
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

1990 

Using a classifier system to simulate a Turing machine Using a classifier system to simulate a Turing machine 

Reine Hilton 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Hilton, Reine, "Using a classifier system to simulate a Turing machine" (1990). Graduate Student Theses, 
Dissertations, & Professional Papers. 8149. 
https://scholarworks.umt.edu/etd/8149 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267576087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8149?utm_source=scholarworks.umt.edu%2Fetd%2F8149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


I
Maureen and Mike 

MANSFIELD LIBRARY
Copying allowed as provided under provisions 

of the Fair Use Section of the U.S.
COPYRIGHT LAW, 1976.

Any copying for commercial purposes 
or financM gain may be undertaken only 

with the author’s written consent.
University ofMontana



USING A CLASSIFIER SYSTEM TO SIMULATE A TURING MACHINE

By

Reine Hilton

B. S., Marietta College, 1964 

M. S., Rutgers University, 1966

P resen ted  in partial fulfillment of the requirements

for the degree  of

Master of Science

University of Montana

1 9 9 0

Approved by

Chairman, Board of Examiners

►ean, Graduate SchotJT

Date



UMI Number: EP38950

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Ois»attation Publishing

UMI EP38950
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United S tates Code

Proj(̂ ^st
ProQuest LLC.

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor, Ml 48106- 1346



Hilton, Reine, M.S., November, 1990 Computer
S c ien ce

Using A Classifier System To Simulate A Turing Machine(51 pp.) 

Director; Aiden H. Wright [ / ' ' }  I

c u  ( / i / w
O ne of the most important models o t  computation is the Turing 

machine. This model forms the bas is  for the formal definition of 
an algorithm - any computation tha t  can  b e  d e sc r ib ed  a s  an 
algorithm can be  performed by a  Turing machine, and vice versa. A 
Turing m a c h in e  c a n  b e  d e s ig n e d  to perfo rm  c o m p l ic a te d  
computations.  Unrestricted gram m ars  and p-recurs ive  functions are  
two additional models of computation that have been  shown to have 
the sam e  computational powers a s  a  Turing machine.

A classifier system  is a  special form of a  production system, a 
ru le-based  system  where  a  working memory is m atched aga ins t  a  
se t  of rules. One of the matched rules Is chosen  to fire resulting in 
the working memory to be changed. The classifier system  also u ses  
with a  working memory and a  se t  of rules. In this ca se ,  all matched 
rules fire, resulting in a  new working memory. Both sys tem s can be 
used  to perform calculations.

The goal of this paper is to show that the computational powers of 
a  classifier system are the sam e a s  those  of a  Turing machine. This 
is done  by showing that the se t  of u - re c u rs iv e  functions and  a  
classifier sys tem  are  computationally equivalent.

11



Table of Contents

A b s t r a c t ........................................ ............................................................................ i i
Table of Conten ts ................................................................................................... i i i
List Of Figures.............................................................................................................. i v
A c k n o w le d g m e n ts ..................................................................................................v
1. Introduction....................................................................................................... 1
2. Abstract Models Of Computation........................................................................ 4

2.1 Introduction..........................................................................................4
2.2 Turing Machines........................................................................................4
2.3 G ram m ars ...............................................................................................6
2.4 u-recursive Functions ......................................................................7
2.5 Equivalence Of The Three Models....................................................... 1 0

3. Classifier S y s te m ........................................................................................... 12
3.1. Introduction........................................................................................ 1 2
3.2. Production S y s tem ...........................................................................12
3.3. Holland's Classifier S y s te m ........................................................ 13
3.4. Modified Classifier S y s te m ......................................................... 18

4. Simulation Of A Turing Machine By A Classifier System.......................20
4.1. Introduction........................................................................................ 20
4.2. T heorem ................................................................................................ 20
4.3. M essage Length and Representation.......................................... 20
4.4. Types of ru les .....................................................................................23
4.5. Initial functions.........................................................................................24

4.5.1. Zero function............................................................................. 2 4
4.5.2. Projection function...................................................................25
4.5.3. Successor function.................................................................. 25

4.6. Composition....................................................................................... 2 6
4.7. Examples.................................................................................................. 2 6
4.8. Primitive recurs ion ......................................................................... 29

4.8.1. Example.................................................................................3 3
4.9. Unbounded Minimalization of Regular Functions................... 3 6
4.10. Operations on Non-Initial Functions ......................................3 8
4.11. S um m ary ............................................................................................ 4 7

5. Conclusion......................................................................................................... 4 8
References................................................................................................................... 5 0

111



List Of Figures

Figure 4-1: Parse Tree of the Function m u l t .................................................. 41
Figure 4-2: Graphical Representation ofComposition ............................  44
Figure 4-3: Graphical Representation of Primitive Recursion ........ 45
Figure 4-4: Graphical Representation of Unbounded

Minimalization.................................................................................. 46

IV



Acknowledgm ents  

I would like to thank the following:
My advisor, Dr. Alden Wright for his help and inspiration.
The other m em bers  of my committee, Dr. William Ballard and 

Dr. Ronald Wilson, for their guidance.
The University of Montana Computer Science Department and 

faculty m em bers  for their academic, and personal support.
My family for their patience.



Chapter 1 
Introduction

Turing m ach in es  form much of the  b a s i s  for theore tica l  

com puter  sc ience .  They can  be des igned  to perform complicated 

computations.  Instead of thinking of th e s e  com putations a s  being 

perform ed by a  m achine ,  o n e  can  can  think of them a s  the 

manipulation of strings by g ram m ars  or a s  the  computation of u -

recursive functions defined on the natural num bers .  All of th e se  

a p p r o a c h e s  have  b ee n  shown to be  computationally equivalent.  

(Lewis and Papadimitriou, 1981)

A classif ier  sys tem  (Holland, 1986) is an o th e r  model of 

computation. The purpose of this paper  is to show that a  classifier 

system has  the s am e  computational power a s  a  Turing Machine. A 

classifier sys tem  can  be written a s  an algorithmic language .  If 

something can be expressed  as  an algorithm, then it can be computed 

by a  Turing machine. This paper will show that given any y -recu rs ive

function, it can be computed  by a  classifier system. Since Turing 

m achines  and u-recurs ive  functions are  computationally equivalent,

a  classifier sys tem  will have the s a m e  computational power a s  a 

Turing machine.

The u-recurs ive  functions are  defined on the natural numbers. 

The idea is that there  a re  som e  very simple functions called the 

initial functions that  a re  cons idered  to be com putable .  O ne  such 

function is the su cc esso r  function. We can  expand the computable 

functions by combining th ese  simple functions in certain ways such

1



a s  by composition. T hese  new functions a re  also considered  to be 

computable, since they can  be obtained from the initial functions by 

simple combinations. In this manner the se t  of computable functions 

is built, giving us the se t  of u - re cu rs iv e  functions, which a re  the

o n es  that have been shown to be equivalent to the computation by 

Turing machines.

Production systems (Davis and King, 1977) have been used for 

expert  sy s tem s  and a s  psychological models. A production system  

consis ts  of production rules called productions, a  working memory, 

and a  control structure consisting of a  simple loop. The productions 

are  condition-action constructs.  Those  productions w hose  condition 

part m atches patterns in the working memory are said to be enabled. 

The control structure picks one of the enabled  rules for execution. 

The firing of this rule c a u s e s  the working memory to be  modified. 

The loop then repeats  until there are  no more m atches  between the 

rules and working memory.

A classifier system is similar to a  production system. It also 

con s is ts  of rules called classifiers, a  working memory called a 

m e s s a g e  list, and  a  control structure. The classifier sys tem  also 

works by a  simple loop where the condition part of the classifiers 

are  matched aga ins t  the m e ssa g e  list. In this case ,  however, every 

match ca u se s  a  m essag e  to be sent  to a  new m essag e  list. This new 

m e s s a g e  list now b e c o m e s  the  working memory and  the  loop 

con t inues .

The m e s s a g e  list of the classifier sys tem  con s is ts  of fixed 

length strings, called m essages ,  over a  fixed alphabet . The m essag e  

list itself Is unbounded. The p -recu rs ive  functions have  the natural



numbers a s  their domain and range. There is no upper bound on the 

size of the natural numbers. In order to represent  a  natural number n 

by m e ssa g e s  of fixed length, a  m essag e  will be repeated n times.

The p  - recurs ive  functions an d  the  c lass i f ie r  sy s te m  a re

m odels  of computation. In this p ap e r  I will show that  a  Turing 

machine can  be simulated by a  particular type of classifier system. 

To do this I will show that given any y -recursive function it can  be

com puted  by the classifier sys tem  p resen ted .  I will p re sen t  the 

rules that  are  n ec es sa ry  to com pute  the initial functions and will 

also show how to construct the rules for the combinations of these  

functions to p roduce  the  y - recurs ive  functions.  S ince  the  y -

r e c u r s iv e  fu n c t io n s  an d  Turing m a c h in e s  h a v e  th e  s a m e  

computational powers, this will show that a  classifier sys tem  and a  

Turing machine are  also equivalent in their computational power.



Chapter 2 

Abstract Models Of Computation

2.1 introduction

There  a re  many models  of computation. This c h a p te r  will 

describe three of them:

1. Turing Machines

2. Grammars

3. l i - recurs ive  functions.

T h e s e  th ree  m odels  have  b een  shown to be  com putationally  

equ iva len t .

2.2 Turing Machines

This section will describe a  Turing Machine both generally and 

formally in reference to functions. A Turing machine cons is ts  of a  

finite control unit, a  tape, and a  head  that can  be used  to read 

symbols from the tape or to change the symbols on the tape. At each 

step, the symbol at the head is read from the tape  and, according to 

the current s tate  of the finite control unit, the symbol is changed  or 

the head  is moved one square  to the left or to the right. The control 

unit Is also put into a  new state. The tape  is bounded to the left, but 

is infinite in the  direction to the right. The input to the  Turing 

machine is inscribed on the left end of the tape with the rest of the 

tape  containing the blank symbol #. A special s ta te ,  h, called the 

halt  s t a t e  signals the end  of the computation. For more information 

about Turing machines s e e  Lewis and Papadimitriou, 1981.



A Turing machine, M = (K, Z, & , s), thus, consists  of a  set  of 

s ta te s  K, an a lphabet  Z consisting of the s e t  of symbols that are

allowable on the tap e  including the blank symbol #, a  transition 
function ^ tha t  d e sc r ib e s  the action and  the next s ta te  of the

machine depending on the current s ta te  and the symbol at the head, 

and a  special state, s, called the start state. The Turing machine 

begins execution with the initial input on the left end  of the tape 

and the finite control unit in the start s tate .  A co n f ig u ra t io n  of 

the Turing machine shows the s ta tus  of the finite control unit, the 

location of the head,  and the tape 's  inscription at that particular 

moment, rep resen ted  a s  a  4-tuple. The first entry is the current

state,  followed by the tap e ’s inscription to the left of the head, then

the tape  symbol at the head, and finally the tape 's  inscription to the 

right of the head. If the tape ’s  inscription is empty, it is denoted  by 

the  em pty  str ing e. If o n e  configura t ion  p ro d u c e s  a n o th e r  

configuration a s  the result of a  single move then we say  that the 

first configuration yields the second  configuration in one step. If 

a  configuration p roduces  the configuration Cg in zero or more 

s teps,  then is said to yield Cg This is denoted by |-* Cg

A Turing machine can be thought of a s  computing functions. If 

Zq and Z^ are  alphabets not containing the blank symbol #, and f is a  

function from Zq* to Z / ,  then the Turing machine M = (K, Z  ̂ 6 ,  s) is 

said to compute f if Z q and Z., a re  su b se ts  of Z and for every w in

Z q*, there is a  u = f(w) in Z^* such that

(s, w, #, e) I-* (h, u, #. e).



This s a y s  that if M is s tar ted  with w on its ta p e  then it will 

eventually halt leaving u on the tape. If such a  Turing machine M 

exists, then f is said to be T u r i n g - c o m p u t a b l e

2.3 Grammars
Every Turing machine can be simulated by a  grammar, G = (V, Z, 

R, S). A g r a m m a r  consis ts  of an a lphabet  V, a  su b se t  Z of the 

a lp h ab e t  called the t e r m i n a l  s y m b o l s ,  a  se t  R of r u l e s  t h a t  

opera te  on the strings of the grammar to produce different strings 

in the gram m ar by replacing a  substring assoc ia ted  with the left- 

hand side of a  rule by the corresponding right-hand side of that rule, 

and an e lement S of the alphabet called the s t a r t  s y m b o l  that is 

not a  terminal symbol. Given a  string u in the grammar, if the

su ccess iv e  applications of rules produce the string v then this is 
denoted by u =» * v.

We can talk about functions being computed by grammars. The 

function f is said to be g r a m m a t i c a l l y  c o m p u t a b l e  if and only if 
there  is a  gramm ar G = (V, Z, R, S), subse ts  Z q and Z^ of Z n o t  

containing #, and strings x, y. x \  y* in V* such that for any w in Z q* 

and u in Z /

f(w) = u

if and  only if
xwy * x'uy'.

That is, grammar G computes the function f if there are two pairs of 

strings in the alphabet V such that from any w in Z q * su rrounded  by

the first pair of strings, the grammar will yield a string consisting 

of the value of f(w) surrounded by the second pair of strings.



Note that f is defined for strings in an arbitrary alphabet.  

T h e s e  definitions can  be applied to functions from N to N , the 

natural numbers, by using som e fixed symbol I that is not the blank 

symbol and by representing the natural number n by the string I" 

Then the function f : N —» N is said to be Turing computable or 

grammatically computable if the function f  : { ! } * —> { I } *  defined 

by f( l  Turing com putable  or grammatically computable,

respectively. It can be  shown that every Turing-computable function 

from s t r in g s  to s t r ing s  or from n u m b e rs  to n u m b e rs  is 

grammatically computable and vice versa.

2.4 u-recursive Functions

There  a re  certain simple functions defined on the natural 

numbers that can be regarded a s  computable. These simple functions 

a re  called  the  initial functions. We can  com bine  th e s e  initial 

functions by composition and  primitive recursion to form other 

functions called the primitive recursive functions that will also be 

computable. Then by a  method called unbounded minimalization on 
regular functions, we can obtain the se t  of functions called the u -

recursive functions.
The rest of this section will lead up to the definition of a  u -

recursive function. A function is k - p l a c e  if it is a  function from 

to N for som e k > 0. The in i t ia l  f u n c t i o n s  consis t  of three

types of functions that are  considered to be computable. They are 

the  following:

1) The 0-place z e ro  f u n c t io n  C is a  function from to N such 

t h a t



8

C( ) = 0.
2) The p r o j e c t i o n  f u n c t i o n s  are k-place functions where k 

> 1 and 1 < I < k such that

7cj (n^ , 2̂* • • • #n̂ ) ~ nj

We will denote the the sequence  n^, ng, . . . .n,  ̂ by n.

3} The s u c c e s s o r  fu n c t io n  a  is a  1-place function such that 

a(n) = n + 1

T h e s e  initial functions can  be  com bined  by the  two following 

m ethods:
1) If t > 0, k > 0, g is an t-place function and h , ,  . . . , h, are  k- 

place functions, then we can define f to be the k-place function such 

that for every h in

f(ïD = g(hi(r$ ht(n)).

Then f is said to be obtained from g, h^ h,by c o m p o s i t i o n .

2) If k > 0, g is a  k-place function, and h is a  (k + 2)-place 

function, then

we can define f to be the (k + 1 )-place function such that for every n 

e Nk

f(r\0) = g(h) 

and for every he and m e N,

f (h  m + 1) = h(n, m, f(r\ m)).

Then f is said to be obtained from g and h by p r im it ive  r e c u r s io n .

A function that is either an initial function or can  be obtained 

by the initial functions by applying som e  se q u e n c e  of composition 

and primitive recursion is said to be p r im i t iv e  r e c u r s i v e .

The  following a re  s o m e  e x a m p le s  of primitive recursive  

functions (Lewis and Papadimitriou, 1981).



1) The function N —» N defined by o^(n) = n + 2 is primitive

recursive by the use of composition. Here k = t = 1 and g = h  ̂ =

a .  Therefore, o^(n) = g(h^(n)) = a(a(n)).

2) The function Og : —► N defined by Og(n^, ng, n^) = n^ + 1 is
primitive recursive by composition since Og(ni, ng, n^) = a ( 7c^(n^, ng,

Ha))-

3) The function plus(n^, ng) « n  ̂ + ng is primitive recursive since 
it is obtained from g = jcj and h * 0 3  by primitive recursion.

plus(n, 0) = 7cJ(n)

plus(n, m 4- 1) = Og(n, m, plus(n, m))

Another slightly  more com plicated  exam ple is the 
multiplication function, mult : —► N, defined by mult(n, m) = nm.

The function mult is obtained from g = Kq and  h by primitive 
recursion, where h is defined by composition of plus, and 7t  ̂a n d  7c|.

The function Kq is the 1-place cons tan t  function w hose  value is

always zero. This gives the following definition:
mult(n, 0) = Ko(n)

mult(n, m + 1) = h(n, m, mult(n, m))

w h e re

Ko(n) = CO
h(x, y, z) -  plus(jt^(x, y, z), «^(x, y, z)).

In other words,

mult(n, 0) = 0

mult(n, m + 1) = n + mult(n, m).

In order to define the p - re c u rs iv e  functions,  a  few more 

definitions are  needed. If k > 0 and g is a  (k + 1)-place function, then



10

the u n b o u n d e d  m in im a l iz a t io n  of g is the k-place function f 

defined such that for any he
r

the sm a l l e s t  m such that g (n ,  m) = 0 if s u c h
J an m ex i s t s ;f(rv = \

< 0 otherwise

This definition a s s u re s  that f is defined everywhere. The function f 

is then written a s

= |im[g(n m) = 0].

The function g Is said to be r e g u la r  if and only if for every ne

there exists an m such that g(r\ m) = 0.

A function is said to be y - r e c u r s i v e  if and only if it can be
obta ined  from the  initial functions C, a n d  o  by the  following

opera t ions :

com posi t ion ;  

primitive recursion;

unbounded minimalization of regular functions.

2.5 Equivalence Of The Three Models

It can  be shown that every grammatically computable function 
from strings to strings or from numbers to numbers is u - r e c u r s i v e .  

Then it can be shown that every u - re cu rs iv e  function is Turing- 

com putab le .  Therefore  the re  a re  th ree  equivalent  definitions of 

computability for functions defined on N:

1) Turing machines

2) grammars

3) u - recu rs iv e  functions.



11

Since the y - r e c u r s iv e  functions are  exactly the  functions that are 

Turing-computable (Lewis and Papadimitriou, 1981, Chapter  5), we 

may use  this equivalence of Turing machines to show that a  Turing 

machine can  be simulated by the classifier system.



Chapter 3 

Classifier System

3.1. Introduction

Since a  classifier system is similar to a  production system, I 

will first d e sc r ib e  what a  production sy s tem  is. The following 

sec t ion  will d i s c u s s  Holland 's  c lass if ie r  sy s tem .  Then  I will 

describe the classifier system used in this paper.

3.2. Production System

A classifier sys tem  is similar to the ru le-based  production 

system s (Davis and King, 1977) used in expert systems. A production 

system consists  of a  se t  of production rules, a  working memory, and 

a  recogn ize -ac t  control cycle (Luger and  Stubblefie ld ,1989). A 

p r o d u c t i o n  ru le ,  or p r o d u c t i o n ,  cons is ts  of a  condition-action 

pair. The condition part of the rule Is a  collection of symbols that 

de term ines  when that rule may be applied to the situation being 

cons idered .  The action part def ines  the result obtained by the 

execution of the rule. The w o rk in g  m e m o ry  contains a  description 

of the current s ta te  of the world for the particular problem. This 

description is in the form of a  collection of symbols called patterns. 

The actions of production rules are  specifically designed to alter the 

co n ten ts  of working memory. The r e c o g n l z e - a c t  c y c l e  is the 

control s tructure  for the  production system . Working memory is 

initialized to the patterns  that  represen t  a  description of the start 

of the problem. The patterns in working memory are matched against 

the conditions of the production rules. This produces a  subse t  of the

1 2



13

productions, called the co n f l ic t  s e t ,  containing those  productions 

w h o s e  conditions match the  pa t te rns  in working memory. The 

productions in the conflict se t  are said to be e n a b l e d .  One of the 

productions in the conflict se t  is then se lec ted  by a  c o n f l i c t  

r e s o l u t i o n  s t r a t e g y .  The production th us  s e le c te d  is fired, 

meaning that the  action part  of that rule Is executed .  This may 

result in the contents  of working memory being changed. The control 

cycle starts over again using the modified working memory. When no 

rule can  be found whose conditions are  matched by the contents of 

working memory, the process  terminates .

3.3. Holland’s Classifier System

A classifier system is a  rule-based system where the working 

memory is represen ted  by fixed length m e s s a g e s .  The production 

rules are  called c l a s s i f i e r s .  Since I am not aware  of a  formal 

definition of a  c lass if ier  sys tem , I will p r e s e n t  the  informal 

definition used by John H. Holland (Holland, 1986), and will then 

d iscuss  where my system differs from Holland's classifier system.

In general,  the execution of a  classifier system consists  of a  

s imple loop. The classif iers  a c c e s s  the curren t  m e s s a g e  list, 

de te rm in ing  if their condit ions  a re  sa t is f ied .  If a  c lass if ier 's  

conditions are  satisfied, then that classifier becom es  active and it 

produces a  new m essag e  which is added to a  new m e ssa g e  list. All 

active classifiers fire at the s a m e  time. After all active classifiers 

have fired, the new m essag e  list becom es  the current m essag e  list, 

and  the loop s tarts  over again. The satisfaction of a  classifier 's  

condition is d e te rm ined  by a  s im ple  matching opera t ion .  All



14

input/output is through m essag e s  to the m essag e  list. This m essage  

list is global in nature» thus allowing for tagging and  similar 

techn iques  that can  be used to couple classifiers and to force a  

predetermined order of execution.

A m essage  is a  fixed length string of length k over an fixed 

alphabet.  The a lphabet  is usually taken to be the se t  {0, 1}. The 

m e ssa g e s  a re  kept on a  m essag e  list which can be unbounded. The 

rules act on these  m essag es  producing a  new m essage  list.

The rules or c la s s i f ie rs  are  condition-action pairs .  The 

condition consists of a  string of length k over the alphabet {0, 1, #}. 

For a  c lass if ie r  to b ec o m e  active, the  condition part  of the

classifier must match a  m e s sa g e  on the m e s s a g e  list. A match is 

obtained if each 0 and 1 in the condition m atches the corresponding 

bit in the m essag e  exactly. The symbol # in the condition can match 

either a  0 or a  1. An active classifier produces a  m essag e  that is put 

on a  new m e s s a g e  list. The action part of the classifier is also 

specified a s  a  string of length k over the alphabet {0, 1, #}. Here the 

# has  a  different meaning than the # in the condition part. Here it is 

a  pass-  through symbol. Whenever a  # occurs in the action part, the 

corresponding bit in the m e s s a g e  satisfying the condition part is

passed  through to the new m essage  that is produced.

Consider the following example. Suppose  k, the fixed length of 

each  m essage ,  is taken to be 3. A classifier with a condition of #00

and  an action of 11# will match either the m e s s a g e  000 or the

m e ssa g e  100 and in either c a s e  will produce the m essag e  110. The 

notation #00 —* 11# is used to specify this classifier.



15

A classifier  can  be  genera l ized  to allow for an  arbitrary 

num ber of conditions. In this ca se ,  each  condition is a  string of 

length k over the alphabet {0, 1, #}. The conditions are  separa ted  by 

commas. For the classifier to becom e active, each  of the conditions 

must be matched by som e m essag e  on the m essag e  list. The action 

part of the classifier is still specified by a  single string of length k 

over the symbols {0, 1, #}. The # symbol corresponds to the bit in 

the m e s s a g e  that satisfies the first condition of the classifier.

Consider the above example, expanded for multiple conditions. 

S up po se  the classifier now is:

101 , #00  1 1 # .

For this classifier to becom e active, the m e ss a g e  list will have to 

contain the m essag e  101 and either the m essage  000 or the m essage

100. In either ca se  the result will be the m essage  111. The # in the 

second condition can match either a  0 or a  1. The # in the action will 

match the second 1 in the first condition.

The use of multiple conditions allows for compound conditions 

to be represented . The AND expression is obtained by the use of 

multiple conditions. The OR condition can be obtained by the use of 

multiple c lassifiers .  For exam ple ,  to e x p re s s  tha t  if both the 

conditions and Mg are satisfied then the result is M, we use  the

c l a s s i f i e r :

Ml, Mg — *  M.

If we want either M̂  or Mg to produce the m e ssa g e  M, then we will 

need  the two classifiers:

M̂  —► M 

Mg —> M.



1 6

Holland ex te n d s  the  notation by allowing s tr ings  in the 

condition to be  prefixed by a  minus sign. This signifies that the 

condition is not satisfied by any m e ssa g e  on the m e ssa g e  list. For 

exam ple ,  the  condition and not Mg can be obtained by the

following c lass if ier ;

M l, -Mg —► M.

For this classifier to become active, the m essag e  list would have to 
contain the m essag e  M^, and no m essage  of the form Mg.

One, many, or all the classifiers can be active at the sam e

time. S ince  each  active classifier p roduces  a  m e s s a g e  on the 

m e s s a g e  list, there  is no conflict resolution problem. All active

classif iers  fire. The more active classifiers  there  are ,  the  more

m e ssa g e s  there will be on the m essage  list.

Expanding the  abo v e  exam ple  aga in  by adding an o the r  

classifier, we can obtain the following classifiers:

101. #00 1 1 #

1#0 000 .

If the m essag e  list contained the following m essag es :

101 , 100

then both classifiers  becom e active and fire producing the  new 

m e s s a g e  list:

111, 000.

If the original m e ssa g e  list were:

101 , 100 , 000

then the  first classifier would fire twice, o nce  for each  possible 

match, and  the  s e c o n d  classifier will fire once ,  producing the 

following new m e s s a g e  list:



1 7

111 , 111 , 000 .

Using the  ab o v e  definitions, Holland def ines  the classifier 

sys tem  a s  follows:

"A classifier system consists  of a  list of classifiers {C^, C2 , - .

. , Cp}, a  m e s s a g e  list, an input interface, and an output interface.

The basic cycle of this system proceeds a s  follows:

1. Place all m e s s a g e s  from the input Interface on the current

m e ssa g e  

list.

2. Compare all m essag es  to all conditions and record all matches.

3. For each match generate a  m essage for the new m essage  list.

4. Replace the current m essage  list by the new m essag e  list.

5. P rocess  the new m essage  list through the output interface to 

produce

system output.

6. Return to step 1."

Therefore, to define a  classifier system, the input m e s sa g e s  

an d  the  c lass i f ie rs .  Including both th e  cond i t ions  and  the  

corresponding  actions,  have to be  defined. Recodings,  tha t  is, 

changing the prefix of an input m essag e  by an active classifier while 

the rest of the mes^&ge is left unchanged, and using # in appropriate 

p laces  can reduce the  number of classifiers that a  sys tem  needs.  

Considering the above example again, the use  of the # symbol in the 

c l a s s i f i e r

1#0 000

eliminates the need  for the following two classifiers to represen t  

what this one  classifier represents:



1 8

100  -►  000 

110 000 .

3.4. Modified Classifier System

The sys tem  that  I u se  is a  modified version of Holland's 

classifier system. It consis ts  of a  m e s s a g e  list, classifiers, and an 

inference engine or control structure. The m e ssa g e  list, which can 

be unbounded, contains fixed length m e ssa g e s  over the alphabet {0, 

1}. The classifiers  consis t  of a  condition part, which can  have 

sev e ra l  condit ions,  a long with an action part,  the  two being 
sep a ra ted  by the symbol —» . The classifiers are  over the alphabet

{0, 1, #}. The inference engine  is a  simple loop. For multiple 

conditions where there is a  # symbol in the action part, I let the # 

correspond to the m e ssa g e  that m atches  the last condition in the 

condition list (see example below). For the rules that I produce, this 

allows the first condition to be the most general  condition, thus 

separating  the classifiers into groups by the first condition of the 

condition list. In Holland's classifier sys tem , there  Is one  new 

m e s s a g e  produced for each  match between  a  classifier and  the 

m e ssa g e  list. In the classifier system that I use, there will be  three 

types  of classifiers which will produce new m e s s a g e s  in different 

ways. T h ese  types of classifiers are  explained in more detail in the 

next section. The classifiers in my system all have conditions that 

must match the m e s s a g e  list in order for them to becom e active. 

That is, my system d oes  not use  the minus sign to signal when a 

match is not present. Matches are made only when a  m essag e  on the 

m e s sa g e  list is present.

Considering the last example again, the classifiers are:



1 9

101 , #00  1 1 #

1#0 000 .

If the m e ssa g e  list was:

101 , 100 , 000

then th e  first classifier would fire twice, once  for each  possible 

match, and  the  second  classifier would fire once, producing the 

following new m e s s a g e  list:

110 , 110 , 000 .

Note that the # in the action part of the first classifier corresponds 

to the second 0 in the last condition of the condition part.

Holland s ta te s  that the recodings allow the system  to 

carry out arbitrary computations. By this he m eans  that any function 

that can take a  m essage  a s  input and produce a  m essag e  a s  output 

can be  computed by a  classifier system. This does  not mean that the 

classifier system can compute a  function in the Turing computable 

s e n s e .  Turing com putab le  functions a re  defined over an infinite 

sp ac e  such a s  the se t  of natural numbers or the se t  of all strings 

over an alphabet, w hereas  a  function from m essag e s  to m essag es  Is 

over a  finite domain. This p ap e r  will show that  the  classifier 

system can compute a  function in the Turing computable sense .  When 

a function is Turing computable, a  Turing machine exists that can be 

used  to compute f. This Turing machine has  an unbounded random 

a c c e s s  memory since the tape  is unbounded. The classifier system 

do es  not have a  unbounded random ac c e s s  memory. But what it does  

have is an unbounded m essag e  list. I will show how this unbounded 

fixed-length memory list can be used a s  an unbounded random access  

memory.



Chapter 4 

Simulation Of A Turing Machine By A Classifier System

4.1. Introduction

This chap te r  contains the proof that  a  classifier system has 

the s a m e  computational power a s  a  Turing machine. The proof 
proceeds  by showing that any u-recursive function can be computed

by a  classifier system. Recall that a  function is p -recursive if it 
can  be  obtained from the initial functions and  o by the

application of the following operations: 

composition; 

primitive recursion;

unbounded minimalization to regular functions.

To accomplish this, it is necessary  to show how the initial functions 

and the above operations can be represented by a  classifier system.

4.2. Theorem
Given a  p -recurs ive  function, f, there  is a  classifier system 

which com putes  f. The precise  definition of the classifier sys tem  

will be given below.

4.3. M essage Length and Representation

We may a ssu m e  the given p-recursive function f is a  k - p l a c e  

function; I.e., f : —» N for som e k > 0. The a lphabe t  for the

classifiers consis ts  of the se t  { 0, 1, # }. To represen t  an input 

num ber to the function f, unary notation will be used .  Since the

2 0



21

m e s s a g e  length is fixed and an integer can be arbitrarily large, the 

integer m will not be represented  a s  an input m e s s a g e  with m Vs 

but will be represented a s  m input m essag e s  each having a value of 

1. But f will have k input values, one for each place. It Is necessary  

to distinguish between the different input values. To do this the 

input m e s s a g e  will be divided into three fields. The first field will 

consis t  of a  code  referring to the current point or s tag e  of the 

computation of the function f. The second field is a  sequence  number 

referring to the  place in the seq u e n ce  n that the digit refers to. 

Considering f to be a  k-place function, its input, n, s tands  for the

s e q u e n c e  n.,, ng n, .̂ The sequence  number will have at least k

digits, one for each  place. If the input value being considered is n, 

then the corresponding seq u en ce  number will have a  1 in the i ĥ 

position or place of the second field and O’s e lsewhere.  The third 

field is the actual digit or bit for that sequence .  The number 0 will 

be represented  by a  0 in the bit position of the input m essage .  The 

number m will be represented by m input m essages ,  each having a  1

in the bit position. A # in the bit position will represent either a  0

o r a l .
Given a  function f that is -recursive, we know that it can be 

obtained from the initial functions by using composition, primitive 

recursion, and unbounded  minimalization of regular functions. The 

function f can therefore be written a s  a  se q u e n c e  of functions that 

will be applied in order to the input sequence  Ti We can think of the 

function f then a s  the sequence  F^p2  - - . where each F|will be one

of the  initial functions or on e  of the operations allowed on the

initial or subsequently obtained functions. To compute each  Fjby the



22

classifier system  will take a  certain number of s tages .  The number 

of all th ese  s tages ,  represented  a s  a  binary number, will determine 

the maximum size of the code field of the input m essage .  Each of the 

F j 's  is a  k-place function for som e k. The maximum of all the k*s, 

along with the  type of the  operation each  F j r e p r e s e n t s ,  will 

determine the length of the sequ ence  field in the m essage .  The bit 

position will be of length 1 .

As an example, the number 2 in N with code  1 would be 

rep resen ted  by 2  input m e s s a g e s  of the following form assuming 

that we have a  m essage  length of 3:

1 1 1

and the number 0  with the sam e code would be represented by:

1 1 0 .

Here the first digit represents  the code, the second  digit represents  

the s e q u e n c e  number and the third digit rep resen ts  the bit. The 

sequence  (2, 0) in with code 2, assuming a  m essage  length of 5, 

would be represented by 2  input m essages  of the form:

1 0  1 0  1 

and one input m essage  of the form:

1 0  0 1 0

where  the first two digits represent  the code, the next two digits 

represen t  the se q u e n c e  number and the last digit is the bit. If the 

m e ssa g e  length were determined to be 8 , with a  code length of 3, a  

s eq u e n ce  length of 4 meaning a  maximum of a  4-place function, and 

the bit position, then the m essag e

0 1 0  0 0 1 0  1



23

would refer to a  code of 2 with a  1 in the third place. If there were 

exactly 7 of th e s e  input m e ss a g e s ,  then this would refer to the 

number 7 in the third place.

To make the notation easier, I will represent  a  m e ssa g e  as  a

3-tuple w here  the first number will be the cod e  in decimal, the

second number will be from 1 to k representing the ith place of a  k-

place function, and the third number will be the digit or bit. A # in

the seq u en ce  position will represent all positions, and a  # in the bit 

position will be either a  0 or a  1. In the last example, the seven 

m e s s a g e s

0 1 0  0 0 1 0  1 , 

each containing a  code 2  and indicating a  1 in the third position, will 

be replaced by the 3-tuple:

2 3 7.

4.4. Types of rules

There are three types of rules in the classifier system.

A) A rule of type A fires only once no matter how many m essages  

it m atches.  An example of this type of rule is the rule for the zero- 

function. Here we want to c rea te  only one m e ssa g e  with a  0 bit 

posit ion .

B) A rule of type B fires once for any match. The identity rule is 

an example. In this instance, we want to transfer all input m essag es  

to the output so that these  m essag e s  can be used again for the next 

s tage .

C) A rule of type C fires only once and u ses  up the input that 

c a u s e d  that rule to fire. T h ese  rules have a  priority so that if a



2 4

match exists, the rule will fire before any other rule can fire. Note 

that by stating that the rule u ses  up the input, we mean that the 

input m e s s a g e s  used to fire this rule cannot be used  to match the 

condition of any other rule during this s tage.

4.5. Initial functions

I will now describe the rules that will be  used  to execute the 

initial functions.  For simplicity, the  rules  p re s e n te d  h e re  as  

e x a m p le s  will a lways leave their resu l ts  in the  first p lace  or 

position. It is easy  to modify such a  rule so that the result is left in 

any specified place by changing the sequence  number from 1 to the 

specified place. R em em ber that the # symbol when used  in the 

classifier has  two meanings. If the # app ears  in the condition of a  

classifier, then it matches either a  0 or a  1 in the input m essage .  If 

it a p p e a r s  in the  action, it is an ins trum ent  to copy the 

corresponding position in the last condition of the condition part of 

the  classifier.

4.5.1. Zero function

The initial zero function C with a  code of C can be represented

by the following rule:
C # # c+T 1 0 : type A

This s ta tes  that a  m essag e  with code C and any match of sequence  

number and bit will produce a  m essag e  of code C+ 1  with a  0  in the 

1st position. This is an example of a  rule of type A; the rule fires 

only once.



25

4.5.2. Projection function
The initial projection function ti*! can be represen ted  by the

following rule of type B:

C i *  —» C+ 1  1 » ; type B

where in the condition we have a  m essage  with code C, a  1 in the ith 

sequence  place and either a  0 or 1 in the bit position. It produces a 

m essag e  with a  C+ 1  in the code position, a  1 in the first sequence  

place and either a  0  or 1 in the bit position depending on the original 

match. Recall that we are assuming here that the result of the 

projection function operation is to be left in the first s e q u e n c e  

position. This rule fires for each possible match.

4.5.3. S uccesso r  function

The initial s u c c e s so r  function a  can be rep resen ted  by the

following rules;
C # # c+1 1 1 : type A

C 1 1 —♦ C+1 1 1 : type B.

The first rule will fire once  for any match and  produce a  new 

m e ssa g e  with a  1 in the bit position. The second rule will fire for all 

m atches .  This second  rule is basically an identity rule. For each  

m e ssa g e  with a  1 in the bit position, it copies that m essag e  with a 

new code. This rule is an example of recoding, where just the code of 

the  m e s s a g e  has  chang ed  and the rest of the  m e s s a g e  is left 

unchanged.



26

4.6. Composition

Recall the definition of composition. Given t > 0 , k >  0 , g  a t -  

place function and h^, . . . , h| k-place functions, we define f to be the 

k-place function such that for every nin

= 9 (hi(rt, . . . .  h^(n)).

As a  seq u en ce  of functions, composition can be written a s  C(g,h^,h 2 ,

. . . ,h|). Note that in executing composition, the k-place functions h; 

are computed before the t-place g function.

We can then define the rules for composition. For now, let us 

a s s u m e  that all of the functions are  initial functions, so that each 

function will take  only one  s ta g e  to execu te .  The first s ta g e  
consis ts  of the rules to perform each  of the h/s .  All will have the

s a m e  code ,  meaning that they can all fire simultaneously. The 

output m e s s a g e  from hj will have the code  for g followed by a 

sequence  number of all zeros except for a  1 in the ith position of the 

s e q u e n c e  number followed by the value in the bit position. The 

second  s tage  will consist  of the rules for the execution of g. The 

length of the seq u e n ce  field will be the maximum of k and t. The 

length of the code field will, in general,  depend  on the functions g, 
h , ,  . . . , h|. Since for now we are only considering initial functions,

the length of the code field will be two. After considering the coding 

of the primitive recursion and unbounded minimalization to regular 

functions operations we will return to the question of coding of 

th ese  operations when the functions are  not initial functions.

4.7. Examples

As an example, consider the function : N —> N defined by



27

o 2 (n) = a(a(n)) = n + 2 .

Here both k and t in the definition of composition are 1, so that the 

size of the sequence  number is 1. To determine the size of the code, 

we note that only two functions are  needed ,  each  being an initial

function. Therefore the maximum size of the code is 2 . Considering

the function a s  a  sequence  F; of functions and  operations, we can 

write a s  the sequence  C(o, a) where C will signify composition of 

th e  functions inside the  p a r e n th e s e s .  The first a rg u m en t  will 

correspond to g in the definition of composition and the rest of the

argu m en ts  the functions h^ to h^. In this c a se  there is only one h

function .

The rules for the function a re :

0  # # —► 1 1 1 ; type A, rule for first a

0  1 1 —» 1 1 1 : type B, rule for first o

1 « # 2 1 1 : type A, rule for second a

1 1 1 2  1 1 : type B, rule for second a

where the first digit corresponds to the code, the second digit is the 

s eq uence  number and the third digit is the bit. If the input to is 0

then the input m essag e  would be:

0 1 0

and the firing of the rules for the first s tage would be:
0  « « —> 1 1 1

and for the second stage:
1 « « 2 1 1

1 1 1 2 1 1

resulting in two m e ssa g e s  of the form:



28

2  1 1

corresponding to the number 2. If the input value were 2, then the 

input would consist  of two m essag e s  of the form:

0 1 1

and the firing of the rules for the first s tage  would be:
0  « « 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

and for the second stage:
1 « « - > 2 1  1 

1 1 1 -> 2  1 1

1 1 1 - >  2  1 1

1 1 1  - > 2 1 1  

resulting in four m essag es  of the form:

2  1 1

corresponding to the number 4.
As another example, consider the function og : —* N defined

by 0 3 (n^, n2 , n^) = a ( 7ig (n^, n2 , ng)) = ng + 1. The rules for this

function are:
0 3 « —> 1 1 « ; type B, rule for

1 1 « —> 2  1 1 : type A. rule for a

1 1 1 —> 2 1 1 . : type B, rule for a

Each m e s s a g e  consis ts  of six bits, the first two corresponding to 

the code, the next three corresponding to the seq uence  number, and 

the last o ne  corresponding to the  bit. Here again there  are  two



29

initial functions that need to be computed, resulting in a  maximum 

code of 2. We can write the function

0 3  a s  the s e q u e n c e  C ( a , 7Cg). The function is 3-place and  the

function a  Is 1 -place, producing a  sequence  size of 3.

4.8. Primitive recursion

The definition for primitive recursion is: if k > 0 , g is a  k-

place function, and h is a  (k + 2)-pIace function, then we can define a

(k + 1 )-place function f such that for every he

f(nO) = g(h) 

and for every he and m e N,

f(r\ m + 1 ) = h(n, m, f(r% m)).

This is an inductive definition. The function f so defined can be 

written R(g, h).

To compute f(l\ m + 1), we first have to compute gM , starting

with m = 0. Then h(r\ 1 , g(rj) must be computed, followed by h(n, 2,

h(h, 1 , g(r))), and so on. Thus, for a  fixed T \  to compute the value of f

at m + 1 we use  the previously computed value of f at m. This 

continues until we have reached the desired value of m + 1. At first 

glance, it would seem  that in order to tell that the value m + 1 has 

b ee n  reached ,  we would need  m + 1 c o d e  num bers  for the 

com puta t ion ,  violating the  requ irem en t  tha t  all m e s s a g e s  for 

computing a  given function be of a  fixed length. But a s  you shall see, 

we can  reuse  the code  numbers. The problem ar ises  in trying to 

figure out how to test for equality using the rules. It is necessary  to 

know when the desired value of m + 1 has  been reached. Instead of



30

testing for equality, we define so m e  rules for decrem enting  the 

value of a  natural number and then testing for zero. Testing for zero 

is e a s y  since the relevant m e ssa g e  will consist  of a  0  in the bit 

posit ion .

The first s tag e  of computing primitive recursion will consist  

of saving the value of m in the k + 3 position, i.e. for every m essage  

with a  1 in the  k + 1 s eq u e n ce  position, we will produce a  new

m e s s a g e  with the s a m e  bit position but with a  1 in the k + 3

seq uen ce  position. Even though the function is (k + 2)-place, an extra 

place is needed  to sav e  the value of m. Therefore, the sequ ence  

number has to allow for k + 3 places. For the computation, the value 

at the k + 1 s eq u en ce  position must start a t  0 . So in the k + 1

seq u e n ce  position we produce a  new m essag e  with a  0  in the bit

position. All other m essag es  get p assed  through to the next s tage by 

using the identity function. Assuming that we start  with a  code of 0, 

the rules for the first s tage  will have the form:
0 k+1 « 1 k+3 «

: type B, rule to copy m to position k + 3 
0  « « 1 k + 1 0

; type A, rule fires only once

rule to enter 0  in k + 1 position



3 1

0  i « 1 i « for i s  1 to k, k + 2

; type B rule to copy all m essages  

except those for sequence  position 

k + 1  and k + 3

The sec o n d  s ta g e  will consis t  of the rules to perform the 

function g, putting the result in sequence  position k + 2. It will also 

copy all of the  input values using the identity rules except for any 

input in sequ en ce  number k + 2. Assuming that the computation of g 

takes  only one s tage, the rules will go from code 1 to code 2. The 

rules would look like:
1 {rules for g} —> 2  k+ 2  {result of applying g}

1 I « 2 I « for i = 1 to k + 1

1 k+3 « —* 2  k+3 * ; type B, identity rule

The third s tag e  is to tes t  if the value of m stored in the

seq u e n ce  position k + 3 is equal to zero. If it is equal to zero, we 

then want to pass  the value stored in the k + 2  sequence  position on 

as  the result of the primitive recursive operation. If the value is not 

zero, we then need to apply the function h to the Input m essag es  

with the result s tored in se q u e n c e  position k + 2 . Also all input 

bes ides  the previous value stored in sequence  position k + 2  must be 

p a s sed  through to the output. The rules for testing for zero will have

the following form:
2 k+3 0 , 2  k+2 « —► 6 1 «

: type B, rule if m = 0, first condition is 

m = 0 ,



3 2

second condition is s eq uen ce  position 

k + 2. At this point we are done with 

primitive recursion 
2 k+3 1 , 2  i # -»  3 i »

fo r i  = 1 to k + 1, k + 3 

; type B, rule if m 0, identity on all 

input but sequence position k + 2

2 k+3 1 , 2  {rules for function h} —►

3 k+2 (m essage  for result}

Note tha t  the  first condition of e a ch  classif ier  s e p a r a t e s  the 

classifiers into two groups, those for when m = 0  and those for m ^

0. The # in the  action part  of the  class if ier  re fers  to the

co r re sp on d in g  digit in the  s e c o n d  condition of the  classifier. 

Rem em ber we are  assuming at this point that all of the functions 

are  initial functions. Therefore, the computation for h takes  only one 

s tage .

The fourth s tag e  will apply the s u c c e s so r  function o to the 

s e q u e n c e  position k + 1 , and p ass  the input through for all other 

seq u e n ce  positions.
3  » * —̂ 4 k+ 1  1 ;type A, successo r  function

3 k+ 1  1 —> 4 k+ 1  1 ;type B, successo r  function

3 i « 4 I « for i = 1 to k, k + 2, k + 3

: type B, identity function 

The fifth s tage  will be the first part of the decrementation of

the s eq u en ce  position k + 3 plus the p ass  through of all other input

values. The rules for sequence  position k + 3 will have the form:
4 k+3 1 —> 5 k+3 0



33

: type C that fires only once and u ses  up its input 

m essage .  This is a  priority rule. It changes  one of 

the 1 bits to a  0  bit
4 « # —» 5 « «

; type B, all other input values are passed  through 

The sixth s tage  will be the second  part of the decrementation 

of the s e q u e n c e  position k + 3 plus the p a s s  through of all other 

input values. From this s tage  we want to return to s tage  3 where we

either have a  zero value at sequence  position k + 3 or we apply the

function h. Therefore the output code from these  rules will be the 

s a m e  a s  the code for s tage  3. Using the code values given, this is 

code 2 . The rules for sequence position k + 3 will have the form:
5 k+3 0 , 5  k+3 1 -+ 2 k+3 1

; type C that fires only once and uses  up its input

m essages .  This is a  priority rule. If there is both a 

0  bit and a1 bit in position k+3, it essentially 

consum es the 0  bit
5 # # —̂ 2 « «

: type B, all other input values are p assed  through

At this point we are back at the third s tage of the computation of f 

where we tes t  to s e e  if the computation of f is complete or if we 

have to compute h again.

4.8.1. Example

As an example of primitive recursion, consider the function 

plus(n.|, ^ 2 )  = n  ̂ + n2 - 

This function is defined by:



34

p!us(n, 0 ) — 9 (n) — ît^(n) = n

plus(n, m + 1) = Gg(n, m, plus(n, m))
= o(TCg(n, m, plus(n, m)))

To compute this function, each m essag e  will have a  length of 8 , with

the first three  positions for the code, the next four positions for the

se q u e n c e  number and the eighth position for the bit. As mentioned

before, even though the maximum place value for the functions is 3,

we need an extra place to save the value of m. Therefore, the size of

the seq u e n ce  number is 4. The function plus can be written a s  the 
sequence  R(%̂ , C(o, tc| ) )  where R represen ts  primitive recursion. The

rules for this function are:

Stage 1 : to save the original value of m

0 2 « —► 1 4 »

; copy m at sequence position 2  to sequence 

position 4 

0  1 « 1 1 «

; copy input n 
0 « # 1 2 0

; zero function to sequence  position 2  

Stage 2 : perform g =

1 1 # 2 3 «

; rule to perform function g, output to 

sequence  position 3, projection function 

1 I # 2 i « for i = 1. 2. 4

; identity rule to pass  input through except 

sequence position 3



35

Stage 3: if done output result e lse  compute 0 3

2 4 0 , 2 3 * ^ 6  1 *

: m = 0 so return result 

2 4 1 , 2 I * -> 3 I * for I = 1, 2. 4

: m 0, identity except for sequence  

position 3 

2 4 1 , 2 3 1 ^ 3 3 1

2 4  1 , 2 * * - > 3 3  1

; rules for 0 3 , result in sequence  position 3

Stage 4; increment m 
3 2 1 4 2 1

3 « « —, 4 2 1

; rules for a  on sequence  position 2

3 i * -»  4 i * fo r i  = 1, 3, 4

; pass  through input except sequence  

position 2

Stage 5: first part to decrem ent saved m
4 4 1 5 4 0

: priority rule of type C. sequence  position 4
4  # « ^  5  « tt

; p a ss  through all other input, 

identity function 

S tage 6 : second part to decrement saved m
5 4 0 , 5 4  1 - » 2 4  1

; priority rule of type C, sequence  position 4
5 « # 2 * *

: identity on all other input



36

; Note that the output code at this s tage is 

the sam e a s  the input code for S tage 3.

4.9. Unbounded Minimalization of Regular Functions

The final operation to be performed by our classifier system is 

unbounded  minimalization of regular functions. The rules for this 

opera t ion  a r e  similar to the  rules for primitive recursion, but 

simpler s ince  there  is no decrementation, rather just the testing of 

th e  r e su l t  for z e ro .  Recall  th e  definit ion of u n b o u n d e d  
minimalization. If k > 0 and g is a  (k + 1 )-place function, then the

unb ou nd ed  minimalization of g is the k-place function f defined such 

that for any He

f(T) = pm[g(r\ m) = 0 ].

For f to be u-recursive, g must be regular. This guaran tees  that f is

defined everywhere. The unbounded minimalization of g is denoted

u(g).

For unbounded minimalization, we have to start at m = 0. After 

each computation, the value of g(f\ m) has to saved so that it can be 

tes ted  against  0. S equence  position k + 2 will be used to save  the 

result of the computation of g(r% m). Even though g is a  (k + 1)-place 

function, an extra sequence  position will be needed.

The first s tag e  for the rules for unbounded minimalization of 

regular functions consists of creating a  0  in the sequence  position k 

+ 1 by the application of the zero-function. We therefore have the 

ru les :
0  « « —♦ 1 k+ 1  0  : 0  at position k + 1

: type A, rule fires only once



37

0  « # —► 1 « # ; type B, copy input

The second s tage  consists  of the rules to perform the function

g with the result s tored in seq u e n ce  position k + 2 and also the 

identity, so  that  the input is p a s s e d  through except for seq uen ce  

position k + 2. Assuming that we can compute g in one stage, we 

have the following rules:

1 {rules for g) —» 2 {result of applying g}

1 I •  —+ 2 I « for i = 1 to k + 1 ; type B

The third s tage  consists of reducing the result of the operation

g to a  single m essage .  This is done by executing the following rule 

exactly once.
2 k + 2 * —» 3  k + 2 » ; type A

Also in this s tage  is an application of the identity function to copy 

all input except for that at position k + 2, resulting in the following 

rule:
2 I » —» 3 i « for i = 1 to k + 1 ;type B

The fourth s t a g e  e i ther  exits the  rules  for unbounded

minimalization of regular functions with the output being the value

of m stored in the sequence  position k + 1, or it increments the value 

of m stored in position k + 1  and p a s se s  through the input both with 

the code used for the application of the function g. The rules for this

s tage  will have the  form:
3 k + 2 0, 3 k + 1

; type B, rule to output the value of m
3 k + 2 1, 3 I « - ♦ !  I « for i = 1 to k

: type B, rule to pass  through input, identity

function



38

3 k + 2  1,  3 k + 1  1 - ^ 1  k + 1  1

; type B, rule for a  on sequence  position k + 1 

3 k + 2  1,  3 » * - » 1 k + 1  1

; type A, rule for a  on sequence  position k + 1 

These  last three rules output the sam e code used in s tage  2  so that

the operation g can be performed again.

4.10. Operations on Non-Initial Functions

As m entioned before, the above rules concerning the 

operations o f com position, primitive recursion, and unbounded 

minimalization on regular functions were applied only to the initial 

functions so that each operation could be performed in one stage. If 

the functions are not the initial functions, then we have to take into 

account that intermediate results have to be saved in order to 

compute the final result of the function. This can be accomplished by 

expanding the message length. If it is established that the sequence 

part of the message is of length k, then it is possible that we will 

have to make that part of the message be of length pk, for some p, 

where the extra p-1 groups of bits of length k are used as temporary

storage to hold the computation of the intermediate results. How to

compute the value of p will be shown later.

As an example, consider the multiplication function, mult : 
—► N defined by mult(n, m) = nm. It is obtained from g = Ç and h by

primitive recursion, where h is defined by composition of plus with 
Tc^andTCg. This gives the following definition:

mult(n, 0 ) = Ç()

mult(n, m + 1 ) = h(n, m, mult(n, m))



39

w h e r e
h(x, y, z) -  plus(jt®(x, y, z). n^tx, y, z)).

The function plus(n^, ng) = n  ̂ + ng is primitive recursive since it is
obtained from g = and h = 0 3  by primitive recursion:

plus(n, 0 ) = %j(n)

plus(n, m + 1 ) = 0 3 (n, m, plus(n, m)).

The function Og(n^, r \ 2 ,  n^) = n^ + 1 is defined by composition:
0 3 (0 ^, ^2 » ng) = o(7Cg(n^, 0 2 » ng)) .

First let us consider how this will be written a s  a  sequence  of

functions. The function mult(n, m) = R(Ç, h)
-R(Ç, C(plus, %3))

= R ( C , C ( R ( j t J .  0 3 ) ,  Jt®. 7t®))

-  R(C, C ( R ( j t ’ , C ( a , J t | ) ) ,

To make the example eas ie r  to follow, I will show how to 

compute mult(n,1). For notation and simplicity, instead of using the 

m e s s a g e  length and the schem e of notation given previously, I will 

u se  only the seq u e n ce  part of the m e ssa g e  length with a  decimal 

number in each place showing the value for each place of the k-place 

function. Mult is a  2 -place function but h is a  3-place function. To 

co m p u te  primitive recursion, we need  an ex tra  p lace  for the 

temporary s torage of the value m. Therefore, to start  with, 4 places 

will be needed.  The input to the function will be n 1 - - where n is 

the first input, 1 the second input, and the third and fourth place for 

now are empty. The first s tage is to move the value of m, which is 1 , 

to the k+2 or 4th position and to put a  0 in the 2nd position. This 

gives the sequence  n 0  - 1 . The second s tage is the computation of g, 

the zero initial function, producing the sequ en ce  n 0 0 1. Remember



4 0

that the result of the function is put in the 3rd position. Since the 

value of m in the 4th position is not 0, h is now applied to this 

result. The function h is a  primitive recursive function. It is going to 

require that som e intermediate results be saved  in order to obtain 

the final value of h. If these  intermediate results are saved  in the 4 

s e q u e n c e  posit ions already used ,  then we will not be able  to 

distinguish betw een  the original input values and  the intermediate 

results .  The solution is to expand the m e s s a g e  length. In the 

example, we will need 4 more places, making the sequence  length 8 . 

The input to h is n 0 . The new sequence  will look like n 0  0  1 n 0  

The function h now will be applied to the last four sequence  values, 

passing the first four sequence  items through. Since h is a  primitive 

recursive function, the value of m has to be saved and replaced by 0 , 

giving the sequence  n 0 0 1 n O - 0 .  Then plus can be applied with the 

result being n 0 0 1 n O n O .  Since the value of m for the function h is 

0, the result, which is in the 7th s eq u en ce  position, is put In the 

third s e q u e n c e  place, the place reserved  for the result of the 

function h. The sequence  now looks like n 0  n 1 n O n O .  At this point 

only the first four sequence  positions are relevant. The next s tage is 

to decrem ent the value of m in the 4th sequence  position. Now the 

value of m is 0 and the computation is complete. The result, n, is in 

the 3rd seq uence  position.

The computation of mult(n,1 ) w as  ra ther simple s ince the 

computation of plus used  just the first s tep  in primitive recursion 

and this s tep  was  an initial function. If we had computed mult(n, m) 

where m w as  greater than 1 , the plus operation would not have been 

so simple and the m essag e  length would have had to be expanded



41

ag a in  to a c c o m m o d a te  the  in te rm ed ia te  re su l ts  of the  plus 

opera t ion .

Having seen  how to express  a  given u-recursive function a s  a  

s e q u e n c e  of the operations composition, primitive recursion, and 

unbounded  minimalization of regular functions applied only to the 

initial functions, we can  convert this seq u e n ce  of functions into a 

parse  tree. The parse  tree for the function mult would look like

muJt

;

Figure 4-1: Parse  Tree of the Function mult.

The initial projection function tc.Ms  r e p re s e n te d  a s 7c(i,j) in the

above parse  tree, meaning the ith place of an j-place function. As we 

go down e a c h  branch  of the  tree ,  it will tell us how many 

intermediate  results will be n eeded  to com pute  one  of the non­

initial functions. The depth of the tree gives the number of groups of 

seq u e n ce  numbers that will be needed, or the value of p mentioned



4 2

previously. For the computation of mu!t(n,m), we first have to 

com pute  primitive recursion which would take one extra group of 

seq u en ce  numbers. The result of the first operation or Ç was put back 

into the first group and did not need an extra group of sequence  

num bers  s ince Ç is an initial function. The next s tep is composition.

The length of the sequence  field has  to be increased to perform the 
composition. Since all of the h /s  are  primitive recursive, they can

all be computed at once a s  shown earlier. In general this will not be 

the case .  Therefore, the length of the sequence  field of the m essage  

would have to be increased in order to perform the composition so 
that  e a ch  hj can  be performed individually with the s a m e  input 

values. After each of the h /s  has  been computed, the results are in 

the second group. Then we need to increase the the number of groups 

of s e q u e n c e  numbers  again to perform the primitive recursion for 

the function g of the composition. In the ca se  of mult(n,1), the only

primitive recursive s tep needed  was the first one, to perform the 
operation which can  be done in one step. In general, after the

first s te p  of the  primitive recursion, the  s ec o n d  part  or the 

operation 0 3  would com e next. This is a  composition which requires

the length of the sequ ence  field to be increased again. The original 

length k of the sequence  field is modified to pk, where p is the depth 

of the parse  tree.

Using this s c h e m e  we can  com pute  composition, primitive 

recursion, and unbounded minimalization on regular functions. For 

composition, not all of the functions will necessarily take the sam e 

num ber of s tages .  Therefore, using the expanded  m e ssa g e  length, 

where  the  se q u e n c e  field of the m e s s a g e  h as  been  increased to



43

handle intermediate results, one function can be computed at a  time. 

We can look at this graphically. Consider the general function 

f(r) = g(hi(rj), . . . , -  Cfg.hiJhg, . . . ,h^). Let k be the maximum

of length of h and t. The sequence  field of the m essage  is expanded 
to at least 2k. Each function, hj, then operates  on the second k bits,

putting its result in the ith position of the first k bits. When all the 

hj’s  have been  computed, the function g can then be computed. This 

can be shown graphically a s  follows where hj is represented a s  h(i):



4 4

k
id

H
h(1).

I
r id

I t  
1 1  

i I 
1 1

h(2 ).
I
■r id

id

l i

1 /
1/

h(t)

The input to the function 
is copied to the second 
group so that each h 
function can be computed 
separately without 
destroying the input.

Each h(i) function 
executes separately with 
the result being placed in 
the first group. The 
results are passed to the 
next stage using the 
identity function. The 
input in the second group 
is also passed on.

The first group now has 
the results of computing 
all the h’s. These results 
are passed to the second 
group incase g is not an 
initial function. The result 
of g is placed in the first 
group.

Figure 4-2: Graphical Representation of Composition



45

For primitive recursion, we have f(f) = R(g, h) and this can be shown

graphically a s  follows: 
k+3

L __________   L Copy the input to the
^  ^  second group

Compute g putting the 
result in the k+ 2  position

Copy input to second 
group

Compute h putting the 
result in the k+ 2  position

id

i
/ i  

/  I

The final result in the 
k+ 2  position is returned

Figure 4-3: Graphical Representation of Primitive Recursion



4 6

For the unbounded minimalization to regular functions, f(h) =

U(g). Graphically, this will look like the following:
I k+ 2  , copy input to second

id

 ̂ ^  group
I "  ^
I ^  ^

^ I ^  ^  Compute g storing the
TT-----------------------------" T n  result in k+2 position
If

id If
II ^

Copy Input to second
group

1 /
id If

V

j J  ZzU Compute g storing the
_ ^  * result in k+ 2  position

I If g
I id If

J  J  Compute g storing the
' result in k+ 2  position

II When the result of g
is 0 , the value in the 
k+ 1  position is returned

Figure 4-4: Graphical Representation of Unbounded Minimalization.



4 7

It has  been shown that by expanding the m essage  length, all u -

recursive functions can be computed by the classifier system. Given 
a u - re cu rs iv e  function, we know that it is a  se q u e n c e  of initial

func t ions  co m b in ed  by com posit ion ,  primitive recursion ,  and  

u nb ou n d ed  minimalization of regular functions. Therefore, it is 

p oss ib le  to de te rm in e  how many in term ediate  results  will be 

n e c e s s a r y  to com pu te  the  function and  w hethe r  th e s e  results 

overlap. From this, the maximum m essage  length can be determined. 

The function needs  to be able to be computed for all possible input 

values, and the m essage  length has to be fixed. The m essage  length 

then is se t  to be the maximum that might be needed to compute the 

function for any of the possible input values.

4.11. Summary

Since it h a s  been  shown that the initial functions and the 

allowable operations can all be computed by rules in the classifier 

system, the theorem has  been proven. Each function will have its 

own m e s s a g e  length dependen t  on its composite functions and their 

as so c ia ted  operations. This m e s s a g e  length is independent of the 

input values.



Chapter 5 

Conclusion

The goal of this paper  w as  to show that a  classifier system 

has  the computational power of a  Turing machine. To do this, I have 

used  the  functional approach to computability. Thus, I start  with a  
given arbitrary u - re cu rs iv e  function. This m e a n s  tha t  the  initial 

func t ions  th a t  c o m p r ise  th e  y - r e c u r s iv e  func t ion  a n d  th e  

combinations u sed  to obtain this y - recurs ive  function a re  also  

known. With this knowledge, it is possible to define a  classifier 

sys tem  with a  fixed m e s s a g e  length tha t  c o m p u te s  the  given 

function. In my classifier system, I have used  th ree  different types 

of rules. Holland used  only one type of rule. W henever a  match was 

made, Holland's rules fired. Using th e se  assumptions,  I have shown 
that given a  y -recursive function, that function can be computed by 

the classifier system. Since the given function is an arbitrary y  - 

recursive function, all y -recursive functions can be com puted  by the 

classifier system. Each function will have its own m e s s a g e  length 

and its own se t  of rules.

Future research  can be done by investigating the possibility of 

using less  then three types of rules in the classifier system. This 

might be combined with the use  of the not operator (-) that Holland 

u ses .  This operator signifies that  the condition is not satisfied by 

any m e s s a g e  on the m e ssa g e  list. Using this notation might make 

som e of the classifiers easier  to write and understand.

4 8



4 9

The opera t ions  permitted w ere  for regular  functions. This 

process  can  also be expanded  to s e e  if it holds for partial recursive 

functions. A partial function is o n e  w h o se  domain is properly 

contained in a s  opposed to a  function whose domain is N^. The 

input then would have to b e  restricted to only that  part of the 

domain for which the function in question is defined.



5 0

References

Brookshear, J. Glenn, Theory of Computation, Formal Languages, 

Automata, and  Complexity. The Benjamin/Cummings Publishing 

Company, Inc., Redwood City, California, 1989.

Davis, Randall and King, Jonathan, **An Overview of Production 

Systems", Machine Intelligence 8 , Elcock, E. W. and Michie, 

Donald, Editors, Halsted Press, New York, 1977.

Holland, John H., "Escaping Brittleness: The Possibilities of General- 

Purpose Learning Algorithms Applied to Parallel Rule-Based 

Systems", Machine Learning An Artificial Intelligence 

Approach, Volume II, Michalski, Ryszard S., Carbonell, Ja im e  

G. and Mitchell, Tom M., Editors, Morgan Kaufmann P u b l ish e rs ,  

Inc., Los Altos, California, 1986.

Lewis, Harry R. and Papadimitriou, Christos H., Elements of the 

Theory of Computation, Prentice-Hall, Inc., Englewood Cliffs, 

New Jersey ,  1981.

Luger, G eorge  F. and Stubblefield, William A., Artificial Intelligence 

and the Design of Expert Systems, The Benjamin/Cummings 

Publishing Company, Inc., Redwood City, California, 1989.



5 1

Minsky, Marvin L., Computation Finite and Infinite Machines, 

Prentice-Hall. Inc., Englewood Cliffs, New Je rsey ,  1967.


	Using a classifier system to simulate a Turing machine
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.617AF

