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An important feature of a developed expert system is its 
knowledge base. A knowledge base provides the factual and 
procedural information that expert systems use to make decisions 
within a specific problem domain. One approach to structuring a 
knowledge base is the use of frames within a semantic network. 
Frames act as information storing nodes that are connected by 
meaningful links. Traversal of these links results in a 
compilation of information, both factual and procedural, 
associated with a particular problem and its solution. An 
interesting feature of frames and semantic networks are their 
inheritance capability. Frames can be organized into a hierarchy 
of related information, with common information being stored at 
higher levels in the hierarchy. Frames that are lower in the 
hierarchy can inherit information stored at higher levels.
Frames, frame hierarchies, and frame inheritance all have a 

great similarity to the concepts associated with a newly popular 
artificial intelligence technique called object-oriented 
programming. In this project a description is provided of a 
conversion of an existing frame oriented knowledge base into an 
object-oriented one. The purpose of this conversion was to 
demonstrate that frame oriented systems are inherently 
object-oriented in nature.
Initially, an in-depth investigation of object-oriented 

concepts, their roots in data typing, and their developmental 
history, was performed. The existing frame oriented knowledge 
base, one belonging to a fire effects information system, was then 
decomposed into its component parts. Identified components 
included frames, frame hierarchies, frame accessing procedures, 
and frame inheritance. A direct mapping was then found between 
these frames concepts and the object-oriented concepts of the 
object, object classes, the message passing system, and 
inheritance capabilities, respectively. The investigation 
demonstrated that the existing knowledge base did have many 
object-oriented characteristics. The implications of using an 
object-oriented environment to build a knowledge base as opposed 
to creating a frame based one were then discussed and compared.
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Chapter 1

INTRODUCTION

1.1 Project Background

This thesis project and paper is a direct result of the writer's 
participation in an experimental software development project,
commissioned by the Intermountain Fire Sciences Laboratory (Fire Lab). 

The goal of this software project has been to attempt to utilize 

Artificial Intelligence (AI) techniques in the development of a Fire 

Effects Information System and Fire Prescription Expert System. It is

planned that this Fire Lab project will span a period of five years.

June, 1986, marks the end of the first year of this project.

The past year has been an important phase in the project’s development, 

as the initial development period of any experimental software project 

is very crucial to later development. The decisions made at this stage 

greatly influence what is formulated later in the project. It is

therefore very important that actions taken during this period in the 

project's development be well thought out. Additionally, since this 

software project is of an experimental nature, undergoing rapid 

evolution, the developers must be careful to build in a great degree of 

flexibility for future system changes and additions.

Complicating the system development requirements further is the fact 

that the majority of the software developers working on the project at

1
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this time will not be with the project to its completion. Therefore, 

developed system components must be easy to understand and maintain.

As opposed to the normal type of software project, this research project 

is better characterized as one of iterative enhancement than as one 

fitting into the classical software development model. As each new 

feature and/or improvement is introduced into the system, it is as if a 

new system is developed. This process of iterative improvement makes it 

obvious that such a requirement for easy modification and maintenance of 

the information system requires the application of special software 
development techniques.

The proposed end goal of the Fire Lab software project is the 

development of a Fire Effects Information System and a Fire Prescription 

Expert System. By definition, such a goal requires the application of 

Expert System technology and thereby application of AI techniques. One 

important principle applied to the development of this initial 

information system has been the requirement that the developed database 

be later utilizible as a knowledge-base for the future Expert System. 

It is exactly this important principle which has led the developers to 

design and build the Fire Effects Information System using AI 

techniques. In particular, they have attempted to create an object- 

oriented frame-based system architecture to increase the ease of 

modification and maintenance.
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1.2 Object-Oriented Programming Approach^

Object-orientation is a new approach to software development. It is a 

particular way of looking at the organization of data and procedures 

within a computer program. Instead of treating procedure and data as 

separate, as in standard programming, they are treated as a single unit 

called an ''object'*. An object, therefore, is defined as a grouping of 

particular instances of data and the procedures that operate on that 

data. Operations upon these data are performed (procedures are invoked) 

by telling the 'object* (the grouping of data and procedures) the type 

of information that is wanted from it. The object is then responsible 

for performing the operation(s) upon itself and returning the desired 

information or result. These operations may return a value, set an 

internal value, calculate a value, or may perform any operation that has 

been defined to be performed on or with a given object.

For example, one might define a set of rectangles as individual objects. 

Let rectangle-1 have sides with lengths 3 and 5, rectangle-2 have sides 

5 and 2, and let rectangle-3 have sides 10 and 8. Within most 

programming environments one would probably choose to represent each 

rectangle as a record or an array with each side being a field in the 

given record or an array index. One would obtain information about a 

given rectangle's characteristics, say its area, by retrieving the data 

in the side fields and then applying some procedure to those values to 

produce the value of its area. This requires that the programmer keep

1For a more complete description of object-oriented programming please 
see Chapter 2 of this paper.
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track of where the data is, the type of values that are needed, and the 

appropriate procedures that can be applied to those values (i.e. a 

function that calculates the area of a rectangle and not that of a 

triangle).

Within an object-oriented environment, this bookkeeping is left up to 

the object itself and the programmer is free to concentrate on more 

abstract components of the program. Instance values are associated with 

the appropriate procedures which themselves know what values are needed 

to calculate the appropriate results. In the case of the rectangles, 
one would send a particular rectangle a message to retrieve its area. 

In one environment the call might be as follows:

(send rectangle-1 :area)

which would result in the value of 15 being returned. Doing the same 

with the other rectangle objects would result in values 10 and 80 being 

returned respectively.

The data contained within a particular instance of an object is often 

called 'instance data' and is held in 'instance variables'. In the 

example above, the actual values of the sides are instance values, and 

the side names would be instance variables belonging to each rectangle 

object (i.e. rectangle-1 would have instance variables sidel and side2 

with instance data values 3 and 5). Procedures for operation upon this 

instance data are usually referred to as 'methods' (i.e. the rectangles 
would have associated with them a method called "area" that would 

calculate the required value using each rectangles' instance values).



The communication between the object and other parts of the programming 

system is usually called message passing (as seen in the call provided 

earlier to retrieve rectangle-1's area).

This technique of programming is particularly powerful as it allows the 

programmer and user to conceptualize system components at a higher level 

of abstraction. This abstraction also allows them to view components 

more like real-world objects. It also results in a hiding of procedural 

details, making programming of complex systems easier for the programmer 

and making program usage easier for the user.

Object-orientation also includes another important feature. Above, the 

word ''instance" was used in describing data and objects. This is 

because within an object-oriented system characteristics of objects are 

described by an object descriptor. This is often referred to as a 

’class'. Objects are organized into classes, and each class contains a

description of the objects' characteristics and the procedures

applicable to objects within that class. A particular object is an 

instance of a class. From the example provided above rectangle-1, 

rectangle-2, and rectangle-3 would be instances of the class
’rectangle’. Within the class description, objects' instance variables

are defined along with the methods that can be applied to all the 

objects of the given class. For example the class 'rectangle' would 

contain information about instance variables 'sideA' and 'sideB' (used 

when creating a new instance), and methods for computing information 

(i.e. area computation). Individual objects of the given class may put 

values (instance data) into the instance variables, and utilize the



6

methods defined by its class. These instance values are stored within 

the instance of the object, while the class level information is stored 

in the object class descriptor.

This again allows yet another higher level of abstraction for the 

programmer. By grouping objects into classes with the same 

characteristics but with different values for these characteristics, 

wholesale alteration and modification of all the objects within the 

class can be accomplished fairly easily by modifying the class 

descriptor. This greatly improves maintenance by centralizing the 

location of the procedural and descriptive information.

When applied to information system development, object-orientation 

requires developers to conceptualize information components as objects 

which themselves contain instance data and utilize procedural 

information about how to manipulate that data stored in some type of 
object class descriptor. Normal information systems may usually allow 

the grouping of data into entities, but restrict procedural information 

to external programs not directly related to the data object itself. 

When objects are changed, file structures and external programs must be 

modified, often drastically. Object-orientation seeks to avoid this 

problem by encapsulating object-specific data and procedural information 

into one package.

Object-orientation involves three main steps. First, the developer 

needs to create a means by which object characteristics can be described 

(instance values and value manipulation methods). He must also develop
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a system for describing meta knowledge about objects (i.e. class 

descriptors). Second, the developer must create a method for creation 

of instances of described objects. And third, the developer needs to 

create an interpreter, a message passing system, that can utilize these 

descriptions and instance values to retrieve information about the 

information objects within the system. In essence, this is exactly what 
has been done in the Fire Lab project.

1.3 Expert System Techniques^

Another important decision that expert system development requires is 

the choice of a knowledge representation for the information utilized by 

the expert system. The usual choice is between a totally rule based 

system, or a frame based system. A rule based system is one in which 

large amounts of procedural information is stored as a database of 

rules. This database is searched for applicable rules to be applied to a 

given state of information if certain conditions exist. The application 

of the rule(s) then produces a new information state which again 

utilizes the rule database.

0The following discussion is based on knowledge the writer has gleaned 
from coursework in Artificial Intelligence and from the following texts:

Charniak, E.,McDerrao 11, D., Introduction to Artificial Intelligence, 
Addison-Wesely, Reading, Massachusetts, 1985. " "

Hayes-Roth, F., Waternam, D. A., Lenat, D. B., (Ed's), Building Expert 
Systems, Addison-Wesely, Reading, Massachusetts, 19$3̂
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A frame based system is more like an information network, where each 

node in the network is a frame. A frames is somewhat like a record data 

structure. It is made up of a grouping of fields called slots. These 

slots contain information related to the frame. Each frame may 

therefore contain information about itself and its relation to other 

frames (nodes) in the network. It may also contain procedural 

information related to itself. In fact, slots might even contain rules 

to be executed by a rule interpreter. Information questions are 

answered by traversing this information network utilizing the 

information stored in the slots. This traversal might include 

application of rules or procedural information found in the slots of the

frames. Frames can also represent hierarchies of information through
their network connections to other frames.

A frame based system is more like the object-oriented system described 

above, where each frame can be treated as an object within the 

information network. In a rule based system, the given question would 

be transformed into an answer by the application of rules, while in a 

frame based system, it is answered by searching the information network 

for the information needed to answer it. This is similar to the

retrieval of information from objects in an object-oriented environment.

In many expert systems, often a hybrid of the two methods is utilized. 

Totally rule based systems seem most appropriate when the data

manipulated is small in comparison to the manipulations applied to it. 

In the case of the Fire Effects system the reverse seems more true of 

the system, little manipulation is performed on a large mass of data.
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In this case, frames seem more appropriate and are what was chosen. 

This choice was made primarily due to the fact that a frame based system 

can be easily integrated with future rules and because it conveniently 

allows application of object-oriented techniques.

1.4 The Fire Effects Information System3

Within the Fire Effects Information System, frames form the basis of our 

object-oriented approach. The developers have created two major frame 

groupings. First are the actual data frames (class instances). These 

house the instance values (actual data) for each frame type (class) in 

the system. The system has many different types (classes) of data frames 
that represent the different information objects in the Fire Effects 

System. Second, are the system frames (object class descriptors). 

These frames contain descriptive and procedural information about frames 

of each type (these are class descriptor frames).

Another major component of the Fire Effects Information System is what 

the developers have called the interface functions. These functions act 

as the interpreter (the message passing and object creation system) that 

accesses and creates actual data frame instances, and utilizes the meta 

knowledge (class descriptor information) about data frames contained in 

the system frames. In addition, there are two external programs, a

3For a more in-depth discussion of the Fire Effects Information System 
please refer to Chapter 3*
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knowledge base editor and a menu driven query program, that utilize 

these core components.

The objects of the system also have two more major features that have 

not as yet been described. First of all, the information is organized 

as a hierarchy of frames, with frames lower in the hierarchy containing 

more specific information about information in their parent frames. 

These form the different frame types of the system and the system's 

database structure. Secondly, the data frames have been broken down 

into groupings of lesser objects called slots. Slots represent each 

item of information contained within a frame. Like the data frames, 

each slot name (which may appear in different frame types) has a system 

frame that describes its characteristics and provides the procedural 
functions that may be applied to it. This again is an example of the 

direct application of object-oriented programming techniques, with data 

frames and slots corresponding to the instances of objects, system 

frames to class descriptors, and the interface functions corresponding 

to the message passing system.

One further feature of object-oriented programming that slots have that 

data frames do not is the addition of a higher level meta information 

descriptor frame (an object-class class descriptor). We were able to 

further group slots into five classes. System frames were created for 

each class, containing meta information that was common to slots of the 

same class. Slots utilize procedural and descriptive information stored 

here unless it is superseded by information in the slot descriptor
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system frame. This is an example of the object-orientation principles 

of object description hierarchies and property inheritance.

1.5 The Thesis

The previous discussion has briefly summarized what the developers have 
done on the Fire Lab project. They have applied a frame based 

object-oriented approach to the development of an easily modifiable 

information system. To do this they had to create an environment that 

implemented object-oriented programming constructs. But what if that 

environment already existed? Could they have accomplished'the same end 

result? Or would they have had to implement an environment solely 

tailored to this particular application? It is this question that will 
be addressed in the remainder of this paper.

In the author's readings for this project he was introduced to four 

major object-oriented programming environments, namely Smalltalk, Loops, 

Objective-C, and Franz Lisp Flavors. Currently, Franz Lisp Flavors is 

the only conveniently available system to which this researcher has 

ready access, so the majority of his attention has been directed towards 

this implementation. Additionally, since the Firesys code is primarily 

written in Franz Lisp, it seems most appropriate to have focused upon 

this implementation of an object-oriented environment.

Franz Lisp Flavors appears to be an implementation of an object-oriented 

programming environment similar to that which was created for the Fire



Lab project. It is the premise of this thesis that it should be an easy 

task to convert the current Fire Effects Information System 

implementation into one utilizing Franz Lisp Flavors. This conversion 

was accomplished and has involved the reimplementation of the basic

major components of the Firesys system in the Franz Lisp Flavors

environment. The converted components included the database itself, the 

system meta-information database, and the interface functions. As 

hoped, it proved to be a fairly simple and straight forward endeavor. 

As a result of the conversion, knowledge regarding similarities and

differences of the implementations, and answers to questions of the 

usability of such an environment with the Fire lab project were derived. 

This information will be discussed later in this paper.

In the following pages the writer presents a discussion of selected 

topics of interest related to this thesis project. The next chapter 

gives a detailed discussion of object-oriented programming in general, 

and a description of Franz Lisp Flavors and its relation to this 

programming technique. Chapter three provides a description of the Fire 

Effects Information System architecture and its relation to an 

object-oriented programming environment. Chapter four describes the 

Flavors implementation of the Firesys system. The final chapter 

discusses the success of the conversion attempt, similarities and 

differences between the implementations, advantages and disadvantages of 

the implementations, and whether there is any necessity for a custom

environment.



Chapter 2

OBJECT-ORIENTED PROGRAMMING

2.1 Chapter Overview

Object-oriented programming is a newly popular and different approach to 

conceptualizing software program components [Alexander,1985] 
[Ingalls,1981] [Robson,1981]. Some computer science professionals think 

that the object-oriented approach will bring a revolution in programming 

during the 1980's like structured programming did during the 1970's 

[Rentsch,1982], Languages that support it use concepts that attempt to 

increase the user-friendliness of programming and reduce the complexity 

that large programming projects often involve [Leiberman,1982] 

[Stoyan,1984]. These characteristics are accomplished by the 

introduction of two major concepts: (1) making problem solutions coded 

within computer programs more like solutions derived by human problem 

solving procedures, and (2) abstracting program components to a level 
that insulates the user and programmer from the implementation details 

[Alexander,1985] [Baroody,1981] [Ingalls,1981] [Sprague,1985]
[Williams,1984]. These two concepts are closely related as the first 

cannot be accomplished without the second.

Object-oriented languages attempt to accomplish these characteristics by 

creating the concept of the 'object'. Objects are self-contained 

components that have values and behaviors. Like real world objects they

13
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can be manipulated, and based upon the manipulation will display certain 

behaviors. Such a modeling of real world objects is much more natural 

and simple to humans than standard programming concepts [Ingalls,1981 ] 

[Robson,1981] [Sprague,1985]. If computers are to assist humans by 

making tasks easier, then they should allow problem solving to be 

performed in the most human-like manner [Ingalls,1981]. Ingalls 

proposes that humans naturally classify and group elements of the 

environment as objects, and solve problems most naturally from this 

viewpoint [Ingalls,1981]. Object-orientation is also most natural 

because it mirrors the "subject-verb” orientation of the user 

[Ingalls,1981] [Sprague,1985] [Williams,1984]. Objects within the 
computer system therefore model how people perceive objects in the real 

world: they have identity, perform actions, may be grouped by

similarities to other objects, and display actions and characteristics 

that are common to these groupings. It is conjectured that this

approach results in the development of software products that are 

simpler to understand and maintain, that have shorter development times 

and greater flexibility, and that are more reliable [Cox,1984]

[Ingalls,1981] [Pascoe,1986].

This chapter will attempt to demonstrate why these statements are true.

First, a description will be provided of the object-oriented programming

concepts. This will be followed by sections providing a brief history 

of object-orientation, its roots in the evolution of data types, its 

differences from traditional programming approaches, and some of its
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claims for software improvement. Finally, a description of the Franz 

Lisp Flavors programming environment will be given.

2.2 The Object-oriented Concepts

The object-oriented programming philosophy is composed of four 

primary ideas. First is the concept of the 'object' which is 

central to the whole approach. Second is the idea of message 

sending. Third is the hierarchical classification system. Lastly 

is the concept of inheritance. In this section, each of these 

concepts will be described.

2.2.1 The Object

The concept of the 'object' is central to the whole philosophy of 

object-orientation. Many definitions of the term 'object' are provided 

in the literature:

Object: A package of information and description of its

manipulations [Robson,1981].

Objects have properties of 'objectness': inherent processing 

ability, message communication, and uniformity of 

appearance, status, and reference [Rentsch,1982],



An object, far from being inert matter, is an active, 

animate entity, and is responsible for providing its own 

computational behavior. Its processing capability is not 

only inside the object, it is ever present within and 
inseparable from the object [Rentsch,1982].

An "object” is like a package that describes a specific kind 

of data and the set of all procedures that may work on that 

data. Thus, an object is a higher-level grouping of 

information; a type of package designed for modularity and 

flex ibili ty [Lubinski,1984].

Object: The primitive element of object-oriented

programming. Objects combine the attributes of procedures 

and data. Objects store data in variables, and respond to 

messages by carrying out procedures [Stefik,1986],

An object consists of some private memory and a set of 

operations. The nature of an object's operations depends on 

the type of component it represents. A crucial property of 

ah object is that its private memory can only be manipulated 

by its own operations [Goldberg,19833.

These definitions, in combination, describe the 'object' concept. An 

object is an abstract data entity, with hidden internal variables and 

values. Associated with these components are procedures (also called 

'methods') which provide the only means by which the hidden values can 

be manipulated. Each of these data entity packages appear uniform from
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an external view, and can be accessed (Invoked) only through the use of 

a standard message passing system (invocation protocol). This is the 

basic definition of an object.

Another important feature of the ’object1 concept is the dichotomy of 

internal versus external view. Objects are always described as entities 
whose inner workings are hidden. This is no accident. The shift of 

viewpoint from the inside to the outside is in itself an essential part 

of the object-oriented approach. This shift allows for simplification 

of complexity, and allows programmers to conceptualize program 

components in a more natural way [Rentsch,1982] [Robson,1981]. 

Programmers can now utilize program components as they do objects in the 

real world. The programmer is only concerned with the inside view of an 

object when constructing the object itself. Once constructed, the 

internal details become immaterial to the object's usage. Only a 

knowledge of the messages that it will respond to is required 

[Rentsch,1982] [Robson,1981]. Internal implementations of objects can 

as a result be readily changed without affecting its interaction with 

other parts of the system as long as the message interface remains the 

same. This abstraction process and the ability to treat program 

components as objects are the real power of object-oriented programming.

2.2.2 The Message Sending System

The message sending system is also a primary concept of object-oriented 

programming. A user asks an object to carry out some action by sending
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it a message. The. message sending system provides a means for 

activation of the object’s operations to carry out a desired action. 

These operations are often called ’methods'. The object, upon receiving 

a message, carries out the associated action (method), returning the 

result that is needed. The object may not be able to carry out directly 

all of the action itself. It may have to send a message to another 

object which can provide the information needed to complete its task 

[Rentsch,1982]. Under such a system, instead of allowing procedures to 

access data structures freely, possibly causing unwanted side effects 

(as would be the case with the traditional procedurally oriented 

approach), one now has a system of objects (a union of data and 

procedures) cleanly passing information and carrying out actions via 

messages [Ingalls,1981].

Message sending is uniform. All processing is performed by sending 

messages. The same mechanism is used to do addition, file operations, 

and screen actions. This uniformity, like the uniform external view of 

an object, is claimed to simplify greatly the complexity of software 

systems [Rentsch,1982]. Uniformity of the invocation protocol (message 

sending system) supports the principle that calling programs should not 

make any assumptions about the implementation and internal 

representations of the objects they use [Stefik,1986], It allows 

underlying implementations of objects to be altered without the need for 

changes to programs or other objects that call it [Stefik,1985].

Message passing is accomplished by sending an object an operation 

selector (also called a 'method selector1), useing a standard syntax.
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Method selectors may be accompanied by additional parameters that might 

be needed for the called object to perform the desired task. However, a 

given method selector always will have the same uniformity (number of 

parameters) regardless of the object to which it is sent. This selector 

specifies what is to be done and not how to do it. It is left up to the 

receiving object to interpret the selector and to perform the requested 

action [Rentsch,1982] [Stefik,1985]. This message-sending paradigm

along with the concept of the 'object’ results in modularity by 

decoupling the intent of a message from the method used by the recipient 

to carry out the intent [Goldberg,1983] [Ingalls,1981]. These 

properties also insure that the implementation of one object cannot 

depend on the internal details of other objects, but rather only upon 

the messages to which they respond [Goldberg,1983]. It Is claimed that 

this modular system structure may reduce the complexity of some software 

systems.

2.2.3 The Class System

The concepts presented so far describe the power that object-oriented 

programming provides with its modularity and uniform calling protocol 

scheme. But these advantages are not worth much if each object’s 

internal code is a duplicate of the internal code of other objects of 

the same kind. If objects of the same kind really only differ by values 

in their internal state variables, then changes to the implementation of 

their operational procedures would mean making changes in every instance



20

of that kind of object. Such a maintenance task would not be 

acceptable. The 'class' concept addresses this very problem.

Classification is an act that people do naturally every day. People 

abstract out those components of daily experience that are similar, and 

group those similarities in such a way that they denote the essence of 

those experiences [Cox,1984] [Ingalls,1981] [Rentsch,1982]. An example 

is the observation of a chair. When a person sees a chair, he/she does 

not only experience the chair as a singular object, but abstracts out of 
it the components that make it a chair like any other chair 

[Ingalls,1981]. Within object-oriented programming, the class serves a 

similar function [Ingalls,1981] [Rentsch,1982].

The class provides a description of all instances of objects in the 

class, much like a data type [Baroody,1981] [Robson,1981] [Stefik,1985]. 
It describes the implementation of a set of objects (its instances) that

V

all represent the same kind of system component [Goldberg,1983] 
[Tyugu,1984]. The class provides a template for the creation of new 

instances by describing the form of their private memories (instance 

variables), and houses the operational procedures (methods) that are 

common to all of them [Goldberg,1983] [Robson,1981]. Each instance of a 

class contains instance variables whose contents describe their 

individual states. Additionally, they each have some name by which they 

can be identified as objects within the system, and some indication of 

the class to which they belong [Stefik,1985]. All messages sent to an 

object of a given class result in the application of the associated 

method (procedural code) stored in the class descriptor to the object's
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state values (if applicable) [Goldberg,1983]. This scheme allows for 
centralization of the code that is common to objects of the same kind. 

Additionally, introduction of new objects to the system only involves 

the creation of new instances of an already existing class. New classes 

can also be readily added if needed.

2.2.4 The Class Hierarchy and Inheritance

The existence of classes allows for code sharing and consolidation 

within an object-oriented system. Code that is common to objects of the 

same type can be factored out and stored in one central location for 

easy modification and extension. Objects of different types (classes) 

can then have the same message selectors, but belong to different 
classes. Each can have different implementations of the same type of 

actions. For example each object could be sent a 'print-self' message. 

Assume one of the objects is an integer, and another a string. Each 

would necessarily have a different procedure (method) to perform the

print action. Because of the uniform message passing system and the

class structure, all the objects could receive the same message ('print- 

self') and perform the correct action. Each object would access the 

needed procedural code from one location, its class. Objects of the

same class (type) use the same code. But why stop there? There are

certainly actions that are common to objects of different types 

(classes) that can utilize the same procedural code.
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The concept of a class hierarchy addresses this issue. Classes may be 

broken up into a hierarchy of subclasses and superclasses 

[Goldberg,1983] [Robson,1981] [Stefik,1986] [Stoyan,1984]. Properties 
that are common to a grouping of differing objects can be centralized at 

a superclass level. For example, all motor vehicles have motors. A 

statement of this fact could reside in the superclass Motor_Vehicle. 

All cars and trucks when sent a message requesting an answer to whether 

they have a motor could access this method. Car and truck, being 

themselves separate classes, could have methods stored at their level 

that are unique to each of them. Likewise, car and truck themselves 

might have subclasses. Car might have subclass Compact_Car, or 

Mid_Sized_Car, each with special instance variables and methods.

The main concept here is that as methods and instance variables become 

more specialized, they reside in lower level classes in the hierarchy. 

More general ones are placed higher in the hierarchy. Lower level 

characteristics always override higher level ones. This results in a 

classification system that provides a spectrum of totally shared 

characteristics to totally individual ones [Rentsch,1982], This kind of 

sharing makes for a usable system by factoring. Successful factoring 

results in brevity, clarity, and modularity, which in turn, it is 
claimed, results in manageability in complex systems [Rentsch,1982].

This class structure provides for adaptation by being variable along the 

dimension of individuality [Rentsch,1982]. What this means is that 

characteristics can be shared by the group while allowing individuals 

within the group to reinterpret some shared behavior as it applies to
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the individuals themselves [Rentsch,1 9 8 2 ] . Allowing individual 

variability results in the capability of getting exactly what you want 

by overriding undesired group characteristics with individual 

characteristics [Rentsch,1982]. The hierarchy of classes specifically 

allows this to occur.

Object-oriented languages provide this capability to utilize or override 

grouped characteristics through inheritance [Robson,1981]. The idea 

here is that methods and instance variables defined at a subclass level 

will always override those defined at a higher level, otherwise the 

higher level characteristics become the defaults [Stefik,1985]• When an 

object receives a message it performs a bottom-up search of its class 

and superclasses to find the method associated with the received 

selector. The first one found will be executed, and will be the one 

with the correct level of specialization. This insures that procedures 

manipulate data at the proper level of abstraction [Baroody,1981]. 

Inheritance reduces the need to specify redundant information and 

simplifies updating and modification, since information can be entered 

and changed in one place [Bobrow,1986].

The power of inheritance is in the economy of expression that results 

from object description sharing [Stefik,1985]. This power is extended 

even farther by languages that permit ’multiple inheritance'. Multiple 

inheritance allows increased sharing by making it possible to combine 

object descriptions from many different classes [Stefik,1985]. 

Smalltalk, Loops, and Lisp Flavors provide these capabilities 

[Stefik,1985]. Each of these languages also provides a means for the
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user to specify some kind of precedence of inheritance from the multiple 

superclasses [Stefik,1985].

Object-oriented programming can now be seen as a different means of 

organizing and grouping program components. Fundamental to this 

approach is the creation of objects. Objects are packages of data and 

procedures with a uniform means of access. This uniform means of access 

is the same for all objects. Objects are organized into classes, 

similar to how humans organize objects in the real world. Common 

characteristics are abstracted to higher classification levels, and 

objects can inherit these characteristics if they belong to an 

appropriate subclass. Programs are created by establishing the 

appropriate objects, piecing them together, and having them interact 

with each other. This approach is reportedly more similar to how 

humans solve problems in the real world.

2.3 A Brief History of Object-oriented Programming

The immediate ancestor of all object-oriented programming languages is 

Simula where the class concept was introduced [Rentsch,1982]. However, 

Smalltalk still stands as the strongest representative of 

object-oriented programming in the sense of being the most unified in 

representing it [Rentsch,1982]. Awareness of the importance of 

object-orientation arose with the development of Smalltalk, so the 

history of Smalltalk is essentially the history of object-oriented 
programming [Rentsch,1982].



25

Smalltalk was originally the software half of a project called Dynabook, 

which was an effort to produce the most user-friendly computer 

[Rentsch, 1982]. Alan Kay was the main visionary associated with this 

project, and in the late 1960*s worked on a preliminary version called 

the Flex machine [Rentsch,1982]. Later in the early 1970's, he worked 

with others at Xerox Palo Alto Research Center (Xerox PARC) developing 
Smalltalk on the Xerox Alto machine [Rentsch,1982].

The development of Smalltalk drew heavily on the ideas of two older 

languages: Lisp and Simula [Rentsch,1982]. However, Smalltalk is 

primarily based upon the class concept borrowed from Simula 

[Rentsch,1982]. In Smalltalk the class is the sole structural unit, 

with instances of classes (objects) being the concrete units 

[Rentsch,1982]. Smalltalk is more than just a programming language. It 

is a total programming environment which reflects the object-oriented 

philosophy [Rentsch,1982].

Since the introduction of Smalltalk, awareness of object-oriented 

concepts has increased [Rentsch,1982]. Other languages incorporating 

object-oriented concepts have developed. These include: Lisp Flavors, 

Loops, Clascal, Objective-C, 00PC, C++, Neon, KEE, Object Lisp, STROBE, 

ACT I, Object Pascal, and others [Cox,1984] [Schmucker,1986] 

[Sprague,1985] [Stefik,1986] [Williams,1984]. The vast majority of 

these implementations, however, represent additions of object-oriented 

concepts to existing languages. This hybrid approach has been one aimed 

at trying to keep the best of both worlds [Cox,1984], To the author's 

knowledge, Smalltalk still represents the only pure object-oriented
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programming language/environment [Rentsch, 1982]-.---Due- to the influence 

of the Smalltalk philosophy new machine environments have also 

developed. A prime example is the Apple Macintosh^ computer with its 

object-oriented user interface which has borrowed heavily from research 

done at Xerox PARC and from Smalltalk [Sprague,1985].

One can see from the previous discussion that object-oriented 

programming has begun to attract much attention. Although its principal 

ideas have been around for some time, only lately has this great 

interest appeared. Introduction of object-oriented machines like the 

Apple Macintosh^ may help to popularize this powerful programming 

paradigm, as may its application to existing programming languages and 

future applications.

2.4 The Evolution of the Data Type Concept

The evolution of the concept of 'data type' has played an important 

role in the development of programming languages [Pratt,1984]. The 

development of object-oriented programming marks a new stage in that 

evolution. It represents a new level of abstraction of data types 

beyond what languages based on other concepts provide. 

Object-orientation entails the optimal combination of the ideas of data 

encapsulation and data abstraction [Cohen,1984],

1The Apple Macintosh is a product of the Apple Computer Corporation.
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Originally, computers were programmed using the memory locations of the 

hardware as the data object. Depending upon the context of its usage, 

that memory location could contain an integer, part of a floating-point 

number, a character, an instruction, or some other item. All data 

checking and usage was left to the programmer. Even though one can 

argue that specific instructions required data of a specific type, in 

actuality there really were no data types since no type checking 

occurred. Type conflicts were only evident when and if an error was 

identified in the programs behavior.

Older programming languages like FORTRAN and COBOL mark the beginning of 

the incorporation of the concept of a data type [Pratt,1984]. In these 

languages, primitive data types such as reals, integers, and character 

strings were provided. The compilers for these languages introduced 

type checking that insured that the programmer was utilizing them 

correctly. This early notion of data types centered around the concept 

that a data type defines a 'set of values' that a variable might take on 

[Pratt,1984].

The next level of evolution can be see in languages like Pascal 

[Pratt,1984]. In such languages 'type definitions' can be made that 

define the structure of a set of primitive data objects and their 

possible values. This allows the programmer to define a structured data 

type and to then declare instances of that type without having to 

redefine the whole structure for each instance [Pratt,1984]. At this 

stage the concept of a data type is expanded to mean a 'set of data 

objects and possible values'.
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Pratt indicates that the 'final' step in the evolution of the data type 

concept is the understanding that a data type is not only a set of data 

objects and their possible values, but also a 'a set of operations' that 

manipulate objects of that data type [Pratt, 1984]. With this he 

presents the idea of encapsulation. The idea of encapsulation is to 

have the programming language provide a means by which a data entity can 

be defined along with its data manipulations operations in a nice neat 

package, the internal details of which are hidden from the user of the 

entity. The manipulation operations provide the only means for 

accessing the data entity. These new data types are true data 

abstractions, leading to the concept of the 'abstract data type' 

[Pratt,1984].

The concept of an 'abstract data type' allows the programmer to abstract 

the complexity of a large programming project into smaller parts 

[Pratt,1984]. This allows the programmer to use effectively a 'divide 

and conquer' approach to the problem's solution [Pratt,1984]. Languages 

supporting these facilities include Ada with its 'packages' and Modula-2 

with its 'modules' [Bobrow,1986] [Pascoe,1986] [Pratt,1984]. The two 

important ideas associated with this concept are (1) information hiding 

and (2) encapsulation [Pratt,1984].

Information hiding describes a central principal in the design of 

programmer-defined abstractions where each program component hides the 

details of its implementation from its user [Pratt,1984]. This suggests 

that each abstraction has a clearly defined purpose, and a specific 

interface through which the abstraction is manipulated. This kind of
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capability can be implemented in languages like FORTRAN by convention, 

but are not enforced by the language itself [Pratt,1984]. The addition 

of encapsulation capability (forced information hiding) by the language 

itself insures that later modifications cannot inadvertently breech 

earlier set conventions. Only languages like Ada provide such 

capabilities [Pratt,1984].

Pratt seems to think that data abstraction as he describes it is the 

’•final” stage of evolution of the data type concept. The author does 

not believe this to be true, and neither do others [Buzzard,1985] 
[Pascoe,1986]. A language like Modula-2 allows the programmer to create 

abstract data objects through the use of the module (package) concept. 

Multiple instances of that data object can be defined as long as the 

named object is passed to its manipulation procedures. One problem

arises when one wishes to change the abstract data type's composition 

only slightly, a whole new data type module must be reconstructed 

[Pascoe,1986].

For example, consider the definition of a stack data object. In

Modula-2, a stack would be defined as an array or linked list of stack- 

type elements, and the operations push(), pop(), initialize(), emptyO, 

and full(). However, the stack type definition would determine what 

type of elements could be put into the stack, say integers. To have 

another stack that allowed strings to be put into the stack would 

require that a whole new stack definition be created even though all but 

one line of code would be identical (stack_type = INTEGER versus

stack_type = STRING) [Pascoe,1986]. The Ada concept of 'generic
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packages' attempts to address this issue, and will be discussed 

shortly..

There is an additional problem. We now have two modules with the same 

name! The compiler will not accept two definitions for the same object, 

'stack1. So, we are forced to provide the different names, say 

String_Stack and Integer_Stack. Not only is this a problem with object 

names, but what happens when different objects have exported procedures 

(procedures declared to be accessible from outside the defined abstract 

object) with the same name? Take for example a stack and queue. Both 

probably need initialize(), emptyO and full() procedures. If the names 

exported are the same, we have a problem. Their names must be unique or 

qualified (stack.initialize or queue.initialize) [Pascoe,1986]. The 

power of encapsulation and information hiding are present, but a major 

degree of flexibility is not.

What is needed is a new level of abstraction, and a new evolution of the 

abstract data type concept. Such an evolution is provided by the 

concepts of the 'generic package' and of 'operator overloading' seen in 

the Ada programming language [Buzzard,1985] [Pascoe,1986]. Generic 

packages allow multiple objects with similar but different structures to 

be created at compile time. This is accomplished by using a package 

template and checking the necessary type information [Pascoe,1986]. Ada 

also allows overloading of operators. Overloading makes it possible to 

have the same name for different but similar procedures. This 

capability eliminates the. unique naming problem [Pascoe,1986].



31

But what happens if we want a structure that is not predefined at 

compile time, like a stack that can hold objects of different types? 
Such a capability requires dynamic binding [Pascoe,1986]. Ada attempts 

to address this problem with its variant records. Traditional 

programming languages can do this by providing some kind of case 

statement that checks types at run-time, applying the appropriate 

procedure for operating on a stack element of the given type. The 

problem here is that whenever a new stack element type is added to the 

system, not only is the code for the new type definition added, but the 

existing code (the case statement and variant record structure) for 

other objects (stacks) must also be altered [Pascoe,1986] 

[Winston,1981]. We now have a dependency between existing objects and 

new ones added to the system. Such a dependency defeats the 

encapsulation we have strived for by requiring knowledge of the 

implementation of all the data objects in the system!

Again, we need another evolution in our concept of an abstract data 

type. This evolution involves the addition of the concept of the data 

object as being an animate object. In this abstraction, the object 

itself becomes responsible for performing operations on itself, no 

longer being dependant upon external procedures [Pascoe,1986]. This 

eliminates the need for the case statement mentioned in the stack 

example previously, as now the stack element itself would perform the 

operation.

But we still have the problem of having redundant code for highly 

similar operations. A slight modification in the behavior of an
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operation. As noted earlier, Ada provides the generic package 

[Buzzard, 1985]. In a way this is really a form of inheritance 
[Rentsch,1982]. Each instance of the generic package inherits the 

characteristics of the generic package with minor modifications. 

However, inheritance is limited to one generic package. There is no 

hierarchy of inheritance.

This idea of inheritance is the next level of abstraction that is 

brought to programming by an object-oriented approach. Inheritance 

allows code to be factored [Pascoe, 1986]. Code that is common to data 

objects can be stored in one location. This, it is conjectured, makes 

modification of code easier and more reliable [Cohen,1984]. Factoring 

is accomplished by defining classes. Classes can have subclasses or 
superclasses. Common code can be stored within these class definitions, 

dependent upon their level of factoring [Pascoe,1986].

The evolution of data types described to this point now includes quite a 

few more characteristics than those Pratt [Pratt,1984] has described in 

his "final" stage. We now have arrived at a description of an abstract 

data type as an 'object*. This 'object' is a set of data objects 

(abstract types or values) with procedures to operate on itself, with 

encapsulation of these components resulting in information hiding, with 

inclusion of dynamic binding and class inheritance capability, and with 

the inclusion of the concept of an 'object' as an animate entity 

[Pascoe, 1986] [Stefik,1986] [Stoyan, 198*1]. The application of this 

abstraction to programming supposedly results in software that is more
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flexible; supporting change, reusability, and easy enhancement 

[Cox,1984].

2.5 Traditional versus Object-oriented Programming

As mentioned in the beginning of this chapter, object-oriented 

programming is a different approach to programming. Different as 

compared to what? This section will describe the differences between 

what is called traditional or procedure-oriented programming and 

object-oriented programming.

The traditional or procedural-oriented style of programming can be 

described as dividing programming into two distinct segments [Cox,1984]. 

First is the code segment, consisting of subroutines that do all the 
work of the program. Second is the data segment, consisting of the data 

structures that the procedures manipulate [Bobrow,1986] [Cox,1984] 

[Robson,1981]. Data are static, having values changed by procedures, 

and are essentially global [Cox,1984] [Leiberman,1982] [Stoyan,1984]. 

Major operations are built by combining subroutines into sequences that 

are grouped [Cox,1984]. Procedures are responsible for keeping track of 

timing considerations (sequence), space and movement of data, and data 

type checking [Cox,1984].

One problem with the procedure-oriented approach is that data and 

procedures are treated as if they are independent of each other when in 

fact they are not [Cox,1984] [Robson,1981]. Procedures, in practice,
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place strong restrictions upon the types of data that they handle 

[Cox, 1984], This fact results in the need to do major surgery to 

general-purpose procedures when changes are made in data structures or 

when new data structures are added [Pascoe,1986] [Winston,1981]. The 

procedure-oriented approach makes the programming environment 

responsible for managing data type dependencies, so environmental code 

is not reusable [Cox,1984]. Additionally, the programmer must remember 

what these restrictions are when using the procedures and this results 

in errors being made [Cox,1984].

An interesting example is provided by Cox [Cox,1984], What would we 

think if an electrician who was wiring telephone lines and power lines 

in a building was required to use the same type of plugs and wires to do 

both? It would be his responsibility to remember which plug was 

carrying what voltage! This is the situation created when using 

procedure-oriented programming techniques; we attempt to keep track of 

compatibility information manually [Cox,1984].

The object-oriented approach, in contrast, treats procedures and data as 

two indivisible aspects of the same object in the problem domain 

[Cox,1984] [Robson,1981]. Applications can be developed by 

straightforwardly examining the problem domain, identifying objects and 

their behaviors within the domain, and then implementing them in the 

computer utilizing object-oriented techniques [Cox,1984], The 

programmer is no longer required to restate the problem domain into 

computer domain terms where everything is either an operator or an 

operand [Cox,1984]. No longer is knowledge of data characteristics
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spread through all the procedures of a program, but rather centralized 

to specific data objects [Bobrow,1986] [Leiberman,1982]. Each object 

has only the knowledge and expertise to act in accordance with requests 

made of it, placing knowledge only where it is actually used 

[Leiberman,1982]. Data/procedure interdependencies are moved out of 

implicit storage in the environment and into explicit storage in the 

data objects themselves [Cox,1984].

As opposed to function calls with static-data passage, object-oriented 

programming utilizes a message-passing system [Bobrow,1986] [Cox,1984] 

[Leiberman,1982] [Robson,1981]. An object is sent a message and 

responds to that message according to its internal knowledge. Like 

function calls, messages can contain parameters. The object determines 

how to perform the action itself [Robson,1981].

Another important difference is the ability that object-oriented 

programming has to factor common code out of the object's local 

structure, placing it into a common location [Bobrow,1986] [Cox,1984] 

[Leiberman,1982] [Robson,1981]. Objects are defined by their class. A 

class, in turn, can be described by another superior class. When a 

message is sent to an object an upward search is performed within the 

class hierarchy structure for a procedure that matches the message 

request. If none is found and no superclasses remain, then an error 

message is issued [Bobrow,1986] [Cox,1984] [Leiberman,1982] 

[Robson,1981] Code that is common to several classes is stored higher 

in the hierarchy. This technique of code factoring, called inheritance, 

is a scheme that allows new objects to be easily added to the software
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system without major modification, since new classes can easily be 

defined by declaring them as subclasses of existing classes 

[Bobrow,1986] [Cox,1984] [Leiberman,1982] [Robson,1981].

These differences give object-oriented programming some advantages over 

procedure-oriented techniques. Data dependencies encoded within 

procedures are eliminated. Code modifications and additions are made 

simple and side effects are minimized. Programmed problem solutions are 

not forced into computer defined structures (i.e. the data types 

available), but rather allow abstract data object definitions that 

parallel real world problem domain structures. Code factoring and 

compression are also a natural part of this programming style. Because 
of these differences, object-oriented programming may be an important 

and powerful improvement over traditional programming techniques.

2.6 Why Object-oriented Programming?

In the previous sections, the reader has been presented with the basic 

concepts of object-oriented programming. Additionally, the reader 

should now be familiar with the basic history of the development of 

object-orientation, and its difference from traditional programming. 

But why should the user utilize this programming technique? In this 

section, some of the claimed benefits of object-oriented programming 

will be presented. Object-orientation1s relationship to software cost 

and maintenance will also be described. Lastly, a description of some
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programming projects to which the technique was applied will be 

presented.

2.6.1 Some Claims of Object-oriented Programming

The Fifth Generation of computing has been heralded as being at hand due 

to the new advances in Artificial Intelligence (AI). Associated with 

this evolution are at least three developments in software technology: 

logic programming, exploratory programming, and object-oriented 

programming [Shell,1983]• Based upon statements like this one might 

claim that object-oriented programming is a new and revolutionary AI 

technique. This is apparently due to the close relationship that 

object-oriented programming has with the theory of frames 

[Barbuceanu,1984] [Stefik,1985].2 Others have claimed its usefulness 

for simulation programming, systems programming, and graphics 

[Bobrow,1986] [Stefik,1985].

With regard to simulation, objects can form the basis for simulation of 

system components and their interactions. Conceptualizing system 

components as objects reportedly makes simulation programming 

conceptually easier [Barbuceanu,1984] [Ingalls,1981] [Stefik,1985]. In 

general usage, large classes of computer applications attempt to model 

some physical or conceptual process. Traditional programming makes the 

programmer force this modeling into some machine representation that is

2 A discussion of object-orientation’s similarity to frame theory will 
be presented in Chapter 3*
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often not in a form parallel to the real world process. 

Object-orientation, on the other hand, by design, models real world 

objects and events, and parallels conceptual processes, making it better 

for simulations and any other form of modeling [Cox,1984].

2.6.2 Software Cost and Maintenance Considerations

By far, software has become the most costly portion of most computer 

systems [Lubinski,1984] [Martin,1983]* According to James Martin 

[Martin,1983], sixty-seven percent of that cost can be accounted for by 
maintenance needs. With this fact in mind, one is faced with the 

necessity of making software as easy to understand and maintain as 
possible. A primary feature of object-oriented programming is its 

inheritance and classification capabilities [Alexander,1985] [Alws,1985] 

[Brown,1983] [Cox,1984] [Goldberg,1983] [Leiberman,1982] [Lubinski,1984] 
[Rentsch,1982] [Stefik,1985]. These capabilities allow code that is 

common to different types of objects to be stored in one location that 

is accessible to all of these objects. If an object belongs to a 

classification, it can inherit any code that is associated with that 

classification. This makes for the elimination of redundant code, 

allowing code sharing and centralization. Code maintenance and 

modification then should become much easier, because the code is more 

compact and centralized. Cox [Cox,1986], suggests that what is truly 

revolutionary about object-orientation is that it helps programmers to 

reuse existing code. He offers as an analogy a comparison of
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object-oriented programming with circuit building using IC-chips 

(Integrated Circuit chips). He suggests that objects in object 

libraries are "Software-ICs" [Cox,1986]. The results of reusability can 

be seen if one compares the size of the Unix operating system 

(non-object-oriented) with that of Smalltalk (totally object-oriented). 

One finds that on a capability based comparison, Smalltalk has much less 

code than Unix [Cox,1984]. This reduction is reported by Cox 

[Cox,1984] to be due to Smalltalk's centralized and shared code. 

However, one should temper this statement with the knowledge that Unix 

may provide a greater number of system capabilities.

Additional important features of object-oriented languages include its 

object modularity, and uniformity of invocation protocol [Alws,1985] 

[Brown,1983] [Cox,1984] [Goldberg,1983] [Ingalls,1981] [Leiberman,1982] 

[Lubinski,1984] [Rentsch,1982] [Stefik,1985]. These factors also

directly affect the maintainability of a software system. By 

definition, objects are encapsulated units, containing values and 

procedural information with a uniform interface. This structuring 

insures that implementation details of object structure and behavior are 

totally hidden from the object user, thereby eliminating environmental 

dependencies that might otherwise reduce the flexibility of the software 

[Cox,1984] [Goldberg,1983]. Objects are self-contained entities that 

can only be examined externally, and whose internal workings have no 

dependency on external conditions. Languages like Ada also attempt to 

meet this high degree of maintainability through the concept of the
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package, but lack the class hierarchy and uniform invocation protocol 

capabilities of-object-oriented languages.

Even though the concept of an object as a self-contained entity is 

powerful, its true power is not realized until one recognizes the 

importance of the concept of a uniform invocation protocol 

[Goldberg,1983] [Ingalls,1981] [Rentsch,1982] [Stefik,1985]. Values are 
retrieved and procedures invoked by passing a message to an object. All 

objects can receive any message, and will respond in one of two ways. 

Either the object will do the desired task, or it will notify the caller 
that it cannot perform the task (send back an error message). The real 

power here is that at any time an object can be added or removed from 

the system without requiring the alteration of existing system code. 

Because the message passing system is uniform, only the code for the 

object in question need be affected [Goldberg,1983] [Ingalls,1981] 

[Rentsch,1982] [Stefik,1985].

Object-oriented programming may greatly enhance the maintainability and 

flexibility of software. As noted above, common code can be shared and 

centralized, objects are encapsulated eliminating external dependencies, 

and invocation of object actions is uniform. These characteristics, it 

is claimed from programming experience, make object-oriented code highly 

reusable, and easier to maintain and modify than programs coded with 

traditional techniques [Alws,1985]. These features are also claimed 

from experience to support dramatically the ability to perform rapid 

prototyping [Alws,1985]. Object-oriented software development 

techniques therefore show promise for providing an environment in which
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programs can be developed modularly, with a minimum of inter-module 

coupling (dependency), and with the flexibility to be easily maintained 

and modified.

2.6.3 Object-oriented Applications

Currently, the use of object-oriented techniques is open to much 

experimentation and many different environments have been created to 

date [Stefik,1985]. Within these environments different application 

programs have been developed. One such application was constructed at 

Tektronix Inc. using Smalltalk (the prototypical object-oriented 

programming environment [Rentsch,1982] [White,1986]) [Alexander,1985].

Tektronix has the difficult task of diagnosing and repairing electronic 

equipment that it sells. Training technicians to have a concise and 

highly developed fault isolation strategy is very costly and time 

consuming. Additionally, once trained, many technicians soon move on to 

new jobs. This situation makes electronics troubleshooting an ideal 

application for an expert system. Tektronix decided to create a 

technician's assistant to help assist and guide technicians in repairing 

equipment [Alexander,1985].

The task involved the conceptualization of electronic components as 

objects in the software system. Each object was coded to display 

behaviors that were expected of their real world counterpart. Utilizing 

the outstanding graphics of Smalltalk, circuit diagrams and components
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could be displayed as part of a diagnosis simulation [Alexander,19853. 

The program presents a display showing the circuit diagram and board 

layout for the component to be tested. Expectbd voltage readings for 

pointed-to components within the display are shown, allowing anomalies 

to be easily recognized when comparisons are made to actual readings. 
If the technician requests diagnostic assistance, the program queries 

for circuit readings and additional information, and suggests a new 

course of action for the technician to take [Alexander,1985].

The user is led through the diagnosis process by the program, not only 

assisting him in the task, but actually training him in a diagnosis 

strategy. The Smalltalk object-oriented environment with its ’objects' 
and hierarchical classification capability has allowed such a simulation 

to be coded with a minimum of effort and with maximum flexibility. Each 

assistant for different electronic equipment was coded using the same 

base program [Alexander,1985].

Smalltalk is not the only language used for object-oriented application 

development. OOPC (Object Oriented Precompiler for C) has also been 

utilized [Cox,1984] [Awls,1985]. In the Awls implementation 

[Awls,1985]* two special purpose editors were developed. The editors 

were designed to assist software designers in producing documentation 

for designs for software projects. One editor was constructed to build 

special system structure charts, and the other to develop pseudo-code 

for designed modules [Awls,1985]. Modules designed were treated as 

objects that needed to be represented by diagrams and pseudo-code by the 

editors. According to Awls, object-oriented concepts allowed the editor
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programs to assist the designers in keeping track of module interfaces 

and procedural interactions [Awls,1985]. This anecdotal program 

description suggests that object-oriented techniques can assist project 

developers with integration of disparate project components.

Written in a special language called Act 1, Leiberman has constructed a 

composers assistant [Leiberman,1982]. The program is utilized by 

musicians composing music. Notes, chords, and melodies make up the 

objects of the system. The program can be used to analyze existing 

compositions, or to assist in creating new ones. Leiberman states that 

traditional programming languages are not very good at dealing with the 

complexity that a task such as music composition entails, and that 

object-orientation is one approach that makes the complexity easier to 

handle [Leiberman,1982]. His experiences with utilizing object-oriented 

techniques lend support to the notion that they reduce project 

complexity.

Other applications have also been constructed using object-oriented 

programming techniques. They include: (1) a Computer-Aided Design (CAD) 

system that intelligently simulates design activities, illustrating 

design consequences [Barbuceanu,1983], (2) the repackaging of a

Graphical Kernel System so that it is easily accessible by applications 

in the most flexible manner [Lubinski,1984], (3) development of a highly 

flexible multi-user database system with easily customized user 

interfaces [Baroody,198l], (4) creation of an electronic form handling 

system that updates and manages forms used in planning and arranging 

executive business trips [Fikes,198l]. All of these applications lend
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support to the great potential that object-oriented programming holds 

for computer software systems.

2.7 Franz Lisp Flavors^

Flavors is a name for a more general class of object-oriented extensions 

to a Lisp dialect. It is not specific to the Franz Inc. version of

Lisp. The object-oriented style implemented in Franz Lisp Flavors is

borrowed directly from the Smalltalk and Actor families of languages. 

The Franz Lisp implementation of Flavors is similar to Zetalisp.

Flavors is an extension to Franz Lisp in the sense that it utilizes the 

hybrid approach mentioned earlier, taking a standard Lisp implementation 

and adding new object-oriented capabilities to it. Therefore, Flavors 

is not a totally object-oriented programming environment, but rather an 

enhancement of an existing Lisp language.

With regard to this thesis project, the usage of Franz Lisp Flavors is

most appropriate. The original Fire Lab Project code was written in

this dialect of Lisp and any conversion of the Fire Lab code into a 

standard object-oriented form could be accomplished in a straight 

forward manner using this extension. This is exactly the reason that

Franz Lisp Flavors was chosen for the language of implementation of this 

thesis project.

^All information regarding Franz Lisp Flavors presented in this section 
has been taken directly from Chapter 19 of the Franz Lisp Reference 
Manual, Franz Lisp Opus 42.16.3, Franz Inc., 19S5T
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Although it can be argued that usage of a hybrid approach in creating an 

object-oriented programming environment is in opposition to 

object-oriented precepts, hybrid languages allow the usage of existing 

programming techniques and code which can be enhanced with new and 

powerful programming techniques [Cox,1984]. In the case of the Fire Lab 

Project, a large mass of Lisp code was already in existence, and the 
author was familiar with the Franz Lisp language. Additionally, it was 

the purpose of this thesis project to demonstrate that the project team 

had actually created a custom object-oriented environment. Usage of an 

object-oriented extension to Franz Lisp fits this purpose perfectly.

Franz Lisp Flavors provides all of the capabilities described in the 
previous section of this chapter. It allows object instances, classes, 

methods, and class hierarchies to be created. As noted above, it also 

allows the creation of class hierarchies that are not restricted to a 

tree structure. Rather, Flavors allows a graph structure (multiple 

parents), which in turn allows arbitrarily complex interconnections 

between object classes while retaining modularity and ease of 

maintenance [Brown,19831. In the following sections, a brief 

description of Franz Lisp Flavors syntax and capabilities will be 

provided.

2.7.1 Franz Lisp Flavors Objects

An object in Franz Lisp Flavors is created much like objects described 

earlier. First, a class must be created, and then instances of that
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class are formed. In Flavors a class is called a 'flavor*. To define a 

flavor (class), one uses the 'defflavor' function:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)
0
:inittable-instance-variables 
:gettable-instance-variables 
:settable-instance-variables)

This construction defines a flavor (class) called 'ship' that has five 

instance variables that specify a ship's position, velocity, and mass. 

As can be seen the definition specifies that these variables can be 

externally retrieved and set. Instance variables can also be 

initialized with values. To create an instance of a ship, we must 
create a name for the object, and call a function to make an instance:

(setq my-ship (make-instance 'ship))

As one who is familiar with Lisp syntax can see, this form is in normal 

Lisp syntax. It is not as one would expect if the environment were 

totally object-oriented. In such an environment, a message would be 

sent to the class 'ship' to produce a new instance, and an assignment 

would be made to a specified name with the returned object. In this 

case, exactly the same action is performed, but with normal Franz Lisp 

syntax. In any case, the result is an object named 'my-ship' that has 

the instance variables described in its flavor (class) 'ship'. If one 

wishes to initialize 'my-ship's variables the syntax would be as 

follows:
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(setq my-ship (make-instance 'ship

:x-position 0.0 
:y-position 2.0 
:mass 3*5))

This form would produce 'my-ship' with position (0.0,2.0) and mass 3*5* 

Values can also be initialized for all instances by including values 

within the flavor definition itself:

(defflavor ship ((x-position 0.0) 
(y-position 2.0) 
x-velocity 
y-velocity 
(mass 3-5))

0
:inittable-instance-variables 
:ge ttable-instance-var iables 
:settable-instance-variables)

In this example, all 'ship' instances would start off with position 

(0.0,2.0) and mass 3*5. The velocity values would remain as yet 
undefined.

2.7.2 Franz Lisp Flavors Messages

The message sending facility provided by Franz Lisp Flavors is also more 

in the syntax of Franz Lisp than in what would be expected in a totally 

object-oriented programming environment. In a language like Smalltalk,
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a message is sent by following an object name with a selector 

[Goldberg,1983]:

my-ship mass.

This Smalltalk statement would send 'my-ship' a message to return the 

value of its mass. In Franz Lisp Flavors the 'send* function is 

utilized to transmit messages to objects. Its syntax would be as 
follows:

(send my-ship :mass)

Again, this form would send the message 'mass' to 'my-ship', and the 

value 3*5 would be returned. All message-sending is done with this 

function. To change the mass of the ship, a message like this could be 
sent:

(send my-ship :set-mass 35.5)

In this example, the method (object manipulation procedure) :set-mass 

has a parameter. Methods like :mass and :set-mass are already 

predefined by the Flavors system when an instance of a 'ship' is 

created.

2.7.3 Franz Lisp Flavors Methods

So far the Flavors object definition capability and message passing 

system have been illustrated. But messages need methods (procedures)
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associated with them. As noted above, instances have predefined methods 

which allow the retrieval and setting of instance variable values. 

These are methods that belong to the flavor ’vanilla'. Vanilla provides 

additional methods: :print-self, :describe, :which-operations, and

several others. All Franz Lisp Flavors objects include the 'vanilla' 

flavor. However, there is no real power to Flavors if one cannot define 
his/her own methods.

Franz Lisp Flavors provides the 'defmethod' function to create methods 

for objects. As in other object-oriented languages, methods must be 

attached to the objects class. In this case, the method is associated 

with a flavor:

(defmethod (ship :speed) ()
(sqrt (+ (A x-velocity 2)

(" y-velocity 2))))

This Franz Lisp form defines a method named ':speed' that is associated 

with the flavor 'ship'. The method will take the velocity instance 

variables of the object it is applied to and calculate the velocity 

(creating a vector using the x,y velocity components). Methods can also 

be defined that utilize parameters:

(defmethod (ship :fraction-of-speed) (fraction)
(« fraction (send self :speed)))

(send my-ship :fraetion-of-speed .5)

This method definition uses the parameter named 'fraction', and 

multiplies it by the calculated speed of the ship to which the method is
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applied. The message example would return a speed value that is one 

half the actual speed due to the parameter value of '.5*.

Please take note of a special feature illustrated in the 

:fraction-of-speed method definition. Within the method definition 

there is a message sent to 'self'. While any method is executing, the 

variable 'self* is bound to the identifier of the object to which the 

method was applied. This allows a method to call other same flavor 

methods during its execution. In the above example, the calculation of 

the speed is performed by another method, which returns the value needed 

to complete the fraction calculation.

Messages can also be sent to another object during method execution if 

the other object’s identifier is passed as a parameter:

(defmethod (ship :collision) (object)
(intersect (send self :direction)

(send object rdirection)))

(send my-ship :collision your-ship)

Assuming that there is a function ’intersect’ that can calculate if two 

objects will intersect given their directions, the above method 

definition would provide the message-sender with the knowledge of an 

impending collision.
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Within Franz Lisp Flavors, a class hierarchy is defined by mixing 

flavors. Flavors are mixed by providing the identifiers for the 
'mix-in' flavors in the flavor definition:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

(moving-object)

:gettable-instance-variables 
:settable-instance-variables)

In the example, 'moving-object' is identified as a 'mix-in' flavor. All 

instance variables and methods that belong to 'moving-object' are 
included (referenced by) the 'ship' flavor unless overridden by local 

'ship' specific variables or methods. This structure in essence is a 
specification of 'ship' as a subclass of 'moving-object'. The 'ship' 

class of objects Inherits the characteristics of the 'moving-object' 

class unless locally overridden.

As noted earlier, Flavors has the capability to allow multiple parents 

(multiple hierarchies). It does this by allowing multiple mix-in's:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

(moving-object
floating-object
sinking-object)

:gettable-instance-variables 
:settable-instance-variables)
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Here, ’ship1 now inherits the characteristics of ’moving-object’, 

'floating-object', and 'sinking-object'. This could become very 

confusing if there were no way to define an order of inheritance. Franz 

Lisp Flavors defines such an ordering of inheritance by specifying that 

the order of mix-in's matters. The inheritance proceeds on a 

depth-first search of mix-in's in the left to right order of the mix-in 

list.

Mix-in's themselves are also flavors. They too can be made up of other 

mix-in's. In this way a graph or network structure of inheritance can 

be constructed. However, within such a network there is always a

potential for cycles to occur. The Flavors language extensions take 

care of this by not allowing the method search to cycle. No flavor node 

in the graph can be visited more than once. All flavors also include 

the flavor 'vanilla'. Vanilla flavor provides some basic methods that 

all objects may need. Vanilla flavor can be left out if so specified in 

the flavor definition.

The preceding discussion has introduced some of the basic features of 

Franz Lisp Flavors. As one can see, all the basic object-oriented 
capabilities expected in an object-oriented programming environment are 

present. However, some of these capabilities are not provided in 

syntactic forms that are totally consistent with an object-oriented 

philosophy (making an instance for example). Even so, the provided 

capabilities are very powerful and in some cases go far beyond what 

other environments provide.
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The descriptions presented here have been of an introductory nature. 

Franz Lisp Flavors provides many additional features that have not been 

covered. Interested parties should refer to the Franz Lisp Reference

Manual .̂ Experimentation with a Franz Lisp Flavors implementation is

highly advised.



Chapter 3

THE FIRESYS PROJECT

3.1 Firesys Project Goals

Initially, the intended goal of the Firesys project was to develop two 

expert systems. The first system to be developed was a fire effects 

advisor. The second was to be a fire prescription expert. The two 

systems were to share a common knowledge base, and were to be initially 

restricted to providing information regarding sagebrush ecosystems.

The fire effects advisor was to provide the system user with answers to 

questions about the effects of fire. Sagebrush range managers often 

need fire effects information to assist them in making decisions 

regarding the use of fire as a range management tool. The information 

needed includes both the short and long term effects on plant growth, 

wildlife forage, and cover. Once a decision to utilize fire for 

management of a specific site is made, a fire use prescription is then 

needed. The second expert system was to provide such a prescription. 

The user would provide goal and site descriptions, and the system would 

provide a prescription for the type of fire and conditions needed to 

attain the desired goal.

54
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3.2 The Initial Effort and Resulting System1

One of the primary tasks that expert system builders face is the 

decision on how to structure the knowledge base used by the expert 

system. The choice of a knowledge base structure is the primary 

determinant of the expert system's later capabilities since system 

actions and structure are determined directly by the knowledge base. As 

noted in chapter 1, there are two common approaches to knowledge base 

design. One can encode knowledge in the form of rules or as frames. 
Mixtures of the two can also be utilized.

Rule based or production systems normally use a retrieve-act cycle. The 

expert system retrieves a rule from the knowledge base dependent upon 

the system's current state of information. It then applies the rule to 

its information state (the state-record), changing it. This action 

continues until the desired state (goal) is reached, or until no rules 

can be found that apply (failure). Rules, therefore, usually have the 

following form:

<IF state THEN action>

1The following discussion of expert system knowledge bases is based on 
information the writer has gleaned from coursework in Artificial 
Intelligence and from the following texts:

Charniak,E.,McDermott» D., Introduction to Artificial Intelligence, 
Addison-Wesely, Reading, Massachusetts, 1985.

Hayes-Roth, F., Waternam, D. A., Lenat, D. B., (Ed's), Building Expert 
Systems, Addison-Wesely, Reading, Massachusetts, 1953̂
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where the rule Is chosen if the system’s state conditions match 'state'. 

The 'action' of the rule is then applied to the system's state 

conditions stored in the state-record, changing them in some way.

Example Rule: IF blood test negative AMD
urine test positive 

THEN test thyroid level AND 
add to state-record

The cycle is then repeated using the new state information. The 

system's initial state might have a statement of the goal to be reached 

(question to be answered) and the starting givens. Because the rules 

essentially manipulate the initial state of the system into a desired 

state through actions, one can see that such a technique is best applied 

to tasks that involve large amounts of procedural as opposed to factual 

knowledge.

Another common rule based approach is to use what is called 'backward 
chaining'. Under this method the system starts with the goal state and 

attempts to verify that rules and facts in the knowledge base allow one 
to conclude that the goal state is true. The method works much the same 

as the above described except that rule conclusions are utilized. The 

backward chaining system examines knowledge base facts and rule 

conclusions to see if they match the goal state. If a fact matches then 

the goal has been verified to be true. If a rule conclusion matches, 

then the system attempts to verify that the rule antecedents can be
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verified. The rule anteeedent(s) become the new goal(s) to be verified. 

A backward chaining rule commonly has this type of structure:

<conclusion IF antecedent

Example Rule: ’Sunny Outside’ IF ’Day Time' AND NOT 'Cloudy'

The backward chaining process continues until the goal is verified to be 

true, or until no facts or rules remain as verification candidates.

The opposite approach to rules is that of a frame based system. In such 

a system, a semantic network of knowledge is constructed. Each node of 

this network is a frame. A frame contains information related to itself 

and about connections to other frames (nodes). The connection 

information is also encoded so that it expresses the frame's 

relationship to other nodes. Frames usually have the following 

structure:
ATTRIBUTE-1 trait-1 
ATTRIBUTE-2 trait-2 

•

ATTRIBUTE-n trait-n>

where an attribute is a characteristic of this node or a name of a 

connection or relationship to another node. Traits are therefore facts 

about the attribute or names of (pointers to) other frames (nodes). 

When one speaks of frames, attributes are usually called "SLOTS" and
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traits "SLOT FILLERS". The following example frame might describe a

specific dog:

Example Frame: <NAME "Fido"
COLOR blond
IS-A dog 
SIZE medium 

•

OWNER Sam>

In the above example "Fido", 'blond', and 'medium' are specific facts 

about the dog, and the remaining traits (slot fillers) are names of 

other frames that further define characteristics of the "Fido" frame. 

The frame "dog" would provide information about dogs in general, such as 

body parts, while the frame "Sam" would describe the owner's 

characteristics. This type of frame structure allows a large amount of 
facts and their interrelationships to be encoded into a knowledge base. 

Tasks that involve the gathering and assessing of large amounts of 

factual knowledge are therefore best handled with an expert system that 

utilizes frames.

As noted above, one can construct a system that uses a hybrid knowledge 

base. Rules can include factual information that can be added or 

deleted from the state-record. Frames can contain attribute fields that 

have procedural information (actions) as traits. For example, in the 

"Fido" frame above, we might add an attribute like IF-BITES-KIDS with 

the trait value 'get rid of Fido and remove from network'. In this way 

rule-like procedural knowledge can be added to a frame, or frame-like 

factual knowledge can be included in a rule. In general, this is often
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how expert system developers deal with tasks that require combining 

factual and procedural knowledge.

The first Firesys project developed, the fire effects advisor, was an 

expert system which required the storage of large amounts of factual 

information upon which smaller amounts of procedural information were to 

be applied. The majority of the encoded knowledge was to be factual 

knowledge about plant species and data on effects of fire on each

species as extracted from the research literature. The system was to 

sift through the data, analyze the facts related to the management 

objective provided by the user, and provide some conclusion as to

whether the objective would be met. This task requirement made it

obvious that a frame based expert system would be most appropriate, so 

the decision was made to adopt this approach.

As development of the fire effects advisor progressed, the focus of

effort became more and more directed towards the encoding of the factual

knowledge. Procedural knowledge became less emphasized due to the

enormity of the fact-gathering task. Additionally, the purpose of the 

system was reformulated, playing down the analysis capability, and

emphasizing information retrieval. The system was now to be more of a

research aid, or on-line library, for managers to use for gathering 

facts for their analysis of management objectives. The objective of the 

fire effects advisor was now to provide information, and not advice.

Thus, the resulting system is much more of a database than an expert 

system. However, the basic principles of a frame oriented knowledge
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base still remain. Additionally, the system was built to be as flexible 

as possible to allow easy modification. Expert system capabilities 

could still be added at a later date.

3-3 The Basic Firesys Structure

The Firesys system is made up of five primary components. The largest 

component is the knowledge base. As the knowledge base is currently 

structured, the data frames are organized into a hierarchical tree, and 

contain no procedural knowledge. The knowledge base is not composed 

solely of data frames. It also contains what we have called system or 

meta frames. These meta frames contain procedural knowledge needed by 

the system to access the data frames. This procedural information is 

not to be confused, however, with procedural knowledge that would be 

used by the expert system to analyze the data. That kind of knowledge 

has not as yet been included. The system frame procedural knowledge 

tells the system how to do things like displaying a data frame of a 

particular type, adding or deleting information from frames or frames 

from the knowledge base, and how to search the data frame tree for 

particular information.

The second system component is the knowledge base interface. These 

functions provide the only legitimate access to the knowledge base. 

Users of the knowledge base access data through calls to these interface 

functions. Functions are divided into two primary groups: those that 

access data frame information and those that access slot description
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information. Slot value retrieval is considered to be a data frame 

access. Utility functions are included that add and delete values from 

slots, and that add and delete data frames from the knowledge base.

The third major component of the Firesys system is the print-package. 

The purpose of this component is to provide a uniform grouping of
functions that can be used to output information to the display of the 

program user. They act as the sole means by which system components are 

allowed to present information to users of the system. Functions 

include the capability to display menus, screen headings, slot titles, 

and individual slot values. The functions keep track of screen

displays, insuring that headings and values are not split up, menu items 

are numbered properly, menu choices are selected correctly, and that 

displays of data larger than one screen-full are handled properly. The 

centralization of these functions serves to make displays somewhat 

uniform, and greatly reduces the redundancy of display code.

The last two components are two separate programs that utilize the 

knowledge base. As noted above, all accesses to the knowledge base are

performed through the interface functions and all output through the

print-package. These two programs serve two different purposes. The 

first program, the Query system, was designed to provide naive users 

with a user friendly interaction interface to the knowledge base. 

Through menus, it allows the user to traverse the data frame tree, 

accessing any information needed.
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The second program, the Builder system, was designed for use by a more 

sophisticated knowledge base builder, and acts as the knowledge base 

editor. This program allows the user to traverse the data frame tree, 

allowing alteration of values and frames. Unlike the Query system, the 

Builder is expected to be used by an individual with an intimate 

knowledge of the structure and function of the knowledge base.

These five components comprise the Firesys program structure at this 

time. The system was purposely designed in this component fashion to 

allow easy changes in knowledge base implementation, and easy changes in 

the programs that access it. Because of the clear and specific 

interface to the knowledge base, internal structures (implementation) of 

the knowledge base can be changed without affecting the programs 

utilizing it, and visa versa. This structure allows a high degree of 

flexibility, and was instrumental to the implementation conversion 

performed by the author for this thesis project.
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3.4 Frames, Default Reasoning, and Representations2

As described earlier, frame based systems usually are structured to 

create a semantic network. Within this network, frame interconnections 

represent relationships that frames have with each other. These 

relationships often represent a hierarchy. For example, the "Fido11 

frame mentioned earlier in this chapter represents a specific instance 

of a dog. The 'IS-A' attribute (slot) in the "Fido11 frame indicates a 

relationship that "Fido” has with the frame 'dog'. In this case, it 

indicates that "Fido" is a dog. That is, "Fido" belongs to the greater 

class of things called 'dog* (please see figure 1). Likewise, if we 

were to examine the ’dog' frame, we would find that it too has a slot 

called IS-A and that Its value might be 'mammal*. Now there are many 

creatures that are mammals that are not dogs (i.e. cats, horses, etc.), 

and there are many dogs that do not have the name "Fido" (i.e. Bandit, 

Spike, etc.). But, of the creatures that are mammals, all share some 

characteristics in common. Similarly, not all dogs look like "Fido", 

nor do they have that name. However, they all have some 'dog' 

characteristics in common.

2The following discussion about frames and default reasoning is based on 
information the writer has gleaned from coursework in Artificial 
Intelligence and from the following text and paper:

Charniak,E.,McDermo tt, D., Introduction to Artificial Intelligence, 
Addison-Wesely, Reading, Massachusetts, 1985.

Greiner, Russell, "RLL-1: A Representational Language Language",
Stanford Heuristic Programming Project, HPP-80-9 (Working Paper), 
Computer Science Department, Stanford University, Stanford CA, 
October 1980.
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Key: O  Frame

Relationship ("IS-A" link)

FIGURE 1: Frame Inheritance Hierarchy
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These relationships suggest a hierarchy of attributes related to given 

objects in the world. As one travels up the hierarchy, one finds 

information that is more general but still common to only the objects 

below it. Moving up farther, we reach classifications that apply to 

more and more classifications of objects. Likewise, as we move down 

the hierarchy, information becomes more specific to narrower 

classifications of objects. This narrowing continues until we reach 

individual object instances. At the lowest level we have totally

specific information about a particular object, and at the highest, 

information that applies to all objects.

An important concept associated with knowledge hierarchies is the idea 

of inheritance. The notion is essentially the idea that objects lower 

in the hierarchy "inherit" the characteristics of objects that are 

higher in the hierarchy (from parent nodes). From the "Fido" example, 

we can see that Fido is a dog because his parent node in the hierarchy 

("IS-A" link) is "dog". If we wished to find out about Fido’s
characteristics, we would first examine the values of attributes local 

to the "Fido" frame. To find out more about what makes Fido a dog, we 

would move up to the "dog" frame and examine attributes there. Fido 

inherits those characteristics. Likewise, one could again move upward 

from the "dog" frame to the "mammal" frame to inherit more

characteristics. In this way, one can obtain a full description of

"Fido".

This form of inheritance is also often called default reasoning. This 

is due to the fact that if the characteristic is not specific to the
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node we are at, then the value defaults to the characteristic contained 

in the class to which the node belongs. In this case, the class node is 

the IS-A linked node. The system reasons that unless otherwise stated, 
the superior class characteristics apply.

The main idea behind a hierarchy is that specific attributes that belong 

to individuals are lowest in the hierarchy, while characteristics that 
are common to wider and wider groupings of individuals are located 

higher in the hierarchy. This structure allows for drastic reductions 

in the redundancy that would be present if each individual needed to be 

described completely.

However, semantic networks are not necessarily trees, although a 

particular one could be. As the name implies, they are networks. This 

means that some relationship paths may cycle back to a starting node, 

allowing an object to circularly define itself. If so, how can there be 

a hierarchy? Well, the network represents a combination of many 

hierarchies. If one were to extract only one hierarchy (i.e. biological 

classification), one would have a taxonomic tree some what similar to 

that seen in figure 1. This capability to combine many configurations 

of information relationships is another powerful feature of semantic 

networks. The Firesys system uses three such hierarchies.

The production of three hierarchies within the Firesys system was 

primarily a result of the group's exposure to RLL-1 [Greiner,1980]. 

RLL-1 is a special language used for building knowledge bases at 

Stanford University. The initials RLL stand for the words
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Representation Language Language. It allows its user to develop a 

representation scheme (language) for frame oriented knowledge bases. It 

acts as a system building tool that creates a knowledge base 

environment.

The main power of RLL-1 is that it not only allows one to specify the 
structure of frames and their relationships, but it also allows one to 

specify characteristics of the slots contained within the frames. 

Within RLL-1, slots are categorized into types, and each type is 

described by another frame. This frame may contain procedural 

information. Functions that access the slot can use the associated 

procedures to perform appropriate operations on the slot. This idea of 

treating slots as basic objects that have their own procedural 

capability, was directly incorporated into the Firesys system, and forms 

one of the three hierarchies.

The slot description hierarchy provides information that the Firesys 

system uses to maintain and manipulate the knowledge base. The 
hierarchy is therefore part of the system frames and separate from the 

actual data. In other words, the slot hierarchy contains system 

procedural knowledge.

In addition to the slot description information, the Firesys system 

needed to have frame description information. This type of information 

moves one level higher, describing frame characteristics, and providing 

procedural information associated with frame manipulations. This 

information, like the slot description information is grouped into a
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hierarchy, and forms the second hierarchy of the system. Also like the 

slot level information, this hierarchy is contained within the system 

frames, as it too describes knowledge base manipulations.

The third hierarchy present within the Firesys system is contained 

within the data frames themselves. As noted earlier, this hierarchy 

contains no procedural knowledge at this time. It only represents a 
breakdown of a mass of information associated with plant species, 

ecosystems, and associated fire effects. Each level in the data frame 

hierarchy essentially provides a more detailed look at information 

specific to the frame above it.

3.5 Firesys Data Frames

As indicated above the Firesys data frames form a hierarchy that is 

represented by a tree. The organization of that tree is illustrated in 

figures 2 and 3* The root of the tree is a permanent frame called 

’’Superior". Currently, all entry to the knowledge base is performed by 

accessing this frame. It contains pointers to the primary components of 

the knowledge base structure. This frame serves no purpose other than 

to bind the portions of the system together and to provide a uniform 

entry point.

There are two primary information components of the data frame portion 

of the knowledge base: the ecosystem level information, and the species 

specific information. The species side of the knowledge base tree



69

Superior

Species

Fire
Adaptive
Traits Value And Use,

DistributionAndOccurrence

Fire
Effects

Botanical 
Ecological 
Traits ^

Specific
Fire

Effects
Specific
Fire

Effects
Specific
Fire

Effects

Key: C D  Fra» «

Relationship (Component link)

O  Multiple occurrences of frames of 
the same type and substructure

Figure 2: Data Frame Structure of Species side of 
Knowledge Base



Superior
70

Sagebrush 
Ecosystem ,

Condition 
And 

Trend ^
Productivity Fire Ecology)

Cover Type

Fire Ecology 
And EffectsValue And Use Habitat Type

Fire
Effects

'  Management > 
Considerations

Key = o Frame
Relationship (Component link)
Multiple occurrences of frames of 
the same type and substructure

Figure 3: Data Frame Structure of Sagebrush side of 
Knowledge Base



71

contains information organized by plant species (please see figure 2). 

There are multiple instances of species type frames within the knowledge 

base, and each is directly accessible through the "Superior" frame. 

Species frames additionally have Subframes, each of which contain more 

specific information about that species.

A species frame contains the species scientific name, common names, life 

form, some other general information, and pointers to subframes 

containing information specific to particular domains. Each species 

frame has the same type of slot structure and the same type of 

subframes. Each species frame instance has its own subframe instances 
associated with it. For example, every species frame has a slot named 

"Value And Use" which holds the name of the frame containing the 
information associated with that domain that is specific to that 

species.

Likewise, a subframe might also have its own subframes. Within the 

current structure of the species side of the knowledge base, only the 

"Fire Effects" frame has subframes. The "Fire Effects" frames contain 

general statements about fire effects specific to the parent species. 

The "Specific Fire Effects" subframes contain more detailed information 

that is specific to actual burns of different severity performed at 

different times of the year.

As one can see, more specific information is stored lower in the tree. 

This is consistent with the hierarchy description provided earlier, and 

might lead one to believe that an inheritance hierarchy exists.
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However, the inheritance utilized at this time by this side of the 

knowledge base is minimal. The only inheritance that occurs is 

associated with the species name that a subframe identifies itself as 

possessing. All subframes of a species inherit the species scientific 

name. This name is utilized when the related subframe information is 

displayed so that a user knows to which species the information is 
related.

Similarly, the ecosystem side of the knowledge base contains information 

grouped by level of specificity with regard to ecological groupings of 

plants (please see figure 2). One enters the sagebrush ecosystem 

portion of the system by directly accessing it from the "Superior*1 

frame. There is only one sagebrush ecosystem frame. At this level, 

information that applies to the ecosystem in general can be accessed. 

More specific information about foliage productivity, condition and 

trends, and ecosystem level fire ecology can be accessed by moving to 

one of the immediate subframes. Additionally, the ecosystem can be 
further broken down into cover types of which it is composed.

Cover types provide yet another level of greater specificity of 

information. Like species, there are multiple instances of cover types 

(please see figure 3)* The user can choose a cover type from the 

ecosystem frame, and then access this more detailed information. Again, 

yet more detailed cover type specific information (Value And Use, and 

Fire Ecology and Effects) is available in immediate subframes.
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Cover type specific information can be subdivided even farther. Under 

cover type, information has been grouped into habitat type subdivisions. 

Like moving from the ecosystem frame to the cover type frame, the user 

can proceed from a specific cover type to a specific habitat type. At 

this level, habitat specific information is available. Also available, 

is yet more specific information regarding habitat management and fire 

effects. This information currently represents the most specific level 

of information accessible.

An important point that should be stressed here is the flexibility of 

the system. Over the past year, the Firesys system has under gone many 

changes. The frame structure utilized has allowed these changes to be 

performed without excessive effort, and insures that future 

restructuring and modification is possible. This capability is the real 

power of this system. When one compares it to standard data bases, one 

finds this to be the case.

3.6 Firesys System Frames

The key feature of a frame oriented knowledge base is its inheritance 

capabilities. Although limited within the data frames, the system's use 

of inheritance is heavily imbedded within the system frames. As 

mentioned earlier, the system frames are composed of two inheritance 

hierarchies. One being frame oriented, and the other slot based.
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The frame oriented hierarchy provides a means by which information, both 

descriptive and procedural, about different kinds of frames can be 

stored in a central location within the knowledge base. As one can see 

from figures 2 and 3> there are Currently eighteen different types of 

frames. All but five of these frame types have multiple instances. For 

example, a species type data frame exists for each plant species that 

was entered into the system. For each of these species data frames, 

there are five subframes, each of a different type. One of the 

subframes (Fire Effects) is additionally allowed to have multiple 
subframes of its own. Therefore, except for the 'Superior1, 'Sagebrush 

Ecosystem', 'Productivity', 'Condition and Trend', and 'Fire Ecology' 

frames, each frame type has many copies that contain different values 

and are associated with different super and subframes.

For each of these frame types a frame descriptor was created (called a 

meta-frame). All information describing a frame of a given type and the 

procedures used to manipulate that frame are stored within this frame 

descriptor. In this way, information that is common to frames of one 

type is stored in one location. The actual frame instances contain only 

the values that are specific to it, and a value identifying its type.

Access to frame level information is always performed by directly 

accessing the desired frame instance. For instance, if one wanted to
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know the value of a species' name, one would request the specified frame 

to give the caller the value stored in the 'SPECIES' slot:

(get-data-frame-slot 'species4 'SPECIES)

Such a call would return a value like "Sitanion Hystrix". However, if 

the information desired was not a value specific to the 'species4' 

frame, the system will automatically go to the frame descriptor for this 

type frame to retrieve the needed information. As illustrated in figure 

4, a call to retrieve the list of slots that are valid in a species 

frame would first cause a search of the specific data frame. Not 

finding the needed value there, the system would automatically search 

the meta-frame (frame descriptor) associated with the data frame for the

value. In this case the needed list is located and returned. If the

value is not found in either place, an error message is returned. As 

can be seen, this hierarchy is only one level deep.

The second hierarchy, the slot oriented one, is similarly structured. 

In this case, however, the type of information retrieved is primarily 

procedural in nature. The slot descriptor frames contain information on 

how to display a slot and its value to the screen, and on how to add and

delete values to and from a slot. If one wished to display a slot and

its value on the screen, one would retrieve the procedural code stored
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in the slot descriptor frame and apply it to the given data frame. As 

an illustration take the following function call:

(funcall
(get-slot-descriptor-slot ‘SPECIES 'QUERY-DISPLAY) 
current-frame-name)

This Lisp function call would cause the code for displaying a slot in a

format that the Query portion of the system needs, to be retrieved from

the SPECIES slot descriptor frame. It then would execute that code

using the current frame identifier. This code knows how to retrieve the

data value from the data frame and then how to display it, with a

heading and properly formatted.

For each unique slot name in the system there is a corresponding slot 

descriptor. However, many of the slots hold the same type of 

information and require the same procedures for manipulation and 

display. It would be highly redundant to house the same code in each 

slot descriptor frame. To avoid this redundancy, six groupings of slot 

types were identified. Slots could be classified according to their 

contents. Slots were found to contain:

1) single values (atom slots)

2) lists of values (list slots)

3) text (text slots)

4) heading text only (header slots)

5) single frame identifiers (pointer slot)

6) lists of frame identifiers (pointer list slots)
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Based on these six classifications, slot class frames were constructed. 

Like the meta-frames (frame descriptor frames), the slot class frames 

contain information common to all slot descriptor frames of the same 
classification.

When making a call to retrieve descriptive and/or procedural information 

related to a slot, the system follows the same steps as it does with 

data frames. It first looks for the desired slot and its value in the 

slot descriptor frame. If the information is not found there, a search 

is made of the slot class frame. Figure 5 illustrates this process. If 

one wished to display the ’SPECIES’ slot of the 'speciesV frame in 

Query format, the following call would be made:
(funcall
(get-slot-descriptor-slot 'SPECIES ’QUERY-DISPLAY)
’species4)

The get-slot-descriptor-slot portion of the call would first cause the 

system to examine the Species slot descriptor frame for the Query- 

Display slot. Not finding the Query-Display slot there, the system 

would then examine the slot class frame of class 'atom'. Like the data 

frames, the slot descriptor frames contain a slot identifying their 

type. In this case, as seen in figure 5, the SPECIES slot is of type 

'atom'. A search of the atom slot class frame locates the Query-Display 

slot, and the code contained there is returned.

The need to apply the code returned to the identifier of the currently 

accessed frame points out an important difference between the frame 

oriented hierarchy and the slot oriented one. Within the frame 

hierarchy, any executable code found is automatically executed. In the
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slot hierarchy, the caller must explicitly execute the retrieved code. 

This execution was left to the caller in the case of the slot hierarchy 

due to the need for extreme flexibility. The kinds of operations 

performed on slots varied to a much greater extent than did frames, as 

did the information that might be passed to the retrieved code. 

However, in the writer's opinion, this flexibility did not prove to be a 

requirement. The structure of the slot descriptor calls could be made 

identical to those of the frame descriptors. In any case, except for 

this difference, the structures are identical.

Going back to the semantic network structure described earlier, one can 

now perhaps see the usage of default reasoning within this system. The 

data and slot descriptor frames form the lowest levels in each of their 

respective hierarchies. Information is initially sought at that level. 

Having not found any instance-specific information, the system then 
defaults to utilizing information specific to the class to which the 

instances belong. In this case, meta-frame or slot class frame 
information is used. The instance inherits the class characteristics.

3.7 Relationship to Object-oriented Concepts

The central idea of this thesis is that the frame based system which the 

Firesys team developed is also an object-oriented one. Others have 

noted that there is a great resemblance between the "LISP-AI" notion of 

frames and object-orientation [Rentsch,1982]. In this section, 

similarities will be drawn between object-oriented concepts and frame
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based representation systems. In particular, similarities between the 

Firesys system and object-orientation will be shown.

In Chapter 2 of this paper, four main concepts were presented that were

associated with object-oriented programming. These concepts were the

object, the message passing system, the class system, and the class 

hierarchy inheritance. All of these components are found within the 

Firesys system.

An 'object' was defined as an entity containing some private memory and 

having procedures associated with it [Goldberg,19831• A crucial 
property of an object is that its private memory can only be manipulated 

by its associated procedures [Goldberg,19831. If one examines the 
concept of the frame, some similarities to object-oriented concepts are 

found. A frame is composed of slots. Slots act as the frame's private 
memory. Slots can contain executable code (procedures) that are

specific to manipulations of that frame. These frame features parallel 

those of the object^. However, frames do not strictly enforce these 

concepts. The stored procedures may not be the only means for

manipulation of slot contents (private memory). Slots may be accessed 

directly, without necessarily using the frame specific procedures. Even 

so, if the system builders wish, they can incorporate these conventions 

into a frame based system.

^Application of the concept of the 'object' is not only restricted to a 
frame. System builders can also conceptualize slots as objects in their 
own right!
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Within the Firesys system, some of these conventions were applied. 

Frames are treated as entities with frame specific internal values and 

associated manipulation procedures. Although slot contents can be 

examined without usage of frame or slot specific procedures, alteration 

of slot values are performed solely by associated procedures. Frame 

specific procedures for displaying frame contents are also present. 

Except for the direct access capability, this set-up directly parallels 

the object description provided above. If the slot accessor functions 

had been stored in a higher level system frame, then this exception 
would be eliminated.

Within the Firesys system we went one step farther. Mot only are frames 

treated as objects, but slots are likewise conceptualized as objects. 

Slots have associated with them procedures and private values. 

Procedures are associated with slots which provide a means for altering 

their contents and displaying the slot itself. Additionally, slots have 

a value for the string to be used when displaying their name as part of 

the display of the slot. Access to these values and procedures is 

confined to the same restrictions as the frame accesses.

Another important feature of an object-oriented system that was not 

mentioned is the idea that objects should act as animate (i.e. active) 

entities [Rentsch,1982]. This characteristic can easily be incorporated 

within a frame based system by forcing accessed frame associated 

procedures to automatically execute. In this way, frame accesses appear 

to make computations occur as if initiated by the object itself. The 

frames then appear to be animate.



Within the Firesys system, frame accesses to slots containing procedural 

information cause immediate computations to occur, without any 

additional intervention on the part of the caller. This is precisely

what makes objects appear animate. Our frames are therefore object-like

in their appearance.

This similarity to objects fails with the current structure of the slot 

hierarchy. Unlike the Firesys frames, accesses to slot associated 

procedures does not automatically initiate computations. The caller is 

forced to initiate the computation himself. This leaves an appearance 

of slots as static entities rather than animate objects.

Again, the primary difference between a frame and an object is dependent

upon how strictly certain conventions are followed. Within an 

object-oriented environment, the concept of the object as an animate 

entity, packaged with hidden private memory, accessible only through 

object associated procedures, is strictly enforced. Frame systems 

provide a high degree of flexibility, and therefore do not strictly 
adhere to these concepts unless the system builders decide to do so. 

Within the Firesys system, the structure satisfies some of the standards 

for an object-oriented environment, but does not fully meet all the 

characteristics of defining objects. Changes could easily be made to 

the system to significantly increase its object-oriented character.

The second primary concept of object-orientation is that of a message 

passing system. This message passing system is essentially the means by 

which a user interacts with the objects. It is a sort of communication
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system. Some signal is passed to the object and a message is returned. 

Within a frame based environment, this would involve the means used to 

access and execute slot values and procedures. The message passing 

system would be the functions used to access the frames themselves. 

Again, the important feature here is the level of animation of the 

object receiving the sent signal. As mentioned above, to animate the 

frames, procedural information would need to be immediately executed 

upon access.

Another important requirement of a message passing system is the need 

for message passing to be uniform. A frame based system would therefore 

require a single function call that would cause values to be returned, 

or frame computations to occur. An example would be a 'send* function:

(send <object> <message selector>)

where the function would send an identified object a message selector. 

The message selector would cause a slot access to occur. The slot value 

found would be returned or executed if it were a procedure. This send 

function would act as the uniform interface to the frame network, 

accessing slots and executing any procedural information found. 

Optionally, the message selector could also contain arguments to be 

passed on to any procedures found.
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The Firesys system attempts to provide these features with its interface 

functions. The 'get-data-frame-slot' function provides essentially the 

same capabilities as those of the send function noted above:

(get-data-frame-slot <frame-id> <slot-name>)

This function also executes any procedures found when it accesses the 

named slot. However, it does not allow for any passage of arguments to 

the found procedure. All executed procedures are passed the same 

argument, the frame-id.

If this were the only function used to access data in the frames, then 

it could be claimed that the interface was uniform. However, this is 

not the case within the Firesys system. There is a second function used 

to access slot specific information, the 'get-slot-descriptor-slot' 

function. This function has the same format as the

'get-data-frame-slot' function:

(get-slot-descriptor-slot <slot-name> <slot-name>)

where the first slot-name identifies the slot 'object' (frame) to access 

and the second slot-name denotes the message selector (slot to access). 

As noted earlier, this function does not automatically execute found 

procedures, and therefore falls short of the specification for a send 

type function.

It would be possible, with little effort, to alter and combine the 

existing two interface functions to meet the send function requirement. 

Frames and slots could be treated as independent objects, each capable
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of receiving a message selector and having their slot stored procedures 

automatically executed. Optional arguments to message selectors could 

also be added (this is a standard feature of Common and Franz Lisp). 

This would make the interface uniform in character, and allow frames and 

slots to act as animate objects.

The interface additionally includes functions for adding and deleting 

values from slots, for creating frames, and functions for reading and 

writing frame structures from and to disk files. Although part of the 
interface, and dependent upon the implementation of the frame base,

these functions really act as utilities for frame and slot manipulation. 
These utilities are utilized by frame stored procedures that are 

executed upon access, and are really not part of the message passing 
system constructed. Within an object-oriented system they would more 

likely be methods associated with slot and frame type objects.

The last two primary object-oriented concepts are the ideas of a class 

system, and the usage of a hierarchical inheritance system within it. 

Described earlier were the frame concepts of semantic networks,

hierarchies within semantic networks, and default reasoning as applied 

to these hierarchies. The concept of a hierarchy of frames is identical

to that of an object class system.

Within an object-oriented system, objects are instances of classes, and 

classes can be instances of other classes. Values and procedures common 

to objects of the same class are stored within the class descriptor. 

Elements common to classes of differing types are stored at the higher
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level class descriptor of which these classes are instances. Likewise, 

in a frame system the frames lowest in the frame hierarchy are instances 

of the parent frames above them. The parent frames contain information 

that is common to its instances. Similarly, information that is common 

to parent frames is stored at higher levels in the hierarchy of frames. 

Instances contain information that is specific to themselves, while the 

frame at the top of the hierarchy contains the most general information 

related to all the frames of the hierarchy. Some object-oriented 

systems, like frame based semantic networks, can contain multiple 

hierarchies.

Default reasoning is another important feature of frame based semantic 

networks that is also present in object-oriented systems. As described 

earlier, traits that are common to a grouping of frames are stored in a 

frame that is higher in the frame hierarchy for those frames. The 
frames that belong to this grouping inherit the traits stored within 

this parent frame. Likewise, within an object-oriented environment, 
values and code that are common to a group of objects are stored within 

the class that the object is a member of. The objects inherit these 

values and code from their class. The more general information is just 

inherit from locations higher in the hierarchy within both systems. The 

message passing system of an object-oriented environment provides the 

capability of inheritance. Builders of a frame base system would 

similarly have to provide this capability in their knowledge base 

accessing functions. This is of course exactly what is done when 

default reasoning is implemented.
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The Firesys system provides these same concepts within its system frame 

hierarchies. As described earlier and illustrated in figures 4 and 5, 

the system frames have an inheritance hierarchy. Data frames form the 

instances of the frame oriented system. The meta-frames are the classes 

next higher in the frame hierarchy. Similarly, slots are the instances 

of the slot hierarchy. The slot descriptor frames form the first level 

of classes in the slot hierarchy, and the slot class frames the highest 

level. The interface functions mentioned previously have incorporated 

into themselves the capability to search upward through these 

hierarchies for the information requested.

It is hoped that this comparison has shown the reader the great 

similarity between object-oriented systems, frame based semantic 

networks, and the Firesys system. The reader should also understand 

that there is only a similarity and not an identity. Frame based 

systems are not purely object-oriented, nor is the Firesys system. 

However, many of the basic concepts of object-orientation are present.

Noted within the preceding text are some changes the writer suggests 

would make the Firesys system more object-oriented. To these previous 

changes should be added two more. Within both frame hierarchies no root 

node in the trees currently exist. At this root it would be expected to 

find values or procedures that are common to all nodes below it in the 

hierarchy. To this end, the writer suggests that all the system 

utilities that are frame oriented be stored and accessed from a new 

frame that is superior to the meta-frames. Additionally, all utilities 

that are slot oriented (i.e. the slot oriented interface functions)
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should be contained within a similar frame that is superior to the slot 

class frames. The addition of these new highest class frames, and the 

alteration of the frame/slot accessing interface functions will bring 

the current Firesys system much closer to being an object-oriented one.



Chapter 4

THE CONVERSION INTO FRANZ LISP FLAVORS

4.1 Conversion Goals

In the previous chapter, a comparison of the current Firesys system 

structure was made with what would be expect to found in an 

object-oriented system. In this chapter, a description will be provided 

of the attempt made by the author to convert the Firesys system into an 

existing object-oriented environment. As reported earlier, the Firesys 

code is written in Franz Lisp. The latest version of Franz Lisp has 

included in it an object-oriented environment called Flavors. Flavors 

provides the tools need to fully implement object-oriented concepts. 

The attempted conversion produced a transformation of the existing 
custom data structures and data maintenance routines that make up a 

portion of the Firesys system into the Flavors syntax.

The comparison provided in Chapter 3 suggested that the current Firesys 

software is not fully in a form that could be called object-oriented. A 

number of changes in the Firesys system structure were recommended. 
This state of affairs points to two possible approaches to implementing 

the conversion. The conversion could involve a direct mirroring of the 

current Firesys system structure. If the Firesys system is 

object-oriented in character, then such a mirroring of structure should 

prove simple to implement. The second approach would be to restructure

90
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the Firesys system to make it more object-oriented, incorporating 

changes suggested in Chapter 3. This might not be as easy as straight 

mirroring of the current structure, but might have the additional 

benefit of producing some new configurations that could prove to be 
useful additions to the Firesys system.

The approach taken was to do both. Initially, the first question to be 

addressed was whether the conversion into Flavors was at all possible. 

Direct mirroring of the Firesys structure in Flavors could answer this 

question. The question as to whether changes could be made to the 

existing structure to make it more object-oriented could be answered by 

later modification to the initial Flavors implementation.

There were three changes that the author decided to make to the 

developed Flavors implementation. First, as noted in Chapter 3> slots 

within the Firesys frames were conceptually being treated as objects, 

but actually treated as static entities. Unlike data frames, slot 

values were not created and manipulated as individuals. Slot values 

were just part of a data frame. Even so, slots did have a class 

hierarchy structure, with manipulation information stored in slot and 

slot-class descriptor frames. This separation of slot values from the 

slot object structure results in an incomplete object-oriented 

character. Slot values should be part of the local and private instance 

variables that belong to individual objects. One change to the 

structure to be made would be the conversion of slots to full object 

status by giving ownership of slot values to the slot objects.
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The second change relates to the lack of uniformity in the object access 

functions. As mentioned in Chapter 3> there are separate functions to 

access data frames and slots. The data frame accessing function 

(get-data-frame-slot) has the built in capability to search the frame 

oriented hierarchy for needed information and procedures. It also will 

automatically execute procedural code found. Likewise, the slot 
oriented access function (get-data-frame-slot) will search the slot 

oriented hierarchy for needed information. However, it does not execute 

found procedural code. The caller must evaluate the returned code if 

appropriate. This condition seems to have resulted from the incomplete 

treatment that slots receive within the current Firesys structure. 

Elimination of the necessity for two different functions for object 

access could be accomplished when the slots are actually treated as full 

objects. This elimination of the slot specific access function will 

result in a uniform communication (calling) protocol.

An important point here is the fact that Franz Lisp Flavors, being an 

object-oriented programming environment, provides the needed message 

passing function. It goes by the name of 'send' and has the 

characteristics of the send function described in Chapter 3* Therefore, 

usage of the Flavors environment will solve the problem of a lack of 
uniformity in the calling protocol found within the Firesys system.

The last change that the author wished to incorporate had to do with the 

utility functions. The comparison performed in Chapter 3 mentioned the 

fact that there are functions that act as utilities for frames and slots 

that reside outside the frame structure. Referring to the description
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of what is to reside in the highest frames or classes of a system, it 

can be noted that code and data that is most general and applicable to a 

large group of subframes (subclasses and instances) is to be placed 

there. By definition the frame utilities are general to all data 

frames, as are the slot manipulation utilities. These utilities should 

then reside in a new frame (superclass) within each hierarchy. A 

'master' meta-frame should contain the frame utilities, and a super slot 

frame (superclass of the slot-class frames) should be created. This 

addition will be the last one proposed.

4.2 Limitations on the Conversion Implementation

This conversion is at heart simply an academic exercise to examine a 

hypothesis and to investigate the plausibility of making object-oriented 

modifications to the existing Firesys system. Therefore, it is not a 
necessity that all portions of the system be converted and/or altered. 

The main issue at hand is whether the structure of the knowledge base is 

actually object-oriented and if its implementation can be converted into 

that of the Franz Lisp Flavors environment. This hypothesis suggests 

that any effort at conversion should then be centered upon the knowledge 

base and its accessing functions. Any changes in implementation should 

be totally transparent to programs external to the knowledge base that 

are accessing it (i.e. the query and knowledge base editor programs).

The author has been intimately involved with three particular portions 

of the Firesys project. Specifically, the design of the knowledge base,
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the design and implementation of the knowledge base interface functions, 

and the design and implementation of the query system. Although the 

author did implement the slot accessing utilities, he has not been 

involved in the construction of any programs that utilize functions that 

alter slot contents. Specifically, he has not done any work on the 

knowledge base editor program. Because of this lack of experience, it 

seemed appropriate that the author only perform the conversion and make 

changes to those parts of the knowledge base and interface functions 

that were directly related to the query portion of the system.

These restrictions result in the conversion being limited in scope. The 

conversion will include the transformation of the knowledge base into 

objects, with frames being unitary objects composed of slot objects. 

Additionally, meta-frames will be converted into frame class descriptors 

with a hierarchy. Slot descriptor and slot-class frames will likewise 

be converted into a hierarchy of slot object classes. Code stored 

within these classes will only relate to the displaying of these system 

objects (query portion). Any code that involves the manipulation of 

slots (addition and deletion of values) and code that relates to removal 

and addition of frames will be excluded.

In addition to the the above restriction, the author has included two 

more. Figures 2 and 3 presented in Chapter 3 illustrated that the data- 

frame portion of the Firesys system is composed of two primary 

components: the species related frames and the sagebrush ecosystem 

frames. With regard to the system frames (meta-frames and slot 

descriptor frames), both components have very similar structures.
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However, the species portion of the system has received the most 

attention, and has the most understood and currently stable structure. 

Additionally, this side of the system has the most data inserted into 

its structure. All levels of the data hierarchy have frames in

existence. This situation does not exist in the Sagebrush Ecosystem 

side of the system. Therefore, conversion will also be restricted to 
code and data that relates to the species side of the knowledge base.

As the conversion progressed, it became evident that only one knowledge 

base accessing function would be needed. The Franz Lisp Flavors send 

function would work appropriately for all object accesses. However, the 

conversion was to be restricted to the knowledge base. The query

program was to experience no changes in its interface to the knowledge 

base. In order to accomplish this transparency, the get-data-frame-slot 

function was to remain the same, performing the same actions. This 

required that the get-data-frame-slot function be recoded using the 

Flavors send function. Additionally, it required that there be no 

addition of parameter passing. The conversion, therefore, did not

include the addition of parameter passage to the procedural code found

when knowledge base accesses are performed.
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4.3 The Conversion to Franz Lisp Flavors1

The conversion process was approached as one of iterative enhancement. 

A series of small conversions were attempted first. As each conversion 

was accomplished and tested, conversion of a new portion of the system 

was attempted. This process was repeated until all the proposed 

conversions were completed.

The first portion of the system to be converted was the frame oriented 

part of the knowledge base. This involved the conversion of existing 

data frames and meta-frames (data frame oriented system frames) into 

flavors objects. Conversion of slots into objects was reserved for 

later conversion. The new frame objects would utilize the existing slot 

descriptor hierarchy.

The conversion process involved making data frames into Flavors objects. 

Like most object-oriented environments, Flavors makes individual objects 

instances of object classes. A class descriptor must first be created 

from which these object instances can created. Within Flavors, a flavor 

is the class descriptor. The defflavor function is utilized to create a

1The Franz Lisp Flavors code for the conversion can be found in the 
appendix of this paper.
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flavor definition (Appendix A contains all the Franz Lisp Flavors code

written to perform the conversion):

(defflavor species (FRAME-TYPE
SPECIES

•

SUPERIOR-PARENT)
()
igettable-instance-variables 
:settable-instance-variables)

This definition states that a flavor (frame descriptor) named 'species'

is to be defined. It indicates that objects of this flavor will have
instance variables FRAME-TYPE, SPECIES, ..., SUPERIOR-PARENT, no mix-in

(mix-in's will be described later), and that the values of these

instance variables can be retrieved and set by specific calls to their

names (messages sent to an instance of the 'species' flavor with the

instance variable name as the message selector).

An instance of this flavor is created by applying the 'make-Instance' 

function to the flavor 'species'.

(setq species4 (make-instance 'species))

This Lisp expression sets the value of the Lisp object (a global 

variable) 'specieŝ ' to one that identifies an instance of the flavor. 

For each species data frame, an instance of the species flavors was 

created. To set a value, say the SPECIES slot value, a message is sent
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to an instance of the species flavor to set its instance variable to the 

appropriate value:

(send species4 :set-SPECIES "Sitanion Hysterix")

This communication expression will set the value of the SPECIES instance 

variable in 'species4' to the value "Sitanion Hysterix". To retrieve 

the value stored in the SPECIES instance variable one would use:
(send speciesM :SPECIES)

This message call would return the value "Sitanion Hysterix". A special 

function was written that performs the species object creation and this 

value setting process for each species data frame that exists in the 

knowledge base. This function served the purpose of converting the 

current data structures into the flavors data structures.

Values stored within the instance variables are to be instance-specific

values. Any procedural code that is shared by instances of 'species'

objects is to be stored at the 'species' flavor (class descriptor)
level. This storage is performed by defining a 'method' that applies to

all 'species' objects:
(defmethod (species :SLOT-LIST) ()

'(FRAME-TYPE SPECIES ... SUPERIOR-PARENT))

This Lisp expression causes a procedure definition by the name of

':SLOT-LIST' to be associated with the flavor 'species'. When called,

it will return a list containing the above indicated values. A method

was defined for each each procedural value that was originally stored

within the meta-frames of the original Firesys system. This included

functions utilized to display the contents of the frame by the query

program.
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The definition of the 'species' flavor and associated methods, and the 

creation of 'species' instances was part of the first step in converting 

the Firesys system into the object-oriented Flavors environment. The 

remaining species related data frames also needed to be converted. Like 

the process performed on the 'species' frames, a flavor was defined for 

each subframe of the species level frame, appropriate instances created. 
Any associated methods for each were also defined. Once this conversion 

was accomplished the existing frame format data frames were removed from 

the system. All species related data frames were then coded as flavors 

objects.

In order for the conversion to this point to appear transparent to the 

query program, the 'get-data-frame-slot' interface function had to 

remain the same with regard to its behavior. The data frames were now 

Flavors objects and only accessible through the use of the 'send' 

function provided by the Flavors environment. The 'get-data-frame-slot' 
function needed to be recoded. This code revision was performed. It 

involved two changes to the send function. To retrieve a value 
'get-data-frame-slot' used the identifier of a frame (i.e. species4) to 

access the related frame. It did not care about the value of the 

identifier. On the other hand, the send function needed to know the 

Flavors-generated identifier of a specific object. This value was 

stored as the value of the original frame identifier (i.e. the value of 

species4). The new 'get-data-frame-slot' function would have to take 

this indirection into account. This required that the identifier be 

evaluated before it was used with the send function. Looking back, it
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might have been better to scrap the usage of the original frame 

identifiers. However, since the conversion was performed incrementally 

and experimentally, there appeared to be no other choice. If a total 

conversion were to be performed in the future, usage of the Flavors- 

generated object identifiers would be highly recommended.

The new function also needed to deal with the case where no value had as 

yet been defined for a slot (instance variable). In this case, the 

previous definition of the ’get-data-frame-slot' function caused the 

value 'no-entry* to be returned. The send function would return 'nil'. 

A simple check for this condition was also added.

With the conversion of the data frames and the revision of the 

'get-data-frame-slot' function, the system could now be tested. It 

worked flawlessly. As far as the query program was concerned nothing 

had changed. The new implementation was totally transparent to it. 

This success set the stage for the next level of conversion.

Slots were still being treated as before. They were essentially static 

value holders. A hierarchy did exist, however, that held slot specific 

procedural code. To convert the slots into the Flavors environment 

would mean the creation of slot objects. For each slot in the species 

side of the system, a flavor was defined. The flavor definitions needed 

only contain procedural information; no values were needed to be stored. 

To be consistent with the previous implementation, however, the TYPE 

slot was included as an instance variable (even though it served no 

purpose). Any procedural information that was specific to a slot was 
coded as a method associated with the flavor of the slot.
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There was an important difference between the slot implementation within 

the original Firesys system and the new Flavors implementation. Slots 

did not exist as objects (actual instances of frames) in the original 

implementation. They were really virtual objects. In the Flavors 

environment, access to methods can only be performed by sending a 

message to an object, a flavor instance. This fact required that slot 

objects exist. Virtual slot objects could not be used. One dummy slot 

instance was therefore created to allow access to the slot flavor 

methods. This modification still did not address the issue of the

separation of the slot value from its slot object. A further 

modification which does answer this problem is discussed later.

An important difference also existed between the structure of the frame 

oriented system frames and the slot oriented system frames. Data frames 

really only utilized one level in their hierarchy. When information was 

not found In a data frame, the information was searched for one level 

higher in their hierarchy, at the meta-frames. If slots are treated as 

object instances, one finds that there are two levels in the slot 

hierarchy. A search is first performed at the slot instance. It then

proceeds to the slot descriptor level, and finally to the slot class

level. This hierarchy needed to be reflected in the flavors structure.

The first level is easy, just create slot flavors that correspond to 

slot descriptor frames. But how does one implement the next higher slot 

class level structures? This is where the concept of mix-in's applies. 

A mix-in is a flavor definition that another flavor definition can

include as part of itself. All characteristics of the mix-in flavor are
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included as secondary characteristics of the currently being defined

flavor. For example:

(defflavor SPECIES ((type 'atom)) (atom)
:gettable-instance-variables
:inittable-instance-variables)

In this flavor definition one instance variable named 'type' is defined

which has its value initialized to 'atom'. Note that the mix-in field

has the value 'atom1. This indicates that all instances of SPECIES
inherit the instance variables and methods of the flavor atom. Methods

are first searched for at the SPECIES flavor level first. If the named

method is not found, the search proceeds to the first mix-in flavor,

namely the atom flavor in this case. The mix-in field might also

contain other flavor names, allowing multiple hierarchies to be

associated with the SPECIES flavor, but this feature is not applicable

to the slot hierarchy at this time.

The atom flavor definition needs no instance variables, and has no 

mix-in's. It looks like this:
(defflavor atom () () )

This seems to define nothing. However, it does. Although there are no 

variables, the definition does allow methods (procedures) to be 

associated with the atom flavor. These procedures can then be utilized 

by instances of flavors that use 'atom' as a mix-in flavor. This 

structure allows the slot hierarchy to be constructed just as it was in 

the original Firesys structure, within the new Flavors structure.

This arrangement was implemented by creating flavor definitions for each 

slot descriptor frame in the original system. Flavors were also defined
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for each slot class frame. Where the slot type was an atom, that slot 

class flavor was added as a mix-in to the applicable slot descriptor 

flavor definition. The same was done for all slot descriptor flavors, 

but adding the mix-in of their correct type (i.e. list, text, etc.).

Methods were defined for all slot class flavors that defined procedures

for the display of slots of the given type. An example is the procedure

for displaying a slot name and value of type atom:
(defmethod (atom :display) (value)
(let ((display-list

(cons (send self :name)
(cons M

(cons value
(list 'NL ’NL))))))

(print-slot display-list 'atom)))

This method definition allows the caller to send a message to the

instance of the slot that is an atom (i.e. SPECIES!) to display itself.
(send SPECIES1 :display "Sitanion Hysterix")

The method above defines a list of items that is needed by the

print-package to print a slot and its value to the screen (display-

list). This list is then passed as a parameter to the called function

'print-slot'. The print-slot function is then executed, displaying the

slot.

The reader should take note of the two important features of the method 

definition for ':display'. There is a parameter named 'value' being 

passed to the method. This passage of parameters directly parallels 

what the function 'get-slot-descriptor-slot' did in the original 

implementation. 'value' contains the value found in the slot of the 

instance variable (i.e. SPECIES slot) in the data frame, and it is the
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responsibility of the caller to first retrieve and then pass this value 

to the method. Within the existing system all calls to the 

'get-slot-descriptor-slot' function for the display of information 

(query program) were made from within the procedural code for displaying 

a frame. This code was housed in the meta-frames for the respective 

data frames. These calls were easily replaced by a 'send* function 

call, and being internal to the knowledge base, were totally transparent 

to the query program.

The second item to take note of is the usage of a variable named 'self'. 

An interesting feature of the Flavors environment is its usage of this 

variable. Whenever a message is sent to an object instance, its 

identifier is bound to this variable. This allows the object's methods 

to reference other methods associated with itself. In the case of its 

usage above, it allows the atom method to retrieve the being accessed 

slot's print name string from the slot's flavor (slot descriptor) one 

level below where the method is defined in the slot hierarchy.

This also points out an important side effect of this conversion. 

Within the original Firesys system, when a slot name was printed, the 

actual slot identifier was used. Under Flavors, this usage of the 

identifier was too difficult. The author was forced to create a new 

instance variable within the slot descriptor flavors that contained the 

string to be used. This creation of a new slot proved to be a solution 

to problems experienced with the original method. The usage of the slot 

identifier had created a high degree of coupling between the identifier 

used and information printed to the screen. Changes in displayed
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information (i.e. the slot name) resulted in massive updates of system 

components, defeating the flexibility claimed by the system. Addition 

of this print string to the slot descriptors eliminated any need to 

alter other system code, drastically reducing the aforementioned 

coupling.

The conversion to this point essentially mirrored the structure of the 

original system within the Flavors environment. Figure 6 illustrates 
the system organization. As one can see, there is a direct mapping of 

the frame structures into the new flavors and flavors instances. The 

system hierarchy has also been preserved through the usage of flavors 

definitions and flavor mix-in's. The new implementation within the 

Flavors environment is totally transparent to external programs. The 

only differences between the original system and the new implementation 

is the existence of dummy slot instances, and the usage of a print name 
string when displaying the slot and its contents. Otherwise, the 

structures are identical. This would suggest that the basic concepts of 

frames and frame hierarchies implemented in the Firesys system are 

highly similar if not identical to that of object-oriented concepts of 

instances and classes.

However, the usage of Lisp atoms as containers for flavor instance 

identifiers, and the use of dummy slot instances seems to bypass the 

main concept of the object. An object should be identified by one name. 

Its value should be an inherent part of itself. To address these issues 

the author included some additional modifications.
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If a frame is to be composed of objects (slots) and not static value 

holders, then the values in its instance variables should not be 

information values but rather slot object identifiers. Modification of 

frame instance variables to hold slot object identifiers will allow the 

elimination of the usage of both Lisp atom identifiers, and the need for 

dummy slot instances. Instead, frame instance variables will act as 

pointers to slot instances which will house the actual value. Such a 

reorganization will result in a system that is much more object like.

This reorganization would require two major alterations of the existing 

Flavors implementation. First, slot flavors would need to add a 'value* 

instance variable to their definition. Second, the

'get-data-frame-slot' function would have to be modified to take this 

new level of indirection into account. Value retrieval would now 

require that first the frame slot value (instance variable) by sending a 

message to the data frame, and second, the value returned (being a slot 

object identifier) would be sent a message to return its value.

An added side benefit resulted from these modifications. The need for 

the slot method caller to pass the value of the frame instance variable 

would no longer be necessary. The slot oriented methods could call 

'self' to retrieve the necessary value as needed.
(defmethod (atom :display) ()
(let ((display-list

(cons (send self :name)
(cons "

(cons (send self :value)
(list 'NL 'NL))))))

(print-slot display-list 'atom)))
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Notice that the new definition of the atom type slot display method no 

longer needs the passage of any parameters and that the value contained 

in the slot is retrieved be a simple message sent to 'self1.

There is one more modification that the author included in the final 

reorganization. As mentioned in the goals and limitations portions of 

this chapter, utilities that are used by data frames to display their 

contents should be stored in a new meta-frame that is highest in the 

frame oriented hierarchy. To meet this goal a new frame oriented master 

frame was created. Within the Flavors environment, this frame was 

defined as a new flavor that was 'mixed in' with existing frame flavors. 

Methods were defined for this new master frame that performed the duties 

of the utilities. Utility access was performed by meta-frame level 

methods sending a message to 'self', passing the needed parameters. 

This alteration served no other purpose than to make the structure seem 

a little more object-like. Figure 7 illustrates the new reorganized 

structure. Note that species frames are still accessed via Lisp atom 

identifiers. This feature could not be changed due to the structure of 

the query program and the author's lack of knowledge with regard to 

access code which was designed and implemented by another team member.

Figure 8 illustrates how subframe links should be handled under the new 

organization. Like frame instance values, the value of slots that are 

pointers to subframes should be Flavors generated frame object 

identifiers. Under the author's implementation, these slot values 

remained Lisp atom identifiers whose values are Flavors generated frame 

object identifiers.
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4.4 Summary of Results

The attempted conversion demonstrated that the existing Firesys system 

knowledge base structure could easily be converted into an existing 

object-oriented environment. What seems most amazing to the author is 

the ease with which this conversion was accomplished. Having minimal 
knowledge about Flavors, the author was still able to easily see the 

parallels between the system frame hierarchy in the existing Firesys 

system and the flavors concepts. This was a result of the striking 

similarity between Franz Lisp Flavors' object-oriented concepts and the 

frame based concepts implemented within the Firesys system. This trial 

and error conversion process took approximately two weeks of effort. 

This ease of implementation and the structural correspondence between 

the original and Flavors' implementation directly support the 

similarities between frame based systems and object-oriented concepts 

illustrated in this chapter. It also suggest the high degree of 

flexibility that the object-oriented approach provides.

An important concept to which this project also lent support was the 

importance of independence of the knowledge base structure from the 

external programs that utilize it. The conversion into Franz Lisp 

Flavors produced a totally new implementation of the knowledge base. 

The actual data structures and access techniques utilized by the Flavors 

environment was and is totally unknown to the author. In spite of the 

drastic change in data structures, the knowledge base still behaved 

identically with respect to external programs that access it. This 

independence highlights the importance of defining system components as
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self contained packages with explicitly defined interfaces. 

Object-oriented environments support and encourage such an approach. 

Acceptance of this modularity concept has been demonstrated by this 

project to greatly increase flexibility.

Modularity is also represented in the class hierarchy constructed, and 

has resulted in a modification flexibility that would not be seen 

otherwise. As noted in the preceding sections of this chapter, an 

incremental approach was utilized in this conversion. The modularity of 

both the original and the Flavors implementation made this incremental 

conversion proceed with little or no difficultly. Additions made to the 

Flavors implementation also proved to be highly flexible and easily 

accomplished because of this object-oriented modularity. The 

object-oriented concepts applied within this project have proved to 

greatly enhance the modifyability and flexibility of the Firesys system.



Chapter 5

DISCUSSION AND CONCLUSION

5.1 Success or Failure of the Conversion

In Chapter 4, a description of the conversion of the existing Firesys 
system into the Franz Lisp Flavors environment was provided. This 

description included a statement of goals that were to be achieved by 

the conversion. In this chapter, how these goals were met by the 

conversion effort will be examined. Additionally, a discussion will be 

provided with regard to the pros and cons of utilizing a custom or 

packaged object-oriented environment. It is hoped that this discussion 

will address the issue of whether the conversion effort was a success, 

and whether a packaged object-oriented environment should have been (or 

should be) used on the Firesys project.

The first goal to be achieved by the conversion was the direct mirroring 

of Firesys frame structures in the Franz Lisp Flavors environment. The 

evidence provided in Chapter 4 would suggest that such a mirroring was 

easily achieved. The primary frame structures of concern were the 

system frames because of their inheritance hierarchy. If one examines 

the flavors definitions of the initial conversion and the hierarchy of 

system frames, one immediately finds a one-to-one mapping of system 

frames to flavor definitions. Flavors act as descriptors for the 

objects or subclasses they define, as do the meta-frames, slot

113
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descriptor frames, and slot class frames for the data frames and slots 

of the Firesys system. Each implementation additionally displayed an 

inheritance hierarchy that behaved identically. These facts strongly 

support the conclusion that the original system has a very 

object-oriented character.

There some deficiencies in this object-oriented character however. As 

noted in Chapter 4, there is an inconsistency with regard to the 

treatment of object instances within the original Firesys system. Data 

frames are the main objects of the system. Likewise, data frame objects 

are the main instances of the Flavors implementation. Here again, one 

can find a direct mapping between data frame objects in the Firesys 

system and data frame instances in the Flavors implementation. Where 

the similarity fails is when one examines how slots are treated in the 
different systems.

Slots are actually treated identically within both implementations. 

Each slot is seen as an object. However, within the Firesys system 

slots are virtual objects. They are not implemented as object data 

structures. Instead, the slot's name acts as a pointer to a descriptor 

frame. To implement the original structure within the Flavors 

environment, the author was forced to create dummy objects to support 

the object behavior and inheritances characteristics.

Looking back on the Flavors implementation, the author can see an 

additional way that slot objects could have been implemented. The slot 

descriptors might have been created as instances of the slot class
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frames, with the slot names acting as Lisp symbols whose values were the 

slot instance identifiers. This was exactly what was done with the data 

frame instances (i.e. ,species4' actually contained the Franz-Lisp- 

Flavors-generated instance identifier for a species data frame object). 

This modification would make the implementations much more similar.

This change, however, still does not solve the problem of slots really 

not being objects. If slots in the original system are objects, then 

why do they require a separate accessing function? Additionally, why 

does a user of this access function have to evaluate procedural 

information found in the slot frame hierarchy? The object-oriented 

concept of a uniform message passing system is not met, and the basic 

idea of objects as animate is lost. These two features severely damage 

the argument that Firesys is object-oriented.

To answer the original question as to whether the Firesys system could 

be easily converted into an object-oriented environment, one can look at 

the conversion effort and answer with a resounding "YES''. The great 

similarity between data frames and object instances, between flavors 

(class descriptors) and system frames, and between the two inheritance 

systems provides strong support for the notion that frame based systems 

are object-oriented. The speed and ease with which the conversion was 

accomplished provides added support. However, the need to treat slots 

as separate and special objects within the Firesys system detracts from 

this conclusion.
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This leads to the suggestion that parts of the Firesys system might be 

altered to eliminate these discrepancies. This effort would require 

that slots be treated as real and not virtual objects, and that the slot 

accessing function would have to be the same as that used to access any 

other object (like data frame instances). This could be accomplished by 

having frame instance variables contain identifiers of slot objects 

instead of values, and by moving the values into instance variables of 

slot objects. This is essentially what the author did in the later 

Flavors implementation, and could easily be accomplished in the current 

system by adding slot frames. Mow instead of conceptualizing frames as 

being composed of static value holders, they can be made up of slot 

objects (slot frames) that have their own behavioral and descriptive 

characteristics. This would add an additional level of indirection, but 

would increase the flexibility of the system with regard to future 

enhancements.

Treatment of slots as full fledged objects would eliminate the need for 

a separate slot accessing function. The message passing (frame 

accessing) system would then be uniform. Slot procedural information 

would be automatically executed as it is with frames. Slot object code 

that requires special arguments would still pose a problem, however. 

Although the author's experiences with the conversion into Flavors 

suggests that there are no special arguments, this may not be the case 

in other parts of the Firesys system. In any case, this problem can 

easily be addressed by modifying the new accessing function to include
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optional arguments. The latest versions of Lisp generally include this 

capacity.

One last addition should be mentioned. The current system utilizes a 

good number of functions that access and manipulate frames, but that are 

external to them. In an object-oriented system, by definition, code 

that manipulates objects must be stored within the class hierarchy to 

which that object belongs. Within the current system this is not 

totally true. The system should be modified to house these slot and 

frame manipulation functions within the respective class hierarchies. 

This addition would require inclusion of two new frames into the Firesys 

system frame structure. The two new frames would contain frame and slot 

utilities respectively, and would act as the root of its hierarchy. All 

slot frames would inherit code stored in the master slot frame, and all 

data frames the code stored in the master-frame frame.

These additions to the existing system would make it more 

object-oriented. They would comprise modifications to the existing 

Firesys system as implemented in its custom environment. Implementation 

done within a packaged object-oriented environment such as Franz Lisp 

Flavors or Smalltalk would also have to take these alterations into 

consideration.
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An interesting question arises now that the conceptual structure of an 

object-oriented system has been described. Should a packaged 

object-oriented environment be utilized, or should it be built from 

scratch? More specifically, should the Firesys system have been built 

in a packaged environment and should it now be converted? There are two 

primary factors that influence this decision. First is the question of 

development time. Second is the question of efficiency and portability.

Building an object-oriented environment can be very time consuming. 

Many bugs must be worked through, and each "wheel" must be "reinvented" 

from scratch. A packaged system will already have all the tools needed 

to implement the object-oriented system. This was exactly the case with 

the current conversion effort. As a result, implementation is quite 

rapid. However, the system implementers have no idea as to the 

composition of the code underlying the packaged system. They must rely 

on the integrity and efficiency of the packaged environment's functions.

The efficiency issue may be important to a particular application. The 

choice between a packaged environment and a custom built one is very 

similar to the choice made by programmers of standard applications with 

respect to usage of a high-level or assembly language. Packaged 

environments, like high-level languages, provide many of the tools to 

build programs quickly and cost effectively. However, their use may 

lead to a loss in system performance efficiency. Coding in assembly 

language, although not usually cost effective, may allow the developers
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to increase system performance to its maximum. Likewise, the choice of 

building a custom system may result in a more efficient final product.

Within a packaged system little room is left to make modifications to 

the underlying functions. If how a particular object-oriented 

environment function interacts with the developed system needs to be 

altered, it is doubtful that this change could made. The environment's 

internal code could always be altered, but with little knowledge of its 

inner workings, this could be disastrous. A custom system allows the 

developer to "fine tune” the environment to meet the special needs of 

the developed system. A packaged environment does not.

Beyond the issues of trust in the environment, fine tuning capability, 

and speed of development, lies the issue of portability. If it is the 

intent of the developers to produce a system that is not tied to a 

specific machine, then the issue of portability brings the decision of 

which form of environment to select to the forefront.

Packaged environments are usually machine specific. This may change in 

the future, but it seems to be the case now. The Firesys system, from 

the start of the project, was intended to run on a machine different 

from that on which it was developed. Development of the system would 

have been risky if a packaged environment had been utilized. For 

example, the Franz Lisp Flavors environment could have been utilized. 

The problem is that none of the other machines on which the project was 

to be implemented had Franz Lisp Flavors, let alone Franz Lisp. Now, 

flavors are not specific to Franz Lisp. There are other flavors
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implementations under different dialects of Lisp. But, examination of 

these implementations of flavors reveals that there is no standard. 

Each is different. Another choice would be to implement the project in 

a language like Smalltalk. It is fairly well standardized, but 

implementations exist only for specialized machines and micro-computers.

The only choice that is really available to object-oriented system 

developers who wish to produce a highly portable system is to choose a 

development language that is standard across the largest number of 

machines. The choice of usage of a packaged object-oriented environment 

is really not available in most cases. The Firesys team found that 

Common Lisp was a language available on most of the target machines that 

provided the symbolic processing tools needed for development of the 

Firesys system. On the machines that did not have Common Lisp, it was 

found that it could be fairly easily emulated. It is within this Common 

Lisp environment that the current object-oriented/frame-based system was 
developed.

The developed system proved to be highly portable. When the few system 

dependent features were extracted from the system, wholesale transfer of 

the system was accomplished with little effort. These features were 

essentially restricted to input and output capabilities. Re-coding of 

these few features produced a system that is essentially identical to 

the original.



121

This port̂  demonstrated the importance of system developer's usage of a 

standard programming environment. If the Firesys system had been 

originally developed using Franz Lisp Flavors, movement of the system to 

another machine would have been much more difficult. It would have 

involved the reimplementation of system manipulation functions that the 

Flavors environment provides. This is what the custom environment 
provided in the first place.

One argument can be raised in favor of the packaged environment, 

however. Usage of a packaged environment leaves the system developers’ 

emphasis on the system to be developed. The presence of object-oriented 

capabilities help ensure the consistency of the developed system. A 

custom environment cannot insure this consistency, and may distract 

developers with environment implementation details. As noted earlier, 

the Firesys system has some inconsistencies in its treatment of objects.

Once a system is developed and its structure defined, a custom 

environment can then be constructed. The construction of the custom 

environment following system development will result in a separation of 

the developed system from the developed environment and vise versa. The 

environment builders can then focus on portability and efficiency 

details without confusing them with structural issues associated with 

development of the application. This may have been a better approach to 

have taken with the Firesys system.

T̂he port referenced was to a micro-computer and involved additional 
alterations to accommodate its memory restrictions.
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Individuals developing object-oriented applications will have to wrestle 

with these development issues. If an application is to be developed for 

a specific machine, and development takes place on that machine, then 

the usage of a packaged object-oriented environment seems most 

appropriate. If the developed product is to be ported to a different 

machine then usage of a packaged environment depends upon the 

availability of a portable one. The author would like to stress, 

however, that usage of a packaged environment may still be very 

appropriate for applications to be ported to other machines if it is 

used as an initial development tool. Usage will result in the developed 

application being more conceptually clean and consistent. A custom 

environment can then later be added to the application for easy porting.

5.3 Conclusion

This thesis has presented descriptions of a frame based Fire Effects 

Information system, object-oriented programming concepts, and how the 

two relate. It was the original hypothesis of the paper that the 
developed Firesys frame based system was in essence an object-oriented 

one. The proceeding chapters demonstrated that there is a great 

similarity between frame based systems utilizing inheritance hierarchies 

and object-oriented systems. The conversion of the existing Firesys 

system into a Franz Lisp Flavors implementation strongly supported the 

hypothesis. Although some discrepancy was found between what one would 

expect to find within an object-oriented system and the original Firesys
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implementation, it is felt that the overall structure of the system is 

inherently object-oriented.

Pursual of this thesis project has also resulted in some recommendations 

for improvement of the original Firesys system. Upon discovery of some 

of the improvements, it immediately became evident that the original 

system should include them, and inclusion has started. Specifically, 

the addition of the slot "print name" to the slot descriptor frames has 

proven to greatly reduce some internal coupling that existed in the 

original, and increase the flexibility of the system. Inclusion of 

other recommended improvements into the existing Firesys system may also 

result in system improvements.

It is felt by the author that the thesis project effort has been very 

successful. It demonstrated the equivalence of object-oriented concepts 

with frame based constructs in the Firesys system. It also provided a 

means for examining the Firesys system, and some improvement 

recommendations. It is hoped that what was learned here will assist the 
future Firesys developers in their efforts and any other frame based 

project developers.
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FLAVOR AND METHOD DEFINITIONS FOR THE CREATION OF 
FRAME HIERARCHY SYSTEM FRAMES

• ■k'k-k'k-k'k-k-kieifk'kit-k'k-k-k̂ 'k-k-k-kie-k-k'k-k-k'k-k'k'k̂ 'k'k-k'k-k'k'k-k-k-k'kis-kitft'k'kit-k'k-k-k-k'kick
t

,'Master FRAME —  frame utilities definitions
•I***********************************************************
t

(defflavor frame ()())

(defmethod (frame :query-view-frame-utility)
(header-fun name-string)

(send self (find-symbol (string header-fun)
*keyword-package*)

name-string)
(let* ((slot-list

(send self :QUERY-DISPLAY-SLOT-LIST))
(display-list (do ((slot-list slot-list

(cdr slot-list)) 
(displayable-list 

nil 
(cond

((eq (get-data-frame-slot 
self
(car slot-list)) 

’no-entry) 
displayable-list)
(t (cons (car slot-list) 

displayable- 
list)))))

((null slot-list)
(reverse displayable-list))))) 

(cond ((null display-list)
(print-slot

'(NL "Sorry no information available on 
this subject!" NL)

"text"))
(t (do ((display-list display-list

(cdr display-list))) 
((null display-list) nil)
(send

(send self (find-symbol 
(string

(car display-list)) 
*keyword-package*)) 

:display)))))
(readcontinue))
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(defmethod (frame
:query-species-print-frame-header-utility) 

(name-string)
(let ((header (list

(center-line name-string)
'NL
'NL
(string-append "SPECIES: "

(get-data-frame-slot 'self 'SPECIES))
'NL
'NL
HORIZ-BAR 
'NL
'NL)))

(print-header header)))

(defmethod (frame :query-print-frame-header-utility) 
(name-string)

(let ((header (list
(center-line name-string)
'NL
'NL
HORIZ-BAR 
'NL
’NL)))

(print-header header)))

• *********************************************************** 

;SUPERIOR Frame definitions
. A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
(defflavor superior (FRAME-TYPE

SAGEBRUSH
SPECIES-LIST
INTRODUCTION

SUPERIOR-PARENT)
(frame)

:gettable-instance-variables 
:settable-instance-variables)

(defmethod (superior :SLOT-LIST) ()
'(FRAME-TYPE 
SAGEBRUSH 
SPECIES-LIST 
INTRODUCTION 
SUPERIOR-PARENT))
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•A**********************************************************
9

INTRODUCTION Frame definitions
• ■k-k'k'k-k-k-k'k'k'k-k'k'k-k-klfk-k-k-kb-k'k-k'k'k'klfklfk-k-k-kk-k'k'k'k'k'k'k'k'k'k'k'k-k'k-k'k'klt'k-k-k'k-k-k 
/

(defflavor introduction (FRAME-TYPE
SPECIES-INTRODUCTION 
SAGEBRUSH-INTRODUCTION 
INTRODUCTION-PARENT)

(frame)
:gettable-instance-variables 
:settable-instance-variables)

(defmethod (introduction :SLOT-LIST) ()
’(FRAME-TYPE
SPECIES-INTRODUCTION 
SAGEBRUSH-INTRODUCTION 
INTRODUCTION-PARENT))

(defmethod (introduction :QUERY-DISPLAY-SLOT-LIST) ()
'(SPECIES-INTRODUCTION 
SAGEBRUSH-INTRODUCTION))

(defmethod (introduction :QUERY-DISPLAY) ()
(send self :query-view-frame-utility 

'query-print-frame-header-utility 
"Welcome to the Fire Effects Information System")

t)
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************************************************************ 

;SPECIES Frame definitions
•A**********************************************************

(defflavor species 
(FRAME-TYPE 
SPECIES
SCIENTIFIC-ALIAS
ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
DISTRIBUTION-AND-OCCURRENCE
VALUE-AND-USE
BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS 
FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES 
FIRE-EFFECTS 
SUPERIOR-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)

(defmethod (species :SLOT-LIST) ()
'(FRAME-TYPE 
SPECIES
SCIENTIFIC-ALIAS
ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
DISTRIBUTION-AND-OCCURRENCE
VALUE-AND-USE
BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS 
FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES 
FIRE-EFFECTS 
SUPERIOR-PARENT))

(defmethod (species :QUERY-DISPLAY-SLOT-LIST) ()
’(SCIENTIFIC-ALIAS 

ABBREVIATION 
COMMON-NAMES 
LIFE-FORM
VARIETIES-AND-FORMS))
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(defmethod (species :QUERY-DISPLAY) ()

(send self :query-view-frame-utility
'query-species-print-frame-header-utility 

"Species Information") 
(detailed-species-info-menu 
(get-data-frame-slot 'self 'SPECIES)))

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *’ ©
;DISTRIBUTION-AND-OCCURRENCE Frame definitions 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor distribution-and-occurrence 
(FRAME-TYPE 
GENERAL-DISTRIBUTION 
BLM-PHY SIOGRAPHIC-REGIONS 
KUCHLER-PLANT-ASSOCIATIONS 
SAF-COVER-TYPES 
HABITAT-TYPE-INFORMATION 
SPECIES-HABITAT-TYPES 
REFERENCES 
DISTRIBUTION-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)

(defmethod (distribution-and-occurrence :SLOT-LIST) ()
’(FRAME-TYPE
GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES
DISTRIBUTION-PARENT))

(defmethod (distribution-and-occurrence 
:QUERY-DISPLAY-SLOT-LIST)

()
'(GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES))



130

(defmethod (distribution-and-occurrence :QUERY-DISPLAY) () 
(send self :query-view-frame-utility

'query-species-print-frame-header-utility 
"Distribution and Occurrence Information")

t)

(defmethod (distribution-and-occurrence :SPECIES) ()
(send
(eval (get-data-frame-slot 'self ’DISTRIBUTION-PARENT))
:SPECIES))

• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;VALUE-AND-USE Frame definitions 
. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor value-and-use 
(FRAME-TYPE 
DESCRIPTION 
PALATABILITY 
FOOD-VALUE 
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE 
OTHER-USES-AND-VALUES 
ENVIRONMENTAL-CONSIDERATIONS 
REFERENCES
VALUE-AND-USE-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)

(defmethod (value-and-use :SLOT-LIST) ()
'(FRAME-TYPE 
DESCRIPTION 
PALATABILITY 
FOOD-VALUE 
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE 
OTHER-USES-AND-VALUES 
ENVIRONMENTAL-CONSIDERATIONS 
REFERENCES
VALUE-AND-USE-PARENT))
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(defmethod (value-and-use :QUERY-DISPLAY-SLOT-LIST) ()
'(DESCRIPTION 
PALATABILITY 
FOOD-VALUE 
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE 
OTHER-USES-AND-VALUES 
ENVIRONMENTAL-CONSIDERATIONS 
REFERENCES))

(defmethod (value-and-use :QUERY-DISPLAY) ()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility 
"Value and Use Information")

t)
(defmethod (value-and-use :SPECIES) ()

(send
(eval (get-data-frame-slot 'self 'VALUE-AND-USE-PARENT))
:SPECIES))

;BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS Frame definitions

(defflavor botanical-and-ecological-characteristics 
(FRAME-TYPE 
GENERAL-DESCRIPTION 
GROWTH-FORM 
RAUNKIAER-LIFE-FORM 
GRIME-PLANT-STRATEGY-CLASSIFICATION 
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION 
REGENERATION-PROCESSES 
SITE-CHARACTERISTICS 
SUCCESSIONAL-STATUS 
SEASONAL-DEVELOPMENT 
REFERENCES
BOTANICAL-CHARACTERISTICS-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)
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(defmethod (botanical-and-ecological-characteristics 
:SLOT-LIST)

()
'(FRAME-TYPE
GENERAL-DESCRIPTION 
GROWTH-FORM 
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLAS SIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES
BOTANICAL-CHARACTERISTICS-PARENT))

(defmethod (botanical-and-ecological-characteristics 
:QUERY-DISPLAY-SLOT-LIST)

()
'(GENERAL-DESCRIPTION 
GROWTH-FORM 
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES))

(defmethod (botanical-and-ecological-characteristics 
:QUERY-DISPLAY)

()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility
"Botanical and Ecological Characteristics Information")

t)
(defmethod (botanical-and-ecological-characteristics 

•.SPECIES)
()

(send
(eval (get-data-frame-slot 

'self
'BOTANICAL-CHARACTERISTIC S-PARENT))

:SPECIES))
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;FIRE-ADAPTIVE-TRAITS-AND-SURVTVAL-STRATEGIES 
;Frame definitions
.***********************************************************

(defflavor fire-adaptive-traits-and-survival-strategies 
(FRAME-TYPE 
DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY 
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES 

SPECIES-TYPE 
TIME-UNTIL-MATURITY 
TIME-UNTIL-SENESCENCE 
TIME-UNTIL-EXTINCTION 

ROWE-MODE-OF-PERSISTANCE 
REFERENCES
ADAPTIVE-TRAITS-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)

(defmethod
(fire-adaptive-traits-and-survival-strategies 
:SLOT-LIST)

O
'(FRAME-TYPE 
DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY 
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES 

SPECIES-TYPE 
TIME-UNTIL-MATURITY 
TIME-UNTIL-SENESCENCE 
TIME-UNTIL-EXTINCTION 

ROWE-MODE-OF-PERSISTANCE 
REFERENCES
ADAPTIVE-TRAITS-PARENT))

(defmethod (fire-adaptive-traits-and-survival-strategies 
:QUERY-DISPLAY-SLOT-LIST)

()
'(DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY 
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES 

SPECIES-TYPE 
TIME-UNTIL-MATURITY 
TIME-UNTIL-SENESCENCE 
TIME-UNTIL-EXTINCTION 

ROWE-MODE-OF-PERSISTANCE 
REFERENCES))
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(defmethod (fire-adaptive-traits-and-survival-strategies 
:QUERY-DISPLAY)

()
(send self

:query-species-print-frame-header-utility 
"Fire Adaptive Traits and Survival Strategies 
Information")

(let* ((slot-list (send self :QUERY-DISPLAY-SLOT-LIST)) 
(display-list 
(do ((slot-list slot-list (cdr slot-list)) 

(displayable-list 
nil
(cond ((and (eq (car slot-list)

'NOBLE-AND-SLATYER-VITAL-ATTRIBUTES)
(or (not (eq (get-data-frame-slot 

' self
’SPECIES-TYPE)

’no-entry))
(not (eq (get-data-frame-slot 

' self
'TIME-UNTIL-MATURITY)

'no-entry))
(not (eq (get-data-frame-slot 

'self
'TIME-UNTIL-SENESCENCE)

'no-entry))
(not (eq (get-data-frame-slot 

' self
'TIME-UNTIL-EXTINCTION)

'no-entry))))
(cons 'NOBLE-AND-SLATYER-VITAL-ATTRIBUTES 

displayable-list))
((eq (get-data-frame-slot 

' self
(car slot-list))
'no-entry)
displayable-list)

(t (cons (car slot-list)
displayable-list)))))

((null slot-list) (reverse displayable-list))))) 
(cond ((null display-list)

(print-slot 
' (NL

"Sorry, no information available on this 
subject!"

NL)
"text"))
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(t (do ((display-list display-list
(cdr display-list)))

((null display-list) nil)
(send
(send self (find-symbol

(string (car display-list)) 
*keyword-package*))

:display)))))
(readcontinue) 
t)

(defmethod {fire-adaptive-traits-and-survival-strategies 
:SPECIES)

()
(send
(eval (get-data-frame-slot 'self

'ADAPTIVE-TRAITS-PARENT))
:SPECIES))

•ft**********************************************************

;FIRE-EFFECTS Frame definitions 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor fire-effects 
(FRAME-TYPE 
FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT 
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE 
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS 
REFERENCES 
FIRE-EFFECTS-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)

(defmethod (fire-effects :SLOT-LIST) ()
'(FRAME-TYPE
FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT 
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
REFERENCES
FIRE-EFFECTS-PARENT))
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(defmethod (fire-effects :QUERY-DISPLAY-SLOT-LIST) ()
'(FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT 
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE 
REFERENCES))

(defmethod (fire-effects :QUERY-DISPLAY) ()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility 
"Fire Effects Information")

(let ((sssfe-list (get-data-frame-slot 
'self
'SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS))) 

(cond ((not (eq sssfe-list 'no-entry))
(detailed-fire-effects-menu sssfe-list)))))

(defmethod (fire-effects :SPECIES) ()
(send
(eval (get-data-frame-slot 'self 'FIRE-EFFECTS-PARENT))
:SPECIES))

•A**********************************************************

;SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS Frame definitions 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor severity-season-specific-fire-effeets 
(FRAME-TYPE 
SEVERITY 
SEASON 
EFFECT
CERTAINTY-FACTOR 
DESCRIPTION 
QUALIFICATION 
REFERENCES 
FIRE-EFFECT-PARENT)
(frame)
:gettable-instance-variables 
:settable-instance-variables)
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(defmethod (severity-season-specific-fire-effects 
:SLOT-LIST)

()
'(FRAME-TYPE 
SEVERITY 
SEASON 
EFFECT
CERTAINTY-FACTOR 
DESCRIPTION 
QUALIFICATION 
REFERENCES 
FIRE-EFFECT-PARENT))

(defmethod (severity-season-specific-fire-effects 
:QUERY-DISPLAY-SLOT-LIST)

()
'(SEVERITY 
SEASON 
EFFECT
CERTAINTY-FACTOR 
DESCRIPTION 
QUALIFICATION 
REFERENCES))

(defmethod (severity-season-specific-fire-effects 
:QUERY-DISPLAY)

()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility 
"Severity-Season Fire Effects Information")

t)
(defmethod (severity-season-specific-fire-effects :SPECIES) 

()
(send
(eval (get-data-frame-slot 'self 'FIRE-EFFECT-PARENT))
:SPECIES))

FLAVOR AND METHOD DEFINITIONS FOR THE CREATION OF 
SLOT HIERARCHY SYSTEM FRAMES

********************************** ** ***********************

;Atom FRAME —  atom class slot type definitions
• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor atom () ())
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(defmethod (atom :display) ()
(let ((display-list (cons (send self :name)

(cons ": "
(cons (send self rvalue)

(list 'NL 'NL))))))
(print-slot display-list 'atom)))

(defmethod (atom rdisplay-atom-subslot) ()
(let ((display-list

(cons (string-append " "
(send self rname))

(cons "r "
(cons (send self rvalue)

(list 'NL 'NL)))))) 
(print-slot display-list 'atom)))

•ft**********************************************************

;Header FRAME —  header class slot type definitions 
************************************************************

(defflavor header {) ())

(defmethod (header rdisplay) ()
(let ((display-list (cons (send self :name)

(cons " (list 'NL 'NL)))))
(print-slot display-list ’header)))

• ***********************************************************

;List FRAME —  list class slot type definitions 
• ***********************************************************

(defflavor list () ())

(defmethod (list rdisplay) ()
(let ((display-list (cons (send self :name)

(cons "
(append (send self rvalue)

(list 'NL 'NL))))))
(print-slot display-list 'list)))
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(defmethod (list :display-list-subslot) ()
(let ((display-list

(cons (string-append " " (send self :name))
(cons ": "

(append (send self :value)
(list 'NL 'NL)))))) 

(print-slot display-list 'list)))

;Text FRAME —  text class slot type definitions 
»***********************************************************

(defflavor text () ())

(defmethod (text :display) ()
(let ((display-list (cons (send self :name)

(cons ": "
(append (send self :value)

(list 'NL ’NL))))))
(print-slot display-list 'text)))

(defmethod (text :display-text-subslot) ()
(let ((display-list

(cons (string-append " " (send self :name))
(cons ": "

(append (send self :value)
(list 'NL 'NL)))))) 

(print-slot display-list 'text)))

• 'k'k'k'kic'k'k-k-k'k-k'k'k'k'k̂ 'k'k'k'k-kit'kitie'kic'k̂ 'kieick'k'k'k'k-k'k'k-k'fckie-kicffkifk'k-k'kie'k'k'kit'kt
;Generated pointer FRAMES
;—  Generated pointer class slot type definitions
. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

(defflavor generated-frame-pointer () ())

(defflavor generated-frame-pointer-list () ())
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• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;FRAME-TYPE FRAME —  FRAME-TYPE slot type definitions 
♦ ****************** * * ***************************************

(defflavor FRAME-TYPE (value
(type ’atom)
(name "FRAME TYPE"))

(atom)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;SPECIES FRAME -- SPECIES slot type definitions
• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor SPECIES (value (type ’atom)(name "SPECIES"))
(atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• ' k i t ' k ' k ' k ' k ' k ' k ' k j f k ' k ' k ' k ' k ' k ' k i t ' k ' k l c i t i t & ' k ' k ' k ' k ' k ' k l f k ' k - k ' k ' k j t l c ' k ' k - k j t ' k ' k i c ' k ' k i c y c ' k j f ' k ' k ' k i c - k ' k ' k i c
9

;SCIENTIFIC-ALIAS FRAME —  SCIENTIFIC-ALIAS slot type 
; definitions
• it'k̂c'k-kic'k'k'k-k'k'k'k̂'kie'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'k-k̂-k-k-kie'k'k-k-k'k'k-k-k-kieic'k-kie'k'k-k-k
9

(defflavor SCIENTIFIC-ALIAS (value
(type ’list)
(name "SCIENTIFIC ALIAS"))

(list)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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.***********************************************************

;ABBREVIATION FRAME —  ABBREVIATION slot type definitions 
************************************************************

(defflavor ABBREVIATION (value
(type 'atom)
(name "ABBREVIATION"))

(atom)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

.★a*********************************************************

;COMMON-NAMES FRAME —  COMMON-NAMES slot type definitions 
.***********************************************************

(defflavor COMMON-NAMES (value
(type 'list)
(name "COMMON NAMES"))

(list)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;LIFE-FORM FRAME — LIFE-FORM slot type definitions 
************************************************************

(defflavor LIFE-FORM (value (type 'atom)(name "LIFE FORM"))
(atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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• * * * * * * * * * * * * * * * * * * * * * * * * *  * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;VARIETIES-AND-FORMS FRAME —  VARIETIES-AND-FORMS slot type
; definitions
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor VARIETIES-AND-FORMS
(value (type ’text)(name "VARIETIES AND FORMS")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;DISTRIBUTION-AND-OCCURRENCE FRAME
DISTRIBUTION-AND-OCCURRENCE slot type definitions

• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * *

(defflavor DISTRIBUTION-AND-OCCURRENCE 
(value
(type 'generated-frame-pointer)
(pointer-to 'distribution-and-occurrence)
(name "DISTRIBUTION AND OCCURRENCE"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;VALUE-AND-USE FRAME —  VALUE-AND-USE slot type definitions
a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor VALUE-AND-USE 
(value
(type 'generated-frame-pointer)
(pointer-to ’value-and-use)
(name "VALUE AND USE"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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-***************★*******************************************

;BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS FRAME 
;—  BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS slot type 
; definitions
• ■k-k'kft'kjck'k'k'k-k-k'k'k'k'k'k'k-k-kJf'k-k'k'k-k-k'k-k-k-k'kicJtje-kic'kJtjc'k-k'k-kjc-kic-k'k'k'k-k'k-k-k-k'k'k-kf .

(defflavor BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS 
(value
(type 'generated-frame-pointer)
(pointer-to 'botanical-and-ecological-characteristics) 
(name "BOTANICAL AND ECOLOGICAL CHARACTERISTICS")) 

(generated-frame-pointer) 
isettable-instance-variables 
:gettable-instance-variables 
: inittable-instance-variables)

•a**********************************************************/

;FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES FRAME 
;—  FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES 
; slot type definitions

/

(defflavor FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES 
(value
(type 'generated-frame-pointer)
(pointer-to

'fire-adaptive-traits-and-survival-strategies)
(name "FIRE ADAPTIVE TRAITS AND SURVIVAL STRATEGIES")) 

(generated-frame-pointer) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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• A * * * * * * * * * * * * * * *  * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;FIRE-EFFECTS FRAME —  FIRE-EFFECTS slot type definitions
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor FIRE-EFFECTS 
(value
(type 'generated-frame-pointer)
(pointer-to 'fire-effects)
(name "FIRE EFFECTS"))

(generated-frame-pointer) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

•A**********************************************************

,* SUPERIOR-PARENT FRAME
;—  SUPERIOR-PARENT slot type definitions
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor SUPERIOR-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'superior)
(name "SUPERIOR PARENT"))

(generated-frame-pointer) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)

t

;GENERAL-DISTRIBUTION FRAME
;—  GENERAL-DISTRIBUTION slot type definitions
• •k'k'k'k'k'k'k'k'k'kii'kic'k-kffk'k'k'k'k-kick'kick'k'k'k'k'k-k'k'k'k-k'k'kic-k'k'k'kic'k'kieic'k'k'k'k'k̂ -k'k'k'k
§

(defflavor GENERAL-DISTRIBUTION
(value (type 'text)(name "GENERAL DISTRIBUTION")) (text) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)
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;BLM-PHYSIOGRAPHIC-REGIONS FRAME
BLM-PHYSIOGRAPHIC-REGIONS slot type definitions

.***********************************************************

(defflavor BLM-PHYSIOGRAPHIC-REGIONS
{value (type 'list)(name "BLM PHYSIOGRAPHIC REGIONS")) 
(list)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

.***********************************************************

;KUCHLER-PLANT-ASSOCIATIONS FRAME
KUCHLER-PLANT-ASSOCIATIONS slot type definitions

. * * * * * * * * * * * * * * * * * * * * * * * * * * * *  ** ■kii'kle'k'k-k'kiiiiic-kic-k-kifk-kicifkic-kifk-k-k-k-k

(defflavor KUCHLER-PLANT-ASSOCIATIONS
(value (type 'list)(name "KUCHLER PLANT ASSOCIATIONS")) 
(list)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

/

;SAF-COVER-TYPES FRAME
;—  SAF-COVER-TYPES slot type definitions
• ;kick'kifkic'k'k'k'k'kie'k'k'k'k'k'k'k'k'k'k'k'k-k'kic'k-k'k'k-kif'k'k'k'k'k'k'k'k'k'k'k'kit'k'k'k'k'k-k'k'k'k'k'k'k r

(defflavor SAF-COVER-TYPES
(value (type ’list)(name "SAF COVER TYPES")) (list)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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.***********************************************************

;HABITAT-TYPE-INFORMATION FRAME
HABITAT-TYPE-INFORMATION slot type definitions

• -kit'k'k'kjfk'k'k-k-k'k'k'k'k'k'k'k&'k'k'k'k'k'k'k'k'k-k'kli'k'k'k-k-k-k-k-k-k'kj'-k'k-k'k'k'k'k'kjt'k'k'k-kifk'klc
9

(defflavor HABITAT-TYPE-INFORMATION
(value (type ’text)(name "HABITAT TYPE INFORMATION")) 
(text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

•A**********************************************************

;SPECIES-HABITAT-TYPES FRAME
;—  SPECIES-HABITAT-TYPES slot type definitions
•  • k ’k ' k ' k ' k i e ' k ' k ' k ' k ' k ' k ' k ' k i t ' k ' k i c j f k - k ' k f t ' k ' k - k ' k j f k - k j f k j f k ' k ' k ' k ' k - k - k - k J t ' k l c - k i c i t ' k ' k - k i c l f k l t ' k ' k ' j c ' k ' k
9

(defflavor SPECIES-HABITAT-TYPES
(value (type ’text)(name "SPECIES HABITAT TYPES")) (text) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;REFERENCES FRAME —  REFERENCES slot type definitions
************************************************************

(defflavor REFERENCES
(value (type ’list)(name "REFERENCES")) (list)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;DISTRIBUTION-PARENT FRAME
;—  DISTRIBUTION-PARENT slot type definitions
.***********************************************************

(defflavor DISTRIBUTION-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to ’species)
(name "DISTRIBUTION PARENT"))

(generated-frame-pointer) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;DESCRIPTION FRAME —  DESCRIPTION slot type definitions
.***********************************************************

(defflavor DESCRIPTION
(value (type ’text)(name "DESCRIPTION")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

•A**********************************************************

;PALATABILITY FRAME —  PALATABILITY slot type definitions
•A**********************************************************

(defflavor PALATABILITY
(value (type ’text)(name "PALATABILITY")) (text) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)
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************************************************************

;FOOD-VALUE FRAME —  FOOD-VALUE slot type definitions 
************************************************************

(defflavor FOOD-VALUE
(value (type 'text)(name "FOOD VALUE")) (text)
:settable-instance-variables 
: gettable-instance-variables 
:inittable-instance-variables)

.***********************************************************

;COVER-VALUE FRAME —  COVER-VALUE slot type definitions 
************************************************************

(defflavor COVER-VALUE
(value (type ’text)(name "COVER VALUE")) (text)
: settable-instance-variables 
: gettable-instance-variables 
:inittable-instance-variables)

.***********************************************************

;IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE FRAME 
;IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE —  slot type 
; definitions
************************************************************

(defflavor IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE 
(value 
(type 'text)
(name "IMPORTANCE TO LIVESTOCK AND WILDLIFE")) 

(text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

•A**********************************************************
/

;OTHER-USES-AND-VALUES FRAME
OTHER-USES-AND-VALUES slot type definitions
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * *

(defflavor OTHER-USES-AND-VALUES FRAME
(value (type 'text)(name "OTHER-USES-AND-VALUES")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• ick'k'k'kick-k̂ -k̂ e-k'k'k'k'k'kii'k-k-kifk'kic'k'k-k'k̂ -kit'k'k-k'k-kie'k'k'k'k'k'k-k-k'k'k-k'k'kifk'k-k-k-k-k-k
t

}ENVIRONMENTAL-CONSIDERATIONS FRAME
.—  ENVIRONMENTAL-CONSIDERATIONS slot type definitions
• ' k i t j c l c ' k - k ' k i c k - k - k - k - k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k - k ' k ' k ' k ' k ' k ' j c k ' k j c j c j e ' k ' k ' k i c l e l c ' k - k j c i c ' k ' k j c ' k ' k l e i t i f k ' k ' k i c ' k ' k
9

(defflavor ENVIRONMENTAL-CONSIDERATIONS
(value (type ’text)(name "OTHER-USES-AND-VALUES")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

m ^ ' k ' k - k ' k - k ' k - k ' k - k ' k - k ' k - k ' k ' k ' k ^ ' k ' k ' k ' k ' k ' k - k ^ - k - k ' k ' k ^ - k ' k ' k ' k - k ' k ' k ' k - k - k ^ - k - k ' k ' k ' k ' k ' k ' k ^ ' k - k - k - k ' k ' k ' k - k
9

;VALUE-AND-USE-PARENT FRAME
;— - VALUE-AND-USE-PARENT slot type definitions

9

(defflavor VALUE-AND-USE-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "VALUE AND USE PARENT"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

•I***********************************************************
9

;GENERAL-DESCRIPTION FRAME
GENERAL-DESCRIPTION slot type definitions

•  • k ' k ' k i c k i f ' k ' k i t f c ' k - k i f k ^ ' k i i - k ^ ' k ' k ' k i f k ' k ' k i e - k i e ' k - k i d t ' k i e - k ' k ' k i c ^ - k ^ ’k - k i t ' k ' k ' k ' k - k ' k i t i c k ' k ' k i t ' k ' k
9

(defflavor GENERAL-DESCRIPTION
(value (type ’text)(name "GENERAL DESCRIPTION")) (text) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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• ************ * * ********************************************* 

;GROWTH-FORM FRAME
;—  GROWTH-FORM slot type definitions
• ★ A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor GROWTH-FORM
(value (type 'list)(name "GROWTH FORM")) (list)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

;RAUNKIAER-LIFE-FORM FRAME
;—  RAUNKIAER-LIFE-FORM slot type definitions 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor RAUNKIAER-LIFE-FORM
(value (type 'list)(name "RAUNKIAER LIFE FORM")) (list) 

settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

************************************************************
9

;GRIME-PLANT-STRATEGY-CLASSIFICATION FRAME 
;—  GRIME-PLANT-STRATEGY-CLASSIFICATION slot type 
; definitions
• ik-k'k'k'k-k'k'k'k-k-k-k-k-k'k-k-kk'k-k'k-k-klckif'k'k'k'k-k-klt'k'k-k-k'k'k-k'k-k'k-k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k
9

(defflavor GRIME-PLANT-STRATEGY-CLASSIFICATION 
(value 
(type ’list)
(name "GRIME PLANT STRATEGY CLASSIFICATION")) 

(list)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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•I***********************************************************
t

;GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION FRAME 
;—  GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION slot type 
; definitions

t
{de f flaVO r GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION 

(value 
(type ’list)
(name "GRIME REGENERATIVE STRATEGY 

CLASSIFICATION"))
(list)

isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• •klt'k'k'k'k'k'k'kk'k'k'kk'k'k'k'k'kk'k'k'k'k'k'k-k'klt'k'k'k'k'k * * * * * * * * * * * * * * * * * * * * * * * * *  r
;REGENERATION-PROCESSES FRAME
;—  REGENERATION-PROCESSES slot type definitions
•A*****************************************************:*****/
(defflavor REGENERATION-PROCESSES

(value (type ’text)(name "REGENERATION PROCESSES")) (text) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)

r

;SITE-CHARACTERISTICS FRAME
SITE-CHARACTERISTICS slot type definitions

. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
9

(defflavor SITE-CHARACTERISTICS
(value (type 'text)(name "SITE CHARACTERISTICS")) (text) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)
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• 'kie'kie'k'k'k'k'kie'k'k'k-k-k'k'k'k'k'kie'kifk'k'k'k-k'k'k'k-k-k-k-kitifk-k-k-k'k̂ 'kieifit'̂ 'k'k'k'k'k-k'k'kickic
9

;SUCCESSIONAL-STATUS FRAME
;—  SUCCESSIONAL-STATUS slot type definitions
• ■k-k-k'k'k-kk-k-kk-k-k-k'h'klt'k-k'k'k-k-k'k'k-k'k'k'k-k-k'k-k-k-k'k-k'k-k-k'k-k-k-k'kk'k'k'k'k-k-k-k-kk-k'k-k-k'k
9

(defflavor SUCCESSIONAL-STATUS
(value (type 'text)(name "SUCCESSIONAL STATUS")) (text) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

;SEASONAL-DEVELOPMENT FRAME
SEASONAL-DEVELOPMENT slot type definitions

• 'k-kie'k-k̂'k'k'k'kieifk'k'k'k'k'k-k-kick-k-k'k'k'k-kie'k'k'k-k'k-k'k'k'kisic'k'kieis'k'k'k̂C'k'k'k'k-k-k'k̂'k̂t'k
9

(defflavor SEASONAL-DEVELOPMENT
(value (type ’text)(name "SEASONAL-DEVELOPMENT")) (text) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)

•A**********************************************************.
9

;BOTANICAL-CHARACTERISTICS-PARENT FRAME
BOTANICAL-CHARACTERISTICS-PARENT slot type definitions

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
/

(defflavor BOTANICAL-CHARACTERISTICS-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "BOTANICAL CHARACTERISTICS PARENT"))

(generated-frame-pointer) 
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)
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• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY FRAME
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY slot type

; definitions
• 'k'k'k'k'klck'k'k'k-k'k-k-k'k'kit'k'k&'kie'kick'k'k'k'k'k'k'k'k'k'k'k’k-k'k'k'k'k'k'k'k'k'k'k-k'klc'k'k'klc'k'kjfkt
(defflavor LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY 

(value (type 'list)
(name "LYON STICKNEY FIRE SURVIVAL STRATEGY"))

(list)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;NOBLE-AND-SLATYER-VITAL-ATTRIBUTES FRAME
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES slot type

; definitions
• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * *

(defflavor NOBLE-AND-SLATYER-VITAL-ATTRIBUTES 
(value 
(type 'header)
(name "NOBLE AND SLATYER VITAL ATTRIBUTES")) (header)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

. A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;SPECIES-TYPE FRAME —  SPECIES-TYPE slot type definitions
. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor SPECIES-TYPE
(value (type 'list) (name "SPECIES TYPE")) (list)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

(defmethod (SPECIES-TYPE :display) ()
(send self :display-list-subslot))
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************************************************************

;TIME-UNTIL-MATURITY FRAME
;—  TIME-UNTIL-MATURITY slot type definitions
*************************************************************

(defflavor TIME-UNTIL-MATURITY
(value (type 'atom) (name "TIME UNTIL MATURITY")) (atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

(defmethod (TIME-UNTIL-MATURITY rdisplay) ()
(send self :display-atom-subslot))

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;TIME-UNTIL-SENESCENCE FRAME
TIME-UNTIL-SENESCENCE slot type definitions

************************************************************

(defflavor TIME-UNTIL-SENESCENCE
(value (type ’atom) (name "TIME UNTIL SENESCENCE")) (atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

(defmethod (TIME-UNTIL-SENESCENCE :display) ()
(send self :display-atom-subslot))

• 'k'k'k'k'k-k'k-kie'k'kit'k'k'k'k'k'kifk'k'kiê 'k'k'k'k'k'k-k'k'k-k'k'k'k'k-k'k'k'k'k'k̂ cieifkiî ieit̂ -k-k̂ 'kifk/
;TIME-UNTIL-EXTINCTION FRAME
;—  TIME-UNTIL-EXTINCTION slot type definitions

(defflavor TIME-UNTIL-EXTINCTION
(value (type 'atom) (name "TIME UNTIL EXTINCTION")) (atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

(defmethod (TIME-UNTIL-EXTINCTION -.display) ()
(send self :display-atom-subslot))
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• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;ROWE-MODE-OF-PERSISTANCE FRAME
;—  ROWE-MODE-OF-PERSISTANCE slot type definitions
• iekick-k'k'k'k-k'k-k-k'k-k'kie'k'k-kieit'kic'k-k'k'k̂ c-k̂ ifk-k-k-kie'k'k'k-k-k-k-k-k-k-k-kit-k'kie'k'k-k-k-k-k'k-k
9

(de f f1avor ROWE-MODE-OF-PERSISTANCE 
(value 
(type 'list)
(name "ROWE-MODE-OF-PERSISTANCE"))

(list)
:settable-instance-variables 

:gettable-instance-variables 
:inittable-instance-variables)

• ■k'k'k-k'k-k'k'k'k-k'k'kif'k'k'k'k-k'k'k'k-k'k'kick'k'k'k-k-kic-kiĉ c-k'k'k'k-kic'k'kie'k-k-kic'kick'k-k'k'k-k'k-k'k
9

;ADAPTIVE-TRAITS-PARENT FRAME
;—  ADAPTIVE-TRAITS-PARENT slot type definitions
•A********************************************:**************
/

(defflavor ADAPTIVE-TRAITS-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "ADAPTIVE TRAITS PARENT"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• ick-k-k'k'kieic'k'k'k-kitic'k'k'k'kic'k'kic'k’k ’k-kic'k'k'k-k̂ c'kifkik'k'k-k-k'k'k'k'kifk'k'kie'kie'k'k'k'k'k'k'k'ki
;FIRE-EFFECT-ON-PLANT FRAME
;—  FIRE-EFFECT-ON-PLANT slot type definitions
• 'k'k'k'k'k'k’k-k'k'kit'k-k'k'k'k'k'k'k'k'kî 'k'kitick'k'k'k'k'k'kit'k'k'k'k'k'k'k'k'kifk'k'kifk-k̂ c'k-k-kk'k'k'k'kf
(defflavor FIRE-EFFECT-ON-PLANT

(value (type ’text)(name "FIRE EFFECT ON PLANT")) (text) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)



156
•ft**********************************************************

;DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT FRAME 
;—  DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT 
; slot type definitions
• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT 
(value 
(type ’text)
(name "DISCUSSION AND QUALIFICATION OF FIRE EFFECT")) 

(text)
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• -k'k'kii'k'k'k'kitic'k'k'k'k'k'k'k'k'k-kitie'kie'kie'k'k'k'k-kie-k'k-kim'k-k it ■k’k'kidt'k'kieifickie'kie'k it ifkit

;PLANT-RESPONSE-TO-FIRE FRAME
?—  PLANT-RESPONSE-TO-FIRE slot type definitions
• ■ k ' k ' k i t ' k i t ' k - k ' k ’k ' k l f k ' k i f k ' k ' k j c i t ' k ' k i c j t & ' k i e ' k ' k i t ' k & ' k ' k ' k j c k ' k - k ' k - k ' k - k i c ' k ' k i c ' k i e i t - k ' k - k ' k ' k ' k ' k i t j ef
(defflavor PLANT-RESPONSE-TO-FIRE

(value (type ’text)(name "PLANT RESPONSE TO FIRE")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• :k'k'k-k-k'k'klt'k'k-k-k-k'k'k-k-k’k-k-k'k'k-k-k-k-k'k'k-kifk-k'k-k'k-k-k'k'k-kk'k'k-kk'k-k-k-k'k'k'k'k'k'k'k'k-k-k /

;DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE FRAME 
;—  DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE 
; slot type definitions
• 'k'k'k'k'k-k-k'h-k-k-k'k-k-k-k'kk'k-k'k-k-k'k'k'k-k'k'k-k'k'k'k-k'k'k-k-k-k-k'k'k'k-k-k'k'k'k'k-k-k'k'k-k'k-k'k'k'k-k
t

(defflavor DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE 
(value 
(type 'text)
(name "DISCUSSION AND QUALIFICATION OF PLANT RESPONSE")) 

(text)
isettable-instance-variables 
igettable-instance-variables 
iinittable-instance-variables)
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• * * * * * * * * * * *  *  *  ********************************************** 
t

;SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS FRAME 
;—  SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS 
; slot type definitions
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
t

(defflavor SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS 
(value
(type 'generated-frame-pointer-list)
(pointer-to 'severity-season-specific-fIre-effects)
(name "SEVERITY SEASON SPECIFIC FIRE EFFECTS")) 

(generated-frame-pointer-list)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
9

;FIRE-EFFECTS-PARENT FRAME
.—  FIRE-EFFECTS-PARENT slot type definitions
• *********************************************************** 
t

(defflavor FIRE-EFFECTS-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "FIRE EFFECTS PARENT"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• ******************************************** ***************

;SEVERITY FRAME —  SEVERITY slot type definitions 
• ***********************************************************

(defflavor SEVERITY
(value (type 'atom) (name "SEVERITY")) (atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;SEASON FRAME -- SEASON slot type definitions
• J c ' k ' k ' k ' k ' k ' f c ' k ' k ' k ' k - k - k - k - k ' k - k ' k J c ' k - k ' k j t - k ' k ' k - k j ' j f k i c k k - k j c j c i c ' k ' k ' k - k i k ' k - k j c j c - k ' k j c i i ' k j t j e ' k j e l t j t J i c ' k

(defflavor SEASON
(value (type 'atom) (name "SEASON")) (atom)

:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

*********************************************** * * ***********

;EFFECT FRAME —  EFFECT slot type definitions
. A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor EFFECT
(value (type 'text) (name "EFFECT")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;CERTAINTY-FACTOR FRAME
;—  CERTAINTY-FACTOR slot type definitions
• A*************************:**************************:*******t
(defflavor CERTAINTY-FACTOR

(value (type 'atom) (name "CERTAINTY-FACTOR")) (atom)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• 'k'k'k'k'k-kick'k'k'k-k'k̂ 'k'k-k'k'k'k-k'k'k'kifk'k'k'k'k'k'kic'k'k'k'k̂ 'k'k'kii'k'k-k'k'k'k'k'k'kif̂ -k-k'k'k'k'k
/

;DESCRIPTION FRAME
;—  DESCRIPTION slot type definitions
• -k'k-k'k'k'k'k'k'k’k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k-k-kick'k'k-k-k'k'k'k'k'k'kk-k'k'k'k'k-k-k-k-k'k-k'k-klt'k-k'k'kt
(defflavor DESCRIPTION

(value (type 'text) (name "DESCRIPTION")) (text) 
isettable-instance-variables 
:gettable-instance-variables 
:inittable-instance-var iables)
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. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;QUALIFICATION FRAME
;—  QUALIFICATION slot type definitions
• A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A  A A A * * * * * * * * * * * * * * * * * *

(defflavor QUALIFICATION
(value (type 'text) (name "QUALIFICATION")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

;FIRE-EFFECT-PARENT FRAME
FIRE-EFFECT-PARENT slot type definitions

• A A * A A A A A A A A A A A A A A A A A A A A A A A A A * A A A * A A A A A A A * * * * * * * * * * * * * * A A A A A

(defflavor FIRE-EFFECT-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'fire-effects)
(name "FIRE EFFECT PARENT"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

************************************************************
9

;INTRODUCTION FRAME
;—  INTRODUCTION slot type definitions
m-k'k-kie-k-k-k-k-kie-k-k-k'k'k-M'kie-k-k'kifk-kie-k'k’k-k̂it'k'k'kif'k̂-k-k-k'kie'k-k̂̂-k-kisie-k-kiê-k-k'k-k̂
9

(defflavor INTRODUCTION 
(value
(type 'generated-frame-pointer)
(pointer-to ’introduction)
(name "INTRODUCTION"))

(generated-f rame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;SAGEBRUSH FRAME
;—  SAGEBRUSH slot type definitions 
.***********************************************************

(defflavor SAGEBRUSH 
(value
(type 'generated-frame-pointer)
(pointer-to 'sagebrush)
(name "SAGEBRUSH"))

(generated-frame-pointer)
: settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *f
;SPECIES-LIST FRAME

SPECIES-LIST slot type definitions
• *  *  *  *  *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * £ * * * * * * * * * * * * * * * * * * * * * f
(defflavor SPECIES-LIST 

(value
(type 'generated-frame-pointer-list)
(pointer-to 'species)
(name "SPECIES-LIST"))

(generated-frame-pointer-list)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
/

;SUPERIOR-PARENT FRAME
;— SUPERIOR-PARENT slot type definitions
• * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  f

(defflavor SUPERIOR-PARENT 
(value
(type 'generated-frame-pointer)
(pointer-to 'superior)
(name "SUPERIOR PARENT"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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• ick-kkfckk-kk'k'k'k'k'k'kick-k-k'kjiitkk-kk'kkk'kk'kk'kfckkk-k'kkkkk'kk -k.-k * * * * * * * * * * *
f

;SPECIES-INTRODUCTION FRAME
;—  SPECIES-INTRODUCTION slot type definitions
• A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor SPECIES-INTRODUCTION
(value (type ’text) (name "SPECIES INTRODUCTION")) (text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

.***********************************************************
;SAGEBRUSH-INTRODUCTION FRAME
?—  SAGEBRUSH-INTRODUCTION slot type definitions
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

(defflavor SAGEBRUSH-INTRODUCTION 
(value 
(type ’text)
(name "SAGEBRUSH INTRODUCTION"))

(text)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)

• * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;INTRODUCTION-PARENT FRAME
;—  INTRODUCTION-PARENT slot type definitions
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *t
(defflavor INTRODUCTION-PARENT 

(value
(type 'generated-frame-pointer)
(pointer-to ’introduction)
(name "INTRODUCTION PARENT"))

(generated-frame-pointer)
:settable-instance-variables 
:gettable-instance-variables 
:inittable-instance-variables)
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INTERFACE FUNCTION DEFINITION

*** The following Franz Lisp Function definition ***
*** implements the former 1get-data-frame-slot' function *** 
*** so that it utilizes the Flavors 'send' function and *** 
*** thereby provides message passage capability. ***

(defun get-data-frame-slot (frame-pointer slot-name)
(let* ((frame-slot-value

(send (eval frame-pointer)
(find-symbol (string slot-name)

*keyword-package*)))
(slot-value (cond {(and (atom frame-slot-value)

(not (symbolp frame-slot-value)))
(send frame-slot-value :value))

(t frame-slot-value))))
(cond ((null slot-value) 'no-entry)

(t slot-value))))

KNOWLEDGE BASE CONVERSION UTILITY

*** The following Franz Lisp Function definition ***
*** provides a utility for the conversion of original ***
*** knowledge base frame structures into flavors ***
*** instances. ***

(defun instantiate (list)
(do ((list list (cdr list)))

((null list) t)
(cond ((string= (subseq (string (car list)) 0 2) ”sp") 

(set (car list) (make-instance 'species))
(let ((frame-pointer (car list))

(slot-list (get 'species/metaframe
'SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer (make-instance

(car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list)))))))
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((string= (subseq (string (car list)) 0 5) "distr") 
(set (car list)

(make-instance 'distribution-and-occurrence)) 
(let ((frame-pointer (car list))

(slot-list
(get 'distribution-and-occurrence/metaframe 

’SLOT-LIST)))
(do ((list slot-list (cdr list)))

((null list) t)
(let ((slot-pointer (make-instance

(car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list))))))) 

((string= (subseq (string (car list)) 0 4) "mgmt") 
(set (car list) (make-instance 'value-and-use)) 
(let ((frame-pointer (car list))

(slot-list (get 'value-and-use/metaframe 
•SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer (make-instance

(car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list))))))) 

((string= (subseq (string (car list)) 0 3) "bot") 
(set (car list)

(make-instance
'botanical-and-ecological-characteristics)) 

(let ((frame-pointer (car list))
(slot-list 
(get 'botanical-and-ecological- 

characteristics/metaframe 
•SLOT-LIST)))
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(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list))))))) 

((string= (subseq (string (car list)) 0 5) "adapt") 
(set (car list)

(make-instance 
'fire-adaptive-traits-and-survival-strategies)) 

(let ((frame-pointer (car list))
(slot-list 
(get
'fire-adaptive-traits-and-survival- 
strategies/metaframe 
'SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list))))))) 

((string= (subseq (string (car list)) 0 3) "gfe") 
(set (car list) (make-instance 'fire-effects))
(let ((frame-pointer (car list))

(slot-list
(get 1fire-effects/metaframe ’SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list)))))))
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((string= (subseq (string (car list)) 0 5) "sssfe") 
(set (car list)

(make-instance
'severity-season-specific-fire-effects))

(let ((frame-pointer (car list))
(slot-list 
(get

'severity-season-specific-fire- 
ef fects/metaf rame 
’SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let {(slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list)))))))

((eq (car list) ’superiorl)
(set (car list)

(make-instance 'superior))
(let ((frame-pointer (car list))

(slot-list 
(get 'superior/metaframe 

’SLOT-LIST)))
(do ((list slot-list (cdr list)))

((null list) t)
(let ({slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list)))))))

((eq (car list) 'introl)
(set (car list)

(make-instance 'introduction))
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(let ((frame-pointer (car list))
(slot-list 
(get 'introduction/metaframe 

'SLOT-LIST)))
(do ((list slot-list (cdr list)))

((null list) t)
(let ((slot-pointer

(make-instance (car list)))) 
(send (eval frame-pointer)

(find-symbol 
(string (concat "set-" (car list))) 
*keyword-package*) 

slot-pointer)
(send slot-pointer 

:set-value
(get frame-pointer (car list)))))))
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