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One of the most important models of computation is the Turing
machine. This mode! forms the basis for the formal definition of
an algorithm - any computation that can be described as an
algorithm can be performed by a Turing machine, and vice versa. A
Turing machine can be designed to perform complicated
computations. Unrestricted grammars and p-recursive functions are

two additional models of computation that have been shown to have
the same computational powers as a Turing machine.

A classifier system is a special form of a production system, a
rule-based system where a working memory is matched against a
set of rules. One of the matched rules is chosen to fire resulting in
the working memory to be changed. The classifier system also uses
with a working memory and a set of rules. In this case, all matched
rules fire, resulting in a new working memory. Both systems can be
used to perform calculations.

The goal of this paper is to show that the computational powers of
a classifier system are the same as those of a Turing machine. This
is done by showing that the set of p-recursive functions and a

classifier system are computationally equivalent.
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Chapter 1
Introduction

Turing machines form much of the basis for theoretical
computer science. They can be designed to perform complicated
computations. Instead of thinking of these computations as being
performed by a machine, one can can think of them as the
manipulation of strings by grammars or as the computation of u-
recursive functions defined on the natural numbers. All of these
approaches have been shown to be computationally equivalent.
(Lewis and Papadimitriou, 1281)

A classifier system (Holland, 1986) is another mode! of
computation. The purpose of this paper is to show that a classifier
system has the same computational power as a Turing Machine. A
classifier system can be written as an algorithmic language. If
something can be expressed as an algorithm, then it can be computed

by a Turing machine. This paper will show that given any u-recursive

function, it can be computed by a classifier system. Since Turing
machines and u-recursive functions are computationally equivalent,
a classifier system will have the same computational power as a
Turing machine.

The u-recursive functions are defined on the natura! numbers.
The idea is that there are some very simple functions called the
initial functions that are considered to be computable. One such
function is the successor function. We can expand the computable

functions by combining these simple functions in certain ways such



as by composition. These new functions are also considered to be
computable, since they can be obtained from the initial functions by
simple combinations. In this manner the set of computable functions
is built, giving us the set of u-recursive functions, which are the
ones that have been shown to be equivalent to the computation by
Turing machines.

Production systems (Davis and King, 1977) have been used for
expert systems and as psychological models. A production system
consists of production rules called productions, a working memory,
and a control structure consisting of a simple loop. The productions
are condition-action constructs. Those productions whose condition
part matches patterns in the working memory are said to be enabled.
The control structure picks one of the enabled rules for execution.
The firing of this rule causes the working memory to be modified.
The loop then repeats until there are no more matches between the
rules and working memory.

A classifier system is similar to a production system. It also
consists of rules called classifiers, a working memory called a
message list, and a control structure. The classifier system also
works by a simple loop where the condition part of the classifiers
are matched against the message list. In this case, however, every
match causes a message to be sent to a new message list. This new
message list now becomes the working memory and the loop
continues.

The message list of the classifier system consists of fixed

length strings, called messages, over a fixed alphabet . The message
list itself is unbounded. The p-recursive functions have the natural



numbers as their domain and range. There is no upper bound on the
size of the natural numbers. In order to represent a natural number n
by messages of fixed length, a message will be repeated n times.
The u-recursive functions and the classifier system are
models of computation. In this paper | will show that a Turing
machine can be simulated by a particular type of classifier system.
To do this 1 will show that given any u-recursive function it can be
computed by the classifier system presented. | will present the
rules that are necessary to compute the initial functions and will
also show how to construct the rules for the combinations of these
functions to produce the u-recursive functions. Since the u-
recursive functions and Turing machines have the same
computational powers, this will show that a classifier system and a

Turing machine are also equivalent in their computational power.



Chapter 2
Abstract Models Of Computation

2.1 Introduction
There are many models of computation. This chapter will
describe three of them:
1. Turing Machines
2. Grammars
3. u-recursive functions.
These three models have been shown to be computationally

equivalent.

2.2 Turing Machines

This section will describe a Turing Machine both generally and
formally in reference to functions. A Turing machine consists of a
finite control unit, a tape, and a head that can be used to read
symbols from the tape or to change the symbols on the tape. At each
step, the symbol at the head is read from the tape and, according to
the current state of the finite control unit, the symbol is changed or
the head is moved one square to the left or to the right. The control
unit is also put into a new state. The tape is bounded to the left, but
is infinite in the direction to the right. The input to the Turing
machine is inscribed on the left end of the tape with the rest of the
tape containing the blank symbol #. A special state, h, called the
halt state signals the end of the computation. For more information

about Turing machines see Lewis and Papadimitriou, 1981.

4



A Turing machine, M = (K, £ &, s), thus, consists of a set of
states K, an alphabet Z consisting of the set of symbols that are
allowable on the tape including the blank symbol #, a transition
function § that describes the action and the next state of the
machine depending on the current state and the symbol at the head,
and a special state, s, called the start state. The Turing machine
begins execution with the initial input on the left end of the tape
and the finite control unit in the start state. A configuration of
the Turing machine shows the status of the finite control unit, the
location of the head, and the tape's inscription at that particular
moment, represented as a 4-tuple. The first entry is the current
state, followed by the tape’'s inscription to the left of the head, then
the tape symbol at the head, and finally the tape's inscription to the
right of the head. If the tape's inscription is empty, it is denoted by
the empty string e. If one configuration produces another
configuration as the result of a single move then we say that the

first configuration yields the second configuration in one step. If
a configuration C, produces the configuration C,in zero or more

steps, then C, is said to yield C,. This is denoted by C, |-* C,.

A Turing machine can be thought of as computing functions. If
Z, and Z, are alphabets not containing the blank symbol #, and f is a
function from Z," to £,*, then the Turing machine M = (K, £, &, s) is
said to compute f if £, and £, are subsets of £ and for every w in

Z, . there is a u = f(w) in £,* such that

(s, w, #,e) |- (h, u, # e).



This says that if M is started with w on its tape then it will
eventually halt leaving u on the tape. If such a Turing machine M

exists, then f is said to be Turing-computable.

2.3 Grammars

Every Turing machine can be simulated by a grammar, G = (V, Z,
R, S). A grammar consists of an aiphabet V, a subset £ of the
alphabet called the terminal symbols, a set R of rules that
operate on the strings of the grammar to produce different strings
in the grammar by replacing a substring associated with the left-
hand side of a rule by the corresponding right-hand side of that rule,
and an element S of the alphabet called the start symbol that is
not a terminal symbol. Given a string u in the grammar, if the
successive applications of rules produce the string v then this is
denoted by u = " v.

We can talk about functions being computed by grammars. The

function f is said to be grammatically computable if and only if
there is a grammar G = (V, Z, R, S), subsets £, and £, of £ not

containing #, and strings x, y, X', ¥’ in V* such that for any w in ;"
and u inZ,"

f(w) = u
if and only if

xwy = x'uy'.
That is, grammar 6 computes the function f if there are two pairs of
strings in the alphabet V such that from any w in £," surrounded by
the first pair of strings, the grammar will yield a string consisting

of the value of f(w) surrounded by the second pair of strings.



Note that f is defined for strings in an arbitrary alphabet.
These definitions can be applied to functions from N to N, the
natural numbers, by using some fixed symbol | that is not the blank

symbol and by representing the natural number n by the string IM.
Then the function f : N — N is said to be Turing computable or

grammatically computable if the function f : {1} — {1}° defined
by #(1™) = 11" is Turing computable or grammatically computable,
respectively. 1t can be shown that every Turing-computable function
from strings to strings or from numbers to numbers s

grammatically computable and vice versa.

2.4 u-recursive Functions

There are certain simple functions defined on the natural
numbers that can be regarded as computable. These simple functions
are called the initial functions. We can combine these initial
functions by composition and primitive recursion to form other
functions called the primitive recursive functions that will also be
computable. Then by a method called unbounded minimalization on

regular functions, we can obtain the set of functions called the u-

recursive functions.
The rest of this section will lead up to the definition of a u-

recursive function. A function is k-place if it is a function from
Nk to N for some k 2 0. The initial functions consist of three
types of functions that are considered to be computable. They are
the following:

1) The O-place zero function { is a function from N° to N such

that



Z() = o.

2) The projection functions are k-place functions =¥

i where k

2 1and 1 <i < k such that
n(ny, N, .. .0 =,
We will denote the the sequence ny, n,, ... ,n by h
3) The successor function ¢ is a 1-place function such that
o(nN)=n + 1
These initial functions can be combined by the two following
methods:
1)Ift>0,k2 0, g is an t-place function and hy, ..., h, are k-
place functions, then we can define f to be the k-place function such
that for every hin Nk
f(M = g(hy(M, . . ., hy(M).
Then f is said to be obtained from g, h,, ..., hby composition.
2)Ifk2 0, g is a k-place function, and h is a (k + 2)-place
function, then '
we can define f to be the (k + 1)-place function such that for every h
e Nk
f(n0) = g(n)
and for every he Nkand m e N,
f(h m + 1) = h(h, m, f(n m)).
Then f is said to be obtained from g and h by primitive recursion.
A function that is either an initial function or can be obtained
by the initial functions by applying some sequence of composition
and primitive recursion is said to be primitive recursive.
The following are some examples of primitive recursive

functions (Lewis and Papadimitriou, 1981).



1) The function 62: N — N defined by ¢2(n) = n + 2 is primitive
recursive by the use of composition. Here k=t=1 and g=h;=
o. Therefore, 62(n) = g(hy(n)) = a(c(n)).

2) The function 65 : N3 — N defined by o,5(n;, n,, Ng) = ny+ 1 is
primitive recursive by composition since ojz(ny, n,, N3) = o(ng(n1, n,,
ng)).

3) The function plus(n,, n,) = n; + n, is primitive recursive since
it is obtained from g = x} and h = o5 by primitive recursion.

plus(n, 0) = x}(n)
plus(n, m + 1) = o5(n, m, plus(n, m))

Another slightly more complicated example is the
multiplication function, mult : N2 — N, defined by mult(n, m) = nm.
The function mult is obtained from g = K,and h by primitive
recursion, where h is defined by composition of plus, and =5 and =J.
The function K, is the 1-place constant function whose value is
always zero. This gives the following definition:

mult(n, 0) = Ky(n)

mult(n, m + 1) = h(n, m, mult(n, m))
where

Ko(n) = ()

h(x, y, z) = plus(n?(x, Y, 2), ng(x, Y, 2)).
In other words,

mult(n, 0) = 0

mult(n, m + 1) = n + mult(n, m).

In order to define the p-recursive functions, a few more
definitions are needed. If k 2 0 and g is a (k + 1)-place function, then
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the unbounded minimalization of g is the k-place function f
defined such that for any he Nk

the smallest m such that g(n, m) = 0 if such
an m exists;

f(n =
0 otherwise

This definition assures that f is defined everywhere. The function f
is then written as

f( = um[g(n m) = 0O].
The function g is said to be regular if and only if for every he NK,
there exists an m such that g(h m) = 0.

A function is said to be u-recursive if and only if it can be
obtained from the initial functions {, n':,and c by the following

operations:
composition;
primitive recursion;

unbounded minimalization of regular functions.

2.5 Equivalence Of The Three Models

It can be shown that every grammatically computable function
from strings to strings or from numbers to numbers is u-recursive.

Then it can be shown that every u-recursive function is Turing-

computable. Therefore there are three equivalent definitions of
computability for functions defined on N:

1) Turing machines

2) grammars

3) u-recursive functions.
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Since the u-recursive functions are exactly the functions that are
Turing-computable (Lewis and Papadimitriou, 1981, Chapter 5), we
may use this equivalence of Turing machines to show that a Turing

machine can be simulated by the classifier system.



Chapter 3
Classifier System

3.1. Introduction

Since a classifier system is similar to a production system, |
will first describe what a production system is. The following
section will discuss Holland's classifier system. Then 1 will

describe the classifier system used in this paper.

3.2. Production System

A classifier system is similar to the rule-based production
systems (Davis and King, 1977) used in expert systems. A production
system consists of a set of production rules, a working memory, and
a recognize-act control cycle (Luger and Stubblefield,1989). A
production rule, or production, consists of a condition-action
pair. The condition part of the rule is a collection of symbols that
determines when that rule may be applied to the situation being
considered. The action part defines the result obtained by the
execution of the rule. The working memory contains a description
of the current state of the world for the particular problem. This
description is in the form of a collection of symbols called patterns.
The actions of production rules are specifically designed to alter the
contents of working memory. The recognize-act cycle is the
control structure for the production system. Working memory is
initialized to the patterns that represent a description of the start
of the problem. The patterns in working memory are matched against

the conditions of the production rules. This produces a subset of the

12
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productions, called the conflict set, containing those productions
whose conditions match the patterns in working memory. The
productions in the conflict set are said to be enabled. One of the
productions in the conflict set is then selected by a conflict
resolution strategy. The production thus selected is fired,
meaning that the action part of that rule is executed. This may
result in the contents of working memory being changed. The control
cycle starts over again using the modified working memory. When no
rule can be found whose conditions are matched by the contents of

working memory, the process terminates .

3.3. Holland's Classifier System

A classifier system is a rule-based system where the working
memory is represented by fixed length messages. The production
rules are called classifiers. Since | am not aware of a formal
definition of a classifier system, | will present the informal
definition used by John H. Holland (Holland, 1986), and will then
discuss where my system differs from Holland's classifier system.

In general, the execution of a classifier system consists of a
simple loop. The classifiers access the current message list,
determining if their conditions are satisfied. If a classifier's
conditions are satisfied, then that classifier becomes active and it
produces a new message which is added to a new message list. All
active classifiers fire at the same time. After all active classifiers
have fired, the new message list becomes the current message list,
and the loop starts over again. The satisfaction of a classifier's

condition is determined by a simple matching operation. All
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input/output is through messages to the message list. This message
list is global in nature, thus allowing for tagging and similar
techniques that can be used to couple classifiers and to force a
predetermined order of execution.

A message is a fixed length string of length k over an fixed
alphabet. The alphabet is usually taken to be the set {0, 1}. The
messages are kept on a message list which can be unbounded. The
rules act on these messages producing a new message list.

The rules or classifiers are condition-action pairs. The
condition consists of a string of length k over the alphabet {0, 1, #}.
For a classifier to become active, the condition part of the
classifier must match a message on the message list. A match is
obtained if each 0 and 1 in the condition matches the corresponding
bit in the message exactly. The symbol # in the condition can match
either a 0 or a 1. An active classifier produces a message that is put
on a new message list. The action part of the classifier is also
specified as a string of length k over the alphabet {0, 1, #}. Here the
# has a different meaning than the # in the condition part. Here it is
a pass- through symbol. Whenever a # occurs in the action part, the
corresponding bit in the message satisfying the condition part is
passed through to the new message that is produced.

Consider the following example. Suppose k, the fixed length of
each message, is taken to be 3. A classifier with a condition of #00
and an action of 11# will match either the message 000 or the

message 100 and in either case will produce the message 110. The
notation #00 — 11# is used to specify this classifier.
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A classifier can be generalized to allow for an arbitrary
number of conditions. In this case, each condition is a string of
length k over the alphabet {0, 1, #}. The conditions are separated by
commas. For the ciassifier to become active, each of the conditions
must be matched by some message on the message list. The action
part of the classifier is still specified by a single string of length k
over the symbols {0, 1, #}. The # symbol corresponds to the bit in
the message that satisfies the first condition of the classifier.

Consider the above example, expanded for multiple conditions.
Suppose the classifier now is:

101, #00 — 11#.
For this classifier to become active, the message list will have to
contain the message 101 and either the message 000 or the message
100. In either case the result will be the message 111. The # in the
second condition can match either a 0 or a 1. The # in the action will
match the second 1 in the first condition.

The use of multiple conditions allows for compound conditions
to be represented. The AND expression is obtained by the use of
multiple conditions. The OR condition can be obtained by the use of
multiple classifiers. For example, to express that if both the
conditions My and M, are satisfied then the result is M, we use the
classifier:

My, My, = M.
If we want either M, or M, to produce the message M, then we will
need the two classifiers:

M,—M

M, — M.
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Holland extends the notation by allowing strings in the
condition to be prefixed by a minus sign. This signifies that the
condition is not satisfied by any message on the message list. For
example, the condition M, and not M, can be obtained by the
following classifier:

My, -My; — M.
For this classifier to become active, the message list would have to
contain the message M,, and no message of the form M,.

One, many, or all the classifiers can be active at the same
time. Since each active classifier produces a message on the
message list, there is no conflict resolution problem. All active
classifiers fire. The more active classifiers there are, the more
messages there will be on the message list.

Expanding the above example again by adding another

classifier, we can obtain the following classifiers:
101, #00 — 11#

1#0 — 000.
If the message list contained the following messages:
101, 100
then both classifiers become active and fire producing the new

message list:

111, 000.
If the original message list were:
101, 100, 000

then the first classifier would fire twice, once for each possible
match, and the second classifier will fire once, producing the

following new message list:
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111, 111, 000.
Using the above definitions, Holland defines the classifier

system as follows:
"A classifier system consists of a list of classifiers {Cy, C,, . .

., Cnh}, a message list, an input interface, and an output interface.

The basic cycle of this system proceeds as follows:

1. Place all messages from the input interface on the current
message

list.

2. Compare all messages to all conditions and record all matches.
3. For each match generate a message for the new message list.
4. Replace the current message list by the new message list.
5. Process the new message list through the output interface to
produce
system output.
6. Return to step 1."

Therefore, to define a classifier system, the input messages
and the classifiers, including both the conditions and the
corresponding actions, have to be defined. Recodings, that is,
changing the prefix of an input message by an active classifier while
the rest of the message is left unchanged, and using # in appropriate
places can reduce the number of classifiers that a system needs.
Considering the above example again, the use of the # symbol! in the
classifier

1#0 — 000
eliminates the need for the following two classifiers to represent

what this one classifier represents:
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100 — 000
110 — 000.

3.4. Modified Classifier System

The system that | use is a modified version of Holland's
classifier system. It consists of a message list, classifiers, and an
inference engine or control structure. The message list, which can
be unbounded, contains fixed length messages over the alphabet {0,
1}. The classifiers consist of a condition part, which can have
several conditions, along with an action part, the two being
separated by the symbol — . The classifiers are over the alphabet
{0, 1, #}. The inference engine is a simple loop. For multiple
conditions where there is a # symbol in the action part, | let the #
correspond to the message that matches the last condition in the
condition list (see example below). For the rules that | produce, this
allows the first condition to be the most general condition, thus
separating the classifiers into groups by the first condition of the
condition list. In Holland's classifier system, there is one new
message produced for each match between a classifier and the
message list. In the classifier system that | use, there will be three
types of classifiers which will produce new messages in different
ways. These types of classifiers are explained in more detail in the
next section. The classifiers in my system all have conditions that
must match the message list in order for them to become active.
That is, my system does not use the minus sign to signal when a
match is not present. Matches are made only when a message on the
message list is present.

Considering the last example again, the classifiers are:
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101, #00 — 11#

1#0 — 000.
If the message list was:

101, 100, 000
then the first classifier would fire twice, once for each possible
match, and the second classifier would fire once, producing the
following new message list:

110, 110, 000.
Note that the # in the action part of the first classifier corresponds
to the second O in the last condition of the condition part.

Holland states that the recodings allow the system to
carry out arbitrary computations. By this he means that any function
that can take a message as input and produce a message as output
can be computed by a classifier system. This does not mean that the
classifier system can compute a function in the Turing computable
sense. Turing computable functions are defined over an infinite
space such as the set of natural numbers or the set of all strings
over an alphabet, whereas a function from messages to messages is
over a finite domain. This paper will show that the classifier
system can compute a function in the Turing computable sense. When
a function is Turing computable, a Turing machine exists that can be
used to compute f. This Turing machine has an unbounded random
access memory since the tape is unbounded. The classifier system
does not have a unbounded random access memory. But what it does
have is an unbounded message list. | will show how this unbounded
fixed-length memory list can be used as an unbounded random access

memory.



Chapter 4
Simulation Of A Turing Machine By A Classifier System

4.1. Introduction
This chapter contains the proof that a classifier system has

the same computational power as a Turing machine. The proof
proceeds by showing that any u-recursive function can be computed

by a ciassifier system. Recall that a function is u-recursive if it
can be obtained from the initial functions ¢, u'?, and o by the
application of the following operations:

composition;

primitive recursion;

unbounded minimalization to regular functions.
To accomplish this, it is necessary to show how the initial functions

and the above operations can be represented by a classifier system.

4.2. Theorem
Given a u-recursive function, f, there is a classifier system

which computes f. The precise definition of the classifier system

will be given below.

4.3. Message Length and Representation
We may assume the given u-recursive function f is a k-place

function; i.e., f : Nk — N for some k 2 0. The alphabet for the

classifiers consists of the set { 0, 1, # }. To represent an input

number to the function f, unary notation will be used. Since the

20
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message length is fixed and an integer can be arbitrarily large, the
integer m will not be represented as an input message with m 1's
but will be represented as m input messages each having a value of
1. But f will have k input values, one for each place. It is necessary
to distinguish between the different input values. To do this the
input message will be divided into three fields. The first field will
consist of a code referring to the current point or stage of the
computation of the function f. The second field is a sequence number
referring to the place in the sequence h that the digit refers to.

Considering f to be a k-place function, its input, n stands for the
sequence n,, n,, ... ,n.. The sequence number will have at least k

digits, one for each place. If the input value being considered is n,

then the corresponding sequence number will have a 1 in the ith
position or place of the second field and 0O's elsewhere. The third
field is the actual digit or bit for that sequence. The number 0 will
be represented by a 0 in the bit position of the input message. The
number m will be represented by m input messages, each having a 1
in the bit position. A # in the bit position will represent either a 0
orail.

Given a function f that is u-recursive, we know that it can be
obtained from the initial functions by using composition, primitive
recursion, and unbounded minimalization of regular functions. The
function f can therefore be written as a sequence of functions that
will be applied in order to the input sequence h We can think of the
function f then as the sequence F,F, ... F,where each F;will be one

of the initial functions or one of the operations allowed on the
initial or subsequently obtained functions. To compute each F;by the
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classifier system will take a certain number of stages. The number
of all these stages, represented as a binary number, will determine

the maximum size of the code field of the input message. Each of the
Fi'sis a k-place function for some k. The maximum of all the k's,

along with the type of the operation each F;represents, will
determine the length of the sequence field in the message. The bit
position will be of length 1.

As an example, the number 2 in N with code 1 would be
represented by 2 input messages of the following form assuming
that we have a message length of 3:

LI
and the number 0 with the same code would be represented by:

110.
Here the first digit represents the code, the second digit represents
the sequence number and the third digit represents the bit. The
sequence (2, 0) in N2 with code 2, assuming a message length of 5,
would be represented by 2 input messages of the form:

1 0 1 0 1
and one input message of the form:

1 0 0 1 O
where the first two digits represent the code, the next two digits
represent the sequence number and the last digit is the bit. If the
message length were determined to be 8, with a code length of 3, a
sequence length of 4 meaning a maximum of a 4-place function, and
the bit position, then the message

01000101
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would refer to a code of 2 with a 1 in the third place. If there were
exactly 7 of these input messages, then this would refer to the
number 7 in the third place.

To make the notation easier, 1 will represent a message as a
3-tuple where the first number will be the code in decimal, the
second number will be from 1 to k representing the ith place of a k-
place function, and the third number will be the digit or bit. A # in
the sequence position will represent all positions, and a # in the bit
position will be either a 0 or a 1. In the last example, the seven
messages

01000101,
each containing a code 2 and indicating a 1 in the third position, will
be replaced by the 3-tuple:

237,

4.4. Types of rules
There are three types of rules in the classifier system.

A) A rule of type A fires only once no matter how many messages
it matches. An example of this type of rule is the rule for the zero-
function. Here we want to create only one message with a 0 bit
position.

B) A rule of type B fires once for any match. The identity rule is
an example. In this instance, we want to transfer all input messages
to the output so that these messages can be used again for the next
stage.

C) A rule of type C fires only once and uses up the input that

caused that rule to fire. These rules have a priority so that if a
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match exists, the rule will fire before any other rule can fire. Note
that by stating that the rule uses up the input, we mean that the
input messages used to fire this rule cannot be used to match the

condition of any other rule during this stage.

4.5. Initial functions

I will now describe the rules that will be used to execute the
initial functions. For simplicity, the rules presented here as
examples will always leave their results in the first place or
position. It is easy to modify such a rule so that the result is left in
any specified place by changing the sequence number from 1 to the
specified place. Remember that the # symbol when used in the
classifier has two meanings. If the # appears in the condition of a
classifier, then it matches either a 0 or a 1 in the input message. If
it appears in the action, it is an instrument to copy the
corresponding position in the last condition of the condition part of
the classifier.
4.5.1. Zero function

The initial zero function { with a code of C can be represented
by the following rule:

C = = — C+1 1 O , type A

This states that a message with code C and any match of sequence
number and bit will produce a message of code C+1 with a 0 in the
1st position. This is an example of a rule of type A; the rule fires

only once.
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4.5.2. Projection function
The initial projection function n'? can be represented by the

following rule of type B:
Ci® — C+1 1 8 ; type B

where in the condition we have a message with code C, a 1 in the ith
sequence place and either a 0 or 1 in the bit position. It produces a
message with a C+1 in the code position, a 1 in the first sequence
place and either a 0 or 1 in the bit position depending on the original
match. Recall that we are assuming here that the result of the
projection function operation is to be left in the first sequence

position. This rule fires for each possible match.

4.5.3. Successor function
The initial successor function o can be represented by the

following rules:

C & ® 5 C+1 1 1 ; type A

C 1 1 — ¢C+1 1 1 ; type B.
The first rule will fire once for any match and produce a new
message with a 1 in the bit position. The second rule will fire for al!
matches. This second rule is basically an identity rule. For each
message with a 1 in the bit position, it copies that message with a
new code. This rule is an example of recoding, where just the code of
the message has changed and the rest of the message is left

unchanged.
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4.6. Composition

Recall the definition of composition. Givent > 0, k 2 0,g a t-
place function and hy, ..., h; k-place functions, we define f to be the
k-place function such that for every hin NK

(M = g(hy(M, . .., h(M).
As a sequence of functions, composition can be written as C(g,hq,h,,
. ,hy). Note that in executing composition, the k-place functions h;
are computed before the t-place g function.

We can then define the rules for composition. For now, let us
assume that all of the functions are initial functions, so that each
function will take only one stage to execute. The first stage
consists of the rules to perform each of the h;'s. All will have the
same code, meaning that they can all fire simultaneously. The
output message from hj will have the code for g followed by a
sequence number of all zeros except for a 1 in the ith position of the
sequence number followed by the value in the bit position. The
second stage will consist of the rules for the execution of g. The
length of the sequence field will be the maximum of k and t. The
length of the code field will, in general, depend on the functions g,
hy,..., h. Since for now we are only considering initial functions,
the length of the code field will be two. After considering the coding
of the primitive recursion and unbounded minimalization to regular
functions operations we will return to the question of coding of

these operations when the functions are not initial functions.

4.7. Examples
As an example, consider the function 62 :N — N defined by
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o2(n) = o(o(n)) = n + 2.
Here both k and t in the definition of composition are 1, so that the
size of the sequence number is 1. To determine the size of the code,
we note that only two functions are needed, each being an initial

function. Therefore the maximum size of the code is 2. Considering
the function o2 as a sequence F; of functions and operations, we can

write o2 as the sequence C(o, o) where C will signify composition of
the functions inside the parentheses. The first argument will

correspond to g in the definition of composition and the rest of the
arguments the functions h; to h,. In this case there is only one h

function.

The rules for the function o2 are:

c & ® - 1 1 1 ; type A, rule for first o
c 1t 1 =1 1 1 ; type B, rule for first o
1 2 8 5 2 1 1 ; type A, rule for second o
1 1 1 -2 1 1 ; type B, rule for second o

where the first digit corresponds to the code, the second digit is the
sequence number and the third digit is the bit. If the input to 62 is 0
then the input message would be:
0o 1 O

and the firing of the rules for the first stage would be:

c &= ® -1 1 1
and for the second stage:

T 8 2 -5 2 1 1

P11 - 2 11

resulting in two messages of the form:
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2 1 1
corresponding to the number 2. If the input value were 2, then the
input would consist of two messages of the form:

o 1 1

and the firing of the rules for the first stage would be:

o = ®= - 1 1 1

01 1 -1 1 1

o 1 1 -1 1 1
and for the second stage:

1 8 8 5 2

1T 1 1t =2 1 1

1 1 1 = 2

1T 11 —- 2 1 1
resulting in four messages of the form:

211

corresponding to the number 4.
As another example, consider the function o5 : N3 — N defined
by 63(ny, Ny, N3) = c(ng (nqy, N2, N3)) = n3 + 1. The rules for this

function are:

0 3 &8 1 1 3 ; type B, rule for ng
1 1 %8 =5 2 1 1 ; type A, rule for o
1 1 1 =2 1 1, : type B, rule for o

Each message consists of six bits, the first two corresponding to
the code, the next three corresponding to the sequence number, and

the last one corresponding to the bit. Here again there are two
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initial functions that need to be computed, resulting in a maximum

code of 2. We can write the function

3

o3 as the sequence C(c,n3). The function =3

is 3-place and the

function ¢ is 1-place, producing a sequence size of 3.

4.8. Primitive recursion

The definition for primitive recursion is: if k 2 0, g is a k-
place function, and h is a (k + 2)-place function, then we can define a
(k + 1)-place function f such that for every he Nk

f(n0) = g(n)
and for every he NKkand m e N,
f(h m+ 1) =hh m, f(h m)).

This is an inductive definition. The function f so defined can be
written R(g, h).

To compute f(h m + 1), we first have to compute g(h), starting
with m = 0. Then h(nh 1, g(h) must be computed, followed by h(n 2,
h(n 1, g(f)), and so on. Thus, for a fixed h to compute the value of f
at m + 1 we use the previously computed value of f at m. This
continues until we have reached the desired value of m + 1. At first
glance, it would seem that in order to tell that the value m + 1 has
been reached, we would need m + 1 code numbers for the
computation, violating the requirement that all messages for
computing a given function be of a fixed length. But as you shall see,
we can reuse the code numbers. The problem arises in trying to
figure out how to test for equality using the rules. It is necessary to

know when the desired value of m + 1 has been reached. Instead of
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testing for equality, we define some rules for decrementing the
value of a natural number and then testing for zero. Testing for zero
is easy since the relevant message will consist of a 0 in the bit
position.

The first stage of computing primitive recursion will consist
of saving the value of m in the k + 3 position, i.e. for every message
with a 1 in the k + 1 sequence position, we will produce a new
message with the same bit position but with a 1 in the k + 3
sequence position. Even though the function is (k + 2)-place, an extra
place is needed to save the value of m. Therefore, the sequence
number has to allow for k + 3 places. For the computation, the value
at the k + 1 sequence position must start at 0. So in the k + 1
sequence position we produce a new message with a 0 in the bit
position. All other messages get passed through to the next stage by
using the identity function. Assuming that we start with a code of O,
the rules for the first stage will have the form:

0 k+1 8 1 k+3 s

; type B, rule to copy m to position k + 3
0 & 8 51 k+1 O

; type A, rule fires only once

rule to enter 0 in k + 1 position
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0 i g 1 i s fori=1tok k+2

; type B rule to copy all messages
except those for sequence position
k+1andk +3

The second stage will consist of the rules to perform the
function g, putting the result in sequence position k + 2. It will also
copy all of the input vaiues using the identity rules except for any
input in sequence number k + 2. Assuming that the computation of g
takes only one stage, the rules will go from code 1 to code 2. The
rules would look like:

1 {rules for g} — 2 k+2 {result of applying g}
1 i b — 2 i s fori=1tok+ 1
1 k+3 — 2 k+3 3 ; type B, identity rule

The third stage is to test if the value of m stored in the
sequence position k + 3 is equal to zero. If it is equal to zero, we
then want to pass the value stored in the k + 2 sequence position on
as the result of the primitive recursive operation. If the value is not
zero, we then need to apply the function h to the input messages
with the result stored in sequence position k + 2. Also all input
besides the previous value stored in sequence position k + 2 must be
passed through to the output. The rules for testing for zero will have
the following form:

2 k+3 0, 2 k+2 % — 6 1 8
; type B, rule if m = 0, first condition is

m=0,
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second condition is sequence position
k + 2. At this point we are done with
primitive recursion
2 k+3 1, 2 i 8 —- 3 | =
fori=1tok+1,k+3
; type B, rule if m & 0, identity on all
input but sequence position k + 2
2 k+3 1,2 {rules for function h} —
3 k+2 {message for result}
Note that the first condition of each classifier separates the
classifiers into two groups, those for when m = 0 and those for m #
0. The # in the action part of the classifier refers to the
corresponding digit in the second condition of the classifier.
Remember we are assuming at this point that all of the functions
are initial functions. Therefore, the computation for h takes only one
stage.
The fourth stage will apply the successor function o to the
sequence position k + 1, and pass the input through for all other

sequence positions.
3 s 8 > 4 k+1 1 ;type A, successor function

3 k+t 1 — 4 k+1 1 ;type B, successor function
3 i 8 - 4 i # fori=1tok, k+2 k+3
; type B, identity function
The fifth stage will be the first part of the decrementation of
the sequence position k + 3 plus the pass through of all other input

values. The rules for sequence position k + 3 will have the form:
4 k+3 1 — 5 k+3 O



33

; type C that fires only once and uses up its input
message. This is a priority rule. It changes one of
the 1bits to a O bit

4 8 g2 5 § 8 8

; type B, all other input values are passed through
The sixth stage will be the second part of the decrementation

of the sequence position k + 3 plus the pass through of all other
input values. From this stage we want to return to stage 3 where we
either have a zero value at sequence position k + 3 or we apply the
function h. Therefore the output code from these rules will be the
same as the code for stage 3. Using the code values given, this is
code 2. The rules for sequence position k + 3 will have the form:

S k+3 0, S5S k+3 1 — 2 k+3 1

; type C that fires only once and uses up its input
messages. This is a priority rule. If there is both a
0 bit and a1 bit in position k+3, it essentially

consumes the 0 bit

5 8 2 - 2 8 8
; type B, all other input values are passed through
At this point we are back at the third stage of the computation of f
where we test to see if the computation of f is complete or if we

have to compute h again.

4.8.1. Example
As an example of primitive recursion, consider the function
p'US(n1, n2) = n-‘ + n2.

This function is defined by:



To compute this function, each message will have a length of 8, with

the first three

sequence number and the eighth position for the bit. As mentioned
before, even though the maximum place value for the functions is 3,
we need an extra place to save the value of m. Therefore, the size of

the sequence number is 4. The function plus can be written as the
sequence R(n,

plus(n, 0) = g(n) = x}(n) = n

plus(n, m + 1) = 65(n, m, plus(n, m))
= o(n3(n, m, plus(n, m)))

positions for the code, the next four positions for the

C(o, ng)) where R represents primitive recursion. The

rules for this function are:

Stage 1:

o

Stage 2:

to save the original value of m
2 ¥ 5 1 4 =
; copy m at sequence position 2 to sequence
position 4

1 8 -1 1 =

; copy input n

8 8 51 2 0

; zero function to sequence position 2
perform g = u:
1 8 5 2 3 8
; rule to perform function g, output to
sequence position 3, projection function
i %8 > 2 i 3 fori=1,2 4
; identity rule to pass input through except

sequence position 3



Stage 3:
2 4 0
2 4 1
2 4 1
2 4 1
Stage 4:
3 2
3 4
3 i
Stage 5:
4 4
4 3
Stage 6:
S 4
o) 3
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if done output result else compute o3
, 2 3 ¥ —- 6 1 @

:m = 0 so return result

, 2 i %8 —- 3 | 8 fori=1,2 4

; m # 0, identity except for sequence

position 3

;2 3 1 —- 3 3 1

, 2 8 8 —5 3 3 1
; rules for o5, result in sequence position 3
increment m
1 — 4 2 1
8 - 4 2 1
; rules for c on sequence position 2
T —> 4 i % fori=1,3, 4
; pass through input except sequence
position 2
first part to decrement saved m

1 -5 4 0

; priority rule of type C, sequence position 4
2 5 5 8 @
. pass through all other input,
identity function
second part to decrement saved m
0,5 4 1 - 2 4 1

, priority rule of type C, sequence position 4

T — 2 @

. identity on all other input
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; Note that the output code at this stage is

the same as the input code for Stage 3.

4.9. Unbounded Minimalization of Regular Functions

The final operation to be performed by our classifier system is
unbounded minimalization of regular functions. The rules for this
operation are similar to the rules for primitive recursion, but
simpler since there is no decrementation, rather just the testing of
the result for zero. Recall the definition of unbounded

minimalization. If k 2 0 and g is a (k + 1)-place function, then the
unbounded minimalization of g is the k-place function f defined such
that for any he Nk

f(n = pm[g(h m) = 0].
For f to be u-recursive, g must be regular. This guarantees that f is

defined everywhere. The unbounded minimalization of g is denoted
u(g).

For unbounded minimalization, we have to start at m = 0. After
each computation, the value of g(h m) has to saved so that it can be
tested against 0. Sequence position k + 2 will be used to save the
result of the computation of g{h m). Even though g is a (k + 1)-place
function, an extra sequence position will be needed.

The first stage for the rules for unbounded minimalization of
regular functions consists of creating a 0 in the sequence position k
+ 1 by the application of the zero-function. We therefore have the
rules:

0 8 3 — 1 k+1 O ; 0 at position k + 1

; type A, rule fires only once
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0o & & - | i i ; type B, copy input
The second stage consists of the rules to perform the function
g with the result stored in sequence position k + 2 and also the
identity, so that the input is passed through except for sequence
position k + 2. Assuming that we can compute g in one stage, we
have the following rules:
1 {rules for g} — 2 {result of applying g}
1 i A — 2 i % fori=1tok+ 1 ;typeB
The third stage consists of reducing the result of the operation
g to a single message. This is done by executing the foliowing rule
exactly once.
2 k+2 8 5 3 k+2 =® . type A
Also in this stage is an application of the identity function to copy
all input except for that at position k + 2, resulting in the following
rule:
2 i % — 3 i = fori=1tok + 1 type B
The fourth stage either exits the rules for unbounded
minimalization of regular functions with the output being the value
of m stored in the sequence position k + 1, or it increments the value
of m stored in position k + 1 and passes through the input both with
the code used for the application of the function g. The rules for this
stage will have the form:

3 k+2 0, 3 k+1 & — 4 1 8
; type B, rule to output the value of m
3 k+2 1, 3 i 88 -1 | = fori=1tok
., type B, rule to pass through input, identity
function
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3 k+2 1, 3 k+1 1 —- 1 k+1 1
; type B, rule for o on sequence position k + 1
3 k+2 1, 3 % & 5 1 k+1 1
, type A, rule for o on sequence position k + 1
These last three rules output the same code used in stage 2 so that

the operation g can be performed again.

4.10. Operations on Non-initial Functions

As mentioned before, the above rules concerning the
operations of composition, primitive recursion, and unbounded
minimalization on regular functions were applied only to the initial
functions so that each operation could be performed in one stage. If
the functions are not the initial functions, then we have to take into
account that intermediate results have to be saved in order to
compute the final result of the function. This can be accomplished by
expanding the message length. If it is established that the sequence
part of the message is of length k, then it is possible that we will
have to make that part of the message be of length pk, for some p,
where the extra p-1 groups of bits of length k are used as temporary
storage to hold the computation of the intermediate results. How to
compute the value of p will be shown later.

As an example, consider the multiplication function, mult :

N2 — N defined by mult(n, m) = nm. It is obtained from g = { and h by

primitive recursion, where h is defined by composition of plus with
n?and ng. This gives the following definition:

mult(n, 0) = £()

mult(n, m + 1) = h(n, m, mult(n, m))
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where
h(x, y, 2) = plus(zl(x, ¥, 2), n3(x, ¥, 2)).
The function plus(n,, n,) = n; + n, is primitive recursive since it is
obtained from g = n} and h = o5 by primitive recursion:
plus(n, 0) = = (n)
plus(n, m + 1) = 54(n, m, plus(n, m)).
The function o3(ny, ny, N3) = n3 + 1 is defined by composition:
03(“1, n2, n3) = 0‘(1!:3(!11, n2, n3)) .
First let us consider how this will be written as a sequence of

functions. The function mult{n, m) = R({, h)

= R({, C(plus, n?, ug))
= R(L, C(R(x], o5), 72, 13))

= R(L, C(R(x], C(c, ), =3, =3)).

To make the example easier to follow, | will show how to
compute mult(n,1). For notation and simplicity, instead of using the
message length and the scheme of notation given previously, | will
use only the sequence part of the message length with a decimal
number in each place showing the value for each place of the k-place
function. Mult is a 2-place function but h is a 3-place function. To
compute primitive recursion, we need an exira place for the
temporary storage of the value m. Therefore, to start with, 4 places
will be needed. The input to the function will be n 1 - - where n is
the first input, 1 the second input, and the third and fourth place for
now are empty. The first stage is to move the value of m, which is 1,
to the k+2 or 4th position and to put a 0 in the 2nd position. This
gives the sequence n 0 - 1. The second stage is the computation of g,

the zero initial function, producing the sequence n 0 0 1. Remember
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that the result of the function is put in the 3rd position. Since the
value of m in the 4th position is not 0, h is now applied to this
result. The function h is a primitive recursive function. It is going to
require that some intermediate results be saved in order to obtain
the final value of h. If these intermediate results are saved in the 4
sequence positions already used, then we will not be able to
distinguish between the original input values and the intermediate
results. The solution is to expand the message length. In the
example, we will need 4 more places, making the sequence length 8.
The input to h is n 0. The new sequence will look lke n 001 no0--.
The function h now will be applied to the last four sequence values,
passing the first four sequence items through. Since h is a primitive
recursive function, the value of m has to be saved and replaced by O,
giving the sequence n 0 0 1 n 0 - 0. Then plus can be applied with the
resuit being n 0 0 1 n 0 n 0. Since the value of m for the function h is
0, the result, which is in the 7th sequence position, is put in the
third sequence place, the place reserved for the result of the
function h. The sequence now looks like n 0 n 1 n 0 n 0. At this point
only the first four sequence positions are relevant. The next stage is
to decrement the value of m in the 4th sequence position. Now the
value of m is 0 and the computation is complete. The result, n, is in
the 3rd sequence position.

The computation of mult(n,1) was rather simple since the
computation of plus used just the first step in primitive recursion
and this step was an initial function. If we had computed mulit(n, m)
where m was greater than 1, the plus operation would not have been

so simple and the message length would have had to be expanded
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again to accommodate the intermediate results of the plus
operation.

Having seen how to express a given U-recursive function as a

sequence of the operations composition, primitive recursion, and
unbounded minimalization of regular functions applied only to the
initial functions, we can convert this sequence of functions into a

parse tree. The parse tree for the function mult would look like

/I\
/

R 7(1,3) 7(3,3)

1,1) \c
// AN

7(3,3)

Figure 4-1: Parse Tree of the Function mult.

The initial projection function "ij is represented as =(i,j) in the

above parse tree, meaning the ith place of an j-place function. As we
go down each branch of the tree, it will tell us how many
intermediate results will be needed to compute one of the non-
initial functions. The depth of the tree gives the number of groups of

sequence numbers that will be needed, or the value of p mentioned
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previously. For the computation of mult(n,m), we first have to
compute primitive recursion which would take one extra group of
sequence numbers. The result of the first operation or { was put back
into the first group and did not need an extra group of sequence
numbers since {is an initial function. The next step is compaosition.
The length of the sequence field has to be increased to perform the
composition. Since all of the h;'s are primitive recursive, they can
all be computed at once as shown earlier. In general this will not be
the case. Therefore, the length of the sequence field of the message

would have to be increased in order to perform the composition so
that each h;can be performed individually with the same input

values. After each of the h,/'s has been computed, the results are in

the second group. Then we need to increase the the number of groups
of sequence numbers again to perform the primitive recursion for
the function g of the composition. In the case of mult(n,1), the only
primitive recursive step needed was the first one, to perform the
operation n:, which can be done in one step. In general, after the
first step of the primitive recursion, the second part or the
operation o5 would come next. This is a composition which requires
the length of the sequence field to be increased again. The original
length k of the sequence field is modified to pk, where p is the depth
of the parse tree.

Using this scheme we can compute composition, primitive
recursion, and unbounded minimalization on regular functions. For
composition, not all of the functions will necessarily take the same
number of stages. Therefore, using the expanded message length,

where the sequence field of the message has been increased to
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handle intermediate results, one function can be computed at a time.
We can look at this graphically. Consider the general function
f(M = g(hy(M, ..., h(n) = C(g,hy,hy, ... ,h). Let k be the maximum
of length of h and t. The sequence field of the message is expanded
to at least 2k. Each function, h;, then operates on the second k bits,
putting its result in the ith position of the first k bits. When all the
h's have been computed, the function g can then be computed. This

can be shown graphically as follows where h; is represented as h(i):
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The input to the function
is copied to the second
group so that each h
function can be computed
separately without
destroying the input.

Each h(i) function
executes separately with
the result being placed in
the first group. The
results are passed to the
next stage using the
identity function. The
input in the second group
is also passed on.

"The first group now has

the results of computing
all the h's. These results
are passed to the second
group incase g is not an
initial function. The result
of g is placed in the first

group.

Figure 4-2: Graphical Representation of Composition



45

For primitive recursion, we have f(f) = R(g, h) and this can be shown

graphically as follows:

k+3
lt * :‘ Copy the input to the
> - Il second group
I -~ I ~
~ ~
| ~ I ~
~ ~
| ~ ~ |
l \/l :,i Compute g putting the
. g result in the k+2 position
I id /1 g _ -
I /| -
/ -
| |- |
k< ’ ,l‘ Copy input to second
, Dy k+2I > group
~ ~ ~ .
I ~ i ~
~ ~
~ ~ )
‘ ~ } ~_ | Compute h putting the
' = ' resultin the k+2 position
]| d /1 h _ -
| ' /| _ -
| i
| —
| ]
{ | _ /ﬁ'
| . /1 h -
| id /| _ - -~
I -
1= e final result in the
1 i The final result in th
' o’ ' k+2 position is returned
Ve
-7
o
Vod
o

Figure 4-3: Graphical Representation of Primitive Recursion
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For the unbounded minimalization to regular functions, f(h) =

U(g). Graphically, this will look like the following:

| k+2 | copy input to second
| I group
l . ~ l ~ ~
~ ~
| id S o | ~ o '
‘ S o ‘ S o | Compute g storing the
[ 1 — -1 resultin k+2 position
I ¥ -
g _ -
| id H -
‘ g Ol - Copy input to second
r ~ o T S o group
| T~ | T~
~ ~ =~ ~
| e = |
~ ~_1 Compute g storing the
: 1”] _ - -1 result in k+2 position
g -~
. -~
| id lvl - -
| | -
1 |
! | | ,I Compute g storing the
: : " _ - result in k+2 position
g -
-~
| id i _ -
¥ _ When the result of g
— 71 is 0, the value in the
S<e k+1 position is returned
”~
P
”~
Pl

Figure 4-4: Graphical Representation of Unbounded Minimalization.
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It has been shown that by expanding the message length, all 1 -

recursive functions can be computed by the classifier system. Given
a u-recursive function, we know that it is a sequence of initial
functions combined by composition, primitive recursion, and
unbounded minimalization of regular functions. Therefore, it is
possible to determine how many intermediate results will be
necessary to compute the function and whether these results
overlap. From this, the maximum message length can be determined.
The function needs to be able to be computed for all possible input
values, and the message length has to be fixed. The message length
then is set to be the maximum that might be needed to compute the

function for any of the possible input values.

4.11. Summary

Since it has been shown that the initial functions and the
allowable operations can all be computed by rules in the classifier
system, the theorem has been proven. Each function will have its
own message length dependent on its composite functions and their
associated operations. This message length is independent of the

input values.



Chapter 5
Conclusion

The goal of this paper was to show that a classifier system
has the computational power of a Turing machine. To do this, | have

used the functional approach to computability. Thus, | start with a
given arbitrary u-recursive function. This means that the initial

functions that comprise the u-recursive function and the

combinations used to obtain this wu-recursive function are also

known. With this knowledge, it is possible to define a classifier
system with a fixed message length that computes the given
function. In my classifier system, | have used three different types
of rules. Holland used only one type of rule. Whenever a match was

made, Holland's rules fired. Using these assumptions, | have shown
that given a u-recursive function, that function can be computed by

the classifier system. Since the given function is an arbitrary u -

recursive function, all u-recursive functions can be computed by the

classifier system. Each function will have its own message length
and its own set of rules.

Future research can be done by investigating the possibility of
using less then three types of rules in the classifier system. This
might be combined with the use of the not operator (-) that Holland
uses. This operator signifies that the condition is not satisfied by
any message on the message list. Using this notation might make

some of the classifiers easier to write and understand.

48
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The operations permitted were for regular functions. This
process can also be expanded to see if it holds for partial recursive
functions. A partial function is one whose domain is properly
contained in Nk as opposed to a function whose domain is NX. The
input then would have to be restricted to only that part of the

domain for which the function in question is defined.
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