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ABSTRACT 

Williams, Cynthia A., M.A., December, 1977 Botany 

Changes in a Douglas-fir (Pseudostuga menziesii (Mirbel) Franco) 
Forest as a Result of Fluoride Fumigation ( 81 pp.) 

This study was initiated to elucidate changes in plant community 
structure and composition that may occur after prolonged fluride 
fumigation of a Douglas-fir forest. The investigation was 
conducted 
in five experimental plots along a three kilometer fluoride 
gradient NNW from an aluminum reduction plant at Columbia Falls, 
Montana. Five life-form strata, tree, tall-shrub, short-shrub, 
herb, and moss layers were analyzed by use of percent cover and 
height measurements. 

Reduction in total percent cover was observed in tree, 
tall-shrub and short-shrub layers in areas closest to the fluride 
source. Conversely, high fluoride levels were associated with an 
increase in total percent cover of the two lowest strata: the 
herb and moss layers. Diversity of the lower strata was inversely 
related to the dominance of the larger growth forms. With 
increasing fluoride concentrations there was a marked decrease in 
diversity of the tree, combined shrub and moss strata, but an 
increase in herb stratum diversity. The height of 
fluoride-sensitive tall and short shrubs was suppressed in 
severely polluted plots, whereas herb layer height increased, most 
notably among the graminoids. The increase in total percent 
cover, diversity and height of the herb stratum was attri­
buted to increases in understory light intensity, soil moisture, 
niche area and fluoride resistance of graminoids and exotic 
species. Areas most exposed to chronic fluoride fumigation will 
eventually be reduced to shrub-grassland communities. 

Director: J. R. Habeck 
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Chapter 1 

INTRODUCTION 

The plant community represents an assemblage of individuals whose 

presence and organization are a result of chance, time and the selective 

forces of the environment. Since it is the highest level of biological 

organization achieved by plants, it reflects all events that have occurred 

from its inception. Major species changes in the community are initiated 

at the time of significant disturbances (Henry and Swan, 1974). The 

function of the plant community is intimately tied to its structure, i.e., 

the spacial organization of individuals forming a stand (Meuller-Dombois 

and Ellenberg, 1974). Hence, the study of the structure and composition 

of plant communities sheds light on ecosystem function and the effect of 

certain environmental events to which they have been exposed. 

Community response to perturbations is governed by the intensity 

and duration of the disturbance and the stability of the plant association 

(Cocking, 1973; Allen and Forman, 1976; Woodwell, 1970). Plant commu­

nities exposed to chronic disturbances are suspended in a state of stress, 

whereas short-lived disturbances incur damages and usually are repaired 

by secondary succession. Several studies related to plant community 

perturbation have shown that those communities exposed to chronic or 

repeated artificial disturbances exhibit reduction in structural 

complexity (Woodwell, 1970). In these communities, the pattern is one of 

elimination or diminution in height of the larger more upright forms of 

vegetation. 

1 
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Soluble fluorine is a phytotoxic element, non-essential to plant 

growth (Bidwell, 1974), to which most plant communities have had little 

exposure. In regions where fluoride pollution is a problem, plant 

communities are threatened by this source of stress. 

In 1972, approximately 150,000 metric tons of atmospheric fluoride 

were emitted from industrial sources in North America (Environmental 

Protection Agency, 1972). Steel refineries, metal smelting operations, 

brick manufacturing, phosphate fertilizer production and coal combustion 

are the largest contributors to atmospheric fluoride pollution in the 

United States (Weinstein, 1977). In view of the current U.S. legislation 

to promote coal-fired power generation, the demand for agricultural 

fertilizers and the abundance of certain metals like aluminum, the 

pervasion of fluoride as a stress on ecosystems is a pressing problem. 

Unfortunately the control of industrial by-products harmful to 

human health and continuity of ecosystem function is not a self-imposed 

phenomenon but evolves as conformance to federal and state regulations. 

Unenforceable air quality standards in Montana and legal 

variances from these standards only serve to aggravate the problem. For 

these reasons it is in our best interest to study areas where air 

pollution is a chronic, insidious disturbance. It is this type of 

artificial disturbance that is allowed to continue indefinitely. 

In 1968, Anaconda Aluminum Company was emitting 7,500 pounds of 

fluoride per day—an amount sufficient to cause rapid die-off of sensitive 

vegetation near the facility (Carlson and Dewey, 1971; Gordon, 1974). 

The vegetation in the region has been exposed to an average dosage of 

4,000 pounds of fluoride per day for twenty-one years. Average emissions 
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were 2,470 pounds of fluoride per day in 1976 (Bolstad, 1977). Such long-

term exposure to fluoride can significantly alter community structure. 

The objectives of this study were to measure and describe changes 

in Douglas-fir forest vegetation as a result of its interaction with 

hydrogen fluoride gas and fluoride particulate emissions. The study was 

conducted in the vicinity of the Anaconda Aluminum Company (AAC) reduction 

plant in Columbia Falls, northwestern Montana. 



Chapter 2 

LITERATURE REVIEW 

It has long been recognized that plant species exhibit varied 

tolerances to fluoride (Zimmerman and Hitchcock, 1967; Carlson and 

Dewey, 1971; Rhoads, 1974). Several interrelated factors contribute to 

the capacity of plants to endure long-term fluoride fumigations. These 

factors can be classified as two types: plant attributes and 

environmental attributes. 

Plant Attributes 

Genetic resistance. An important plant attribute is genetic resistance 

to fluoride. There is a paucity of scientific research dealing with the 

genetic traits which account for species tolerance to fluride, but 

several researchers have determined that resistance is, in fact, a 

genetic characteristic (Ryder, 1971; Rofmeder and von Schoenborn, 1968; 

Hepting, 1966). This discovery is based largely on the observation that 

there is great variability within species in response to fluoride 

exposure. Work with several tree species, notably Eastern white pine 

(Pinus strobus), indicates that there is enough genetic variation within 

large populations to provide biological indicators as well as resistant 

strains to specific toxicants (Berry, 1966; Robbins et al., 1973). 

There are no reports in the literature which cite conditioning or 

hardening effects in which plants become more resistant to fluoride after 

4 
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exposure to sublethal doses. Physiologists have found that in certain 

plants stress resistance can be passed on to progeny for several gener­

ations as if they were inherited (Bidwell, 1974). However, decreased vigor 

in first generation soybean (Glycine max) seedlings from seeds of fluoride-

fumigated parents has been observed (Pack, 1971). Apparently fluoride-

induced stress can be passed on to progeny. 

Growth form. Growth form is an equally significant factor determining 

susceptibility to fluoride. Knabe (1969) conducted a field study in 

which clones of plants spaced systematically from ground level to twelve 

meters in height were exposed to fluoride from an aluminum smelter. In 

all plants fluoride accumulation rose with increasing height from the 

ground. The greatest difference was between ground level and 4.3 meters, 

suggesting that reduced wind velocities might be one explanation for 

the observed differences in fluoride concentrations. In addition, Knabe 

found that exposed plants filtered more fluoride than those that were 

sheltered. Gordon et al. (1977) has repeatedly illustrated the scavenging 

properties of taller, more exposed individuals (Gordon and Tourangeau, 

1977; Tourangeau et al., 1976). The highest foliar concentrations of 

fluoride are found in the uppermost parts of the plant and on the side 

facing the pollution source (Gordon, 1976). As a result, smaller, less 

exposed individuals are less predisposed to fluoride accumulation and 

injury than are taller growth forms. 

Plants reproducing vegetatively are potentially less susceptible 

to long-term fluoride exposure. Data showing decrease in flower produc­

tion (Brewer et al., 1966), inhibition of pollen tube germination 

(van Hook, 1972; Facteau et al., 1973, Sulzbach and Pack, 1972), dwindling 
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pollinator populations (Lezovic, 1969) and reduced fruit production 

(Pack and Sulzbach, 1976; Hitchcock et al., 1963) illustrate the disadvan­

tages of the annual growth form as compared to the perennial habit. 

Leaf morphology. There are only a few reports in the literature of 

morphological adaptations of the leaf exhibiting tolerance to gaseous 

fluorides. Gaseous fluorides are believed to follow the transpirational 

stream of the leaf, entering through the stomata and migrating to the 

leaf tip and margins (Jacobson et al., 1966). Hendrix and Wall (1957) 

demonstrated that "low stomatal frequency and/or small well size were 

associated with resistant varieties whereas more sensitive varieties 

tended to possess higher stomatal frequency and/or well size." Zimmerman 

and Hitchcock (1956) found no correlation between stomatal frequency and 

fluoride resistance. Jacobson et al. (1966) presented evidence to suggest 

that fluoride injury avoidance was manifested in the ability of certain 

leaf types to relocate fluoride to inactive parts of the leaf or to 

distribute fluoride in such a way as to avoid concentrating fluoride in 

small areas. Kalanchoe daigremontiana leaves are able to move fluoride 

from the interior of the leaf towards the surface (epidermal tissues and 

cuticle). Evidence for this process was obtained by removal of fluoride 

from the surfaces of leaves of plants that had obtained fluoride exclu­

sively from the soil. Jacobson et al. (1966) also found that plants with 

pubescent leaves absorb more fluoride in dust particles that accumulate 

there than in the interior of the leaf. 

Wiebe and Poovaiah (1973) presented the most exciting hypothesis 

regarding leaf morphology and fluoride injury avoidance. They propose 

that xeromorphic leaves are relatively more resistant to fluoride. 
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In our studies the solution-grown plants were somewhat more 
succulent than soil-grown plants of the same age. They were also 
more sensitive to injury, requiring shorter fumigation times and 
lower fluoride contents to produce injury comparable to that of 
the soil-grown plants. Our soil-grown plants were watered daily, 
but this apparently was not enough to prevent some moisture stress, 
partial stomatal closure, and the development of a more xeromorphic 
structure. 

Zimmerman and Hitchcock (1956) also reported that inducing moisture stress 

in plants before exposure to fluoride (HF) rendered these individuals more 

resistant to fluoride. They do not associate this phenomenon with xero-

morphy but describe it as a "conditioning" process. Further, this 

conditioning process was not associated with decreased absorption of 

fluoride in the leaf; stomatal closure was not the mode of fluoride 

injury avoidance. 

Keller (1973) has attributed the relative resistance of conifers 

to particulate fluoride injury to the heavy cuticle on their needles. 

However, fluoride may delay the formation of epicuticular waxes on the 

lower surfaces of Abies alba needles (Bligny et al., 1973). 

Phenology. The severity of injury incurred by plants may in part be 

regulated by the stage in development of the plant (Zimmerman and 

Hitchcock, 1956). Gas chamber studies of milo maize (Sorghum sp.) reveal 

decreases in productivity when fumigated with fluoride during the period 

of tassel-shooting and anthesis (Hitchcock et al., 1963). Young emergent 

leaves appear to be most susceptible to injury and older leaves the least 

(Zimmerman and Hitchcock, 1956). Long-term exposure to fluoride may 

render the older foliage more prone to injury. This is clearly seen in 

needle pathologies of ponderosa pine (Pinus ponderosa) correlating ppm 

fluoride and exposure time to percent total needle necrosis (Tourangeau 

et al., 1977). 
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Environmental Attributes 

Physical parameters. Evidence is accumulating in support of the idea 

that changes in the nature of the abiotic environment of plants before, 

during or after exposure to fluoride may reduce or accentuate injury to 

vegetation. Rohmeder et al. (1967), after testing 7,000 resistant spruce 

(Picea sp.) shoots in greenhouse experiments, found "that the higher the 

relative humidity, the higher the light intensity, or the higher the 

assimilative intensity, the greater the damage to forest trees by 

fluoride." In gladiolus (Gladiolus sp.) leaves, necrosis was more 

pronounced at 21°C or 26°C than at 16°C, and although injury increased as 

temperature increased, fluoride accumulation decreased (Maclean and 

Schneider, 1971). Sunflower, conversely, showed no visible injury, and 

fluoride accumulation was highest at 26°C. When soybeans (Glycine max) 

are exposed to high temperatures, high light intensity or moisture stress 

after fluoride fumigation, fluoride injury is most severe (Wiebe and 

Poovaiah, 1973). In a field study, apricot trees stressed by competition 

from weeds incurred more fluoride injury than did trees grown in 

well-tended plots (Oelschlager and Moser, 1969). 

Substrate factors. Plants grown in nutrient deficient substrates or hydro-

ponic solutions may exhibit increased susceptibility to airborne fluoride 

(Maclean et al., 1976; McCune et al., 1966; Adams and Sulzbach, 1961). In 

addition, fluoride accumulated from the substrate in the root causes a reduc­

tion in nutrient assimilation (Navara and Golab, 1968). Navara (1968) also 

found that "airborne fluoride-induced alterations in the plant metabolism are 

manifested mainly by alteration of the water balance of plant tissues." The 

decrease in suction tention of the crowns of several fluoride-fumigated trees 

and shrubs has also been observed (Gottfried, 1970). 
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Accumulation rates of fluoride from the soil can be depressed with 

increased content of lime, clay and organic matter (Hansen et al., 

1958). Garber et al. (1967) found no effect on fluoride uptake from soil 

when sodium or calcium were added to potted plants. The availability of 

fluoride in the soil solution seems to be most critical to fluoride 

uptake sufficient to induce injury in the plant (Garber et al., 1967; 

Gisiger, 1964; McCune et al., 1966). 

Fluoride compounds. HF, SiF4, H2SiF6 and F2 are the gaseous and the most 

phytotoxic forms of fluoride (Weinstein, 1977). Particulate fluorides 

are less phytotoxic but will increase in toxicity with increasing 

solubility, relative humidity and water on leaf surfaces (Weinstein, 

1977; Keller, 1973). Hydrofluoric acid is another highly toxic form 

known to cause growth abnormalities, e.g., excessive lateral bud 

formation and excessive terminal stem growth (Gordon, 1972). Synergistic 

effects of HF and SO2 can render an individual more susceptible to foliar 

injury than the effect of either pollutant singly (Mandl et al., 1975). 

Fumigation history. Adams and Koppe (1959) propose, on the basis of air 

quality data collected with an automatic fluoride analyzer from 

surrounding industrial sources, that vegetation is not exposed to 

continuous fluoride fumigation in the field but rather to irregular, 

intermittent exposures. Recent evidence provided by gas chamber studies 

has revealed that intermittent fluoride exposures are less damaging to 

vegetation than low level, chronic fumigations (Maclean et al., 1969; 

Adams and Emerson, 1961). Adams and Emerson (1961) explain that "plants 

may adapt themselves to concentrations of 5 to 10 jugF~/m3 if provided a 

recovery period between each exposure." Plants exposed to intermittent 

fluoride fumigations accumulate fluoride at a faster rate than chronic 
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exposures of the same total dosage (Maclean et al., 1969). Maclean and 

Schneider (1973) reported somewhat contradictory evidence regarding 

fluoride absorption rates: "When the same HF concentration was used for 

both types of exposures, with equivalent HF doses achieved by extending 

the duration of the intermittent exposures, F accumulation was greatest 

in forage plants exposed continuously." 

Old-field plant communities subject to different regimes of SO2 

fumigation showed that "the community impact of more widely spaced SO2 

perturbations of the same intensity was greater than that of the same 

stresses occurring over a brief interval" (Cocking, 1973). These brief 

intervals between fluoride exposures were one-day time periods as 

compared to two-day intervals used by Maclean et al. (1969). Community 

response to fluoride-induced stress does not appear to be directly 

related to fluoride accumulation rates. 

Summary 

Certain postulated effects of fluoride on plant communities can be 

drawn from the literature cited above. Inherent susceptibility to 

fluoride may eliminate certain sensitive members of the community, thus 

altering species composition. Larger, more upright forms of vegetation 

are more likely to be removed first, as opposed to smaller, sheltered 

individuals. The elimination of the tree layer could have profound 

effects on the structural characteristics of the subordinate vegetation. 

The effects of microclimate, site quality and fumigation history are 

quite complex, and it is unlikely that their contribution to fluoride-

induced changes can be accurately determined in a study of community 

structure. However, the total effect of these multiple stress factors 

can be recorded. 



11 

Plant Community Structure 

Definition. Vegetation structure is defined by Dansereau (1957) as "the 

organization in space of individuals that form a stand." Three components 

of vegetation structure may be distinguished: (1) vertical structure or 

stratification into layers, (2) horizontal structure or spatial distri­

bution of species within a stratum and (3) quantitative structure or 

species abundance in the community (Meuller-Dombois and Ellenberg, 1974). 

Recently, community structure has expanded to include community attributes 

such as species diversity, species distributions, species dominance or any 

pattern of species associations (Meuller-Dombois and Ellenberg, 1974). 

In this study vegetation structure is defined as the vertical and hori­

zontal organization of individuals forming a stand to which the quanti­

tative measurements of composition, dominance and diversity may be applied. 

Changes in vegetation structure along environmental gradients. Every 

plant community has a potential climax condition dictated by climate and 

site quality (Clements, 1928). Structural complexity of a plant community 

decreases towards the environmental limits of its distribution (Whittaker, 

1965). Each stratum of vegetation within a community reacts to the 

extremes of its own environment (Zobel et al., 1976). Hence, along art ecocline 

from mesophytic forest to desert grassland, the tallest, most exposed 

strata are removed sequentially as the environmental limits of each are 

reached. Zobel et al. (1976) found that diversity within a stratum of a plant 

community is independent of the diversity of other strata, but stratum 

dominance may affect the diversity of another. Since dominant (taller) 

strata control microclimate, niche area, available soil moisture and 

nutrients of the lower strata, the role of stratum dominance along an 
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environmental gradient is one of suppression and release of subordinate 

vegetation (Whittaker, 1972). 

Changes in vegetation structure due to species removals. The elimination 

of certain groups of species or a single species from plant communities 

may significantly alter vegetation structure. The effect of species 

removal from the community depends upon species dominance, competitive 

relationships and species abundance (Allen and Forman, 1976). Of special 

significance to this study is the effect of removal of the largest or 

dominant life forms on plant community structure. Selective removal of 

trees by herbicides along utility rights-of-way produced shrub-dominated 

communities (Neiring and Goodwin, 1974). Reinvasion of the tree layer, 

suppressed for the last 15 years, was inversely related to shrub density. 

Dense shrub or grass cover was believed to resist tree seedling invasion 

due to increased competition for light, moisture and nutrients as well as 

allelopathic effects. Removal of the tallest individuals of an old-field 

community caused the greatest species response (Allen and Forman, 1976). 

Recovery from species removals was fastest in bilayered communities with 

a dense ground layer than in trilayered canopy coiranunities without a 

ground layer. There were no significant changes in plant diversity. 

Mueggler (1965) found that "tall and intermediate height shrubs 

decrease in amount as tree canopy increases," and low shrubs persist. 

When the tree layer was selectively removed by logging, most shrubs 

increased in frequency and percent cover. The height of the tall shrub 

layer was generally increased, whereas the height of the low shrub layer 

was unaffected. Frequency of herbs was reduced after logging, although 

the frequency of a few opportunist species increased dramatically. 
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Defoliation of oak (Quercus sp.) trees by gypsy moth larvae (Porthetria 

dispar) induced increased height growth and survival of understory maple 

trees (Collins, 1961). These results were explained by increased light 

intensities to the understory. 

These studies demonstrate that removal of the dominant stratum of 

the plant community: (1) increases the percent cover and height growth 

of the second dominants, (2) may indefinitely suspend succession back to 

the pretreatment community, and (3) elicits changes in structure and 

recovery rates that are related to the initial structural characteristics 

of the stand. 

Changes in vegetation structure due to long-term fluoride exposure. 

Hajduk (1969), working along vegetation transects in the vicinity 

of an aluminum smelter in Europe, found the total percent cover of 

vegetation decreased with proximity to the smelter and increased in 

fluoride concentration in vegetation. Exceptions were members of the 

herb layer. Doug!as-fir forests downwind from a phosphate plant incurred 

extensive tree kill and reduced basal area (Anderson, 1966). In areas 

most damaged by fluorides, the "herbs increased in number and the mosses 

and lichens decreased in number." 

Changes in vegetation structure due to other air pollutants. Sulfur 

dioxide from a metal smelter at Falconbrige, Ontario, has been correlated 

to significant reduction in community height, biomass production, coverage 

and diversity (Gorham and Gordon, 1960). Controlled fumigations of first 

year old-field communities with sulfur dioxide demonstrated reductions in 

biomass and changes in composition through opportunist behavior of 

resistant species (Cocking, 1973). 
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Gamma radiation experiments have shown that such a disturbance 

not only reduces plant diversity to one or two species in the "devastated 

zone," but also reduces the complexity, structure and composition of oak-

pine forests (Woodwell and Rebuck, 1970; Woodwell and Whittaker, 1968). 

The pattern is one of succession in reverse in which tree species are 

eliminated first and prostrate lichens last. 

Limestone dust accumulation in deciduous forests has been shown to 

create changes in the structure and composition of the sapling and 

seedling-shrub layers (Brandt and Rhoades, 1972). The sapling layer in 

the "dusty plot" displayed patchy distribution and had fewer representa­

tives of the dominant trees when compared to the control stand. The 

seedling layer of the polluted stand was dense and had even fewer repre­

sentatives of the dominant tree species. 

Zinc smelter emissions have severely reduced the density and 

percent cover of trees, tree seedlings, shrubs and herbs in a chestnut-oak 

forest (Jordan, 1975). Recurrent fires in this area have increased the 

stress on the plant community to the point of denudation. Zinc and 

cadmium levels in the soil were so high that only vegetatively propagating 

tree seedlings were able to reestablish themselves after fire. Jordan 

concludes that without "human intervention to ameliorate the metal 

toxicity, it is likely that the denuded areas will remain barren for 

decades or centuries to come." 

Vegetation sampling along a distance gradient extending from a 

copper smelter revealed that density, percent cover and diversity were 

inversely related to heavy metal concentrations in the soil (Wood and 

Nash III, 1976). Annual plants suffered the most severe reduction in all 

these parameters whereas perennial forbes were less affected. 
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Bryophytes and lichens are among the most sensitive plants to 

air pollution (LeBlanc and Rao, 1975). In a recent study on the effects 

of fluoride on mosses and lichens near an aluminum smelter, LeBlanc et al. 

(1971) found that fluoride pollution affects moisture balance and causes 

chlorophyll damage. In a study concerning the distribution of bryophytes 

along a sulfur dioxide gradient, species diversity decreased as pollution 

intensified and total species coverage increased (Gilbert, 1968). 

Epiphytic bryophytes and lichens are so sensitive to air pollution and 

follow such strict patterns of reduced species diversity that their 

presence is often mapped to indicate indexes of air quality (LeBlanc and 

Rao, 1975). 



Chapter 3 

THE STUDY AREA 

Location 

This investigation has been limited to a localized area at the 

base of the west slope of Teakettle Mountain (T 31 N, R 20 W, Sec 2 & 34, 

Figure 1). Damage to vegetation as a result of fluoride emissions has 

been reported as most severe in this sector (Carlson and Dewey, 1971; 

Carlson, 1972, 1974). The severity of damage was positively correlated 

to the proximity of the aluminum plant to Teakettle Mountain, the 

direction of the prevailing winds, and the nature of the physical setting 

(Carlson and Dewey, 1971; Gordon, 1974; EPA, 1973). 

Fluoride Source 

Anaconda Aluminum Co., (AAC) located at the southernmost end of 

Teakettle Mountain, was established in 1955. At that time two potlines 

were completed and operating. AAC refines aluminum ore to aluminum 

through the Hall-Heroult electrolytic reduction system. The pots are of 

the Vertical Stud Soderberg design (Montana Dept. of Health and 

Environmental Sciences, 1974). From the standpoint of emission control 

this design is least efficient. AAC, with the use of multiclones, 

venture scrubbers, and packed towers, claims a hooding efficiency of 

90%. This figure is quite high in comparison with other companies 

employing the Soderberg design (Montana Dept. of Health and Environmental 

Science, 1974). 

16 
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Of the total emissions from AAC, 90% is gaseous and 10% is 

particulate. The gaseous emissions are primarily hydrogen fluoride (HF) 

but may include carbon tetrafluoride (CF4), silicon tetrafluoride (SiF4), 

carbon disulfide (CS2), carbonyl sulfide (COS), hydrogen sulfide (H2S) 

and sulfur dioxide (SO2)• The particulate matter consists of cryolite 

(Na»AlF6)-60%, chioli te (Na5Al3F-j4)-20% and aluminum fluoride (AIF3) -

20%. Actual fluoride in particulate matter is 10-15%. Pollution control 

devices mentioned above, remove 93.3% of the gaseous fluorides and 93.7% 

of the particulate matter (Montana Dept. of Health and Environmental 

Sciences, 1974). However, these percentages are only based on a portion 

of the total emissions from AAC. Lehr (1973) reports that "a significant 

part of the emissions escape untreated into the atmosphere due to 

difficulties in locating fume hoods close enough to the Soderberg-

type eel 1." 

AAC presently emits about 2903 lb.F~/day (average for 3 quarters 

of 1977) (Bolstad, 1977). During the growing season of 1976, emissions 

were 3016 lb.F~/day (average for 1 quarter year) (Bolstad, 1977). State 

stack emission standards permit 864 lb.F"/day or 1.73 lb.F*/ton of 

aluminum produced. AAC has been granted a variance from these standards 

and is expected to be in compliance by July 31 ,  1979 ((Montana Dept. of 

Health and Environmental Sciences, 1974). In order to meet state air 

quality standards, AAC is modeling it 's aluminum reduction operations 

after the Sumitomo Soderberg Technology. Theoretically this process will 

reduce fluoride emissions to 824 lb.F"/day (Minamiura, 1976). 
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Climate 

Precipitation. Frontal systems from the Pacific Northwest have the 

greatest influence on the climate of Columbia Falls. These weather 

systems which extend over the northwest corner of the state provide 

more precipitation than is received in the rest of western Montana. 

The wettest months of the year are from November to January, and the 

driest months are August and September. Soil recharge begins in the 

fall and is completed during spring snowmelt. Mean annual precipitation 

along the base of Teakettle Mountain is approximately 76.2 cm. 

Precipitation data from Whitefish indicate that total rainfall in 1976 

was 7.6 cm higher than the mean and snowfall was 12.7 cm lower. 

Wind patterns. Wind patterns in the northern Flathead Valley are of 

two types: the upper and lower level winds (EPA, 1973). The upper 

level winds (1550 m and above) come predominantly from the southwest. 

The lower level winds move into the north end of the valley from the 

northeast at night and from the the southwest during the day. At night 

gaseous fluorides from AAC tend to migrate towards Columbia Falls and 

accumulate against the west lace of Teakettle Mountain. During the day, 

solar heating of the ground combined with the southwesterly winds will 

lift and carry gaseous fluorides towards Glacier National Park (EPA, 

1973). 

Geology and Soils 

Along the base of Teakettle Mountain the soil parent material 

is comprised of colluvial till and Quarternary Glacial Deposits (Johns, 

1970). These glacial deposits have several origins. The Cordilleran 
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ice sheet which moved down the Flathead Valley during the last glac-

iation (Wisconsin), was the major contributor (Johns, 1970). An inter-

montane glacier formed from Alpine Glaciers of the Swan and Lewis and 

Clark Ranges, and the valley glaciers of the Northfork and Middlefork 

of the Flathead River, moved westward through Badrock Canyon and over 

Teakettle Mountain to join the Cordilleran ice sheet (Flathead National 

Forest, 1976). The exact chronology of the deposits is quite complex. 

The soils along the base of Teakettle Mountain have not been 

described. Soils of the same parent material described from the Coram 

Experimental Forest, were used here to approximate soil moisture and 

soil pH characteristics. Soils derived from glacial till in the 

Coram Experimental Forest were classified in the Andeptic Cryoboralf 

subgroup. Five sandy or silty layers overlay more dense material. 

Deeper horizons are high in sand, gravel and stone. Field capacity and 

wilting point in the upper soil layers, expressed as percent moisture 

retention, are 29% and 11% respectively. Compared with other soils of 

the Coram Experimental Forest, these soils are of intermediate water 

holding capacity and are often very well drained (Klages et al., 1976; 

Martinson, 1977). Most soils in this subgroup were slightly to moder­

ately acid in the surface layers. The pH values ranged from 5.7 to 6.4. 

Vegetation and Fire History 

Fire and selective cutting have played an important role in 

shaping the present vegetation of Teakettle Mountain. In 1929, the 

Half Moon Fire swept the entire slope of Teakettle Mountain. The fire 

was reported to have consumed all forest fuels. However, standing and 

down snags of Douglas-fir and western larch remain as evidence of the 
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pre-fire vegetation. There is some indication that selective cutting 

took place on the lower slopes and along the base of the mountain before 

the 1929 fire. 

The vegetation on the west slope of Teakettle Mountain is 

diverse and variable. This mosaic of vegetation is predominantly due 

to the variable nature of the physical setting and the uneven burn 

intensities which are associated with any fire. In general, the domi­

nant tree species along the base of the mountain (970 m) are 

Pseudotsuga menziesii, Pinus contorta and Larix occidentals. Pinus 

ponderosa appears rarely and then only on well-drained sites. Thuja 

plicata occurs as small isolated stands where drainage is less favorable. 

Pseudostuga menziesii is evenly distributed along the base of the 

mountain except where Pinus contorta forms homogeneous stands to the north 

and where Larix occidental is is more prevalent to the south. Average 

tree age is 43 years. The base of Teakettle Mountain is moist, as 

evidenced by several mesic herbaceous species such as Smilacina stellata, 

S. racemosa, Thalictrum occidentale, Clintonia uniflora and Fraqaria 

virginiana. 

Teakettle Mountain may be classified as the Pseudotsuga 

menziesii/Physocarpus mal vaceous/Ph.ysocarpus malvaceous habitat type 

(Psme/Phma/Phma h.t.) (Pfister et al.,  1977). The productivity of this 

series is considered moderately high (Pfister et al.,  1977), The 

Physocarpus phase commonly contains sufficient quantity of Acer qlabrum, 

Amelanchier alnifolia and Prunus virginiana to support big game 

(Pfister et al.,  1977), In early summer, white-tailed deer, elk and 

black bear have been observed on the west slope of Teakettle Mountain. 
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Teakettle Mountain has been classified by the Forest Service as 

important winter range for deer, elk and moose (Flathead National 

Forest, 1976), 

The impact of fluorides on the vegetation of Teakettle Mountain 

has economic, biological and aesthetic importance. The reduced radial 

growth of conifers has been positively correlated to HF fumigation, as 

have secondary insect infestations on this mountain (Carlson et al.,  

1974; Carlson and Hammer, 1974). As a result of elevated fluorides in 

vegetation, deer exhibit osteofluorosis (Gordon, 1974), The loss of 

sensitive plants on Teakettle Mountain may alter the diversity and 

stability of the ecosystem. The Forest Service has designated Teakettle 

Mountain as having a potentially "high visual resource value" 

(Flathead National Forest, 1976), 



Chapter 4 

METHODS 

Fluoride Gradient Analysis 

During the first week of July, 1976, twenty-four fluoride sample 

sites were established on the west face of Teakettle Mountain. The sites 

were set up in a grid fashion so that patterns of fluoride accumulation 

in vegetation would be readily apparent. Sites were chosen to correspond 

with the protruding ridges that form the face of the mountain. The sites 

are found at three elevations (970 m, 1200 m, 1500 m) and extend from the 

southern most end of the mountain to a ridge four kilometers north from 

AAC. Efforts were made to sample areas with similar aspect and slope. 

At each site, Pseudotsuga menziesii, Amelanchier alnifolia, and 

Shepherdia canadensis were collected for fluoride analysis. Along the 

base of the mountain, Pinus contorta was also collected. Vegetation 

samples from conifers and shrubs alike were clipped from the highest 

portion of the plant and from the side facing the aluminum smelter. 

Samples were placed immediately in plastic bags and stored in a cool 

place. At each site a one-foot high red stake, bearing the site number 

was placed beneath Pseudotsuga menziesii. Conifers were marked on the 

trunk with bright orange paint. Shrubs were tagged with orange or blue 

flagging and were always located on the stand margin. 

The vegetation samples were analyzed for fluoride concentrations 

using the specific ion electrode method (Gordon, 1974). The fluoride 

content of foliage for each species was regressed with distance from the 
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aluminum smelter for the determination of a continuous fluoride gradient. 

On the basis of these analyses, a fluoride gradient for the examination 

of plant community changes was established along the base of Teakettle 

Mountain (970 m) extending NNW (azimuth 330°) from AAC (see Figure 1). 

Plant Community Analysis 

Five rectangular 500 m2  plots were set up along a three kilometer 

transect at the base of Teakettle Mountain. The experimental plot design 

is shown in Figure 2. Five life-form strata of the forest community were 

analyzed: tree layer, tall-shrub layer, short-shrub layer, herb layer 

and moss layer. Daubenmire's method for determination of canopy coverage 

was used for the evaluation of the moss and herb layers (Daubenmire, 1959). 

Percent cover of mosses was taken from thirty 1/10 m2  microplots and 

percent cover of herbs from twenty. The percentage shrub-layer cover was 

determined from five 10 m2  microplots nested within the macroplot. The 

height of all shrubs and grasses falling within a one meter radius of the 

herb layer microplots was measured to the nearest decimeter. The total 

percent cover of the tree layer was estimated from the entire 500 m2  plot. 

Each tree within the experimental plot was evaluated and put in a vigor 

class (see Appendix A). The diameter at breast height was taken from all 

stems of the tree layer greater than 5 cm in diameter. In cases where 

Acer glabrum had a stem diameter greater than 5 cm and was also taller 

than 10 meters, i t  was included in the tree layer. Segregation of trees 

into vigor classes allowed for the inclusion of living as well as dead, 

standing trees in the analysis of this stratum. 

Compositional characteristics of the forest community were drawn 

from the percent cover information. These included relative frequency and 
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diversity. Diversity of the tree stratum was recorded as species number. 

Diversity indexes were determined for the shrub, herb and moss strata. 

These indexes were calculated using MacArthur's equation (MacArthur, 1965): 
s 

d = .z  (y/n)log(y/n). 
_ i=l 

In this equation, d is a measurement of the concentration of dominance 

(Whittaker, 1965). The greater the value of dT, the greater the diversity 

and, hence, the smaller the concentration of dominance. Total percent 

cover values (using the midpoint of Daubenmire's coverage classes) were 

used as the species importance variable, y. This equation is especially 

useful when species number is low and when the appearance of a few domi­

nants is important to the evaluation of the plant community along an 

environmental gradient. 

Microclimate Analysis 

Collections of soil moisture and soil pH samples were taken along 

one transect within the macroplots (see Figure 2). Both soil moisture and 

soil pH were taken at depths of 15 cm below the mineral soil surface. 

Ten soil moisture and three soil pH samples were collected per plot. 

Soil moisture was determined gravimetrically, and soil pH was measured in 

a soil slurry with an Analytical pH Meter, Model 707 (Wilde and Voigt, 1955). 

Measurements of understory light intensity were taken at twenty 

herb layer microplots at a height of one meter from the ground. Light 

readings were recorded at midday from a planar photoelectric cell (Weston 

Illuminator Meter, Model 756) held horizontally. All physical parameters 

measured at each plot were collected within a two-hour time period. 



Chapter 5 

RESULTS 

The Fluoride Gradient 

The three-kilometer transect along the base of Teakettle Mountain, 

extending north from just behind AAC to the headwaters of Cedar Creek 

Reservoir, represents a continuous fluoride gradient. Regression analyses > 

for ppm fluoride (see Figure 3) in pseudostuga menziesii (Douglas-fir), 

Amelanchier alnifolia (serviceberry) and Shepherdia candensis (buffalo-

berry) versus distance from AAC show significant coefficient of deter­

mination values. The relationship of fluoride concentrations in vegetation 

to distance from AAC is log-linear along this transect. 

The fluoride concentrations of all samples collected on Teakettle 

Mountain in 1976 are presented in Appendix B. A topographic map in 

Appendix C shows the location and code numbers for the collection sites. 

Carlson (1972) cites 3.2 ppm fluoride as the baseline fluoride concen­

tration for vegetation in northwestern Montana. Compton et al. (1971) 

found an average of 2.9 ppm fluoride for shrub and conifer species in 

Warrenton, Washington, prior to aluminum smelter operations. The average 

fluoride level in control samples collected 12 miles south of Teakettle 

Mountain is 3.8 ppm fluoride. All fluoride concentrations in vegetation 

collected from Teakettle Mountain are significantly higher than the 

control levels. 
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Changes in Microclimate 

The means and confidence intervals at the 95% level for percent 

soil moisture and soil pH are presented in Figure 4. There is no signi­

ficant difference in percent soil moisture between plots 1 through 4. 

An approximate t-test for means with unequal variance reveals that the 

mean of percent soil moisture in plot 5 is significantly different from 

those of all other plots except plot 3. The interesting aspects of the 

mean percent soil moisture of plot 5 are its relatively low value (ca. 25% 

less) and the compressed confidence interval. The comparatively low but 

consistant readings for soil moisture in plot 5 may be a result of a 

dense, continuous overstory which limits the amount of throughfall 

precipitation to the soil surface. Such a decrease in throughfall preci­

pitation can significantly depress the herb layer (Anderson et al.,  1969). 

Soil pH shows no significant trend along the base of Teakettle 

Mountain. The sample size was too low to accurately reflect similarities 

or differences between plots. Soil pH in all plots lies within the 

neutral to slightly acidic range but is less acidic than similar soils 

from the Coram Experimental Forest. 

Regression analyses reveal that understory light intensity is 

negatively related to distance from AAC, percent cover of the tree layer 

and positively related to fluoride concentration in vegetation. Under­

story light intensity regressed with distance is shown in Figure 5. The 

coefficients of determination for these regressions are high, as is shown 

in these results: 
2 I x rf_ 

Light Intensity vs. Distance 0.8937 
Light Intensity vs. % Cover Trees 0.8067 
Light Intensity vs. F" Concentration 0.8757 
F~ Concentration vs. % Cover Trees 0.9886 
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Fluoride damage to the tree layer has evidently created openings in the 

canopy and thus has significantly increased the amount of light available 

to the understory. 

Changes in Percent Cover 

Changes in total percent cover of vegetation along the fluoride 

gradient are illustrated in Figure 6. In general, total percent cover of 

the tree stratum and combined shrub stratum increases in plots farthest 

from the fluoride source. Conversely, herb layer and moss layer percent 

cover decreases with increasing distance from the aluminum smelter. The 

shrub layer is particularly interesting in that percent cover is at or 

below 60% in plots 1 and 2, rises sharply to over 100% in plots 3 and 4, 

and then declines again to 80% in plot 5. This bimodal distribution of 

shrub cover becomes more apparent when the height and percent cover of 

individual shrubs are examined. 

Changes in Height of the Shrub Layers and Herb Layer 

Comparisons of average percent cover and mean height of tall 

shrubs are presented in Figure 7. Changes in height with respect to 

cover are generally of two types. Height of the tall shrubs may exhibit 

its own pattern along the fluoride gradient or changes in height may mimic 

changes in percent cover. The height patterns seen in Holodiscus discolor 

and Physocarpus malvaceus are of the latter type. However, the height 

of Holodiscus discolor decreases despite an increase in average percent 

cover in plot 1, closest to the aluminum smelter. Acer glabrum decreases 

in height and percent cover in plots closest to the fluoride source. 

Height continues to increase at the distal end of the gradient but the 

cover of Acer glabrum in the tall-shrub stratum decreases. Amelanchier 
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ainifolia shows no change in height along the fluoride gradient, although 

average percent cover steadily increases with proximity to the aluminum 

smelter and then drops in plot 1. 

The results of the short-shrub layer analysis, illustrated in 

Figure 8, show a marked reduction in percent cover and height with 

proximity to the aluminum smelter. Plots 1 and 2 have a severely altered 

short-shrub layer with average percent cover reduced to about 17= and 

height reduced from 0.6 meters to approximately 0.3 meters. Rosa sp. 

frequency was so low in plot 1 that an adequate height sample was 

impossible to obtain. Although there is only a slight reduction in 

height of Spiraea betulifolia, average percent cover decreases sharply 

in plots closest to AAC. Note the bimodal height - percent cover curves 

for Symphoricarpos albus. This same type of curve represents the height 

of Holodiscus discolor and the average percent cover of Amelanchier 

ainifolia and Acer glabrum. Thus, height and percent cover may be 

suppressed at both ends of the fluoride gradient. 

The graminoid response to changes along the fluoride gradient are 

shown in Figure 9. Both height and average percent cover increase with 

proximity to the fluoride source. Height appears to be a stronger 

indicator of response to changes along the fluoride gradient than is 

percent cover. Average percent cover of graminoids in plots 3 through 5 

is quite similar, whereas changes in height are more distinct. 

Changes in Species Composition Along the Fluoride Gradient 

Tree stratum. The most severely altered stratum within the Douglas-fir 

community is the tree layer. The percent mortality and percent basal 

area reduction of all tree species is shown in Figure 10. Percent 
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mortality approaches 100% in plot 1. Aerial photographs taken in 1970 

reveal that percent mortality in plot 1 was only about 8%, although 

severe fluoride damage was apparent throughout the tree layer. Most of 

the trees within this plot appeared to have died about five years ago. 

In general, percent mortality and basal area reduction follow the same 

trend, i .e., greatest mortality and basal area reduction in areas closest 

to the aluminum smelter. 

Figure 11 shows the percent of dead and living stems within three 

diameter classes for each plot. Total basal area and density per 500 m2  

plot are also tabulated. The greatest percent mortality has occurred in 

the smaller diameter classes. This is especially evident in plots 1 and 3 

where tree density is relatively high. As percent mortality decreases 

away from the fluoride source, this pattern of highest mortality in the 

smaller diameter classes persists. 

When the relative density (%) of total standing stems to living 

stems of each tree species is examined, certain trends in composition 

appear (see Figure 12). In general, deciduous members of the tree stratum 

become relatively more important closest to the aluminum smelter. There 

are no changes in deciduous tree density at the distal end of the fluroide 

gradient. Mortality of Pinus contorta reduces its relative density in 

all plots except in plot 1 where it  was not present and in plot 5. Larix 

occidental is increases in relative density in all plots but 1 and 5. 

Pseudostuga menziesii decreases in relative density in plots 1 through 3 

only. Pinus contorta and Pseudotsuga menziesii both appear more sensitive 

to fluoride fumigation than does Larix occidental is. 
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Tree regeneration. The distribution of shrub and tree seedlings along 

the fluoride gradient is shown in Table 1. Regeneration of shrubs and 

conifers is lowest in plot 1. Shrub regeneration is also least at the 

far end of the fluoride gradient in plot 5. Thus, shrub seedlings are 

suppressed at both ends of the gradient. Pseudotsuga menziesii seedlings, 

which are moderately shade-tolerant, do not appear as affected by low 

light intensities as are the shrub seedlings in plot 5. Plot 2 exhibits 

the highest tree seedling percent cover and frequency. In plots 3, 4 and 

5, tree seedling percent cover diminishes. Note the increased percent 

cover and frequency of shrub seedlings in plots 3 and 4. These values 

reflect the high total percent cover of shrubs in the same plots. 

Table 1. Distribution of shrub and tree seedlings along the 
fluoride gradient. Average percent cover/percent frequency. 

Species km 
Distance from AAC 

Species km 0.8 1.2 1.7 2.1 2.7 

Acer glabrum +/10 +/15 1/30 +/+ 
Amelanchier alnifolia +/10 +/15 1/25 2/30 +/+ 
Symphoricarpos albus +/5 4/30 
Pseudotsuga menziesii 3/70 1/40 2/60 
Pinus contorta 4/40 
Populus tremuloides +/20 

+/+ less than 0.6% average cover and frequency 
+ with frequency insufficient to be encountered in microplots 

Shrub stratum. The distribution of short and tall shrubs along the 

fluoride gradient is shown in Table 2. Shrub species exhibiting severe 

to moderate foliar fluoride injury in plots 1, 2 and 3 are marked with an 

asterisk. Note once again the sharp reduction in short-shrub percent 

cover and frequency. Plot 1 has the greatest number of species, although 

50%.of them are found in trace amounts. Trends in percent cover and 
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frequency suggest that Acer qlabrum, S.ymphoricarpos albus, Spiraea 

betulifolia and Rosa sp. are likely to be eliminated from the plant 

community. Holodiscus discolor and Physocarpus malvaceus have increased 

percent frequency in plots closest to the fluoride source, although 

average percent cover is not significantly different. It is possible 

that greater numbers of these two individuals have recently become 

established but, because of their relatively young age, show a lag in 

percent cover. 

MacArthur's diversity index for short and tall shrubs combined 

is illustrated in Figure 13. Diversity of the shrub layer is negatively 

related with proximity to the fluoride source. Shrub stratum diversity 

in plot 1 increases slightly due to the presence of Philadelphus lewisii, 

Salix sp., Ribes viscosissimum and Shepherdia canadensis. 

Table 2. Distribution of short and tall shrubs along the fluoride 
gradient. Average percent cover/percent frequency. 

Distance from AAC 
Species km 0.8 1.2 1.7 2.1 2.7 

Philadelphus lewisii +/5 
Salix sp. +/5 +/5 
Ribes viscosissimum +/5 
Shepherdia canadensis +/10 +/+ 
Holodiscus discolor 17/65 5/45 17/50 10/60 8/45 
Acer glabrum* 5/30 12/50 24/45 8/45 14/45 
Amalanchier alnifolia* 10/40 13/85 7/50 5/55 2/50 
Physocarpus malvaceus 5/60 11/30 1/10 8/10 1/10 
Prunus virginiana +/5 

Symphoricarpos albus* 2/55 7/85 48/90 24/100 12/65 
Spiraea betulifolia* +/30 1/25 15/50 10/60 22/85 
Rosa sp.* +/+ 7/55 6/20 1/40 20/90 

+/+ less than 0.6% average cover and frequency 
+ with frequency insufficient to be encountered in microplots 
* species exhibiting severe to moderate foliar fluoride injury 

in plots 1, 2 and 3 
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Figure 13. Diversity index (d) of the combined shrub layer (tall and short) 
versus distance from Anaconda Aluminum Company. 
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Herb stratum. Table 3 shows the distribution of herbaceous species in 

relation to distance from AAC. Herbaceous species exhibiting severe to 

moderate fluoride injury in plots 1, 2 and 3 are marked with an asterisk. 

The absence of a highly HF-sensitive herbaceous plants in plots close to 

AAC would be suspect of eventual elimination from the immediate vicinity. 

In general, herbaceous species do not seem threatened in this manner. 

One exception is Berberis repens which shows a steady decrease in percent 

frequency with proximity to the aluminum smelter. This evergreen 

perennial has been noted as very sensitive to fluoride by others (Carlson 

and Dewey, 1971). 

The distribution chart does show a significant species composition 

shift from plot 1 to plot 5. The distribution of graminoids shows an 

increase in species number, average percent cover and percent frequency 

in plots closest to AAC. Plots 1 and 2 also contain introduced or exotic 

species like Dactyl is glomerata, Bromus inermis, B_. tectorum, Verbascum 

thapsis, Artemisia absinthium and Cirsium arvense. Instead of a direct 

elimination of herbaceous species sensitive to fluoride, there is an 

invasion of species with higher tolerance to fluoride; these proliferate 

in disturbed areas. 

Diversity and total percent cover of herbaceous species are 

plotted in Figure 14. Diversity of the herb stratum increases at both 

ends of the fluoride gradient. The concentration of dominance among a 

few species like Linnaea boreal is and the graminoids has caused the 

observed depression of herb layer diversity in plot 1. 

Moss stratum. Bryophyte distribution along the fluoride gradient is 

shown in Table 4. Species exhibiting foliar necrosis in plots 1 and 2 
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Table 3. Herbaceous species distribution along the fluoride gradient. 
Average percent cover/percent frequency. 

Distance from AAC 
Species km 0.8 1.2 1.7 2.1 2.7 

Dactyl is glomerata * 10/40 
Poa interior +/5 
Bromus inermis 2/10 6/40 
Bromus tectorum +/+ 
Trisetum sp. +/+ 1/5 3/25 
Elymus glaucus + +/5 
Bromus vulgaris 10/30 +/+ 1/5 
Festuca occidental is 10/40 4/20 +/5 1/10 
Oryzopsis asperifolia 12/45 4/25 +/15 +/+ 3/35 
Calamagrostis rubescens +/15 12/45 3/30 +/5 1/30 

Arctostaphylos uva-ursi +/+ 

Verbascum thapsis +/+ 

Artemisia absinthinum +/+ + 

Cirsium arvense +/+ + 

Epilobium angustifolium* 3/15 + 
Aster conspicuous +/10 + 

Galium boreale 1/20 +/5 
Aster sibiricus +/5 + +/5 
Clematis columbiana* +/10 +/10 14/30 
Ozmorhiza chilensis +/5 +/10 +/5 +/5 
Berberis repens* +/+ + 2/20 4/25 2/40 
Viola adunca +/5 +/15 1/20 +/5 +/15 
Fragaria virginiana* +/+ 2/15 1/25 +/20 +/10 
Fragaria vesca* 6/30 8/35 +/5 1/10 2/25 
Smilacina stellata* +/15 5/30 12/75 1/5 +/10 
Linnaea boreal is 20/40 12/45 +/10 9/55 
Disporum hookerii* 5/15 7/30 +/5 2/25 2/10 
Smilacina racemosa* 2/15 +/+ 

Allium cernuum + +/10 
Apocynum androsaemilifolium • 1/10 
Adenocaulon bicolor 2/20 3/15 1/20 
Thalictrum occidentale +/5 
Galium triflorum +/5 
Antennaria neglecta +/5 5/10 
Arnica cordifolia +/15 2/20 +/10 
Rubus parviflorus* 1/5 7/10 
Lonicera ciliosa 7/35 +/+ 1/30 
Clintonia uniflora +/+ + 2/30 
Xerophyllum tenax +/5 +/+ 

Aralia nudicaulis* +/10 

+/+less than .6% average cover and frequency 
+ with frequency insufficient to be encountered in microplots 
* species exhibiting severe to moderate foliar fluoride injury 

in plots 1, 2 and 3 
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Figure 14. Diversity index (d) and total percent cover of the herb 
layer and moss layer versus distance from Anaconda Aluminum Company. 
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Table 4. Bryophyte distribution along the fluoride gradient 
Average percent cover/percent frequency. 

Species km 

Distance from AAC 

Species km 0.8 1.2 1.7 2.1 2.7 

Ptergynandrum fi1iforme + 
Brachythecium spp. 24/80 25/70 15/80 8/77 9/80 
Dicranum tauricum +/7 +/10 4/30 +/+ 4/40 
Drepanocladius ucinatus 

var. ucinatus +/+ +/+ +/6 2/23 + 
Auloconium androgynum* + +/+ +/+ +/+ +/10 
Polytrichum juniperinum + +/+ +/10 
Brachythecium hylotapetum 4/10 +/10 + 
Pohlia nutans* + + + +/13 
Tortula rural is +/+ +/13 2/30 +/3 
Dicranum scoparium +/6 + +/13 
Rhytidiopsis robusta +/+ + +/6 

+/+ less than .6% average cover and frequency 
+ with frequency insufficient to be encountered in microplots 
* species exhibiting severe to moderate foliar fluoride injury 

in plots 1, 2 and 3 
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attributable to fluoride are marked with an asterisk. The leaves of 

Pohlia nutans showed severe tip and marginal necrosis and only in those 

leaves near the apical portion of the stem. Auloconium androgynum and 

Polytrichum juniperinum displayed tip necrosis of the apical leaves only. 

Polytrichum juniperinum may brown at the leaf apices naturally, and 

therefore its sensitivity to fluoride is only suspect here. 

The distribution chart suggests that Auloconium androgynum, 

Pohlia nutans, Tortula rural is, Dicranum scoparium, and Rhytidiopsis 

robusta may be eliminated from areas closest to the fluoride source. 

Dicranum scoparium and Rhytidiopsis robusta do not occur in plots 1 and 

2 and are only found in trace amounts in plots 3 and 4. 

Brachythecium spp. (Brachythecium albicans and other Brachythecium 

sp. indistinguishable in the field) occurs with equal frequency along the 

fluoride gradient. However, average percent cover in plots closest to 

the aluminum smelter increases. This increase in average percent cover 

is also seen in Brachythecium hylotapetum. These species of moss occurred 

in diffuse, prostrate mats under the herb layer. Their abundance was 

especially noticeable in plot 1 where graminoids and Brachythecium spp. 

dominated the lower strata of the community. 

Diversity of the moss stratum and total percent cover are shown 

in Figure 14. Total percent cover increases closest to the fluoride 

source and diversity decreases. The concentration of dominance of the 

moss stratum in plot 1 is due to the loss of certain sensitive members 

and the proliferation of Brachythecium spp. 



Chapter 6 

DISCUSSION 

In a gradient analysis of this type, where there is more than one 

physical parameter under consideration, the delineation of cause-effect 

relationships is not a simple matter. Of interest in this investigation 

is the separation of the direct effects of fluoride on the Douglas-fir 

community from fluoride-induced indirect effects like understory light 

intensity and soil moisture. A further consideration is the effect of 

compositional characteristics particular to each stand on observed 

community changes along the fluoride gradient. The ensuing discussion 

will attempt to evaluate all of these factors. 

Tree Stratum Response 

The loss of sensitive members of the tree layer is the most 

critical direct effect of fluoride fumigation on the Douglas-fir forest 

community. Of all five strata in the community, reduction in percent 

cover of the tree layer occurs first and is most significant. Their 

relative sensitivity to fluoride is related to several factors. The 

growth form contributes most to the susceptibility of trees to fluoride. 

Conifers are inherently more sensitive to fluorides than are broadleaved 

trees (Carlson and Dewey, 1971; Gordon, 1974). Trees are the tallest 

individuals in the forest community and therefore scavenge the greatest 

amounts of fluoride (Knabe, 1969; Gordon, 1976; Gordon et al.,  1977). 

The dominant growth forms are also exposed to greater extremes of the 

50 
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environment: full sunlight, higher wind speeds, rapid changes in temper­

ature and evapotranspirational stress, whereas plants below the forest 

canopy exist in a moderated microenvironment, less subject to rapid 

changes or extremes. These environmental factors could become critical 

in fluoride-damaged trees or in trees with significant fluoride accumu­

lation in foliage. Certain changes in microclimate which occur after 

exposure to fluoride, such as high light intensity (Rohmeder et al.,  1967), 

increased temperatures and moisture stress, increase the severity of 

injury due to fluoride (Wiebe and Poovaiah, 1973). 

A more fundamental characteristic of the tree stratum is the 

critical ratio of respiring to photosynthetic tissue. Large growth forms 

have a greater proportion of respiring, living support tissue to photo-

synthetic tissue than smaller plants. Any defoliating agent has a greater 

physiological impact on trees than on shrubs or herbs since the balance 

of photosynthesis to respiring tissue becomes unfavorable. Woodwell (1970) 

uses this principle to explain, in part, the extreme sensitivity of trees 

to chronic gamma irradiation. The impact of fluoride on the respiration/ 

photosynthesis imbalance may be compounded by two things. Fluoride is 

known to increase bark respiration and decrease photosynthesis in trees 

(McLaughlin and Barnes, 1975). As certain trees succumb to fluoride 

injury, the forest stand is thinned and openings result. The decrease in 

percent cover and tree density in plots closest to AAC attest to this 

fact. When stands of trees are mechanically thinned, codominant or 

suppressed individuals of the tree layer may experience severe respiration/ 

photosynthesis imbalances (Smith, 1962; Staebler, 1956). This is due to 

increased respiration rates related to elevated temperatures inherent in 

stand openings (Staebler, 1956). In severe cases, these trees may 
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eventually succumb. Furthermore, when stands are mechanically or other­

wise thinned, trees which had formerly nourished the unthrifty through 

root grafts may be lost (Smith, 1962). 

Greatest percent mortality in experimental plots along the 

fluoride gradient were found in the smaller diameter classes. This trend 

was most marked in plots 1 and 3 where stand density was highest. In the 

absence of fluoride, mortality of the shorter, suppressed individuals of 

the tree stratum gradually occurs over a period of time. In fluoride 

fumigated stands, taller individuals might be prone to mortality first, 

simply because of exposure. Apparently this is not entirely true along 

the base of Teakettle Mountain. Mortality of the smaller-diameter classes 

has occurred within the last five years (1971-76). It is possible that 

the combined effects of stress from competition for moisture, nutrients 

and light; respiration/photosynthesis imbalances incurred by "fluoride-

thinning," and loss of root graft relationships may render the smaller 

individuals more susceptible to mortality due to fluoride. 

The drastic nature of tree stratum mortality in plot 1 (96%), as 

compared to other plots along the fluoride gradient, attest to the 

influence of high tree density and continuous fluoride fumigation on the 

severity of injury. Plot 1 is in the prevailing wind patterns and is 

only 0.8 km from AAC. The investigator experienced nausea and a burning 

sensation of nose and throat every day that she worked in plot 1. Plot 1 

has probably been exposed to chronic fluoride fumigation since the 

beginning of plant operations in 1955. Continuous fluoride exposures 

have been shown to be more detrimental to plants than intermittent fumi­

gations (Adams and Emerson, 1961; Maclean et al.,  1969). The predominance 

of trees in smaller diameter classes in plot 1, as compared to those in 
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plot 3 which has similar tree density, suggests that fluoride has contri­

buted to decreased radial growth of Pseudotsuga menziesii and Larix 

occidental is for several years. Decreased radial growth due to fluorides 

has been observed by Treshow (1967) in ]?. menziesii and by Carlson and 

Hammer (1974) in Pinus contorta. The sudden death of trees since 1970 

is undoubtedly also associated with acute fumigation episodes from the 

increased fluoride emissions of 7,500 lbs F"/day in 1969 and 1970, 

subsequent to completion of the fifth potline in 1968. 

Tree Stratum Regeneration 

In areas closest to AAC i t  is improbable that conifer seedlings 

will survive. As soon as they reach a height which is above the shrub 

layer in open areas, they are exposed to ambient fluoride concentrations 

which cause terminal and lateral dieback of the uppermost branches. 

This was observed by the author on several occasions, along the base of 

Teakettle Mountain as well as the west slope at higher elevations. Some 

conifer seedlings exhibit a relative resistance to fluoride in areas 

(0.7 km from AAC) closest to the fluoride source. They have assumed a 

short shrublike appearance with evidence of successive dieback of the 

terminal shoot. Although not particularly sheltered, needle necrosis 

was minimal or absent in these individuals. Dwarfism of trees near 

fluoride-emitting industries has been reported by Gottfried and Kisser 

(1967). 

If fluoride emissions are significantly reduced or abated entirely 

in the near future, present conifer regeneration in disturbed communities 

along the fluoride gradient may indicate future trends. Removal of the 
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forest canopy by logging or thinning practices has shown that conifer 

regeneration is best on clearcuts and is positively related to low tree 

density in thinned stands (Walker and Johnson, 1975). Adequate light, 

moist surface soils and moderate temperatures are among the most important 

factors contributing to successful seedling germination (Cochran, 1973). 

Thinning (Dahms, 1973; Orr, 1968; Herring, 1970; Anderson, et al.,  1969) 

and clearcutting (Herring, 1970) practices increase soil moisture. Clear-

cuts with a thin layer of vegetation have a higher daytime soil temperatures 

and lower nighttime soil temperatures than forested stands (Gary, 1968). 

Concomitant with stand openings is increased light intensities to the 

understory vegetation (Anderson et al, 1969). Light has been shown to be 

more important to conifer seedling survival under the forest canopy than 

soil moisture (Kramer et al.,  1952). Interesting to Kramer's (1952) data 

was the fact that conifers have a higher percent survival at the forest 

margin than in the open. 

In northwestern Montana, Pinus contorta and Larix occidental is 

are fire dependent species which require seed release from cones and a 

mineral seed bed, respectively, for successful establishment (Larsen, 

1929; Habeck, 1968). Pseudotsuga menziesii may germinate on bare soil or 

seed in any time after the establishment of these two species, provided 

light is not too limiting (Habeck, 1968). 

There is no indication of Larix occidental is regeneration along 

the fluoride gradient. One would expect greatest seedling frequency in 

plots closest to AAC where the forest canopy has been adequately thinned. 

In plot 1, conifer seedlings are absent. This could be due to the high 

total percent cover of herbs in this plot. Inhibition of tree seedling 

establishment has been correlated with high shrub and herb densities 
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(Neiring and Goodwin, 1974). Such exclusion of tree regeneration has 

lasted 15 years with no indication of reversal. Competition for moisture, 

nutrients and niche space can be limiting in such circumstances. 

Emmingham and Waring (1973) found maximum leader elongation in Douglas-fir 

in open, bare areas with little competing vegetation. Baret (1970), 

working with Pinus ponderosa, found that diameter and height growth of 

saplings were reduced by 40 percent by understory vegetation. In plot 2, 

percent cover of Pseudotsuga menziesii and Pinus contorta seedlings is 

highest. Canopy openings, increased light intensity, decreased fluoride 

exposure and reduced herb cover in plot 2 probably contribute to these 

observations. Percent cover of conifer seedlings diminishes as understory 

light intensity decreases away from the fluoride source. 

Shrub Stratum Response 

Light and fluoride fumigation intensity are the most important 

factors responsible for changes in height of tall and short shrubs. Take 

for example Acer glabrum (see Figure 7). A. glabrum is an arborescent 

shrub capable of attaining heights that reach the lower limits of the 

tree stratum (about 10 meters). A. glabrum decreases in height when the 

forest canopy is opened (Mueggler, 1965). The complete loss of the tree 

layer by logging, in the absence of fluoride fumigation, causes a 35% 

decrease in height of A. glabrum (Mueggler, 1965). In plot 1, whose tree 

layer is virtually absent, the height of A. glabrum has decreased by 63%. 

This shrub also assumes a dense, bushy form when the tree canopy is 

removed (Mueggler, 1965). The average percent cover of this shrub in 

plot 1 is less than 5%~the lowest average percent cover of all experi­

mental plots. This shrub exhibited extreme to severe foliar necrosis 
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and terminal-lateral branch dieback in plot 1. Necrosis of terminal buds 

was observed frequently on Acer glabrum and Amelanchier alnifolia. 

Gordon (1974) reported elevated fluoride accumulation in terminal buds of 

shrubs in the vicinity of AAC. Fluoride directly diminishes the height 

and percent cover of certain shrubs by necrosis of foliage and terminal 

buds. Indirectly, fluoride may decrease the height of A. glabrum by 

opening the forest canopy. The effect of fluoride on the quality and 

quantity of winter range and its significance to big game is an aspect 

which deserves attention in the future. 

Amelanchier alnifolia also demonstrates the effect of fluoride 

emissions on height. This shrub increases in height in response to 

increased light (Mueggler, 1965). Its height is suppressed by fluoride 

fumigation in plots closest to AAC and by insufficient light intensity in 

plots at the distal end of the gradient. Hence, the straight line graph 

shown in Figure 7 represents height along the fluoride gradient. Percent 

cover appears less sensitive to the effects of fluoride than height, but 

trends in percent cover are mediated by patterns in percent frequency 

(see Table 2). Despite the decrease in height of A. alnifolia in plot 1, 

average percent cover also decreases. Any possible attempt to increase 

percent cover in response to height loss, is repressed by exposure to 

fluoride. Height has been considered an indication of plant vigor 

(Heady, 1957). The observed depression of height and percent cover of 

A. glabrum and Amelanchier alnifolia strengthens a hypothesis which can 

be drawn from distribution charts—that these shrubs will eventually be 

eliminated from the plant community. 

The height of short shrubs is static when the forest canopy 

is opened (Mueggler, 1965). The height of all short shrubs decreased with 
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proximity to the fluoride source. Symphoricarpos albus height is 

suppressed by fluoride in plots closest to AAC and by low understory 

light intensities in plot 5. Since the tall shrubs are the largest 

members of the plant community in plot 1, one would expect short shrubs 

to be less susceptible to fluoride. Rosa spp., S. albus and Spiraea 

betulifolia all exhibited severe foliar necrosis in plots closest to AAC. 

It is possible that fluoride combined with competition from the herb 

layer decreases the relative success of these individuals, despite their 

strata! position in the community. Apparently sensitivity to fluoride is 

not simply a function of stature. 

Herb Stratum Response 

The marked increase in total percent cover of the herb stratum in 

plots 1 and 2 is due to the increased frequency of several graminoids and 

introduced weeds. When canopy cover decreases, increases in understory 

light intensity, throughfall precipitation and niche area stimulate 

understory herbaceous vegetation (Anderson et al.,  1969). In addition, 

throughfall precipitation was more important than light to herbaceous 

response. Percent soil moisture (an indirect measurement of throughfall 

precipitation) in the upper soil layer is highest in plots 1 through 4 

and lowest in plot 5. Understory light intensity, however, is signifi­

cantly correlated with canopy cover. The linear relationship of graminoid 

height with distance from AAC shown in Figure 9 attests to the importance 

of light to the response of the herb stratum in the experimental plots. 

Throughfall precipitation is probably highest in plot 1, but this is not 

reflected in soil moisture readings. This may be due to the evapotranspi-

rational demand of the herb layer. 
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Shade-intolerant weeds indicate the degree of disturbance in plots 

1 and 2, suggesting once again the importance of understory light 

intensity. Mueller-Dombois (1965) found, in the cut-over and burned 

stands of the coastal Douglas-fir and western hemlock zones, all species 

characteristic to the undisturbed forest associations. But species 

numbers were greater "due to a number of weed species that had invaded 

after logging." He also points out that "these shade-intolerant weeds 

were rather ubiquitous in relation to moisture regime differences as their 

major controlling factor was light." Herbaceous species distribution 

(Table 3) along the fluoride gradient suggests that shade-tolerant species 

common in plot 5 may be partially displaced in disturbed plots by 

graminoids and introduced weeds. This contradiction to the results 

reported by Mueller-Dombois (1965) may be due to the relative fluoride 

resistance of graminoids and exotic species. Certainly, the herb stratum 

as a whole is responding to increases in understory light intensity, soil 

moisture and the additional space, a result of fluoride-induced tree 

mortality. 

The relative fluoride resistance exhibited by the herb stratum is 

likely due to its low stature, inherent resistance to fluoride and 

perennial growth form. In general, the height of herbaceous plants 

affords them protection from fluoride exposure. However, certain grami­

noids and introduced weed species attain heights equal to that achieved 

by the tall-shrub layer, the tallest individuals in plot 1. Verbascum 

thapsis and Bromus inermis are good examples. These individuals showed 

no signs of foliar necrosis attributable to fluoride. Vegetative propa­

gation from underground parts, characteristic of all herbs found in plots 

1 and 2 (except Bromus tectorum), has been shown to be an advantage over 
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annual growth form in polluted areas (Jordon, 1975; Wood and Nash III, 

1976). The exception to these generalities is Berberis repens, a perennial 

evergreen with low stature but high relative sensitivity to fluoride. 

Inherent resistance to fluoride appears to be the most important factor 

controlling plant response to fluoride. 

Moss Stratum Response 

Although the number of bryophyte genera encountered along the 

base of Teakettle Mountain is low, the kind and number of genera found in 

the Pseudotsuga/Physocarpus association of eastern Washington, bears 

remarkable similarity to those found in this study (Cooke, 1955). The 

observed reduction in moss species diversity with proximity to AAC may be 

the result of four factors: (1) inherent fluoride sensitivity, 

(2) increases in herbaceous plant litter, (3) increases in herbaceous 

density and (4) changes in the microhabitat of the moss layer. Mosses 

tend to suffer more from an intolerance of dead plant debris than from 

shading by herbaceous cover (Briggs, 1965; Bard, 1965). As density of 

herbaceous vegetation increased in old-field secondary succession, there 

was an increase in trailing mat growth forms and a decrease in tufted 

forms (Bard, 1965). Pohlia nutans (tuft) was an exception (Bard, 1965). 

Mueller-Dombois (1965) found that mosses were markedly reduced in distri­

bution in cut over stands. He attributes this to the dessicating micro­

climate of logged areas and the disruptive nature of invading weed 

species. To date this is the first study reporting the fluoride sensi­

tivity of terrestrial bryophytes in forest ecosystems of the northwest. 

Pohlia nutans and Auloconium androgynum were the only bryophytes along 

the fluoride gradient which exhibited foliar necrosis attributable to 
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fluoride (injury symptoms after Comeau and LeBlanc, 1972). Their distri­

bution along the fluoride gradient is too erratic to conclude that fluoride 

has induced the observed disparity of their occurrence in this area. 

Pohlia nutans is suspect of elimination since it  has been reported else­

where as a major component of grassland habitats (Bard, 1965) but is 

found only in trace amounts along the fluoride gradient excluding plot 5. 

Brachythecium spp., a mat-forming bryophyte, is most abundant in 

areas with high herb cover—plots 1 and 2. The absence of Tortula rural is 

and Dicraunum scoparium (erect tufts) and Rhytidiopsis robusta (wefts or 

erect mats) in plots closest to AAC is worthy of note. Although fluoride 

necrosis was not observed in these species, i t  is possible that they are 

sensitive to fluoride because of their stature. 

Interesting to the bryophyte distribution along the base of 

Teakettle Mountain is the increase in total percent cover and decrease in 

diversity with proximity to the aluminum smelter. This is the identical 

trend described by Gilbert (1968) in the vicinity of a sulfur dioxide 

polluting source. The increase in percent cover and the increase in the 

concentration of dominance of the moss stratum is due to the opportunist 

behavior of Brachythecium spp. in plots 1 and 2. 

Trends in Diversity 

With increasing fluoride concentrations, there is a marked decrease 

in diversity of the tree, combined shrub and moss strata, but an increase 

in herb stratum diversity. It appears that diversity of the lower 

strata is inversely related to dominance of the larger growth forms. With 

fluoride-induced reduction in tree and shrub cover, there was an increase 

in herb stratum diversity. With an increase in herb stratum dominance in 
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plots closest to AAC, there was a radical reduction in bryophte 

diversity. Zobel et al.,  (1976), in a structural analysis of forest 

communities of the central western Cascades of Oregon, contends that the 

pattern of diversity within a single stratum varies in a manner 

unrelated to the diversity of other strata, but herbaceous diversity is 

related to the coverage of shrubs and trees. 



Chapter 7 

CONCLUSIONS 

Fumigation of the forest community along the base of Teakettle 

Mountain has initiated a chain of structural changes which begins with 

the mortality of the tree stratum. The degree to which the tree layer 

was altered determined to the greatest extent the relative abundance of 

species in the understory strata. The increase in understory light 

intensity was significantly correlated with openings in the forest 

canopy and appeared more important than soil moisture in controlling 

understory response. When the height, average percent cover and percent 

frequency of the understory strata were evaluated, inherent 

susceptibility to fluoride was more reliable than stratal position in 

predicting sensitivity to fluoride. 

The susceptibility of the tree stratum to fluoride can be 

attributed to several factors: height and related accumulation rates of 

fluoride, exposure to extremes of the ambient environment, and the 

delicate ratio of respiring to photosynthetic tissue. The 

susceptibility of trees to ambient phytotoxins is not an uncommon 

observation (Sinclair, 1969; Woodwell, 1970). Plant community studies 

show that trees are more sensitive to sulfur dioxide (Gorham and Gordon, 

1960; Wood and Nash III, 1976; Sheffer and Hedgcock, 1955; van Haut and 

Stratmann, 1970), oxidants (particularly ozone) (Taylor, 1973), 

fluorides (Anderson, 1966; Hajduk, 1963; Adams et al.,  1952), and gamma 

irradiation (Woodwell and Whittaker, 1968) than other smaller growth 

forms. 

62 
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The selective removal of certain trees from forest communities is 

often a widespread phenomenon in the vicinity of polluting industries 

(Gorham and Gordon, 1960; Gordon, 1976, Carlson and Dewey, 1971). As a 

consequence, alterations in the subordinate strata in forest communities 

can be expected to occur to an extent proportional to the degree of 

defoliation or mortality of the forest canopy. Openings in the forest 

canopy often create increased tree regeneration, stimulate shrub and 

herbaceous growth, and increase the total diversity of the subordinate 

strata. In areas closest to AAC this was not the case. Coniferous tree 

regeneration was impaired by fluoride damage and competition from the 

herb layer. The height and percent cover of fluoride sensitive shrubs 

has diminished under open canopies. Diversity of the combined shrub 

strata (tall and short) and the moss stratum has decreased in severely 

polluted plots. Furthermore, certain understory species are suspect of 

eventual elimination from the Douglas-fir community, either directly due 

to fluoride sensitivity or indirectly either by competitive exclusion 

or the unsuitability of the altered habitat. 

In principle, the observed changes in vegetation structure along 

the fluoride gradient, NNW of AAC, are quite similar to the modifications 

which occur along natural environmental gradients. Structural complexity 

of plant communities decreases towards the limits of their distribution 

(Whittaker, 1972). Plot 1, closest to AAC, has been reduced from a 

Douglas-fir forest to a shrub-grassland community. It is evident that 

this five-layered forest community containing tree, tall-shrub, short-

shrub, herb and moss layers will be simplified to a community consisting 

of three strata: tall-shrub, herb and moss layers. Each stratum of 

vegetation within a community responds to the controlling factors of its 
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own environment (Zobel et al.,  1976). Along the fluoride gradient, diversity 

of the lower strata is inversely related to the dominance of the larger 

growth forms. However, removal of fluoride sensitive species from areas 

closest to the fluoride source, regardless of stratal position, demon­

strates the individualistic behavior of plants within the community 

(Gleason, 1926). The fluoride resistance of exotic or weedy species in 

plots 1 and 2 supports the hypothesis that hardy individuals adapted to 

environmental extremes are likely to be resistant to artificial distur­

bances (Brayton and Woodwell, 1966). Plants dominating severe environ­

ments often are low in stature and have underground reproductive parts 

(Mueller-Dombois, 1974). The dominance of vegetatively reproducing shrubs 

and herbs in areas closest to AAC is a modification of the Douglas-fir 

forest which enhances the stability of the community. The fluoride-

induced decrease in height of tall shrubs and the suppression of tree 

regeneration, contribute further stability to the shrub-grassland 

community. 

In the event of significant reductions of fluoride emissions from 

AAC or the abatement to near zero pollution, the return of severely 

altered Douglas-fir communities back to prefumigation state will require 

an additional disturbance such as fire. Any attempts by forest managers 

to reseed conifers in areas where conifer mortality has approached 80% to 

100% would be futile. Whether in the presence or the absence of fluoride 

pollution, measures should be taken to suppress the herbaceous vegetation 

that is so well established in severely polluted areas. Such practices 

should ameliorate conifer seedling regeneration. 



Chapter 8 

SUMMARY 

This study was initiated to elucidate changes in plant community 

structure and composition that may occur after prolonged fluoride fumi­

gation of a Douglas-fir forest in northwestern Montana. The investigation 

was conducted in five experimental plots along a three kilometer fluoride 

gradient, NNW from the Anaconda Aluminum Company reduction plant in 

Columbia Falls, Montana. Five life-form strata, tree, tall-shrub, short-

shrub, herb, and moss layers were analyzed by use of percent cover and 

height measurements. 

Of all five strata within the Douglas-fir community, reduction in 

total percent cover of the tree layer occurred first and was most signi­

ficant. Within the tree layer, Pseudotsuga menziesii and Pinus contorta 

were more sensitive to fluoride fumigation than Larix occidental is. Of 

these species, mortality was greatest in the smaller diameter classes. 

The degree to which the tree stratum was altered determined to 

the greatest extent the relative abundance of species in the understory 

strata. Reduction in total percent cover was observed in the tall-shrub 

and short-shrub layers in areas closest to the fluoride source. 

Conversely, high fluoride levels were associated with an increase in 

total percent cover of the herb layer and the moss layer. The height of 

fluoride-sensitive tall shrubs and short shrubs decreased with proximity 

to the fluoride source, whereas herb layer height increased, most notably 

among the graminoids. When foliar fluoride injury, height, total percent 
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cover and percent frequency of the short-shrub layer was analyzed, i t  

became apparent that this layer would be eliminated from plant communities 

closest to AAC. Other species in the herb and moss layers may be lost to 

areas closest to the fluoride source. This suggests that inherent 

susceptibility to fluoride is more reliable than stratal position in 

predicting sensitivity to fluoride fumigation among understory species. 

Diversity of the lower strata of the forest community was 

inversely related to the dominance of the larger growth forms. With 

increasing fluoride concentrations, there was a marked decrease in 

diversity of the tree, combined shrub and moss strata, but an increase in 

herb stratum diversity. 

The increase in total percent cover, diversity and height of the 

herb stratum was attributed to increases in understory light intensity, 

soil moisture, niche area and fluoride resistance of graminoids and 

exotic species. The dominance of the herb stratum and the sensitivity 

of conifer seedlings to fluorides has prevented successful conifer 

regeneration in severely altered Douglas-fir communities and in areas 

closest to AAC. 

Areas most exposed to elevated levels of chronic fluoride fumi­

gation will eventually become reduced to trilayered shrub-grassland 

communities. The decrease in stature and the inhibition of conifer 

reestablishment imparts stability to this altered forest community. 
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APPENDIX A 
CONIFER VIGOR CLASSIFICATION 

VIGOR CLASS POINT RANGE ESTIMATED % CANOPY COVER LOSS DESCRIPTIONS 

1 0 0 
- Normal to vigorous 
- No signs of past or present needle 

necrosis, dieback or insect disease 

2 1 - 8 20% 
- Needle tip burn and light necrosis 
- > 4 yr. needle retnetion 
- Lateral dieback on less than 25% branches 

3 9 - 1 4  30% 
- Needle burn & necrosis moderate to 

heavy 
- Tree unthrifty (< 4 yr. needle reten­

tion) 
- Partial lateral dieback 

4 15 - 22 50% - Class 3 plus/or Crown dieback with 
moderate lateral dieback 

5 23 - 30 75% - Class 3 plus/or Crown & Lateral dieback 
- Only living material is found close to 

tree trunk 

6 31 - 40 95% 
- Whole Needles Necrotic over all of tree 
- Needle Retention 1 - 0 yrs. 
- Lateral dieback 
- Crown dieback 

Standing Skeleton - (40 Points) 



APPENDIX B 
FLUORIDE CONCENTRATIONS IN VEGETATION FROM TEAKETTLE MOUNTAIN 

Site 
No. 

Elevation 
(ft.) 

Plant 
Species 

ppm Fluoride 
Months Exposure 

2 14 26 38 
Site 

No. 
Elevation 

(ft.) 
Plant 

Species 2 

ppm Fluoride 
Months Exposure 

14 26 38 

2A 5080 D.f.l 
A.a 2 
S.c.3 

56.9 
249.7 
134.8 

130.0 187.4 231.0 2B 4190 D.f. 
A.a. 
S.c. 

95.5 
544.0 
258.2 

221.2 314.5 384.6 

3A 5010 D.f. 
A.a. 
S.c. 

42.4 
207.9 
216.1 

90.3 142.9 192.5 3B 4120 D.f. 
A.a. 
S.c. 

401.8 
390.6 

— — — 

5A 5040 D.f. 
A.a. 
S.c. 

49.8 
305.8 
307.3 

224.6 311.9 426.9 58 4180 D.f. 
A.a. 
S.c. 

426.0 
586.3 

— — — 

6A 4960 D.f. 
A.a. 
S.c. 

57.4 
370.0 
282.2 

216.9 365.7 461.3 6B 4280 D.f. 
A.a. 
S.c. 

78.8 
607.1 
378.7 

242.7 437.0 534.3 

7A 4800 D.f. 
A.a. 
S.c. 

42.9 
355.9 
126.0 

93.9 235.6 250.3 7B 4040 D.f. 
A.a. 
S.c. 

50.0 
395.1 
308.5 

145.1 275.7 417.1 

8A 4760 D.f. 
A.a. 
S.c. 

18.1 
130.5 
191.0 

109.9 155.1 212.8 8B 4080 D.f. 
A.a. 
S.c. 

30.1 
183.8 
136.1 

59.9 119.7 142.5 

9A 4880 D.f. 
A.a. 
S.c. 

23.6 
105.1 
88.2 

65.6 96.0 155.1 9B 4120 D.f. 
A.a. 
S.c. 

28.2 
77.8 
42.1 

45.3 73.9 

UA 4720 D.f. 
A.a. 
S.c. 

16.3 
45.0 
72.7 

45.9 63.4 77.4 11B 3920 D.f. 
A.a. 
S.c. 

77.1 
70.2 

39.7 59.5 78.0 

Control 
A 

D.f. 
A.a. 
S.c. 

2.9 
3.6 

2.4 7.2 Control 
B 

D.f. 
A.a 
S.c. 

3.5 
5.7 
3.3 

1.9 4.3 3.6 



'ppm Fluoride ppm Fluoride 
Site Elevation Plant Months Exposure Site Elevation Plant Months Exposure 
Nc. (ft.) Species 2 14 26 38 No. (ft.) Species 2 14 26 38 

Control 3240 D.f./, 2.2 2.8 3.3 5.2 6C 3200 D.f. 53.7 165.0 205.5 221.7 
C P.c.* 3.5 2.5 2.4 a P.c.- 30.7 65.0 152.0 a 

A.a., 1.4 A.a.5 296.5 
A.a.6 5.7 A.a.f 154.5 
S.c .| 5.1 S.c 5 205.6 
S.c.6 4.9 S.c.6 175.4 

1C 3200 D.f. 26.5 93.5 177.7 184.6 7C 3220 D.f. 32.3 78.2 143.9 155.1 
P.c. — — — — P.c. 19.1 90.2 128.0 a 
A.a. 95.8 A.a.5 153.2 
S.c. 91.7 A.a 6 116.7 

S.c.5 186.7 
2C 3200 D.f. 94.2 311.5 480.6 591.7 S.c.6 151.7 

P.c. 46.4 185.3 343.8 368.2 
A.a.® 564.6 8C 3280 D.f. 36.5 54.6 85.4 86.8 
A.a.® 823.5 P.C. 10.8 54.1 84.4 b 
s .c. 5 382.2 A.a. 79.6 
S.c.6 373.3 S.c. 79.3 

3C 3200 D.f. 146.7 451.6 750.0 826.2 9C 3300 D.f. 11.7 24.7 38.0 40.2 
P.c. 52.4 269.6 a a P.c. 8.9 20.3 43.3 66.6 
A.a 5 1122.1 A.a. 28.2 
A.a 6 833.0 S.c. 27.0 
S.c S 903.9 
S.c.6 442.9 11C 3350 D.f. 20.9 40.9 95.8 83.8 

P.c. 22.6 52.0 81.5 b 
5C 3220 D.f. — — — — A.a. 65.6 

P.c. 62.1 167.2 380.4 a S.c. — 

A.a. 559.7 
S.c. 819.8 

"j • Pseudostuga menziesii Mirbel (Franco) Douglas fir 5. 
2* AmelancTvTeF alnifolia Nutt. (Service berry) 6. 

Shepherdia canadensis (L.) Nutt. (Buffalo berry) a. 
4. Pinus. contorta var. latifolia Engelm. (Lodgepole pine)b. 

Sampled in the open. 
Sampled 20 feet into the stand of trees. 
Insufficient needle retention. 
Needle minor infestation and insufficient 
needle retention. 



APPENDIX C 

Teaket t le  Mountain s tudy area f luoride sample s i tes .  Let ters  A 
through C represent  ver t ical  e levat ion.  Numbers  1 through 11 
represent  dis tance from the aluminum plant .  

FNFJ y\J 

G J ^31731 

Aluminum 

pur 
''Substation N QRTHERjy 

?*Coukelley 
\i ' -

80 



C-2.  Control  s tudy area f luoride sample s i tes .  

JO/6 joie 
\Lake fz.S 

3/ 
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