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An important feature of a developed expert system is its
knowledge base. A knowledge base provides the factual and
procedural information that expert systems use to make decisions
within a specific problem domain. One approach to structuring a

_knowledge base is the use of frames within a semantic network.
Frames act as information storing nodes that are connected by
meaningful links. Traversal of these links results in a
compilation of information, both factual and procedural,
associated with a particular problem and its solution. An
interesting feature of frames and semantic networks are their
.inheritance capability. Frames can be organized into a hierarchy
of related information, with common information being stored at
higher levels in the hierarchy. Frames that are lower in the
hierarchy can inherit information stored at higher levels.

Frames, frame hierarchies, and frame inheritance all have a
great similarity to the concepts associated with a newly popular
artificial intelligence technique called object-oriented
programming. In this project a description is provided of a
conversion of an existing frame oriented knowledge base into an
object-oriented one. The purpose of this conversion was to
demonstrate that frame oriented systems are inherently
object-oriented in nature.

Initially, an in-depth investigation of object-oriented
concepts, their roots in data typing, and their developmental
history, was performed. The existing frame oriented knowledge
base, one belonging to a fire effects information system, was then
-decomposed into its component parts. Identified components
included frames, frame hierarchies, frame accessing procedures,
and frame inheritance. A direct mapping was then found between
these frames concepts and the object-oriented concepts of the
object, object classes, the message passing system, and
inheritance capabilities, respectively. The investigation
demonstrated that the existing knowledge base did have many
object-oriented characteristics. The implications of using an
object-oriented environment to build a knowledge base as opposed
to creating a frame based one were then discussed and compared.
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Chapter 1

. INTRODUCTION

1.1 Project Background

This thesis project and paper is a direct result of the writer's
participation in an experimental software development project,
commissioned by the Intermountain Fire Sciences Laboratory (Fire Lab).
The gbal of this software project .has been to attempt to utilize
Artificial Intelligence (AI) techniques in the development of a Fire
Effects Information System and Fire Prescription Expert System. It is
‘planned that this Fire Lab project will span a period of five years.

June, 1986, marks the end of the first year of this project.

The past year has been an important phase in the project's development,
~as the initial development period of any experimental software project
1s very crucial to later development. The decisions made at this staée
greatly influence what 1is formulated later in the project. It is
therefore very important that actions taken during this period in the
project's development be well thought out. Additionally, since this
software project is of an experimental nature, undergoing rapid
evolution, the devélopefs must be careful to build in a great degree of

flexibility for future system changes and additions.

Complicating the system development requirements further is the fact

that the’majority of the software developeps working on the project at



this time will not be with the project to its completion. Therefore,
developed system components must be easy to understand and maintain.

AS opposed to the hqrmal type of software project, this research project
is better characterized as one of iterative enhancement than as one
fitting into the classical softwére development model. As each new
feature and/or improvement‘is'1ntroduced into the system, it is as if a
new system 1s developed. This process of iterative improvement makes it
obvious that such a requirement for easy modification and maintenance of
the information system requires the application of special software

development techniques.

The proposed end goal of the Fire Lab software pfoject‘ is the
development of a Fire Effects Information System and a Fire Prescription
Expert System. By definition, such a goal requires the application of
Expert System technology and theréby application of Al techniques. One
important principle applied to the development of this initial
information system has been the requirement_thét the developed database
be-later utilizible as a knowledge-base for the future Expert Systenm.
It is exactly this important principle which has led the deveiopers to
design and ‘build ‘the Fire Effects Information System using AI
techniques. In particular, they have attempted to create an object-
oriented frame-based system architecture to increase the ease of

modification and maintenance.



1.2 Object-Oriented Programming Approach

Object-orientation is a new approach to software development. It is a
particular way of looking at the organization 6f~data and procedures
within a computer progranm. Instead of treating procedure and data as
separate, as in standard programming, they are treated as a single unit
called an "object". An object, therefore, is defined as a grouping of
particular instances of data and the procedures that operate on that
data. Operations upon these data are performed (procedureslare invoked)
by telling the 'object' (the grouping of data and procedures) the type
of 1nformation that is wanted from it. The object is then responsible
for performing the operation(s) upon itself and returning the desired
information or result.  These operations may return a value, set an
internal value, calculate a value, or may perform any operation that has

been defined to be performed on or with a given object.

For example, one might define'alset of rectangles as individual objects.
Let rectangle-1 have sides with lengths 3 and 5, rectangle-Z have sides
5 and 2, and 1let rectangle-3 have sides »10 and 8. Within most
programming énvironments one wouid probably choose to represent each
rectangle as a record or an array with each side being a field in the
given record or an array index. One would obtain information about a
given rectangle's characteristics, say its area, by retrieving the data
in the side fields and then applying some procedure to those values to

produce the value of its area. This requires that the programmer keep

For a more complete description of object-oriented programming please
see Chapter 2 of this paper. '
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track of where the data is, the type of Values that are needed, and the
appropriate procedures that can be applied to those values (i.e. a
function that calculates the area of a4rectangle and not that of a

triangle).

Within an object-driented‘environment, this bookkeeping is left up to
the object itself and the programmer is free to cdncentrate on more
abstract components of the program. Instance values are associated with
the appropriate procedures which themselves know what values are needed
to calculate the appropriate'results. In the case of the rectangles,
one would send a particular rectangle a message to retrieve its area.

In one environment the call might be as follows:
(send rectangle-1 :area)

which would result in the value of 15 being returned. Doing the same
with the other rectangle 6bjects would result in values 10 and 80 being

returned respectively.

The data contained within a particular instance of an object is often
" called 'instance data' and 1s held in 'instance variables'. In the
example above, the éctuél values of the sides are instance values, and
the side names would be instance variables belonging to each reétangle
"0bject (i.e. rectangle-1 would have instance variables sidel and side2
with instance data values 3 and 5). Procedures for operation upon this
instance data are usually referféd to as 'methods' (i.e. the rectangles
would have associated with them a method called "area" that would

calculate the required value using each rectangles' instance values).
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The communication between the object and other parts of the programming
system is usually called message passing (as seen in the call provided

earlier to retrieve rectangle-1's area).

This technique of programming is particularly powerfql as it allows the
‘programmer and user to conceptualize system componénts at a higher level
df abstraction. This abstraction also allows them to view components
more like real-world objects. It also results in a hiding of procédural
details, making programming of complex systems easier for the programmer

and making program usage easier for the user.

Object-orientation also includes another important feature. Above, the
word "instance" was used in describing data and objects. This 1is
because within an object-oriented system characteristics of objects are
described by an object descriptor. This is often reférred to as a
teclass'. Objects are organized into classes, and each class contains a
description  of the objects' characteristids and the procedures
applicable to objects within that class. A particular object is an
instance of a class. From the example provided above rectangle-1,
rectangle-2, and rectangle-3 would be instances of the class
'rectangie'._ Within the class description, objects' instance variables
are defined aiong with the methods that cén be apPlied to all the
objects of’thebgiven class. For example the class 'rectangle' would
contain information about instance variables 'sideA' and 'sideB' (used
when creating a new instance), and methods for computing information
(i.e. area computation). Individual objects of the given class may put

values (instance data) into the instance variables, and utilize the
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methods defined by its class. These instance values are stored within
the instancé of the object, while the class level information is stored

in the object class descriptor.

This again allows yet another higher 1level of abéﬁraction for the
programmer. By grouping objects into classes with‘ the same
characteristics but with different values foriqthese characteristics,
Whoiesale alteration and modification of all the objects within the
class can be accomplished fairly easily by ’modifyiﬁg the class
descriptor. This greatly improves maintenance by  centralizing the

location of the procedural and descriptive information.

When applied to information system development, object-orientation
requires,deveiopers to conceptualize information components as objects
which themselves contain instance data and utilize procedural
information about how to manipulate that data stored in some type of
object class descriptor. Normal information systems may usually allow
‘the grouping of data into entities, but restrict procedural information
to external programs not directly related to the data object itself,
When objects are changed, file structures and external programs must be
modified, often drasticaliy. Object-orientation seeks to avoid this
problem by encapsulating object-specific data and procedural information

into one package.

Object-orientation involves three main steps. First, the developer
needs to create a means by which object characteristics can be described

(1n$tance values and value manipulation methods). He-must also develop
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a system for describing meta knowledge about ’objeetsv (i.e. class:
descriﬁtors). Second, the developer must create a method for'creation
of instances of described objects{ And third, the developer needs to
create an idterpreter, a message passing system, that can utilize these
descriptions and ihstance values to retrieve information about the
information objects within the system. In essence, this is exactly whet

has been done in the Fire Lab project.

1.3 Expert System'Techniques2

Another important decision thab expert system development requires is
the choicelof a knowledge representation for the information utilized by
the expert system. The usual choice is betﬁeen a totally rule based
system, or a frameibased system. A rule based system is one in which
large amounts of procedural information is stored as a database of
rules.'This database is searched for applicable rules tp be appiied to a
given state of information if certaih'conditions exist., The application
of the rule(s) then produces a new information state which again

utilizes the rule database.

2The following discussion is based on knowledge the writer has gleaned
from coursework in Artificial Intelligence and from the following texts:

Charniak,E.,McDermott, D., Introduction to Artificial Intelligence,
Addison—Wesely, Reading, Massachusetts, 1985.

Hayes-Roth, F., waternam, D. A., Lenat, D. B., (Ed's), Building Expert
Systens, Addison-Wesely, Reading, Massachusetts, 1983.
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A frame based system is more like an information network, where each
node in the network is a frame. A frames is somewhat like a record data
structure. It is made up of a grouping of fields called slots. These
slots coﬁﬁain information related to the frame. Each frame may
 therefore contain information about itself ahd its relation to other
frames .(nodes) id the network. It may also contain procedural
information related to itself. In fact, slots might even contain rules
to be executed by a rule interpreter. Information questions are
énswered‘ by traversing this information network utilizing the
information stored 1in the slots. This traversal might 1nc1ude
application of rules or procedural information found in the slots of the
frames. Frames can also represent hierarchies of information through

their network connections to other frames.

A frame based system is more like the object-oyiented system described
‘above, where each frame can be treated as an object within the
informatipn network. In a rule based system, the given quesﬁion would
be transformed into an answer by the application of rules, while in a
ffame based system, it is answered by searching the information network
for the information needed to answer it. This is similar to the

retrieval of information from objects in an object-oriented environment.

In many expert systems, often a hybrid of the two methods is utilized.
Totally rule based systems seen most appropriate when the data
manipulated is small in comparison to the manipulations applied to it.
In the case of the Fire Effegts system the reverse seems more true of

the system, little manipulation is performed on a large mass of data.
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In this case, frames seem more appropriate and are what was chosen.
This choice was made primarily due to the fact that a frame based'system
can be easily integrated with future rules and because it conveniently

allows application of object-oriented techniques.

1.4 The Fire Effects Information System3

.Within the Fire Effects Information System, frames form the basis of our
object-oriented approach. The dévelopers have created two major frame‘
groupings. First are the actual data frames (class instances). These
house the instance values (actual data) for each frame type (class) in
the sYstem. The system has many different types (classes) of data frames
that represent the different information objects in the Fire Effects
Systém} Second, are the system frames (object class descriptors).
These frames contain descriptive and procedural information about frames

of each type (these are class descriptor frames).

Another major component of the Fire Effects Information System is what.
the developers hgve called the interface functions. These functions act
as the interpreter (the message passing and object creation system) that
accesses and creates actual data frame instances, and utilizes the meta
knowledge (class descriptor information) about data frames contained in

the system frames. 1In addition, there are two external programs, a

3For a more in-depth discussion of the Fire Effects Information System
please refer to Chapter 3.
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knowledge base editor and a menu driven query program, that utilize
these core components.

The objects of the system also have two more majof feétures.that have
not as yet been described. First of all, the information is organized
as a hierarchy of frames, with frames lower in the hierarchy containing
more specific information about information in their parent frames.
These form the different frame types of the system and the system's
database stpucture. Secondly, the data frameé have been broken down
into groupings of lesser»objects called slots. Slots represent each
item of information contained within a frame. Like the data frames,
each slot name (which may appear in different frame types) has a system
frame that déscribes its characteristics and provides the procedural
functions that may be applied to it. This again is an example of the
direct application of object—oriénted programming techniques, with data
frames and slots corresponding to the instances of objects, system
frames to class descriptors, and the interface functions corresponding

to the message passing system.

One further feature of object-oriented programming that slots have that
data frames do not is the addition of a higher level meta information
descriptor frame (an object-class class descriptoﬁ). We were able to
further group slots into five classes. System frames were created for
each class, containing meta information that was common to slots of the
same class. Slots utilize procedural and descriptive information stored

here unless it is superseded by information in the slot descriptor
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system frame.. This is an example of the object-orientation'principles

of object description hierarchies and propebty inheritance.

1.5 The Thesis

The previous discussion has briefly summarized what the develapers have
done on the Fire Lab project. They have applied a frame baséé
objéct-oriented approach to Ehé development of an easily modifiable
ihformation system. To do this they had to create an environment that
1mpleménted object-oriented programming constructs. But what if thaf
environment already existed?‘ Could they have"accomplished!the same end
result? Or would they héve had to implemedt_ an environment solely
tailored to this particular application? It is this question that will

be addressed in the remainder of this paper.

In the author's readings for ﬁhis project he was introduced to four
ma jor object-oriented programming environments, namely Smalltalk, Loops;
Objective-C, and Franz Lisp Flavors. Currently, Franz Lisp’Fiavors is
thé only conveniently available system to which this researcher has
ready access, so the majority of his attention has been directed towards
this implementation., Additionally, since the Firesys code is primarily
written in Franz Lisp, it seems most appropriate to have focused upon

this implementation of an object-oriented environment.

Franz Lisp Flavors appears to be an implementation of an object-oriented

programming environment similar to that which was created for the Fire
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Lab project. It is the premise of this thesis that it should be an easy
tésk to convert the current Fire Effects Information System
implementation into one utilizing Franz Lisp Flavors. This conversion
was accomplished and has involved the reimplementation of the basic
major components of the Firesys 'System in the Franz_»LiSp Flavors
environment. The converted components included the database itself, the
system meta-information database, and the interface functions. As
hoped, it proved to be a fairly simple and straight forward endeavor.
As a result of the conversion, knowledge regarding similarities and
differences of the implementations, and answers to questions of the
usability of such an environment with tﬁe Fire lab project were derived.

" This information will be discussed later in this paper.

In the following pages the writer presents a discussion of selected
topics of interest related to this thesis projéct. The next chapter
gives a detailed discussion of object-oriented programming in general,
and a description of Franz Lisp Flavors and its relation to this
programming technique. Chapter three‘provides‘a description of the Fire
Effeéts Information System architecture and its relation to an
object-oriented programmihg’ environment.. Chapter four describes the
Flavors implementation of the Firesys systen. The final chapter
discusses the success of the conversion attempt, similarities and
diffeerences bétween the implémentations,‘advantages and disadvantages of
the implementations, and whether there is any necessity for a custom

environment.



Chapter 2

OBJECT-ORIENTED PROGRAMMING

2.1 Chapter Overview

Object-oriented programming is a newly popular and different approach to
conceptualizing  software  program  components [Ale%ander,1985]
[Ingalls,1981] [Robson,1981]. Some computer séience professionals think
that the object-oriented approach will‘bring a revolution’1n.programming
during the 1980's like structured programming did during the 1970's
[Rentsch,1982]. Languages that support it use concepts that attempt to
increase the user-friendliness of programming and reduce the complexity
that large programming projects often involve [Leiberman,1982]
[StOyan,1984]. These characteristics are accomplished by the
introduction’qf two major concepts: (1) making problem solutions coded
within compuéer programs more like solutions derived by human problem
solving procedures, and (2) ébstracting program components to a level
that insulates the user and programmer from the implementation details
(Alexander, 1985] [Baroody,1981] . [Ingalls, 1981] [Sprague, 1985]
[(Williams,1984]. These two concepts are closely related as the first

cannot be accomplished without the second.

Object-oriented languages attempt to accomplish these characteristics by
creating ‘the concept of the 'object'. Objects are self-contained

components that have values and behaviors. Like real world objects they

13
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can be manipulated, and based upon the manipulation will display certain
behaviors. Such a modeling of real world objects is much more natural
and simplée to humans than standard programming concepts [Ingalls,1981]
[Robson, 1981] [Sprague,1985]. If computers are to assist humans by
making tasks easier, then they should allow problem solving to be
performed in the most human-like manner [Ingalls,1981]. Ingalls
proposes that humans naturally classify and group elements of the
environment as objects, and solve problems most naturally from this
viewpoint [Ingalls,1981]. Object-orientation is also most natural
because it mirrors the ‘'subject-verb" orientation of the user
[Ingalls,1981] [Sprague,1985] [Williams,1984]. Objects within the
computer system therefore model how people perceive objects in the real
world: they have identity, perform actions, may be grouped by
similarities to other objects, and display actions and characteristics
that are common to these groupings. It is conjectured that this
approach results in the development of software products that are
simpler to understand and maintain, that have shorter development times
and greater flexibility, and that are more reliable [Cox,1984]

'[Ingalls,1981] [Pascoe, 1986].

This chapter will attempt to demonstrate why these statements are true.
First, a description will be provided of the object-oriented programming
concepts. This will be followed by sections providing a brief history
of object-orientation, its roots in the evolution of data types, its

differences from traditional programming approaches, and some of its
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claims for software improvement. Finally, a description of the Fran=z

Lisp Flavors programming environment will be given.

2.2 The Object-oriented Concepts

_The object-oriented programming philosophy is composed of four
primary ideas. First is the concept of the 'object' which is
central to the whole approach. Second is the idea of message
sending. Third is the hierarchical classification system. Lastly
is the concept of inheritance. In this section, each of these

concepts will be described.

2.2.1 The Object

The concept of the ‘'object' is central to the whole philosophy of
object-orientation. Many definitions of the term 'object' are provided

in the literature:

Object: A package of information and description of its

manipulations [Robson,1981].

Objects have properties of 'objectness': inherent processing
ability, message communication, and uniformity of

appearance, status, and reference [Rentsch, 1982].
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‘An__object, far from being inert matter, is an active,
animate entity, and is reéponsible for providing its own
computational behavior. Its processing capability is not
only inside the object, it is ever present within and

inseparable from the object [Rentsch,1982].

An "object" is like a package that describes a specific kind
of data and the set of all procedures that may work on that
data. Thus, an object is a higher-level grouping of
information; a type of package designed for modularity and

flexibility [Lubinski,1984].

Object: The primitive element of object-oriented
programming. Objects combine the attributes of procedures
and data. Objects store data in variables, and respond to

messages by carrying out procedures [Stefik,1986].

An object consists of some private memory and a set of
operations. The nature of an object's operations depends on
the type of component it represents. A crucial property of
an object is that its private memory can only be manipulated

by its own operations [Goldberg,1983].

These definitions, in combination, describe the 'object' concept. An
object is an abstract data entity, with hidden internal variables and
values. Associated with these components are procedures (also called
'methods') which provide the only means by which the hidden values can

be manipulated. Each of these data entity packages appear uniform from
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an external view, and can be accessed (invoked) only through the use of
a standard message passing system .(invocation protocol). This is the

basic definition of an object.

Another important feature of the 'object' concept is the dichotomy of
internal versus external view. Objects are always described as entities
whose inner workings are hidden. This is no accident. The shift of
viewpoint from the inside to the outside is in itself an essential part
of the object-oriented approach. This shift allows for simplification
of complexity, and allows programmers to conceptualize program
components in a more natural way [Rentsch,1982] [Robson,1981].
Programmers can now utilize program components as they do objects in the
real world. The programmer is only concerned with the inside view of an
object when constructing the object itself. Once constructed, the
internal details become immaterial to the object's usage. Only a
knowledge of the messages that it will respond to 1is required
[Rentsch,1982] [Robson,1981]. Internal implementations of objects can
as a result be readily changed without affecting its interaction with
other parts of the system as long as the message interface remains the
same. This abstraction process and the ability to treat program

components as objects are the real power of object-oriented programming.

2.2.2 The Message Sending System

The message sending system 1s also a primary concept of object-oriented

programming. A user asks an object to carry out some action by sending
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it a message. The. message sending system provides a means for
activation of the object's operations to carry out a desired action.
These operations are often called 'methods'. The object, upon receiving
a message, carries out the associated action (method), returning the
result that is needed. The object may not be able to carry out directly
all of the action itself. It may have to send a message to another
object which can provide the information needed to complete its task
[Rentsch,1982]. Under such a system, instead of allowing procedures to
access data structures freely, possibly causing unwanted side effects
(as would be the case with the traditional procedurally oriented
approach), one now has a system of objects (a union of data and
procedures) cleanly passing information and carrying out actions via

messages [Ingalls,1981].

Message sending is uniform. All processing is performed by sending
messages. The same mechanism is used to do addition, file operations,
and screen actions. This uniformity, like the uniform external view of
‘an object, is claimed to simplify greatly the complexity of software
systems [Rentsch,1982]. Uniformity of the invocation protocol (message
sending system) supports the principle that calling programs should not
make any assumptions about the implementation and internal
representations of the objects they use [Stefik,1986]. It allows
underljing implementations of objects to be altered without the need for

changes to programs or other objects that call it [Stefik,1985].

Message passing is accomplished by sending an object an operation

selector (also called a 'method selector'), useing a standard syntax.
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Method selectors may be accompanied by additional parameters that might
be needed for the called object to perform the desired task. However, a
given method selector always will have the same uniformity (number of
parameters) regardless of the object to which it is sent. This selector
specifies what is to be done and not how to do it. It is left up to the
receiving object to interpret the selector and to perform the requested
action [Rentsch,1982] [Stefik,1985]. This message-sending paradigm
along with the concept of the 'object! results in modularity by
decoupling the intent of a message from the method used by the recipient
to carry out the intent [Goldberg,1983] [Ingalls,1981]. These
properties also insure that the implementation of one object cannot
depend on the internal'details of other objects, but rather only upon
the messages to which they respond [Goldberg,1983]. It is claimed that
this modular systém structure may reduce the compléxity of some software

systems.

2.2.3 The Class System

The concepts presented so far describe the power that object-oriented
programming provides with its modularity and uniform calling protocol
schene. But these advantages are not worth much if each object's
internal code is a duplicate of the internal code of other objects of
the same kind. If objgcts of the same kind really only differ by values
in their internal state variables, then changés to the implementation of

their operational procedures would mean méking'changes in every»instance
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of that kind of object. Such a maintenance task would not be

acceptable. The 'class' concept addresses this very problem.

Classification is an act that people do naturally every day. People
abstract out those components of daily experience that are similar, and
group those similarities in such a way that they denote the essence of
those experiences [Cox,1984] [Ingalls,1981] [Rentsch,1982]. An example
is the observation of a chair. When a person sees a chair, he/she does
not only experience the chair as a singular object, but abstracts out of
it the components that make it a chair 1like any other chair
[Ingalls,1981]. Within object-oriented programming, the class serves a

similar function [Ingalls,1981] [Rentsch,1982].

The class provides a description of all instances of objects in the
class, much like a data type [Baroody,1981] [Robson,1981] [Stefik,1985].
It describes the implementation of a set of objects (its instanqgs) that
all represent the same kind of system component [Goldberg,1983]
[Tyugu,1984]. The class provides a template for the creation of new
instances by describing the form of their private memories (instance
variables), and houses the operational procedures (methods) that are
common to all of them [Goldberg,1983] [Robson,1981]. Each instance of a
class contains instance variables whose contents describe their
individual states. Additionally, they each have some name by which they
can be identified as objects within the system, and some indication of
the class to which they belong [Stefik,1985]. All messages sent to an
object of a given class result in the application of the associated

method (procedural code) stored in the class descriptor to the object's
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state values -(if applicable) [Goldberg,1983]. This scheme allows for
centralization of the code that is common to objects of the same kind.
Additionally, introduction of new objects to the system only involves
the creation of new instances of an already existing class. New classes

can also be readily added if needed.

2.2.4 The Class Hierarchy and Inheritance

The existence of classes allows for code sharing and consolidation
within an object-oriented system. Code that is common to objects of the
same type can be factored out and stored in one central location for
easy modification and extension. Objects of different types (classes)
can then have the same message selectors, but belong to different
classes. Each can have different implementations of the same type of
actions. For example each object could be sent a 'print-self' message.
Assume one of the objects is an integer, and another a string. Each
would necessarily have a different procedure (method) to perform the
print action. Because of the uniform message passing system and the
class structure, all the objects could receive the same message ('print-
self') and perform the correct action. Each object would access the
needed procedural code from one location, its class. Objects of the
same class (type) use the same code. But why stop there? There are
certainly actions that are common ‘to objects of different types

(classes) that can utilize the same procedural code.
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The concept of a class hierarchy addresses this issue. Classes may be
broken up -“into -a hierarchy —of ~subclasses and  superelasses:
[Goldberg, 1983] [Robson,1981] [Stefik,1986] [Stoyan,1984]. Properties
that are common to a grouping of differing objects can be centralized at
a superclass level. For example, all motor vehicles have motors. A
statement of this fact could reside in the superclass Motor_Vehicle.
All cars and trucks when sent a message requesting an answer to whether
they. have a motor could access this method. Car and truck, being
themselves separate classes, could have methods stored at their level
that are unique to each of them. Likewise, car and truck themselves
might have subclasses. Car might have subclass Compact Car, or

Mid_Sized_Car, each with special instance variables and methods.

The main concept here is that as methods and instance variables become
more specialized, they reside in lower level classes in the hierarchy.
More general ones are placed higher in the hiérarchy. Lower 1level
characteristics always override higher level ones. This results in a
classification system that provides a spectrum of totally shared
characteristics to totally individual ones [Rentsch,1982]. This kind of
sharing makes for a usable system by factoring. Successful factoring
results in brevity, clarity, and modularity, which in turn, it is

claimed, results in manageability in complex systems [Rentsch,1982].

This class structure provides for adaptation by being variable along the
dimension of individuality [Rentsch,1982]. What this means 1is that
characteristics can be shared by the group while allowing individuals

within the group to reinterpret some shared behavior as it applies to
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the individuals themselves [Rentsch,1982].. .. Allowing individual
variability results in the capability of getting exactly what'you want
by overriding undesired group characteristics with individual
characteristics [Rentsch,1982]. The hierarchy of classes specifically

allows this to occur.

Object-oriented languages provide this capability to utilize or override
grouped characteristics through inheritance [Robson,1981]. The idea
here is that methods and instance variables defined at a subclass level
will always override those defined at a higher 1level, otherwise the
higher level characteristics become the defaults [Stefik,1985]. When an
object receives a message it performs a bottom-up search of its class
and superclasses to find the method associated with the received
selector. The first one found will be executed, and will be the one
with the correct level of specialization. This insures that procedures
manipulate data at the proper level of abstraction [Baroody,1981].
Inheritance reduces the need to specify redundant information and
simplifies updating and modification, since information can be entered

and changed in one place [Bdbrow,1986].

The power of inheritance is in the economy of expression that results
from object description sharing [Stefik,1985]. This power is extended
even farther by languages that permit 'multiple inheritance'. Multiple
inheritance allows increased sharing by making it possible to combine
object descriptions from many different classes [Stefik,1985].
Smalltalk, Loops, and LiSp Flavors provide these capabilities

[Stefik,1985]. Each of these languages also provides a means for the
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user to specify some kind of precedence of inheritance from the multiple

superclasses [Stefik,1985].

Object-oriented programming can now be seen as a different means of
qrganizing and grouping program components. Fundamental to this
approach is the creation of objects. Objects are packages of data and
procedures with a uniform means of access. This uniform means of access
’is the same for all objects. Objects are organized into classes,
similar to how humans organize objects in the real world. Common
characteristics are abstracted to ‘higher classification levels, and
objects can inherit these characteristics 1if they belong to an
appropriate subclass. Programs are created by establishing the
appropriate objects, piecing them together, and having them interact
with each other. This approach is reportedly more similar to how

humans solve problems in the real world.

2.3 A Brief History of Object-oriented Programming

The immediate ancestor of all object-oriented programming languages is
Simula where the class concept was introduced [Rentsch,1982]. However,
Smalltalk still stands as the strongest representative of
object-oriented programming in the sense of being the most unified in
representing it [Rentsch,1982]. Awareness of the importance of
object-orientation arose with the development of Smalltalk, so the
history of Smalltalk is essentially the history of object-oriented

programning [Rentsch, 1982].
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Smalltalk was originally the software half of a project called Dynabook,
~which -was -an -effort to produce the most user-friendly computer
[Rentsch,1982]. Alan Kay was the main visionary associated with this
project, and in the late 1960's worked on a preliminary version called
the Flex machine [Rentsch,1982]. Later in the early 1970's, he worked
with others at Xerox Palo Alto Research Center (Xerox PARC) developing

Smalltalk on the Xerox Alto machine [Rentsch,1982].

The development of Smalltalk drew heavily on the ideas of two older
languages: Lisp and Simula [Rentsch,1982]. However, Smalltalk is
primarily based wupon the class cqncépb borrowédv from Simula
[Rentsch,1982]. In Smalltalk the class is the sole structural unit,
with instances of classes (objects) being the concrete units
[Rentsch,1982]. Smalltalk is more than just a programming language. It
is a total programming environment which reflects the object-ofiented

philosophy [Rentsch,1982].

Since the introduction of Smalltalk, awareness of object-oriented
concepts has increased [Rentsch,1982]. Other languages incorporating
object-oriented concepts have developed. These include: Lisp Flavors,
Loops, Clascal, Objective-C, OOPC, C++, Neon, KEE, Object Lisp, STROBE,
ACT I, Object Pascal, and others [Cox,1984] [Schmucker,1986]
[Sprague,1985] [Stefik,1986] [Williams,1984]. The vast majority of
these implementations, however, represent additions of object-oriented
concepts to exiéting languages. This hybrid approach has been one aimed
at trying to keep the best of both worlds [Cox,1984]. To the author's

knowledge, Smalltalk still represents the only pure object-oriented
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programming‘ language/environment [Rentsch,1982]. - Due- to the  influence
of the Smalltalk philosophy new machine environments have also
developed. A prime example is the Apple Macintoslfl1 computer with its
object-oriented user interface which has borrowed heavily from research

done at Xerox PARC and from Smalltalk [Sprague,1985].

One can see from the previous discussion that object-oriented
programming has begun to attract much attention. Although its principal
ideas have been around for some time, only 1lately has this great
interest appeared. Introduction of object-oriented machines like the
Apple Macintosh! may help to popularize this powerful programming
paradigm, as may its application to existing programming languages and

future applications.

2.4 The Evolution of the Data Type Concept

The evolution of the concept of 'data type' has played an important
role in the development of programming languages [Pratt,1984]. The
development of object-oriented programming marks a new stage in that
evolution. It represents a new level of abstraction of data types
beyond what  languages based on other concepts provide.
Object-orientation entails the optimal combination of the ideas of data

encapsulation and data abstraction [Cohen,1984].

The Apple Macintosh is a product of the Apple Computer Corporation.
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Originally, computers were programmed using the memory locations of the
hardware as the data object. Depending upon the context of its usage,
that memory location could contain an integer, part of a floating-point
nuniber, a character, an instruction, or some other item. All data
checking and usage was left to the programmer. Even though one can
argue that specific instructions required data of a specific type, in
actuality there really were no data types since no type checking
occurred. Type conflicts were only evident when and if an error was

identified in the programs behavior.

Older programming languages like FORTRAN and COBOL mark the beginning of
the incorporatibn of the concept of a data type [Pratt,1984]. In these
languages, primitive data types such as reals, integers, and character
strings were provided. The compilers for these languages introduced
type checking that insured that the programmer was utilizing them
correctly. This early notion of data types centered around the concept
that a data type defines a 'set of values' that a variable might take on
[Pratt,1984].

The next level of evolution can be see in languages 1like Pascal
[Pratt,1984]. In such languages 'type definitions' can be made that
define the structure of a set of primitive data objects and their
possible values. This allows the programmer to define a structured data
type and to then declare instances of that type without having to
redefine the whole structure for each instance [Pratt,1984]. At this
stage the concept of a data type is expanded to mean a ‘'set of data

objects and possible values'.
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Pratt indicates that the 'final' step in the evolution of the data type
concept is the understanding that a data type is not only a set of data
objects and their possible values, but also a 'a set of operations' that
manipulate objects of that data type [Pratt,1984]. With this he
presents the idea of encapsulation. The idea of encapéulation is to
have the programming language provide a means by which a data entity can
be defined along with its data manipulations operations in a nice neat
package, the internal details of which are hidden ffﬁm the user of the
entity. The manipulation operations provide the only means for
accessing the data entity. These new data types are true data
abstractions, “leading to the concept of the 'abstract data type’
[Pratt,1984].

The concept of an 'abstract data type' allows the programmer to abstract
the complexity of a 1large programming project into smaller parts
[Pratt,1984]. This allows the programmer to use effectively a 'divide
and conquer' approach to the prdblem's.solution [Pratt,1984]. Languages
supporting these facilities include Ada with its 'packages' and Modula-2
with its 'modules' [Bobrow,1986] [Pascoe,1986] [Pratt,1984]. The two
important ideas associated with this concept are (1) information hiding

and (2) encapsulation [Pratt,1984].

Information hiding describes a central principal in the design of
programmer-defined abstractions where each program component hides the
details of its implementation from its user [Pratt,1984]. This suggests
that each abstraction has a clearly defined purpose, and a specific

interface through which the abstraction is manipulated. This kind of
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capability can be -implemented in languages like FORTRAN by convention,
buﬁ are not enforced by the language itself [Pratt,1984]. The addition
of encapsulation capability (forced information hiding) by the language
itself insures that later modifications cannot inadvertently breech
earlier set conventions. Only languages 1like Ada provide such

capabilities [Pratt,1984].

Pratt seems to think that data abstraction as he describes it is the
"final" stage of evolution of the data type concept. The author does
not believe this to be true, and neither do others [Buzzard,1985]
[Pascoe,1986]. A language like Modula-2 allows the programmer to create
abstract data objects through the use of the module (package) concept.
Multiple instances of that data object can be defined as long as the
named object is passed to its manipulation procedures. One problem
arises when one wishes to change the abstract data type's composition
_only slightly, a whole new data type module must be reconstructed

[Pascoe, 1986].

For example, consider the definition of a stack data object. In
Modula-2, a stack would be defined as an array or linked list of stack-
type elements, and the operations push(), pop(), initialize(), empty(),
and full(). However, the stack type definition would determine what
‘type of elements could be put into the stack, say integers. To have
another stack that allowed strings to be put into the stack would
require that a whole new stack definition be created even though all but
one line of code would be identical (stack_type = INTEGER versus

stack_type = STRING) [Pascoe,1986]. The Ada concept of ‘'generic
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packages' attempts to address this issue, and will be discussed

shortly..

There is an additional problem. We now have two modules with the same
name! The compiler will not accept two definitions for the same object,
'stack’. So, we are forced to provide the different names, say
String Stack and Integer_Stack. Not only is this a problem with object
names, but what happens when different objects have exported procedures
(procedures declared to be accessible from outside the defined abstract
object) with the same name? Take for example a stack and queue. Both
probably need initialize(), empty() and full() procedures. If the names
exported are the same, we have a problem. Their names must be unique or
qualified (stack.initialize or queue.initialize) [Pascoe,1986]. The
power of encapsulation and information hiding are present, but a major.

degree of flexibility is not.

What is needed is a new level of abstraction, and a new evolution of the
abstract data type concept. Such an evolution 1is provided by the
concepts of the 'generic package' and of 'operator overloading' seen in
the Ada programming language [Buzzard,1985] [Pascoe,1986].  Generic
packages allow multiple objects with similar but different structures to
be created at compile time. This is accomplished by using a package
template and checking the necessary type information [Pascoe,1986]. Ada
also allows overloading of operators. Overloading makes it possible to.
have the same name for different but similar procedures. This

capability eliminates the.unique naming problem [Pascoe,1986].



31
- But~ what happens if Wé want a structure that is not predefined at
compile time, like a stack that can hold objects of different types?
Such a capability requires dynamic binding [Pascoe,1986]. Ada attempts
to address this problem with 1its variant records. Traditional
programming languages can do this by providing some kind of case
statement that checks types at run-time, applying the appropriate
procedure for operating on a stack element of the given type. The
problem here is that whenever a new stack element type is added to the
system, not only is the code for the new type definition added, but the
existing code (the case. statement and variant record structure) for
other objects (stacks) must also be altered [Pascoe,1986]
[Winston,1981]. We now have a dependency between existing objects and
new ones added to the systen. Such a dependency defeats the
encapsulation we have strived for by requiring knowledge of the

implementation of all the data objects in the system!

Again, we need another evolution in our concept of an abstract data
type. This evolution involves the addition of the concept of the data
object as being an animate object. In this abstraction, the object
itself becomes responsible for performing operations on itself, no
longer being dependant upon external procedures [Pascoe,1986]. This
eliminates the need for the case statement mentioned in the stack
example previously, as now the stack element itself would perform the

operation.

But we still have the problem of having redundant code for highly

similar operations. A slight modification in the behavior of an
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operation will involve alteration of all the code for the similar
operation. As noted earlier, Ada provides . the - generic - package
[Buzzard, 1985]. In a way this is really a form of inheritance
[Rentsch,1982]. Each instance of the generic package inherits the
characteristics of the generic package with minor' modifications.
However, inheritance is limited to one generic package. There is no

hierarchy of inheritance.

This idea of inheritance is the next level of abstraction that is
brought to programming by an object-oriented approach. Inheritance
allows code to be factored [Pascoe,1986]. Code that is common to data
objedts can be stored in one location. This, it is conjectured, makes
modification of code easier and more reliable [Cohen,1984]. Factoring
is accomplished by defining classes. Classes can have subclasses or
superclasses. Common code can be stored within these class definitions,

dependent upon their level of factoring [Pascoe,1986].

The evolution of data types described to this point now includes quite a
few more characteristics than those Pratt [Pratt,1984] has described in
his "final" stage. We now have arrived at a description of an abstract
data type as an 'object'. This ‘'object' is a set of data objects
(abstract types or values) with procedures to operate on itself, with
encapsulation of these components resulting in information hiding, with
inclusion of dynamic binding and class inheritance capability, and with
the inclusion of the concept of an 'object' as an animate entity
[Pascoe,1986] [Stefik,1986] [Stoyan,1984]. The application of this

abstraction to programming supposedly results in software that is more
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flexible; supporting change, reusability, and easy enhancement

[Cox,1984].

2.5 Traditional versus Object-oriented Programming

As mentioned in the beginning of this chapter, object-oriented
programming is a different approach to programming. Different as
compared to what? This section will describe the differences between
what 1s called traditional or procedure-oriented programming and

object—oriented programming.

The traditional or procedural-oriented Style -of programming can be
described as dividing programming into two distinct segments [Cox,1984].
First is the code segment, consisting of subroutines that do all the
work of the program. Second is the data segment, consisting of the data
structures that the procedures manipulate [Bobrow,1986] [Cox,1984]
[Robson,1981]. Data are static, having values changed by procedures,
and are essentially global [Cox,1984] [Leiberman,1982] [Stoyan, 1984].
Major operations are built by combining subroutines into sequences that
are grouped [Cox,1984]. Procedures are responsible for keeping track of
timing considerations (sequence), space and movement of data, and data

type checking [Cox,1984].

One problem with the procedure-oriented approach is that data and
procedures are treated as if they are independent of each other when in

fact they are not [Cox,1984] [Robson,1981]. Procedures, in practice,
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place strong restrictions upon the types of data that they handle
[Cox,1984]. This fact results in the need to do major surgery to
general-purpose procedures when changes are made in data structures or
when new data structures are added [Pascoe,1986] [Winston,1981]. The
procedure-oriented approach  makes the programming environment
responsible for managing data type dependencies, so environmental code
is not reusable [Cox,1984]. Additionally, the programmer must remember
what these restrictions are when using the procedures and this results

in errors being made [Cox,1984].

An interesting example is provided by Cox [Cox,1984]. What would we
think if an electrician who was wiring telephone lines and power lines
in a building was required to use the same type of plugs and wires to do
both? It would be his responsibility to remember which plug was
carrying what voltage! This is the situation created when using
procedure-oriented programming techniques; we attempt to keep track of

compatibility information manually [Cox,1984].

The object-oriented approach, in contrast, treats procedures and data as
two indivisible aspects of the same object in the problem domain
[Cox,1984] [Robson, 1981]. Applications can be developed by
straightforwardly examining the problem domain, identifying objects and
their behaviors within the domain, and then implementing them in the
_computer utilizing object-oriented techniques [Cox,1984]. The
programmer is no longer required to restate the problem domain into
computer domain terms where everything is eiﬁher an operator or an

operand [Cox,1984]. No 716ngé54'is kﬁowledge of data characteristics



»
spread through all the procedures of a program, but rather centralized
to specific data objects [Bobrow,1986] [Leiberman,1982]. Each object
has only the knowledge and expertise to act in accordance with requests
made of 1it, placing knowledge only where it 1is actually used
(Leiberman, 1982]. Data/procedure interdependencies are moved out of
implicit storage in the environment and into explicit storage in the

data objects themselves [Cox,1984].

As opposed to function calls with static-data passage, object-oriented
programming utilizes a message-passing system [Bobrow,1986] [Cox,1984]
[Leiberman, 1982] [Robson,1981]. An object is sent a message and
responds to that message according to its internal knowledge. Like
function calls, messages can contain parameters. The object determines

how to perform the action itself [Robson,1981].

Another important difference 1is the ability that object-oriented
programming has to factor common code out of the object's local
structure, placing it into a common location [Bobrow,1986] [Cox,1984]
[Leiberman, 1982] [Robson,1981]. Objects are defined by their class. A
class, in turn, can be described by another superibr class. When a
message is sent to an object an upward search is performed within the
class hierarchy structure for a procedure that matches the message
request. If none is found and no superclasses remain, then an error
message is  1issued [Bobrow, 1986 ] [Cox,1984] [Leiberman, 1982]
[Robson,1981] Code that is common to several classes is stored highep
in the hierarchy. This technique of .code factoring, called inheritance,

is a scheme that allows new objects to be easily added to the software
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system without ‘major modification, since new classes can easily be
defined by declaring them as subclasses of existing classes

[Bobrow, 19861 [Cox,1984] [Leiberman,1982] [Robson,1981].

These differences give object-oriented programming some advantages over
procedure-oriented techniques. Data dependencies encoded within
procedures are eliminated. Code modifications and additions are made
simple and side effects are minimized. Programmed problem solutions are
not forced into computer defined structures (i.e. the data types
available), but rather allow abstract vdata object definitions that
parallel real world problem domain structures. Code factoring and
compression are also a natural part of this programming style. Because
of these differences, object-oriented programming may be an important

and powerful improvement over traditional programming techniques.

2.6 Why Object-oriented Programming?

In the previous sections, the reader has been presented with the basic
concepts of object-oriented programming. Additionally, the reader
should now be familiar with the basic history of the development of
object-orientation, and its difference from traditional programming.
But why should the user utilize this programming . technique? In this
section, some of the claimed benefits of object—oriented programming
will be presented. Object-orientation's relationship to software cost

and maintenance will also be described. Lastly; a description of some
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programming projects to which the technique was applied will be

presented.

2.6.1 Some Claims of Object-oriented Programming

The Fifth Generation of computing has been heralded as being at hand due
to the new advances in Artificial Intelligence (AI). Associated with
this evolution are at least three developments in software technology:
logic programming, exploratory programming, and object-oriented
programming [Sheil,1983]. Based upon statements like this one might
claim that object-oriented programﬂing is a new and revolutionary AI
technique. This is apparently due to the close relationship that
object-oriented programming has with the theory of franmes
[Barbuceanu, 1984 ] [Stefik,1985].2 Others have claimed its usefulness
for simulation programming, systems programming, and graphics

[Bobrow, 1986] [Stefik,1985].

With regard to simulation, objects can form the basis for simulation of
system components and their interactions. Conceptualizing system
components as objects reportedly makes simulation programming
conceptually easier [Barbuceanu,1984] [Ingalls,1981] [Stefik,1985]. 1In
general usage, large classes of computer applications attempt to model
some physical or conceptual process. Traditional programming makes the

programmer force this modeling into some machine representation that is

2'A discussion of'object-orientation's similarity to frame theory will
be presented in Chapter 3.
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often not in a form parallel to the real world process.
Object-orientation, on the other hand, by design, models real world
objects and events, and parallels conceptual processes, making it bettgr

for simulations and any other form of modeling [Cox,1984].

2.6.2 Software Cost and Maintenance Considerations

By far, software has become the most costly portion of most computer
systems [Lubinski,1984] [Martin,1983]. According to James Martin
{Martin,1983], sixty-seven percent of that cost can be accounted for by
maintenance needs. With this fact in mind, one is faced with the
necessity of making software as easy to understand and maintain as
possible. A primary feature of object-oriented programming is its
inheritance and classification capabilities [Alexander,1985] [Alws, 1985]
[Brown, 1983] [Cox,1984] [Goldberg,1983] [Leiberman,1982] [Lubinski, 1984]
[Rentsch,1982] ([Stefik,1985]. These capabilities allow code that is
common to different types of objects to be stored in one location that
is accessible to all of these objects. If an object belongs to a
classification, it can inherit any code that is associated with that
classification. This makes for the elimination of redundant code,
allowing code sharing and centralization. Code maintenance and
modification then should become much easier, because the code is more
compact and centralized. Cox [Cox,1986], suggests that what is truly
revolutionary about object-orientation is that it helps programmers to

reuse existing code.. He offers as an analogy a comparison of
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object-oriented programming with . circuit building = using - IC-chips
(Integrated Circuit chips). He suggests that objects in object
libraries are "Software-ICs" [Cox,1986]1. The results of reusability can
be seen if one compares the size of the Unix operating system
(non-object-oriented) with that of Smalltalk (totally object-oriented).
One finds that on a capability based comparison, Smalltalk has much less
code than Unix [Cox,1984]. This reduction is reported by Cox
[Cox,1984] to be due to Smalltalk's centralized and shared code.
However, one should temper this statement with the knowledge that Unix

may provide a greater number of system capabilities.

Additional important features of object-oriented languages include its
object modularity, and uniformity of invocation protocol [Alws,1985]
[Brown,1983] [Cox,1984] [Goldberg,1983] [Ingalls,1981] [Leiberman,1982]
[Lubinski,1984] [Rentsch,1982] [Stefik,1985]. These factors also
directly affect the maintainability of a software system. By
definition, objects are encapsulated units, containing values and
procedural information with a uniform interface. This structuring
insures that implementation details of object structure and behavior are
totally hidden from the object user, thereby eliminating environmental
dependencies that might otherwise reduce the flexibility of the software
[Cox,1984] [Goldberg,1983]. Objects are self-contained entities that
can only be examined externally, and whose internal workings have no
dependency on external conditions. Languages like Ada also attempt to

meet this high degree of maintainability through the concept of the
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package, but lack the class hierarchy and uniform invocation protocol

capabilities of_object-oriented languages.

Even though the concept of an object as a self-contained entity is
powerful, its true power is not realized until one recognizes the
importance of the «concept of a uniform invocation protocol
[Goldberg, 1983] [Ingalls,1981] [Rentsch,1982] [Stefik,1985]. Values are
retrieved and procedures invoked by passing a message to an_object. All
objects can receive any message, and will respond in one of two ways.
Either the object will do the desired task, or it will notify the caller
that it cannot perform the task (send back an error message). The real
power here is that at any time an dbject can be added or removed from
the system without requiring the alteration of existing system code.
Because the message passing system is uniform, only the code for the
object in question need be affected [Goldberg,1983] [Ingalls,1981]

[Rentsch, 1982] [Stefik,1985].

Object-oriented programming may greatly enhance the maintainability and
flexibility of software. As noted above, common code can be shared and
centralized, objects are encapsulated eliminating external dependencies,
and invocation of object actions is uniform. These characteristics, it
is claimed from programming experience, make object-oriented code highly
reusable, and easier to maintain and modify than programs coded with
traditional techniques [Alws,1985]. These features are also claimed
from experience to support dramatically the ability to perform rapid
prototyping [Alws,1985]. Object-oriented software development

techniques therefore show promise for providing an environment in which
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programs can be developed modularly, with a minimum of inter-module
coupling (dependency), and with the flexibility to be easily maintainéd

and modified.

2.6.3 Object-oriented Applications

Currently, the use of object-oriented techniques is open to much
experimentation and many different environmenﬁs havé been created to
date [Stefik,1985]. Within these -environments different application
programs have been developed. One such application was constructed at
Tektronix Inc. wusing Smalltalk (the prototypical object-oriented

programming environment [Rentsch,1982] [White,19861) [Alexander,1985].

Tektronix has the difficult task of diagnosing and repairing electronic
equipment that it selis. Training technicians to have a concise and
highly developed fault isolation strategy is very costly and time
consuming. Additionally, once trained, many technicians soon move on to
new jobs. This situation makes electronics troubleshooting an ideal
application for an expert system. Tektronix decided to create a
technician's assistant to'help assist and guide technicians in repairing

equipment [Alexander,1985].

The task involved the conceptualization of electronic components as
objects in the software systen. Each object was coded to display
behaviors that were expected of their real world counterpart. Utilizing

the outstanding graphics of Smalltalk, circuit diagrams and components
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could be displayed as part of a diagnosis simulation [Alexander,1985].
The progranm presents a display showing the circuit diagram and board
layout for the componenﬁ to be tested. Expected voltage readings for
pointed-to components within the display are shown, allowing anomalies
to be easily recognized when ccmparisoné are made to actual readings.
If the technician requests diagnostic assistance, the program queries
for circuit readings and additional information, and suggests a new

course of action for the technician to take [Alexander,1985].

The user is led through the diagnosis process by the program, not only
assisting him in the task, but actually training him in a diagnosis
strategy. The Smalltalk object-oriented environment with its ‘objects'
and hierarchical classification capability has allowed such a simulation
to be coded wiﬁh a minimum of effort and with maximum fléxibility. Each
assistant for different electronic equipment was coded using the same

base program [Alexander,1985].

Smalltalk is not the oniy language used for object-oriented application
development. OOPC (Object Oriented Precompiler for C) has. also been
utilized fCox,198M] [Awls,1985]. In the Awls implementation
[Awls,1985], two special_purpose editors were developed. The editors
were designed to assist software designers in producing documentation'
for designs for software projects. One editor was constructed to build
special system structure charts, and the other to develop pseudo-code
for designed modules [Awls,1985]. Modules designed were treated as
objects that needed to be represented by diagrams and pseudo-code by the

editors. According to Awls, object-oriented concepts allowed the editor
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programs to assist the designers in keeping track of module interfaces
and procedural ihteractions (Awls, 1985]. This anecdotail progran
description suggests that object-oriented techniques can assist project

dévelbpers with integration of disparate project components.

Written in a speciai language called Act 1, Leiberman has constructed a
composers assistant [Leiberman;1982]. The program is wutilized by
musicians composing music. Notes, chords, and mélodies make up the
objects of thé system. The program can be used to analyze existing
compositions, or to assist in creating new ones. Leiberman states that
traditional programming languages are not very good at dealing with the
complexity that a task such as music composition entails, and that
object?orientation is one approach that makes the complexity easier to
handle (Leiberman,1982]. His experiences with utilizing object-oriented
vtechniques lend support to the notion that they reduce project

‘complexity.

Other applications have also been constructed using object-oriented
programming techniques. They inélude: (1) a Computer;Aided Design (CAD)
system that inteliigently simulates design actiVities, illustrating‘
design consequences [Barbuceanu,1983], (2) the repackaging of a
Graphical Kernel System so that it is easily accessible by applications
in the most flexible manner [Lubinski, 1984], (3) development of a highly
flexible multi-user database system with easily customized user
interfaces [Baroody,1981], (4) creation of an electronic form handling‘
system that updates and manages forms used in planning and arranging

~executive business trips [Fikes,1981]. All of these application; lend
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support to the great potential that object-oriented programming holds

for computer software.systenms.

2.7 Franz Lisp Flavors3

Flavors is a name for a more geheral class of object-oriented extensions
to a Lisp dialect. It is not specific to the Franz Inc. version of
Lisp. The object-oriented style implemented in Franz Lisp Flavors is
borrowed directly from the Smalltalk and Actor families of languages.

The Franz Lisp implementation of Flavors is similar to Zetalisp.

'Flavors is an extension to Franz Lisp in thé sense that it utilizes'the
hybrid approach mentioned earlier, taking a standard Lisp implementation
and adding new object-oriented capabilities to it. Therefore, Flavors
is not a totally object-oriented programming environment, but rather an

enhancement of an existing Lisp language.

With regard to this thesis project, the usage of Franz Lisp Flavors is
most approﬁriate. The original Fire Lab Project code was written in
this dialect of Lisp and any conversion of the Fire Lab code into a
standard object-oriented form could be accomplished in a straight
forward manner usihg this extension. This is exactly the reason that
Franz Lisp Flavors was chosen for the language of implementation of this

thesis project.

3A11 information regarding Franz Lisp Flavors presented in this section
has been taken directly from Chapter 19 of the Franz Lisp Reference
Manual, Franz Lisp Opus 42.16.3, Franz Inc., 1985.
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Although it can be argued that usage of a hybrid approach in creating an
object-oriented programming environment is in opposition to
object-oriented precepts, hybrid languages allow the usage of existing
programming techniques and code which can be enhanced with new and
powerful programming techniques [Cox,1984]. In the case of the Fire Lab
Project, a large mass of Lisp code was already in existence,‘and the
author waé familiar with the Franz Lisp language. Additionally, it was
the purpose of this thesis project.to demonstrate that the project team
had actually preated a.custom object-oriented environment. Usage of an

object-oriented extension to Franz Lisp fits this purpose perfectly.

Franz Lisp Flavors'provides’all_of the capabilities described in the
previous section of this chapter. It allows object instances,~classes,
methods, and class hierarchies to be created. As noted above, it also
allbws the creation of class hierarchies that are noﬁ restricted to a
tree structure. Rather, Flavors allows a graph structure (multiple
parents), which in turn allows arbi;rarily complex interconnections:
between object classes while retaining modularity and ease of
maintenance [Brown, 1983]. In the following sections, a brief
description of Franz Lisp Flavdrs syntax and capabilities will be

provided.

2.7.1 Franz Lisp Flavors Objects

An dbject in Franz Lisp Flavors is created much like objects described

earlier. First, a class must be created, and then instances of that
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class are formed. In Flavors a class is called a 'flavor'. To define a
flavor (class), one uses the 'defflavor' function:
(defflavor ship (x-position y-position

x-velocity y-velocity mass)

0

tinittable-instance-variables
:gettable-instance-variables
:settable-instance-variables)
This construction defines a flavor (class) called 'ship' that has five
instance variables that specify a ship's position, velocity, and mass.
As can be seen the definition specifies'that these variables can be
externally retrieved and set. Instance variables can also be

initialized with values. To create an instance of a ship, we must

create a name for the object, and call a function to make an instance:
(setq my-ship (make-instance 'ship))

As one who is familiar with Lisp syntax can see, this form is in normal
Lisp syntax. It is not as one would expect if the environment were
totally object-oriented. In such an environment, a message would be
sent to the class 'ship' . to produce a new instance, and an assignment
would be made to a specified name with the returned object. In this
case, exactly the same action is performed, but with normal Franz Lisp
syntax. In any case, the result is an object named 'my-ship' that has
the instance variables described in its flavor (class) 'ship'. If one
wishes to 1initialize 'my—ship's variables the syntax would be as

follows:
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(setq my-ship (make-instance 'ship
‘ :x-position 0.0
ty-position 2.0
:mass 3.5))
This form would produce 'my-ship' with position (0.0,2.0) and mass 3.5.
Values can also be initialized for all instances by including values
witpin the flavor definition itself:
(defflavor ship ((x-position 0.0)
(y-position 2.0)
x-velocity
y-velocity

(mass 3.5))
()

sinittable-instance-variables
:gettable-instance-variables
:settable-instance-variables)

In this example, all 'ship' instances would start off with position

(0.0,2.0) and mass 3.5. The velocity values would remain as yet

undefined.

2.7.2 Franz Lisp Flavors Messages

The message sending facility provided by'Franz Lisp Flavors is also more
in the syntax of Franz Lisp than in what would be expected in a totally

object-oriented programming environment. In é'language like Smalltalk,
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a message 1is sent by following an object name with a selector

[Goldberg, 1983]:
my-ship mass.

This Smalltalk statement would send 'my-ship' a message to return the
value of its mass. In Franz Lisp Flavors the 'send' function is
utilized to transmit messages to objects. Its syntax would be as

follows:
(send my-ship :mass)

Again, this form would send the message 'mass' to 'my-ship', and the
value 3.5 would be returned. All message-sending is done with this
function. To change the mass of the ship, a message like this could be

sent:
(send my-ship :set-mass 35.5)

In this example, the method (object manipulation procedure) :set-mass
has a parameter. Methods 1like :mass and :set-mass are already
predefined by the Flavors system when an instance of a 'ship' is

“created.

2.7.3 Franz Lisp Flavors Methods

So far the Flavors object definition capability and message passing

system have been illustrated. But messages need methqu’(procedures)
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‘associated with them. As noted above, instances have predefined methods
which allow the retrieval and setting of instance variable values.
These are methodé that belong to the flavor 'vanilla'. Vanilla provides
additional methods: :print-self; tdescribe, :which-operations, and
several others. All Franz Lisp'Flavors objects include the 'vanilla'
flavor. However, there is no real power to Flavors if one cannot define

his/her own methods.

Franz Lisp Flavors provides the 'defmethod' function to create methods
for objects. As in other object-oriented languages, methods must be
attached to the objects class. In this case, the method is'associated’
with a flavor:
(defmethod (ship :speed) ()
(sqrt (+ (~ x-velocity 2)
(~ y-velocity 2))))

This Franz Lisp form defines a method named ':speed' that is associated
with the flavor 'ship'. The method will take the velocity instance
variables of the object it is applied to and calculate the velocity
(qreating a vector using the x,y velocity components). Methods can also
be defined that utilize parameters:

(defmethod (ship :fraction-of-speed) (fraction)
(# fraction (send self :speed)))

(send my-ship :fraction-of-speed .5)

This method definition uses the parameter named 'fraction', .and

multiplies it by the calculated speed of the ship to which the method is
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applied. The message example would return a speed value that is one

half the actual speed due to the parameter value of '.5'.

Please take note of a special feature illustrated in the
:fraction-of-speed method definition. Within the method definition
there is a message sent to 'self'. While any method is executing, the
variable 'self' 1s bound to the identifier of the object to which the
method was applied. This allows a methdd to call other same flavor
methods during its éxecution. In the above example, the calculation of
the speed is performed by another method, which returns the value needed

to complete the fraction calculation.

Messages can also be sentAto another object during method execution if
the other object's identifier is passed as a parameter:
(defmethod (ship :collision) (objécb)

(intersect (send self :direction)
(send object :direction)))

(send my-ship :collision your-ship)

Assuming that there is a function ‘'intersect' that can calculate if two
objects will intersect given their directions, the above method
definition would provide the message-sender with the knowledge of an

impending collision.
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2.7.U4 Franz Lisp Flavors Classification Hierarchy

Within Franz Lisp Flavors, a class hierarchy is defined by mixing
flavors. Flavors are mixed by providing the identifiers for the
'mix-in' flavors in the flavor definition: |
(defflavor ship (x-position y-position

x-velocity y-velocity mass)

(moving-object)

:gettable-instance-variables

:settable-instance-variables)
In the example, 'moving-object' is identified as a 'mix-in' flavor. All
instance variables and methods that belong to 'moving-object' are
included (referenced by) the 'shipf flavor unless overridden by local
'ship' specific variables or methods. This structure in essence is a
specification of 'ship' as a subclass of 'moving-object'. The 'ship'
class of objects inherits thé characteristics of the ‘'moving-object'

class unless locally overridden.

As noted earlier, Flavors has the capability to allow multiple parents
(multiple hierarchies). It does this by allowing multiple mix-in's:
(defflavor ship'(x-position y-position
x-velocity y-velocity mass)
(moving-object
floating-object
sinking-object)

:gettable-instance-variables
:settable-instance-variables)
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Here, 'ship' now inherits the characteristics of 'moving-object',
'floating-object‘, and ‘'sinking-object!'. This could become very
confusing if there were no way to define an order of inheritance. Franz
Lisp Flavors defines such an ordering 6f inheritance by Specifying that
the order of mix-in's matters. The inheritance proceeds on a
depth-first search of mix-in's in the left to right order of the mix-in

list.

Mix-in's themselves are also flavors. They too can be made up of other
mix-in's. In this way a graph or network structure of inheritance can
be constructed. 'However, within such a network there 1is always a
potential for Cycles to occur. The Flavors language extensions take
care of this by not allowing the method search to cycle. No flavor node
in the graph can be visited more than once. All flavors also include
the flavor 'vanilla'. Vanilla flavor provides some basic methods that
all objects may need. Vanilla flavor can be left out if so specified in

the flavor definition.

The preceding discussion has introduced some of the basic features of
Franz Lisp Flavors. As one can see, all the basic object-oriented
capabilities expected in an objectforiented programming environment are
present. 'However, some of these capabilities are not providéd in
syntactic forms that are totally consistent with an object-oriented
philosophy (making an instance for example). Even sb, the provided
capabilities are very powerful and in some cases go far beyond what

.other environments provide.
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The descriptions presented here have been of an introductory nature.

Franz Lisp Flavors provides many additional features that have not been

covered. Interested parties should refer to the Franz Lisp Reference
Manual3. Experimentation with a Franz Lisp Flavors implementation is

highly advised.



Chapter 3

THE FIRESYS PROJECT

3.1 Firesys Project Goals

Initially, the intended goal of tpe Firesys project was to develop two
expert systems. The first system to be developed was a fire effects
" advisor. The second was to be a fire prescription expert. The two
systems were to shareia common knowledge base, and were to be initially
restricted to providing information regarding sagebrush ecosystems.

The fire effects advisor was to provide the system user with answers to
questions about the effects of fire. Sagebrush range managers often
need fire effects information to assist them in making decisions
regarding the use of fire as a range management tool. The information
needed includes both the short and long term effects on plant growth,
wildlife forage, and cover. Once a decision to utilize fire for
management of a specific site is made, a fire use prescription is then
needed; The second expert system was to provide such a prescription.
The user would provide goal and site descriptions, and the system would
provide a prescription for the type of fire and conditions needed to

attain the desired goal.

54
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3.2 The Initial Effort and Resulting System'

One of the primaby tasks that expert"system builders face is the
decision on how to structure the knowledge base used by the expert
system. Thé choice of a knowledge base structure 1is -the primary
determinant of the expert system's later capabilities since systen
actions and structure are determined directly by the knowledge base. As
noted in chapter 1, there are two common approaches to knowledge base
design. One can encode knowledge in the form of rules or as frames.

Mixtures of the two can also‘be utilized.

Rule based or production systems normally use a retrieve-act_cycle. The
‘expert system retrieves a rule from the knowledge base dependent upon
the system's current state of information. It then applies the rule to
its information state (the state-record), changing it. This action
continues until the desired state (goal) is reached, or until no rules
can be found that apply (failure). Rules, therefore, usually have the

following form:

<IF stabe THEN action>

1The following discussion of expert system knowledge bases is based on
information the writer has gleaned from coursework in Artificial
Intelligence and from the following texts:

Charniak,E.,McDermott, D., Introduction to Artificial Intelligence,
Addison-Wesely, Reading, Massachusetts, 1985.

Hayes-Roth, F., Waternam, D. A., Lenat, D. B., (Ed's), Building Expert .
Systems, Addison-Wesely, Reading, Massachusetts, 1933.
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where the rule is chosen if the system's state conditions match 'state'.
‘The ‘action' of the rule is then applied to the syStem's state
conditions stored in the state-record, changing them in some way.

Example Rule: IF blood test negative AND

' urine test positive
THEN test thyroid level AND
add to state-record

The cycle is then repeated using the new state information. The
system's initial state might have a statement of the goal to be reached
(question to be answered) and the starting givens. Because the rules
essentially manipulate the initial state of the system into a desired
state through actions, one can see.that such a technique is_best'applied,
to tasks that involve lérge amounts of procedural as opposed to factual

knowledge.

Another common rule based approach is to use what is called 'backward
chaining'. Under this method the system starts with the goal state and
attempts to verify that rules and facts in the knowledgé base allow one
to conclude that the goal state is true. The method works much the same
as the above described except that rule conclusions are utilized. The
backward chaining system examines knowledge base facts and rule
conclusions to see if they match the goai state. If a fact matches then
the goal has been verified to be true. If a rule conclusion matches,

then the system attempts to verify that the rule antecedents can be
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verified. The rule antecedent(s) become the new goal(s) to be verified.

A backward chaining rule commonly has this type of structure:
<conclusion IF antecedent>
Example Rule: 'Sunny Outside' IF 'Day Time' AND NOT 'Cloudy’

The backward chaining process continues until the goal is verified to be

true, or until no facts or rules bemain as verification candidates.

The opposite approach to rules is that of a frame based system. In such
a system, a semantic network of knowledge is constructed. Each node of
this network is a frame. A frame contains information related to itself
and about connections to other frames (nodes). The connection
information 1is also encoded so that it expresses the frame's
relationship to 6ther nodes. Frames usually have the following
structure:

<ATTRIBUTE-1 trait-1
-ATTRIBUTE-2 trait-2

ATTRIBUTE-n trait-n>

where an attribute is a characteristic of this node'dr a name of a
connection or relationship to another node. Traits are therefore facts
about the attribute or names of (pointers to) other frames (nodes).

When one speaks of framés, attributes are usually called "SLOTS" and
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traits "SLOT FILLERS". The follbwing example frame might describe a
specific dog: |
Example Frame: "<NAME "Fido"
COLOR blond

IS-A dog
SIZE medium

OWNER Sam> -

In the above example "Fido", 'blond', and 'medium' are specific facts
about the dog, and the remaining traits (slot fillers) are names of
other frames that furﬁhervdefine characteristics of the "Fido" franme.
The frame "dog" would provide information about dogs in general, sﬁch as
body parts, while the frame "Sam" would describe the owner's
characteristics. This type of frame structure allqws'a large amount of
facts and their interrelationships to be encoded into a knowledge base.
Tasks that involve the gathering and assessing of large amounts of
factual knowledge are therefore best handled with an expert system that

utilizes frames.

As noted above, one Qan construct a system that uses a hybrid knowledge
base. Rules can ihclude factual information that can be added or
deleted from the state-record. Franes éan contain attribute fields that
have procedural information (actions) as traiﬁs. For example, in the
"Fido" frame above, we might add an attribute like IF-BITES-KIDS with
the trait value 'get rid of Fido and remove from network'. In this way
rule-like proéedural knowledge can be added to a frame, or frame-like

factual knowledge can be included in a rule. In general, this is often
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how expert system developers deal with tasks that require combining

factual and procedural knowledge.

‘The first Firesys project‘ developed, the fire effects advisor, was an
expert system which ’»required the storage of large amounts of factual
information upon which smaller amounts of procedural information were to
be applied. The majority of_‘ the encoded knowledge was to be factual
knowledge about plant species and data on effects of fire on each
species as extracted from the research literature. The system was to
sift through the data, analyze the facts related to the management
objective provided by the user, and provide some conclusion as to
whether the objective would be met. This task requirement made it
obvious that a frame based expert system would be most appropriate, so

“the decision was made to adopt this approach.

As development o.f the fire effects advisor progressed, the focus of
effort became more and more directed towards the encoding of the factual
knowledge. Procedural knowledge became less emphasized due to the
“enormity of the fact-gathering task. Additionally, the purpose of the
system was reformulated, playing down the anaiysis capability, and
emphasizing information retrieval. The system was now to be more of a
research aid, or on-line library, for managers to use for ’gathering
facts for their analysis of management objectives. The objective of the

fire effects advisor was now to provide information, and not advice.

Thus, the resulting system is much more of a database than an expert

system. However, the basic principles of a frame oriented knowlédge
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base still remain. Additionally, the system was built to be as flexible

as possible to allow easy modification. Expert system capabilities

could still be added at a later date.

3.3 The Basic Firesys Structure

The Firesys system is made up of five primaryvcomponents. The largest
component is the knowledge base. As the knowledge base 1s currently
structured, the data frames are organized into a hierarchical tree, and
contain no procedural knowledge. The knowledge base is not composed
solely of data frames. It also contains what we have c;alled system or
meta frames. These meta frames contain procedural knowledge needed by
the system tb access the data frames. This 'prvocedural information is
not to be confused, however, with procedural knowledge that would be
used by the expert system to analyze the data. That kind of knowledge
has not as yet been included. The system frame procedural knowledge
-tells the system how to do things like displaying a data frame of a
particular type, adding or deleting information from frames or frames
from the knowledge base, and how to search the data frame tree for

particular information.

The  second system component is the knowledge base interface. These
functions provide the only legitimate access to the knoﬁledge base.
Users of the knbwledge base access data through calls to these interface
functions. Functions are divided into two primary groups: those that-

access data frame information and those that access slot description
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information. Slot value retrieval is considered to be a data frame
access. Utility functions are included that add and delete values from

slots, and that add and delete data frames from the knowledge base.

The third major component of the Firesys system 1s the print-package.
The purpose of this component is to provide a uniform grouping of
functions that can be used to output information to the display of the
program user. ‘They act as the sole means by which system components are
allowed to present information to users of the systen. Functions
include the capability to display menus, screen headings, slot titles,
and individual slot values. The functions keep track of screen
displays, insuring that headings and values ére not split up, menu items
are numbered properly, menu choices are selected correctly, and that
displays of data larger than one screen-full are handled properly. The
centralization of' these functioﬁs serves to make displays somewhat

uniform, and greatly reduces the redundancy of display code.

‘The last two components are two separéte programs that utilize the
knowledge base. As noted above, all accesses to the knowledge base are
performed through the interface functions and all output through the
print-packageQ These two programs serve two different purposes. The
first program, the Query system, was designed to provide naive users
with a user friendly interaction interface to the knowiedge- base.
Through menus, it allows the user to traverse the data frame tree,

accessing any information needed.
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The second program, the Builder system, was designed for use by a more
sophisticated knowledge’base builder, and acts as the knowledge base
editor. This program allows the user to traverse the data frame tree,
allowing alteration of values and frames. Unlike the Query system, the
Builder is expected to be used by an..individual with an intimate

knowledge of the structure and function of the knowledge base.

These five components comprise the Firesys program structure at bhis
time. The system was purposely designed in this component fashion to
allow easy changes in knowledge base implementation, and easy changes in
the programs that access it. Because of the clear and specific
interface to the knowledge base, internal structures (implementation) of
the knowledge base can be changed without affecting the progranms
utilizing it, and visa versa. This structure allows a high degree of
flexibility, and was instrumental to the implementation conversion

performed by the author for this thesis project.
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3.4 Frames, Default Reasoning, and Rep;:es-entat;i.ons'2

As described earlier, frame based systems usuaily are structured to
create a semantic network. Within this network, frame interconnections
represent relationships that frames havé with each other. These
relationships often represent a hierarchy. For example, the "Fido"
frame mentioned earlier in this chapter represents a specific instance
of a dog. The 'IS-A' attribute (slot) in the "Fido" frame indicates a
relationship that "Fido" has with the frame 'dog'. 1In this case, it
indicates that "Fido" is a dog. That is, "Fido" belongs to the greater
class of things called 'dog' (please see figure 1). Likewise, if we
were to examine the 'dog' frame, we would find that it too has a slot.
called IS-A and that its value might be 'mammal'. Now there are many
creatures that are mammals that'arevnot dogs (i.e. cats, horses, ete.),
and there are many dogs that do not have the name "Fido" (i.e. Bandit,
Spike, etc.). But, of the creatures that are mammals, all share some
characteristics in common. Similarly, not all dogs look like "Fido",
nor do they have that name. However, they all have some 'dog'

characteristics in common.

°The folldwing discussion about frames and default reasoning is based on
information the writer has gleaned from coursework in Artificial
Intelligence and from the following text and paper:

Charniak,E.,McDermott, D., Introduction to Artificial Intelligence,
Addison-Wesely, Reading, Massachusetts, 1985.

Greiner, Russell, "RLL-1: A Representational Language Language",
Stanford Heuristic Programming Project, HPP-80-9 (Working Paper),
Computer Science Department, Stanford University, Stanford CA,
October 1980.
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These relationships suggest a hierarchy of attributes related to given
objects in the world. As one travels up the hierarchy, one finds
information that is more general but still common to only the objects
below it. Moving up farther, wé reach classifications that apply to
more and more classifications of objects. Likewise, as we move down
the hierarchy, information becomes more specific to narrower
classifications of objects. This narrowing continues until we reach
individual object instances. At the lowest level we have totally
specific information about a particular object, and at the highést,

information that applies to all objects.

An 1mportant concept associated with knowledge hierarchies is the idea
of inheritance. The notion is essentially the idea that objects lower
in the hierarchy "inherit" the characteristics of objects that are
higher in the hierarchy (from parent nodes). From the "Fido" example,
we can see that Fido is a dog because his parent node in the hierarchy
("IS-A" 1link) is "dog". If we wished to find ‘out about Fido's
characteristics, we would first examine the values of attributes local
to the "Fido" frame. To find out more about what makes Fido a dog, we
would move up to the "dog" frame and examine attribdtes there. Fido
inherits those characteristics. Likewise, one could again move upward
from the '"dog" frame to the '"mammal" frame to inherit more
characteristics. In this way, one'cén obtain a full description of

"Fido".

This form of inheritance is also often called default reasoning. This

1is due to the fact that if the characteristic is not specific to the
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node we are at, then the value defaults to the characteristic contained
in the class to which the node belongs. In this case, the class node is
the IS-A linked node. The system reasons that unless otherwise stated,

the superior class characteristics apply..

The main idea behind a hierarchy is that specific attributes that belong
to individuals are lowest in the hierarchy, while characteristics that
are common to wider and wider groupings of ‘individuals are 1located
higher in the hierarchy. This structure allows for drastic reductions
in the redundancy that would be present if each individual needed to be

described completely.

However, semantic neﬁworks are not necessarily trees, although a
particular one could be. As the name implies, they are networks. This
means that some relationship paths may cycle back to a starting node,
allowing an object to circularly define itself. If so, how can there be
a hierarchy? Well, the network represenﬁs a combination of many
hierarchies. If‘one were to extract only one hierarchy (i.e. biological
classification), one would have a taxonomic tree some what similar to
that seen in figure 1. This capability to combine many configurations
of information relationships is another powerful feature of semantic

networks. The Firesys system uses three such hierarchies.

The production of three hierarchies within the Firesys system was
primarily a result of the group's exposure to RLL-1 (Greiner,19801].
RLL-1 1is a special 1language used fob building knowledge bases at

Stanford University. The initials RLL stand for the words
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Representation Language Language. It allows its user to develop a
representation scheme (language) for frame oriented knowledge bases. It
acts as a system 'building tool that creates a knowledge base

environment.

The main power of RLL-1 is that it not only allows one to specify the
structure of frames and their relationships, but it also allows one to
specify characteristics of the slots contained wiihin the frames.
Within RLL-1, slots are categorized into types, and each type is
described by another frame, This frame may gontain procedural
information. . Functions that access the slot can use the associated
procedures to perform appropriate operations on the slot. This idea of
treating slots as basic objects that have their own procedural
capability, was directly incorporated into the Firesys system, and forms

one of the three hierarchiés.

The slot description hierarchy provides information that the Firesys
system uses to maintain and manipulate the knowledge base. The
hierarchy is therefore part of the system frames and separate from the
actual data. In other words, the slot hierarchy contéins system

procedural knowledge.

In addition to the slot description information, the Firesys system
needed to have frame description information. This type of information
moves one level higher, describing frame characteristics, and providing
procedural information associated with frame manipulabioﬁs. This

information, 1like the slot description information is grouped into a
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hierarchy, and forms the sécond hierarchy of the system. Also like the
slot level information, this hierarchy 1is contained within the system

frames, as it too describes knowledge base manipulations.

The third hierarchy preseni»within the Firesys system is contained
within the data frames themselves. As noted earlier, this hierarchy
contains no procedural knowledge at this time. It only represents a
breakdown of a mass of information associated with plant species,
ecosystems, and associated fire ef‘fects. Each level-in the data frame
hierarchy essentially provides a more detailed look at information

specific to the frame above it.

3.5 Firesys Data Frames

As Indicated above the Firesys data frames form a hierarchy that is
represented by a tree. The organization of that tree is :illustrabe'd in
figures 2 and 3. The root of the tree iIs a permanent frame called
"Superior". Currently,' all entry to the knowledge base is performed by
accessing this frame. It contains pointers to the primary' components of
" the knowledge base structure. This frame serves no purpose other than
to bind the portions of the system together and to provide a uniform

entry point.

There are two primary information components of the data frame portion
of the knowledge base: the ecosystem level information, and the species

specific information. The species sidé of the knowledge base tree
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contains information organized by plant species (please see figure 2).
There are multiple instances of species type frames within the knowledge
base, and each is directly  accessible through the "Superior" frame.
Species frames additionally have Subframes, each of which contain more

specific information about that species.

A species frame contains the species scientific name, common names, life
form, some othe: general information, and pointers to subframes
containing information specific to particular domains. Each species
frame has the same type of slot structure and the same type of
subframes. Each species‘frame instance has its own subframe instances
associated with it. For example, every species frame has a slot named
"Value And Use" which holds the name of the frame containing the
information associated with that domain that 1is specific to that

species.

Likewise, a subframe might also have its own subframes. Within the
current structure of the species side of the knowledge base, only the
"Fire Effects" frame has subframes. The "Fire Effects" frames contain
general statements about fire effects specific to the parent species.
The "Specific Fire Effects" subframes contain more detailed information
that 1is specific to actual burns of different severity performed at

different times of the year.

As one'can see, more specific information is stored lower in the tree.
This is consistent with the hierarchy description provided earlier, and

might lead one to believe that an inheritance hierarchy 'exists.
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However, the inheritance utilized at this time by this side of the
knowledge base is minimal. The only Ainheritance that occurs is
associated with the species name that a subframe identifies itself as
possessing. All subframes of a species inherit the species scientific
name. This name is utilized when the related subframe information is
'displayed so that a user knows to which species the information is

related.

Similarly, the ecosystem side of the knowledge base contains information
grouped by level of’specificity with regard to ecological groupings of
plants (please see figure 2). One enters the sagebrush ecosystem
portion of the system by directly accessing it from the "Superior"
frame. There is only one sagebrush ecosystem frame. At thié level,
information that applies to the ecosystem in general can be accessed.
More specific information about foliage productivity, condition and
trends, and ecosystem level fire ecology can be accessed by moving to
one of the immediate subframes. Addi.tionally,} the ecosystem can be

further broken down into cover types of which it is composed.

Cover types provide yet another 1level - of greater specificity of
information. Like species, there are nmultiple vinstances. of cover types
V(please see figure 3). The user can choose a cover type from the
ecosystem frame, and then access this more detailed information. Again,
yet more detailed cover type specific information (Value And Use, and

Fire Ecology and Effects) is available in immediate subframes.
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Cover type specific information can be subdivided even farther. Uhder
cover type, information has been grOubed into habitat type subdivisions.
Like moving from the ecosystem frame to the cover type frame, the user
can proceed from a specific cover type to a specific habitat type. At
this level, habitat specific information is available. . Also available,
is yet more specific information regarding habitat management and fire
effects; This information currently represents the most specific level

of information accessible.

An important point that should be stressed here is the flexibility of
the system. Over the past year, the Firesys system has under gone‘many
changes. The frame structure utilized has allowed these changes to be
performed without excessive ‘effort, and insures that future
restructuring and modification is possible. This capability is the real
power of this system. When one compares it to standard data bases, one

finds this to be the case.

3.6 Firesys System Frames

The key feature of a frame oriented knowledge base is its inheritance.
.capabilities. Although limited within the data frames, the éystem's use
of inheritance 1is heavily imbedded within the system frames. As
mentioned earlier, the system frames are composed of two inheritance

hierarchies. One being frame oriented, and the other slot based.
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The frame orientéd hierarchy provides a means by which information, both
descriptive and procedural, about different kinds of frames can be
stored in a central loéation within the knowledge base. As one can see
from figures 2 and 3, there are currently eighteen different types of
frames. All but five of these frame types have multiple instances. For
example, a species type daté frame exists for each plant species that
was entered into the system. For each of these species data frames,
there are five subframes, each of a different type. One of the
subframes (Fire Effects) is additionally allowed to have multiple
subframes of its own. Therefore, except for the 'Superiof', 'Sagebrush
Ecosystem', 'Productivity', 'Condition and Trend', and 'Fire Ecology'
frames, eacﬁ frame type has many copies that contain different values

and are associated with different super and subframes.

For each of'these frame types a frame descriptor was created (called a
meta-frame). All information describing a frame oan given type and the
procedures used to manipulate that frame are stored within this frame
descriptor. In this way, information‘that is common to frames of one
,typelis stored in one location. The actual frame instances contain only

the values that are specific to it, and a value identifying its type.

Access to frame level information is always performed by directly

accessing the desired frame instance. For instance, if one wanted to
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know the value of a species' name, one would request the specified frame

to give the.caller the value stored in the 'SPECIES' slot:
(get-data-frame-slot 'speciesd 'SPECIES)

Such a call would return a value like "Sitanion Hystrix". However, if
the information desired was not a value specific to the 'speciesH'
frame, the system will automatically go to the frame descriptor for this
type frame‘to.retrieve the needed information. As illustrated in figure
4, a call to retriévevthe list of slots that are valid in a species
frame would first cause a search of the specific data frame. Not.
finding the needed value there, the system would automatically search
the meta-frame (frame descriptor) associated with the data frame for the
value. In this case the needed list is located and returned. If the
value is not found in either place, an error message is returned. As

‘can be seen, this hierarchy is only one level deep.

The second hierarchy, the slot oriented one, is similarly structured.
In this case, however, the type of information retrieved is primarily
procedural in nature. The slot descriptor frames contain information on
how to display a slot and its value to the screen, and on how to add and‘
delete values to and from a slot. If one wished to display a slot and

its value on the screen, one would retrieve the proéedural code stored
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in the slot descriptor frame and apply it to the given data frame. As
an illustration take the followiﬁg function call:

(funcall , A
(get-slot-descriptor-slot 'SPECIES 'QUERY-DISPLAY)
current-frame-name)

This Lisp:funétion call would cause the code for displaying a slot ih a
format that the Query portion of the system needs, to be retrieved from
the SPECIES slot descriptor frame. It then would execute that code
using the current frame identifier. This code knows how to retrieve the

data value from the data frame and then how to display it, with a

heading and properly formatted.

For each unique slot name in the system there is a corresponding slot
descriptor. However, mahy of the slots hold the same type of
information and require the same procedures for manipulation and
display. It would bé.highly redundant to house the same code in each
slot descriptor frame. To avoid this redundancy, six groupings of slot
types were identified. Slots could be classified according to their

contents. Slots were found to contain:

1) single values (atom slots)

2) lists of values (list slots)

3) text (text slots)

4) heading text only (header slots)

5) single frame identifiers (pointer slot)

6) lists of frame identifiers (pointer list slots)
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Based on these six classifications, slot class frames were constructed.
Like the meta;frames (frame descriptor frames), the slot class frames
contain information common to all slot descriptor frames of the same

classification.

When making a call to retrieve descriptive an&/or procedural information
rélated to a slot, the system follows the same steps as it does with
data frames. It first looks for the desired slot and its value in the
‘slot descriptof frame. If the information is not found there, a search
is made of the slot class frame. Figure 5 illustrates this process. If
one wished to display the 'SPECIES' slot of the 'speciesd' frame in
Query format, the following call would be made:
(funcall _

(get-slot-descriptor-slot 'SPECIES 'QUERY-DISPLAY)

'speciesl) :
The get-slot-descriptor-slot portion of the call would first cause the
system to examine the Species slot descriptor frame for the Query-
Displéy slot. Not finding the Query-Display slot there, the system
would then examine the slot class frame of class 'atom'. Like the data
frames, the slot descriptor frameé contain a slot identifying their
type. In this case, as seen in figure 5, the SPECIES slot is of type

'atom'. A search of the atom slot class frame locates the Query-Display

slot, and the code contained there is returned.

The need to apply the code returned to the 1dentifiér of the currently
accessed frame points out an important difference between the frame
oriented hierarchy and the slot oriented one. Within the frame

hierarchy, any executable code found is automatically executed. Iﬂ‘the
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slot hierarchy, the caller must explicitly executé the retrieved code.
This executionvwas left to the caller in'the case of the slot hierarchy
due to the need for extreme fléxibility. The kinds of operations
performed on slots varied to a much greater extent than did frames, as
did the information that might be passed to the} retrieved code.
However, in the writer;s opinion, this flexibility did not prove to be a
requirement. The structure of the slot descriptor calls could be made
-identical to those of the frame descripbors. In any case, except for

this difference, the structures are identical.

Going back to the semantic network structure described earlier, one can
now perhaps see the usage of default reasoning within this ;ystem. The
data and slot descriptor frames form the lowest levels In each of their
respective hierarchies. Information»is initially sought at that level. .
Having not found any instance-specific information, the system then
_defaults to utilizing information specific to the class to which the
instances belong. In this case, meta-frame or slot class frame

information is used. The instance inherits the class characteristics.

3.7 Relationship to Object-oriented Concepts

The central idea of this thesis is that the frame based system which the
Fifesys team developed is also an object-oriented one. Others have
ﬁoted that there is a great resemblance between the "LISP-AI" notion of
frames ‘and object-orientation‘ [Rentsch,1982]. .In this section,

similarities will be drawn between object-oriented concepts and frame
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based representation systems. In particular, similarities between the

Firesys system and object-orientation will be shown.

In Chapter 2 of this paper, four main concepts were presented that were
associated with object-oriented programming. These concepts were the
object, the message passing system, the class system, and the class
hierarchy inheritance. All of these components are found within the

Firesys system.

An 'object"Was defined as an entity containing some private memory and
having procedures associated with it [Goldberg,1983]. A crucial
property of an object is that its private memory can only be manipulated
by its associated procedures [Goldberg,1983]. If one examines the
concept of the frame, some similarities to object-oriented cohCepts are
found. A frame is composed of slots. Slots act as the frame's private
memory. Slots can contain executable code (procedures) that are
specific to manipulations of that frame. These frame features parallel
those of the object3. However, frames do not strictly enforce these
concepts. The stored procedures may not be the only means for
~manipulation of slot contents (private memory). Slots may be accessed
directly, without necessarily using the frame specific procedures. Even
so, if the system builders wish, they can incorporate these conventions

into a frame based system.

3Application of the concept of the 'object' is not only restricted to a
frame. System builders can also conceptualize slots as objects in their
own right! ~
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Within the Firesys system, some of these conventions were applied.
Frames are treated as entities with frame specific internal values and
associated manipulation procedures. Although slot contents can be
examined without usage of frame or slot specific procedures, alteration
of slot values are performed solely by associated procedures. Frame
specific procedures for displaying framé contents are also present.
Except for the direct access capability, this set-up directly parallels
the object description provided above. If the slot accessor functions
had been stored in a higher level system frame, then this exception

would be eliminated.

Within the Firesys system we went one step farther. Not only are frames
treated as objects, but slots are likewise conceptualized as objects.
- Slots have associated with them procedures and private values.
Procedures are assoclated with slots which provide a means for altering
their contents and displaying the slot itself. Additionally, slots have
a value for the string to be used when displaying their name as part of
'the display of the slot. Aecessvto Ehese values and procedures is

confined to the samevrestrictions as the frame accesses.

Another important feature of an object-oriented system that was not
mentioned is the idea that objects should act as animate (i.e. active)
entities [Rentsch,1982]. This characteristic can easily be incorporated
within a frame based system by forcing accessed frame associated
procedures to automatically execute. In this way, frame accesses appear
to makeﬂcomputations occur as if initiated by the object itself. The

frames then appear té be animate.
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Within the Firesys system, frame accesses to slots containing procedural
information cause immediate computations to occur, without any
additional intervention on the part of the caller. This is precisely
what makes objects appear animate. Our frames are therefore iject-like

in their appearance.

This similarity to objects fails with the current structure of the siot
hierarchy. Unlike the Firesys frames, accesses to slot associated
procedures does not automatically initiate computations. The caller is
forced to initiate the computation himself. This leaves an appearance

of slots as static entities rather than animate objects.

Again, the primary difference between a frame and an object is dependent
upon how strictly certain conventions are followed. Within an
object-oriented environment, the concept of the object as an animate
entity, packaged with hidden private memory, accessible only through
object associated procedures, is strictly enforced. Frame systenms
provide a high degree of flexibility,‘and therefore do not strictly
adhere to these concepts unless the system builders decide to do so.
Within the Firesys system, the structure satisfies some of the standards
for an object-oriented environment, but does not fully meet all the
characteristics of defining objects. Changes could easily be made to

the system to significantly increase its object-oriented character.

The second primary concept of object-orientation is that of a message
passing system. This message passing system is essentially the means by

which a user interacts with the objects. It is a sort of communication
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system. Some signal is passed to the object and a message is returned.
Within a frame based environment, this would involve the means used to
access and execute slot values and procedures. The message passing
system would be the functions used to access the frames themselves.
Again, the important feature here is the level of animation of the
object receiving the sent signal. As mentioned above, to animate the
frames, procedural information would need to be immediately executed

upon access.

Another important requirement of a message passing system is the need
for message passing to be uniform. A frame based system would therefore
requiré a single function call that would cause values to be returned,

or frame computations to occur. An example would be a 'send' function:
(send <object$ <message selector>)

where the function would send an identified object a message selector.
The message selector would cause a slot access to occur. The slot value
found would be returned or executed if it were a procedure. This send
function would act as the uniform interface to the frame network,
accessing slots ~and executing any procedural information found.
Optionally, the message selector could also _contain Var'guments to be

passed on to any procedures found.



85
The Firesys system attempts to provide these features with its interface
functions. The 'gét—data—frame-slot' function provides essentially the

same capabilities as those of the send function noted above:

(get—data-frame-slot <frame-id> <slot-name>)

This function also executes any procedures found whed it accesses the
named slot. However, it does not allow for any passage of arguments to
the found procedure. All executed procedures are passed the same

argument, the frame-id.

If this were the only function used to access data in the frames, then
1t‘could be claimed that the interface was unifornm. 'However, this is
not the case within the Firesys system. There is a second function used
to access slot specific information, the 'get-slot-descriptor-slot'
function. This function has the same format as  the

'get-daba—ffame-slot' function:
(get-slot—descriptor-slbt <slot-hame> <slot-name>)

where the first slot-name identifies the slot 'object' (frame) to access
and the second slot-name denotes the message selector (slot to access),
As noted earlier, this function does not automatically exechte fodnd
procedures, and therefore falls short of the specification for a send

type function.

It would be possible, with little effort, to alter and combine the
existing two interface functions to meet the send function requirement.

Frames and slots could be treated as independent objects, each capable
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of receiving a message selector and héving their slot stored proéedures
automatically executed. Optional arguments to message selectors could
also be added (this is a standard feature of Common and Franz Lisp).
This would make the interface uniform in character, and allow frames and

slots to act as animate objects.

The interface additionally includes functions for adding and deleting
values from slots, for creating frames, and functions for reading and
wfitihg frame structures from and to disk files. Although part of the
interface, and dependent upon the implementation of the frame base,
these functions really act as utilities for frame and slot manipulation.
These utilities are utilized by frame stored procedures that are
executed upon access, and are really not part of the message passing
system constructed. Within an-object-oriented system they would more

likely be methods associated with slot and frame type objects.

The last two primary object-oriented concepts are the ideas of a class
system, and the usage of a hierarchical inheritance system within it.
Described earlier were the frame concepts of semantic networks,
hierarchies within semantic networks, and defauit reasoning as applied
to these hierarchies. ' The concept of a hierarchy of frames is identical

to that of an object class system.

Within an object-oriented system, objects are instances of classes, and
classes can be instances of other classes. Values and procedures common
to objects of the same class are stored within the class descriptor.

Elements common to classes of differing types are stored at the higher
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level class descriptor of which these classes are instances. Likewise,
in a frame system the frames lowest in the frame hierarchy are insﬁances
of the parent frames above them. The parent frames contain information
that is common to its instances. Similarly, information that is common
to pafent frames is stored at higher levels in the hierarchy of.frames._
Instances contain information that is specific to themselves, while the
frame at the top of the hierarchy contains the most general information
related to all 'the ffames of the hierarchy. Some object-oriented
systems, like frame based semantic networks, can contain multiple

hierarchies.

Default reasoning is another imporﬁant feature of frame based semantic
networks that is also present in object-oriented systems. Aé described
earlier, traits that are common'to a grouping of frames are stored in a
frame that is higher in the frame hierarchy for those frames. The
frames that belong to this grouping inherit the traits stored within
this parent frame. -Likewise, within an object—obiented environment,
values and code that are common to a group of’objects are stored within
the class that the object is a member of. ' The objects inherit these
values and code from their class. The more general information is just
inherit from locations higher in the hierarchy within both systems. The
message passing system of an object—orienbed environment provides the
capability of inheritance. Builders of a frame base system would
similarly have to provide this capability in their knowledge ‘base
‘accessing functions. This is of course exactly what 1is done when

default reasoning is implemented.
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The’Firesys system provides these same concepts within iﬁs system frame
‘hierarchies.- Asldésgribed earlier and illustrated in figures 4 and 5,
thevsystem frames have an inheritance hierarchy. Data frames form the
‘instances of the frame oriented system. The meta-frames are the classes
next higher in the frame hierarchy. Similarly, slots are the instances
of the slot hierarchy. The slot descriptor frames form the first level
of classes in the slot hierarchy, and the slot class framesrthe highest
level. The interface functions mentioned previously have incorporated
into themselves the capability Eo search upward through these

hierarchies for the information requested.

It is hoped that this comparison has shown the reader the great
similarity between object-oriented systems, frame based semantic
networks, and the Firesys system. The reader should also understand
-that there is only a similarity and not‘ an identity. Frame based
systems are not purely object-oriented, nor is the Firesys‘ system.

However, many of the basic concepts of object-orientation are present.

Noted within the preceding text are some changes the writer suggests
would make the Firesys system more object-oriented. To these previous:
changes should be addéd two more. Within both frame hierarchies no root
node in the trees currently exist. At this root it would be expected to
find values or procedures that are commonrto all nodeé below it in the
hierarchy. To this end, the writer suggests that all the system
utilities that are frame oriented be stored and accessed from a new
frame that is superior to the meta-frames. Additionally, all utilities

that are slot oriented (i.e. the slot orienbed'interface functioné)
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should be contained within a similar frame that is superior to the slot
class frames. The addition of these new highest class frames, and the
alteration of the frame/slot accessing interface functions will bring

the current Firesys system much closer to being an object-oriented one.



Chapter'u

THE CONVERSION INTO FRANZ LISP FLAVORS

4.1 Conversion Goals

In the previous chapter, a comparison of the current Firesys systenm
structure was made with what would be expect to found in an
object-oriented system. In this chapter, a description will be provided
of the attempt made by the author to convert the Firesys system into an:
existing object-oriented environment. As reported earlier, the Firesys
code is written in Franz Lisp. The latest version of Franz Lisp has
included in it an object-oriented environment called Flavors. - Flavors
provides the tools need to fully implement object-oriented concepts.
The attempted conversion produced a transformation of the existing
custom data structures and data maintenance routines that make up é

portion of the Firesys system into the Flavors syntax.

The comparison provided in Chapter 3 suggested that the current Firesys
software is not fully in a form that could be called object-oriented. A
number of changes in the Firesys system structure were recommended.
This state of affairs points to two possible approaches to implementing
the conversion. The conversion could involye a direct mirroring of the
current Firesys system structure. If the Firesys system is
object-oriented in character, then such a mirroring of structure should

prove simple to implement. The second approach would be to restructure
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the Firesys system ‘to make it more object-oriented, incorporating
changes suggested in Chapter 3. This might not be as easy as straight
mirroring of the current structure, but .might have the additional
benefit of producing some new configurations that could prove to be

useful additions to the Firesys systen.

The approach taken was to do both. Initially, the first question to be
addressed was whether the conversion into Flavors was at all possible.
Direct mirroring of the Firesys structure in Flavors could ariswer this
question. The question as to whether changes could be made to the
existing structure to make it more object-oriented could be answered by

later modification to the initial Flavors implementation.

There were three changes  that the author decided to make to the
developed Flavors implementation. First, as noted in Chapter 3, slots
within the Firesys frames were conceptually being treated as objects,
but actually treated as static entities. Unlike data frames, slot
values were not created and manipulated as individuals. Slot values
were jus_t pai-t of a data frame. Even so, slots did have a class
hierarchy structure, with manipulation information stored in slot and
slot-class descriptor frames. This separation of slot values from the
slot object structure results in an incomplete objeét-orien‘ted
character. Slot values should be par't of the local and private instance
variables that belong to individual objects. One change to the‘
‘structure to be made would be the conversion of slots to full object

status by giving ownership of slot values to the slot objects.
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The second change relates to the lack of uniformity in the object access
functions. AAs mentioned in Chapter 3, there are‘separate functions to
access data frames and slots. The data frame accessing function
(get-data-frame-slot) has the built in capability to search the frame
oriented hierarchy for needed information and procedures. It also will
automatically execute .procedural code found. Likewise, the slot
orienﬁed access function (get-data-frame-slot) will search the slot
oriented hierarchy for needed information. However, it does not execute
found procedural code. The caller must evaluate the returned code if
appropriate. This condition seems to have resulted from the incomplete
treatment that slots receive within the current Firesys structure.
Elimination of the necessity for two different functions for object
access could be accomplished when the slots are actuaily treated as full
objects. This elimination of the slot specific access function will

result in a uniform cbmmdnication (calling) protocol.

An important point here is the fact that Franz Lisp Flavors, beihg an
object-oriented programming environment, provides the needed message
passing function. It‘ goes by the name of 'send' and has the
characteristics of the send function described in Chapter 3. Therefore,
usage of the Flavors environment will solve the>prob1em of a lack of

uniformity in the calling protocol found within the Firesys system.

The last change that the author wished to incorporate had to do with the
utility functions. The comparison performed in Chapter 3 mentioned the
fact that there are functions that act as utilities for frames and slots

that reside outside the frame structure. Referring to the description
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of what is to reside in the highest frames or classes of a system, it
can be noted that code and data that is most general and applicable to a
large group of subframes (subclasses and instances) is to be placed
there. By definition the frame utilities are general to all data
frames, as are the slot manipulation utilities. These utilities should
then reside in a new frame (superclass) within each hierarchy. A
'master' meta-frame should contain the frame utilities, and a super slot
frame (superclass of the slot-class frames) should be created. This

addition will be the last one proposed.

4.2 Limitations on the Conversion Implementation

This conversion is at heart simply an academic exercise to examine a
hypothesis and to investigate the plausibility of making object-oriented
modifications to the existing Firesys system. Therefore, it is not a
necessity that all portions of the system be converted and/or altered.
The main issue at hand is whether the structure of the kﬁowledge base is
actually object-oriented and if its implementation can be converted into
that of the Franz Lisp Flavors environment. This hypothesis suggests
that any effort at conversion should then be centered upon the knowledge
base and its accessing functions. Any changes in implementation should
be totally transparent to programs external to the knowledge base that

are accessing it (i.e. the query and knowledge base editor programs).

The author has been 1n£1mately involved with three particular portions

of the Firesys project. Specifically, the design of the knowledge base,
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the design and implementation of the knowledge base interface functions,
and the design and implementation of the query system. Although the
author did implement the slot accessing utilities, he has not been
involved in the construction of any programs that uﬁilize functions that
alter slot contents. Specifically, he has not done any work on the
knowledge base editor program. Because of this lack of experience, it
seemed appropriate that the author only perform the conversion and make
changes to those.parts of the knowiedge base and interface functions

that were directly related to the query portion of the system.

These restrictions result in the conversion being limited in scope. The
conversion will include the transformation of the knowledge base into
objects, with frames being unitary objects composed of slot objects.
Additionally, meta-frames will be converted into frame class descriptors
with a hierarchy. Slot descriptor and slot-class frames will likewise
be converted into a hierarchy of slot objécb classes. Code stored
within these classes will only relate to the displaying of these system
objects (query portion). Any code that involves the manipulation of
slots (addition and deletion of values) and code that relaﬁes to removal

and addition of frames will be excluded.

In addition to the the above restriction, the author has included two
more. Figures 2 and 3 presented in Chapter 3 illustrated that the data-
frame portion of the Firesys system is composed of two primary
components: the species related frames and the sagebrush ecosystem
frames. With regard to the system frames (meta-frames and slot

descriptor frames), both components have very similar structures.
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However, the species portion of the system ‘has received the most
attention, and has the most understood and currently stable structure.
Additionally, this side of the system has the most data inserted into
its structure. All levels of the‘ data hierarchy have frames in
existence. This situation does not exist in the Sagebrush Ecosystem
side of the system. Therefore, conversion will algo be restricted to

code and data that relates to the species side of the knowledge base.

As the conversion progressed, it became evident that only one knowledge
base accessing function would be needed. The Franz Lisp Flavors send
function would work appropriately for all object accesses. However, the
conversion was to bé restricted to the knowledge base. The query
program was to experience no changes in its interface to the knowledge
base. In order to accomplish this transparency, the get-data-frame-slot
function was to remain the same, performing the same actions. This
required that the get-data-frame-slot function be recoded using the
Flavors send function. Additionally, it required that there be no
addition of parameter passing.  The conversion, therefore, did not
include thé addition of parameter passage to the procedural che found

when knowledge base accésses are perforned.
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4.3 The Conversion to Franz Lisp Flavprs1

The conversion process was approached as one‘of iterative enhancement.
A series of small conversions were attempted first.” As.éach conversion
was accomplished and tested, conversion of a new portion of the system
was attempted. This process was repeated until ‘all the proposed

conversions were completed.

The first portion of the system to be convertéd was the frame oriented
part of the knowledge base. This involved the conversion of existing
data frames and meta-frames (data frame oriented system frames) into
flavors objects. Conversion of slots into objects was reserved for
latér conversion. The new frame objects would utilize the existing slot

descriptor hierarchy.

‘The conversion process involved making data frames into Flavors objects.
Like most object-oriented environments, Flavors makes individual objects
instances of object classes. A class desCriptor must first be created
from which these object instances can created. Within Flavors, a flavor

is the class descriptor. The defflavor function is utilized to create a

~1The Franz Lisp Flavors code for the conversion can be found in the
appendix of this paper. '
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flavor definition (Appendix A contains all the Franz Lisp Flavors code
written to perform the conversion):

(defflavor species (FRAME-TYPE
' SPECIES

.
.

.

SUPERIOR-PARENT)
0

tgettable-instance-variables
:settable-instance-variables)
This definition states that a flavor (frame descriptor) named 'species'
»is to be defined. It indicates that objects of this flavor will have
instance variables FRAME-TYPE, SPECIES, ..., SUPERIdR-PARENT, no mix-in
(mix-in's will be 4descr1bed later), and that the values of these
instance variables can be retrieved and set by specific calls to their

names (messages sent to an instance of the 'speeieS' flavor with the

instance variable name as the message selector).

An instance of this flavor is created‘by applying the 'make-instance’
function to the flavor 'species'.

(setq speciesd (make-instance 'species))
This Lisp expfession sets the value 4qf the Lisp object (é global
variable) 'speciesl' to one that identifies an instance of the flavor.
For each species data frame,Aan instance of the species flavors was

created. To set a value, say the SPECIES slot value, a message is sent
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to an instance of the species flavor to set its instance variable to the
appropriate value:

(send speciesi :set-SPECIES "Sitanion Hysterix")
This communication expression will set the value of the SPECIES instance
variable in- 'speciesld' to the value "Sitanion Hysterix". To retrieve
the value stored in the SPECIES instance variable one would use:

(send speciesll :SPECIES)
This message call would return the value "Sitanion Hysterix". A special
function was written that performs the species object creation and this
value setting process for each species data frame that exists in the
- knowledge base. This function served the purpose of converting the

current data structures into the flavors data structures.

Values stored within the instance variables are to be instance—speéific
values. Any procedural code that is shared by instances of 'species'
objects is to be stored at the 'species' flavor (class descriptor)
‘level. This storage is performed by defining a fmethod’ that applies to
all 'species' objects:

(defmethod (species :SLOT-LIST) ()
' (FRAME-TYPE SPECIES ... SUPERIOR-PARENT))

This Lisp expression causes a procedure definition by the name of
':SLOT-LIST' to be associated with the flavor 'species'. When called,
it will return a list containing the above indicated values. A method
was defined for each each procedural value that was originally stored
within the meta-frames of the original Firesys system. This included
functions utilized to display the contents of the frame by the query

progranm.
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The definition of the 'species' flavor and associated methods, and the
creation of 'species' instances was part of the first step in converting
the Firesys system into the object-oriented Flavors environment. The
remaining species related data frames also needed to be converted. Like
the process performed on the ’species'vframes, a flavor was defined for
each subframe of the species level frame, appropriate instances created.
Any associated methods for each were also defined. Once this conversion
was accomplished the existing frame format data frames were removed from
the system. All speciés related data frames were then coded as flavors

objects.

In order for the conversion to this point to appear transparent to the
query program, the 'get-data-frame-slot' interface function had to
remain the same with regard to its behavior. The data frames were now
Flavors objects and only accessible through the use of the ‘'send'
function provided by the Flavors environment. The 'get—data-frame-slot'
function needed to be recoded. This code revision was perfopmed. It
involved two changes to the send function. To retrieve a value
'get-data~frame-slot' used the identifier of a frame (i.e. species}) to
access the related frame. It did not care about the value of the
identifier. On the other hand, the send function needed to know the
Flavors-generated identifier of a specific object. This value was
stored as the value of the original frame 1dent1f1er'(i.e. the value of
speciesi). The new 'get-data-frame-slot' function would have to take
this 1ﬁdirection into account. This required that the identifier be

evaluated before it was used with the send function. Looking back, it
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might l'iave been better to scrap the usage of the original frame
identifiers. Howerver', since the conversion was performed incrementally
and experimentally, there appeared to be no other choice. If a total
conversion were to be performed in the future, usage of the Flavors-

generated object identifiers would be highly recommended. .

The new function also needed to"deal with the case where no value had as
yet been defined for a slot (instance variable). In this case, the
previous definition of the 'get-data-frame-slot' function caused' the
value 'no-entry! to be returned. The send function wouid return 'nil‘'.
A simple check for this condition was also added.

With the conversion of the data frames and the revision of the
'get-data-frame-slot' function, the system could now be tested. It
worked flawlessly. As far as the query program was concerned nothing
had changed. The new implementation was totally transparent to it.

This success set the stage for the next level of conversion..

Slots were still being treated as before. They were essentially static
value holders. A hierarchy did exist, however, that held slot specific
procedural code. To convert the slots into the Flavors environment»
would mean the creation of slot objects. For each slot in the species
side of the system, a flavor was defined. The flavor definitions needed
only contain procedural information; no values were needed to be stored.
To be consistent with the previous implementation, however, the TYPE
slot was included as an instance variable (even though it served no
purpose). Any procedural information that was specific to a slot was

coded as a method associated with the flavor of the slot.
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There was an important difference between the slot implementation within
the original Firesys system and the new Flavors implementation. Slots
did not exist as objects (actual instances of frames) in the original
implementation. .They were really virtual objects. "In the Flavors
environment, access to methods can only be performed by sending a
message to an object, a flavor instance. This fact required that slot
objects exist. Virtual slot objects could not be used. One dummy slot
instance was therefore created to allow access to the slot flavor
methods. This modification still did not address the issue of the
separation of the slot value from its slot object. A further

modification which does answer this problem is discussed later.

An important difference also existéd between the structure of the frame
oriented system frames and the slot oriented system frames. Data frames
really only utilized one level in their hierarchy. When information was
not found in a data frame, the information was searched for one level
higher in their hierarchy, at the meta-franmes. If'slots'are treated as
object instances, one finds that there are two levels in the slot
hierarchy. A search is first performed at the slot instance. It then
proceeds to the slot descriptor level, and finally tb the slot class

level. This hierarchy needed to be reflected in the flavors structure.

The first level is easy, just create slot flavors that correspond to
slot descriptor frames. But how does one implement the next higher slot
class level structures? This is where the concepé of mix-in's applies.
A nix-in is a flavor definition that another flavor definition can

include as part.of itself. All characteristics of the mix-in flavor are
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included as secondary characteristics of the cgrrently being defined
flavor. For example:

(defflavor SPECIES ((type 'atom)) (atom)
:gettable~instance-variables
:inittable-instance-variables)

-In this flavor definition one instance variable‘named 'type' is defined
,which has its value initialized to 'atom'. Note that the mix-in field
has the value 'atom'. This indicates that all instances of SPECIES
inherit the instance variables and methods of the flavor atom. Methods
‘are first searched for at the SPECIES flavor level first. If the named
method is not found, the search proceeds to the first mix-in flavor,
namely the atom flavor in this case. The mix-in field might also
contain other flavor names, allowing multiple hierarchies to be

associated with the SPECIES flavor, but this feature is not applicable

to the slot hierarchy at this time.

The atom flavor definition needs no instance variables, and has no
mix-in's. It looks like this:

(defflavor atom () () )
This seems to define ndthing. However, it does. Although there'are no
variables, the definition does allow methods (procedures) to be
associated with the atom flavor. These procedures can then be utilized
by instances of flavors that use 'atom' as a mix-in flavor. This
structure allows the slot hierarchy to be constructed just as it was in

the original Firesys structure, within the new Flavors structure.

This arrangement was implemented by creating flavor definitions for each

slot descriptor frame in the original system. Flavors were also defined
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for each slot class frame. Where the slot type was an atom, that slot
class flavor was added as a mix-in to the applicable slot descriptor
flavor definiﬁion. The same was done for all slot descriptor flavors,

but adding the mix-in of their correct type (i.e. list, text, ete.).

Methods were defined for all slot class flavors that defined procedures
for the display of slots of the given type. An example is the procedure
for displaying a slot name and value of type atom:
(defmethod (atom :display) (value)
(let ((display-list
(cons (send self :name)
(cons ":. "
(cons value _
(1ist 'NL 'NL))))))
(print-slot display-list 'atom)))
This method definition allows the caller to send a message to the
instance of the slot that is an atom (i.e. SPECIES1) to display itself.
(send SPECIES1 :display "Sitanion Hysterix")
The method above defines a 1list of 1items that is needed by the
print-package to print a slot and its value to the screen (display-
list). This list is then passed as a parameter to the called function
'print-slot'. The print-slot function is then executed, displaying the

slot.

The reader should take note of the two important features of the method
definition for !':display'. There is a parameter named 'value"being
passed to ﬁhe method. This passage of parameters directly parallels
what the function ‘'get-slot-descriptor-slot' did in the original
implementation. 'value' contains the value found in the slot of the

instance variable (i.e. SPECIES slot) in the data frame, and it is the



104
responsibility of the caller to first retrieve and then pass this value
to the method. Within the existing system all calls to the
'get-slot-descriptor-slot' function for the diSplay of information
(query program) were made from within the procedural code for displaying
a frame. This codé was housed in the meta-frames for tﬁe }espective
data frames. These calls were easily replaced by a 'send' function
call, and being internal to the knowiedge base, were totally transparent

to the query progranm.

The second item to take note of is the usage of a variabie named 'self'.
An interesﬁing feature of the Flavors environment is its usage of this
variable.  Whenever a message is sent to an object instance, its
identifier is bound to this variable. This allows the object's methods
to reference other methods associated with iﬁself. In the case of its
usage above, it allows the atom method to retrieve_the being accessed
slot's print name string from the slot's flavor (slot descriptor) one

level below where the method is defined in the slot hierarchy.

This also points out an important side effect of this conversion.
Within the original Firesys system, when a slot name was printed, the
actual slot identifier was used. Under Flavors, this usage of the
identifier was too difficult. The author was forced to create a new
instance variable within the slot descriptor flavors that contained the
string to be uséd. This creation of a new slot proved to be a solution
to problems experienced with the origihal method. The usage of the slot
_identifier had created a high degree of coupling between the identifier

used and information printed to the screen. Changes in displayed
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information (i.e. the slot name) resulted in massive updates of systenm
components,'defeating the flexibility claimed by the system. Addition
of this print string to the slot descriptors eliminated any need to
alter other system code, drastically reducing the - aforementioned

coupiing.

The conversion to this point essentially mirrored the strucfure of the
original system within the Flavors environment. Figure 6 1llustrates
the system organization. As one can see, there is a direct mapping of
the frame structures into the new flavors and flavors instances. The
system hierarchy has also been preserved through the usage of flavors
-definitions and flavor mix-in's. The new implementation within the
Flavors environment is totally transparent to external programs. The
only differences between the original system and the new 1mp1ementat16n
is the existence of dummy slot instances, and the usage of a print name
string when displaying the slot and its contents.. Otherwise, the
structures are identical. This would suggest that the basic concepts of
frames and frame hierarchies implemented in the Firesys system are
highly similar if not identical to that of object-oriented concepts of

instances and classes.

However, the usage of Lisp atoms as containers for flavor inétance
identifiers, and the use of dummy slot instances seems to bypass the
main concept of the object. An object should be identified by one name.
Its value should be an inherent part of 1tseif. To address these issues

the author included some additional modifications.
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Figure 6: The original system frame structure as

Note:

implemented under Franz Lisp Flavors.

In this organization of the system, frames
that contain values are instances of
flavors. Flavors have been defined for the
slots and for data-frames, therefore hoth
data-frames and slots represent abjects
vithin this flavors environment. Each
object is still referenced by a named

Lisp atom wvho's value is the Flavors- ,
generated identifier. A "print name” slot
has also been added to the slot flavors to
avoid having to pass the slot name. The
slot value must still be passed for display.
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If'a frame is to be composed of objects (slots) and not static value
holders, then the values in Iits instance variables should notl'be
information values but rather slot object identifiers. Modification of
frame instance variables to hold slot object identifiers will allow the
elimination of the usége of both Lisp atom identifiers, and the need for
dummy slot instances. Instead, frame instance variables will act as
pointers to slot instances which will house the actual value. Such a

reorganization will result in a system that is much more object like.

This reorganization would require two major alterations of the existing
Flavors implementation. First, slot flavors would need to add a 'value'
instance variable to their definition, Second, the
'get-data-frame-slot' function would have to be modified to take this
new level of indirection into account. Value retrieval would now
require that first the frame slot value (instance variable) by sending a
message to the data frame, and second, the value returned (being a slot

object identifier) would be sent a message to return its value.

An added side benefit resulted from these modificétions. The need for
the slot method‘caller to pass the value of the frame instance variable
would no longer be necessary. The slot oriented methods could call
'self' to retrieve the necessary value as needed.

(defmethod (atom :display) ()
(let ((display-list ‘
(cons (send self :name)
(cons ": " ,
(cons (send self :value)
- (1ist 'NL 'NL))))))
(print-slot display-list 'atom)))
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Notice that the new definition of the atom type slot display method no
longer needs the passage of any parameters and that the value contained

in the slot is retrieved be a simple mesSage sent to 'self!',

There is one more modification that the author included in the final
reorganization. As mentioned in the goals and limitations portions of
this chapber, utilities that are used by data frames to display their
contents should be stored in a new meta—ffame that is highest in the
frame oriented hierarchf. To meet this goal a new frame oriented mastér
frame was created. Within the Flavors environment, this frame was
defined as a new flavor that was 'mixed in' with existing frame flavors.
Methods were defined for this new master frame that performed the dUties
of the utilities. Utility access was performed by meta-frame 1evel>
methods sending a message to 'self', passing the needed parameters.
This alteration served no other purpose than to make the structure seem
a little more object-like. Figure 7 illustrates the new reorganized
structure. Note that species frames are still accessed via Lisp atom
identifiers. This feature could not be changed due to the structure of
the query program and the author's lack of knowledge with regard to

access code which was designed and implemented by another team member.

Figure 8 illustrates how subframe links should be handled under the new
organization.v Like frame instance values, the value of slots that are
pbinters to subframes should be Flavors generated frame object
identifiers. Under the author's implementation, these slot values
remained Lisp atom identifiers whose values are Flavors generated frame

object identifiers.
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4.4 Summary of Results

The attempted conVer;sion demonstrated that the existing Firesysisystem
knowledge base structure could easily be converted into an existing‘
object-oriented environment. What seems most amazing to the author is
the ease with which this conversion was accomplished. Having minimal
knowledge about Flavors, the author was still able to easily see the
parallels between the system frame hierarchy in the existing Firesys
system and the flavors concepts. This was a result of the striking
similarity between Franz Lisp Flavors' object-oriented concepts and the
frame based concepts implemented within the Firesys system. This trial
and error conversion process took approximately two weeks of effort.
This ease of implémentation and the structufal correspondéncé between
the original and Flavors' implementation directly support the
éimilarities between frame based systems and object-oriented concepts
illustrated in this chapter. It also suggest the high degree of

flexibility that the object-oriented appfoach provides;

An important concept to which this project also lent support was the
importance of independence of the k'nowledtge base structure from the
external programs that utilize it. The conversion into Franz Lisp
Flavors produced a totally new implementation of the knowledge base.
The actual data structures and access techniques utilized by the Flavors
environment was and is totally unknown to the author. In spite of the
drastic change in data structures, the knowledge base still behaved.
1déntically, with respect to external programs that access it. This

independence highlights the importance of defining system components as
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self contained packages with explicitly defined interfaces.
Object-oriented environments support and encourage such an approach.
Acceptance of this modularity concept has been demonstrated by this

project to greatly increase flexibility.

Modularity is also represented in the class hierarchy constructed, and
has resulted in a modification flexibility thét would not be seen
obherwiée. As noted in the preceding sections of this'}chapter, an
incremental approach was utilized in this conversion. The modularity of
both the original and the Flavors implementation made this incremental
conversion proceed with little or no difficultly. Additions made to the
Flavors implementation also proved to be highly flexible and easily
accomplished because of this object-oriented modularity. The
object-oriented concepﬁs épplied within this project have proved to

greatly enhance the modifyability and flexibility of the Firesys system.



vChapter 5

DISCUSSION AND CONCLUSION

5.1 Success or Failure of the Conversion

In Chapter 4, a description of the conversion of the existing Firesys

system into the Franz Lisp Flavors environment was provided. This
description indluded a statement,of_goals.thab were to be achieved by
the conversion. In this chapter, how these goals were met by the
conversionveffort will be examined. Additionally, a discussion will be
provided with regard to the pros and cons of utilizing a custom or
packaged object-oriented environment. It is hoped that this discussion
will address the issue of whether the conversion effort was a success,
and whether a packaged object-oriented environment should have been (or

should be) used on the Firesys project.

The first goal to be achieved by the conversion was the direct mirroring
of Firesys frame structures in the Franz Lisp Flavors environment. The
evidence provided in Chapter 4 would suggest that such a mirroring was
easily achieved. The primary frame structures of concern were the
system frames because of their inheritance hierarchy. If one examines
the flavors definitions of the initial conversion and the hierarchy of
system frames, one immediately finds a one-to-one mapping of systenm
frames to flavor definitions. Flavors act as descriptors for the

objects or subclasses they define, as do the meta-frames, slot
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descriptor frames, and slot class frames for the data frames and slots
of the Firesys system. Each implementation additionally displayed an
inheritance hierarchy that behaved identically. These facts strongly
support the conclusion that the original system has a very

object-oriented character.

There some deficiencies in this object-oriented character however. As
noted in Chapter 4, there is an inconsistency with regard to }the
treatment of object instances within the original Firesys system. Data
frames are the main objects of the system. Likewise, data’frame objects
are the main instances of the Flavors implementation. Here again, one
can find a direct mapping between data frame objects in the Firesys
system and data frame instances in the Flavors implementation. Where
the similarity fails is when one examines how slots are tceated in the

different systems.

Slots are actually treated identically within both implementations.
Each slot is seen as an object. However, within the Firesys system
slots are virtual objects. They are not implemented as object data
structures. Instead, the slot's name acts as a pointer. to a descriptor
frame; To 1mp1ement the original structure within the Flavors
environment, the author was forced to create dummy objects to support

the object behavior and inheritances characteristics.

Looking back on the Flavors implementation, the author can see an
additional way that slot objects could have been implemented. The slot

descriptors might have been created as instances of the slot class
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frames, with the slot names acting as Lisp symbols khose values were the
slot instance identifiers. This was exactly what was done with the data
frame instances (i.é. 'speciesd' actually contained the Franz-Lisp-
Flavors-generated instance identifier for a species data frame object).

This modification would make the implementations much more similar.

This change, however, still does not sqive the problem of slots really
‘not being objects. If slots in the original system are objects, then
why do they require a separate accessing function? Additionaliy, why
does a user of this access function have to evaluate procedural
information found in the slot frame hierarchy? The object-oriented
concept of a uniform message passing system is not met, and the basic
idea of objects as animate is lost. These two}features severely damage

the argument that Firesys is object-oriented.

To answer the original question as to whether the Firesys system could
be easily converted into an objecﬁ-oriented envibonment, one can look at
the conversion effort -and answer with a resounding "YES". The great
similarity between data frames and object instances, between flavors
(class descriptors) and system frames, and between the two inheritance
systems provides strong supporﬁ for the notion that frame based systems
are object-oriented. The speed and ease with which the conversion was
accomplished provides added support. However, the need to treat,slots'
as separate and special objects within the Firesys system detracts from

this conclusion.
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This leads to the suggestion that parts of the Firesys syStem might be
altered to eliminate these discrepancies. This effort would require
that slots be treated as real and not virtual objects, and that the slot
accessing function_would have‘to be the same as that used to access any
other object (like data frame instances). This could be accomplished by
having frame instance variables contain identifiers of slot objects
instead of values, and by moving the values into instance variables of
slot objects. This is essentially what the author did in the later
Flavors implementation, and could easily be accomplished in the current
system by adding slot frames. Now instead of conceptualizing frames as
being composed of static value holders, they‘can be made up of slot
objects (slot frames) that have their own behavioral and descriptive
characteristics. This would add an additional level of indirection, but
would increase the flexibility of the system with regard to future

enhancements.

Treatment of slots as full fledged objects would eliminate the need for
‘a separate slot accessing function. The message passing (frame
accessing) system would then be uniform. Slot procedural information
would be automatically executed as it is with frames. Slot object code
‘that requires special arguments would still pose a problem, however.
Although the author's experiences with the conversion into Flavors
suggests that there are no special arguments, this may not be the case
.in other parts of the Firesys system. In any case, this problem can

easily be addressed by modifying the new accessing function to include
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optional arguments. The latest versions of Lisp generally include this

capacity.

One last addition should be mentioned. The current systen utilizes a
good number of functions that access and manipulate frames, but that are
external to them. In an object-orienﬁed System, by definition, code
that manipulates objects must be stored within the class hierarchy to
which that object belongs. Within the current system this is not
totally true. The system‘should be modified to house these slot and
frame manipulation functions within the respective class hieraréhies.
This addition would require inclusion of two new frames into the Firesys
system frame structure. The two new frames would contain frame and slot
utilities respectively, and would act as the root of its hierarchy. All
slot frames would inherit code stored in the master slot frame, and all

data frames the code stored in the master-frame frame.

These additions to ‘the existing system would make it more
object-oriented. They would comprise modifications to the existing
Firesys system as implemented in its custom environment. Implementation
done within a packaged object-oriented environment such as Franz Lisp
Flavors or Smalltalk would also have to take these alterations into

consideration.
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5.2 Custom versus Packaged Object—Oriented Environment

An interesting question arises now that the conceptual structure of an
object-oriented system has been described. Should a packaged
object-oriented environment be utilized, or should it be built from
scratch? More specifically, should the Firesys system have been built
in a packaged environment and should it now be converted? There are two
primary factors that influence this decision. First is the question of

development time. Second is the question of efficiency and portability.

Bﬁilding an object—briented environment can be very time consuming.
Many bugs. must be worked through, and each "wheel" must be "reinvented"
from scratch. A packaged system will already have all the tools needed
to implement the object-oriehted system. This was exactly the case with
the current conversion effort. As a result, implementation is quite
rapid. However, the system implementers have no idea as to the
composition of the code underlying the packaged system. They must rely

on the integrity and efficiency of the packaged environment's functions.

The efficiency issue may be important to a particular application. The
choice between a packaged environment and a custom built one is very
similar to the choice made by programmers of standard applications with
‘respect to usage of a high-level or assembly language. Packaged
environments, like high-level languages, provide many of the tools to
build programs quickly and cost effectively. waever, their use may
lead to a loss in system performance efficiency. Coding in assembly

1angﬁage, although not usually cost effective, may allow the developers
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to increase system performance to its maximum. Likewise, the choice of

building é custom system may result in a more efficient final product.

Within a packaged system littie room is left to make modifications to
the underlying functions. If how a particular object-oriented
environment function interacts with the developed system needs to be
altered, it is doubtful that this change could made. The environment's
internal code could always be altered, but with little knowledge of its
inner workings, this could be disastrous. A custom system allows the
-developer to “fine tune" the environment,to‘meet the special needs of

the developed system. A packaged environment does not.

Beyond the issues of trust in the environment, fine tuning capability;
and speed of‘development, lies the issue of portability. If it is the
‘intent of the developers to produce a system thab is not tied to a
specific machine, then the issue of portability brings the decision of

which form of environment to select to the forefront.

Packaged environments are usuaily machine specific. This may change in
the future, but it seems to be the case now. The Firesys system, from
the start of the project, was intended to run on a machine different
from that on which it was developed. Development of the system would
have been risky if a packaged environment had been utilized. For
example, the Franz Lisp Flavofs environment could have been utilized.
The problem is that none of the other machines on which the project was
to be iﬁplemented had Franz Lisp Flavors, let alone Franz Lisp. Now,

flavors are not specific to Franz Lisp. There are other flavors
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implementations under different dialects of Lisp. But, examination of
these implementations of flavors reveals that there is no standard.
Each is different. Another choice would be to implement the‘project in
"a language like ‘Smalltalk. It is fairly well standardized, but

implementations exist only for specialized machines and micro-éomputers.

The only choice that is really available to object-oriented system
developers who wish to produce a highly portable system is to choose a
development language that is standard across the largest number of
machines. The choice of usage of a packaged object-oriented environment
is really not available in most cases. The Firesys team found that
Common Lisp was a language available on most of the target machines that
provided the symbolic processing tools needed for development of the
Firesys system. On the machines that did not have Common Lisp, it was
found that it could be fairly easily emulated. It is within this Common
Lisp environment that the current object-oriented/frame-based system was

developed.

The developed system proved to be highly portable. When the few system
dependent features were extracted from the system, wholesale transfer of
the system was accomplished with little effort. These features were
essentialiy'restricted to input and output capabilities. Re-coding of
these few features produced a system that is essentially identical to

the original.
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This por't1 demonstrated the importance of system developer's usage of a
standard programming environment. If the Firesys system had been
originally developed using Franz Lisp Flavors, movement of the system to
another machine would have been much more difficult. It would have
involved the reimplementation of system manipulation functions that thé
Flavors environmentv.provides. This® is what the custom environment

provided in the first place.

One argument can be raised in favor 6f, the packaged environment,
however. Usage of a packaged environment leaves the system developers'
emphasis on the system to be developed. The presence of object-oriented
capabilities help ensure the consistency of the developed system. A
custom environment cannot insure this consistency, and may distract
developers with environment implementatibn details. As noted earlier,

the Fibesys system'haS‘some inconsistencies in its treatment of objects.

Once a system 1is developed and its structure defined, a custom
environment can then be constructed. The construction of the custbm
environment following system development will resuit in a separation of
the developéd system frdm the developed environment and vise versa. The
environment builders can then focus on portability and efficiency
details without confusing them with structural issues associated ﬁith
deQelopment of the application. This_may have been a better approach.to

have taken with the Firesys system.

The port referenced was to a micro-computer and involved additional
alterations to accommodate its memory restrictions.
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Individuals developing object-oriented applicatibns will have to wrestle
Wwith these development issues. If an applicgtion is to be developedvfor
a specific machine, and development takes place on that machine, then
the usage of a packaged object-oriented environment seems most
appropriate. If the developed product is to be ported to a different
machine then usage of a packaged environment depends upon the
availability of a portable one. The author would like to stress,
however, that usage of a packaged environment may still be very
appropriate for applications to be ported to other machines if it is
used as an initial development tool. Usage will result in the developed
application being more conceptually clean and consiétent. - A custom

“environment can then later be added to the application for easy porting.

5.3 Conclusion

This thesis has presented descriptions of a frame based Fire Effects
Information system, object-oriented programming concepts, and how the
two relate. It was the original hypothesis of the paper that the
developed Firesys frame based system was in essence an object-oriented
one. The proceeding qhapters demonstrated that there is a great
similarity between frame based systems utilizing inheritance hierarchies
and object-oriented systems. The conversion of the existing Firesys
system into a Franz Lisp Flavors implementation strongly supported the
hypothesis. Although some discrepancy was found between what one would

expect to find within an object?oriented system and the original Firesys
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implementation, it is felt that the overall structure of the system is

inherently object-oriented.

Pursual of this thesis project has also resulted in some recommendations
for improvement of the original Firesys system. Upon discovery of some
of the improvements, it immediately became evident that the original
system should include them, and inclusion has started. Specifically,
the addition of the slot "print name" to the slot descriptor frames has
proven to greatly reduce some internal coupling that existed in the
original, and increase the flexibility of the system. Inclusion. of
other recommended improvements into the existing Firesys system may also

result in system improvements.

It is felt by the author that the thesis project effort has been very
successful. It dehpnstrated the equivalence of object-oriented concepts
with frame based constructs in the Firesys system. It also provided a
means for examining the Firesys system, and some improvement
recommendations. It is hoped that what was learned here will assist the
fUture Firesys developers in their efforts and any other frame based

project developers.
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FLAVOR AND METHOD DEFINITIONS FOR THE CREATION OF
FRAME HIERARCHY SYSTEM FRAMES.

;***********************************************************

:Master PRAME -- frame utilities definitions

;***********************************************************

(defflavor frame ()())

(defmethod (frame :query-view-frame-utility)
(header-fun name-string) »
(send self (find-symbol (string header-fun)
*keyword-package*)
name-string)
(let* ((slot-list
(send self :QUERY-DISPLAY-SLOT-LIST))
(display-list (do ((slot-list slot-list
(cdr slot-list))
(displayable-list

nil
(cond
((eq (get-data-frame-slot
self v
(car slot-list))
'no-entry)

displayable-list)
(t (cons (car slot-list)
displayable-
list)))))
((null slot-list) ‘
(reverse displayable-list)))))
(cond ((null display-list) '
(print-slot
'(NL "Sorry no information available on
this subject!" NL)
"text") ) .
(t (do ((display-list display-list
(cdr display-list)))
((null display-list) nil)
(send
(send self (find-symbol
: (string
(car display-list))
*keyword-package*))
| :display)))))
(readcontinue)) '
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(defmethod (frame
tquery-species-print-frame-header-utility)
(name-string) ’
(let ((header (1list
(center-line name-string)
'NL
'NL :
(string-append "SPECIES: "
(get-data-frame-slot 'self 'SPECIES))
'NL .
'NL
HORIZ-BAR
'NL
'NL)))
(print-header header)))

(defmethod (frame :query-print-frame—header-utility)
- (name-string)

(let ((header (list
(center-line name-string)
'NL
'NL _
HORIZ-BAR
'NL
'NL))) _

(print-header header)))

;***************************************k*******************

1 SUPERIOR Frame definitions

;*********************k*************************************

(defflavor superior (FRAME-TYPE

SAGEBRUSH

SPECIES-LIST

INTRODUCTION

SUPERIOR-PARENT)

(Erame) ,
:gettable-instance-variables
:settable-instance-variables)

(defmethod (superior :SLOT-LIST) ()
' { FRAME-TYPE
SAGEBRUSH
SPECIES~LIST
INTRODUCTION
SUPERIOR-PARENT))
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;***********************************************************

; INTRODUCTION Frame definitions

;********f**************************************************

(defflavor introduction (FRAME-TYPE
SPECIES-INTRODUCTION
SAGEBRUSH-INTRODUCTION
INTRODUCTION-PARENT)

(Erame)
:gettable~instance-variables
:settable-instance-variables)

(defmethod (introduction :SLOT-LIST) ()
' (FRAME-TYPE
SPECIES-INTRODUCTION
SAGEBRUSH-INTRODUCTION
INTRODUCTION-PARENT))

(defmethod (introduction :QUERY-DISPLAY-SLOT-LIST) ()
' (SPECIES-INTRODUCTION
SAGEBRUSH-INTRODUCTION))

(defmethod (introduction :QUERY-DISPLAY) ()
(send self :query-view-frame-utility
'query-print-frame-header-utility
"Welcome to the Fire Effects Information System")
£) "
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;*********************************k*************************

; SPECIES Frame definitions

;********k**************************************************

(defflavor species
(FRAME-TYPE
SPECIES
SCIENTIFIC-ALIAS
ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
DISTRIBUTION-AND-OCCURRENCE
VALUE-AND-USE
BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS
FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL- STRATEGIES
FIRE-EFFECTS
SUPERIOR-PARENT)
(frame)
igettable-instance-variables
:settable-instance-variables)

(defmethod (species :SLOT-LIST) ()

' (FRAME-TYPE
SPECIES
SCIENTIFIC-ALIAS
ABBREVIATION
COMMON-NAMES
LIFE-FORM
VARIETIES-AND-FORMS
DISTRIBUTION-AND-OCCURRENCE
VALUE-AND-~USE
BOTANICAL—-AND-~ ECOLOGICAL CHARACTERISTICS
FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES
FIRE-EFFECTS
SUPERIOR-PARENT))

(defmethod (species :QUERY-DISPLAY-SLOT-LIST) ()
' (SCIENTIFIC-ALIAS
ABBREVIATION
COMMON~-NAMES
LIFE-FORM
VARIETIES—AND-FORMS) )
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(defmethod (species :QUERY-DISPLAY) ()
(send self :query-view-frame-utility
'query-species-print-frame-header-utility
_ "Species Information")
(detailed-species—-info-menu v
(get-data-frame-slot 'self 'SPECIES)))

;***********************************************************

; DISTRIBUTION-AND-OCCURRENCE Frame definitions

;***********************************************************

(defflavor distribution—-and-occurrence
(FRAME-TYPE
GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES
DISTRIBUTION-PARENT)

(frame) ‘
:gettable-instance-variables
:settable-instance-variables)

(defmethod (distribution-and-occurrence :SLOT-LIST) ()
' (FRAME-TYPE
GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-~-ASSOCIATIONS
SAF-COVER-TYPES
HABITAT~-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES
DISTRIBUTION-PARENT))

(defmethod (distribution-and-occurrence
- :QUERY-DISPLAY-SLOT-LIST)
)

' (GENERAL-DISTRIBUTION
BLM-PHYSIOGRAPHIC-REGIONS
KUCHLER-PLANT-ASSOCIATIONS
SAF~-COVER-TYPES
HABITAT-TYPE-INFORMATION
SPECIES-HABITAT-TYPES
REFERENCES))
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(defmethod (distribution-and-occurrence :QUERY-DISPLAY) ()
(send self :query-view-frame-utility
'query-species-print-frame-header-utility
"Distribution and Occurrence Information")
t) -

(defmethod (distribution-and-occurrence :SPECIES) ()
(send ' '
(eval (get-data-frame-slot 'self 'DISTRIBUTION-PARENT))
:SPECIES)) .

;******************************************************k****

s VALUE-AND-USE Frame definitions

;***********************************************************

(defflavor value—and-use
(FRAME-TYPE
DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER-VALUE
IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE
OTHER~-USES-AND~VALUES
ENVIRONMENTAL-CONSIDERATIONS
REFERENCES
VALUE-AND-USE-PARENT)
(frame) -
:sgettable-instance~variables
ssettable-instance-variables)

(defmethod (value-and-use :SLOT-LIST) ()
' (FRAME-TYPE

DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER-VALUE ,
IMPORTANCE-TO-~LIVESTOCK-AND-WILDLIFE
OTHER-USES-AND-VALUES
ENVIRONMENTAL~-CONSIDERATIONS
REFERENCES
VALUE-AND-USE-PARENT) )
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(defmethod (value-and-use :QUERY-DISPLAY-SLOT-LIST) ()
' (DESCRIPTION
PALATABILITY
FOOD-VALUE
COVER~VALUE
IMPORTANCE-TO-LIVESTOCK~AND-WILDLIFE
OTHER-USES-AND-VALUES
ENVIRONMENTAL-CONSIDERATIONS
REFERENCES) )

(defmethod (value-and-use :QUERY-DISPLAY) ()
(send self :query-view-frame-utility
'query-species-print-frame-header-utility
"Value and Use Information")
t) '

(defmethod (value-and-use :SPECIES) ()
(send ' _
(eval (get-data-frame-slot 'self 'VALUE-AND-USE-PARENT))
:SPECIES)) '

;****k******************************************************

;BOTANICAL;AND*ECOLOGICAL-CHARACTERISTICS Frame definitions

;*******************************************************k***

(defflavor botanical-and-ecological-characteristics
(FRAME-TYPE
GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAFR-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL~-STATUS
SEASONAL-DEVELOPMENT
REFERENCES
BOTANICAL-CHARACTERISTICS-PARENT)
(frame) '
:gettable-instance-variables
:settable-instance-variables)
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(defmethod (botanical-and- ecologlcal characterlstlcs
:SLOT-LIST)
()

' (FRAME-TYPE
GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL~-STATUS
SEASONAL-DEVELOPMENT
REFERENCES
BOTANICAL-CHARACTERISTICS-PARENT))

(defmethod (botanical-and-ecological-characteristics
:QUERY-DISPLAY-SLOT-LIST) '

' (GENERAL-DESCRIPTION
GROWTH-FORM
RAUNKIAER-LIFE-FORM
GRIME-PLANT-STRATEGY-CLASSIFICATION
GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION
REGENERATION-PROCESSES
SITE-CHARACTERISTICS
SUCCESSIONAL-STATUS
SEASONAL-DEVELOPMENT
REFERENCES) )

(defmethod (botanical-and-ecological-characteristics
¢:QUERY~-DISPLAY)
()
(send self :query-view-frame-utility
'query-species-print-frame-header-utility
"Botanical and Ecological Characteristics Information")
t)

(defmethod (botanical-and-ecological- characterlstlcs

:SPECIES)
()

(send

(eval (get-data-frame- slot
"self

' BOTANICAL-CHARACTERISTICS-PARENT))
:SPECIES))
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_;***********************************************************

;FIRE-ADAPTIVE-TRAITS-AND~-SURVIVAL~-STRATEGIES
:Frame definitions

;***********************************************************

(defflavor fire-adaptive-traits-and-survival- strategles

(FRAME-TYPE

DESCRIPTION

LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY

NOBLE-AND-SLATYER-VITAL-ATTRIBUTES
SPECIES-TYPE
TIME-UNTIL-MATURITY
TIME-UNTIL~SENESCENCE
TIME-UNTIL-EXTINCTION

ROWE-MODE-OF-PERSISTANCE

REFERENCES

ADAPTIVE-TRAITS-PARENT)

(frame)

tgettable-instance- variables

:settable-instance~variables)

(defmethod
(fire-adaptive-traits—and- surv1val -strategies
:SLOT-LIST)
()
' (FRAME-TYPE
DESCRIPTION
LYON-STICKNEY-FIRE~SURVIVAL-STRATEGY
NOBLE-AND-SLATYER-VITAL-ATTRIBUTES
SPECIES-TYPE
TIME-UNTIL-MATURITY
TIME-UNTIL-SENESCENCE
TIME-UNTIL-EXTINCTION
ROWE-MODE-OF-PERSISTANCE
REFERENCES
ADAPTIVE-TRAITS-PARENT))

(defméthod (Eire—adaptive-traits-and-survival-strategies
:QUERY-DISPLAY-SLOT-LIST)

' (DESCRIPTION
LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY
NOBLE~AND-SLATYER-VITAL-ATTRIBUTES

SPECIES-TYPE
TIME-UNTIL-MATURITY
TIME-UNTIL-SENESCENCE
TIME-UNTIL-EXTINCTION
ROWE-MODE~QF-PERSISTANCE
REFERENCES) )
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(defmethod (fire-adaptive- traits-and- surv1val strategies
:QUERY~-DISPLAY)
)
(send self
:query-species-print-frame-header-utility
"Fire Adaptive Traits and Survival Strategies:
Information")
(let* ((slot-list (send self :QUERY-DISPLAY-SLOT-LIST))
(display-list
(do ((slot-list slot-list (cdr slot-list))
(displayable-list
nil
(cond ((and (eq (car slot-list)
'NOBLE~AND-SLATYER-VITAL-ATTRIBUTES)
(or (not (eq (get-data-frame-slot
'self
- '"SPECIES-TYPE)
'no-entry))
(not (eq (get-data-frame-slot
'self
'TIME-UNTIL-MATURITY)
'no-entry))
(not (eq (get-data-frame-slot
'self
'TIME-UNTIL-SENESCENCE)
'no-entry))
(not (eq (get-data-frame-slot
'self
'TIME-UNTIL-EXTINCTION)
‘no-entry))))
(cons 'NOBLE-AND-SLATYER-VITAL- ATTRIBUTES
displayable-list))
((eq (get-data-frame-slot
'self
(car slot-list))
'no-entry)
displayable-list)
(t (cons (car slot-list)
displayable-list)))))
((null slot-list) (reverse displayable-list)))))
(cond ((null display-list)
(print-slot
' (NL
"Sorry, no information available on this
subject!"
NL)
"text") )
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(t (do ((display-list display-~list
o (cdr display-list)))
((null display-list) nil)
(send
(send self (find-symbol
(string (car display-list))
*keyword-package*)) -
:display)))))
(readcontinue)
t)

(défmethod (fire-adaptive-traits—and-survival-strategies
:SPECIES)

()
(send
(eval (get-data-frame-slot 'self
'ADAPTIVE-TRAITS-PARENT))
:SPECIES))

;****************k****************k*************************

; FIRE-EFFECTS Frame definitions

;***********************************************************

(defflavor fire-effects
(FRAME-TYPE
FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE~-TO-FIRE
DISCUSSION-AND—-QUALIFICATION-OF-PLANT-RESPONSE
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
REFERENCES '
FIRE-EFFECTS-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)

(defmethod (fire-effects :SLOT-LIST) ()

' (FRAME-TYPE
FIRE~-EFFECT-~ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE-TO-FIRE
DISCUSSION-AND~QUALIFICATION-OF-PLANT-RESPONSE
SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
REFERENCES
FIRE-EFFECTS-PARENT))
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(defmethecd (fire-effects :QUERY-DISPLAY-SLOT-LIST) ()

' (FIRE-EFFECT-ON-PLANT
DISCUSSION-AND-QUALIFICATION-OF-FIRE-EFFECT
PLANT-RESPONSE-TO-FIRE S
DISCUSSION~AND-QUALIFICATION-OF-PLANT-RESPONSE
REFERENCES) )

(defmethod (fire-effects :QUERY-DISPLAY) ()
- (send self :query-view-frame-utility
'query-species-print-frame-header-utility
"Fire Effects Information")
(let ((sssfe-list (get-data-frame-slot
'self
'SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS)))
(cond ((not (eq sssfe-list 'no-entry))
(detailed-fire-effects-menu sssfe-list)))))

(defmethod (fire-effects :SPECIES) ()
(send :
(eval (get-data-frame-slot 'self 'FIRE-EFFECTS-PARENT))
:SPECIES))

;***********************************************************

; SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS Frame definitions

;***********************************************************

(defflavor severity-season-specific-fire-effects
(FRAME-TYPE
SEVERITY
SEASON
EFFECT
CERTAINTY-FACTOR
DESCRIPTION
QUALIFICATION
REFERENCES
FIRE~EFFECT-PARENT)
(frame)
:gettable-instance-variables
:settable-instance-variables)
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(defmethod. (severity-season-specific-fire-effects
:SLOT-LIST) '
()
' ({FRAME-TYPE

SEVERITY

SEASON

EFFECT

CERTAINTY-FACTOR

DESCRIPTION _

QUALIFICATION

REFERENCES

FIRE-EFFECT-PARENT))

(defmethod (severity-season-specific-fire-effects
:QUERY-DISPLAY-SLOT-LIST)
()
' (SEVERITY
SEASON
EFFECT
CERTAINTY-FACTOR
DESCRIPTION
QUALIFICATION
REFERENCES) )

(defmethod (severity-season-specific-fire-effects
:QUERY-DISPLAY)
{)

(send self :query-view-frame-utility
'query-species-print-frame-header-utility
"Severity-Season Fire Effects Information")

t)

(defmethod (severity~season—specific-fire—effects :SPECIES)

()
(send v ,
(eval (get-data-frame-slot 'self 'FIRE-EFFECT-PARENT))

: SPECIES))

FLAVOR AND METHOD DEFINITIONS FOR THE CREATION OF
SLOT HIERARCHY SYSTEM FRAMES

;**********************************k************************

;Atom FRAME -- atom class slot type definitions

;***********************************************************

(defflavor atom () ())
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(defmethod (atom :display) ()
(let ((display-list (cons (send self :name)
' (cons ": "
(cons (send self :value)
(list 'NL 'NL))))))
(print-slot display-list 'atom)))

(defmethod (atom :display-atom-subslot) ()
{let ((display-list
(cons (string-append " "
(send self :name))
(cons ": " , '

(cons (send self :value)

, (list 'NL 'NL)}))))))

(print-slot display-list 'atom)))

:***********************************************************

;Header FRAME -- header class slot type definitions

;***********************************************************

(defflavor header () ())

(defmethod (header :display) () ,
(let ((display-list (cons (send self :name)
(cons ": " (list 'NL 'NL)))))
(print-slot display-list ‘header)))

;***********************************************************

;List FRAME -- list class slot type definitions

;***********************k***********************************

(defflavor list () ())

-(defmethod (list :display) ()
(let ((display-list (cons (send self :name)
' (cons ": "
(append (send self :value)
(list 'NL 'NL))))))
(print-slot display-list 'list)))
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(defmethod (list :display-list-subslot) ()
(let ((display-list
(cons (string-append " " (send self :name))
(cons ": " '
(append (send self :value)
. (list 'NL 'NL))))))
(print—-slot display-list 'list)))

;***********************************************************

; Text FRAME —- text class slot type definitions

é****************************************k*******k**********

(defflavor text () ())

(defmethod (text :display) ()
(let ((display-list (cons (send self :name)
(cons ": " :
(append (send self :value)
(list 'NL 'NL))))))
(print-slot display-list 'text)))

(defmethod (text :display-text-subslot) ()
(let ((display-list
' (cons (string-append " " (send self :name))
(cons ": " '
(append (send self :value)
(list 'NL 'NL))))))
(print-slot display-list 'text)))

;*****************************ﬁ*****************************

;Generated pointer FRAMES '
;—— Generated pointer class slot type definitions

;*************k**************************k******************

(defflavor generated-frame-pointer () ())

(defflavor generated-frame-pointer-list () ())



140

;***********************************************************

; FRAME-TYPE FRAME -- FRAME-TYPE slot type definitions

;********************************************k**************

(defflavor FRAME-TYPE (value
(type 'atom)
(name "FRAME TYPE"))
(atom)
isettable-instance-variables
:gettable-instance-variables
sinittable-instance-variables)

;***********************************************************

;SPECIES FRAME -- SPECIES slot type definitions

;***********************************************************

(defflavor SPECIES (value (type ‘'atom)(name "SPECIES"))
(atom) ~
:settable-instance~-variables
:gettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; SCIENTIFIC-ALIAS FRAME -- SCIENTIFIC-ALIAS slot type
: definitions

;***********************************************************

(defflavor SCIENTIFIC-ALIAS (value
(type 'list) ‘
(name "SCIENTIFIC ALIAS"))
(list)
:settable~instance-variables
:gettable-instance-variables
:inittable-instance-variables)
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;***********************************************************

;ABBREVIATION FRAME -- ABBREVIATION slot type definitions

;*********************************k*************************

(defflavor ABBREVIATION (value
(type 'atom) .
(name "ABBREVIATION"))
(atom)
:settable—-instance-variables
:gettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; COMMON-NAMES FRAME —-- COMMON-NAMES slot type definitions

;***********************************************************

(defflavor COMMON-NAMES (value
({type 'list)
(name "COMMON NAMES"))
(list)
:settable-instance-variables
:gettable—-instance-variables
:inittable-instance-variables)

’*****k*****************************************************

; LIFE-FORM FRAME -- LIFE-FORM slot type definitions

;*****************************k***********k*****************

(defflavor LIFE-FORM (value (type 'atom)(name "LIFE FORM"))
: {atom)
:settable~instance-variables
:gettable-instance-variables
:inittable-instance-variables)



142

}***********************************************************

; VARIETIES-AND-FORMS FRAME -- VARIETIES—AND-FORMS slot type
: definitions

;***********************************************************

(defflavor VARIETIES-AND-FORMS ‘
(value (type 'text)(name "VARIETIES AND FORMS")) (text)
:settable-instance-variables
tgettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; DISTRIBUTION-AND-OCCURRENCE FRAME
;-— DISTRIBUTION-AND-OCCURRENCE slot type definitions

;*********************************************k*************

(defflavor DISTRIBUTION-AND-OCCURRENCE
(value
(type 'generated-frame-pointer)
(pointer-to 'distribution-and-occurrence)
(name "DISTRIBUTION AND OCCURRENCE"))
(generated-frame-pointer)
:settable-instance-variables
tgettable-instance-variables
sinittable-instance-variables)

;***********************************************************

; VALUE-AND-USE FRAME -- VALUE-AND-USE slot type definitions

;*********************************************************k*

(defflavor. VALUE-AND-USE
(value '
(type 'generated-frame-pointer)
(pointer-to ‘'value-and-use)
(name "VALUE AND USE"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)
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';***********************************************************

s BOTANICAL~-AND~ECOLOGICAL-CHARACTERISTICS FRAME
;—— BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS slot type
; definitions

;***********************************************************

(defflavor BOTANICAL-AND-ECOLOGICAL-CHARACTERISTICS
(value -
(type 'generated-frame-pointer)
(pointer-to 'botanical-and-ecological-characteristics)
(name "BOTANICAL AND ECOLOGICAL CHARACTERISTICS"))
(generated-frame-pointer)
:settable-instance-variables
sgettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; FIRE-ADAPTIVE-TRAITS~AND~SURVIVAL-STRATEGIES FRAME
;—= FIRE-ADAPTIVE-TRAITS~AND-SURVIVAL-STRATEGIES
; slot type definitions

:***************************k*******************************

(defflavor FIRE-ADAPTIVE-TRAITS-AND-SURVIVAL-STRATEGIES
(value
(type 'generated-frame-pointer)
(pointer-to

'fire-adaptive-traits—-and-survival-strategies)

(name "FIRE ADAPTIVE TRAITS AND SURVIVAL STRATEGIES"))
(generated-frame-pointer) ‘
:settable-instance-variables
:gettable-instance-variables
tinittable-instance~-variables)
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;***f*******************************************************

; FIRE-EFFECTS FRAME -- FIRE-EFFECTS slot type definitions

;***************************************k*******************

(defflavor FIRE-EFFECTS
(value
(type 'generated-frame-pointer)
(pointer-to 'fire-effects)
(name "FIRE EFFECTS"))
(generated-frame-pointer)
:settable-instance-variables
tgettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; SUPERIOR-PARENT FRAME _
;—— SUPERIOR-PARENT slot type definitions

;***********************************************************

(defflavor SUPERIOR-PARENT
(value

(type 'generated-frame-pointer)

(pointer-to 'superior)

(name "SUPERIOR PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable~-instance-variables)

;******************************************f****************

; GENERAL-DISTRIBUTION FRAME
;—— GENERAL-DISTRIBUTION slot type deflnltlons

;***********************************************************

(defflavor GENERAL-DISTRIBUTION
(value (type 'text)(name "GENERAL DISTRIBUTION")) (text)
:settable-instance-variables
:gettable-instance-variables
tsinittable-instance-variables)
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;***********************************************************

;BLM—PHYSIOGRAPHIC-REGIONS FRAME
; -— BLM-PHYSIOGRAPHIC-REGIONS slot type definitions

;***********ﬁ***********************************************

(defflavor BLM-PHYSIOGRAPHIC-REGIONS
(value (type 'list)(name "BLM PHYSIOGRAPHIC REGIONS"))
(list) : .
:settable-instance-variables
:tgettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; KUCHLER-PLANT-ASSOCIATIONS FRAME
Hae KUCHLER—PLANT-ASSOCIATIONS slot type definitions

;***********************************************************

(defflavor KUCHLER-PLANT-ASSOCIATIONS
(value (type 'list)(name "KUCHLER PLANT ASSOCIATIONS"))
(list)
:settable-instance-variables
:gettable-instance-variables
:tinittable-instance-variables)

;***************************k****************k**************

; SAF-COVER-TYPES FRAME
;—— SAF-COVER-TYPES slot type definitions

;****************************************k******************

(defflavor SAF-COVER-TYPES
(value (type 'list)(name "SAF COVER TYPES")) (list)
:settable-instance-variables
:gettable-instance-variables
tinittable~instance-variables)
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;***********************************************k***********

; HABITAT-TYPE-INFORMATION FRAME
;—— HABITAT-TYPE-INFORMATION slot type definitions

;***********************************************************

(defflavor HABITAT-TYPE-INFORMATION
(value (type 'text)(name "HABITAT TYPE INFORMATION"))
(text) ’
:settable-instance-variables
:gettable-instance-variables
tinittable-instance~-variables)

-***********************************************************

;SPECIES—HABITAT TYPES FRAME
;—— SPECIES-HABITAT-TYPES slot type deflnltlons

;***********************************************************

(defflavor SPECIES-HABITAT-TYPES
(value (type 'text)(name "SPECIES HABITAT TYPES")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************

;REFERENCES FRAME -- REFERENCES slot type definitions

;**********k************************************************

(defflavor REFERENCES
(value (type 'list)(name "REFERENCES")) (list)
:settable-instance-variables
tgettable-instance~variables
:inittable-instance-variables)
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;***********************************************************

;DISTRIBUTION-PARENT FRAME
;—— DISTRIBUTION-PARENT slot type definitions

;************************************k*f********************

(defflavor DISTRIBUTION-PARENT
(value

(type 'generated-frame-pointer)

(pointer-to 'species)

(name "DISTRIBUTION PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)

;***********************************************************

;DESCRIPTION FRAME ~-— DESCRIPTION slot type definitions

;***********************************************************

(defflavor DESCRIPTION
(value (type 'text)(name "DESCRIPTION")) (text)
:settable-instance-variables
:gettable-instance-variables
cinittable-instance-variables)

;***********************************************************_

; PALATABILITY FRAME -- PALATABILITY slot type definitions

;**************************k********************************

(defflavor PALATABILITY ,
(value (type 'text)(name "PALATABILITY")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)
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;***********************************************************

; FOOD-VALUE FRAME -- FOOD-VALUE slot type definitions

;********************************************k**************

(defflavor FOOD-VALUE
(value (type 'text)(name "FOOD VALUE")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; COVER-VALUE FRAME -- COVER-VALUE slot type definitions

;***********************************************************

(defflavor COVER-VALUE
(value (type 'text)(name "COVER VALUE")) (text)
:settable~instance-variables
tgettable-instance-variables
:inittable-instance-variables)

;***********************************************************

;IMPORTANCE-TO—LIVESTOCK—AND-WILDLIFE FRAME
;s IMPORTANCE~TO-LIVESTOCK-AND-WILDLIFE -- slot type
: definitions

;***********************************************************

(defflavor IMPORTANCE-TO-LIVESTOCK-AND-WILDLIFE

(value

(type 'text)

(name "IMPORTANCE TO LIVESTOCK AND WILDLIFE"))

(text) '
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; OTHER-USES—-AND-VALUES FRAME
;=— OTHER-USES-AND-VALUES slot type definitions
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;**************************************************k********

(defflavor OTHER-USES-AND-VALUES FRAME
(value (type 'text)(name "OTHER-USES-AND-VALUES")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;*****************************************************#*****

; ENVIRONMENTAL~-CONSIDERATIONS FRAME
;—— ENVIRONMENTAL-CONSIDERATIONS slot type definitions

shhkhkhhkhkhhkhkhhhhhkkkhhkhhhhkhhhhrhhrhhkhrhkhhhhrhhhihhhrhhhrihhhit

(defflavor ENVIRONMENTAL-CONSIDERATIONS
(value (type 'text)(name "OTHER-USES-AND-VALUES")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; VALUE-AND-USE-PARENT FRAME
;—— VALUE-AND-USE-PARENT slot type definitions

;********************************************#**************

(defflavor VALUE-AND-USE-PARENT
(value

(type 'generated-frame-pointer)

(pointer-to 'species)

(name "VALUE AND USE PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
sinittable~instance-variables)

;***********************************************************

:GENERAL-DESCRIPTION FRAME
;~— GENERAL-DESCRIPTION slot type definitions

;***********************************************************

(defflavor GENERAL~DESCRIPTION
(value (type 'text)(name “GENERAL DESCRIPTION")) (text)
:settable-instance-variables
:gettable~instance-variables
sinittable-instance-variables)
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;***********************************************************

; GROWTH-FORM FRAME
;—— GROWTH-FORM slot type definitions

;*****************************************k*****************

(defflavor GROWTH-FORM
(value (type 'list)(name "GROWTH FORM")) (list)
:settable-instance-variables
:gettable-instance~variables
:inittable-instance-variables)

;*********************k*************************************

;s RAUNKIAER-LIFE~-FORM FRAME
;—— RAUNKIAER-LIFE-FORM slot type definitions

;*******************************************k***************

(defflavor RAUNKIAER-~LIFE-FORM
(value (type 'list)(name "RAUNKIAER LIFE FORM")) (list)
_.:settable-~instance-variables
tgettable-instance-variables
tinittable-instance-variables)

;i**********************************************************
;GRIME-PLANT-STRATEGY-CLASSIFICATION FRAME

;~— GRIME-PLANT-STRATEGY-CLASSIFICATION slot type
‘ - definitions

~e w

;***********************************************************

(defflavor GRIME-PLANT-STRATEGY-CLASSIFICATION

(value

(type 'list)

(name "GRIME PLANT STRATEGY CLASSIFICATION"))

(list)
:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)
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;***********************************************************

;s GRIME-REGENERATIVE-STRATEGY~-CLASSIFICATION FRAME .
;—— GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION slot type
; definitions

;*******************k***************************************

(defflavor GRIME-REGENERATIVE-STRATEGY-CLASSIFICATION

(value

(type ‘'‘list) .

{name "GRIME REGENERATIVE STRATEGY

CLASSIFICATION")) '

(list) _
:settable-instance-variables
tgettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; REGENERATION-PROCESSES FRAME
;—— REGENERATION-PROCESSES slot type deflnltlons

;************************************************k**********

(defflavor REGENERATION-PROCESSES
(value (type 'text)(name "REGENERATION PROCESSES")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;*******t***************************************************

; SITE-CHARACTERISTICS FRAME
;—— SITE-CHARACTERISTICS slot type definitions

;***********************************************************

(defflavor SITE- CHARACTERISTICS
(value (type 'text)(name "SITE CHARACTERISTICS")) ({text)
:settable-instance-variables
tgettable-instance-variables
:inittable-instance-variables)
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;***********************************************************

; SUCCESSIONAL-STATUS FRAME
j—— SUCCESSIONAL-STATUS slot type definitions

;***********************************************************

(defflavor SUCCESSIONALfSTATUS :
(value (type 'text)(name "SUCCESSIONAL STATUS")) (text)
:settable-instance-variables
tgettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; SEASONAL~-DEVELOPMENT FRAME
; —— SEASONAL~-DEVELOPMENT slot type definitions

;*****************f*****************************************

(defflavor SEASONAL-DEVELOPMENT . ,
(value (type 'text)(name "SEASONAL-DEVELOPMENT")) (text)
:settable-instance-variables
tgettable-instance-variables
tinittable~instance-variables)

;***********************************************************.

; BOTANICAL-CHARACTERISTICS-PARENT FRAME
;—— BOTANICAL-CHARACTERISTICS-PARENT slot type definitions

;*********************************k**k**********************

(defflavor BOTANICAL-CHARACTERISTICS-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'species)
_(name "BOTANICAL CHARACTERISTICS PARENT"))
(generated-frame-pointer)
:settable~-instance-variables
:gettable-instance-variables
:inittable-instance-variables)
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;***********************************************************

; LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY FRAME
;—— LYON-STICKNEY-FIRE-SURVIVAL-STRATEGY slot type
: definitions

;***********************************************************

(defflavor LYON-STICKNEY~-FIRE~SURVIVAL-STRATEGY
(value (type 'list).
(name "LYON STICKNEY FIRE SURVIVAL STRATEGY"))
(list)
:settable-instance-variables
:gettable-instance-variables
-sinittable-instance-variables)

;***********k***********************************************

: NOBLE-AND-SLATYER-VITAL-ATTRIBUTES FRAME
s ~= NOBLE-AND-~SLATYER-VITAL-ATTRIBUTES slot type
3 definitions

;********************************************k**************

(defflavor NOBLE-AND-SLATYER-VITAL~ATTRIBUTES
(value

(type 'header)

(name "NOBLE AND SLATYER VITAL ATTRIBUTES")) (header)
:settable-instance-variables
:gettable~-instance-variables
:inittable-instance-variables)

;************************k**********************************

; SPECIES-TYPE FRAME -- SPECIES-TYPE slot type definitions

;***********************************************************

(defflavor SPECIES-TYPE
(value (type 'list) (name "SPECIES TYPE")) (llst)
:settable—-instance-variables
:gettable~instance-variables
tinittable-instance-variables)

(defmethod (SPECIES-TYPE :display) ()
(send self :display-list-subslot))
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;***********************************************************

s TIME~UNTIL-MATURITY FRAME
;== TIME-UNTIL-MATURITY slot type definitions

é*******************************************************ﬁ***

(defflavor TIME-UNTIL-MATURITY _ _ )
(value (type ‘'atom) (name "TIME UNTIL MATURITY")) (atom)
:settable-instance-variables
tgettable-instance-variables
:inittable~instance-variables)

(defmethod (TIME-UNTIL-MATURITY :display) ()
(send self :display-atom-subslot))

;***********************************************************

; TIME-UNTIL-SENESCENCE FRAME
;~- TIME-UNTIL-SENESCENCE slot type definitions

;***********************************************************

(defflavor TIME-UNTIL-SENESCENCE
(value (type 'atom) (name "TIME UNTIL SENESCENCE")) (atom)
-:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)

(defmethod (TIME-UNTIL-SENESCENCE :display) ()
(send self :display-atom-subslot))

;***********************************************************

; TIME-UNTIL-EXTINCTION FRAME »
;== TIME-UNTIL-EXTINCTION slot type definitions

;*******************************************************k***

(defflavor TIME-UNTIL-EXTINCTION v .

(value (type 'atom) (name "TIME UNTIL EXTINCTION")) (atom)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

(defmethod (TIME-UNTIL-EXTINCTION :display) ()
(send self :display-atom-subslot))
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;***********************************************************

; ROWE-MODE-OF-PERSISTANCE FRAME |
;-- ROWE-MODE-OF-PERSISTANCE slot type definitions

;**************************k********************************

(defflavor ROWE-MODE-OF-PERSISTANCE

{value

(type 'list)

(name "ROWE-MODE-OF-PERSISTANCE"))

(list)

:settable-instance-variables

tgettable-instance-variables
~tinittable-instance-variables)

;***********************************************************

sADAPTIVE-TRAITS-PARENT FRAME
;~— ADAPTIVE-TRAITS~PARENT slot type definitions

;******************************************************k****

(defflavor ADAPTIVE-TRAITS-PARENT
(value : .

(type 'generated-frame-pointer)

(pointer-to 'species)

(name "ADAPTIVE TRAITS PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
sinittable-instance-variables)

;*******************************************************k***

; PIRE-EFFECT-ON-PLANT FRAME
;=-- FIRE-EFFECT-ON-PLANT slot type definitions

;*******k***************************************************

(defflavor FIRE-EFFECT-ON-PLANT
(value (type 'text)(name "FIRE EFFECT ON PLANT")) (text)
:settable-instance-variables '
:gettable-instance-variables
tinittable-instance-variables)
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;*******************************************k***************

?DISCUSSION-AND —QUALIFICATION-OF-FIRE-EFFECT FRAME
;- DISCUSSION-AND-QUALIFICATION-QOF-FIRE-EFFECT
: slot type definitions

;**********************************************k************

(defflaVOt'DISCUSSION—AND-QUALIFICATION—OF-FIRE—EFFECT
(value
(type 'text)
(name "DISCUSSION AND QUALIFICATION OF FIRE EFFECT"))
(text) ,
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************

; PLANT-RESPONSE-TO~FIRE FRAME
;—=— PLANT-RESPONSE-TO-FIRE slot type deflnltlons

;***********************************************************

(defflavor PLANT-RESPONSE-TO-FIRE
(value (type 'text)(name "PLANT RESPONSE TO FIRE“)) (text)
:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; DISCUSSION-AND-QUALIFICATION-OF-PLANT~RESPONSE FRAME
;—=— DISCUSSION-AND-QUALIFICATION-OF-PLANT- RESPONSE
; slot type definitions

;**************************************kk*******************

(défflavor‘DISCUSSION—AND—QUALIFICATION—OF—PLANT—RESPONSE

(value

(type 'text)

(name "DISCUSSION AND QUALIFICATION OF PLANT RESPONSE"))
(text)

:settable-instance-variables
.:gettable-instance~-variables
tinittable-instance-variables)
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;****************k******************************************

; SEVERITY~SEASON-SPECIFIC-FIRE-EFFECTS FRAME
;—— SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS
; slot type definitions

;***********************************************************

(defflavor SEVERITY-SEASON-SPECIFIC-FIRE-EFFECTS

(value

(type 'generated-frame-pointer-list)

(pointer-to ‘'severity-season-specific-fIre-effects)

(name "SEVERITY SEASON SPECIFIC FIRE EFFECTS"))
(generated-frame-pointer-list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************‘

; FIRE-EFFECTS-PARENT FRAME
;-— PIRE-EFFECTS-PARENT slot type definitions

;***********************************************************

(defflavor FIRE-EFFECTS-PARENT
(value

(type 'generated-frame-pointer)

(pointer-to 'species)

(name "FIRE EFFECTS PARENT"))
(generated-frame-pointer)
:settable-instance-~variables
tgettable-instance-variables
tinittable-instance-variables)

;***********************************************************

; SEVERITY FRAME -~ SEVERITY slot type definitions

‘;k**********************************************************

(defflavor SEVERITY ,

(value (type 'atom) (name "SEVERITY")) (atom)
:settable~-instance-variables
:gettable-instance-variables
s:inittable—-instance-variables)
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;***********************************************************

; SEASON FRAME -- SEASON slot type definitions

;********************************k**************************

(defflavor SEASON
(value (type 'atom) (name "SEASON")) (atom)
:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)

;**********************************************k************

;EFFECT FRAME ~- EFFECT slot type definitions

;*****************************************************#*****

(defflavor EFFECT.
(value (type 'text) (name "EFFECT")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;*********************************************************k*

;CERTAINTY-FACTOR FRAME
;—— CERTAINTY-FACTOR slot type definitions

;********k**************************************************

(defflavor CERTAINTY FACTOR
(value (type 'atom) (name "CERTAINTY- FACTOR")) {atom)
:settable-instance-variables
:gettable-instance-variables
sinittable-instance-variables)

;***********************************************************

;DESCRIPTION FRAME
;—— DESCRIPTION slot type definitions

;***********************************************************

(defflavor DESCRIPTION
(value (type 'text) (name "DESCRIPTION")) (text)
:settable-instance-variables
:gettable~-instance-variables
:inittable~instance-variables)
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;***********************************************************

;QUALIFICATION FRAME
;== QUALIFICATION slot type definitions

;*****************************************k*****************

(defflavor QUALIFICATION
(value (type 'text) (name "QUALIFICATION")) (text)
:settable-instance-variables
:gettable~instance-variables
:inittable-instance-variables)

;***********************************************************

; FIRE-EFFECT-PARENT FRAME
;—— FIRE-EFFECT-PARENT slot type definitions

;***********************************************************

(defflavor FIRE-EFFECT-PARENT
(value
(type 'generated-frame-pointer)
(pointer-to 'fire-effects)
(name "FIRE EFFECT PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;***********************************************************

.; INTRODUCTION FRAME
;-— INTRODUCTION slot type definitions

;********************************************k**************

(defflavor INTRODUCTION
(value
(type 'generated-frame-pointer)
(pointer-to 'introduction)
(name "INTRODUCTION"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable—-instance-variables)
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';***************************t*******************************

; SAGEBRUSH FRAME
;=— SAGEBRUSH slot type definitions

;*********************k*************************************

(defflavor SAGEBRUSH
(value

(type 'generated-frame-pointer)

(pointer-to 'sagebrush)

(name "SAGEBRUSH"))
(generated-frame-pointer)
:settable~instance-variables
tgettable-instance-variables
tinittable-instance-variables)

{*****************************************#*****************

; SPECIES-LIST FRAME
;—— SPECIES-LIST slot type definitions

;***********************************************************

(defflavor SPECIES-LIST
(value

(type 'generated-frame-pointer-list)

(pointer-to 'species)

(name "SPECIES-LIST"))
(generated-frame-pointer-list)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;*****************************************kk***k************

; SUPERIOR-PARENT FRAME _
;—— . SUPERIOR-PARENT slot type definitions

;***********************************************************

(defflavor SUPERIOR-PARENT
(value

(type 'generated-frame-pointer)

(pointer-to 'superior)

(name "SUPERIOR PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)
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;**********************************************k**k*********

; SPECIES-INTRODUCTION FRAME
;—— SPECIES-INTRODUCTION slot type definitions

;***********************************************************

(defflavor SPECIES-INTRODUCTION
(value (type 'text) (name "SPECIES INTRODUCTION")) (text)
:settable-instance-variables
:gettable-instance-variables
:inittable-instance-variables)

;*************ﬁ*********************************************

; SAGEBRUSH-INTRODUCTION FRAME
;~— SAGEBRUSH-INTRODUCTION slot type definitions

;***********************************************************

(defflavor SAGEBRUSH-INTRODUCTION
(value
(type 'text)

(name "SAGEBRUSH INTRODUCTION"))

(text)
:settable-instance-variables
:gettable-instance-variables
:inittable—-instance-variables)

;***********************************************************

; INTRODUCTION-PARENT FRAME
;== INTRODUCTION-PARENT slot type definitions

;***********************************************************

(defflavor INTRODUCTION-PARENT
(value .
(type 'generated-frame-pointer)
(pointer-to ‘introduction)
(name "INTRODUCTION PARENT"))
(generated-frame-pointer)
:settable-instance-variables
:gettable-instance-variables
tinittable-instance-variables)
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INTERFACE FUNCTION DEFINITION

_*** The following Franz Lisp Function definition * &k
*** implements the former 'get-data-frame-slot' function #**%
*** go that it utilizes the Flavors ‘send' function and **#%
*%*% thereby provides message passage capability. * k%

(defun get-data-frame-slot (frame- pointer slot-name)
(let* ((frame-slot-value
(send (eval frame-pointer)
(£ind-symbol (string slot=-name)
*keyword-package*)))
(slot- value (cond ((and (atom frame-slot-value)
(not (symbolp frame-slot-value)))
(send frame-slot-value :value))
(t frame-slot-value))))
(cond ((null slot-value) 'no-entry)
(t slot-value))))

KNOWLEDGE BASE CONVERSION UTILITY

*** The following Franz Lisp Function definition * &k
*** provides a utility for the conversion of original #***
*** knowledge base frame structures into flavors *kk

*%* jnstances. *kk

(defun instantiate (list)
(do ((list list (cdr list)))
((null list) t)
(cond ((string= (subseq (string (car llst)) 0 2) "sp")
(set (car list) (make-instance 'species))
(let ((frame-pointer (car list))
(slot-list (get 'species/metaframe
'SLOT-LIST)))
(do ((list slot-list (cdr 1list)))
((null list) t)
(let ((slot-pointer (make- instance
(car 1list))))
(send (eval frame-pointer)

(£ind-symbol
(string (concat "set-" (car list)))
*keyword-package*)
slot-pointer)

(send slot-pointer

sset-value
(get frame-pointer (car list)))))))
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((string= (subseq (string (car list)) 0 5) "distr")
(set (car list)
(make-instance 'distribution-and-occurrence))
(let ((frame-pointer (car list))
(slot-1list
(get 'distribution-and-occurrence/metaframe
'SLOT-LIST)))
(do ((list slot-list (cdr list)))
((null list) t).
(let ((slot pointer (make-instance
(car list))))
(send (eval frame-pointer)
(find-symbol
(string (concat "set-" (car list)))
*keyword-package*)
slot-pointer)
(send slot-pointer
:set-value ,
(get frame-pointer (car list)))))))
((string= (subseq (string (car list)) 0 4) "mgmt")
(set (car list) (make-instance 'value—and-use))
(let ((frame-pointer (car list))
(slot-1list (get 'value-and-use/metaframe
'SLOT-LIST)))
(do ((list slot-list (cdr list)))
((null list) t) »
(let ((slot-pointer (make-instance
(car list))))
(send (eval frame-pointer)
(find-symbol
(string (concat "set-" (car list)))
*keyword-package*)
slot-pointer)
(send slot-pointer
:set-value
(get frame-pointer (car list))))
((string= (subseq (string (car list)) 0 3)
(set (car list)
(make-instance
‘botanical-and-ecological-characteristics))
(let ((frame-pointer (car list))
(slot-list
(get 'botanical-and-ecological-
characteristics/metaframe
'SLOT-LIST)))

)))
"bot " )
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(do ((list slot-list (ecdr 1list)))
((null list) t)
(let ((slot pointer
.(make-instance (car llSt))))
(send (eval frame-pointer)
(find-symbol
(string (concat "set-" (car list)))
*keyword-package*)
slot-pointer)
(send slot-pointer
:set-value
(get frame-pointer (car list)))))))
((string= (subseq (string (car 1list)) 0 5) "adapt")
(set (car list)
{make-instance
'fire-adaptive-traits—-and-survival-strategies))
(let ((frame-pointer (car list))
(slot-list
(get
'fire-adaptive-traits-and-survival-
strategies/metaframe
'SLOT-LIST)))
(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer
(make-instance (car list))))
(send (eval frame-pointer)
(£ind-symbol
(string (concat "set-" (car list)))
*keyword-package*) '
slot-pointer)
(send slot-pointer
:set-value ,

(get frame-pointer (car list)))))))
({string= (subseq (string (car list)) 0 3) "gfe")
(set (car list) (make-instance 'fire-effects))

(let ((frame-pointer (car list))
(slot-list
(get 'fire- effects/metaframe 'SLOT-LIST))) -
(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer
(make—-instance (car list))))
(send (eval frame-pointer)
(£Eind-symbol
(string (concat "set-" (car list})))
*keyword-package*)
slot-pointer)
(send slot-pointer
:set-value ,
(get frame-pointer (car list)))))))
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((string= (subseq (string (car list)) 0 5) "sssfe")
(set (car list)
(make-instance v
'severity-season-specific-fire-effects))
(let ((frame-pointer (car list))
(slot-1list
(get
'severity-season-specific-fire-
effects/metaframe
'SLOT-LIST))) _ ,
(do ((list slot-list (cdr list)))
((null 1list) t)
(let ((slot-pointer
(make-instance (car list))))
(send (eval frame-pointer)
(find-symbol
(string (concat "set-" (car list)))
*keyword-package*)
slot-pointer)
(send slot-pointer
:set-value _ ,
(get frame-pointer (car list)))))))
((eq (car list) 'superiorl)
(set (car list)
(make-instance 'superior))
(let ((frame-pointer (car list))
(slot-list '
(get 'superior/metaframe
'SLOT-LIST))) ,
(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer
(make-instance (car list))))
(send (eval frame-pointer)
(£ind-symbol
(string (concat "set-" (car list)))
*keyword-package*)
slot-pointer)
(send slot-pointer
:set-value
(get frame-pointer (car list)))))))
((eq (car list) 'introl)
(set (car list)
(make-instance 'introduction))
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(let ((frame-pointer (car list))
(slot=-1list
(get 'introduction/metaframe
'SLOT-LIST))) '
(do ((list slot-list (cdr list)))
((null list) t)
(let ((slot-pointer
(make-instance (car list))))
(send (eval frame-pointer)
(find-symbol o
(string (concat "set-" (car list)))
*keyword—-package*) '
slot-pointer)
(send slot-pointer
:set-value
(get frame-pointer (car list)))))))
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