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Mason, Jeremy C., M.S., May, 2005 Computer Science

Channel Networks in Ice: application of river network research to ice streams 

Chairperson: Jesse V. Johnson Ph.D.

Many natural systems form branching, self-similar channel networks - from the vein 
pattern  on a maple leaf to the system of rivers and tributaries comprising the Missouri 
river network. Since these networks are observed with such frequency in nature, 
many attem pts have been made to understand why this organizational pattern is so 
prevalent. Indeed, a special classification now exists for networks that are directed 
(flow is well defined) as well as efficient (the network strives for energy minimization). 
These networks are known as optimal channel networks.

Most naturally occurring channel networks can be elegantly characterized with a 
m athem atical technique known as allometric scaling. Allometric scaling is exhibited 
in systems th a t show similarity across many spatial scales. Comparing a sub-section 
of a system exhibiting this allometric scaling characteristic to other sub-sections of 
the same system, or to  the overall system itself, will reveal strong similarity. For 
instance, a small tributary  of a river system contains many of the same features as a 
larger tribtary, but scaled down.

It has recently been shown that aspects of a system’s inherent characteristics may be 
discerned by examining its allometry. One of these characteristics is dimensionality. 
Dimensionality can be defined as the minimum number of spatial dimensions in which 
a system exists. Utilizing a process tha t invokes a series of algorithms, we can infer 
a system’s dimension from scaling relations. The main algorithm in the process 
recursively visits all cells in a basin calculating the flow into each cell from all upslope 
neighbors.

The purpose of this thesis is to demonstrate th a t ice stream networks exist as 
allometric channel networks and to examine the similarities and differences between 
river networks (which have been shown to exist in two dimensions) and ice streams. 
Using current river analysis procedures, we show tha t the allometry for ice stream 
networks is dissimilar from the allometry for river networks. We conclude that any 
model of ice streams must encompass more than two dimensions in order to capture 
all relevant physical characteristics of the system.
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C H A P T E R  1 O V E R V IE W

In tr o d u c tio n

A ntarctica provides a fertile environment for science. The extreme tem perature in 

particular produces a massive continuum of ice and snow and with tha t comes an in

teresting dance between snowfall, accumulation, and runoff. Nature has provided this 

runoff function in the form of rivers of moving ice tha t discharge ice from the interior 

to the ocean. These so called ice streams perform the same transportation function 

th a t river networks perform; they provide an efficient mechanism for maintaining the 

system ’s mass balance.

A ntarctica houses the largest source of fresh water in the world. If, for example, 

the Ross Ice Shelf in Western Antarctica collapsed the global ocean level may rise 

by four to six meters (Oppenheimer, 1998). Due to the magnitude of the system, 

the mass-balance of A ntarctica is very significant to global climate, hence the need 

for careful study. Furthermore, ice streams are the primary mechanism by which 

A ntarctic ice is deposited into the ocean (Oppenheimer, 1998), and thus are the focus 

of most studies concerning the A ntarctic mass-balance.

Heightened interest in the global warming phenomenon has promoted research fo

cused on the ice streams in Antarctica, particularly the Western Antarctic Ice Streams 

(WAIS) flowing into the Ross Ice Shelf. The speed at which these streams transport 

ice is of keen interest to scientists, and various techniques including satellite based



radar interferometry have been utilized (Joughin et ah, 1999) to gather relevant veloc

ity data. Upon examination of this velocity data, the channelized character of these 

ice drainage networks is immediately apparent, however, no thorough investigation 

of the their fractal dimension and structure has been performed As an attem pt to 

rigorously perform this investigation and to probe the character of these streams, this 

thesis appeals to similarities between ice streams, river networks, and general channel 

networks utilizing scaling laws for comparison.

Scaling laws

A general study of channel networks reveals th a t the most efficient networks con

tain a property wherein the to tal system is self similar to sub-networks within itself 

(Banavar et ah, 1999). This property can be characterized by a scaling law th a t has 

the general form:

Y  oc YoX^ (1.1)

which defines a relationship between two scalar quantities X  and Y . Iq functions 

as a proportionality constant and n  is the scaling exponent (Dreyer, 2001).

Scaling laws  ̂ can be found whenever a system exists th a t shows similarity across 

spatial scales. Perhaps the best known examples of scaling are “fractals” such as a 

Koch curve, where the fractal geometry at one level is the same at the next and pre

vious scales. For the systems considered here, the scaling exponent n is a fraction less 

than  one, indicating th a t individual elements decrease in size as the system increases 

in depth.

Of course, when dealing with natural systems, we must impose reasonable con-

1 Considering that such research is recent and ongoing (Maritan et al., 2002), this is not surprising.
^Scaling laws are also known as power laws - these terms will be used interchangeably throughout.



Figure 1.1 Koch Curve fractal has fractal dimension |

straints on the upper and lower bounds of where the exponent is measured Another 

consideration when dealing with natural systems are the artifacts introduced by us

ing a finite spatial resolution. Since a dataset cannot contain infinitely many entries, 

there will always be some area between data  points tha t must be interpolated. To 

minimize these artifacts, a dataset of high enough resolution to capture the significant 

attribu tes should be used.

An allometric scaling law is a scaling law (Equation 1.1) where the exponent n ^  1 

(Dodds and Rothman, 2000). Many natural channel networks can be described using 

an allometric scaling law. The network allometry^ along with many other aspects of 

the network, can be examined by descerning the exponent of the scaling law describing 

the system.

^Only in theory do fractals span all scales. In practice finite size effects provide upper and lower 
bounds on the system. For instance there are no rivers larger than the Amazon, and none smaller 
than a channel head.



R iv er  n etw ork s

Channel networks can be observed in many natural systems, including river net

works, and recent research (M aritan et ah, 2002) suggests tha t aspects of a network’s 

character can be known by studying the self similar structure of the system. For ex

ample, i t ’s known th a t rivers form efficient, directed transport networks (Rodriguez- 

Iturbe and Rinaldo, 2001). This is believed to minimize energy dissipation and this 

type of network falls into a specific class of efficent spanning tree topographic networks 

as defined by Banavar et al., 1999.

A river network can be categorized by an allometric scaling law because it shows self 

similarity (ie .,sm all sub-basins of the drainage network resemble the entire drainage 

network when scaled appropriately). This allometric scaling law provides a mecha

nism to examine river drainage networks and is known as Hack’s Law (Equation 1.2) 

- one of the earliest observations of river allometry. Proposed by John Hack in 1957 

(Hack, 1957), Hack’s Law states th a t the length I of a drainage basin’s main tributary 

is proportional to the basin’s area a taken to an exponent h (Rodriguez-Iturbe and 

Rinaldo, 2001) - h is known as Hack’s exponent.

I (X a* (1.2)

The seminal work on this relation studied the drainage basin for the Shenandoah 

Valley in Virginia, and found Hack’s exponent to be approximately 0.6 (Hack, 1957). 

Further studies confirmed th a t for most river networks Hack’s exponent falls between

0.52 and 0.6 (Rodriguez-Iturbe and Rinaldo, 2001).

Hack’s Law provides an interesting observation of a river network, however, it is 

ultim ately driven by empirical d a ta  th a t provides no real explanation of why the 

relation exists. The desire to couch such interesting scaling behavior in a more geo



metrically based mechanism is met using the concept of dimensionality. M aritan et 

al. (2002) shows a simple calculation th a t translates between network dimensionality 

and Hack’s exponent.

N etw o rk  d im e n sio n a lity

Recent research has produced convincing arguments th a t a relation between the 

river network’s basin area and the to tal accumulation of water in the basin may 

provide a consistent and geometrically based derivation for Hack’s exponent (M aritan 

et al., 2002). By analyzing a river network’s drainage basin at a range of scales, a 

very close approxim ation to  Hack’s exponent is derived.

Combining the current research of channel networks and dimensionality with the 

surface elevation, bed elevation, and velocity data  gathered in Antarctica, we can 

dem onstrate th a t the scaling behavior of ice streams differs significantly from the 

behavior of river networks.

G lacio logy

The visual and compositional similarities between ice stream networks and river 

networks provides an im petus to analyze ice streams using river drainage analysis 

tools. Most river analysis tools use a digital elevation map to determine flow networks 

- after all, water is primarily subject to gravity. Similarly, ice stream networks can 

be closely approximated using elevation or surface slope only (a so called “first order 

approximation” of an ice stream). These approximate ice stream networks reveal a 

strong sim ilarity when compared to measured ice stream networks, indicating th a t a 

first order approximation is appropriate for finding ice stream  networks.

Many sources of data concerning the elevation and the velocity of the ice flowing in
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A ntarctica are available through The National Snow and Ice D ata Center (NSIDC) 

website The RADARS AT A ntarctic Mapping Mission (RAMP) dataset contains 

high resolution elevation data  th a t can be used to find ice stream  networks. This 

research also benefits from the availability of high resolution velocity data  for most 

of the Siple Dome area in Antarctica including WAIS, and many sections of the 

Ronne-Filchner Ice Shelf provided by Joughin et ah, 1999.

r.

1000 km

Figure 1.2 RADARS AT Interferom etry velocity provided by Joughin et ah, 
1999 and personal communication. Darker is faster velocity.

A map of velocity can also be generated using a balance velocity calculation (Budd

http://nsidc.org/

http://nsidc.org/


and Warner, 1996) over the whole continent’s elevation data. While not as accurate 

as the measured velocity data, it does provide a complete and alternate view of the 

ice motion a t a continental scale.

^ 4

îfj 1000 km

Figure 1.3 Balance velocity calculation. Darker is faster velocity.

A n ta r c tic  a n a ly sis

W ith access to the most current and accurate d a ta  available and the river anal

ysis tools provided by the open source community, the process turns into one of 

systematically breaking down the area in question into sub-basins spanning multiple
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spatial scales, analyzing the individual sub-basins, then plotting all the sub-basins 

d ata  together to determine the overall dimension of the network.

This process is perfected and validated on multiple distinct river networks and 

finally applied to  ice streams. However, before applying this procedure to ice streams, 

the im pact of the underlying topography has to be determined. In short - Is the 

topography of the ice stream  dictated by the underlying bed topography or do higher 

order effects have a significant impact? If the dominant features of the ice stream 

are dictated by the bed topography, it would be more beneficial to run the analysis 

on the bed surface rather than the ice surface. Significant differences exist between 

surface and bed analysis and show that, except for continental scale topographical 

features, higher order effects produce differences th a t can not be anticipated by bed 

only flow analysis.

Determining a system ’s scaling exponent is the first step. Once the exponent is 

known, we are left with several questions. How do ice streams of an unknown scaling 

exponent compare to river networks, with a known exponent? If the scaling exponents 

differ, does th a t difference provide insight about the sta tus/structu re  of the overall 

network? W hat are the next steps? The remainder of this thesis is dedicated to 

performing the analysis and answering these questions.
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C H A P T E R  2 M E T H O D S

The focus of this research is to  determine the dimensionality of ice stream networks. 

The term  “dimensionality” in this context is taken to  mean the scaling exponent tha t 

characterizes an allometrically scaled network. Determining dimensionality is not 

a straightforward procedure. Starting with an analysis of known, two-dimensional 

systems and comparing the results to an analysis of ice stream networks yields a 

process to  determine the allometric scaling exponent. It is convenient to use Hack’s 

Law exponent as a measurement of similarity since this can be easily determined from 

the dimensionality exponent (M aritan et al., 2002). This comparison acts as a litmus 

test for determining if river networks and ice stream networks exist primarily in the 

same dimensional space.

To complete this task, networks of ice streams and their respective drainage basins 

must be identified. This also requires a process th a t mimics the results found in Mari

tan  et al., 2002. This process defines a mechanism for determining the dimensionality 

exponent of a channel network. Specifically, the dimensionality exponent is obtained 

by a log-log plot of many sub-basin catchment areas versus the sum of all flowing 

medium} in the sub-basin. This process uses the open source GIS tool Geographic 

Resources Analysis Support System (GRASS) to perform river network basin analysis 

and im ports the result into MATLAB to  aggregate and plot the basin data.

The first step is illustrating th a t ice stream  networks can be reliably and accurately

^Flowing medium is defined as the material that is being transported by the network.
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extracted using elevation data  or velocity data. Before arriving at the final process, 

many efforts produced methods th a t were discarded, but are expounded upon here for 

completeness. Included in these previous efforts are a user supervised hand-tracing 

process and an autom ated attem pt at catchment delineation.

The user supervised drainage extraction attem pts used ice-flow velocity data  from 

RADARSAT interferometry (Joughin et al., 1999). Further attem pts included the 

use of the Terraflow routing tool (Toma et al., 2003)^ for drainage basin analysis 

which proved excessive for this application. Finally, the r .w a te rsh e d  (Neteler and 

Mitsova, 2002) module of G R A S S  was chosen as the primary tool of drainage basin 

and flow network extraction combined with MATLAB for the data manipulation and 

display.

In this chapter, each m ethod is described and the potential or actual issues are 

identified. The results of the application of these methods are documented in Chapter 

Three.

V erify in g  H ack ’s Law  for ice  strea m s

This research was initially performed in order to determine if the WAIS Ice Streams 

upheld Hack’s Law. Prior to determining a more general approach, Hack’s Law 

seemed like it would be enough to show the similarities between rivers and ice streams. 

Using gradually more sophisticated methods to determine basin catchment area and 

tribu tary  length soon gave way to fully autom ated methods of drainage basin analysis.

Methods of determining Hack’s Law from manual measurement of the area and length

^Terraflow by default uses a Multi-Flow Direction (MFD) scheme where drainage from each cell is 
routed to multiple downslope neighbors proportionally dependant on the elevation gradient. While 
this produces smoother flow, tests showed that the additional computation time did not provide 
significantly better results, and given the uncertainty inherent in the elevation data, may not be 
better at all.
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led to  a more sophisticated com putational method - finding network flow using least 

cost drainage analysis, and finding drainage sub-basins at multiple scales using a 

spectrum of initial conditions. Finally, the goal of finding Hack’s Law exponent was 

supplanted by finding a more general network scaling exponent. Hack’s Law exponent 

and this more general exponent are related in (M aritan et al., 2002).

The final result is a set of procedures th a t, when given an elevation dataset for an 

area, produces an allometric scaling exponent of the drainage network which corre

sponds to the network’s dimension. Using these procedures, a critical examination 

can be performed on the similarities between river networks and ice streams.

Throughout, the goal has been to determine the similarities or differences between 

channel networks comprised of rivers versus those comprised of ice streams. A net

work’s scaling exponent and Hack’s Law provide the structure to perform a compar

ison.

S up erv ised  m ethod s

Given the need to find the drainage basin area and the length of the longest tribu

tary, it was determined as a good first step to  manually draw the basin boundary. A 

system was needed th a t allowed the user to easily plot points on the basin boundary 

by studying elevation contours. MATLAB provided an environment in which to easily 

create a set of scripts allowing the user to view the velocity d ata  of the ice streams 

as a backdrop to the elevation contours for better identification.

M anually  finding drainage area

The easiest approach was to delineate the basin catchment by selecting data  points 

on the perim eter and using a convex hull m ethod (Barber et al., 1997) on the resulting 

polygon to determine the catchment area.
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The MATLAB environment allowed the user to manually inspect the velocity data 

(augmented with contour plots of the same area) to  find the flow direction at each 

pixel. Using these data  as a visual guide, selection points were placed on the boundary 

of the catchm ent area until the appropriate area was fully surrounded. Finally a 

convex hull algorithm  was used to determine the outer points of the polygon and the 

area was com puted using MATLAB.

The process consisted of three steps:

1. Manual inspection of velocity vector data  augmented with contour plots to find 

the flow direction at each pixel

2. Approximate catchment by selecting points along the boundary

3. Sum the interior pixels of the resulting polygon

This visual approach is more difiicult than it first appeared. Using only velocity to 

find catchm ent area is difficult due to the fact th a t velocity vectors are sparse and a 

ridge boundary may lie between two measurements. Other visual aids helped, such 

as displaying the velocity as a 3-D surface, but ultim ately this method was subject 

to too much human influence. As shown in Figure 2.1 and Figure 2.2 , the results 

were widely varied^. In general, as the  basin area got smaller, finding the boundary 

became more problematic. At a smaller scale, any missing data  has a much more 

profound im pact on the amount of human judgement th a t has to enter the basin 

definition. Hence, the basin areas became even more suspicious at smaller scales.

The overall boundary area was susceptible to a wide range of interpretation and 

it was difficult to  get reproducible results. While most of the calculated values for 

Hack’s Law seemed reasonable (between 0.52 and 0.65), since the analysis of Hack’s

^Due to the subjective nature of the process, a user could perform successive runs on the same 
region, but produce results that differed by as much as 20% in total area.
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Figure 2.1 Manual basin trace one
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Figure 2.2 Manual basin trace two
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Law on ice streams had not been performed before, there was no way to validate the 

accuracy of the results. Even though this method met with partial success, it was 

discarded in favor of a more autom ated approach, th a t would remove the subjectivity 

in evaluating basin boundaries.

M anually  finding tr ib u tary  len gth

Early attem pts at finding the longest tributary  in a drainage basin included tracing 

up the center of the ice stream  velocity by hand. W ith the assistance of flow vectors, 

a hand drawn line could be traced up the velocity channel with a certain amount of 

accuracy. Due to  gaps in the data the traced tributary  routes would always have an 

error factor associated with them. The results were also very susceptible to human 

interpretation since no exact measurement of the length could be made. Small varia

tions in the stream  would produce different exponents and could occasionally change 

which tribu tary  was the longest.

Other functions such as contouring and displaying the surface in 3D were helpful, 

bu t ultim ately this method proved too problematic. Fundamental difficulties were 

introduced by human judgm ent and the manual nature of input, so the process and 

results were discarded.

As shown in Figure 2.3 the results from a hand trace are crude and have the 

potential for drastic differences depending on how the data  are interpreted.

S em i-su p erv ised  catchm ent d eterm in ation

Another attem pt used to  determine a basin’s catchment area employed a more 

autom ated approach, but still m aintained a user supervised component. The user 

would manually trace the ice streams on top of the velocity map, essentially provid

ing a single pixel skeleton of the network along the center of the streams to their
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Figure 2.3 Manual determ ination of WAIS ice stream catchment areas
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headwater, see Figure 2.4 This function still suffered from the problems of the 

previous unsupervised methods.

Due to missing d ata  in the trace set, the basin detection step had to first thicken 

the network skeleton to jum p over any gaps. Ultimately this thickening became a 

fatal flaw. Once the stream  was thicker than  a single pixel, it became very difficult 

to determine the endpoints and to trace to those endpoints without tracing sideways 

and backwards. This artificially added length to the tributaries, resulting in the 

abandonment of this method^.

■ , ' 7  /

\ 7 Ï

V - '  ■

Figure 2.4 Autom ated discovery of tributary  length

Once all endpoints were found, a systematic trace from every end point to every 

other endpoint would reveal the longest tributary  in the system, keeping in mind flow

4The spikes indicate possible tributary endpoints. A path between every peak to every other 
peak is measured in the pathfinding step to determine the longest distance. Area units are in pixel 
units.

®This approach might still have merit if a path finding algorithm such as A* (Pearl, 1984) were 
to be used, however, more automated and standardized methods were discovered.
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direction^.

O ther m eth od s

O ther possible methods of determining catchment boundaries th a t were not a t

tem pted include starting at any downstream point and recursively tracing the path 

consisting of the steepest ascending elevation, essentially “walking” up the drainage 

basin ridge. Another m ethod would be to use repetitive random walk analysis com

bined w ith velocity and elevation d ata  (Price and Whillans, 1998). These approaches, 

while viable, were surpassed in favor of the basin determination functions found in 

r  .w atershed .

A lte r n a te  ap p roach  to  H a ck ’s Law

The efforts to produce a method th a t calculated Hack’s Law exponent exactly were 

abandoned due to  the difficulties calculating tributary  length and the relative ease of 

calculating Hack’s Law from network dimensionality. To calculate the dimensionality 

of a system, the only two quantities required are the drainage basin area and the 

accumulation, both of which can be found using standard tools. Determination of 

the main tribu tary  length is no longer a necessity.

D im en sion a lity

As mentioned previously, recent research (Banavar et al., 1999) suggests th a t the 

dimension D  of a system can be used to determine Hack’s exponent in spanning tree 

networks. Given th a t a system is directed and efhcient and exists in D-dimensional

®The approach was abandoned before this result could be fully determined.
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space, how can we determine D? Banavar et al., 1999 suggests tha t the theoretical 

minimum of D for such systems is determined by:

D

(2 .1)

where C  is the flow (metabolic^ of the network and M  is the volume of “flowing 

medium” (Dreyer, 2001)® in the system.

For our purpose it is convenient and equivalent to invert the function and replace 

the variables with the river network equivalents to  obtain from (Equation 2 .1) :

M  ~  (2.2)

For the case of river networks, A  is taken to be the area drained and M  is equivalent 

to drainage accumulation (Banavar et al., 1999). Using (Equation 2.2) , Banavar et 

al., 1999 shows th a t river networks exist in two dimensions - the theoretical minimum 

exponent is |  or 1.5 (Banavar et al., 1999). It is im portant to note tha t every point in 

a drainage system has an associated M  and A  - Every point has an amount tha t flows 

through it, and every point also has an upslope area drained, even if both amounts 

are unit amounts.

The dimensionality exponent can be defined from (Equation 2.2) as:

a  =  ^  (2.3)

The dimensionality exponent a  can then be determined by examining the slope of 

the line described by the log-log plot of the to tal accumulation M  (Equation 2.5)

^This quantity can be taken to mean either metabolic rate in animals (Kleiber’s Law) or river 
flow rate (Dreyer, 2001).

^Defined as blood, water, or whatever medium for which the network is providing transport.
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versus the to ta l contributing area (Equation 2.4) .

A^ =  A^ +  1 (2 .4 )
zGnn(x)

where A^  is a recursive quantity th a t includes the entire area connected to, but not 

including, the outlet pixeP (Banavar et al., 1999). One area is connected to another 

area if there exists a steepest descent drainage direction from one point to the other. 

nn(x)  denotes the nearest upslope neighbors of site x  (ie.,neighbors th a t drain into 

site x). A  can also be obtained by finding the drainage basin boundary, adding a unit 

area for each element in the drainage, then subtracting one unit area from the total 

to account for the spillpoint (M aritan et al., 2002).

Next, to determine the flow accumulation for the sub-basin, M:

M  = ^ A ,  (2.5)
2:67

where M  is the accumulation of flowing medium in the sub-basin flowing into the 

spillpoint and 7  is the set of all pixel areas th a t eventually flow through the spillpoint. 

The spillpoint area and accumulation are not included in the calculations to act as 

a scaling correction (M aritan et al., 2002). M  may also be thought of as the sum of 

fluxes over every site in the drainage basin (Dreyer, 2001).

Knowing the dimensionality exponent a . Hack’s exponent h is easily derived using 

(Equation 2.6) (M aritan et al., 2002):

h = a  — 1 (2 .6 )

The dimensionality approach to determining Hack’s exponent is provided in Ba-

®The outlet pixel is also known as the “spillpoint”,
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navar et al., 1999. A comparison of results from traditional methods of determining 

Hack’s exponent and the new dimensionality method is performed in M artitan et al., 

2002 and indicates th a t the processes produce equivalent results.

A p p ly in g  th is  approach to  ice stream s

Hack’s exponent for ice stream networks is a relatively unknown quantity - their 

allometric nature has not been studied. This approach provides a geometrically based 

process by which the dimension of ice stream  networks can be explored and Hack’s 

exponent may be found for these streams. This approach is also free from the human 

interpretation error th a t previous attem pts included.

A n  a u to m a te d  p ro cess  for d eterm in in g  sy ste m  d im en sio n

Since every point in a drainage network is associated with a spatially distinct 

catchm ent area^°, it is necessary to evaluate the basins at many different scales to 

determine the overall scaling factor. Some basins are encompassed by other larger 

basins, but the allometric nature of the overall system is defined as an aggregate of all 

basins, and so remains relatively constant. To gather basin data at multiple scales, 

an autom ated process was needed.

G IS m eth od s

G R A S S  GIS provides half the functionality needed to asses dimensionality. The 

r .w a te rs h e d  subprogram uses the term  threshold to  indicate the minimum number

of pixels per basin. For instance, if a large threshold value is used, the result is a small

A point that has no upslope neighbors is in a watershed consisting of only a single unit area or 
a point on the ridgeline between watersheds.



22

number of sub-basins. To provide access to multiple spatial scales, the process must 

include analysis a t multiple threshold values th a t span at least an order of magnitude.

Each threshold value produces a patchwork of basins (the exact number depends on 

the topography of the area being analyzed and the threshold value itself). Two maps 

are needed, the basin map and the associated accumulation map. The r .w a te rsh e d  

module of G R A SS provides both of these maps. A script powers the automated 

process wherein many basins^^ at multiple spatial scales are generated and analyzed 

one a t a time.

O verall p ro cess

The process requires a drainage and accumulation analysis step (performed with 

GRASS) and a data  aggregation and plotting step (accomplished with MATLAB).

^^Some of the analysis includes 3500 or more basins and sub-basins.
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Process Overview
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First, im p ort  e lev a t io n  data  into a GIS s y s te m .  Next,  p r o c e s s  th e  
e le v a t io n  data  at m u lt ip le  th re s h o ld  v a lu es  to  p ro d u ce  bas in  
m a p s  at m u lt ip le  s ca le s .  T h e n ,  indiv idually mask, e a ch  s u b -b a s in  
and  perform  flow  an a ly s is  for that individual b as in  which  results  
m an a c cu m u la t io n  m a p .  Finally, o n c e  all b a s in s  have  b een  
a n a ly z e d ,  c o m b in e  all bas in  area and a c cu m u la t io n  result s  into  a 
p lo t  to  d e te r m in e  th e  d im en s io n a l i ty  o f  the  s y s t e m .  For river 
n etw o rk s ,  th e  d im en s io n a l i ty  a l s o  predicts  Hack's e x p o n e n t .

Data  for  th is  e x a m p l e  is from  th e  Flintrock d ra in a g e  bas in ,  MX.

Basin delineation Multiple  b as in  c a t c h m e n t  areas  
m u s t  be  d e te r m in e d  at m ultip le  
s c a l e s  to  s m o o t h  o u t  any statistical  
a n o m a l i e s  an d  to  ga in  full 
c o v e r a g e .

Flow an a ly s is  o f  e ach  individual  
bas in  p rov id es  o n e  o f  the  
q u a n t i t ie s  n e e d e d  to d e te r m in e  
d im e n s io n a l i ty  - a c cu m u la t io n .

Flow analysis

The process is continued on the next page

Figure 2.5 High level process overview
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Basin A ccu m u la t ion

T he total accu m u la t io n  is 
fou n d  by s u m m i n g  the  
a ccu m u la t io n  at each  
p oin t  in th e  basin ,  not  
inc lu d ing  th e  spil lp oint.

The process is completed on the next page

Figure 2.6 High level process overview (con’t)
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Determine dimensionality
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Figure 2.7 Flow analysis algorithm overview



26

G R A S S  - D eterm in e catchm ent areas and accum ulations  

D rainage basin  m ap accum ulation

The G R A SS module r .watershed takes as input an a d ju s ted e lev a tio n  map and 

a threshold value. It produces a basin map th a t contains unique basins from tha t 

elevation data. Each basin is identified w ith a unique color value where all pixels of 

th a t color belong to th a t basin. The basins can be processed individually by using 

another G R A SS function, r .mapcalc, to  prepare a MASK th a t includes only a single 

basin. This process is shown in Figure 2.6 .

The drainage network map is generated by repeatedly overlaying smaller sub-basins 

on a surface until the entire drainage system is covered. Any “no data” values have 

been either interpolated or masked prior to performing the analysis.

D rainage flow accum ulation  m ap generation

To perform the accumulation map generation, again r.w atershed is again invoked. 

Accumulation is calculated for every individual basin over all spatial scales and saved 

to a file th a t MATLAB can import. The accumulation process is shown in Figure 

2-6 .

M A T L A B  - C om bine basin  data  in to  graphs

Finally all the generated files are im ported one a t a time into MATLAB where 

the accumulation m ap values are summed and the drainage basin area calculated 

according to  (Equation 2.5) and (Equation 2.4) , respectively.

Elevation maps sometimes contain artifacts called pits that form a non-escapable flow pattern. 
A standard practice to keep the algorithm from getting stuck in these pits is to fill the pits before 
attempting any flow routing (Toma et al., 2003). This fill procedure is performed on the input 
elevation data.
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Each basin’s accumulation and area results are stored in co-registered arrays and 

a map of the d ata  is continually updated. The final graph is a log-log plot of area 

versus accumulation with the slope of the best fit line (the dimensionality exponent 

a;) printed with its uncertainty as well. Binning is included to help the eye follow the 

trend.

E rror a n a ly sis

A general error analysis is performed noting where errors might exist in the process. 

D ata fitting error analysis is systematically performed on every graph.

D ata  fittin g  uncerta in ty

The data  generated is fitted with a line using the least squares method. Least 

squares fitting allows for an estimation of the error to be performed^^ (Gould and 

Tobochnik, 1996). For each basin system analyzed, the least squares fitted line with 

error estimation is included.

N etw ork  estim ation  error

The largest source of uncertainty with this process is associated with the simple 

elevation model for finding ice stream  networks. An elevation only approach is a 

widely accepted method for determining ice flow; however, there are many cases 

where it produces obvious error.

In addition, the underlying data  may not be entirely accurate. The RAMP 200M 

elevation data  (Liu et al., 1999) used for Antarctica is the most current and accurate 

available, but its accuracy is derived from an ensemble approach. Multiple da ta  sets

^^The error analysis method is that described in Gould and Tobochnik, 1996 pg. 204.
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Figure 2.8 Joughin velocity overlayed on RAMP DEM

Figure 2.9 Generated ice stream  network overlayed on RAMP DEM
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were used to  create the RAMP data  and the error associated with each data set is 

partially propegated into the RAMP dataset. Many improvements have been made, 

but undoubtedly there are still some errors in the data^^.

In itia l con d ition s

The process is autom ated and therefore most error introduced by human ambiguity 

has been removed. There are, however, two sources of human interpretation, the 

definition of the areas to be analyzed and the threshold values to be used to generate 

the basins.

In order to analyze a basin, the to tal drainage basin must be encompassed within 

the elevation map. If too small an area is defined (z.e.,some of the basin is outside 

the map) then the entire basin will not be analyzed. If too large an area is defined, 

there will not enough coverage of the upper threshold scales. The area size should be 

no larger than  1 ,000,000 pixel units.

The process has the potential for introducing error as well. The threshold values 

are entered manually and are not a theoretical best coverage of the spatial scales. 

This in combination with the area definition issue could lead to a small area not 

being covered by an adequate number of spatial scales.

The resolution at the present time is to  ensure than only drainage basins with more 

than 60,000 and less than 1,000,000 to tal pixels are analyzed.

The d ata  requirements are not too high. For example it allows basins spanning in 

size from 200x300 to 1000x1000.
^^For a full analysis of the error in RAMP see the National Snow and Ice Data Center’s website 

at http://nsidc.org/.

http://nsidc.org/
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M on te C arlo se lec tion

At small threshold values, it is possible to generate so many basins so as to weight 

the aggregate of the d a ta  towards basins at th a t spatial scale. To avoid this weighting, 

a Monte Carlo selection is performed for threshold values where more than 350 unique 

basins are generated. Since a machine’s randomize function can’t  be truly random, an 

argument exists th a t the data  might still be weighted. However, since the basins are 

m utually exclusive^^, even w ithout random sampling, the only weighting th a t could 

occur would be towards basins in a relatively tight geographical sample of the input 

map.

Providing the selection of basins with a pseudo-random shuffling is good enough to 

generate a d a ta  set th a t is not weighted too heavily towards a specific spatial scale. 

In practice, the Monte Carlo sampling only activates if the elevation map is analyzed 

at a relatively small threshold value. In general, the larger the threshold value, the 

larger the basins get. Consequently, fewer basins would be required to provide full 

coverage of the area being analyzed.

D a ta  in terp o la tion

D ata for the river network analysis was obtained from different locations, most 

notably, the Seamless D ata Distribution S y s te m m ain ta in e d  by the USGS and Geo- 

community^^. Before performing analysis on these datasets, a nearest neighbor in

terpolation was run to fill in any missing pixel values. This interpolation might alter 

small tributaries flow.

In trial runs with and without interpolation the difference was not detectable.

i^By definition a point belongs to a single drainage basin, and basins cannot overlap. 
http://seamless.usgs.gov/website/Seamless/ 
http: /  /  www.geocomm.com/

http://seamless.usgs.gov/website/Seamless/
http://www.geocomm.com/
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C H A P T E R  3 R E S U L T S

The analysis of river basin data  includes data  from four geographically distinct river 

drainages. All drainages closely corresponded to the predicted |  dimensionality. The 

ice stream  drainage analysis breeches the theoretical threshold for a two dimensional 

system ( |)  and so must be thought of as a higher order system.

Some elevation d ata  was obtained from the USGS maintained Seamless D ata Dis

tribution System (SDDS) Although the SDDS offers many options for elevation 

data, only the data  th a t was produced by the 2000 Shuttle Radar Topography Mis

sion (SRTM) elevation dataset is used. These datasets have a 30-meter resolution, 

and are horizontally accurate to within 20-meters with a vertically relative accuracy 

of less than  or equal to 10m.

D ata was also obtained from Geocomm^. These datasets are at 30-meter resolution 

with a vertical accuracy error of up to 30 meters. Geocomm reports a horizontal 

accuracy over 90% of the data  within 7-meters, with the remaining 10% being accurate 

between 8-15 meters.

Greenland ice thickness, bed surface elevation and ice surface elevation were ob

tained from the National Snow and Ice D ata Center (NSIDC). The resolution of the 

d a ta  obtained for Greenland is 5 Km per pixel. These data  are vertically accurate to 

within 100-meters (Bamber et al., 2001a) (Bamber et al., 2001b).

1 h ttp ://seamless.usgs.gov
2 http: /  /  www.geocomm.com

http://seamless.usgs.gov
http://www.geocomm.com
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A ntarctica elevation was obtained from the NSIDC RADARS AT Antarctic Map

ping Project Digital Elevation Model Version 2 (RAMP)^. This data consists of an 

amalgam of mapping projects th a t were combined to produce a continuous surface. 

The accuracy of the areas of interest are within 15-meters for steeply sloped coastal 

regions, and within 7.5-meters for the gently sloping interior ice sheet (Liu et al., 

1999).

The bedrock surface elevation d ata  of Antarctica was obtained from BEDMAP 

BEDMAP contains data  from over 100 distinct bed mapping expeditions which used 

various techniques to gather the data, hence the error estimates for the overall dataset 

are difficult to determine and widely varying depending on the technique used. The 

BEDMAP consortium has not yet released accuracy estimates for the entire dataset.

For most ice stream basins, there are many places where there is not a steep enough 

gradient to cause a channelized flow to form. A fluvial channel network is not neces

sarily space filling (Montgomery and Dietrich, 1988) and hence many areas are simple 

hillslope un-channelized flow. These areas are obvious on the basin maps, and many 

times are indicated by a small linear feature in the graph of the basin. These linear 

features indicate th a t many sub-basins at various scales are simply straight flowlines 

downslope w ithout coalescing into a channelized network.

Using the methods described in Chapter 2, the final analysis of drainage basins was 

performed and the results are presented below.

R iv er  n etw ork  a n a ly sis  re su lts

See Appendix A for all river basin maps.

ĥttp://nsidc.org/data/nsidc-0082.html
4 http : / / www.antarctica.ac.uk/aedc/bedmap/

http://nsidc.org/data/nsidc-0082.html
http://www.antarctica.ac.uk/aedc/bedmap/
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B lu e M ountain , M T

Blue M ountain, M ontana has many tributaries, none of which maintain water the 

full year. These channels are subject to yearly runoff erosion. Elevation data was 

obtained from Geocomm.

Blue Mountain, MT
B asin  A rea  vs. B as in  A rp iim iila tion

10®

5 10̂

Data
 Best Fit:1.54± 0.002
O Bins (vertical offset)

10̂
u n its)

10"

Figure 3.1 Blue Mountain, MT analysis

F lin trock  D rainage B asin , M T

The Flintrock drainage is subject to high runoff and erosion due to the yearly cycle 

of snowfall. It also has been heavily glaciated. Elevation data  was obtained from 

SDDS.

Saco R iver H eadw ater, N H

The Saco River empties into the Atlantic Ocean and its headwater is in the W hite 

M ountains spanning Maine and New Hampshire. Elevation data  was obtained from
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SDDS.

Flintrock Drainage, MT
B asin  A rea  vs. B as in  A rru m n la tio n
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Data
 Best Fit:1.56 ± 0.001
O Bins (vertical offset)

10̂
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Figure 3.2 Flintrock drainage, MT analysis

C ow  C reek, K Y

Cow Creek is a tributary  of the Red River in Kentucky. Elevation data was obtained 

from SDDS.

Ice  strea m  n etw ork  a n a ly sis  resu lts

W estern  A n tarctic  Ice S tream s 

R oss Ice S helf

The question exists whether the flow direction for the ice streams on the Ross Ice 

Shelf is dictated by the underlying bed topography. To demonstrably show th a t flow 

is not dictated by bed topography, both the ice surface elevation and the bed elevation 

were used to generate different flow networks. As shown in Figure 3.5 and Figure
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Saco River headwater, NH
B asin  A rea  vs. B asin  A m im u ia t lo n
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Figure 3.3 Saco River, NH headwater analysis

Cow Creek, KY
B asin  A rea  vs. B asin  A rrnm iila t.ion
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Figure 3.4 Cow Creek, KY analysis
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3.6 , they differ in many significant features, the most significant being th a t the bed 

elevation network conforms to Hack’s Law for river networks, while the ice stream 

network indicates th a t a high dimensional process is occurring. Surface elevation data 

was obtained from RAMP, and bed elevation was obtained from BEDMAP.

Ross Ice Streams, Antarctica
B asin  A rea  vs. B asin  A rciim nlaT ion

10®

QrP

Data
 Best Fit:1.49 ± 0.004
O Bins (vertical offset)

10®
A rea {pixel u n its)

Figure 3.5 WAIS ice streams surface Elevation analysis

An analysis of individual streams in WAIS follows:

W A IS  - V an  d e r  V een  Ice  S tre a m  (Ice s tr e a m  B l )  Ice stream B1 is the 

right fork of Ice stream B as looking up-glacier. Surface elevation data was obtained 

from RAMP.

W A IS  - W h illa n s  Ice  S tre a m  u p p e r  (Ice s tre a m  B 2 ) Ice stream B2 is the 

left fork of Ice stream B as looking up-glacier. The dimensionality exponent for this 

ice stream  is surprising. The results for this stream are within the normal value for 

river networks. In the case of B2 , which might be involved in basal melt water piracy
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Ross Ice Streams Bed, Antarctica
Basin Area vs. Basin Aernm iilation
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 Best Fit:1.52 ± 0.003
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Figure 3.6 WAIS ice streams bed Elevation analysis

Ice Stream  B l , WAIS
Basin Area vs. Basin Accumulation
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Data
 Best Fit:1.44 ± 0.014
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Area (pixel units)

Figure 3.7 Van der Veen Ice Stream basin
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from upper Kamb (Ice stream  C) (Anandakrishnan and Alley, 1997), the elongation 

of the drainage network may make the network perform more like a river network. 

There is a strong linear feature present in this graph dur to the minimal gradient 

present in large portions of the drainage basin as seen in the bed figure. Surface 

elevation d a ta  was obtained from RAMP.

Ice Stream  3 2 , WAIS
Basin Area vs. Basin Accumulation

10‘

Data
 Best Fit:1.55 ±  0.016
O Bins (vertical offset)

10̂
Area (pixel units)

Figure 3.8 Whillans Ice Stream upper basin

W AIS - W hillans Ice Stream  low er (Ice stream  B ) The overall character 

of Ice stream  B is heavily influenced by the contribution of B2. Surface elevation data  

was obtained from RAMP.

W A IS - K am b Ice S tream  (Ice stream  C) Surface elevation data was ob

tained from RAMP.

W AIS - B indschadler Ice S tream  (Ice stream  D ) Surface elevation data 

was obtained from RAMP.
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Whillans (B), Antarctica
Basin Area vs. Basin A rrnm iilation
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Figure 3.9 Whillans Ice Stream basin

Kamb (C), Antarctica
B asin  A rea vs. B asin  A rrn m iila tio n
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 Best Fit: 1.32 ± 0.009
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Figure 3.10 Kamb Ice Stream basin
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Bindschadler (D), Antarctica
Basin Area vs. Basin Aernm ulation

Data
 Best Fit: 1.47 ± 0.006
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Figure 3.11 Bindschadler Ice Stream basin

W AIS - M acA yeal Ice Stream  (Ice stream  E) Surface elevation data was 

obtained from RAMP.

P in e  Island G lacier

Similar to the Ross Ice Streams, Pine Island Glacier provides an opportunity to 

examine the flow network defined by the surface of the ice as compared to a drainage 

network generated from the bed elevation. It reveals similar differences as the Ross Ice 

Shelf, the bed topography dictates a network th a t conforms to Hack’s Law, while the 

actual Pine Island Glacier network does not correspond to Hack’s Law, and instead 

tends towards a system of higher dimension. Surface elevation data was obtained 

from RAMP, bed elevation from BEDMAP.

The channels generated are very similar to  previous research (Vaughan et ah, 2001).
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Ice Stream  E, WAIS
Basin Area vs. Basin Accumulation
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Figure 3.12 MacAyeal Ice Stream basin

Pine Island Glacier, Antarctica
B asin  A rea vs. B asin  A m im iila lio n
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Figure 3.13 Pine Island Glacier analysis
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Pine Island Glacier bed, Antarctica
Basin Area vs. Da.sin A rriim ulation
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Figure 3.14 Pine Island Glacier bed analysis 

T h w a ite s  G lac ie r

Along with the Pine Island Glacier, Thwaites glacier is one of the fastest moving 

ice streams in Antarctica, so examining the flow of these two glaciers is warrented as 

they are general indicators of the overall status of ice flow. Surface elevation data 

was obtained from RAMP, bed elevation from BEDMAP.

A m e ry  Ice  S h e lf

Surface elevation data  was obtained from RAMP.

R o n n e -F ilc h n e r

Surface elevation data was obtained from RAMP.



43

Thwaites Glacier, Antarctica
Basin Area vs. Basin Aeenmiilation
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Figure 3.15 Thwaites Glacier analysis

Thwaites Glacier Bed, Antarctica
B asin  A rea vs. B asin  A m im u la t io n
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Figure 3.16 Thwaites Glacier bed analysis
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Amery Ice Shelf, Antarctica
Basin Area vs. Basin A rrnm iilation
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Figure 3.17 Amery Ice Shelf (Lambert Glacier), Antarctica analysis

Ronne-Filchner Ice Shelf, Antarctica
B asin  A rea  vs. B asin  A rrn m iila tio n
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Figure 3.18 Ronne-Filchner Ice Shelf, Antarctica analysis
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G reen land

Greenland provides another opportunity to examine the effects of the bed topog

raphy on surface flow. The surface slope shows divergence from the bed topography. 

Surface and bed elevation d ata  was obtained from NSIDC.

Figure 3.19 Greenland surface

3 : 7 8

1 6 3 9

■ - 0

M ars ch an n el a n a ly sis

M ars channel netw ork

NASA has recently made available elevation data for the entire surface of Mars as 

a series of images. A section of the M artian surface provided a unique opportunity to 

analyze the character of a channel network th a t was formed under different conditions 

than  on Earth. Over most of the surface, craters seemingly dominate the analysis,
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Greenland Bed Surface
BAsin Arfia vs. B asin  A m im u la t io n
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Figure 3.20 Greenland bed analysis

Greenland Ice Surface
B asin  A rea vs. Ba.sin A m im u la t io n
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Figure 3.21 Greenland surface analysis
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but a few sections of surface tha t are not completely cratered yield what appear to 

be the remains of transport networks.

Using the processes developed in this thesis, a drainage analysis for a M artian 

channel network was performed. Surface elevation data  is derived from the digital 

images th a t NASA has made available via the Planetary D ata System Geosciences 

Node^.

Figure 3.22 M artian network surface image

D E M  reso lu tio n

The Digital Elevation Model (DEM) resolution determines with what accuracy the 

model resembles actual elevation. The 30-meter DEM refers to a single square pixel 

representing 30-meters on a side. A flowing network may not be adequately generated 

if the resolution is too low. Hence, the slope of the dimensionality exponent line might

 ̂http://pds-geosciences.wustl.edu/missions/mgs/megdr.html

http://pds-geosciences.wustl.edu/missions/mgs/megdr.html
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Mars surface
B asin  A rpa vs. B as in  A rru m u la tio n
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Figure 3.23 M artian network analysis

be effected. To show th a t this effect does not influence the determined dimensionality 

of ice streams, an analysis of a river network and an ice stream at different resolutions 

follows.

R iver netw ork

The cow creek network was analyzed at 30-meter, 60-meter and 120-meter resolu

tions to determine the effect on the dimensionality exponent. The results indicate tha t 

as the resolution increases the exponent tends to  increase, supporting the claim that 

river networks exist in two dimensions - the exponent diverges from the theoretical 

minimum of 1.5.
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Cow Creek, KY
Bftsin Arfta vs. B asin  A m im u la t io n
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Figure 3.24 Cow Creek at 30-meter, KY

Cow Creek, KY at 60m resolution
B asin  A rea  vs. B asin  A m im u la t io n
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 Best Fit: 1.50 ± 0.005
O Bins (verbcai offset)

10 -*

A rea (pixel u n its)

Figure 3.25 Cow Creek at 60-meter, KY
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Cow Creek, KY at 120m resolution
B asin  A rea  vs. B asin  A reu m iila tio n
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Figure 3.26 Cow Creek at 120-meter, KY
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Ice stream  netw ork

Performing similar analysis on an ice stream  shows th a t even at a higher resolution, 

these networks remain consistently below the threshold value. This indicates th a t the 

result of the dimensionality calculation is not an accident of resolution.

Van der Veen (B1) at 200m, Antarctica
B asin  A rpa vs. B asin  A rriim nlaT ion

W 10®

Data
 Best R t:1.46 ± 0.006
O Bins (vertical offset)

10 '

0,0 10 ' 10^
A rea (p ixel u n its )

Figure 3.27 Van der Veen ice stream at 200-meters, Antarctica

S ta tis t ic a l s ign ifican ce

Performing a standard one-tailed t-test reveals the statistical significance of these 

results. This test shows th a t the differences in the dimensionality between river 

networks and ice streams are strongly significant. There are eight observations of 

rivers (including the bed topography results) and twelve observations for ice streams. 

Using these observations, the resulting d ata  required for the test can be calculated.

There are 18 degrees of freedom. The result is a t-value of 3.41 which exceeds 

the 1% required value of 2.55 (Triola, 1986). This places the result in the extreme
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Van der Veen (B1) at 400m, Antarctica
B asin  A rea  vs. B asin  A eeiim u la tion
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Figure 3.28 Van der Veen ice stream at 400-meters, Antarctica

Van der Veen (B1) at 800m, Antarctica
Ba.sin A rea vs. B asin  A rrn m iila tio n
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Figure 3.29 Van der Veen ice stream at 800-meters, Antarctica
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Table 3.1 Statistical data

Measurement Rivers Ice Streams

Number of observations 8 12
Mean 1.53 1.47
Standard deviation 0.02 0.05
Variance 0.0005 0.003

1% of the distribution indicating statistical significance (z.e.,the result is not due to 

sampling error).

A ll d ra in ages an d  d im en sio n s

Averaging all exponents for rivers yeilds a dimensionality exponent of 1.53. Aver

aging all exponents for ice streams yeilds a dimensionality exponent of 1.47. Provided 

below is a summary of all river networks and ice stream  networks th a t were analyzed, 

the corresponding dimensionality exponent and Hack’s exponent for the system.

Table 3.2 Analysis of river drainage basins for dimensionality

River Dimension a Hack’s Exponent h

Blue Mountain, MT 1.54 ±  0.002 0.54
Saco River headwater, NH 1.55 ±0.002 0.55
Cow Creek, KY 1.52 ±0.003 0.52
Flintrock drainage, MT 1.56 ±0.001 0.56
Greenland bed 1.54 ±0.002 0.54
Ross bed 1.52 ± 0 .003 0.52
Pine Island Glacier bed 1.50 ±0.005 0.50
Thwaites Glacier bed 1.50 ± 0 .007 0.50
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Table 3.3 Analysis of ice stream drainage basins for dimensionality

Ice stream Dimension a. Hack’s Exponent h

All Ross ice streams 1.49 ±0.004 0.49
Van der Veen (B l) 1.44 ±0.014 0.44
W hillans upper (82) 1.55 ±  0.016 0.55
W hillans (B) 1.48 ±  0.008 0.48
Kamb (C) 1.32 ±  0.009 0.32
Bindschadler (D) 1.47 ±0.006 0.47
MacAyeal (E) 1.48 ±  0.008 0.48
Pine Island Glacier 1.48 ±0 .007 0-48
Thwaites Glacier 1.48 ±0 .007 0.48
Amery 1.49 ±0.004 0.49
Ronne-Filchner 1.43 ±0.005 0.43
Greenland 1.48 ±0.005 0.48

Mars 1.42 ±  0.002 0.42



55

C H A P T E R  4 IN T E R P R E T A T IO N  A N D  C O N C L U S IO N

Channel networks are abundant in nature and provide an interesting and useful 

m ethod of categorization. For example, if a system exhibits an allometry th a t is 

similar to river networks, then domain knowledge may be applied to bring existing 

analysis techniques to bear on the new system. Similarly, if a system’s dimensionality 

exponent falls below the theoretical lower limit of a dimensionality class, it is then 

known th a t the system must be characterized by higher order functions. The dimen

sionality exponent provides a probe into the structure of a network (Maritan et al., 

2002) which can be used to indicate the techniques required to examine the system.

Rivers have been shown to exhibit a two dimensional character (Rodriguez-Iturbe 

and Rinaldo, 2001). Hack’s Law is a prime example of this characterization. For 

natural river networks, Hack’s Law is always a number tha t is greater than 0.5. 

Performing dimensionality analysis on river networks and comparing the results to 

the results gained by performing similar analysis on ice streams indicates th a t ice 

stream s belong to a different class of channel network than river systems.

C o n c lu s io n

Channel networks are an excellent device to use when dealing with a natural sys

tem. Most times, the channel network can be represented as a power law and hence 

can be elegantly characterized by the determ ination of its characteristic exponent.
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This process is generally robust to statistical anomalies and is not prone to wild fluc

tuations. The exponent might even be thought of as a probe to the internal structure 

of the network. Given the ubiquity of channel networks, and the data  we can deter

mine based on their exponent, it is worthwhile to find methods with which to  define 

them.

Applying the recently discovered properties of channel networks to ice streams 

reveals an interesting fact about their character - th a t their physical existence is 

fundamentally more complex than river networks. The results produced in chapter 

three conclusively dem onstrate th a t river networks and most ice stream networks 

have dissimilar allometry, and th a t all relevant physical characteristics of ice streams 

clearly cannot be captured in two dimensions.

Perhaps the most promising aspect of this result applies to modelers - it is prudent 

to determine the dimensionality of a system before attem pting to build a model. The 

results of th a t determ ination might indicate th a t a simpler model of the system will 

not be descriptive enough to capture all the relevant behavior. The so-called “shallow 

ice approxim ation” ice stream models th a t are reviewed in (Payne et al., 2000) cannot 

fully capture the behavior of ice streams. A fully 3D model such as the one described 

by Pattyn, 2003 is more realistic.

L im ita tio n s

Using a first order method to query the ice stream network (like the method used 

in this process) was adequate for determining dimensionality, but it would be better 

to  use a higher order method for finding these data. As shown in the results, it is 

indicated th a t river analysis tools are unable to capture all the relevant characteris

tics of ice streams. Ice streams form more complex networks than rivers and might
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have more in common with a three dimensional biological system than previously 

suspected. A three dimensional system has as theoretical minimum dimensionality 

exponent of |  or 1.33, and none of the ice streams examined approach this theoretical 

minimum.

Currently, an issue th a t exists with the process define here (which could be resolved 

if this work were continued), is the manual determination of threshold values. It would 

benefit the process to have an adaptive threshold value th a t always maintained a 

strict four (or more) orders of magnitude of spatial scaling for basin sizes. As it is, 

areas smaller than  50,000 pixels have a weight inherently applied to the smaller spatial 

scales simply because there are no basins at the larger spatial scales. Similarly, basins 

of extremely large area (greater than ten million pixels) have spatial scales th a t will 

be wholly unnaccounted for since the maximum basin size for the current process is 

hardcoded to 50,000.

A potential m ethod for solving this issue would be to precompute good threshold 

values based on the size and configuration of the data set being analyzed. Comparing 

networks in this way would add noise to the inter-network scaling exponent^ (Maritan 

et al., 2002) comparisons, bu t the results might be more realistic.

F u tu re w ork

It would be interesting to expand this work to include a universality class compo

nent as in Dodds and Rothman, 2000, where one might be able to say th a t a certain 

system exhibiting a dimensionality exponent D is more or less mature/efficient than 

another system exhibiting an exponent th a t was smaller or larger.

This could possibly be done by adding a time component to the procedure, which

^(Maritan et al., 2002) refers to comparisons between mutually exclusive basins as inter-network 
species and comparisons between sub-basins in the same watershed as intra-network species.
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would be the next logical step to answer: How does a network’s dimension change 

over tim e? A m ethod of charting Hack’s Exponent changing over time is given in 

(Leheny and Nagel, 1993) and shows th a t over time, an artificially evolving river 

network system has a tendency to minimize Hack’s Exponent. This result would be 

interesting to compare with a similar evolutionary model of an ice sheet.

Another interesting extension would be to extrapolate networks from the glacial 

record to determine if glaciers of the past exhibited more river-like behavior. Per

forming analysis on heavily glaciated areas (such as M ontana and Alaska) provides 

insight to  this, but th a t was not the focus of this research, hence no comparisons were 

made to areas th a t were not heavily glaciated.

Finally, it would be interesting to compare Hack’s Exponents produced by two 

dimensional ice sheet models with those produced by three dimensional models. This 

could be compared to actual ice stream exponents. The results from this thesis, seem 

to indicate th a t the three dimensional models would produce exponents closer to 

those seen by examining actual ice stream networks.
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A P P E N D I X  A  E X T R A  T A B L E S  A N D  F IG U R E S

All basin graphs are included here. The analysis of the basins exists in the text of 

chapter three.

R iv er  b asin s

These basins depict the flow accumulation for river networks as determined by 

r .  w ate r shed. The bed basins for the Ross Ice Shelf, Pine Island glacier, Thwaites 

glacier and Greenland are all somewhat hypothetical, since there is a large uncertainty 

associated with the elevation data  under the ice.
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Figure A .l Blue Mountain, MT basin

Flintrock Drainage, MT 
Drainage network
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Figure A.2 Flintrock drainage, MT basin



Saco River headwater, NH 
Drainage network
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Figure A.3 Saco River, NH headwater basin

Cow Creek, KY 
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Figure A 4 Cow Creek, KY basin
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Ross Ice S tream s Bed, Antarctica
Drainage network
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Figure A .5 WAIS ice streams bed Elevation drainage network

Pine island Glacier Bed, Antarctica 
Drainage network
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Figure A.6 Pine Island Glacier bed drainage network
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Thwaites Glacier Bed, Antarctica
Drainage network
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Figure A .7 Thwaites Glacier bed drainage network

Greenland Bed Surface 
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Figure A.8 Greenland bed drainage network



64

Ice  s trea m  b asin s

These basins depict the flow accumulation for ice stream networks as determined 

by r .w a te rsh e d .

Ross Ice Streams, Antarctica 
Drainage network

3 76 .88km0

Low er A ccum ulation H igher A ccum ulation

Figure A.9 WAIS ice streams surface drainage network



Whillans (B), Antarctica
Drainage network
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Figure A. 10 Whillans Ice Stream graph

Kamb (C), Antarctica 
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Figure A. 11 Kamb Ice Stream graph
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Bindschadler (D), Antarctica
Drainage network
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Figure A. 12 Bindschadler Ice Stream graph

MacAyeal (E), Antarctica 
Drainage network
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Figure A. 13 MacAyeal Ice Stream graph



Pine Island Glacier, Antarctica
Drainage network
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Figure A. 14 Pine Island Glacier surface drainage network

Thwaltes Glacier, Antarctica 
Drainage network
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Figure A. 15 Thwaites Glacier surface drainage network
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Amety Ice Shelf, Antarctica
Drainage network
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Figure A. 16 Amery Ice Shelf (Lambert Glacier), Antarctica basin

Ronne-Filchner Ice Shelf, Antarctica 
Drainage network
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Figure A. 17 Ronne-Filchner Ice Shelf, Antarctica basin
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Greenland Ice Surface 
Drainage network
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Figure A. 18 Greenland surface drainage network
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M ars b asin s

This basin depicts the hypothetical flow accumulation for a network on the surface

of Mars as determined by r  .w atershed.

Mars surface 
Drainage network
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Figure A. 19 M artian drainage network
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