
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1986

Object-oriented programming Lisp Flavors and their application to Object-oriented programming Lisp Flavors and their application to

a fire effects information system a fire effects information system

James A. Mitchell
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mitchell, James A., "Object-oriented programming Lisp Flavors and their application to a fire effects
information system" (1986). Graduate Student Theses, Dissertations, & Professional Papers. 5113.
https://scholarworks.umt.edu/etd/5113

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5113?utm_source=scholarworks.umt.edu%2Fetd%2F5113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976

T h i s i s a n u n p u b l is h e d m a n u s c r ip t i n w h ic h c o p y r ig h t s u b

s i s t s . An y f u r t h e r r e p r i n t in g o f i t s c o n t e n t s m u s t b e a p p r o v e d

BY THE AUTHOR.

Ma n s f ie l d L ib r a r y

Un i v e r s i t y o f Mo n t a n a

Da t e : 1 9 S 8 ________

Object-Oriented Programming, Lisp Flavors and

Their Application to a Fire Effects Information System

James A. Mitchell

B.A., University of Colorado, 1976

M.A., Graduate Faculty, Mew School for Social Research, 1980

Presented in partial fulfillment of the

requirements for the degree of

Master of Science

University of Montana

1986

by

Chairman, Board of Examiners

Approved by

Dd&n, Graduate School

Date 7

UMI Number: EP40577

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP40577

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

Mitchell, James A., M.S., November 6, 1986 Computer Science

Object-Oriented Programming, Lisp Flavors and Their Application to
a Fire Effects Information System (169 pp»)

Advisor: Dr. Alden H. Wright <?l/j(~

An important feature of a developed expert system is its
knowledge base. A knowledge base provides the factual and
procedural information that expert systems use to make decisions
within a specific problem domain. One approach to structuring a
knowledge base is the use of frames within a semantic network.
Frames act as information storing nodes that are connected by
meaningful links. Traversal of these links results in a
compilation of information, both factual and procedural,
associated with a particular problem and its solution. An
interesting feature of frames and semantic networks are their
inheritance capability. Frames can be organized into a hierarchy
of related information, with common information being stored at
higher levels in the hierarchy. Frames that are lower in the
hierarchy can inherit information stored at higher levels.
Frames, frame hierarchies, and frame inheritance all have a

great similarity to the concepts associated with a newly popular
artificial intelligence technique called object-oriented
programming. In this project a description is provided of a
conversion of an existing frame oriented knowledge base into an
object-oriented one. The purpose of this conversion was to
demonstrate that frame oriented systems are inherently
object-oriented in nature.
Initially, an in-depth investigation of object-oriented

concepts, their roots in data typing, and their developmental
history, was performed. The existing frame oriented knowledge
base, one belonging to a fire effects information system, was then
decomposed into its component parts. Identified components
included frames, frame hierarchies, frame accessing procedures,
and frame inheritance. A direct mapping was then found between
these frames concepts and the object-oriented concepts of the
object, object classes, the message passing system, and
inheritance capabilities, respectively. The investigation
demonstrated that the existing knowledge base did have many
object-oriented characteristics. The implications of using an
object-oriented environment to build a knowledge base as opposed
to creating a frame based one were then discussed and compared.

ii

TABLE of CONTENTS

ABSTRACT... ii

LIST of ILLUSTRATIONS............

1 INTRODUCTION......'.. 1
1.1 Project Background 1
1.2 Object-Oriented Programming Approach.................... .. .3
1.3 Expert System Techniques 7
1.4 The Fire Effects Information System....................... 9
1.5 The Thesis........................ 11

2 OBJECT-ORIENTED PROGRAMMING.................................... 13
2.1 Chapter Overview..13
2.2 The Object-oriented Concepts.........................15

2.2.1 The Object................ ...15
2.2.2 The Message Sending System.............. 17
2.2.3 The Class System........... 19
2.2.4 The Class Hierarchy and Inheritance........... 21

2.3 A Brief History of Object-oriented Programming.............24
2.4 The Evolution of the Data Type Concept.................... 26
2.5 Traditional versus Object-oriented Programming............. 33
2.6 Why Object-oriented Programming?...... 36

2.6.1 Some Claims of Object-oriented Programming.......... 37
2.6.2 Software Cost and Maintenance Considerations........ 38
2.6.3 Object-oriented Applications...................... 41

2.7 Franz Lisp Flavors.......... 44
2.7.1 Franz Lisp Flavors Objects 45
2.7.2 Franz Lisp Flavors Messages 47
2.7.3 Franz Lisp Flavors Methods..............'......48
2.7.4 Franz Lisp Flavors Classification Hierarchy......... 51

3 THE FIRESYS PROJECT................54
3.1 Firesys Project Goals................................... 54
3.2 The Initial Effort and Resulting System................ ...55
3.3 The Basic Firesys Structure.......... ..60
3.4 Frames, Default Reasoning, and Representations............ .63
3.5 Firesys Data Frames.................. 68
3.6 Firesys System Frames 73
3.7 Relationship to Object-oriented Concepts................. .80

4 THE CONVERSION INTO FRANZ LISP FLAVORS............... 90
4.1 Conversion Goals............ 90
4.2 Limitations on the Conversion Implementation.............. 93
4.3 The Conversion to Franz Lisp Flavors......................96
4.4 Summary of Results..................................... 111

iii

5 DISCUSSION AND CONCLUSION................................ 113
5.1 Success or Failure of the Conversion......... 113
5.2 Custom versus Packaged Object-Oriented Environment........ 118
5.3 Conclusion... 122

APPENDIX................ 124

REFERENCES..................... ..167

iv

LIST of ILLUSTRATIONS

1. Frame Inheritance Hierarchy...............64

2. Data Frame Structure of Species
Side of Knowledge Base............ 69

3- Data Frame Structure of Sagebursh
Side of Knowledge Base................................. 70

4. Search Sequence Performed when slot value is
requested and not resident in data frame......... 76

5. Search Sequence Performed when slot value is requested
and not resident in slot descriptor frame................ 79

6. The original system frame structure as implemented
under Franz Lisp Flavors...............................106

7. The reorganized system frame structure as implemented
under Franz Lisp Flavors...............................109

8. The reorganized system frame structure with
a subframe example.................................... 110

v

Chapter 1

INTRODUCTION

1.1 Project Background

This thesis project and paper is a direct result of the writer's
participation in an experimental software development project,
commissioned by the Intermountain Fire Sciences Laboratory (Fire Lab).

The goal of this software project has been to attempt to utilize

Artificial Intelligence (AI) techniques in the development of a Fire

Effects Information System and Fire Prescription Expert System. It is

planned that this Fire Lab project will span a period of five years.

June, 1986, marks the end of the first year of this project.

The past year has been an important phase in the project’s development,

as the initial development period of any experimental software project

is very crucial to later development. The decisions made at this stage

greatly influence what is formulated later in the project. It is

therefore very important that actions taken during this period in the

project's development be well thought out. Additionally, since this

software project is of an experimental nature, undergoing rapid

evolution, the developers must be careful to build in a great degree of

flexibility for future system changes and additions.

Complicating the system development requirements further is the fact

that the majority of the software developers working on the project at

1

2

this time will not be with the project to its completion. Therefore,

developed system components must be easy to understand and maintain.

As opposed to the normal type of software project, this research project

is better characterized as one of iterative enhancement than as one

fitting into the classical software development model. As each new

feature and/or improvement is introduced into the system, it is as if a

new system is developed. This process of iterative improvement makes it

obvious that such a requirement for easy modification and maintenance of

the information system requires the application of special software
development techniques.

The proposed end goal of the Fire Lab software project is the

development of a Fire Effects Information System and a Fire Prescription

Expert System. By definition, such a goal requires the application of

Expert System technology and thereby application of AI techniques. One

important principle applied to the development of this initial

information system has been the requirement that the developed database

be later utilizible as a knowledge-base for the future Expert System.

It is exactly this important principle which has led the developers to

design and build the Fire Effects Information System using AI

techniques. In particular, they have attempted to create an object-

oriented frame-based system architecture to increase the ease of

modification and maintenance.

3

1.2 Object-Oriented Programming Approach^

Object-orientation is a new approach to software development. It is a

particular way of looking at the organization of data and procedures

within a computer program. Instead of treating procedure and data as

separate, as in standard programming, they are treated as a single unit

called an ''object'*. An object, therefore, is defined as a grouping of

particular instances of data and the procedures that operate on that

data. Operations upon these data are performed (procedures are invoked)

by telling the 'object* (the grouping of data and procedures) the type

of information that is wanted from it. The object is then responsible

for performing the operation(s) upon itself and returning the desired

information or result. These operations may return a value, set an

internal value, calculate a value, or may perform any operation that has

been defined to be performed on or with a given object.

For example, one might define a set of rectangles as individual objects.

Let rectangle-1 have sides with lengths 3 and 5, rectangle-2 have sides

5 and 2, and let rectangle-3 have sides 10 and 8. Within most

programming environments one would probably choose to represent each

rectangle as a record or an array with each side being a field in the

given record or an array index. One would obtain information about a

given rectangle's characteristics, say its area, by retrieving the data

in the side fields and then applying some procedure to those values to

produce the value of its area. This requires that the programmer keep

1For a more complete description of object-oriented programming please
see Chapter 2 of this paper.

4

track of where the data is, the type of values that are needed, and the

appropriate procedures that can be applied to those values (i.e. a

function that calculates the area of a rectangle and not that of a

triangle).

Within an object-oriented environment, this bookkeeping is left up to

the object itself and the programmer is free to concentrate on more

abstract components of the program. Instance values are associated with

the appropriate procedures which themselves know what values are needed

to calculate the appropriate results. In the case of the rectangles,
one would send a particular rectangle a message to retrieve its area.

In one environment the call might be as follows:

(send rectangle-1 :area)

which would result in the value of 15 being returned. Doing the same

with the other rectangle objects would result in values 10 and 80 being

returned respectively.

The data contained within a particular instance of an object is often

called 'instance data' and is held in 'instance variables'. In the

example above, the actual values of the sides are instance values, and

the side names would be instance variables belonging to each rectangle

object (i.e. rectangle-1 would have instance variables sidel and side2

with instance data values 3 and 5). Procedures for operation upon this

instance data are usually referred to as 'methods' (i.e. the rectangles
would have associated with them a method called "area" that would

calculate the required value using each rectangles' instance values).

The communication between the object and other parts of the programming

system is usually called message passing (as seen in the call provided

earlier to retrieve rectangle-1's area).

This technique of programming is particularly powerful as it allows the

programmer and user to conceptualize system components at a higher level

of abstraction. This abstraction also allows them to view components

more like real-world objects. It also results in a hiding of procedural

details, making programming of complex systems easier for the programmer

and making program usage easier for the user.

Object-orientation also includes another important feature. Above, the

word ''instance" was used in describing data and objects. This is

because within an object-oriented system characteristics of objects are

described by an object descriptor. This is often referred to as a

’class'. Objects are organized into classes, and each class contains a

description of the objects' characteristics and the procedures

applicable to objects within that class. A particular object is an

instance of a class. From the example provided above rectangle-1,

rectangle-2, and rectangle-3 would be instances of the class
’rectangle’. Within the class description, objects' instance variables

are defined along with the methods that can be applied to all the

objects of the given class. For example the class 'rectangle' would

contain information about instance variables 'sideA' and 'sideB' (used

when creating a new instance), and methods for computing information

(i.e. area computation). Individual objects of the given class may put

values (instance data) into the instance variables, and utilize the

6

methods defined by its class. These instance values are stored within

the instance of the object, while the class level information is stored

in the object class descriptor.

This again allows yet another higher level of abstraction for the

programmer. By grouping objects into classes with the same

characteristics but with different values for these characteristics,

wholesale alteration and modification of all the objects within the

class can be accomplished fairly easily by modifying the class

descriptor. This greatly improves maintenance by centralizing the

location of the procedural and descriptive information.

When applied to information system development, object-orientation

requires developers to conceptualize information components as objects

which themselves contain instance data and utilize procedural

information about how to manipulate that data stored in some type of
object class descriptor. Normal information systems may usually allow

the grouping of data into entities, but restrict procedural information

to external programs not directly related to the data object itself.

When objects are changed, file structures and external programs must be

modified, often drastically. Object-orientation seeks to avoid this

problem by encapsulating object-specific data and procedural information

into one package.

Object-orientation involves three main steps. First, the developer

needs to create a means by which object characteristics can be described

(instance values and value manipulation methods). He must also develop

7

a system for describing meta knowledge about objects (i.e. class

descriptors). Second, the developer must create a method for creation

of instances of described objects. And third, the developer needs to

create an interpreter, a message passing system, that can utilize these

descriptions and instance values to retrieve information about the

information objects within the system. In essence, this is exactly what
has been done in the Fire Lab project.

1.3 Expert System Techniques^

Another important decision that expert system development requires is

the choice of a knowledge representation for the information utilized by

the expert system. The usual choice is between a totally rule based

system, or a frame based system. A rule based system is one in which

large amounts of procedural information is stored as a database of

rules. This database is searched for applicable rules to be applied to a

given state of information if certain conditions exist. The application

of the rule(s) then produces a new information state which again

utilizes the rule database.

0The following discussion is based on knowledge the writer has gleaned
from coursework in Artificial Intelligence and from the following texts:

Charniak, E.,McDerrao 11, D., Introduction to Artificial Intelligence,
Addison-Wesely, Reading, Massachusetts, 1985. " "

Hayes-Roth, F., Waternam, D. A., Lenat, D. B., (Ed's), Building Expert
Systems, Addison-Wesely, Reading, Massachusetts, 19$3̂

8

A frame based system is more like an information network, where each

node in the network is a frame. A frames is somewhat like a record data

structure. It is made up of a grouping of fields called slots. These

slots contain information related to the frame. Each frame may

therefore contain information about itself and its relation to other

frames (nodes) in the network. It may also contain procedural

information related to itself. In fact, slots might even contain rules

to be executed by a rule interpreter. Information questions are

answered by traversing this information network utilizing the

information stored in the slots. This traversal might include

application of rules or procedural information found in the slots of the

frames. Frames can also represent hierarchies of information through
their network connections to other frames.

A frame based system is more like the object-oriented system described

above, where each frame can be treated as an object within the

information network. In a rule based system, the given question would

be transformed into an answer by the application of rules, while in a

frame based system, it is answered by searching the information network

for the information needed to answer it. This is similar to the

retrieval of information from objects in an object-oriented environment.

In many expert systems, often a hybrid of the two methods is utilized.

Totally rule based systems seem most appropriate when the data

manipulated is small in comparison to the manipulations applied to it.

In the case of the Fire Effects system the reverse seems more true of

the system, little manipulation is performed on a large mass of data.

9

In this case, frames seem more appropriate and are what was chosen.

This choice was made primarily due to the fact that a frame based system

can be easily integrated with future rules and because it conveniently

allows application of object-oriented techniques.

1.4 The Fire Effects Information System3

Within the Fire Effects Information System, frames form the basis of our

object-oriented approach. The developers have created two major frame

groupings. First are the actual data frames (class instances). These

house the instance values (actual data) for each frame type (class) in

the system. The system has many different types (classes) of data frames
that represent the different information objects in the Fire Effects

System. Second, are the system frames (object class descriptors).

These frames contain descriptive and procedural information about frames

of each type (these are class descriptor frames).

Another major component of the Fire Effects Information System is what

the developers have called the interface functions. These functions act

as the interpreter (the message passing and object creation system) that

accesses and creates actual data frame instances, and utilizes the meta

knowledge (class descriptor information) about data frames contained in

the system frames. In addition, there are two external programs, a

3For a more in-depth discussion of the Fire Effects Information System
please refer to Chapter 3*

10

knowledge base editor and a menu driven query program, that utilize

these core components.

The objects of the system also have two more major features that have

not as yet been described. First of all, the information is organized

as a hierarchy of frames, with frames lower in the hierarchy containing

more specific information about information in their parent frames.

These form the different frame types of the system and the system's

database structure. Secondly, the data frames have been broken down

into groupings of lesser objects called slots. Slots represent each

item of information contained within a frame. Like the data frames,

each slot name (which may appear in different frame types) has a system

frame that describes its characteristics and provides the procedural
functions that may be applied to it. This again is an example of the

direct application of object-oriented programming techniques, with data

frames and slots corresponding to the instances of objects, system

frames to class descriptors, and the interface functions corresponding

to the message passing system.

One further feature of object-oriented programming that slots have that

data frames do not is the addition of a higher level meta information

descriptor frame (an object-class class descriptor). We were able to

further group slots into five classes. System frames were created for

each class, containing meta information that was common to slots of the

same class. Slots utilize procedural and descriptive information stored

here unless it is superseded by information in the slot descriptor

11

system frame. This is an example of the object-orientation principles

of object description hierarchies and property inheritance.

1.5 The Thesis

The previous discussion has briefly summarized what the developers have
done on the Fire Lab project. They have applied a frame based

object-oriented approach to the development of an easily modifiable

information system. To do this they had to create an environment that

implemented object-oriented programming constructs. But what if that

environment already existed? Could they have accomplished'the same end

result? Or would they have had to implement an environment solely

tailored to this particular application? It is this question that will
be addressed in the remainder of this paper.

In the author's readings for this project he was introduced to four

major object-oriented programming environments, namely Smalltalk, Loops,

Objective-C, and Franz Lisp Flavors. Currently, Franz Lisp Flavors is

the only conveniently available system to which this researcher has

ready access, so the majority of his attention has been directed towards

this implementation. Additionally, since the Firesys code is primarily

written in Franz Lisp, it seems most appropriate to have focused upon

this implementation of an object-oriented environment.

Franz Lisp Flavors appears to be an implementation of an object-oriented

programming environment similar to that which was created for the Fire

Lab project. It is the premise of this thesis that it should be an easy

task to convert the current Fire Effects Information System

implementation into one utilizing Franz Lisp Flavors. This conversion

was accomplished and has involved the reimplementation of the basic

major components of the Firesys system in the Franz Lisp Flavors

environment. The converted components included the database itself, the

system meta-information database, and the interface functions. As

hoped, it proved to be a fairly simple and straight forward endeavor.

As a result of the conversion, knowledge regarding similarities and

differences of the implementations, and answers to questions of the

usability of such an environment with the Fire lab project were derived.

This information will be discussed later in this paper.

In the following pages the writer presents a discussion of selected

topics of interest related to this thesis project. The next chapter

gives a detailed discussion of object-oriented programming in general,

and a description of Franz Lisp Flavors and its relation to this

programming technique. Chapter three provides a description of the Fire

Effects Information System architecture and its relation to an

object-oriented programming environment. Chapter four describes the

Flavors implementation of the Firesys system. The final chapter

discusses the success of the conversion attempt, similarities and

differences between the implementations, advantages and disadvantages of

the implementations, and whether there is any necessity for a custom

environment.

Chapter 2

OBJECT-ORIENTED PROGRAMMING

2.1 Chapter Overview

Object-oriented programming is a newly popular and different approach to

conceptualizing software program components [Alexander,1985]
[Ingalls,1981] [Robson,1981]. Some computer science professionals think

that the object-oriented approach will bring a revolution in programming

during the 1980's like structured programming did during the 1970's

[Rentsch,1982], Languages that support it use concepts that attempt to

increase the user-friendliness of programming and reduce the complexity

that large programming projects often involve [Leiberman,1982]

[Stoyan,1984]. These characteristics are accomplished by the

introduction of two major concepts: (1) making problem solutions coded

within computer programs more like solutions derived by human problem

solving procedures, and (2) abstracting program components to a level
that insulates the user and programmer from the implementation details

[Alexander,1985] [Baroody,1981] [Ingalls,1981] [Sprague,1985]
[Williams,1984]. These two concepts are closely related as the first

cannot be accomplished without the second.

Object-oriented languages attempt to accomplish these characteristics by

creating the concept of the 'object'. Objects are self-contained

components that have values and behaviors. Like real world objects they

13

14

can be manipulated, and based upon the manipulation will display certain

behaviors. Such a modeling of real world objects is much more natural

and simple to humans than standard programming concepts [Ingalls,1981]

[Robson,1981] [Sprague,1985]. If computers are to assist humans by

making tasks easier, then they should allow problem solving to be

performed in the most human-like manner [Ingalls,1981]. Ingalls

proposes that humans naturally classify and group elements of the

environment as objects, and solve problems most naturally from this

viewpoint [Ingalls,1981]. Object-orientation is also most natural

because it mirrors the "subject-verb” orientation of the user

[Ingalls,1981] [Sprague,1985] [Williams,1984]. Objects within the
computer system therefore model how people perceive objects in the real

world: they have identity, perform actions, may be grouped by

similarities to other objects, and display actions and characteristics

that are common to these groupings. It is conjectured that this

approach results in the development of software products that are

simpler to understand and maintain, that have shorter development times

and greater flexibility, and that are more reliable [Cox,1984]

[Ingalls,1981] [Pascoe,1986].

This chapter will attempt to demonstrate why these statements are true.

First, a description will be provided of the object-oriented programming

concepts. This will be followed by sections providing a brief history

of object-orientation, its roots in the evolution of data types, its

differences from traditional programming approaches, and some of its

15

claims for software improvement. Finally, a description of the Franz

Lisp Flavors programming environment will be given.

2.2 The Object-oriented Concepts

The object-oriented programming philosophy is composed of four

primary ideas. First is the concept of the 'object' which is

central to the whole approach. Second is the idea of message

sending. Third is the hierarchical classification system. Lastly

is the concept of inheritance. In this section, each of these

concepts will be described.

2.2.1 The Object

The concept of the 'object' is central to the whole philosophy of

object-orientation. Many definitions of the term 'object' are provided

in the literature:

Object: A package of information and description of its

manipulations [Robson,1981].

Objects have properties of 'objectness': inherent processing

ability, message communication, and uniformity of

appearance, status, and reference [Rentsch,1982],

An object, far from being inert matter, is an active,

animate entity, and is responsible for providing its own

computational behavior. Its processing capability is not

only inside the object, it is ever present within and
inseparable from the object [Rentsch,1982].

An "object” is like a package that describes a specific kind

of data and the set of all procedures that may work on that

data. Thus, an object is a higher-level grouping of

information; a type of package designed for modularity and

flex ibili ty [Lubinski,1984].

Object: The primitive element of object-oriented

programming. Objects combine the attributes of procedures

and data. Objects store data in variables, and respond to

messages by carrying out procedures [Stefik,1986],

An object consists of some private memory and a set of

operations. The nature of an object's operations depends on

the type of component it represents. A crucial property of

ah object is that its private memory can only be manipulated

by its own operations [Goldberg,19833.

These definitions, in combination, describe the 'object' concept. An

object is an abstract data entity, with hidden internal variables and

values. Associated with these components are procedures (also called

'methods') which provide the only means by which the hidden values can

be manipulated. Each of these data entity packages appear uniform from

17

an external view, and can be accessed (Invoked) only through the use of

a standard message passing system (invocation protocol). This is the

basic definition of an object.

Another important feature of the ’object1 concept is the dichotomy of

internal versus external view. Objects are always described as entities
whose inner workings are hidden. This is no accident. The shift of

viewpoint from the inside to the outside is in itself an essential part

of the object-oriented approach. This shift allows for simplification

of complexity, and allows programmers to conceptualize program

components in a more natural way [Rentsch,1982] [Robson,1981].

Programmers can now utilize program components as they do objects in the

real world. The programmer is only concerned with the inside view of an

object when constructing the object itself. Once constructed, the

internal details become immaterial to the object's usage. Only a

knowledge of the messages that it will respond to is required

[Rentsch,1982] [Robson,1981]. Internal implementations of objects can

as a result be readily changed without affecting its interaction with

other parts of the system as long as the message interface remains the

same. This abstraction process and the ability to treat program

components as objects are the real power of object-oriented programming.

2.2.2 The Message Sending System

The message sending system is also a primary concept of object-oriented

programming. A user asks an object to carry out some action by sending

18

it a message. The. message sending system provides a means for

activation of the object’s operations to carry out a desired action.

These operations are often called ’methods'. The object, upon receiving

a message, carries out the associated action (method), returning the

result that is needed. The object may not be able to carry out directly

all of the action itself. It may have to send a message to another

object which can provide the information needed to complete its task

[Rentsch,1982]. Under such a system, instead of allowing procedures to

access data structures freely, possibly causing unwanted side effects

(as would be the case with the traditional procedurally oriented

approach), one now has a system of objects (a union of data and

procedures) cleanly passing information and carrying out actions via

messages [Ingalls,1981].

Message sending is uniform. All processing is performed by sending

messages. The same mechanism is used to do addition, file operations,

and screen actions. This uniformity, like the uniform external view of

an object, is claimed to simplify greatly the complexity of software

systems [Rentsch,1982]. Uniformity of the invocation protocol (message

sending system) supports the principle that calling programs should not

make any assumptions about the implementation and internal

representations of the objects they use [Stefik,1986], It allows

underlying implementations of objects to be altered without the need for

changes to programs or other objects that call it [Stefik,1985].

Message passing is accomplished by sending an object an operation

selector (also called a 'method selector1), useing a standard syntax.

19

Method selectors may be accompanied by additional parameters that might

be needed for the called object to perform the desired task. However, a

given method selector always will have the same uniformity (number of

parameters) regardless of the object to which it is sent. This selector

specifies what is to be done and not how to do it. It is left up to the

receiving object to interpret the selector and to perform the requested

action [Rentsch,1982] [Stefik,1985]. This message-sending paradigm

along with the concept of the 'object’ results in modularity by

decoupling the intent of a message from the method used by the recipient

to carry out the intent [Goldberg,1983] [Ingalls,1981]. These

properties also insure that the implementation of one object cannot

depend on the internal details of other objects, but rather only upon

the messages to which they respond [Goldberg,1983]. It Is claimed that

this modular system structure may reduce the complexity of some software

systems.

2.2.3 The Class System

The concepts presented so far describe the power that object-oriented

programming provides with its modularity and uniform calling protocol

scheme. But these advantages are not worth much if each object’s

internal code is a duplicate of the internal code of other objects of

the same kind. If objects of the same kind really only differ by values

in their internal state variables, then changes to the implementation of

their operational procedures would mean making changes in every instance

20

of that kind of object. Such a maintenance task would not be

acceptable. The 'class' concept addresses this very problem.

Classification is an act that people do naturally every day. People

abstract out those components of daily experience that are similar, and

group those similarities in such a way that they denote the essence of

those experiences [Cox,1984] [Ingalls,1981] [Rentsch,1982]. An example

is the observation of a chair. When a person sees a chair, he/she does

not only experience the chair as a singular object, but abstracts out of
it the components that make it a chair like any other chair

[Ingalls,1981]. Within object-oriented programming, the class serves a

similar function [Ingalls,1981] [Rentsch,1982].

The class provides a description of all instances of objects in the

class, much like a data type [Baroody,1981] [Robson,1981] [Stefik,1985].
It describes the implementation of a set of objects (its instances) that

V

all represent the same kind of system component [Goldberg,1983]
[Tyugu,1984]. The class provides a template for the creation of new

instances by describing the form of their private memories (instance

variables), and houses the operational procedures (methods) that are

common to all of them [Goldberg,1983] [Robson,1981]. Each instance of a

class contains instance variables whose contents describe their

individual states. Additionally, they each have some name by which they

can be identified as objects within the system, and some indication of

the class to which they belong [Stefik,1985]. All messages sent to an

object of a given class result in the application of the associated

method (procedural code) stored in the class descriptor to the object's

21

state values (if applicable) [Goldberg,1983]. This scheme allows for
centralization of the code that is common to objects of the same kind.

Additionally, introduction of new objects to the system only involves

the creation of new instances of an already existing class. New classes

can also be readily added if needed.

2.2.4 The Class Hierarchy and Inheritance

The existence of classes allows for code sharing and consolidation

within an object-oriented system. Code that is common to objects of the

same type can be factored out and stored in one central location for

easy modification and extension. Objects of different types (classes)

can then have the same message selectors, but belong to different
classes. Each can have different implementations of the same type of

actions. For example each object could be sent a 'print-self' message.

Assume one of the objects is an integer, and another a string. Each

would necessarily have a different procedure (method) to perform the

print action. Because of the uniform message passing system and the

class structure, all the objects could receive the same message ('print-

self') and perform the correct action. Each object would access the

needed procedural code from one location, its class. Objects of the

same class (type) use the same code. But why stop there? There are

certainly actions that are common to objects of different types

(classes) that can utilize the same procedural code.

22

The concept of a class hierarchy addresses this issue. Classes may be

broken up into a hierarchy of subclasses and superclasses

[Goldberg,1983] [Robson,1981] [Stefik,1986] [Stoyan,1984]. Properties
that are common to a grouping of differing objects can be centralized at

a superclass level. For example, all motor vehicles have motors. A

statement of this fact could reside in the superclass Motor_Vehicle.

All cars and trucks when sent a message requesting an answer to whether

they have a motor could access this method. Car and truck, being

themselves separate classes, could have methods stored at their level

that are unique to each of them. Likewise, car and truck themselves

might have subclasses. Car might have subclass Compact_Car, or

Mid_Sized_Car, each with special instance variables and methods.

The main concept here is that as methods and instance variables become

more specialized, they reside in lower level classes in the hierarchy.

More general ones are placed higher in the hierarchy. Lower level

characteristics always override higher level ones. This results in a

classification system that provides a spectrum of totally shared

characteristics to totally individual ones [Rentsch,1982], This kind of

sharing makes for a usable system by factoring. Successful factoring

results in brevity, clarity, and modularity, which in turn, it is
claimed, results in manageability in complex systems [Rentsch,1982].

This class structure provides for adaptation by being variable along the

dimension of individuality [Rentsch,1982]. What this means is that

characteristics can be shared by the group while allowing individuals

within the group to reinterpret some shared behavior as it applies to

23

the individuals themselves [Rentsch,1 9 8 2] . Allowing individual

variability results in the capability of getting exactly what you want

by overriding undesired group characteristics with individual

characteristics [Rentsch,1982]. The hierarchy of classes specifically

allows this to occur.

Object-oriented languages provide this capability to utilize or override

grouped characteristics through inheritance [Robson,1981]. The idea

here is that methods and instance variables defined at a subclass level

will always override those defined at a higher level, otherwise the

higher level characteristics become the defaults [Stefik,1985]• When an

object receives a message it performs a bottom-up search of its class

and superclasses to find the method associated with the received

selector. The first one found will be executed, and will be the one

with the correct level of specialization. This insures that procedures

manipulate data at the proper level of abstraction [Baroody,1981].

Inheritance reduces the need to specify redundant information and

simplifies updating and modification, since information can be entered

and changed in one place [Bobrow,1986].

The power of inheritance is in the economy of expression that results

from object description sharing [Stefik,1985]. This power is extended

even farther by languages that permit ’multiple inheritance'. Multiple

inheritance allows increased sharing by making it possible to combine

object descriptions from many different classes [Stefik,1985].

Smalltalk, Loops, and Lisp Flavors provide these capabilities

[Stefik,1985]. Each of these languages also provides a means for the

24

user to specify some kind of precedence of inheritance from the multiple

superclasses [Stefik,1985].

Object-oriented programming can now be seen as a different means of

organizing and grouping program components. Fundamental to this

approach is the creation of objects. Objects are packages of data and

procedures with a uniform means of access. This uniform means of access

is the same for all objects. Objects are organized into classes,

similar to how humans organize objects in the real world. Common

characteristics are abstracted to higher classification levels, and

objects can inherit these characteristics if they belong to an

appropriate subclass. Programs are created by establishing the

appropriate objects, piecing them together, and having them interact

with each other. This approach is reportedly more similar to how

humans solve problems in the real world.

2.3 A Brief History of Object-oriented Programming

The immediate ancestor of all object-oriented programming languages is

Simula where the class concept was introduced [Rentsch,1982]. However,

Smalltalk still stands as the strongest representative of

object-oriented programming in the sense of being the most unified in

representing it [Rentsch,1982]. Awareness of the importance of

object-orientation arose with the development of Smalltalk, so the

history of Smalltalk is essentially the history of object-oriented
programming [Rentsch,1982].

25

Smalltalk was originally the software half of a project called Dynabook,

which was an effort to produce the most user-friendly computer

[Rentsch, 1982]. Alan Kay was the main visionary associated with this

project, and in the late 1960*s worked on a preliminary version called

the Flex machine [Rentsch,1982]. Later in the early 1970's, he worked

with others at Xerox Palo Alto Research Center (Xerox PARC) developing
Smalltalk on the Xerox Alto machine [Rentsch,1982].

The development of Smalltalk drew heavily on the ideas of two older

languages: Lisp and Simula [Rentsch,1982]. However, Smalltalk is

primarily based upon the class concept borrowed from Simula

[Rentsch,1982]. In Smalltalk the class is the sole structural unit,

with instances of classes (objects) being the concrete units

[Rentsch,1982]. Smalltalk is more than just a programming language. It

is a total programming environment which reflects the object-oriented

philosophy [Rentsch,1982].

Since the introduction of Smalltalk, awareness of object-oriented

concepts has increased [Rentsch,1982]. Other languages incorporating

object-oriented concepts have developed. These include: Lisp Flavors,

Loops, Clascal, Objective-C, 00PC, C++, Neon, KEE, Object Lisp, STROBE,

ACT I, Object Pascal, and others [Cox,1984] [Schmucker,1986]

[Sprague,1985] [Stefik,1986] [Williams,1984]. The vast majority of

these implementations, however, represent additions of object-oriented

concepts to existing languages. This hybrid approach has been one aimed

at trying to keep the best of both worlds [Cox,1984], To the author's

knowledge, Smalltalk still represents the only pure object-oriented

26

programming language/environment [Rentsch, 1982]-.---Due- to the influence

of the Smalltalk philosophy new machine environments have also

developed. A prime example is the Apple Macintosh^ computer with its

object-oriented user interface which has borrowed heavily from research

done at Xerox PARC and from Smalltalk [Sprague,1985].

One can see from the previous discussion that object-oriented

programming has begun to attract much attention. Although its principal

ideas have been around for some time, only lately has this great

interest appeared. Introduction of object-oriented machines like the

Apple Macintosh^ may help to popularize this powerful programming

paradigm, as may its application to existing programming languages and

future applications.

2.4 The Evolution of the Data Type Concept

The evolution of the concept of 'data type' has played an important

role in the development of programming languages [Pratt,1984]. The

development of object-oriented programming marks a new stage in that

evolution. It represents a new level of abstraction of data types

beyond what languages based on other concepts provide.

Object-orientation entails the optimal combination of the ideas of data

encapsulation and data abstraction [Cohen,1984],

1The Apple Macintosh is a product of the Apple Computer Corporation.

27

Originally, computers were programmed using the memory locations of the

hardware as the data object. Depending upon the context of its usage,

that memory location could contain an integer, part of a floating-point

number, a character, an instruction, or some other item. All data

checking and usage was left to the programmer. Even though one can

argue that specific instructions required data of a specific type, in

actuality there really were no data types since no type checking

occurred. Type conflicts were only evident when and if an error was

identified in the programs behavior.

Older programming languages like FORTRAN and COBOL mark the beginning of

the incorporation of the concept of a data type [Pratt,1984]. In these

languages, primitive data types such as reals, integers, and character

strings were provided. The compilers for these languages introduced

type checking that insured that the programmer was utilizing them

correctly. This early notion of data types centered around the concept

that a data type defines a 'set of values' that a variable might take on

[Pratt,1984].

The next level of evolution can be see in languages like Pascal

[Pratt,1984]. In such languages 'type definitions' can be made that

define the structure of a set of primitive data objects and their

possible values. This allows the programmer to define a structured data

type and to then declare instances of that type without having to

redefine the whole structure for each instance [Pratt,1984]. At this

stage the concept of a data type is expanded to mean a 'set of data

objects and possible values'.

28

Pratt indicates that the 'final' step in the evolution of the data type

concept is the understanding that a data type is not only a set of data

objects and their possible values, but also a 'a set of operations' that

manipulate objects of that data type [Pratt, 1984]. With this he

presents the idea of encapsulation. The idea of encapsulation is to

have the programming language provide a means by which a data entity can

be defined along with its data manipulations operations in a nice neat

package, the internal details of which are hidden from the user of the

entity. The manipulation operations provide the only means for

accessing the data entity. These new data types are true data

abstractions, leading to the concept of the 'abstract data type'

[Pratt,1984].

The concept of an 'abstract data type' allows the programmer to abstract

the complexity of a large programming project into smaller parts

[Pratt,1984]. This allows the programmer to use effectively a 'divide

and conquer' approach to the problem's solution [Pratt,1984]. Languages

supporting these facilities include Ada with its 'packages' and Modula-2

with its 'modules' [Bobrow,1986] [Pascoe,1986] [Pratt,1984]. The two

important ideas associated with this concept are (1) information hiding

and (2) encapsulation [Pratt,1984].

Information hiding describes a central principal in the design of

programmer-defined abstractions where each program component hides the

details of its implementation from its user [Pratt,1984]. This suggests

that each abstraction has a clearly defined purpose, and a specific

interface through which the abstraction is manipulated. This kind of

29

capability can be implemented in languages like FORTRAN by convention,

but are not enforced by the language itself [Pratt,1984]. The addition

of encapsulation capability (forced information hiding) by the language

itself insures that later modifications cannot inadvertently breech

earlier set conventions. Only languages like Ada provide such

capabilities [Pratt,1984].

Pratt seems to think that data abstraction as he describes it is the

’•final” stage of evolution of the data type concept. The author does

not believe this to be true, and neither do others [Buzzard,1985]
[Pascoe,1986]. A language like Modula-2 allows the programmer to create

abstract data objects through the use of the module (package) concept.

Multiple instances of that data object can be defined as long as the

named object is passed to its manipulation procedures. One problem

arises when one wishes to change the abstract data type's composition

only slightly, a whole new data type module must be reconstructed

[Pascoe,1986].

For example, consider the definition of a stack data object. In

Modula-2, a stack would be defined as an array or linked list of stack-

type elements, and the operations push(), pop(), initialize(), emptyO,

and full(). However, the stack type definition would determine what

type of elements could be put into the stack, say integers. To have

another stack that allowed strings to be put into the stack would

require that a whole new stack definition be created even though all but

one line of code would be identical (stack_type = INTEGER versus

stack_type = STRING) [Pascoe,1986]. The Ada concept of 'generic

30

packages' attempts to address this issue, and will be discussed

shortly..

There is an additional problem. We now have two modules with the same

name! The compiler will not accept two definitions for the same object,

'stack1. So, we are forced to provide the different names, say

String_Stack and Integer_Stack. Not only is this a problem with object

names, but what happens when different objects have exported procedures

(procedures declared to be accessible from outside the defined abstract

object) with the same name? Take for example a stack and queue. Both

probably need initialize(), emptyO and full() procedures. If the names

exported are the same, we have a problem. Their names must be unique or

qualified (stack.initialize or queue.initialize) [Pascoe,1986]. The

power of encapsulation and information hiding are present, but a major

degree of flexibility is not.

What is needed is a new level of abstraction, and a new evolution of the

abstract data type concept. Such an evolution is provided by the

concepts of the 'generic package' and of 'operator overloading' seen in

the Ada programming language [Buzzard,1985] [Pascoe,1986]. Generic

packages allow multiple objects with similar but different structures to

be created at compile time. This is accomplished by using a package

template and checking the necessary type information [Pascoe,1986]. Ada

also allows overloading of operators. Overloading makes it possible to

have the same name for different but similar procedures. This

capability eliminates the. unique naming problem [Pascoe,1986].

31

But what happens if we want a structure that is not predefined at

compile time, like a stack that can hold objects of different types?
Such a capability requires dynamic binding [Pascoe,1986]. Ada attempts

to address this problem with its variant records. Traditional

programming languages can do this by providing some kind of case

statement that checks types at run-time, applying the appropriate

procedure for operating on a stack element of the given type. The

problem here is that whenever a new stack element type is added to the

system, not only is the code for the new type definition added, but the

existing code (the case statement and variant record structure) for

other objects (stacks) must also be altered [Pascoe,1986]

[Winston,1981]. We now have a dependency between existing objects and

new ones added to the system. Such a dependency defeats the

encapsulation we have strived for by requiring knowledge of the

implementation of all the data objects in the system!

Again, we need another evolution in our concept of an abstract data

type. This evolution involves the addition of the concept of the data

object as being an animate object. In this abstraction, the object

itself becomes responsible for performing operations on itself, no

longer being dependant upon external procedures [Pascoe,1986]. This

eliminates the need for the case statement mentioned in the stack

example previously, as now the stack element itself would perform the

operation.

But we still have the problem of having redundant code for highly

similar operations. A slight modification in the behavior of an

operation will involve alteration of all the code for the similar

operation. As noted earlier, Ada provides the generic package

[Buzzard, 1985]. In a way this is really a form of inheritance
[Rentsch,1982]. Each instance of the generic package inherits the

characteristics of the generic package with minor modifications.

However, inheritance is limited to one generic package. There is no

hierarchy of inheritance.

This idea of inheritance is the next level of abstraction that is

brought to programming by an object-oriented approach. Inheritance

allows code to be factored [Pascoe, 1986]. Code that is common to data

objects can be stored in one location. This, it is conjectured, makes

modification of code easier and more reliable [Cohen,1984]. Factoring

is accomplished by defining classes. Classes can have subclasses or
superclasses. Common code can be stored within these class definitions,

dependent upon their level of factoring [Pascoe,1986].

The evolution of data types described to this point now includes quite a

few more characteristics than those Pratt [Pratt,1984] has described in

his "final" stage. We now have arrived at a description of an abstract

data type as an 'object*. This 'object' is a set of data objects

(abstract types or values) with procedures to operate on itself, with

encapsulation of these components resulting in information hiding, with

inclusion of dynamic binding and class inheritance capability, and with

the inclusion of the concept of an 'object' as an animate entity

[Pascoe, 1986] [Stefik,1986] [Stoyan, 198*1]. The application of this

abstraction to programming supposedly results in software that is more

33

flexible; supporting change, reusability, and easy enhancement

[Cox,1984].

2.5 Traditional versus Object-oriented Programming

As mentioned in the beginning of this chapter, object-oriented

programming is a different approach to programming. Different as

compared to what? This section will describe the differences between

what is called traditional or procedure-oriented programming and

object-oriented programming.

The traditional or procedural-oriented style of programming can be

described as dividing programming into two distinct segments [Cox,1984].

First is the code segment, consisting of subroutines that do all the
work of the program. Second is the data segment, consisting of the data

structures that the procedures manipulate [Bobrow,1986] [Cox,1984]

[Robson,1981]. Data are static, having values changed by procedures,

and are essentially global [Cox,1984] [Leiberman,1982] [Stoyan,1984].

Major operations are built by combining subroutines into sequences that

are grouped [Cox,1984]. Procedures are responsible for keeping track of

timing considerations (sequence), space and movement of data, and data

type checking [Cox,1984].

One problem with the procedure-oriented approach is that data and

procedures are treated as if they are independent of each other when in

fact they are not [Cox,1984] [Robson,1981]. Procedures, in practice,

34
place strong restrictions upon the types of data that they handle

[Cox, 1984], This fact results in the need to do major surgery to

general-purpose procedures when changes are made in data structures or

when new data structures are added [Pascoe,1986] [Winston,1981]. The

procedure-oriented approach makes the programming environment

responsible for managing data type dependencies, so environmental code

is not reusable [Cox,1984]. Additionally, the programmer must remember

what these restrictions are when using the procedures and this results

in errors being made [Cox,1984].

An interesting example is provided by Cox [Cox,1984], What would we

think if an electrician who was wiring telephone lines and power lines

in a building was required to use the same type of plugs and wires to do

both? It would be his responsibility to remember which plug was

carrying what voltage! This is the situation created when using

procedure-oriented programming techniques; we attempt to keep track of

compatibility information manually [Cox,1984].

The object-oriented approach, in contrast, treats procedures and data as

two indivisible aspects of the same object in the problem domain

[Cox,1984] [Robson,1981]. Applications can be developed by

straightforwardly examining the problem domain, identifying objects and

their behaviors within the domain, and then implementing them in the

computer utilizing object-oriented techniques [Cox,1984], The

programmer is no longer required to restate the problem domain into

computer domain terms where everything is either an operator or an

operand [Cox,1984]. No longer is knowledge of data characteristics

35

spread through all the procedures of a program, but rather centralized

to specific data objects [Bobrow,1986] [Leiberman,1982]. Each object

has only the knowledge and expertise to act in accordance with requests

made of it, placing knowledge only where it is actually used

[Leiberman,1982]. Data/procedure interdependencies are moved out of

implicit storage in the environment and into explicit storage in the

data objects themselves [Cox,1984].

As opposed to function calls with static-data passage, object-oriented

programming utilizes a message-passing system [Bobrow,1986] [Cox,1984]

[Leiberman,1982] [Robson,1981]. An object is sent a message and

responds to that message according to its internal knowledge. Like

function calls, messages can contain parameters. The object determines

how to perform the action itself [Robson,1981].

Another important difference is the ability that object-oriented

programming has to factor common code out of the object's local

structure, placing it into a common location [Bobrow,1986] [Cox,1984]

[Leiberman,1982] [Robson,1981]. Objects are defined by their class. A

class, in turn, can be described by another superior class. When a

message is sent to an object an upward search is performed within the

class hierarchy structure for a procedure that matches the message

request. If none is found and no superclasses remain, then an error

message is issued [Bobrow,1986] [Cox,1984] [Leiberman,1982]

[Robson,1981] Code that is common to several classes is stored higher

in the hierarchy. This technique of code factoring, called inheritance,

is a scheme that allows new objects to be easily added to the software

36

system without major modification, since new classes can easily be

defined by declaring them as subclasses of existing classes

[Bobrow,1986] [Cox,1984] [Leiberman,1982] [Robson,1981].

These differences give object-oriented programming some advantages over

procedure-oriented techniques. Data dependencies encoded within

procedures are eliminated. Code modifications and additions are made

simple and side effects are minimized. Programmed problem solutions are

not forced into computer defined structures (i.e. the data types

available), but rather allow abstract data object definitions that

parallel real world problem domain structures. Code factoring and

compression are also a natural part of this programming style. Because
of these differences, object-oriented programming may be an important

and powerful improvement over traditional programming techniques.

2.6 Why Object-oriented Programming?

In the previous sections, the reader has been presented with the basic

concepts of object-oriented programming. Additionally, the reader

should now be familiar with the basic history of the development of

object-orientation, and its difference from traditional programming.

But why should the user utilize this programming technique? In this

section, some of the claimed benefits of object-oriented programming

will be presented. Object-orientation1s relationship to software cost

and maintenance will also be described. Lastly, a description of some

37

programming projects to which the technique was applied will be

presented.

2.6.1 Some Claims of Object-oriented Programming

The Fifth Generation of computing has been heralded as being at hand due

to the new advances in Artificial Intelligence (AI). Associated with

this evolution are at least three developments in software technology:

logic programming, exploratory programming, and object-oriented

programming [Shell,1983]• Based upon statements like this one might

claim that object-oriented programming is a new and revolutionary AI

technique. This is apparently due to the close relationship that

object-oriented programming has with the theory of frames

[Barbuceanu,1984] [Stefik,1985].2 Others have claimed its usefulness

for simulation programming, systems programming, and graphics

[Bobrow,1986] [Stefik,1985].

With regard to simulation, objects can form the basis for simulation of

system components and their interactions. Conceptualizing system

components as objects reportedly makes simulation programming

conceptually easier [Barbuceanu,1984] [Ingalls,1981] [Stefik,1985]. In

general usage, large classes of computer applications attempt to model

some physical or conceptual process. Traditional programming makes the

programmer force this modeling into some machine representation that is

2 A discussion of object-orientation’s similarity to frame theory will
be presented in Chapter 3*

38

often not in a form parallel to the real world process.

Object-orientation, on the other hand, by design, models real world

objects and events, and parallels conceptual processes, making it better

for simulations and any other form of modeling [Cox,1984].

2.6.2 Software Cost and Maintenance Considerations

By far, software has become the most costly portion of most computer

systems [Lubinski,1984] [Martin,1983]* According to James Martin

[Martin,1983], sixty-seven percent of that cost can be accounted for by
maintenance needs. With this fact in mind, one is faced with the

necessity of making software as easy to understand and maintain as
possible. A primary feature of object-oriented programming is its

inheritance and classification capabilities [Alexander,1985] [Alws,1985]

[Brown,1983] [Cox,1984] [Goldberg,1983] [Leiberman,1982] [Lubinski,1984]
[Rentsch,1982] [Stefik,1985]. These capabilities allow code that is

common to different types of objects to be stored in one location that

is accessible to all of these objects. If an object belongs to a

classification, it can inherit any code that is associated with that

classification. This makes for the elimination of redundant code,

allowing code sharing and centralization. Code maintenance and

modification then should become much easier, because the code is more

compact and centralized. Cox [Cox,1986], suggests that what is truly

revolutionary about object-orientation is that it helps programmers to

reuse existing code. He offers as an analogy a comparison of

39

object-oriented programming with circuit building using IC-chips

(Integrated Circuit chips). He suggests that objects in object

libraries are "Software-ICs" [Cox,1986]. The results of reusability can

be seen if one compares the size of the Unix operating system

(non-object-oriented) with that of Smalltalk (totally object-oriented).

One finds that on a capability based comparison, Smalltalk has much less

code than Unix [Cox,1984]. This reduction is reported by Cox

[Cox,1984] to be due to Smalltalk's centralized and shared code.

However, one should temper this statement with the knowledge that Unix

may provide a greater number of system capabilities.

Additional important features of object-oriented languages include its

object modularity, and uniformity of invocation protocol [Alws,1985]

[Brown,1983] [Cox,1984] [Goldberg,1983] [Ingalls,1981] [Leiberman,1982]

[Lubinski,1984] [Rentsch,1982] [Stefik,1985]. These factors also

directly affect the maintainability of a software system. By

definition, objects are encapsulated units, containing values and

procedural information with a uniform interface. This structuring

insures that implementation details of object structure and behavior are

totally hidden from the object user, thereby eliminating environmental

dependencies that might otherwise reduce the flexibility of the software

[Cox,1984] [Goldberg,1983]. Objects are self-contained entities that

can only be examined externally, and whose internal workings have no

dependency on external conditions. Languages like Ada also attempt to

meet this high degree of maintainability through the concept of the

40

package, but lack the class hierarchy and uniform invocation protocol

capabilities of-object-oriented languages.

Even though the concept of an object as a self-contained entity is

powerful, its true power is not realized until one recognizes the

importance of the concept of a uniform invocation protocol

[Goldberg,1983] [Ingalls,1981] [Rentsch,1982] [Stefik,1985]. Values are
retrieved and procedures invoked by passing a message to an object. All

objects can receive any message, and will respond in one of two ways.

Either the object will do the desired task, or it will notify the caller
that it cannot perform the task (send back an error message). The real

power here is that at any time an object can be added or removed from

the system without requiring the alteration of existing system code.

Because the message passing system is uniform, only the code for the

object in question need be affected [Goldberg,1983] [Ingalls,1981]

[Rentsch,1982] [Stefik,1985].

Object-oriented programming may greatly enhance the maintainability and

flexibility of software. As noted above, common code can be shared and

centralized, objects are encapsulated eliminating external dependencies,

and invocation of object actions is uniform. These characteristics, it

is claimed from programming experience, make object-oriented code highly

reusable, and easier to maintain and modify than programs coded with

traditional techniques [Alws,1985]. These features are also claimed

from experience to support dramatically the ability to perform rapid

prototyping [Alws,1985]. Object-oriented software development

techniques therefore show promise for providing an environment in which

41

programs can be developed modularly, with a minimum of inter-module

coupling (dependency), and with the flexibility to be easily maintained

and modified.

2.6.3 Object-oriented Applications

Currently, the use of object-oriented techniques is open to much

experimentation and many different environments have been created to

date [Stefik,1985]. Within these environments different application

programs have been developed. One such application was constructed at

Tektronix Inc. using Smalltalk (the prototypical object-oriented

programming environment [Rentsch,1982] [White,1986]) [Alexander,1985].

Tektronix has the difficult task of diagnosing and repairing electronic

equipment that it sells. Training technicians to have a concise and

highly developed fault isolation strategy is very costly and time

consuming. Additionally, once trained, many technicians soon move on to

new jobs. This situation makes electronics troubleshooting an ideal

application for an expert system. Tektronix decided to create a

technician's assistant to help assist and guide technicians in repairing

equipment [Alexander,1985].

The task involved the conceptualization of electronic components as

objects in the software system. Each object was coded to display

behaviors that were expected of their real world counterpart. Utilizing

the outstanding graphics of Smalltalk, circuit diagrams and components

42

could be displayed as part of a diagnosis simulation [Alexander,19853.

The program presents a display showing the circuit diagram and board

layout for the component to be tested. Expectbd voltage readings for

pointed-to components within the display are shown, allowing anomalies

to be easily recognized when comparisons are made to actual readings.
If the technician requests diagnostic assistance, the program queries

for circuit readings and additional information, and suggests a new

course of action for the technician to take [Alexander,1985].

The user is led through the diagnosis process by the program, not only

assisting him in the task, but actually training him in a diagnosis

strategy. The Smalltalk object-oriented environment with its ’objects'
and hierarchical classification capability has allowed such a simulation

to be coded with a minimum of effort and with maximum flexibility. Each

assistant for different electronic equipment was coded using the same

base program [Alexander,1985].

Smalltalk is not the only language used for object-oriented application

development. OOPC (Object Oriented Precompiler for C) has also been

utilized [Cox,1984] [Awls,1985]. In the Awls implementation

[Awls,1985]* two special purpose editors were developed. The editors

were designed to assist software designers in producing documentation

for designs for software projects. One editor was constructed to build

special system structure charts, and the other to develop pseudo-code

for designed modules [Awls,1985]. Modules designed were treated as

objects that needed to be represented by diagrams and pseudo-code by the

editors. According to Awls, object-oriented concepts allowed the editor

43
programs to assist the designers in keeping track of module interfaces

and procedural interactions [Awls,1985]. This anecdotal program

description suggests that object-oriented techniques can assist project

developers with integration of disparate project components.

Written in a special language called Act 1, Leiberman has constructed a

composers assistant [Leiberman,1982]. The program is utilized by

musicians composing music. Notes, chords, and melodies make up the

objects of the system. The program can be used to analyze existing

compositions, or to assist in creating new ones. Leiberman states that

traditional programming languages are not very good at dealing with the

complexity that a task such as music composition entails, and that

object-orientation is one approach that makes the complexity easier to

handle [Leiberman,1982]. His experiences with utilizing object-oriented

techniques lend support to the notion that they reduce project

complexity.

Other applications have also been constructed using object-oriented

programming techniques. They include: (1) a Computer-Aided Design (CAD)

system that intelligently simulates design activities, illustrating

design consequences [Barbuceanu,1983], (2) the repackaging of a

Graphical Kernel System so that it is easily accessible by applications

in the most flexible manner [Lubinski,1984], (3) development of a highly

flexible multi-user database system with easily customized user

interfaces [Baroody,198l], (4) creation of an electronic form handling

system that updates and manages forms used in planning and arranging

executive business trips [Fikes,198l]. All of these applications lend

44

support to the great potential that object-oriented programming holds

for computer software systems.

2.7 Franz Lisp Flavors^

Flavors is a name for a more general class of object-oriented extensions

to a Lisp dialect. It is not specific to the Franz Inc. version of

Lisp. The object-oriented style implemented in Franz Lisp Flavors is

borrowed directly from the Smalltalk and Actor families of languages.

The Franz Lisp implementation of Flavors is similar to Zetalisp.

Flavors is an extension to Franz Lisp in the sense that it utilizes the

hybrid approach mentioned earlier, taking a standard Lisp implementation

and adding new object-oriented capabilities to it. Therefore, Flavors

is not a totally object-oriented programming environment, but rather an

enhancement of an existing Lisp language.

With regard to this thesis project, the usage of Franz Lisp Flavors is

most appropriate. The original Fire Lab Project code was written in

this dialect of Lisp and any conversion of the Fire Lab code into a

standard object-oriented form could be accomplished in a straight

forward manner using this extension. This is exactly the reason that

Franz Lisp Flavors was chosen for the language of implementation of this

thesis project.

^All information regarding Franz Lisp Flavors presented in this section
has been taken directly from Chapter 19 of the Franz Lisp Reference
Manual, Franz Lisp Opus 42.16.3, Franz Inc., 19S5T

45

Although it can be argued that usage of a hybrid approach in creating an

object-oriented programming environment is in opposition to

object-oriented precepts, hybrid languages allow the usage of existing

programming techniques and code which can be enhanced with new and

powerful programming techniques [Cox,1984]. In the case of the Fire Lab

Project, a large mass of Lisp code was already in existence, and the
author was familiar with the Franz Lisp language. Additionally, it was

the purpose of this thesis project to demonstrate that the project team

had actually created a custom object-oriented environment. Usage of an

object-oriented extension to Franz Lisp fits this purpose perfectly.

Franz Lisp Flavors provides all of the capabilities described in the
previous section of this chapter. It allows object instances, classes,

methods, and class hierarchies to be created. As noted above, it also

allows the creation of class hierarchies that are not restricted to a

tree structure. Rather, Flavors allows a graph structure (multiple

parents), which in turn allows arbitrarily complex interconnections

between object classes while retaining modularity and ease of

maintenance [Brown,19831. In the following sections, a brief

description of Franz Lisp Flavors syntax and capabilities will be

provided.

2.7.1 Franz Lisp Flavors Objects

An object in Franz Lisp Flavors is created much like objects described

earlier. First, a class must be created, and then instances of that

46

class are formed. In Flavors a class is called a 'flavor*. To define a

flavor (class), one uses the 'defflavor' function:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)
0
:inittable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

This construction defines a flavor (class) called 'ship' that has five

instance variables that specify a ship's position, velocity, and mass.

As can be seen the definition specifies that these variables can be

externally retrieved and set. Instance variables can also be

initialized with values. To create an instance of a ship, we must
create a name for the object, and call a function to make an instance:

(setq my-ship (make-instance 'ship))

As one who is familiar with Lisp syntax can see, this form is in normal

Lisp syntax. It is not as one would expect if the environment were

totally object-oriented. In such an environment, a message would be

sent to the class 'ship' to produce a new instance, and an assignment

would be made to a specified name with the returned object. In this

case, exactly the same action is performed, but with normal Franz Lisp

syntax. In any case, the result is an object named 'my-ship' that has

the instance variables described in its flavor (class) 'ship'. If one

wishes to initialize 'my-ship's variables the syntax would be as

follows:

47
(setq my-ship (make-instance 'ship

:x-position 0.0
:y-position 2.0
:mass 3*5))

This form would produce 'my-ship' with position (0.0,2.0) and mass 3*5*

Values can also be initialized for all instances by including values

within the flavor definition itself:

(defflavor ship ((x-position 0.0)
(y-position 2.0)
x-velocity
y-velocity
(mass 3-5))

0
:inittable-instance-variables
:ge ttable-instance-var iables
:settable-instance-variables)

In this example, all 'ship' instances would start off with position

(0.0,2.0) and mass 3*5. The velocity values would remain as yet
undefined.

2.7.2 Franz Lisp Flavors Messages

The message sending facility provided by Franz Lisp Flavors is also more

in the syntax of Franz Lisp than in what would be expected in a totally

object-oriented programming environment. In a language like Smalltalk,

m
a message is sent by following an object name with a selector

[Goldberg,1983]:

my-ship mass.

This Smalltalk statement would send 'my-ship' a message to return the

value of its mass. In Franz Lisp Flavors the 'send* function is

utilized to transmit messages to objects. Its syntax would be as
follows:

(send my-ship :mass)

Again, this form would send the message 'mass' to 'my-ship', and the

value 3*5 would be returned. All message-sending is done with this

function. To change the mass of the ship, a message like this could be
sent:

(send my-ship :set-mass 35.5)

In this example, the method (object manipulation procedure) :set-mass

has a parameter. Methods like :mass and :set-mass are already

predefined by the Flavors system when an instance of a 'ship' is

created.

2.7.3 Franz Lisp Flavors Methods

So far the Flavors object definition capability and message passing

system have been illustrated. But messages need methods (procedures)

49

associated with them. As noted above, instances have predefined methods

which allow the retrieval and setting of instance variable values.

These are methods that belong to the flavor ’vanilla'. Vanilla provides

additional methods: :print-self, :describe, :which-operations, and

several others. All Franz Lisp Flavors objects include the 'vanilla'

flavor. However, there is no real power to Flavors if one cannot define
his/her own methods.

Franz Lisp Flavors provides the 'defmethod' function to create methods

for objects. As in other object-oriented languages, methods must be

attached to the objects class. In this case, the method is associated

with a flavor:

(defmethod (ship :speed) ()
(sqrt (+ (A x-velocity 2)

(" y-velocity 2))))

This Franz Lisp form defines a method named ':speed' that is associated

with the flavor 'ship'. The method will take the velocity instance

variables of the object it is applied to and calculate the velocity

(creating a vector using the x,y velocity components). Methods can also

be defined that utilize parameters:

(defmethod (ship :fraction-of-speed) (fraction)
(« fraction (send self :speed)))

(send my-ship :fraetion-of-speed .5)

This method definition uses the parameter named 'fraction', and

multiplies it by the calculated speed of the ship to which the method is

50

applied. The message example would return a speed value that is one

half the actual speed due to the parameter value of '.5*.

Please take note of a special feature illustrated in the

:fraction-of-speed method definition. Within the method definition

there is a message sent to 'self'. While any method is executing, the

variable 'self* is bound to the identifier of the object to which the

method was applied. This allows a method to call other same flavor

methods during its execution. In the above example, the calculation of

the speed is performed by another method, which returns the value needed

to complete the fraction calculation.

Messages can also be sent to another object during method execution if

the other object’s identifier is passed as a parameter:

(defmethod (ship :collision) (object)
(intersect (send self :direction)

(send object rdirection)))

(send my-ship :collision your-ship)

Assuming that there is a function ’intersect’ that can calculate if two

objects will intersect given their directions, the above method

definition would provide the message-sender with the knowledge of an

impending collision.

2.7.4 Franz Lisp Flavors Classification Hierarchy

51

Within Franz Lisp Flavors, a class hierarchy is defined by mixing

flavors. Flavors are mixed by providing the identifiers for the
'mix-in' flavors in the flavor definition:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

(moving-object)

:gettable-instance-variables
:settable-instance-variables)

In the example, 'moving-object' is identified as a 'mix-in' flavor. All

instance variables and methods that belong to 'moving-object' are
included (referenced by) the 'ship' flavor unless overridden by local

'ship' specific variables or methods. This structure in essence is a
specification of 'ship' as a subclass of 'moving-object'. The 'ship'

class of objects Inherits the characteristics of the 'moving-object'

class unless locally overridden.

As noted earlier, Flavors has the capability to allow multiple parents

(multiple hierarchies). It does this by allowing multiple mix-in's:

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

(moving-object
floating-object
sinking-object)

:gettable-instance-variables
:settable-instance-variables)

52

Here, ’ship1 now inherits the characteristics of ’moving-object’,

'floating-object', and 'sinking-object'. This could become very

confusing if there were no way to define an order of inheritance. Franz

Lisp Flavors defines such an ordering of inheritance by specifying that

the order of mix-in's matters. The inheritance proceeds on a

depth-first search of mix-in's in the left to right order of the mix-in

list.

Mix-in's themselves are also flavors. They too can be made up of other

mix-in's. In this way a graph or network structure of inheritance can

be constructed. However, within such a network there is always a

potential for cycles to occur. The Flavors language extensions take

care of this by not allowing the method search to cycle. No flavor node

in the graph can be visited more than once. All flavors also include

the flavor 'vanilla'. Vanilla flavor provides some basic methods that

all objects may need. Vanilla flavor can be left out if so specified in

the flavor definition.

The preceding discussion has introduced some of the basic features of

Franz Lisp Flavors. As one can see, all the basic object-oriented
capabilities expected in an object-oriented programming environment are

present. However, some of these capabilities are not provided in

syntactic forms that are totally consistent with an object-oriented

philosophy (making an instance for example). Even so, the provided

capabilities are very powerful and in some cases go far beyond what

other environments provide.

53

The descriptions presented here have been of an introductory nature.

Franz Lisp Flavors provides many additional features that have not been

covered. Interested parties should refer to the Franz Lisp Reference

Manual .̂ Experimentation with a Franz Lisp Flavors implementation is

highly advised.

Chapter 3

THE FIRESYS PROJECT

3.1 Firesys Project Goals

Initially, the intended goal of the Firesys project was to develop two

expert systems. The first system to be developed was a fire effects

advisor. The second was to be a fire prescription expert. The two

systems were to share a common knowledge base, and were to be initially

restricted to providing information regarding sagebrush ecosystems.

The fire effects advisor was to provide the system user with answers to

questions about the effects of fire. Sagebrush range managers often

need fire effects information to assist them in making decisions

regarding the use of fire as a range management tool. The information

needed includes both the short and long term effects on plant growth,

wildlife forage, and cover. Once a decision to utilize fire for

management of a specific site is made, a fire use prescription is then

needed. The second expert system was to provide such a prescription.

The user would provide goal and site descriptions, and the system would

provide a prescription for the type of fire and conditions needed to

attain the desired goal.

54

55

3.2 The Initial Effort and Resulting System1

One of the primary tasks that expert system builders face is the

decision on how to structure the knowledge base used by the expert

system. The choice of a knowledge base structure is the primary

determinant of the expert system's later capabilities since system

actions and structure are determined directly by the knowledge base. As

noted in chapter 1, there are two common approaches to knowledge base

design. One can encode knowledge in the form of rules or as frames.
Mixtures of the two can also be utilized.

Rule based or production systems normally use a retrieve-act cycle. The

expert system retrieves a rule from the knowledge base dependent upon

the system's current state of information. It then applies the rule to

its information state (the state-record), changing it. This action

continues until the desired state (goal) is reached, or until no rules

can be found that apply (failure). Rules, therefore, usually have the

following form:

<IF state THEN action>

1The following discussion of expert system knowledge bases is based on
information the writer has gleaned from coursework in Artificial
Intelligence and from the following texts:

Charniak,E.,McDermott» D., Introduction to Artificial Intelligence,
Addison-Wesely, Reading, Massachusetts, 1985.

Hayes-Roth, F., Waternam, D. A., Lenat, D. B., (Ed's), Building Expert
Systems, Addison-Wesely, Reading, Massachusetts, 1953̂

56

where the rule Is chosen if the system’s state conditions match 'state'.

The 'action' of the rule is then applied to the system's state

conditions stored in the state-record, changing them in some way.

Example Rule: IF blood test negative AMD
urine test positive

THEN test thyroid level AND
add to state-record

The cycle is then repeated using the new state information. The

system's initial state might have a statement of the goal to be reached

(question to be answered) and the starting givens. Because the rules

essentially manipulate the initial state of the system into a desired

state through actions, one can see that such a technique is best applied

to tasks that involve large amounts of procedural as opposed to factual

knowledge.

Another common rule based approach is to use what is called 'backward
chaining'. Under this method the system starts with the goal state and

attempts to verify that rules and facts in the knowledge base allow one
to conclude that the goal state is true. The method works much the same

as the above described except that rule conclusions are utilized. The

backward chaining system examines knowledge base facts and rule

conclusions to see if they match the goal state. If a fact matches then

the goal has been verified to be true. If a rule conclusion matches,

then the system attempts to verify that the rule antecedents can be

57

verified. The rule anteeedent(s) become the new goal(s) to be verified.

A backward chaining rule commonly has this type of structure:

<conclusion IF antecedent

Example Rule: ’Sunny Outside’ IF ’Day Time' AND NOT 'Cloudy'

The backward chaining process continues until the goal is verified to be

true, or until no facts or rules remain as verification candidates.

The opposite approach to rules is that of a frame based system. In such

a system, a semantic network of knowledge is constructed. Each node of

this network is a frame. A frame contains information related to itself

and about connections to other frames (nodes). The connection

information is also encoded so that it expresses the frame's

relationship to other nodes. Frames usually have the following

structure:
ATTRIBUTE-1 trait-1
ATTRIBUTE-2 trait-2

•

ATTRIBUTE-n trait-n>

where an attribute is a characteristic of this node or a name of a

connection or relationship to another node. Traits are therefore facts

about the attribute or names of (pointers to) other frames (nodes).

When one speaks of frames, attributes are usually called "SLOTS" and

58

traits "SLOT FILLERS". The following example frame might describe a

specific dog:

Example Frame: <NAME "Fido"
COLOR blond
IS-A dog
SIZE medium

•

OWNER Sam>

In the above example "Fido", 'blond', and 'medium' are specific facts

about the dog, and the remaining traits (slot fillers) are names of

other frames that further define characteristics of the "Fido" frame.

The frame "dog" would provide information about dogs in general, such as

body parts, while the frame "Sam" would describe the owner's

characteristics. This type of frame structure allows a large amount of
facts and their interrelationships to be encoded into a knowledge base.

Tasks that involve the gathering and assessing of large amounts of

factual knowledge are therefore best handled with an expert system that

utilizes frames.

As noted above, one can construct a system that uses a hybrid knowledge

base. Rules can include factual information that can be added or

deleted from the state-record. Frames can contain attribute fields that

have procedural information (actions) as traits. For example, in the

"Fido" frame above, we might add an attribute like IF-BITES-KIDS with

the trait value 'get rid of Fido and remove from network'. In this way

rule-like procedural knowledge can be added to a frame, or frame-like

factual knowledge can be included in a rule. In general, this is often

59
how expert system developers deal with tasks that require combining

factual and procedural knowledge.

The first Firesys project developed, the fire effects advisor, was an

expert system which required the storage of large amounts of factual

information upon which smaller amounts of procedural information were to

be applied. The majority of the encoded knowledge was to be factual

knowledge about plant species and data on effects of fire on each

species as extracted from the research literature. The system was to

sift through the data, analyze the facts related to the management

objective provided by the user, and provide some conclusion as to

whether the objective would be met. This task requirement made it

obvious that a frame based expert system would be most appropriate, so

the decision was made to adopt this approach.

As development of the fire effects advisor progressed, the focus of

effort became more and more directed towards the encoding of the factual

knowledge. Procedural knowledge became less emphasized due to the

enormity of the fact-gathering task. Additionally, the purpose of the

system was reformulated, playing down the analysis capability, and

emphasizing information retrieval. The system was now to be more of a

research aid, or on-line library, for managers to use for gathering

facts for their analysis of management objectives. The objective of the

fire effects advisor was now to provide information, and not advice.

Thus, the resulting system is much more of a database than an expert

system. However, the basic principles of a frame oriented knowledge

60
base still remain. Additionally, the system was built to be as flexible

as possible to allow easy modification. Expert system capabilities

could still be added at a later date.

3-3 The Basic Firesys Structure

The Firesys system is made up of five primary components. The largest

component is the knowledge base. As the knowledge base is currently

structured, the data frames are organized into a hierarchical tree, and

contain no procedural knowledge. The knowledge base is not composed

solely of data frames. It also contains what we have called system or

meta frames. These meta frames contain procedural knowledge needed by

the system to access the data frames. This procedural information is

not to be confused, however, with procedural knowledge that would be

used by the expert system to analyze the data. That kind of knowledge

has not as yet been included. The system frame procedural knowledge

tells the system how to do things like displaying a data frame of a

particular type, adding or deleting information from frames or frames

from the knowledge base, and how to search the data frame tree for

particular information.

The second system component is the knowledge base interface. These

functions provide the only legitimate access to the knowledge base.

Users of the knowledge base access data through calls to these interface

functions. Functions are divided into two primary groups: those that

access data frame information and those that access slot description

61

information. Slot value retrieval is considered to be a data frame

access. Utility functions are included that add and delete values from

slots, and that add and delete data frames from the knowledge base.

The third major component of the Firesys system is the print-package.

The purpose of this component is to provide a uniform grouping of
functions that can be used to output information to the display of the

program user. They act as the sole means by which system components are

allowed to present information to users of the system. Functions

include the capability to display menus, screen headings, slot titles,

and individual slot values. The functions keep track of screen

displays, insuring that headings and values are not split up, menu items

are numbered properly, menu choices are selected correctly, and that

displays of data larger than one screen-full are handled properly. The

centralization of these functions serves to make displays somewhat

uniform, and greatly reduces the redundancy of display code.

The last two components are two separate programs that utilize the

knowledge base. As noted above, all accesses to the knowledge base are

performed through the interface functions and all output through the

print-package. These two programs serve two different purposes. The

first program, the Query system, was designed to provide naive users

with a user friendly interaction interface to the knowledge base.

Through menus, it allows the user to traverse the data frame tree,

accessing any information needed.

62

The second program, the Builder system, was designed for use by a more

sophisticated knowledge base builder, and acts as the knowledge base

editor. This program allows the user to traverse the data frame tree,

allowing alteration of values and frames. Unlike the Query system, the

Builder is expected to be used by an individual with an intimate

knowledge of the structure and function of the knowledge base.

These five components comprise the Firesys program structure at this

time. The system was purposely designed in this component fashion to

allow easy changes in knowledge base implementation, and easy changes in

the programs that access it. Because of the clear and specific

interface to the knowledge base, internal structures (implementation) of

the knowledge base can be changed without affecting the programs

utilizing it, and visa versa. This structure allows a high degree of

flexibility, and was instrumental to the implementation conversion

performed by the author for this thesis project.

63

3.4 Frames, Default Reasoning, and Representations2

As described earlier, frame based systems usually are structured to

create a semantic network. Within this network, frame interconnections

represent relationships that frames have with each other. These

relationships often represent a hierarchy. For example, the "Fido11

frame mentioned earlier in this chapter represents a specific instance

of a dog. The 'IS-A' attribute (slot) in the "Fido11 frame indicates a

relationship that "Fido” has with the frame 'dog'. In this case, it

indicates that "Fido" is a dog. That is, "Fido" belongs to the greater

class of things called 'dog* (please see figure 1). Likewise, if we

were to examine the ’dog' frame, we would find that it too has a slot

called IS-A and that Its value might be 'mammal*. Now there are many

creatures that are mammals that are not dogs (i.e. cats, horses, etc.),

and there are many dogs that do not have the name "Fido" (i.e. Bandit,

Spike, etc.). But, of the creatures that are mammals, all share some

characteristics in common. Similarly, not all dogs look like "Fido",

nor do they have that name. However, they all have some 'dog'

characteristics in common.

2The following discussion about frames and default reasoning is based on
information the writer has gleaned from coursework in Artificial
Intelligence and from the following text and paper:

Charniak,E.,McDermo tt, D., Introduction to Artificial Intelligence,
Addison-Wesely, Reading, Massachusetts, 1985.

Greiner, Russell, "RLL-1: A Representational Language Language",
Stanford Heuristic Programming Project, HPP-80-9 (Working Paper),
Computer Science Department, Stanford University, Stanford CA,
October 1980.

64

Cat Dog Horse

Bandit SpikeFido

Key: O Frame

Relationship ("IS-A" link)

FIGURE 1: Frame Inheritance Hierarchy

65

These relationships suggest a hierarchy of attributes related to given

objects in the world. As one travels up the hierarchy, one finds

information that is more general but still common to only the objects

below it. Moving up farther, we reach classifications that apply to

more and more classifications of objects. Likewise, as we move down

the hierarchy, information becomes more specific to narrower

classifications of objects. This narrowing continues until we reach

individual object instances. At the lowest level we have totally

specific information about a particular object, and at the highest,

information that applies to all objects.

An important concept associated with knowledge hierarchies is the idea

of inheritance. The notion is essentially the idea that objects lower

in the hierarchy "inherit" the characteristics of objects that are

higher in the hierarchy (from parent nodes). From the "Fido" example,

we can see that Fido is a dog because his parent node in the hierarchy

("IS-A" link) is "dog". If we wished to find out about Fido’s
characteristics, we would first examine the values of attributes local

to the "Fido" frame. To find out more about what makes Fido a dog, we

would move up to the "dog" frame and examine attributes there. Fido

inherits those characteristics. Likewise, one could again move upward

from the "dog" frame to the "mammal" frame to inherit more

characteristics. In this way, one can obtain a full description of

"Fido".

This form of inheritance is also often called default reasoning. This

is due to the fact that if the characteristic is not specific to the

66

node we are at, then the value defaults to the characteristic contained

in the class to which the node belongs. In this case, the class node is

the IS-A linked node. The system reasons that unless otherwise stated,
the superior class characteristics apply.

The main idea behind a hierarchy is that specific attributes that belong

to individuals are lowest in the hierarchy, while characteristics that
are common to wider and wider groupings of individuals are located

higher in the hierarchy. This structure allows for drastic reductions

in the redundancy that would be present if each individual needed to be

described completely.

However, semantic networks are not necessarily trees, although a

particular one could be. As the name implies, they are networks. This

means that some relationship paths may cycle back to a starting node,

allowing an object to circularly define itself. If so, how can there be

a hierarchy? Well, the network represents a combination of many

hierarchies. If one were to extract only one hierarchy (i.e. biological

classification), one would have a taxonomic tree some what similar to

that seen in figure 1. This capability to combine many configurations

of information relationships is another powerful feature of semantic

networks. The Firesys system uses three such hierarchies.

The production of three hierarchies within the Firesys system was

primarily a result of the group's exposure to RLL-1 [Greiner,1980].

RLL-1 is a special language used for building knowledge bases at

Stanford University. The initials RLL stand for the words

67

Representation Language Language. It allows its user to develop a

representation scheme (language) for frame oriented knowledge bases. It

acts as a system building tool that creates a knowledge base

environment.

The main power of RLL-1 is that it not only allows one to specify the
structure of frames and their relationships, but it also allows one to

specify characteristics of the slots contained within the frames.

Within RLL-1, slots are categorized into types, and each type is

described by another frame. This frame may contain procedural

information. Functions that access the slot can use the associated

procedures to perform appropriate operations on the slot. This idea of

treating slots as basic objects that have their own procedural

capability, was directly incorporated into the Firesys system, and forms

one of the three hierarchies.

The slot description hierarchy provides information that the Firesys

system uses to maintain and manipulate the knowledge base. The
hierarchy is therefore part of the system frames and separate from the

actual data. In other words, the slot hierarchy contains system

procedural knowledge.

In addition to the slot description information, the Firesys system

needed to have frame description information. This type of information

moves one level higher, describing frame characteristics, and providing

procedural information associated with frame manipulations. This

information, like the slot description information is grouped into a

68

hierarchy, and forms the second hierarchy of the system. Also like the

slot level information, this hierarchy is contained within the system

frames, as it too describes knowledge base manipulations.

The third hierarchy present within the Firesys system is contained

within the data frames themselves. As noted earlier, this hierarchy

contains no procedural knowledge at this time. It only represents a
breakdown of a mass of information associated with plant species,

ecosystems, and associated fire effects. Each level in the data frame

hierarchy essentially provides a more detailed look at information

specific to the frame above it.

3.5 Firesys Data Frames

As indicated above the Firesys data frames form a hierarchy that is

represented by a tree. The organization of that tree is illustrated in

figures 2 and 3* The root of the tree is a permanent frame called

’’Superior". Currently, all entry to the knowledge base is performed by

accessing this frame. It contains pointers to the primary components of

the knowledge base structure. This frame serves no purpose other than

to bind the portions of the system together and to provide a uniform

entry point.

There are two primary information components of the data frame portion

of the knowledge base: the ecosystem level information, and the species

specific information. The species side of the knowledge base tree

69

Superior

Species

Fire
Adaptive
Traits Value And Use,

DistributionAndOccurrence

Fire
Effects

Botanical
Ecological
Traits ^

Specific
Fire

Effects
Specific
Fire

Effects
Specific
Fire

Effects

Key: C D Fra» «

Relationship (Component link)

O Multiple occurrences of frames of
the same type and substructure

Figure 2: Data Frame Structure of Species side of
Knowledge Base

Superior
70

Sagebrush
Ecosystem ,

Condition
And

Trend ^
Productivity Fire Ecology)

Cover Type

Fire Ecology
And EffectsValue And Use Habitat Type

Fire
Effects

' Management >
Considerations

Key = o Frame
Relationship (Component link)
Multiple occurrences of frames of
the same type and substructure

Figure 3: Data Frame Structure of Sagebrush side of
Knowledge Base

71

contains information organized by plant species (please see figure 2).

There are multiple instances of species type frames within the knowledge

base, and each is directly accessible through the "Superior" frame.

Species frames additionally have Subframes, each of which contain more

specific information about that species.

A species frame contains the species scientific name, common names, life

form, some other general information, and pointers to subframes

containing information specific to particular domains. Each species

frame has the same type of slot structure and the same type of

subframes. Each species frame instance has its own subframe instances
associated with it. For example, every species frame has a slot named

"Value And Use" which holds the name of the frame containing the
information associated with that domain that is specific to that

species.

Likewise, a subframe might also have its own subframes. Within the

current structure of the species side of the knowledge base, only the

"Fire Effects" frame has subframes. The "Fire Effects" frames contain

general statements about fire effects specific to the parent species.

The "Specific Fire Effects" subframes contain more detailed information

that is specific to actual burns of different severity performed at

different times of the year.

As one can see, more specific information is stored lower in the tree.

This is consistent with the hierarchy description provided earlier, and

might lead one to believe that an inheritance hierarchy exists.

72

However, the inheritance utilized at this time by this side of the

knowledge base is minimal. The only inheritance that occurs is

associated with the species name that a subframe identifies itself as

possessing. All subframes of a species inherit the species scientific

name. This name is utilized when the related subframe information is

displayed so that a user knows to which species the information is
related.

Similarly, the ecosystem side of the knowledge base contains information

grouped by level of specificity with regard to ecological groupings of

plants (please see figure 2). One enters the sagebrush ecosystem

portion of the system by directly accessing it from the "Superior*1

frame. There is only one sagebrush ecosystem frame. At this level,

information that applies to the ecosystem in general can be accessed.

More specific information about foliage productivity, condition and

trends, and ecosystem level fire ecology can be accessed by moving to

one of the immediate subframes. Additionally, the ecosystem can be
further broken down into cover types of which it is composed.

Cover types provide yet another level of greater specificity of

information. Like species, there are multiple instances of cover types

(please see figure 3)* The user can choose a cover type from the

ecosystem frame, and then access this more detailed information. Again,

yet more detailed cover type specific information (Value And Use, and

Fire Ecology and Effects) is available in immediate subframes.

73

Cover type specific information can be subdivided even farther. Under

cover type, information has been grouped into habitat type subdivisions.

Like moving from the ecosystem frame to the cover type frame, the user

can proceed from a specific cover type to a specific habitat type. At

this level, habitat specific information is available. Also available,

is yet more specific information regarding habitat management and fire

effects. This information currently represents the most specific level

of information accessible.

An important point that should be stressed here is the flexibility of

the system. Over the past year, the Firesys system has under gone many

changes. The frame structure utilized has allowed these changes to be

performed without excessive effort, and insures that future

restructuring and modification is possible. This capability is the real

power of this system. When one compares it to standard data bases, one

finds this to be the case.

3.6 Firesys System Frames

The key feature of a frame oriented knowledge base is its inheritance

capabilities. Although limited within the data frames, the system's use

of inheritance is heavily imbedded within the system frames. As

mentioned earlier, the system frames are composed of two inheritance

hierarchies. One being frame oriented, and the other slot based.

74

The frame oriented hierarchy provides a means by which information, both

descriptive and procedural, about different kinds of frames can be

stored in a central location within the knowledge base. As one can see

from figures 2 and 3> there are Currently eighteen different types of

frames. All but five of these frame types have multiple instances. For

example, a species type data frame exists for each plant species that

was entered into the system. For each of these species data frames,

there are five subframes, each of a different type. One of the

subframes (Fire Effects) is additionally allowed to have multiple
subframes of its own. Therefore, except for the 'Superior1, 'Sagebrush

Ecosystem', 'Productivity', 'Condition and Trend', and 'Fire Ecology'

frames, each frame type has many copies that contain different values

and are associated with different super and subframes.

For each of these frame types a frame descriptor was created (called a

meta-frame). All information describing a frame of a given type and the

procedures used to manipulate that frame are stored within this frame

descriptor. In this way, information that is common to frames of one

type is stored in one location. The actual frame instances contain only

the values that are specific to it, and a value identifying its type.

Access to frame level information is always performed by directly

accessing the desired frame instance. For instance, if one wanted to

75

know the value of a species' name, one would request the specified frame

to give the caller the value stored in the 'SPECIES' slot:

(get-data-frame-slot 'species4 'SPECIES)

Such a call would return a value like "Sitanion Hystrix". However, if

the information desired was not a value specific to the 'species4'

frame, the system will automatically go to the frame descriptor for this

type frame to retrieve the needed information. As illustrated in figure

4, a call to retrieve the list of slots that are valid in a species

frame would first cause a search of the specific data frame. Not

finding the needed value there, the system would automatically search

the meta-frame (frame descriptor) associated with the data frame for the

value. In this case the needed list is located and returned. If the

value is not found in either place, an error message is returned. As

can be seen, this hierarchy is only one level deep.

The second hierarchy, the slot oriented one, is similarly structured.

In this case, however, the type of information retrieved is primarily

procedural in nature. The slot descriptor frames contain information on

how to display a slot and its value to the screen, and on how to add and

delete values to and from a slot. If one wished to display a slot and

its value on the screen, one would retrieve the procedural code stored

76

Species Meta-frame

SLOT-LIST(
(SPECIES

FIRE-EFFECTS))
QOERY-DISPLAY(...)

d o lo —fro m e—slot 'species^ ’SLOT—LIST)

seorch nrteio—from®
for 5oeci«g iyoo frames

species4" Frame
FRAME-TYPE(species
SPECIES("Sitanion

Hystrix")

Fire-Effects(“fe3“)

Figure 4: Search sequence performed when slot value
is requested and not resident in data frame

(Note: All species frame identifiers are retrieved
from a name table contained in the Superior
f r a m e)

77

in the slot descriptor frame and apply it to the given data frame. As

an illustration take the following function call:

(funcall
(get-slot-descriptor-slot ‘SPECIES 'QUERY-DISPLAY)
current-frame-name)

This Lisp function call would cause the code for displaying a slot in a

format that the Query portion of the system needs, to be retrieved from

the SPECIES slot descriptor frame. It then would execute that code

using the current frame identifier. This code knows how to retrieve the

data value from the data frame and then how to display it, with a

heading and properly formatted.

For each unique slot name in the system there is a corresponding slot

descriptor. However, many of the slots hold the same type of

information and require the same procedures for manipulation and

display. It would be highly redundant to house the same code in each

slot descriptor frame. To avoid this redundancy, six groupings of slot

types were identified. Slots could be classified according to their

contents. Slots were found to contain:

1) single values (atom slots)

2) lists of values (list slots)

3) text (text slots)

4) heading text only (header slots)

5) single frame identifiers (pointer slot)

6) lists of frame identifiers (pointer list slots)

78

Based on these six classifications, slot class frames were constructed.

Like the meta-frames (frame descriptor frames), the slot class frames

contain information common to all slot descriptor frames of the same
classification.

When making a call to retrieve descriptive and/or procedural information

related to a slot, the system follows the same steps as it does with

data frames. It first looks for the desired slot and its value in the

slot descriptor frame. If the information is not found there, a search

is made of the slot class frame. Figure 5 illustrates this process. If

one wished to display the ’SPECIES’ slot of the 'speciesV frame in

Query format, the following call would be made:
(funcall
(get-slot-descriptor-slot 'SPECIES ’QUERY-DISPLAY)
’species4)

The get-slot-descriptor-slot portion of the call would first cause the

system to examine the Species slot descriptor frame for the Query-

Display slot. Not finding the Query-Display slot there, the system

would then examine the slot class frame of class 'atom'. Like the data

frames, the slot descriptor frames contain a slot identifying their

type. In this case, as seen in figure 5, the SPECIES slot is of type

'atom'. A search of the atom slot class frame locates the Query-Display

slot, and the code contained there is returned.

The need to apply the code returned to the identifier of the currently

accessed frame points out an important difference between the frame

oriented hierarchy and the slot oriented one. Within the frame

hierarchy, any executable code found is automatically executed. In the

79

' species^" Frame

FRAME-TYPE C species)
SPECIES ("Sitanion

Hystrix")

Fire-E££ects
(“fe3")

Atom
Slot Class Frame

Query-Display{
Code to
display
an “atom“
type slot ...)

^9i-glot-degcnptor-giot
'Soeciflsi ’O UERY-O ISPLAY)

Species Slot
Descriptor Frame

I 9 9 0 rch glot c to M frgme for otom
tyo® ?lot

Slot-TypeC atom
Slot-Mame

(“SPECIES")

Figure 5: Search sequence performed when slot value
is requested and not resident in slot
descriptor frame

(Note: The name of the current slot being accessed
in the data frame is used to retrieve the
slot descriptor frame information)

80

slot hierarchy, the caller must explicitly execute the retrieved code.

This execution was left to the caller in the case of the slot hierarchy

due to the need for extreme flexibility. The kinds of operations

performed on slots varied to a much greater extent than did frames, as

did the information that might be passed to the retrieved code.

However, in the writer's opinion, this flexibility did not prove to be a

requirement. The structure of the slot descriptor calls could be made

identical to those of the frame descriptors. In any case, except for

this difference, the structures are identical.

Going back to the semantic network structure described earlier, one can

now perhaps see the usage of default reasoning within this system. The

data and slot descriptor frames form the lowest levels in each of their

respective hierarchies. Information is initially sought at that level.

Having not found any instance-specific information, the system then
defaults to utilizing information specific to the class to which the

instances belong. In this case, meta-frame or slot class frame
information is used. The instance inherits the class characteristics.

3.7 Relationship to Object-oriented Concepts

The central idea of this thesis is that the frame based system which the

Firesys team developed is also an object-oriented one. Others have

noted that there is a great resemblance between the "LISP-AI" notion of

frames and object-orientation [Rentsch,1982]. In this section,

similarities will be drawn between object-oriented concepts and frame

81

based representation systems. In particular, similarities between the

Firesys system and object-orientation will be shown.

In Chapter 2 of this paper, four main concepts were presented that were

associated with object-oriented programming. These concepts were the

object, the message passing system, the class system, and the class

hierarchy inheritance. All of these components are found within the

Firesys system.

An 'object' was defined as an entity containing some private memory and

having procedures associated with it [Goldberg,19831• A crucial
property of an object is that its private memory can only be manipulated

by its associated procedures [Goldberg,19831. If one examines the
concept of the frame, some similarities to object-oriented concepts are

found. A frame is composed of slots. Slots act as the frame's private
memory. Slots can contain executable code (procedures) that are

specific to manipulations of that frame. These frame features parallel

those of the object^. However, frames do not strictly enforce these

concepts. The stored procedures may not be the only means for

manipulation of slot contents (private memory). Slots may be accessed

directly, without necessarily using the frame specific procedures. Even

so, if the system builders wish, they can incorporate these conventions

into a frame based system.

^Application of the concept of the 'object' is not only restricted to a
frame. System builders can also conceptualize slots as objects in their
own right!

82

Within the Firesys system, some of these conventions were applied.

Frames are treated as entities with frame specific internal values and

associated manipulation procedures. Although slot contents can be

examined without usage of frame or slot specific procedures, alteration

of slot values are performed solely by associated procedures. Frame

specific procedures for displaying frame contents are also present.

Except for the direct access capability, this set-up directly parallels

the object description provided above. If the slot accessor functions

had been stored in a higher level system frame, then this exception
would be eliminated.

Within the Firesys system we went one step farther. Mot only are frames

treated as objects, but slots are likewise conceptualized as objects.

Slots have associated with them procedures and private values.

Procedures are associated with slots which provide a means for altering

their contents and displaying the slot itself. Additionally, slots have

a value for the string to be used when displaying their name as part of

the display of the slot. Access to these values and procedures is

confined to the same restrictions as the frame accesses.

Another important feature of an object-oriented system that was not

mentioned is the idea that objects should act as animate (i.e. active)

entities [Rentsch,1982]. This characteristic can easily be incorporated

within a frame based system by forcing accessed frame associated

procedures to automatically execute. In this way, frame accesses appear

to make computations occur as if initiated by the object itself. The

frames then appear to be animate.

Within the Firesys system, frame accesses to slots containing procedural

information cause immediate computations to occur, without any

additional intervention on the part of the caller. This is precisely

what makes objects appear animate. Our frames are therefore object-like

in their appearance.

This similarity to objects fails with the current structure of the slot

hierarchy. Unlike the Firesys frames, accesses to slot associated

procedures does not automatically initiate computations. The caller is

forced to initiate the computation himself. This leaves an appearance

of slots as static entities rather than animate objects.

Again, the primary difference between a frame and an object is dependent

upon how strictly certain conventions are followed. Within an

object-oriented environment, the concept of the object as an animate

entity, packaged with hidden private memory, accessible only through

object associated procedures, is strictly enforced. Frame systems

provide a high degree of flexibility, and therefore do not strictly
adhere to these concepts unless the system builders decide to do so.

Within the Firesys system, the structure satisfies some of the standards

for an object-oriented environment, but does not fully meet all the

characteristics of defining objects. Changes could easily be made to

the system to significantly increase its object-oriented character.

The second primary concept of object-orientation is that of a message

passing system. This message passing system is essentially the means by

which a user interacts with the objects. It is a sort of communication

84

system. Some signal is passed to the object and a message is returned.

Within a frame based environment, this would involve the means used to

access and execute slot values and procedures. The message passing

system would be the functions used to access the frames themselves.

Again, the important feature here is the level of animation of the

object receiving the sent signal. As mentioned above, to animate the

frames, procedural information would need to be immediately executed

upon access.

Another important requirement of a message passing system is the need

for message passing to be uniform. A frame based system would therefore

require a single function call that would cause values to be returned,

or frame computations to occur. An example would be a 'send* function:

(send <object> <message selector>)

where the function would send an identified object a message selector.

The message selector would cause a slot access to occur. The slot value

found would be returned or executed if it were a procedure. This send

function would act as the uniform interface to the frame network,

accessing slots and executing any procedural information found.

Optionally, the message selector could also contain arguments to be

passed on to any procedures found.

85

The Firesys system attempts to provide these features with its interface

functions. The 'get-data-frame-slot' function provides essentially the

same capabilities as those of the send function noted above:

(get-data-frame-slot <frame-id> <slot-name>)

This function also executes any procedures found when it accesses the

named slot. However, it does not allow for any passage of arguments to

the found procedure. All executed procedures are passed the same

argument, the frame-id.

If this were the only function used to access data in the frames, then

it could be claimed that the interface was uniform. However, this is

not the case within the Firesys system. There is a second function used

to access slot specific information, the 'get-slot-descriptor-slot'

function. This function has the same format as the

'get-data-frame-slot' function:

(get-slot-descriptor-slot <slot-name> <slot-name>)

where the first slot-name identifies the slot 'object' (frame) to access

and the second slot-name denotes the message selector (slot to access).

As noted earlier, this function does not automatically execute found

procedures, and therefore falls short of the specification for a send

type function.

It would be possible, with little effort, to alter and combine the

existing two interface functions to meet the send function requirement.

Frames and slots could be treated as independent objects, each capable

86

of receiving a message selector and having their slot stored procedures

automatically executed. Optional arguments to message selectors could

also be added (this is a standard feature of Common and Franz Lisp).

This would make the interface uniform in character, and allow frames and

slots to act as animate objects.

The interface additionally includes functions for adding and deleting

values from slots, for creating frames, and functions for reading and

writing frame structures from and to disk files. Although part of the
interface, and dependent upon the implementation of the frame base,

these functions really act as utilities for frame and slot manipulation.
These utilities are utilized by frame stored procedures that are

executed upon access, and are really not part of the message passing
system constructed. Within an object-oriented system they would more

likely be methods associated with slot and frame type objects.

The last two primary object-oriented concepts are the ideas of a class

system, and the usage of a hierarchical inheritance system within it.

Described earlier were the frame concepts of semantic networks,

hierarchies within semantic networks, and default reasoning as applied

to these hierarchies. The concept of a hierarchy of frames is identical

to that of an object class system.

Within an object-oriented system, objects are instances of classes, and

classes can be instances of other classes. Values and procedures common

to objects of the same class are stored within the class descriptor.

Elements common to classes of differing types are stored at the higher

87

level class descriptor of which these classes are instances. Likewise,

in a frame system the frames lowest in the frame hierarchy are instances

of the parent frames above them. The parent frames contain information

that is common to its instances. Similarly, information that is common

to parent frames is stored at higher levels in the hierarchy of frames.

Instances contain information that is specific to themselves, while the

frame at the top of the hierarchy contains the most general information

related to all the frames of the hierarchy. Some object-oriented

systems, like frame based semantic networks, can contain multiple

hierarchies.

Default reasoning is another important feature of frame based semantic

networks that is also present in object-oriented systems. As described

earlier, traits that are common to a grouping of frames are stored in a

frame that is higher in the frame hierarchy for those frames. The
frames that belong to this grouping inherit the traits stored within

this parent frame. Likewise, within an object-oriented environment,
values and code that are common to a group of objects are stored within

the class that the object is a member of. The objects inherit these

values and code from their class. The more general information is just

inherit from locations higher in the hierarchy within both systems. The

message passing system of an object-oriented environment provides the

capability of inheritance. Builders of a frame base system would

similarly have to provide this capability in their knowledge base

accessing functions. This is of course exactly what is done when

default reasoning is implemented.

88

The Firesys system provides these same concepts within its system frame

hierarchies. As described earlier and illustrated in figures 4 and 5,

the system frames have an inheritance hierarchy. Data frames form the

instances of the frame oriented system. The meta-frames are the classes

next higher in the frame hierarchy. Similarly, slots are the instances

of the slot hierarchy. The slot descriptor frames form the first level

of classes in the slot hierarchy, and the slot class frames the highest

level. The interface functions mentioned previously have incorporated

into themselves the capability to search upward through these

hierarchies for the information requested.

It is hoped that this comparison has shown the reader the great

similarity between object-oriented systems, frame based semantic

networks, and the Firesys system. The reader should also understand

that there is only a similarity and not an identity. Frame based

systems are not purely object-oriented, nor is the Firesys system.

However, many of the basic concepts of object-orientation are present.

Noted within the preceding text are some changes the writer suggests

would make the Firesys system more object-oriented. To these previous

changes should be added two more. Within both frame hierarchies no root

node in the trees currently exist. At this root it would be expected to

find values or procedures that are common to all nodes below it in the

hierarchy. To this end, the writer suggests that all the system

utilities that are frame oriented be stored and accessed from a new

frame that is superior to the meta-frames. Additionally, all utilities

that are slot oriented (i.e. the slot oriented interface functions)

89

should be contained within a similar frame that is superior to the slot

class frames. The addition of these new highest class frames, and the

alteration of the frame/slot accessing interface functions will bring

the current Firesys system much closer to being an object-oriented one.

Chapter 4

THE CONVERSION INTO FRANZ LISP FLAVORS

4.1 Conversion Goals

In the previous chapter, a comparison of the current Firesys system

structure was made with what would be expect to found in an

object-oriented system. In this chapter, a description will be provided

of the attempt made by the author to convert the Firesys system into an

existing object-oriented environment. As reported earlier, the Firesys

code is written in Franz Lisp. The latest version of Franz Lisp has

included in it an object-oriented environment called Flavors. Flavors

provides the tools need to fully implement object-oriented concepts.

The attempted conversion produced a transformation of the existing
custom data structures and data maintenance routines that make up a

portion of the Firesys system into the Flavors syntax.

The comparison provided in Chapter 3 suggested that the current Firesys

software is not fully in a form that could be called object-oriented. A

number of changes in the Firesys system structure were recommended.
This state of affairs points to two possible approaches to implementing

the conversion. The conversion could involve a direct mirroring of the

current Firesys system structure. If the Firesys system is

object-oriented in character, then such a mirroring of structure should

prove simple to implement. The second approach would be to restructure

90

91

the Firesys system to make it more object-oriented, incorporating

changes suggested in Chapter 3. This might not be as easy as straight

mirroring of the current structure, but might have the additional

benefit of producing some new configurations that could prove to be
useful additions to the Firesys system.

The approach taken was to do both. Initially, the first question to be

addressed was whether the conversion into Flavors was at all possible.

Direct mirroring of the Firesys structure in Flavors could answer this

question. The question as to whether changes could be made to the

existing structure to make it more object-oriented could be answered by

later modification to the initial Flavors implementation.

There were three changes that the author decided to make to the

developed Flavors implementation. First, as noted in Chapter 3> slots

within the Firesys frames were conceptually being treated as objects,

but actually treated as static entities. Unlike data frames, slot

values were not created and manipulated as individuals. Slot values

were just part of a data frame. Even so, slots did have a class

hierarchy structure, with manipulation information stored in slot and

slot-class descriptor frames. This separation of slot values from the

slot object structure results in an incomplete object-oriented

character. Slot values should be part of the local and private instance

variables that belong to individual objects. One change to the

structure to be made would be the conversion of slots to full object

status by giving ownership of slot values to the slot objects.

92
The second change relates to the lack of uniformity in the object access

functions. As mentioned in Chapter 3> there are separate functions to

access data frames and slots. The data frame accessing function

(get-data-frame-slot) has the built in capability to search the frame

oriented hierarchy for needed information and procedures. It also will

automatically execute procedural code found. Likewise, the slot
oriented access function (get-data-frame-slot) will search the slot

oriented hierarchy for needed information. However, it does not execute

found procedural code. The caller must evaluate the returned code if

appropriate. This condition seems to have resulted from the incomplete

treatment that slots receive within the current Firesys structure.

Elimination of the necessity for two different functions for object

access could be accomplished when the slots are actually treated as full

objects. This elimination of the slot specific access function will

result in a uniform communication (calling) protocol.

An important point here is the fact that Franz Lisp Flavors, being an

object-oriented programming environment, provides the needed message

passing function. It goes by the name of 'send' and has the

characteristics of the send function described in Chapter 3* Therefore,

usage of the Flavors environment will solve the problem of a lack of
uniformity in the calling protocol found within the Firesys system.

The last change that the author wished to incorporate had to do with the

utility functions. The comparison performed in Chapter 3 mentioned the

fact that there are functions that act as utilities for frames and slots

that reside outside the frame structure. Referring to the description

93
of what is to reside in the highest frames or classes of a system, it

can be noted that code and data that is most general and applicable to a

large group of subframes (subclasses and instances) is to be placed

there. By definition the frame utilities are general to all data

frames, as are the slot manipulation utilities. These utilities should

then reside in a new frame (superclass) within each hierarchy. A

'master' meta-frame should contain the frame utilities, and a super slot

frame (superclass of the slot-class frames) should be created. This

addition will be the last one proposed.

4.2 Limitations on the Conversion Implementation

This conversion is at heart simply an academic exercise to examine a

hypothesis and to investigate the plausibility of making object-oriented

modifications to the existing Firesys system. Therefore, it is not a
necessity that all portions of the system be converted and/or altered.

The main issue at hand is whether the structure of the knowledge base is

actually object-oriented and if its implementation can be converted into

that of the Franz Lisp Flavors environment. This hypothesis suggests

that any effort at conversion should then be centered upon the knowledge

base and its accessing functions. Any changes in implementation should

be totally transparent to programs external to the knowledge base that

are accessing it (i.e. the query and knowledge base editor programs).

The author has been intimately involved with three particular portions

of the Firesys project. Specifically, the design of the knowledge base,

94
the design and implementation of the knowledge base interface functions,

and the design and implementation of the query system. Although the

author did implement the slot accessing utilities, he has not been

involved in the construction of any programs that utilize functions that

alter slot contents. Specifically, he has not done any work on the

knowledge base editor program. Because of this lack of experience, it

seemed appropriate that the author only perform the conversion and make

changes to those parts of the knowledge base and interface functions

that were directly related to the query portion of the system.

These restrictions result in the conversion being limited in scope. The

conversion will include the transformation of the knowledge base into

objects, with frames being unitary objects composed of slot objects.

Additionally, meta-frames will be converted into frame class descriptors

with a hierarchy. Slot descriptor and slot-class frames will likewise

be converted into a hierarchy of slot object classes. Code stored

within these classes will only relate to the displaying of these system

objects (query portion). Any code that involves the manipulation of

slots (addition and deletion of values) and code that relates to removal

and addition of frames will be excluded.

In addition to the the above restriction, the author has included two

more. Figures 2 and 3 presented in Chapter 3 illustrated that the data-

frame portion of the Firesys system is composed of two primary

components: the species related frames and the sagebrush ecosystem

frames. With regard to the system frames (meta-frames and slot

descriptor frames), both components have very similar structures.

95

However, the species portion of the system has received the most

attention, and has the most understood and currently stable structure.

Additionally, this side of the system has the most data inserted into

its structure. All levels of the data hierarchy have frames in

existence. This situation does not exist in the Sagebrush Ecosystem

side of the system. Therefore, conversion will also be restricted to
code and data that relates to the species side of the knowledge base.

As the conversion progressed, it became evident that only one knowledge

base accessing function would be needed. The Franz Lisp Flavors send

function would work appropriately for all object accesses. However, the

conversion was to be restricted to the knowledge base. The query

program was to experience no changes in its interface to the knowledge

base. In order to accomplish this transparency, the get-data-frame-slot

function was to remain the same, performing the same actions. This

required that the get-data-frame-slot function be recoded using the

Flavors send function. Additionally, it required that there be no

addition of parameter passing. The conversion, therefore, did not

include the addition of parameter passage to the procedural code found

when knowledge base accesses are performed.

96

4.3 The Conversion to Franz Lisp Flavors1

The conversion process was approached as one of iterative enhancement.

A series of small conversions were attempted first. As each conversion

was accomplished and tested, conversion of a new portion of the system

was attempted. This process was repeated until all the proposed

conversions were completed.

The first portion of the system to be converted was the frame oriented

part of the knowledge base. This involved the conversion of existing

data frames and meta-frames (data frame oriented system frames) into

flavors objects. Conversion of slots into objects was reserved for

later conversion. The new frame objects would utilize the existing slot

descriptor hierarchy.

The conversion process involved making data frames into Flavors objects.

Like most object-oriented environments, Flavors makes individual objects

instances of object classes. A class descriptor must first be created

from which these object instances can created. Within Flavors, a flavor

is the class descriptor. The defflavor function is utilized to create a

1The Franz Lisp Flavors code for the conversion can be found in the
appendix of this paper.

97

flavor definition (Appendix A contains all the Franz Lisp Flavors code

written to perform the conversion):

(defflavor species (FRAME-TYPE
SPECIES

•

SUPERIOR-PARENT)
()
igettable-instance-variables
:settable-instance-variables)

This definition states that a flavor (frame descriptor) named 'species'

is to be defined. It indicates that objects of this flavor will have
instance variables FRAME-TYPE, SPECIES, ..., SUPERIOR-PARENT, no mix-in

(mix-in's will be described later), and that the values of these

instance variables can be retrieved and set by specific calls to their

names (messages sent to an instance of the 'species' flavor with the

instance variable name as the message selector).

An instance of this flavor is created by applying the 'make-Instance'

function to the flavor 'species'.

(setq species4 (make-instance 'species))

This Lisp expression sets the value of the Lisp object (a global

variable) 'specieŝ ' to one that identifies an instance of the flavor.

For each species data frame, an instance of the species flavors was

created. To set a value, say the SPECIES slot value, a message is sent

98

to an instance of the species flavor to set its instance variable to the

appropriate value:

(send species4 :set-SPECIES "Sitanion Hysterix")

This communication expression will set the value of the SPECIES instance

variable in 'species4' to the value "Sitanion Hysterix". To retrieve

the value stored in the SPECIES instance variable one would use:
(send speciesM :SPECIES)

This message call would return the value "Sitanion Hysterix". A special

function was written that performs the species object creation and this

value setting process for each species data frame that exists in the

knowledge base. This function served the purpose of converting the

current data structures into the flavors data structures.

Values stored within the instance variables are to be instance-specific

values. Any procedural code that is shared by instances of 'species'

objects is to be stored at the 'species' flavor (class descriptor)
level. This storage is performed by defining a 'method' that applies to

all 'species' objects:
(defmethod (species :SLOT-LIST) ()

'(FRAME-TYPE SPECIES ... SUPERIOR-PARENT))

This Lisp expression causes a procedure definition by the name of

':SLOT-LIST' to be associated with the flavor 'species'. When called,

it will return a list containing the above indicated values. A method

was defined for each each procedural value that was originally stored

within the meta-frames of the original Firesys system. This included

functions utilized to display the contents of the frame by the query

program.

99
The definition of the 'species' flavor and associated methods, and the

creation of 'species' instances was part of the first step in converting

the Firesys system into the object-oriented Flavors environment. The

remaining species related data frames also needed to be converted. Like

the process performed on the 'species' frames, a flavor was defined for

each subframe of the species level frame, appropriate instances created.
Any associated methods for each were also defined. Once this conversion

was accomplished the existing frame format data frames were removed from

the system. All species related data frames were then coded as flavors

objects.

In order for the conversion to this point to appear transparent to the

query program, the 'get-data-frame-slot' interface function had to

remain the same with regard to its behavior. The data frames were now

Flavors objects and only accessible through the use of the 'send'

function provided by the Flavors environment. The 'get-data-frame-slot'
function needed to be recoded. This code revision was performed. It

involved two changes to the send function. To retrieve a value
'get-data-frame-slot' used the identifier of a frame (i.e. species4) to

access the related frame. It did not care about the value of the

identifier. On the other hand, the send function needed to know the

Flavors-generated identifier of a specific object. This value was

stored as the value of the original frame identifier (i.e. the value of

species4). The new 'get-data-frame-slot' function would have to take

this indirection into account. This required that the identifier be

evaluated before it was used with the send function. Looking back, it

100

might have been better to scrap the usage of the original frame

identifiers. However, since the conversion was performed incrementally

and experimentally, there appeared to be no other choice. If a total

conversion were to be performed in the future, usage of the Flavors-

generated object identifiers would be highly recommended.

The new function also needed to deal with the case where no value had as

yet been defined for a slot (instance variable). In this case, the

previous definition of the ’get-data-frame-slot' function caused the

value 'no-entry* to be returned. The send function would return 'nil'.

A simple check for this condition was also added.

With the conversion of the data frames and the revision of the

'get-data-frame-slot' function, the system could now be tested. It

worked flawlessly. As far as the query program was concerned nothing

had changed. The new implementation was totally transparent to it.

This success set the stage for the next level of conversion.

Slots were still being treated as before. They were essentially static

value holders. A hierarchy did exist, however, that held slot specific

procedural code. To convert the slots into the Flavors environment

would mean the creation of slot objects. For each slot in the species

side of the system, a flavor was defined. The flavor definitions needed

only contain procedural information; no values were needed to be stored.

To be consistent with the previous implementation, however, the TYPE

slot was included as an instance variable (even though it served no

purpose). Any procedural information that was specific to a slot was
coded as a method associated with the flavor of the slot.

101

There was an important difference between the slot implementation within

the original Firesys system and the new Flavors implementation. Slots

did not exist as objects (actual instances of frames) in the original

implementation. They were really virtual objects. In the Flavors

environment, access to methods can only be performed by sending a

message to an object, a flavor instance. This fact required that slot

objects exist. Virtual slot objects could not be used. One dummy slot

instance was therefore created to allow access to the slot flavor

methods. This modification still did not address the issue of the

separation of the slot value from its slot object. A further

modification which does answer this problem is discussed later.

An important difference also existed between the structure of the frame

oriented system frames and the slot oriented system frames. Data frames

really only utilized one level in their hierarchy. When information was

not found In a data frame, the information was searched for one level

higher in their hierarchy, at the meta-frames. If slots are treated as

object instances, one finds that there are two levels in the slot

hierarchy. A search is first performed at the slot instance. It then

proceeds to the slot descriptor level, and finally to the slot class

level. This hierarchy needed to be reflected in the flavors structure.

The first level is easy, just create slot flavors that correspond to

slot descriptor frames. But how does one implement the next higher slot

class level structures? This is where the concept of mix-in's applies.

A mix-in is a flavor definition that another flavor definition can

include as part of itself. All characteristics of the mix-in flavor are

102

included as secondary characteristics of the currently being defined

flavor. For example:

(defflavor SPECIES ((type 'atom)) (atom)
:gettable-instance-variables
:inittable-instance-variables)

In this flavor definition one instance variable named 'type' is defined

which has its value initialized to 'atom'. Note that the mix-in field

has the value 'atom1. This indicates that all instances of SPECIES
inherit the instance variables and methods of the flavor atom. Methods

are first searched for at the SPECIES flavor level first. If the named

method is not found, the search proceeds to the first mix-in flavor,

namely the atom flavor in this case. The mix-in field might also

contain other flavor names, allowing multiple hierarchies to be

associated with the SPECIES flavor, but this feature is not applicable

to the slot hierarchy at this time.

The atom flavor definition needs no instance variables, and has no

mix-in's. It looks like this:
(defflavor atom () ())

This seems to define nothing. However, it does. Although there are no

variables, the definition does allow methods (procedures) to be

associated with the atom flavor. These procedures can then be utilized

by instances of flavors that use 'atom' as a mix-in flavor. This

structure allows the slot hierarchy to be constructed just as it was in

the original Firesys structure, within the new Flavors structure.

This arrangement was implemented by creating flavor definitions for each

slot descriptor frame in the original system. Flavors were also defined

103

for each slot class frame. Where the slot type was an atom, that slot

class flavor was added as a mix-in to the applicable slot descriptor

flavor definition. The same was done for all slot descriptor flavors,

but adding the mix-in of their correct type (i.e. list, text, etc.).

Methods were defined for all slot class flavors that defined procedures

for the display of slots of the given type. An example is the procedure

for displaying a slot name and value of type atom:
(defmethod (atom :display) (value)
(let ((display-list

(cons (send self :name)
(cons M

(cons value
(list 'NL ’NL))))))

(print-slot display-list 'atom)))

This method definition allows the caller to send a message to the

instance of the slot that is an atom (i.e. SPECIES!) to display itself.
(send SPECIES1 :display "Sitanion Hysterix")

The method above defines a list of items that is needed by the

print-package to print a slot and its value to the screen (display-

list). This list is then passed as a parameter to the called function

'print-slot'. The print-slot function is then executed, displaying the

slot.

The reader should take note of the two important features of the method

definition for ':display'. There is a parameter named 'value' being

passed to the method. This passage of parameters directly parallels

what the function 'get-slot-descriptor-slot' did in the original

implementation. 'value' contains the value found in the slot of the

instance variable (i.e. SPECIES slot) in the data frame, and it is the

104

responsibility of the caller to first retrieve and then pass this value

to the method. Within the existing system all calls to the

'get-slot-descriptor-slot' function for the display of information

(query program) were made from within the procedural code for displaying

a frame. This code was housed in the meta-frames for the respective

data frames. These calls were easily replaced by a 'send* function

call, and being internal to the knowledge base, were totally transparent

to the query program.

The second item to take note of is the usage of a variable named 'self'.

An interesting feature of the Flavors environment is its usage of this

variable. Whenever a message is sent to an object instance, its

identifier is bound to this variable. This allows the object's methods

to reference other methods associated with itself. In the case of its

usage above, it allows the atom method to retrieve the being accessed

slot's print name string from the slot's flavor (slot descriptor) one

level below where the method is defined in the slot hierarchy.

This also points out an important side effect of this conversion.

Within the original Firesys system, when a slot name was printed, the

actual slot identifier was used. Under Flavors, this usage of the

identifier was too difficult. The author was forced to create a new

instance variable within the slot descriptor flavors that contained the

string to be used. This creation of a new slot proved to be a solution

to problems experienced with the original method. The usage of the slot

identifier had created a high degree of coupling between the identifier

used and information printed to the screen. Changes in displayed

105

information (i.e. the slot name) resulted in massive updates of system

components, defeating the flexibility claimed by the system. Addition

of this print string to the slot descriptors eliminated any need to

alter other system code, drastically reducing the aforementioned

coupling.

The conversion to this point essentially mirrored the structure of the

original system within the Flavors environment. Figure 6 illustrates
the system organization. As one can see, there is a direct mapping of

the frame structures into the new flavors and flavors instances. The

system hierarchy has also been preserved through the usage of flavors

definitions and flavor mix-in's. The new implementation within the

Flavors environment is totally transparent to external programs. The

only differences between the original system and the new implementation

is the existence of dummy slot instances, and the usage of a print name
string when displaying the slot and its contents. Otherwise, the

structures are identical. This would suggest that the basic concepts of

frames and frame hierarchies implemented in the Firesys system are

highly similar if not identical to that of object-oriented concepts of

instances and classes.

However, the usage of Lisp atoms as containers for flavor instance

identifiers, and the use of dummy slot instances seems to bypass the

main concept of the object. An object should be identified by one name.

Its value should be an inherent part of itself. To address these issues

the author included some additional modifications.

106

species4

_£
species Frame

Instance
S P E C I E S ('
“Sitanion
Hystrix ”)

species
Meta-Frame

Frame level
code and
information

v a l u e
i> SPECIES

1

Fire-Effects
(f e 8 - H - &

Fire-Effects
Frame

Instance
F ire-Effects

Slots

fe8
v a l u e

5Z_
SPECIES Slot

Instance
ff

name(
"SPECIES”)

Atom
Slot-Class
Descriptor

v ; n
Slot-Class
Level code
and
information

v a l u e

SPECIES Slot
Descriptor

✓-----------
Slot level
code and
information

v a l u e

o Represents a Franz-Lisp-Flavors-generated value
identifies an instance of a Flavors object.
Is a Lisp variable that contains a Franz-
Lisp-Flavors-generated value that
identifies a species data-frame instance.

Figure 6: The original system frame structure as
implemented under Franz Lisp Flavors.

Note: In this organization of the system, frames
that contain values are instances of
flavors. Flavors have been defined for the
slots and for data-frames, therefore both
data-frames and slots represent objects
within this flavors environment. Each
object is still referenced by a named
Lisp atom who's value is the Flavors-
generated identifier. A “print name" slot
has also been added to the slot flavors to
avoid having to pass the slot name. The
slot value must still be passed for display.

that
species4

107

If a frame is to be composed of objects (slots) and not static value

holders, then the values in its instance variables should not be

information values but rather slot object identifiers. Modification of

frame instance variables to hold slot object identifiers will allow the

elimination of the usage of both Lisp atom identifiers, and the need for

dummy slot instances. Instead, frame instance variables will act as

pointers to slot instances which will house the actual value. Such a

reorganization will result in a system that is much more object like.

This reorganization would require two major alterations of the existing

Flavors implementation. First, slot flavors would need to add a 'value*

instance variable to their definition. Second, the

'get-data-frame-slot' function would have to be modified to take this

new level of indirection into account. Value retrieval would now

require that first the frame slot value (instance variable) by sending a

message to the data frame, and second, the value returned (being a slot

object identifier) would be sent a message to return its value.

An added side benefit resulted from these modifications. The need for

the slot method caller to pass the value of the frame instance variable

would no longer be necessary. The slot oriented methods could call

'self' to retrieve the necessary value as needed.
(defmethod (atom :display) ()
(let ((display-list

(cons (send self :name)
(cons "

(cons (send self :value)
(list 'NL 'NL))))))

(print-slot display-list 'atom)))

108

Notice that the new definition of the atom type slot display method no

longer needs the passage of any parameters and that the value contained

in the slot is retrieved be a simple message sent to 'self1.

There is one more modification that the author included in the final

reorganization. As mentioned in the goals and limitations portions of

this chapter, utilities that are used by data frames to display their

contents should be stored in a new meta-frame that is highest in the

frame oriented hierarchy. To meet this goal a new frame oriented master

frame was created. Within the Flavors environment, this frame was

defined as a new flavor that was 'mixed in' with existing frame flavors.

Methods were defined for this new master frame that performed the duties

of the utilities. Utility access was performed by meta-frame level

methods sending a message to 'self', passing the needed parameters.

This alteration served no other purpose than to make the structure seem

a little more object-like. Figure 7 illustrates the new reorganized

structure. Note that species frames are still accessed via Lisp atom

identifiers. This feature could not be changed due to the structure of

the query program and the author's lack of knowledge with regard to

access code which was designed and implemented by another team member.

Figure 8 illustrates how subframe links should be handled under the new

organization. Like frame instance values, the value of slots that are

pointers to subframes should be Flavors generated frame object

identifiers. Under the author's implementation, these slot values

remained Lisp atom identifiers whose values are Flavors generated frame

object identifiers.

109

Frame level
code and
information

species
Meta-Frame

SPECIES Slot
Descriptor

Slot level
code and
information

Master
Meta-Frame
Meta-Frame
Frame level
code and
information

Slot-Class
Level code
and
information

Atom
Slot-Class
Descriptor

SPECIES Slot
Instance

name (
-SPECIES")

v a l u e (
“Sitanion
H y s t e r i a ”)

Fire-Effects

species Frame
Instance

S P E C I E S (o

Represents a Franz-Lisp-Flavors-generated value
that identifies an instance of a Flavors object

species4 Is a Lisp variable that contains a Franz-
Lisp-Flavors-generated value that
identifies a species data-frame instance.

Figure 7: The reorganized system frame structure as
implemented under Franz Lisp Flavors.

Note: In this organization of the system, frames
that contain values are instances of
flavors. Flavors have been defined for the
slots and for data-frames, therefore both
data-frames and slots represent objects
within this flavors environment.
Data-frame values are Franz Lisp Flavors
values that identify slot objects.
Flavors also act as class definitions.
Both the slot and the frame flavors have
a h i e r a r c h y .

110

st3ecies4

species Frame
Instance

S P E C I E S (o)

Fire-Effects
(« T

species
Meta-Fraae

Frame level
code and
information

Master
Meta-Frame

> ...

Meta-Frame
Frame level
code and
information

Pointer
Slot-Class
Descriptor

Slot-Class
Level code
and
information

Fire-Effeets
Slot

Descriptor

Slot level
code and
information

Fire-Effects
Slot Instance
v a l u e (a
n a m e ("Fire-

Ef fe c t s ") Fire-Effects
Frame Instance
Specific-
Fire-Effects («)

References(a)
Represents a Franz-Lisp-Flavors-generated value
that identifies an instance of a Flavors object.

species4 Is a Lisp variable that contains a Franz-
Lisp-Flavors-generated value that
identifies a species data-frame instance.

Figure 8: The reorganized systea frame structure Kith
a subframe example.

Hote: This diagram illustrates how a subframe is
associated vith a data-frame instance. The
value in the slot instance is a Franz Lisp-
Flavors-generated value that identifies the
instance of the associated subframe.

111

4.4 Summary of Results

The attempted conversion demonstrated that the existing Firesys system

knowledge base structure could easily be converted into an existing

object-oriented environment. What seems most amazing to the author is

the ease with which this conversion was accomplished. Having minimal
knowledge about Flavors, the author was still able to easily see the

parallels between the system frame hierarchy in the existing Firesys

system and the flavors concepts. This was a result of the striking

similarity between Franz Lisp Flavors' object-oriented concepts and the

frame based concepts implemented within the Firesys system. This trial

and error conversion process took approximately two weeks of effort.

This ease of implementation and the structural correspondence between

the original and Flavors' implementation directly support the

similarities between frame based systems and object-oriented concepts

illustrated in this chapter. It also suggest the high degree of

flexibility that the object-oriented approach provides.

An important concept to which this project also lent support was the

importance of independence of the knowledge base structure from the

external programs that utilize it. The conversion into Franz Lisp

Flavors produced a totally new implementation of the knowledge base.

The actual data structures and access techniques utilized by the Flavors

environment was and is totally unknown to the author. In spite of the

drastic change in data structures, the knowledge base still behaved

identically with respect to external programs that access it. This

independence highlights the importance of defining system components as

112

self contained packages with explicitly defined interfaces.

Object-oriented environments support and encourage such an approach.

Acceptance of this modularity concept has been demonstrated by this

project to greatly increase flexibility.

Modularity is also represented in the class hierarchy constructed, and

has resulted in a modification flexibility that would not be seen

otherwise. As noted in the preceding sections of this chapter, an

incremental approach was utilized in this conversion. The modularity of

both the original and the Flavors implementation made this incremental

conversion proceed with little or no difficultly. Additions made to the

Flavors implementation also proved to be highly flexible and easily

accomplished because of this object-oriented modularity. The

object-oriented concepts applied within this project have proved to

greatly enhance the modifyability and flexibility of the Firesys system.

Chapter 5

DISCUSSION AND CONCLUSION

5.1 Success or Failure of the Conversion

In Chapter 4, a description of the conversion of the existing Firesys
system into the Franz Lisp Flavors environment was provided. This

description included a statement of goals that were to be achieved by

the conversion. In this chapter, how these goals were met by the

conversion effort will be examined. Additionally, a discussion will be

provided with regard to the pros and cons of utilizing a custom or

packaged object-oriented environment. It is hoped that this discussion

will address the issue of whether the conversion effort was a success,

and whether a packaged object-oriented environment should have been (or

should be) used on the Firesys project.

The first goal to be achieved by the conversion was the direct mirroring

of Firesys frame structures in the Franz Lisp Flavors environment. The

evidence provided in Chapter 4 would suggest that such a mirroring was

easily achieved. The primary frame structures of concern were the

system frames because of their inheritance hierarchy. If one examines

the flavors definitions of the initial conversion and the hierarchy of

system frames, one immediately finds a one-to-one mapping of system

frames to flavor definitions. Flavors act as descriptors for the

objects or subclasses they define, as do the meta-frames, slot

113

114

descriptor frames, and slot class frames for the data frames and slots

of the Firesys system. Each implementation additionally displayed an

inheritance hierarchy that behaved identically. These facts strongly

support the conclusion that the original system has a very

object-oriented character.

There some deficiencies in this object-oriented character however. As

noted in Chapter 4, there is an inconsistency with regard to the

treatment of object instances within the original Firesys system. Data

frames are the main objects of the system. Likewise, data frame objects

are the main instances of the Flavors implementation. Here again, one

can find a direct mapping between data frame objects in the Firesys

system and data frame instances in the Flavors implementation. Where

the similarity fails is when one examines how slots are treated in the
different systems.

Slots are actually treated identically within both implementations.

Each slot is seen as an object. However, within the Firesys system

slots are virtual objects. They are not implemented as object data

structures. Instead, the slot's name acts as a pointer to a descriptor

frame. To implement the original structure within the Flavors

environment, the author was forced to create dummy objects to support

the object behavior and inheritances characteristics.

Looking back on the Flavors implementation, the author can see an

additional way that slot objects could have been implemented. The slot

descriptors might have been created as instances of the slot class

115

frames, with the slot names acting as Lisp symbols whose values were the

slot instance identifiers. This was exactly what was done with the data

frame instances (i.e. ,species4' actually contained the Franz-Lisp-

Flavors-generated instance identifier for a species data frame object).

This modification would make the implementations much more similar.

This change, however, still does not solve the problem of slots really

not being objects. If slots in the original system are objects, then

why do they require a separate accessing function? Additionally, why

does a user of this access function have to evaluate procedural

information found in the slot frame hierarchy? The object-oriented

concept of a uniform message passing system is not met, and the basic

idea of objects as animate is lost. These two features severely damage

the argument that Firesys is object-oriented.

To answer the original question as to whether the Firesys system could

be easily converted into an object-oriented environment, one can look at

the conversion effort and answer with a resounding "YES''. The great

similarity between data frames and object instances, between flavors

(class descriptors) and system frames, and between the two inheritance

systems provides strong support for the notion that frame based systems

are object-oriented. The speed and ease with which the conversion was

accomplished provides added support. However, the need to treat slots

as separate and special objects within the Firesys system detracts from

this conclusion.

116

This leads to the suggestion that parts of the Firesys system might be

altered to eliminate these discrepancies. This effort would require

that slots be treated as real and not virtual objects, and that the slot

accessing function would have to be the same as that used to access any

other object (like data frame instances). This could be accomplished by

having frame instance variables contain identifiers of slot objects

instead of values, and by moving the values into instance variables of

slot objects. This is essentially what the author did in the later

Flavors implementation, and could easily be accomplished in the current

system by adding slot frames. Mow instead of conceptualizing frames as

being composed of static value holders, they can be made up of slot

objects (slot frames) that have their own behavioral and descriptive

characteristics. This would add an additional level of indirection, but

would increase the flexibility of the system with regard to future

enhancements.

Treatment of slots as full fledged objects would eliminate the need for

a separate slot accessing function. The message passing (frame

accessing) system would then be uniform. Slot procedural information

would be automatically executed as it is with frames. Slot object code

that requires special arguments would still pose a problem, however.

Although the author's experiences with the conversion into Flavors

suggests that there are no special arguments, this may not be the case

in other parts of the Firesys system. In any case, this problem can

easily be addressed by modifying the new accessing function to include

117

optional arguments. The latest versions of Lisp generally include this

capacity.

One last addition should be mentioned. The current system utilizes a

good number of functions that access and manipulate frames, but that are

external to them. In an object-oriented system, by definition, code

that manipulates objects must be stored within the class hierarchy to

which that object belongs. Within the current system this is not

totally true. The system should be modified to house these slot and

frame manipulation functions within the respective class hierarchies.

This addition would require inclusion of two new frames into the Firesys

system frame structure. The two new frames would contain frame and slot

utilities respectively, and would act as the root of its hierarchy. All

slot frames would inherit code stored in the master slot frame, and all

data frames the code stored in the master-frame frame.

These additions to the existing system would make it more

object-oriented. They would comprise modifications to the existing

Firesys system as implemented in its custom environment. Implementation

done within a packaged object-oriented environment such as Franz Lisp

Flavors or Smalltalk would also have to take these alterations into

consideration.

5.2 Custom versus Packaged Object-Oriented Environment

118

An interesting question arises now that the conceptual structure of an

object-oriented system has been described. Should a packaged

object-oriented environment be utilized, or should it be built from

scratch? More specifically, should the Firesys system have been built

in a packaged environment and should it now be converted? There are two

primary factors that influence this decision. First is the question of

development time. Second is the question of efficiency and portability.

Building an object-oriented environment can be very time consuming.

Many bugs must be worked through, and each "wheel" must be "reinvented"

from scratch. A packaged system will already have all the tools needed

to implement the object-oriented system. This was exactly the case with

the current conversion effort. As a result, implementation is quite

rapid. However, the system implementers have no idea as to the

composition of the code underlying the packaged system. They must rely

on the integrity and efficiency of the packaged environment's functions.

The efficiency issue may be important to a particular application. The

choice between a packaged environment and a custom built one is very

similar to the choice made by programmers of standard applications with

respect to usage of a high-level or assembly language. Packaged

environments, like high-level languages, provide many of the tools to

build programs quickly and cost effectively. However, their use may

lead to a loss in system performance efficiency. Coding in assembly

language, although not usually cost effective, may allow the developers

119

to increase system performance to its maximum. Likewise, the choice of

building a custom system may result in a more efficient final product.

Within a packaged system little room is left to make modifications to

the underlying functions. If how a particular object-oriented

environment function interacts with the developed system needs to be

altered, it is doubtful that this change could made. The environment's

internal code could always be altered, but with little knowledge of its

inner workings, this could be disastrous. A custom system allows the

developer to "fine tune” the environment to meet the special needs of

the developed system. A packaged environment does not.

Beyond the issues of trust in the environment, fine tuning capability,

and speed of development, lies the issue of portability. If it is the

intent of the developers to produce a system that is not tied to a

specific machine, then the issue of portability brings the decision of

which form of environment to select to the forefront.

Packaged environments are usually machine specific. This may change in

the future, but it seems to be the case now. The Firesys system, from

the start of the project, was intended to run on a machine different

from that on which it was developed. Development of the system would

have been risky if a packaged environment had been utilized. For

example, the Franz Lisp Flavors environment could have been utilized.

The problem is that none of the other machines on which the project was

to be implemented had Franz Lisp Flavors, let alone Franz Lisp. Now,

flavors are not specific to Franz Lisp. There are other flavors

120

implementations under different dialects of Lisp. But, examination of

these implementations of flavors reveals that there is no standard.

Each is different. Another choice would be to implement the project in

a language like Smalltalk. It is fairly well standardized, but

implementations exist only for specialized machines and micro-computers.

The only choice that is really available to object-oriented system

developers who wish to produce a highly portable system is to choose a

development language that is standard across the largest number of

machines. The choice of usage of a packaged object-oriented environment

is really not available in most cases. The Firesys team found that

Common Lisp was a language available on most of the target machines that

provided the symbolic processing tools needed for development of the

Firesys system. On the machines that did not have Common Lisp, it was

found that it could be fairly easily emulated. It is within this Common

Lisp environment that the current object-oriented/frame-based system was
developed.

The developed system proved to be highly portable. When the few system

dependent features were extracted from the system, wholesale transfer of

the system was accomplished with little effort. These features were

essentially restricted to input and output capabilities. Re-coding of

these few features produced a system that is essentially identical to

the original.

121

This port̂ demonstrated the importance of system developer's usage of a

standard programming environment. If the Firesys system had been

originally developed using Franz Lisp Flavors, movement of the system to

another machine would have been much more difficult. It would have

involved the reimplementation of system manipulation functions that the

Flavors environment provides. This is what the custom environment
provided in the first place.

One argument can be raised in favor of the packaged environment,

however. Usage of a packaged environment leaves the system developers’

emphasis on the system to be developed. The presence of object-oriented

capabilities help ensure the consistency of the developed system. A

custom environment cannot insure this consistency, and may distract

developers with environment implementation details. As noted earlier,

the Firesys system has some inconsistencies in its treatment of objects.

Once a system is developed and its structure defined, a custom

environment can then be constructed. The construction of the custom

environment following system development will result in a separation of

the developed system from the developed environment and vise versa. The

environment builders can then focus on portability and efficiency

details without confusing them with structural issues associated with

development of the application. This may have been a better approach to

have taken with the Firesys system.

T̂he port referenced was to a micro-computer and involved additional
alterations to accommodate its memory restrictions.

122

Individuals developing object-oriented applications will have to wrestle

with these development issues. If an application is to be developed for

a specific machine, and development takes place on that machine, then

the usage of a packaged object-oriented environment seems most

appropriate. If the developed product is to be ported to a different

machine then usage of a packaged environment depends upon the

availability of a portable one. The author would like to stress,

however, that usage of a packaged environment may still be very

appropriate for applications to be ported to other machines if it is

used as an initial development tool. Usage will result in the developed

application being more conceptually clean and consistent. A custom

environment can then later be added to the application for easy porting.

5.3 Conclusion

This thesis has presented descriptions of a frame based Fire Effects

Information system, object-oriented programming concepts, and how the

two relate. It was the original hypothesis of the paper that the
developed Firesys frame based system was in essence an object-oriented

one. The proceeding chapters demonstrated that there is a great

similarity between frame based systems utilizing inheritance hierarchies

and object-oriented systems. The conversion of the existing Firesys

system into a Franz Lisp Flavors implementation strongly supported the

hypothesis. Although some discrepancy was found between what one would

expect to find within an object-oriented system and the original Firesys

123
implementation, it is felt that the overall structure of the system is

inherently object-oriented.

Pursual of this thesis project has also resulted in some recommendations

for improvement of the original Firesys system. Upon discovery of some

of the improvements, it immediately became evident that the original

system should include them, and inclusion has started. Specifically,

the addition of the slot "print name" to the slot descriptor frames has

proven to greatly reduce some internal coupling that existed in the

original, and increase the flexibility of the system. Inclusion of

other recommended improvements into the existing Firesys system may also

result in system improvements.

It is felt by the author that the thesis project effort has been very

successful. It demonstrated the equivalence of object-oriented concepts

with frame based constructs in the Firesys system. It also provided a

means for examining the Firesys system, and some improvement

recommendations. It is hoped that what was learned here will assist the
future Firesys developers in their efforts and any other frame based

project developers.

APPENDIX

Code Listing of Firesys Conversion to Franz Lisp Flavors

Object-Oriented Environment

124

125

FLAVOR AND METHOD DEFINITIONS FOR THE CREATION OF
FRAME HIERARCHY SYSTEM FRAMES

• ■k'k-k'k-k'k-k-kieifk'kit-k'k-k-k̂ 'k-k-k-kie-k-k'k-k-k'k-k'k'k̂ 'k'k-k'k-k'k'k-k-k-k'kis-kitft'k'kit-k'k-k-k-k'kick
t

,'Master FRAME — frame utilities definitions
•I***
t

(defflavor frame ()())

(defmethod (frame :query-view-frame-utility)
(header-fun name-string)

(send self (find-symbol (string header-fun)
keyword-package)

name-string)
(let* ((slot-list

(send self :QUERY-DISPLAY-SLOT-LIST))
(display-list (do ((slot-list slot-list

(cdr slot-list))
(displayable-list

nil
(cond

((eq (get-data-frame-slot
self
(car slot-list))

’no-entry)
displayable-list)
(t (cons (car slot-list)

displayable-
list)))))

((null slot-list)
(reverse displayable-list)))))

(cond ((null display-list)
(print-slot

'(NL "Sorry no information available on
this subject!" NL)

"text"))
(t (do ((display-list display-list

(cdr display-list)))
((null display-list) nil)
(send

(send self (find-symbol
(string

(car display-list))
keyword-package))

:display)))))
(readcontinue))

126

(defmethod (frame
:query-species-print-frame-header-utility)

(name-string)
(let ((header (list

(center-line name-string)
'NL
'NL
(string-append "SPECIES: "

(get-data-frame-slot 'self 'SPECIES))
'NL
'NL
HORIZ-BAR
'NL
'NL)))

(print-header header)))

(defmethod (frame :query-print-frame-header-utility)
(name-string)

(let ((header (list
(center-line name-string)
'NL
'NL
HORIZ-BAR
'NL
’NL)))

(print-header header)))

• ***

;SUPERIOR Frame definitions
. A */
(defflavor superior (FRAME-TYPE

SAGEBRUSH
SPECIES-LIST
INTRODUCTION

SUPERIOR-PARENT)
(frame)

:gettable-instance-variables
:settable-instance-variables)

(defmethod (superior :SLOT-LIST) ()
'(FRAME-TYPE
SAGEBRUSH
SPECIES-LIST
INTRODUCTION
SUPERIOR-PARENT))

127
•A**
9

INTRODUCTION Frame definitions
• ■k-k'k'k-k-k-k'k'k'k-k'k'k-k-klfk-k-k-kb-k'k-k'k'k'klfklfk-k-k-kk-k'k'k'k'k'k'k'k'k'k'k'k-k'k-k'k'klt'k-k-k'k-k-k
/

(defflavor introduction (FRAME-TYPE
SPECIES-INTRODUCTION
SAGEBRUSH-INTRODUCTION
INTRODUCTION-PARENT)

(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod (introduction :SLOT-LIST) ()
’(FRAME-TYPE
SPECIES-INTRODUCTION
SAGEBRUSH-INTRODUCTION
INTRODUCTION-PARENT))

(defmethod (introduction :QUERY-DISPLAY-SLOT-LIST) ()
'(SPECIES-INTRODUCTION
SAGEBRUSH-INTRODUCTION))

(defmethod (introduction :QUERY-DISPLAY) ()
(send self :query-view-frame-utility

'query-print-frame-header-utility
"Welcome to the Fire Effects Information System")

t)

128

**

;SPECIES Frame definitions
•A**

(defflavor species
(FRAME-TYPE
SPECIES
SCIENTIFIC-ALIAS
ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
DISTRIBUTION-AND-OCCURRENCE
VALUE-AND-USE
BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS
FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES
FIRE-EFFECTS
SUPERIOR-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod (species :SLOT-LIST) ()
'(FRAME-TYPE
SPECIES
SCIENTIFIC-ALIAS
ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
DISTRIBUTION-AND-OCCURRENCE
VALUE-AND-USE
BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS
FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES
FIRE-EFFECTS
SUPERIOR-PARENT))

(defmethod (species :QUERY-DISPLAY-SLOT-LIST) ()
’(SCIENTIFIC-ALIAS

ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS))

129
(defmethod (species :QUERY-DISPLAY) ()

(send self :query-view-frame-utility
'query-species-print-frame-header-utility

"Species Information")
(detailed-species-info-menu
(get-data-frame-slot 'self 'SPECIES)))

* *’ ©
;DISTRIBUTION-AND-OCCURRENCE Frame definitions
* *

(defflavor distribution-and-occurrence
(FRAME-TYPE
GENERAL-DISTRIBUTION
BLM-PHY SIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES
DISTRIBUTION-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod (distribution-and-occurrence :SLOT-LIST) ()
’(FRAME-TYPE
GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES
DISTRIBUTION-PARENT))

(defmethod (distribution-and-occurrence
:QUERY-DISPLAY-SLOT-LIST)

()
'(GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES))

130

(defmethod (distribution-and-occurrence :QUERY-DISPLAY) ()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility
"Distribution and Occurrence Information")

t)

(defmethod (distribution-and-occurrence :SPECIES) ()
(send
(eval (get-data-frame-slot 'self ’DISTRIBUTION-PARENT))
:SPECIES))

• A *

;VALUE-AND-USE Frame definitions
. *

(defflavor value-and-use
(FRAME-TYPE
DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE
OTHER-USES-AND-VALUES
ENVIRONMENTAL-CONSIDERATIONS
REFERENCES
VALUE-AND-USE-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod (value-and-use :SLOT-LIST) ()
'(FRAME-TYPE
DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE
OTHER-USES-AND-VALUES
ENVIRONMENTAL-CONSIDERATIONS
REFERENCES
VALUE-AND-USE-PARENT))

131

(defmethod (value-and-use :QUERY-DISPLAY-SLOT-LIST) ()
'(DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE
OTHER-USES-AND-VALUES
ENVIRONMENTAL-CONSIDERATIONS
REFERENCES))

(defmethod (value-and-use :QUERY-DISPLAY) ()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility
"Value and Use Information")

t)
(defmethod (value-and-use :SPECIES) ()

(send
(eval (get-data-frame-slot 'self 'VALUE-AND-USE-PARENT))
:SPECIES))

;BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS Frame definitions

(defflavor botanical-and-ecological-characteristics
(FRAME-TYPE
GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES
BOTANICAL-CHARACTERISTICS-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

132

(defmethod (botanical-and-ecological-characteristics
:SLOT-LIST)

()
'(FRAME-TYPE
GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLAS SIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES
BOTANICAL-CHARACTERISTICS-PARENT))

(defmethod (botanical-and-ecological-characteristics
:QUERY-DISPLAY-SLOT-LIST)

()
'(GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES))

(defmethod (botanical-and-ecological-characteristics
:QUERY-DISPLAY)

()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility
"Botanical and Ecological Characteristics Information")

t)
(defmethod (botanical-and-ecological-characteristics

•.SPECIES)
()

(send
(eval (get-data-frame-slot

'self
'BOTANICAL-CHARACTERISTIC S-PARENT))

:SPECIES))

133
* *

;FIRE-ADAPTIVE-TRAITS-AND-SURVTVAL-STRATEGIES
;Frame definitions
.***

(defflavor fire-adaptive-traits-and-survival-strategies
(FRAME-TYPE
DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES

SPECIES-TYPE
TIME-UNTIL-MATURITY
TIME-UNTIL-SENESCENCE
TIME-UNTIL-EXTINCTION

ROWE-MODE-OF-PERSISTANCE
REFERENCES
ADAPTIVE-TRAITS-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod
(fire-adaptive-traits-and-survival-strategies
:SLOT-LIST)

O
'(FRAME-TYPE
DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES

SPECIES-TYPE
TIME-UNTIL-MATURITY
TIME-UNTIL-SENESCENCE
TIME-UNTIL-EXTINCTION

ROWE-MODE-OF-PERSISTANCE
REFERENCES
ADAPTIVE-TRAITS-PARENT))

(defmethod (fire-adaptive-traits-and-survival-strategies
:QUERY-DISPLAY-SLOT-LIST)

()
'(DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES

SPECIES-TYPE
TIME-UNTIL-MATURITY
TIME-UNTIL-SENESCENCE
TIME-UNTIL-EXTINCTION

ROWE-MODE-OF-PERSISTANCE
REFERENCES))

134

(defmethod (fire-adaptive-traits-and-survival-strategies
:QUERY-DISPLAY)

()
(send self

:query-species-print-frame-header-utility
"Fire Adaptive Traits and Survival Strategies
Information")

(let* ((slot-list (send self :QUERY-DISPLAY-SLOT-LIST))
(display-list
(do ((slot-list slot-list (cdr slot-list))

(displayable-list
nil
(cond ((and (eq (car slot-list)

'NOBLE-AND-SLATYER-VITAL-ATTRIBUTES)
(or (not (eq (get-data-frame-slot

' self
’SPECIES-TYPE)

’no-entry))
(not (eq (get-data-frame-slot

' self
'TIME-UNTIL-MATURITY)

'no-entry))
(not (eq (get-data-frame-slot

'self
'TIME-UNTIL-SENESCENCE)

'no-entry))
(not (eq (get-data-frame-slot

' self
'TIME-UNTIL-EXTINCTION)

'no-entry))))
(cons 'NOBLE-AND-SLATYER-VITAL-ATTRIBUTES

displayable-list))
((eq (get-data-frame-slot

' self
(car slot-list))
'no-entry)
displayable-list)

(t (cons (car slot-list)
displayable-list)))))

((null slot-list) (reverse displayable-list)))))
(cond ((null display-list)

(print-slot
' (NL

"Sorry, no information available on this
subject!"

NL)
"text"))

135

(t (do ((display-list display-list
(cdr display-list)))

((null display-list) nil)
(send
(send self (find-symbol

(string (car display-list))
keyword-package))

:display)))))
(readcontinue)
t)

(defmethod {fire-adaptive-traits-and-survival-strategies
:SPECIES)

()
(send
(eval (get-data-frame-slot 'self

'ADAPTIVE-TRAITS-PARENT))
:SPECIES))

•ft**

;FIRE-EFFECTS Frame definitions
* *

(defflavor fire-effects
(FRAME-TYPE
FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
REFERENCES
FIRE-EFFECTS-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod (fire-effects :SLOT-LIST) ()
'(FRAME-TYPE
FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
REFERENCES
FIRE-EFFECTS-PARENT))

136

(defmethod (fire-effects :QUERY-DISPLAY-SLOT-LIST) ()
'(FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
REFERENCES))

(defmethod (fire-effects :QUERY-DISPLAY) ()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility
"Fire Effects Information")

(let ((sssfe-list (get-data-frame-slot
'self
'SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS)))

(cond ((not (eq sssfe-list 'no-entry))
(detailed-fire-effects-menu sssfe-list)))))

(defmethod (fire-effects :SPECIES) ()
(send
(eval (get-data-frame-slot 'self 'FIRE-EFFECTS-PARENT))
:SPECIES))

•A**

;SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS Frame definitions
* *

(defflavor severity-season-specific-fire-effeets
(FRAME-TYPE
SEVERITY
SEASON
EFFECT
CERTAINTY-FACTOR
DESCRIPTION
QUALIFICATION
REFERENCES
FIRE-EFFECT-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

137

(defmethod (severity-season-specific-fire-effects
:SLOT-LIST)

()
'(FRAME-TYPE
SEVERITY
SEASON
EFFECT
CERTAINTY-FACTOR
DESCRIPTION
QUALIFICATION
REFERENCES
FIRE-EFFECT-PARENT))

(defmethod (severity-season-specific-fire-effects
:QUERY-DISPLAY-SLOT-LIST)

()
'(SEVERITY
SEASON
EFFECT
CERTAINTY-FACTOR
DESCRIPTION
QUALIFICATION
REFERENCES))

(defmethod (severity-season-specific-fire-effects
:QUERY-DISPLAY)

()
(send self :query-view-frame-utility

'query-species-print-frame-header-utility
"Severity-Season Fire Effects Information")

t)
(defmethod (severity-season-specific-fire-effects :SPECIES)

()
(send
(eval (get-data-frame-slot 'self 'FIRE-EFFECT-PARENT))
:SPECIES))

FLAVOR AND METHOD DEFINITIONS FOR THE CREATION OF
SLOT HIERARCHY SYSTEM FRAMES

********************************** ** ***********************

;Atom FRAME — atom class slot type definitions
• A *

(defflavor atom () ())

138

(defmethod (atom :display) ()
(let ((display-list (cons (send self :name)

(cons ": "
(cons (send self rvalue)

(list 'NL 'NL))))))
(print-slot display-list 'atom)))

(defmethod (atom rdisplay-atom-subslot) ()
(let ((display-list

(cons (string-append " "
(send self rname))

(cons "r "
(cons (send self rvalue)

(list 'NL 'NL))))))
(print-slot display-list 'atom)))

•ft**

;Header FRAME — header class slot type definitions
**

(defflavor header {) ())

(defmethod (header rdisplay) ()
(let ((display-list (cons (send self :name)

(cons " (list 'NL 'NL)))))
(print-slot display-list ’header)))

• ***

;List FRAME — list class slot type definitions
• ***

(defflavor list () ())

(defmethod (list rdisplay) ()
(let ((display-list (cons (send self :name)

(cons "
(append (send self rvalue)

(list 'NL 'NL))))))
(print-slot display-list 'list)))

139

(defmethod (list :display-list-subslot) ()
(let ((display-list

(cons (string-append " " (send self :name))
(cons ": "

(append (send self :value)
(list 'NL 'NL))))))

(print-slot display-list 'list)))

;Text FRAME — text class slot type definitions
»***

(defflavor text () ())

(defmethod (text :display) ()
(let ((display-list (cons (send self :name)

(cons ": "
(append (send self :value)

(list 'NL ’NL))))))
(print-slot display-list 'text)))

(defmethod (text :display-text-subslot) ()
(let ((display-list

(cons (string-append " " (send self :name))
(cons ": "

(append (send self :value)
(list 'NL 'NL))))))

(print-slot display-list 'text)))

• 'k'k'k'kic'k'k-k-k'k-k'k'k'k'k̂ 'k'k'k'k-kit'kitie'kic'k̂ 'kieick'k'k'k'k-k'k'k-k'fckie-kicffkifk'k-k'kie'k'k'kit'kt
;Generated pointer FRAMES
;— Generated pointer class slot type definitions
. */

(defflavor generated-frame-pointer () ())

(defflavor generated-frame-pointer-list () ())

140
• A *

;FRAME-TYPE FRAME — FRAME-TYPE slot type definitions
♦ ****************** * * ***************************************

(defflavor FRAME-TYPE (value
(type ’atom)
(name "FRAME TYPE"))

(atom)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

*

;SPECIES FRAME -- SPECIES slot type definitions
• A *

(defflavor SPECIES (value (type ’atom)(name "SPECIES"))
(atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• ' k i t ' k ' k ' k ' k ' k ' k ' k j f k ' k ' k ' k ' k ' k ' k i t ' k ' k l c i t i t & ' k ' k ' k ' k ' k ' k l f k ' k - k ' k ' k j t l c ' k ' k - k j t ' k ' k i c ' k ' k i c y c ' k j f ' k ' k ' k i c - k ' k ' k i c
9

;SCIENTIFIC-ALIAS FRAME — SCIENTIFIC-ALIAS slot type
; definitions
• it'k̂c'k-kic'k'k'k-k'k'k'k̂'kie'k'k'k'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'k-k̂-k-k-kie'k'k-k-k'k'k-k-k-kieic'k-kie'k'k-k-k
9

(defflavor SCIENTIFIC-ALIAS (value
(type ’list)
(name "SCIENTIFIC ALIAS"))

(list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

141
.***

;ABBREVIATION FRAME — ABBREVIATION slot type definitions
**

(defflavor ABBREVIATION (value
(type 'atom)
(name "ABBREVIATION"))

(atom)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

.★a***

;COMMON-NAMES FRAME — COMMON-NAMES slot type definitions
.***

(defflavor COMMON-NAMES (value
(type 'list)
(name "COMMON NAMES"))

(list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• A *

;LIFE-FORM FRAME — LIFE-FORM slot type definitions
**

(defflavor LIFE-FORM (value (type 'atom)(name "LIFE FORM"))
(atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

142
• * * * * * *

;VARIETIES-AND-FORMS FRAME — VARIETIES-AND-FORMS slot type
; definitions
* *

(defflavor VARIETIES-AND-FORMS
(value (type ’text)(name "VARIETIES AND FORMS")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

* *

;DISTRIBUTION-AND-OCCURRENCE FRAME
DISTRIBUTION-AND-OCCURRENCE slot type definitions

• A * * * * * * * * * * * * * * *

(defflavor DISTRIBUTION-AND-OCCURRENCE
(value
(type 'generated-frame-pointer)
(pointer-to 'distribution-and-occurrence)
(name "DISTRIBUTION AND OCCURRENCE"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

* *

;VALUE-AND-USE FRAME — VALUE-AND-USE slot type definitions
a *

(defflavor VALUE-AND-USE
(value
(type 'generated-frame-pointer)
(pointer-to ’value-and-use)
(name "VALUE AND USE"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

143
-***************★***

;BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS FRAME
;— BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS slot type
; definitions
• ■k-k'kft'kjck'k'k'k-k-k'k'k'k'k'k'k-k-kJf'k-k'k'k-k-k'k-k-k-k'kicJtje-kic'kJtjc'k-k'k-kjc-kic-k'k'k'k-k'k-k-k-k'k'k-kf .

(defflavor BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS
(value
(type 'generated-frame-pointer)
(pointer-to 'botanical-and-ecological-characteristics)
(name "BOTANICAL AND ECOLOGICAL CHARACTERISTICS"))

(generated-frame-pointer)
isettable-instance-variables
:gettable-instance-variables
: inittable-instance-variables)

•a**/

;FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES FRAME
;— FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES
; slot type definitions

/

(defflavor FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES
(value
(type 'generated-frame-pointer)
(pointer-to

'fire-adaptive-traits-and-survival-strategies)
(name "FIRE ADAPTIVE TRAITS AND SURVIVAL STRATEGIES"))

(generated-frame-pointer)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

144
• A * * * * * * * * * * * * * * * * * * * * * * * * * * * *

;FIRE-EFFECTS FRAME — FIRE-EFFECTS slot type definitions
* *

(defflavor FIRE-EFFECTS
(value
(type 'generated-frame-pointer)
(pointer-to 'fire-effects)
(name "FIRE EFFECTS"))

(generated-frame-pointer)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

•A**

,* SUPERIOR-PARENT FRAME
;— SUPERIOR-PARENT slot type definitions
* *

(defflavor SUPERIOR-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'superior)
(name "SUPERIOR PARENT"))

(generated-frame-pointer)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

t

;GENERAL-DISTRIBUTION FRAME
;— GENERAL-DISTRIBUTION slot type definitions
• •k'k'k'k'k'k'k'k'k'kii'kic'k-kffk'k'k'k'k-kick'kick'k'k'k'k'k-k'k'k'k-k'k'kic-k'k'k'kic'k'kieic'k'k'k'k'k̂ -k'k'k'k
§

(defflavor GENERAL-DISTRIBUTION
(value (type 'text)(name "GENERAL DISTRIBUTION")) (text)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

145

;BLM-PHYSIOGRAPHIC-REGIONS FRAME
BLM-PHYSIOGRAPHIC-REGIONS slot type definitions

.***

(defflavor BLM-PHYSIOGRAPHIC-REGIONS
{value (type 'list)(name "BLM PHYSIOGRAPHIC REGIONS"))
(list)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

.***

;KUCHLER-PLANT-ASSOCIATIONS FRAME
KUCHLER-PLANT-ASSOCIATIONS slot type definitions

. * ** ■kii'kle'k'k-k'kiiiiic-kic-k-kifk-kicifkic-kifk-k-k-k-k

(defflavor KUCHLER-PLANT-ASSOCIATIONS
(value (type 'list)(name "KUCHLER PLANT ASSOCIATIONS"))
(list)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

/

;SAF-COVER-TYPES FRAME
;— SAF-COVER-TYPES slot type definitions
• ;kick'kifkic'k'k'k'k'kie'k'k'k'k'k'k'k'k'k'k'k'k-k'kic'k-k'k'k-kif'k'k'k'k'k'k'k'k'k'k'k'kit'k'k'k'k'k-k'k'k'k'k'k'k r

(defflavor SAF-COVER-TYPES
(value (type ’list)(name "SAF COVER TYPES")) (list)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

146
.***

;HABITAT-TYPE-INFORMATION FRAME
HABITAT-TYPE-INFORMATION slot type definitions

• -kit'k'k'kjfk'k'k-k-k'k'k'k'k'k'k'k&'k'k'k'k'k'k'k'k'k-k'kli'k'k'k-k-k-k-k-k-k'kj'-k'k-k'k'k'k'k'kjt'k'k'k-kifk'klc
9

(defflavor HABITAT-TYPE-INFORMATION
(value (type ’text)(name "HABITAT TYPE INFORMATION"))
(text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

•A**

;SPECIES-HABITAT-TYPES FRAME
;— SPECIES-HABITAT-TYPES slot type definitions
• • k ’k ' k ' k ' k i e ' k ' k ' k ' k ' k ' k ' k ' k i t ' k ' k i c j f k - k ' k f t ' k ' k - k ' k j f k - k j f k j f k ' k ' k ' k ' k - k - k - k J t ' k l c - k i c i t ' k ' k - k i c l f k l t ' k ' k ' j c ' k ' k
9

(defflavor SPECIES-HABITAT-TYPES
(value (type ’text)(name "SPECIES HABITAT TYPES")) (text)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

. *

;REFERENCES FRAME — REFERENCES slot type definitions
**

(defflavor REFERENCES
(value (type ’list)(name "REFERENCES")) (list)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

147
• A *

;DISTRIBUTION-PARENT FRAME
;— DISTRIBUTION-PARENT slot type definitions
.***

(defflavor DISTRIBUTION-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to ’species)
(name "DISTRIBUTION PARENT"))

(generated-frame-pointer)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• A *

;DESCRIPTION FRAME — DESCRIPTION slot type definitions
.***

(defflavor DESCRIPTION
(value (type ’text)(name "DESCRIPTION")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

•A**

;PALATABILITY FRAME — PALATABILITY slot type definitions
•A**

(defflavor PALATABILITY
(value (type ’text)(name "PALATABILITY")) (text)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

148
**

;FOOD-VALUE FRAME — FOOD-VALUE slot type definitions
**

(defflavor FOOD-VALUE
(value (type 'text)(name "FOOD VALUE")) (text)
:settable-instance-variables
: gettable-instance-variables
:inittable-instance-variables)

.***

;COVER-VALUE FRAME — COVER-VALUE slot type definitions
**

(defflavor COVER-VALUE
(value (type ’text)(name "COVER VALUE")) (text)
: settable-instance-variables
: gettable-instance-variables
:inittable-instance-variables)

.***

;IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE FRAME
;IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE — slot type
; definitions
**

(defflavor IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE
(value
(type 'text)
(name "IMPORTANCE TO LIVESTOCK AND WILDLIFE"))

(text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

•A**
/

;OTHER-USES-AND-VALUES FRAME
OTHER-USES-AND-VALUES slot type definitions

149
* * * * * * * * * *

(defflavor OTHER-USES-AND-VALUES FRAME
(value (type 'text)(name "OTHER-USES-AND-VALUES")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• ick'k'k'kick-k̂ -k̂ e-k'k'k'k'k'kii'k-k-kifk'kic'k'k-k'k̂ -kit'k'k-k'k-kie'k'k'k'k'k'k-k-k'k'k-k'k'kifk'k-k-k-k-k-k
t

}ENVIRONMENTAL-CONSIDERATIONS FRAME
.— ENVIRONMENTAL-CONSIDERATIONS slot type definitions
• ' k i t j c l c ' k - k ' k i c k - k - k - k - k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k - k ' k ' k ' k ' k ' k ' j c k ' k j c j c j e ' k ' k ' k i c l e l c ' k - k j c i c ' k ' k j c ' k ' k l e i t i f k ' k ' k i c ' k ' k
9

(defflavor ENVIRONMENTAL-CONSIDERATIONS
(value (type ’text)(name "OTHER-USES-AND-VALUES")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

m ^ ' k ' k - k ' k - k ' k - k ' k - k ' k - k ' k - k ' k ' k ' k ^ ' k ' k ' k ' k ' k ' k - k ^ - k - k ' k ' k ^ - k ' k ' k ' k - k ' k ' k ' k - k - k ^ - k - k ' k ' k ' k ' k ' k ' k ^ ' k - k - k - k ' k ' k ' k - k
9

;VALUE-AND-USE-PARENT FRAME
;— - VALUE-AND-USE-PARENT slot type definitions

9

(defflavor VALUE-AND-USE-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "VALUE AND USE PARENT"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

•I***
9

;GENERAL-DESCRIPTION FRAME
GENERAL-DESCRIPTION slot type definitions

• • k ' k ' k i c k i f ' k ' k i t f c ' k - k i f k ^ ' k i i - k ^ ' k ' k ' k i f k ' k ' k i e - k i e ' k - k i d t ' k i e - k ' k ' k i c ^ - k ^ ’k - k i t ' k ' k ' k ' k - k ' k i t i c k ' k ' k i t ' k ' k
9

(defflavor GENERAL-DESCRIPTION
(value (type ’text)(name "GENERAL DESCRIPTION")) (text)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

150
• ************ * * ***

;GROWTH-FORM FRAME
;— GROWTH-FORM slot type definitions
• ★ A *

(defflavor GROWTH-FORM
(value (type 'list)(name "GROWTH FORM")) (list)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

*

;RAUNKIAER-LIFE-FORM FRAME
;— RAUNKIAER-LIFE-FORM slot type definitions
* *

(defflavor RAUNKIAER-LIFE-FORM
(value (type 'list)(name "RAUNKIAER LIFE FORM")) (list)

settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

**
9

;GRIME-PLANT-STRATEGY-CLASSIFICATION FRAME
;— GRIME-PLANT-STRATEGY-CLASSIFICATION slot type
; definitions
• ik-k'k'k'k-k'k'k'k-k-k-k-k-k'k-k-kk'k-k'k-k-klckif'k'k'k'k-k-klt'k'k-k-k'k'k-k'k-k'k-k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k
9

(defflavor GRIME-PLANT-STRATEGY-CLASSIFICATION
(value
(type ’list)
(name "GRIME PLANT STRATEGY CLASSIFICATION"))

(list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

151
•I***
t

;GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION FRAME
;— GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION slot type
; definitions

t
{de f flaVO r GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION

(value
(type ’list)
(name "GRIME REGENERATIVE STRATEGY

CLASSIFICATION"))
(list)

isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• •klt'k'k'k'k'k'k'kk'k'k'kk'k'k'k'k'kk'k'k'k'k'k'k-k'klt'k'k'k'k'k * r
;REGENERATION-PROCESSES FRAME
;— REGENERATION-PROCESSES slot type definitions
•A***:*****/
(defflavor REGENERATION-PROCESSES

(value (type ’text)(name "REGENERATION PROCESSES")) (text)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

r

;SITE-CHARACTERISTICS FRAME
SITE-CHARACTERISTICS slot type definitions

. *
9

(defflavor SITE-CHARACTERISTICS
(value (type 'text)(name "SITE CHARACTERISTICS")) (text)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

152
• 'kie'kie'k'k'k'k'kie'k'k'k-k-k'k'k'k'k'kie'kifk'k'k'k-k'k'k'k-k-k-k-kitifk-k-k-k'k̂ 'kieifit'̂ 'k'k'k'k'k-k'k'kickic
9

;SUCCESSIONAL-STATUS FRAME
;— SUCCESSIONAL-STATUS slot type definitions
• ■k-k-k'k'k-kk-k-kk-k-k-k'h'klt'k-k'k'k-k-k'k'k-k'k'k'k-k-k'k-k-k-k'k-k'k-k-k'k-k-k-k'kk'k'k'k'k-k-k-k-kk-k'k-k-k'k
9

(defflavor SUCCESSIONAL-STATUS
(value (type 'text)(name "SUCCESSIONAL STATUS")) (text)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;SEASONAL-DEVELOPMENT FRAME
SEASONAL-DEVELOPMENT slot type definitions

• 'k-kie'k-k̂'k'k'k'kieifk'k'k'k'k'k-k-kick-k-k'k'k'k-kie'k'k'k-k'k-k'k'k'kisic'k'kieis'k'k'k̂C'k'k'k'k-k-k'k̂'k̂t'k
9

(defflavor SEASONAL-DEVELOPMENT
(value (type ’text)(name "SEASONAL-DEVELOPMENT")) (text)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

•A**.
9

;BOTANICAL-CHARACTERISTICS-PARENT FRAME
BOTANICAL-CHARACTERISTICS-PARENT slot type definitions

* *
/

(defflavor BOTANICAL-CHARACTERISTICS-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "BOTANICAL CHARACTERISTICS PARENT"))

(generated-frame-pointer)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

153
• A *

;LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY FRAME
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY slot type

; definitions
• 'k'k'k'k'klck'k'k'k-k'k-k-k'k'kit'k'k&'kie'kick'k'k'k'k'k'k'k'k'k'k'k’k-k'k'k'k'k'k'k'k'k'k'k-k'klc'k'k'klc'k'kjfkt
(defflavor LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY

(value (type 'list)
(name "LYON STICKNEY FIRE SURVIVAL STRATEGY"))

(list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

* *

;NOBLE-AND-SLATYER-VITAL-ATTRIBUTES FRAME
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES slot type

; definitions
• A * * * * * * * * * * * *

(defflavor NOBLE-AND-SLATYER-VITAL-ATTRIBUTES
(value
(type 'header)
(name "NOBLE AND SLATYER VITAL ATTRIBUTES")) (header)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

. A *

;SPECIES-TYPE FRAME — SPECIES-TYPE slot type definitions
. *

(defflavor SPECIES-TYPE
(value (type 'list) (name "SPECIES TYPE")) (list)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

(defmethod (SPECIES-TYPE :display) ()
(send self :display-list-subslot))

154
**

;TIME-UNTIL-MATURITY FRAME
;— TIME-UNTIL-MATURITY slot type definitions

(defflavor TIME-UNTIL-MATURITY
(value (type 'atom) (name "TIME UNTIL MATURITY")) (atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

(defmethod (TIME-UNTIL-MATURITY rdisplay) ()
(send self :display-atom-subslot))

* *

;TIME-UNTIL-SENESCENCE FRAME
TIME-UNTIL-SENESCENCE slot type definitions

**

(defflavor TIME-UNTIL-SENESCENCE
(value (type ’atom) (name "TIME UNTIL SENESCENCE")) (atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

(defmethod (TIME-UNTIL-SENESCENCE :display) ()
(send self :display-atom-subslot))

• 'k'k'k'k'k-k'k-kie'k'kit'k'k'k'k'k'kifk'k'kiê 'k'k'k'k'k'k-k'k'k-k'k'k'k'k-k'k'k'k'k'k̂ cieifkiî ieit̂ -k-k̂ 'kifk/
;TIME-UNTIL-EXTINCTION FRAME
;— TIME-UNTIL-EXTINCTION slot type definitions

(defflavor TIME-UNTIL-EXTINCTION
(value (type 'atom) (name "TIME UNTIL EXTINCTION")) (atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

(defmethod (TIME-UNTIL-EXTINCTION -.display) ()
(send self :display-atom-subslot))

155
• A *

;ROWE-MODE-OF-PERSISTANCE FRAME
;— ROWE-MODE-OF-PERSISTANCE slot type definitions
• iekick-k'k'k'k-k'k-k-k'k-k'kie'k'k-kieit'kic'k-k'k'k̂ c-k̂ ifk-k-k-kie'k'k'k-k-k-k-k-k-k-k-kit-k'kie'k'k-k-k-k-k'k-k
9

(de f f1avor ROWE-MODE-OF-PERSISTANCE
(value
(type 'list)
(name "ROWE-MODE-OF-PERSISTANCE"))

(list)
:settable-instance-variables

:gettable-instance-variables
:inittable-instance-variables)

• ■k'k'k-k'k-k'k'k'k-k'k'kif'k'k'k'k-k'k'k'k-k'k'kick'k'k'k-k-kic-kiĉ c-k'k'k'k-kic'k'kie'k-k-kic'kick'k-k'k'k-k'k-k'k
9

;ADAPTIVE-TRAITS-PARENT FRAME
;— ADAPTIVE-TRAITS-PARENT slot type definitions
•A**:**************
/

(defflavor ADAPTIVE-TRAITS-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "ADAPTIVE TRAITS PARENT"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• ick-k-k'k'kieic'k'k'k-kitic'k'k'k'kic'k'kic'k’k ’k-kic'k'k'k-k̂ c'kifkik'k'k-k-k'k'k'k'kifk'k'kie'kie'k'k'k'k'k'k'k'ki
;FIRE-EFFECT-ON-PLANT FRAME
;— FIRE-EFFECT-ON-PLANT slot type definitions
• 'k'k'k'k'k'k’k-k'k'kit'k-k'k'k'k'k'k'k'k'kî 'k'kitick'k'k'k'k'k'kit'k'k'k'k'k'k'k'k'kifk'k'kifk-k̂ c'k-k-kk'k'k'k'kf
(defflavor FIRE-EFFECT-ON-PLANT

(value (type ’text)(name "FIRE EFFECT ON PLANT")) (text)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

156
•ft**

;DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT FRAME
;— DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
; slot type definitions
• A *

(defflavor DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
(value
(type ’text)
(name "DISCUSSION AND QUALIFICATION OF FIRE EFFECT"))

(text)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• -k'k'kii'k'k'k'kitic'k'k'k'k'k'k'k'k'k-kitie'kie'kie'k'k'k'k-kie-k'k-kim'k-k it ■k’k'kidt'k'kieifickie'kie'k it ifkit

;PLANT-RESPONSE-TO-FIRE FRAME
?— PLANT-RESPONSE-TO-FIRE slot type definitions
• ■ k ' k ' k i t ' k i t ' k - k ' k ’k ' k l f k ' k i f k ' k ' k j c i t ' k ' k i c j t & ' k i e ' k ' k i t ' k & ' k ' k ' k j c k ' k - k ' k - k ' k - k i c ' k ' k i c ' k i e i t - k ' k - k ' k ' k ' k ' k i t j ef
(defflavor PLANT-RESPONSE-TO-FIRE

(value (type ’text)(name "PLANT RESPONSE TO FIRE")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• :k'k'k-k-k'k'klt'k'k-k-k-k'k'k-k-k’k-k-k'k'k-k-k-k-k'k'k-kifk-k'k-k'k-k-k'k'k-kk'k'k-kk'k-k-k-k'k'k'k'k'k'k'k'k-k-k /

;DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE FRAME
;— DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
; slot type definitions
• 'k'k'k'k'k-k-k'h-k-k-k'k-k-k-k'kk'k-k'k-k-k'k'k'k-k'k'k-k'k'k'k-k'k'k-k-k-k-k'k'k'k-k-k'k'k'k'k-k-k'k'k-k'k-k'k'k'k-k
t

(defflavor DISCUSSION-AND-QUALIFICATION-OF-PLANT-RESPONSE
(value
(type 'text)
(name "DISCUSSION AND QUALIFICATION OF PLANT RESPONSE"))

(text)
isettable-instance-variables
igettable-instance-variables
iinittable-instance-variables)

157
• * * * * * * * * * * * * * **
t

;SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS FRAME
;— SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
; slot type definitions
* *
t

(defflavor SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
(value
(type 'generated-frame-pointer-list)
(pointer-to 'severity-season-specific-fIre-effects)
(name "SEVERITY SEASON SPECIFIC FIRE EFFECTS"))

(generated-frame-pointer-list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

* *
9

;FIRE-EFFECTS-PARENT FRAME
.— FIRE-EFFECTS-PARENT slot type definitions
• ***
t

(defflavor FIRE-EFFECTS-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
(name "FIRE EFFECTS PARENT"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• ** ***************

;SEVERITY FRAME — SEVERITY slot type definitions
• ***

(defflavor SEVERITY
(value (type 'atom) (name "SEVERITY")) (atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

158
* *

;SEASON FRAME -- SEASON slot type definitions
• J c ' k ' k ' k ' k ' k ' f c ' k ' k ' k ' k - k - k - k - k ' k - k ' k J c ' k - k ' k j t - k ' k ' k - k j ' j f k i c k k - k j c j c i c ' k ' k ' k - k i k ' k - k j c j c - k ' k j c i i ' k j t j e ' k j e l t j t J i c ' k

(defflavor SEASON
(value (type 'atom) (name "SEASON")) (atom)

:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

*** * * ***********

;EFFECT FRAME — EFFECT slot type definitions
. A *

(defflavor EFFECT
(value (type 'text) (name "EFFECT")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

* *

;CERTAINTY-FACTOR FRAME
;— CERTAINTY-FACTOR slot type definitions
• A*************************:**************************:*******t
(defflavor CERTAINTY-FACTOR

(value (type 'atom) (name "CERTAINTY-FACTOR")) (atom)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• 'k'k'k'k'k-kick'k'k'k-k'k̂ 'k'k-k'k'k'k-k'k'k'kifk'k'k'k'k'k'kic'k'k'k'k̂ 'k'k'kii'k'k-k'k'k'k'k'k'kif̂ -k-k'k'k'k'k
/

;DESCRIPTION FRAME
;— DESCRIPTION slot type definitions
• -k'k-k'k'k'k'k'k'k’k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k-k-kick'k'k-k-k'k'k'k'k'k'kk-k'k'k'k'k-k-k-k-k'k-k'k-klt'k-k'k'kt
(defflavor DESCRIPTION

(value (type 'text) (name "DESCRIPTION")) (text)
isettable-instance-variables
:gettable-instance-variables
:inittable-instance-var iables)

159
. *

;QUALIFICATION FRAME
;— QUALIFICATION slot type definitions
• A A A A * * * * * * * * * * * * * * * * * *

(defflavor QUALIFICATION
(value (type 'text) (name "QUALIFICATION")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• A

;FIRE-EFFECT-PARENT FRAME
FIRE-EFFECT-PARENT slot type definitions

• A A * A * A A A * A A A A A A A * * * * * * * * * * * * * * A A A A A

(defflavor FIRE-EFFECT-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'fire-effects)
(name "FIRE EFFECT PARENT"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

**
9

;INTRODUCTION FRAME
;— INTRODUCTION slot type definitions
m-k'k-kie-k-k-k-k-kie-k-k-k'k'k-M'kie-k-k'kifk-kie-k'k’k-k̂it'k'k'kif'k̂-k-k-k'kie'k-k̂̂-k-kisie-k-kiê-k-k'k-k̂
9

(defflavor INTRODUCTION
(value
(type 'generated-frame-pointer)
(pointer-to ’introduction)
(name "INTRODUCTION"))

(generated-f rame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

160
• A *

;SAGEBRUSH FRAME
;— SAGEBRUSH slot type definitions
.***

(defflavor SAGEBRUSH
(value
(type 'generated-frame-pointer)
(pointer-to 'sagebrush)
(name "SAGEBRUSH"))

(generated-frame-pointer)
: settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

. *f
;SPECIES-LIST FRAME

SPECIES-LIST slot type definitions
• * * * * * * £ * f
(defflavor SPECIES-LIST

(value
(type 'generated-frame-pointer-list)
(pointer-to 'species)
(name "SPECIES-LIST"))

(generated-frame-pointer-list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

* *
/

;SUPERIOR-PARENT FRAME
;— SUPERIOR-PARENT slot type definitions
• * f

(defflavor SUPERIOR-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'superior)
(name "SUPERIOR PARENT"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

161
• ick-kkfckk-kk'k'k'k'k'k'kick-k-k'kjiitkk-kk'kkk'kk'kk'kfckkk-k'kkkkk'kk -k.-k * * * * * * * * * * *
f

;SPECIES-INTRODUCTION FRAME
;— SPECIES-INTRODUCTION slot type definitions
• A *

(defflavor SPECIES-INTRODUCTION
(value (type ’text) (name "SPECIES INTRODUCTION")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

.***
;SAGEBRUSH-INTRODUCTION FRAME
?— SAGEBRUSH-INTRODUCTION slot type definitions
* *

(defflavor SAGEBRUSH-INTRODUCTION
(value
(type ’text)
(name "SAGEBRUSH INTRODUCTION"))

(text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

• * * * * * * * * * * * * * * * *

;INTRODUCTION-PARENT FRAME
;— INTRODUCTION-PARENT slot type definitions
* *t
(defflavor INTRODUCTION-PARENT

(value
(type 'generated-frame-pointer)
(pointer-to ’introduction)
(name "INTRODUCTION PARENT"))

(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

162

INTERFACE FUNCTION DEFINITION

*** The following Franz Lisp Function definition ***
*** implements the former 1get-data-frame-slot' function ***
*** so that it utilizes the Flavors 'send' function and ***
*** thereby provides message passage capability. ***

(defun get-data-frame-slot (frame-pointer slot-name)
(let* ((frame-slot-value

(send (eval frame-pointer)
(find-symbol (string slot-name)

keyword-package)))
(slot-value (cond {(and (atom frame-slot-value)

(not (symbolp frame-slot-value)))
(send frame-slot-value :value))

(t frame-slot-value))))
(cond ((null slot-value) 'no-entry)

(t slot-value))))

KNOWLEDGE BASE CONVERSION UTILITY

*** The following Franz Lisp Function definition ***
*** provides a utility for the conversion of original ***
*** knowledge base frame structures into flavors ***
*** instances. ***

(defun instantiate (list)
(do ((list list (cdr list)))

((null list) t)
(cond ((string= (subseq (string (car list)) 0 2) ”sp")

(set (car list) (make-instance 'species))
(let ((frame-pointer (car list))

(slot-list (get 'species/metaframe
'SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer (make-instance

(car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

163

((string= (subseq (string (car list)) 0 5) "distr")
(set (car list)

(make-instance 'distribution-and-occurrence))
(let ((frame-pointer (car list))

(slot-list
(get 'distribution-and-occurrence/metaframe

’SLOT-LIST)))
(do ((list slot-list (cdr list)))

((null list) t)
(let ((slot-pointer (make-instance

(car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

((string= (subseq (string (car list)) 0 4) "mgmt")
(set (car list) (make-instance 'value-and-use))
(let ((frame-pointer (car list))

(slot-list (get 'value-and-use/metaframe
•SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer (make-instance

(car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

((string= (subseq (string (car list)) 0 3) "bot")
(set (car list)

(make-instance
'botanical-and-ecological-characteristics))

(let ((frame-pointer (car list))
(slot-list
(get 'botanical-and-ecological-

characteristics/metaframe
•SLOT-LIST)))

164

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

((string= (subseq (string (car list)) 0 5) "adapt")
(set (car list)

(make-instance
'fire-adaptive-traits-and-survival-strategies))

(let ((frame-pointer (car list))
(slot-list
(get
'fire-adaptive-traits-and-survival-
strategies/metaframe
'SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

((string= (subseq (string (car list)) 0 3) "gfe")
(set (car list) (make-instance 'fire-effects))
(let ((frame-pointer (car list))

(slot-list
(get 1fire-effects/metaframe ’SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

165

((string= (subseq (string (car list)) 0 5) "sssfe")
(set (car list)

(make-instance
'severity-season-specific-fire-effects))

(let ((frame-pointer (car list))
(slot-list
(get

'severity-season-specific-fire-
ef fects/metaf rame
’SLOT-LIST)))

(do ((list slot-list (cdr list)))
((null list) t)
(let {(slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

((eq (car list) ’superiorl)
(set (car list)

(make-instance 'superior))
(let ((frame-pointer (car list))

(slot-list
(get 'superior/metaframe

’SLOT-LIST)))
(do ((list slot-list (cdr list)))

((null list) t)
(let ({slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

((eq (car list) 'introl)
(set (car list)

(make-instance 'introduction))

166

(let ((frame-pointer (car list))
(slot-list
(get 'introduction/metaframe

'SLOT-LIST)))
(do ((list slot-list (cdr list)))

((null list) t)
(let ((slot-pointer

(make-instance (car list))))
(send (eval frame-pointer)

(find-symbol
(string (concat "set-" (car list)))
keyword-package)

slot-pointer)
(send slot-pointer

:set-value
(get frame-pointer (car list)))))))

REFERENCES

Alexander, James H., ''Smalltalk-80 aids troubleshooting system
development", Systems & Software, Vol. No. 4, p. 111-118, April
1985.

Alws, Karl-Heinz, Glasner-Schapeler, Ingrid, "EXPERIENCES WITH OBJECT
ORIENTED PROGRAMMING", Proceedings of the International Joint
Conference on Theory and Practice of Software Development
(TAPSOFT), Vol. 2, p. 435-452, Springer-Verlag, Berlin, Germany,
March, 1985.

Barbuceanu, Mihai, "Object-Centered representation and Reasoning: An
Application to Computer-Aided Design", SIGART NEWSLETTER, No. 87,
p. 33-39, January, 1984.

Baroody, A. James, DeWitt, David J., "An Object-Oriented Approach to
Database System Implementation", ACM Transactions on Database
Systems, Vol. 6, No. 4, p. 576-601, December, 1981.

Bobrow, Daniel G., Stefik, Mark J., "Perspectives on Artificial
Intelligence Programming", SCIENCE, Vol. 231, p. 951-963, February
28, 1986.

Brown, Chris, "Programming language adds flexibility for artigicial
intelligence", COMPUTER DESIGN, p. 28-30, June, 1983.

Buzzard, G. D., Mudge, T. N., "Object-Based Computing and the Ada
Programming Language", IEEE Computer, Vol. 18, No. 3, P* 11-19,
March, 1985.

Charniak,E.,McDermott, D., Introduction to Artificial Intelligence,
Addison-Wesely, Reading, Massachusetts, 1985.

Cohen, A. Toni, "Data abstraction, data encapsulation and
object-oriented programming", SIGPLAN Notices, Vol. 19, No. 1,
p. 31-35, Janurary, 1984.

Cox, Brad J., "MESSAGE/OBJECT PROGRAMMING: AN EVOLUTIONARY CHANGE IN
PROGRAMMING TECHNOLOGY", IEEE Software, Vol. 1, No.1, p. 50-61,
January, 1984.

Cox, Brad, Hunt, Bill, "Objects, Icons, and Software-ICs", BYTE,
Vol. 11 , No. 9, p. 161-176, August, 1986.

Fikes, Richard E., "A Knowledge-Based Assistant", Artificial
Intelligence, Vol. 16, No. 3, p. 331-361, July, 1981.

167

168

Franz Inc., Franz Lisp Reference Manual, Franz Lisp Opus 42.16.3, Franz
Inc., 1985.

Goldberg, Adele, Robson, David, SMALLTALK-80: The Language and its
Implementation, Addison-Wesley, Reading, Massachusetts, 1983.

Greiner, Russell, "RLL-1: A Representational Language Language”,
Stanford Heuristic Programming Project, HPP-80-9 (Working Paper),
Computer Science Department, Stanford University, Stanford CA,
October 1980.

Hayes-Roth, F., Waternam, D. A., Lenat, D. B., (Ed's), Building Expert
Systems, Addison-Wesely, Reading, Massachusetts, 1983.

Ingalls, Daniel H. H., "Design Principles Behind Smalltalk", BYTE, Vol.
6, No. 8, p. 286-298, August, 1981.

Leiberman, Heney, "Machine Tongues IX: Object-Oriented Programming",
Computer Music Journal, Vol. 6, No. 3» P* 8-21, Fall 1982.

Lubinski, Thomas, Hutzel, Ingeborg, "An Object-Oriented Graphical Kernel
System: The Birth of a Powerful Application Development Tool",
Computer Graphics World, Vol. 17, No. 7, p. 69-74, July, 1984.

Martin, James, McClure, Carma, SOFTWARE MAINTENANCE: The Problem and its
Solutions, PRENTICE-HALL,Inc., Englewood Cliffs, New Jersey, 1983

Pascoe, Geoffery, "Elements of Object-oriented Programming", BYTE,
Vol. 11 , No. 9, p. 139-144, August, 1986.

Pratt, Terrence, PROGRAMMING LANGUAGES, PRENTICE-HALL, Inc., Englewood
Cliffs, New Jersey, 1984.

Rentsch, Tim, "OBJECT ORIENTED PROGRAMMING", SIGPLAN Notices, Vol 17,
No.9,p. 51-57, Sept. 1982.

Robson, David, "Object-Oriented Software Systems", BYTE, Vol. 6, No. 8,
p. 74-86, August, 1981.

Schmucker, Kurt, J., "Object-oriented Languages for the Macintosh",
BYTE, Vol. 11 , No. 9, p. 177-185, August, 1986.

Shell, Beau, "Next-generation Software", IEEE Spectrum, Vol. 20, No. 11,
p. 93, November, 1983.

Sprague, Richard, "Illuminating Objects", Macworld, p. 90-93, August,
1985.

169

Stefik, Mark, Bobrow, Daniel G., "Object-Oriented Programming: Themes
and Variations", The AI MAGAZINE, Vol. 6, No. 4, p. 40-64, Winter,
1986.

Stoyan, Herbert, "What is an "Objekt-Oriented" Programming Language?
Criteria for "object oriented" Programming Languages", Proceedings
of the Seventeenth Annual Hawaii International Conference on
System Sciences, Vol. 1, p. 152-62, 1984.

Tyugu, Enn H., "NUT - AN OBJECT ORIENTED LANGUAGE", Artificial
Intelligence and Information-Control Systems of Robots, Elsevier
Science Publishers B. V. (North-Holland), 1984.

White, Eva, Malloy, Rich, "Object-oriented Programming" BYTE,
Vol. 11 , No. 9, p. 137, August, 1986.

Williams, Gregg, "Software Frameworks", BYTE, Vol. 9» No. 13* p. 124-127
& 394-410, December, 1984.

Winston, P. H., Horn, B. H., LISP, Addison-Wesley, Reading,
Massachusetts, 1981.

	Object-oriented programming Lisp Flavors and their application to a fire effects information system
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

