientific-name and only one four letter abbreviated name.

It can become very messy to attempt to show all the entity-sets, 

relationship-sets and attributes for one schema in one figure. The attributes are 

often given in separate figures. The entity-sets and relationship-sets, together 

with any mapping values, roles, identity constraints and existence constraints are 

often enough to fill any one ERD. For a complete ERD of FIRESYS the reader is



42

directed to Appendix C.

3.4. Normalization as Applied to the E-R Model.

The normalization concept of the relational model was presented in chapter 

two. It was mentioned that this was a very important process in the relational 

model. The results of normalization, and in particular of third normal form, can 

also be achieved via the E-R model (Ng, 1981 /  p. 92b). The benefits include 

minimal redundancy and freedom from update anomalies brought on by changes in 

the data base. The method for achieving the equivalence of third normal form is 

presented in {Ng, 1981 /  pp.92-96). The same partial and transitive dependencies 

that were described in section 2.3.1 are used to analyze the entities and their 

attributes as well as relationships and their attributes. The verbal description of 

the data base application as presented by the user is referred to in order to insure 

that all of the semantics are dealt with properly. Additional analysis techniques 

are also used and these include a heuristic approach (Ng, 1981 /  p. 96). This 

normalization process was not used for this paper since the groupings of 

attributes into entity-sets and relationship-sets in the E-R model is so similar to  

that which was found in the relational model.

3.5. The Entity-Relationship Model of FIRESYS

Chen defines four steps to the construction of an E-R data base design 

model, and they are:



43

*  identify the entity-sets and relationship-sets of interest.

*  identify the semantic information in the relationship-sets, such as the 
number of entities involved in the relationships (one-to -one, o n e -to -  
many, or m any-to-m any), or any dependencies of entity-sets upon 
other entity-sets.

*  define the value-sets and attributes for the entity-sets and 
relationship-sets.

*  determine the primary keys

From this series of steps, one can construct the ERD. The entity-sets and 

relationship-sets of interest were determined through the construction of the 

relational model. The number of entities involved in the various relationships and 

any dependencies was determined by careful study of the users definition of the 

problem area. The value-sets and attributes were described by the users and 

were formalized to a certain degree in the development of the relational model. 

Finally, the primary keys were also determined for the most part in the relational 

model. The attempt was made in each of these steps to do an analysis from the 

E-R perspective even though many of the steps were very similar to those 

performed for the development of the relational model. Many of the concepts and 

goals of the two models are similar even though some names have been changed.

The net result of the E-R model is a description of the FIRESYS data 

structure needs. It includes the entity-sets and relationship-sets involved with 

some semantics about what the types and meanings of the relationships are. The 

E-R model of the FIRESYS project is presented in figure 3 -4 . The attributes and 

value-sets are not presented here since their contribution to the overall logical 

data structure is minimal. For a listing of the attributes of each major entity the



44

COVER-

E
COVER

HABITAT

HABITAT- 
TYPES

COVER-
TYPES

SPECIES

SEASON-SEVERITY
SPECIFIC

FIRE-EFFECTS

Figure 3-4: The E-R Diagram for FIRESYS



45

reader is directed to Appendix A.

3.6. Summary of the Entity-Relationship Model

The E-R model is a somewhat more intricate, detailed model as compared to 

the relational model. It is also a more powerful, descriptive model of the world 

that it is attempting to describe. The arrangement of entities and relationships 

seems to be fairly easy for most people to relate to. The average person's view of 

the world is usually not defined as precisely as the E-R model's is, at least this 

author's view is not. In that light, the E-R model may be difficult for some people 

to adjust to since there are so many specific definitions and concepts to deal with. 

Rather than just having attributes with values from a domain to describe an entity, 

there are value-sets, roles, attributes and domains. This author had to work hard 

to understand these concepts as much as was possible.

Where the relational model has a wide following as being both a model and 

an implementation method, the E-R model is not as widely accepted as a model, 

and this author knows of only one implementation based on the E-R model 

(Benneworth, Bishop, Turnbull, Hollman 8c Monette, 1981). Ng, in (Ng, 1981) goes 

through a process of transforming an E-R model to a physical representation so 

the methods have been established for the E-R model to be implemented. It may 

just take more time for the power of the E-R model to be appreciated and 

expected in the commercial data base environment.

45



Chapter 4

Comparison of the Relational and Entity-Relationship 

Models with the Existing FIRESYS Structure

The objective of this chapter is to compare the findings of chapters two and 

three, on the relational and entity-relationship models respectively, with a model of 

the actual FIRESYS system. First a model of the existing system will be presented.

4.1. A model of the Existing FIRESYS.

4.1.1. Some History of FIRESYS

There were many factors involved in the decision to model and implement 

FIRESYS the way it was. The first step was attempting to understand the needs of 

an expert system since this was the original desire of the users. There is no well 

defined, well accepted standard for modeling and designing an expert system since 

it is a relatively new area within the artificial intelligence sub-field of computer 

science. Certain factors were desired from The FIRESYS team point of view. 

These factors included the use of inferencing via inheritance in the frame 

representation. Also, it was felt that an object oriented environment would be 

beneficial to the system's functionality.

The information given to the FIRESYS team was organized into a logical 

understandable structure. Both a narrative listing of the objects of interest with

46



47

their respective attributes and a tree structured relationship of those objects were 

developed.

The language to use was debated several times and it was always felt that 

Lisp was the strongest choice. The primary factors that favored Lisp were the 

growing acceptance of a common Lisp standard, the flexibility of the language 

including the ability to have variable length fields, and the fact that Lisp is the 

generally accepted language for artificial intelligence.

Our mission was to build a prototype. Due to the nature of prototyping, 

which include the desire to get something up and running in a short amount of 

time, it was known that there would not be a complete and precise specification 

and design for the project before the coding phase began. A model was 

developed which seemed workable and descriptive of the application. This model 

was generated in the limited amount of time available. After the coding was 

underway the users retracted their earlier statement of interest in an expert 

system. They now felt that their goal for the initial prototype was an information  

entry and retrieval system. It was felt by the FIRESYS team that the initial model 

and design concepts for the expert system were flexible enough to adapt to this 

new request. It was also felt that the initial model would facilitate the eventual 

conversion from an information system to an expert system. The decision was 

made by the FIRESYS team to stay with the initial model framework.

If it had been known from the very beginning that a data base would be 

implemented, then the relational model or the E-R model may very well have been 

used. The FIRESYS team contemplated the use of a commercial data base system



48

at this stage, but there were several factors that opposed this decision. First of 

all, a suitable commercial program was not available that would run on the two  

primary target machines. The intent was to run the program on a Data General 

minicomputer and on IBM compatible microcomputers. Another limiting factor in 

the selection of a commercial data base program was the need for variable length 

fields. Very few data base systems provide this feature.

If a commercial data base had been found which was suitable, it most likely 

would have been based on the relational model. This would have lead the FIRESYS 

team to develop a relational model of FIRESYS in order to adapt the data to the 

implementation. Since a commercial data base was not found, the FIRESYS team  

modeled the data in what seemed to be an appropriate manner.

The model for the FIRESYS data structure had many versions during the 

initial phase of the project. The model being presented here is an abstraction of 

the system as it appeared in May of 1986. This phase in the system's life-cycle  

was somewhat of a milestone as the system was being presented to the 

commissioning personnel at the firelab. This stage was considered the final 

prototype resulting from their first one year grant. The system did not stay at this 

stage for very long as another grant was established. The system has continued 

to evolve to this day.

The model used for the FIRESYS development was somewhat ad hoc due to 

the uncertainty about how to model an expert system. The model had two  

components. As stated earlier, FIRESYS is a fram e-based system built in Lisp and 

the set of frames, listing the major objects with their respective slots, was one



49

component of the model. For a description of frames the reader is directed to 

(Minsky, 1985). The other component of the model was a tree structured chart 

showing the relationships between the various frames.

4.1.2. Frames and Slots

A frame can be thought of as a structured representation of some object or 

of a class of objects (Fikes 8t Kehler, 1985). A frame is made up of a group of 

slots. Slots in a frame are somewhat analogous to attributes in the relational 

model. Slots contain values for certain properties of the object being represented 

by the frame. The value in a slot may be an individual value or it may be a 

reference to another frame with its own slots. For example, our species frame 

contains a list of slots which contained the values for scientific name, abbreviated 

name, a list of common names and references, or pointers, to other frames. The 

other frames pointed to may be more detailed collections of data about the 

species or they may be frames with general information about a group of species. 

This allows frames to be linked together to form what is called a semantic net.

There is growing interest in using frames as a means of storing information. 

One feature for which frames are commonly used is inheritance. The idea is that a 

set of frames may be related in some fashion. The features common to a set of 

frames or the facts that relate a group of frames can be stored in one frame. 

Often this new frame is referred to as a superior frame. The set of subordinate 

frames can then inherit the properties, or values from the superior frame. Each of 

the subordinate frames contains a "parent" pointer to the superior frame. One can 

also override this inheritance from the superior frame. If a value that could be



50

inherited from a superior frame already exists in the subordinate frame, then the 

value in the subordinate frame is used rather than looking in the superior frame. 

When the overriding value is not present in the subordinate frame, the inheritance 

is a means of inferring new information about an object.

The new fact being inferred is not actually stored with the object The

assumption is made that since no specific information is stored with the

subordinate frame, the value in the superior frame is acceptable. Often a set of 

rules is used to aid this process of inferencing.

For example, let us say that a group of species all exhibit the same growth  

form. That is, they all grow as a low shrub which has a maximum height of 

eighteen inches. A superior frame can be created to represent this class of lo w -  

shrub plants and information' common to all low shrubs can be stored in this one 

frame. Such information might include their susceptibility to wind, their use by 

animals for shelter or other common features. If there was no information stored 

with the individual species frame about its use for shelter by animals, then it could 

be inferred that the plant was used as it was stated in the superior low-shrub  

frame.

This is a very desirable trait for an expert system since one cannot store

every piece of information on a subject. A good approach is to store the basic

properties and details as facts, and infer any other information, by the use of 

inheritance and rules. The FIRESYS team suggested the use of this property of 

inheritance in data frames, but the users did not support this type of model. The 

FIRESYS team did use the inheritance property of frames very successfully at the



51

systems level of the implementation in order to help develop an object oriented 

environment.

4.1.3. The Model and the Implementation

The data structure established for FIRESYS was directed to some degree by 

the implementation process. An incremental prototype was being built. The 

access paths for the data were modeled in order to facilitate this incremental 

approach. The first data to be entered into the system were one ecosystem and 

the species that were contained in that ecosystem. The user wanted to be able to 

access the species entities directly upon entering an ecosystem. The model of the 

data showed the species entity type being directly related to the ecosystem entity 

type. This picture gives a misleading view of the structure of the data. As shown 

in chapters two and three, the relationship between an ecosystem and a species is 

through the cover-type and habitat-type classifications.

There were some initial attempts at modeling and implementing the m any- 

to -m any relationship which existed, for example, between the species and the 

habitat-type entity types. Due to the users uncertainty as to what exactly they 

wanted and the time constraint that was in place, the decision was made to put 

off these relationships until an overall view showed, how best to handle them.



52

4.1.4. The FIRESYS Model

The major data frame types with their respective, relevant slot types will be 

presented. The reader is directed to Appendix A for a full listing of all the frames 

with all their slots. This full listing of the data frames in Appendix A provides one 

of the two components to the FIRESYS model. The list includes the slots within 

each frame which contained values as well as the slots which contained pointers 

to other frames. The FIRESYS system also contained another set of frames which 

were not known to the user. These frames provided the data dictionary and the 

object oriented capacity of FIRESYS. These other frames enabled the system to 

keep track of what type of slot a given slot was when it was in use. Based on the 

slot's type, various actions could be performed on that slot. How those actions 

were carried out was part of the object-oriented environment's task. These 

system frames will not be dealt with in this paper.

The major objects which the users were interested in are the same as those

listed in section2.4, and those were:
*  Ecosystems

*  Cover-types

*  Habitat-types

*  Species

*  Season-Severity-Specific Fire Effects

Each of these objects had a frame type made up for it. The frame contained 

the slots which acted as the attributes for each of the objects.

An abbreviated picture of the tree structured model that was used during the



53

early implementation of the FIRESYS system is given in figure 4 -1 . The user is 

directed to Appendix B for a more detailed diagram. By being a tree structured 

design, this component of the model is not capable of showing the m any-to -m any  

relationships that were desired. However, the fram e-based component of the 

design is capable of m any-to-m any relationships, by the use of lists of pointers to 

other frames. There were intentions to utilize the capability of frames to reflect 

m any-to-m any relationships but for reasons presented earlier in this paper, this 

was not done.

4.2. The Relational Model vs. The Implemented FIRESYS

It has become obvious to the author that the relational model is superior to 

the two component model that was used by the FIRESYS team. This is not very 

surprising since the FIRESYS model was a rather ad hoc model.

One of the primary advantages of the relational model is its ability to 

represent m any-to-m any relationships very clearly and precisely. The 

HABITATTYPE-SPEC1ES relation in section 2.4.2 is just one example of this clarity. 

FIRESYS attempted to model this relationship but there was no mathematical 

validity to our method. Also, the relationship was not stated as explicitly as it was 

in the relational model.

It is easy to assume that one would follow through and utilize a relational 

data base for the implementation, after using the relational model. The internal 

concerns of how to implement m any-to-m any relationships is handled by the 

software. This is the intent of the relational model; to remove itself from the



54

COVER-TYPESPECIES

HABITAT-
TYPES

SSSFE

Figure 4-1: The FIRESYS Model of FIRESYS.



55

concerns of the implementation. The FIRESYS implementation was built from  

scratch. The team used a non-rigorous model which was based on unstable 

decisions from the users. All of these factors combined to make the 

implementation of m any-to-m any relationships much more difficult to deal with.

One interesting fact that has come out of this study is the indexing scheme 

used in the implementation vs. the implied indexing in the relational model. For an 

example, let us look at the COVER-TYPE and HABITAT-TYPE entity-types and their 

relationship.

First, note that this is a one-to -m any relationship with one cover-type  

having many habitat-types and each habitat-type being in only one cover-type  

(this is based on the current classification system being used by the firelab 

personnel). Let us see what is involved when adding a new habitat-type to the 

model and to the implementation. It is assumed that the cover-type in which the 

habitat-type is found has already been stored in the data base.

When a habitat-type is added in the implementation, a pointer (the index) to  

that habitat-type is stored in a list of habitat-type pointers within the cover-type  

frame. This way, the set of habitat-types can always be located by the 

encompassing cover-type.

Using this same example but with the relational model, the following  

situation occurs. When the habitat-type is added to the data base, the name of 

the cover-type in which the habitat-type is found is stored as an attribute in the 

habitat-type tuple. The implementation version stores the index at one end of the 

relationship between the two items (at the cover-type end), while in the relational



56

model the index is stored at the other end of the relationship (at the habitat-type  

end). Admittedly, this is comparing a model with an implementation, and this 

author has not determined any significance to this fact, but it is an interesting 

point.

Another point that became obvious during the development of the relational 

model is the following. It was strictly for the users conceptual benefit that all of 

the sub-fram es under the species frame were organized as they were, rather than 

listing them all as slots in the species frame. There was no inherent modeling 

advantage to dojng this. It was done simply to break down a large group of slots 

into smaller groups. It is most likely that the same grouping would have been 

done if the relational model had been used from the start. The difference would 

have been that with the relational model it would have been clearer exactly why 

this was being done.

Another factor that is very beneficial in the relational model is its ability to  

structure the data without any interest in the implementation of the system. The 

data structure model and the design and implementation of a system must be 

looked at as two separate although related aspects to the overall development of a 

major project. These two aspects of FIRESYS, the logical structure of the data and 

the implementation of the system, became too closely tied to one another.

In summary then, the advantages of the relational model oyer the FIRESYS 

model (if you call our model a model) are:

*  The capability of the relational model to describe the logical data 
structure of the system, . with no direct connection to the 
implementation needs of the system.



57

*  The capability of the relational model to show m any-to-m any  
relationships between data items in a clear and precise manner.

*  The relational model has commercial implementations that are readily 
available. It would have been relatively easy to generate a working 
prototype from the relational model in that environment, rather than 
constructing our own environment from scratch.

4.3. The Entity-Relationshlp Model vs. The Implemented FIRESYS

The E-R model of FIRESYS is a much more useful and powerful model than 

was the actual FIRESYS model. Much of what was said about the advantages of 

the relational model vs. the implementation model can also be said for the E-R 

model.

Use of the E-R model forces the design process to be more rigorous in 

terms of analyzing what the intended application for the data base will be. The 

users and data base designers must have no confusion or misunderstanding 

between them. If there is not a complete and accurate exchange of ideas about 

the intent of the data base, there could be incorrect decisions made during the 

development of the E-R model. The point raised in section 3.2.1 about whether 

marriage is an entity or a relationship is an example of how important it is to 

know exactly how the data base will be used.

What has been achieved by the use of the E-R model is a clean, precise 

picture of what data is being stored and what the relationships are between the 

data. The objects of interest to the user are classified as entity-sets. The 

relationships that the user feels are important are classified as relationship-sets. 

Important facts that pertain to the entity-sets are handled as attributes to the



58

entity-sets. Those facts that are components of the relationship between entities 

are dealt with as attributes of the relationship-sets. The model is structured in a 

manner that is much like the users view of the data, and this is a desirable trait in 

a data model.

There are several advantages to using the E-R model. First is the separation 

of entities and relationships. This separation makes it easier to see what data 

items there are, and to see what the relationships are between the data items. 

The E-R model also shows the existence and identity dependencies. These 

additional semantics which are explicitly expressed in the model, help the eventual 

data base to more accurately represent the real world environment being modeled.

One factor that was dealt with in section 2.3.2.1 was the problem of m ulti­

valued attributes, which is an attribute that is made up of a list of items. This 

involves cases such as the list of com m on-nam es for a given species. This list of 

common-names was treated as one item in the implementation of FIRESYS. It was 

recommended in the relational model that these multivalued attributes be broken 

down into separate tuples for each item in the list. The E-R model allows one to 

specify m ulti-valued attributes in a simple manner.

The author is concerned as to whether the drawbacks associated with 

treating a list of items as a single item in the relational model would also be 

drawbacks in the E-R model. It is very convenient to be able to specify m ulti­

valued attributes as in the E-R model, but there must be no drawbacks to this 

representation. The biggest problem would be the addition of new data that is 

related to each of the elements in the list. A possible solution to the problem is



59

to treat the list of items as another entity-set, rather than an attribute. This would 

require another relationship which would involve the species entity-set and the 

newly created entity-set for the listed items. Then if some new factor was 

associated with the listed items, it could be incorporated as an attribute in the 

listed item entity-set. Without knowing how the E-R model is actually 

implemented, it cannot be said whether this would be a problem or not. A 

competent data base designer must be aware that multi-valued attributes must be 

dealt with.

. The fact that the E-R model is somewhat more complicated than some other 

models may be somewhat of a disadvantage to some users. However, the user 

does not need to understand how to set up the E-R model. The user does need 

to be able to read the E-R model with the help of a data modeling expert. It is 

the data modeling expert that needs to clearly understand how to set up and work 

with the E-R model. In the long run the user should feel that a better picture of 

his/her application has been created. This will result in a better data base 

implementation and this is what the user is looking for.

Overall, this author feels very good about using the E-R model for an 

application. It provides a rich description of the desired data base and includes 

explicit information that was either implicitly stated in the relational model or was 

not presented at all. The E-R model should become more widely accepted and 

used in the future due to its power and expressiveness. An increase in the 

acceptance of the E-R model will result in more implementations based on the E-R 

model.



60

There is still one question that has not been answered and that is whether 

the E-R model is capable of modeling inheritance in frames, (see section 4.1.2). 

There was no inheritance used in FIRESYS, so there are no examples to be 

examined and tested. The author cannot answer the question about whether 

inheritance can be handled in the E-R model, except to say that it could possibly 

be modeled as a relationship.

60



Chapter 5 

Summary and Conclusion

The primary question that this author hoped to answer was whether the 

relational data model and/or the Entity-Relationship data model would be 

successful at modeling a fram e-based information system. The conclusion 

reached is a strong yes. A fram e-based information system can successfully be 

modeled by either the relational data model or the Entity-Relationship data model. 

However, this claim must be qualified. The fram e-based system that was modeled 

does not utilize the power of inheritance. This potential to infer values based on 

inheritance is a major reason to use frames. The fact that inheritance was not 

used meant that no evaluation could be done to see if the two data models could 

represent this feature. The author does not feel qualified to speculate on whether 

either of the two models will be successful with inheritance, since inheritance was 

not incorporated into FIRESYS.

The system that was constructed, FIRESYS, can be modeled successfully by 

these two data models. This has been done in this paper, and the important 

points found are presented here. The more powerful data models being used 

today, such as the relational and E-R models, are attempting to remove the  

implementation concerns from the data model. The objective of these models is 

to clearly and precisely state what data items will be stored and what their 

relationships will be. How the implementation is carried out is another step in the

61



overall development of a system. The data modeling should be done as an 

individual phase and the implementation should be done as another individual 

phase. They are each components in the life-cycle of an information system. 

There is a transition from one phase to the next in this life-cycle. The smoother 

this transition is the better the end product will be. An important factor in 

facilitating a smooth transition is to clearly understand the product at each phase 

in the life-cycle. Either model would help to provide a better final product since 

both the relational and the E-R models provided a better and clearer picture of the 

data and its structure than did the actual FIRESYS model.

In terms of which of the two models is better, there is room for debate. Let 

us examine the relational model first. The FIRESYS project that was implemented 

was relatively simple in terms of its data types and relationships. The relational 

model was able to unambiguously represent the data structure. There are 

commercially available data base programs that are based on the relational model. 

The use of the same model in both the modeling and implementation phases 

would help provide a smooth transition from the beginning to the end of the 

development process.

Using the relational model approach may very well be faster in terms of 

development and implementation time. This is due to it's simpler modeling syntax 

and it's availability as a commercially implemented data base. If the system never 

becomes an expert system, and so never required the additional modeling 

capabilities of the E-R model, then the relational model may be the better of the 

two methods.



63

Let us now examine the E-R model. When looking at the long range goal of 

FIRESYS there are many questions about how the system will be constructed. It is 

expected to become an expert system and this is still a somewhat experimental 

area in computer science. Due to the experimental nature of this field, the tools 

and concepts used in the expert system's development should be as powerful, 

expressive and adaptable as possible.

There is no inherent weakness in using the E-R model on a relatively simple 

domain such as the current FIRESYS. In light of the future intentions for FIRESYS, 

the E-R model would have the additional features that may be needed to represent 

more complicated structures of the data and it's relationships. For this reason, this 

author feels that it may be helpful for the E-R model to be incorporated into the 

FIRESYS project.

The disadvantages of including the E-R model into FIRESYS would include 

the work of maintaining an additional model, and the lack of correlation between 

the E-R model and the current implementation. This lack of correlation will 

probably exist for several years. The implementations based on the relational 

model are only now, sixteen years after the introduction of the relation model, 

being accepted as valid, effecient programs. Actully, Codd the father of the 

relational model of data bases still feels that there is not one current 

implementation that fully reflects the relational data base model (Codd, 1985). This 

implies that it will be a number of years before there are fully acceptable 

implementations based on the E-R model since the E-R model has only been out 

for about 10 years.



64

The advantages of adding the E-R model to the FIRESYS project include its 

ability to present a more complete picture of the data. The separation of entities 

and relationships as explicit components of the model as well as the expression of 

dependencies in the model, provide a better understanding of the data. Also, 

assuming that the FIRESYS team continues to develop their own code, they have 

the freedom to attempt to incorporate some of the expressive power of the E-R 

model directly into the implementation. There is at least one data base 

management system available, called GERM, that is based on the E-R model 

(Benneworth, Bishop, Turnbull, Hollman & Monette, 1981). This is another option 

for the FIRESYS project to consider.

There is an area of FIRESYS that this paper has not addressed and will not 

address in any detail. This is the concept of an object-oriented programming 

environment. During the research for this paper there were no references found 

that indicated any use of the E-R model or the relational model within object- 

oriented environments. The problem of integrating a relational model or E-R  

model with the object-oriented programming paradigm is an open problem thatthis 

paper does not attempt to deal with.

One very important concept that resulted from this study is that of the 

separation of the data modeling from the design and implementation of the 

system. It is vital to the data base or information management system that the 

data's structure be very clearly understood. If there are mistakes in the 

representation of the data, it will not matter how good the implementation is. The 

system will not reflect what the user desires. If the structure of the data is



65

correct and includes valid semantics about the data and its relationships, then the 

implementation has a much better chance of satisfying the end user.

In conclusion, the representation of the data in FIRESYS was moderately 

accurate when taking into account the circumstances under which the FIRESYS 

project was developed. If it had been clearer from the beginning what was desired 

from FIRESYS and if the decision had been made to use a data modeling technique 

such as the relational or Entity-Relationship model, then a much better 

representation of the data would have been possible. The relational and Entity- 

Relationship data models do work well with frame representations of data. This 

statement assumes that no inferencing by inheritance is involved in the system. 

This factor of inheritance was not examined during this study.

Data modeling must be done prior to implementing an information  

management system. If it is not done there is a very good chance that the system  

will not accurately reflect the user's logical view of the data. If a thorough, clear 

/and accurate data model is developed, there is a much better chance that the final 

system will meet the user's expectations. Meeting or exceeding the user's 

expectations should be the goal of any software development project.



66

Appendix A 

List of Entities and Attributes in FIRESYS

species/entity

SPECIES
ABBREVIATION
SCIENTIFIC-ALIAS
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
FIRE-EFFECTS
HABITAT-TYPES

The following indented sections are directly 
related to the species entity, but we are showing the 
sub-groupings that have been established.

distribution-and-occurrence/entity

SPECIES
GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
REFERENCES



value-and-use/entity

SPECIES
DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE 
OTHER-USES-AND-VALUES 
ENVIRONMENTAL-CONSIDERATIONS 
REFERENCES

botanical-and-ecological-characteristics/entity

SPECIES
GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES

fire-adaptive-tra its-and-survival-strategies/entity

SPECIES
DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY 
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES 

SPECIES-TYPE 
TIME-UNTIL-MATURITY  
TIME-UNTIL-SENESCENCE 
TIME-UNTIL-EXTINCTION  

ROWE-MODE-OF-PERSISTANCE 
REFERENCES



fire-effects/entity

SPECIES
FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
REFERENCES

severity-season-specific-fire-effects/entity

SPECIES
SEVERITY
SEASON
EFFECT
CERTAINTY-FACTOR
DESCRIPTION
QUALIFICATION
REFERENCES

This concludes the entities that are grouped 
with the species entities.

eCosystem/entity

CLASSIFICATION-KEY
FOREST-AND-RANGE-ENVIRONMENTAL-STUDY-FRES-NUMBER
KUECHLER-VEGETATION-TYPES
DISTRIBUTION
SITE-CHARACTERISTICS
SOILS
CLIMATE
COVER-TYPES
REFERENCES



69

cover-type/entity

COVER-TYPE
ECOSYSTEMS
CLASSIFICATION-KEY
ABBREVIATION
DISTRIBUTION
SITE-CHARACTERISTICS
VEGETATIVE-COM POSITION
TREES
SHRUBS
GRASSES
FORBS
OTHER
SUCCESSIONAL-TRENDS
HABITAT-TYPES
REFERENCES

habitat-type/entity

HABITAT-TYPE
COVER-TYPE
CLASSIFICATION-KEY
ABBREVIATION
DISTRIBUTION
SITE-CHARACTERISTICS
VEGETATIVE-COM POSITION
TREES
SHRUBS
GRASSES
FORBS
OTHER
SPECIES
INDICATORS-OF-GOOD-CONDITION
INDICATORS-OF-POOR-CONDITION
SUCCESSIONAL-TRENDS
HABITAT-MANAGEMENT-CONSIDERATIONS
HABITAT-FIRE-ECOLOGY-AND-EFFECTS



habitat-m anagem ent-considerations/entity

LIVESTOCK-RANGE 
Wl LDLIFE-HABIT AT 
OTHER-HABITAT-CONSIDERATIONS 
REFERENCES

habitat-fire-ecology-and-effects /entity

FIRE-OCCURRENCE
IMMEDIATE-FIRE-EFFECTS-ON-COMMUNITY
IMMEDIATE-COMMUNITY-RESPONSE-TO-FIRE
LONG-TERM-COMMUNITY-RESPONSE-TO-FIRE
FIRE-EFFECTS-ON-GRAZING-POTENTIAL
FIRE-EFFECTS-ON-WILDLIFE-HABITAT-AND-POPULATIONS
FIRE-USE-POTENTIAL
REFERENCES



71

APPENDIX B. The Frame-Based Hierarchy of FIRESYS

ECOSYSTEM

COVER-TYPESPECIES

MANAGEMENT-
CONSIDERATIONS

FIRE ADDAPTIVE 
TRAITS

HABITAT-
TYPESBOTANICAL & 

ECOLOGICAL 
CHARACTERISTICS

DISTRIBUTION 
&OCCURRENCE

FIRE EFFECTS MANAGEMENT
CONSIDERATIONS

FIRE ECOLOGY 
& EFFECTS

SSSFE



72

APPENDIX C. The ERD of FIRESYS

ECOSYSTEI 
V COVER

COVER
HABITAT

HABITAT
FIRE

CONTINUED ON 
NEXTPAGE

HABITAT-
.SPECIES/

HABITAT X  
M N G M N T./

COVER-
TYPES

SPECIES

HABITAT-
TYPES

HABITAT 
FIRE ECOLOGY 

& EFFECTS

ECOSYSTEMS

HABITAT
MANAGEMENT

CONSIDERATIONS



73

APPENDIX C The ERD of FIRESYS cont.

HABITAT-
TYPES

HABITAT-
SPECIES- SPECIES

FIRE
EFFECTS

VARIETIES
FORMS.

BOT&ECO
vCHARACT.,

VALUE & 
. USE

DISTRIBUTION

VARIETIES FIRE
EFFECTS

OCCURANCE

FORMS

FIRE ADAPTIVE 
TRAITS & 

SURVIVAL STRAT

BOTANICAL & 
ECOLOGICAL 

CHARACTERISTICS

VALUE

USE

SSS FIRE 
EFFECTS

SEASON-SEVERITY
SPECIFIC

FIRE-EFFECTS



74

Bibliography

Benneworth, R.L. & Biship, C.D. & Turnbull, C.J.M. & Holman, W.D. & Monette, F.M. 
The im plem entation o f G E R M , An Entity-R elationship  D ata Base 
Management System, pages 478-484. IEEE Proceedings of International 
Conference on Very Large Data Bases, 1981.

Bic,. Lubomir 8t Gilbert, Jonathan P. Learning from Al: New Trends in Database 
Technology. IEEE Computer, Mar 1986, 19(3), 44-54.

Carlson, C. R. 8t Arora, A. K. Toward the Next Generation of Data Modeling Tools. 
IE E E  Transactions on S oftw are Engineering, Sept 1985, SE-11(9), 966-970.

Chen, Peter P-S. The Entity-Relationship Model— Toward a Unified View of Data. 
A C M  Transactions on Database Systems, March 1976, 1(1), 9 -36.

CODASYL. CO D A SYL D ata Description Language Journal o f Developm ent. 
National Bureau of Standards Handbook 113; U.S. Gov't Printing Office, 1973. 
Com m ittee on DAta SYstems Languages.

Codd, E. F. A Relational Model of Data for Large Shared Data Banks. 
Communications o f the A C M , June 1970, 13(6), 377-387.

Codd, E. F. Does your DBMS run by the rules? Computerworld, Oct. 21, 1985, }, 
49-60.

Fikes, Richard 8i Kehler, Tom. The Role of Frame-Based Representation in 
Reasoning. Communications o f the ACM , Sept 1985, 28(9), 904-920.

Hartzband, David j. 8i Maryanski, Fred J. Enhancing Knowledge Representation in 
Engineering Databases. IE E E  C O M PUTER, Sept 1985, 18(9), 39-46.

Maier, David. The Theory o f R elational Databases. Computer Science Press, 1983.

Martin, James. Com puter Data-Base O rganization. Prentice-Hall, 1975.

Martin, James. Principles o f Data-Base Management. Prentice-Hall, 1976.

Minsky, Marvin. A Framework for Representing Knowledge. Readings in
Knowledge Representation, 1985, }, 245-262.

Ng, Peter A. Further Analysis of the Entity-Relationship Approach to Database



75

Design. IE E E  Transactions on Softw are Engineering, January 1981, SE-7(1), 
85-99.

Tsichritzis, D. & Lochovsky, F. D ata Models. Prentice-Hall, 1982.


	Analyzing a frame-based information system using the relational and entity-relationship data models
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

