
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1995

Heterogeneous internetworking model with enhanced routing Heterogeneous internetworking model with enhanced routing

security and management functions security and management functions

Yan Zhu
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Zhu, Yan, "Heterogeneous internetworking model with enhanced routing security and management
functions" (1995). Graduate Student Theses, Dissertations, & Professional Papers. 5503.
https://scholarworks.umt.edu/etd/5503

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5503?utm_source=scholarworks.umt.edu%2Fetd%2F5503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of I V I O N T A N A

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission X
No, I do not grant permission ____

Author's Signature V^w\

Date T J f ? , (? / _____________

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

A Heterogeneous Internetworking Model
with Enhanced Routing, Security and Management Functions

Yan Zhu

B.S., Peking University, P. R. China, 1986

M.S., Institute of Software , Academia Sinica, P. R. China, 1989

Presented in partial fulfiment of the requirements

for the degree of Master of Science

University of Montana

1995

Approved By

Chairman, Board of Examiners

Dean, Graduate School

Date

UMI Number: EP40967

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependen t upon the quality of the copy submitted.

In the unlikely even t that the author did not send a com plete m anuscript
and there a re missing pages, th ese will be noted. Also, if material had to be rem oved,

a note will indicate the deletion.

UMT
Dissetttrten WhfeMhfl

UMI EP40967

Published by P roQ uest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQ uest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United S ta te s Code

ProQ uest LLC.
789 E ast Eisenhow er Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

Zhu, Yan, M.S., July 1995 Computer Science

A Heterogeneous Internetworking Model with Enhanced Routing, Security and management
Functions (83 pp.)

The world of computing is undergoing changes. Network computing, using PCs, workstations,
LANs and WANs, is challenging traditional centralized data processing architectures.

This project aims at building a prototype of a heterogeneous network environment. The
problems to be studied in the project are:

Design the heterogeneous network structure and topology;
Install and run different protocols and network software;
Offer automatic routing services among different networks;
Experiment with all the standard Internet network services, such as ftp, telnet (rlogin),

SMTP and email (smail and sendmail) as well as Simple Network Management Protocol
in the heterogeneou internetworking environment in addition to NetWare services;

Design and implement a firewall as the major security mechanism in the heterogeneous
internetworking environment.

Three subnetworks running Novell’s NetWare, SunOs, BSD386 and Linux operating system
are respectively interconnected together with a gateway and a router. A set of internetworking
services such as FTP, TELNET, RLOGIN, SMTP and SNMP is offered in the environment.

Director: Youlu Zhe:

A router-based filter with packet filtering mechanism is implemented as the kernel of the
firewall.

ACKNOWLEDGEMENTS

I would particularly like to thank Dr. Youlu Zheng for his effort and support, and the
initail idea for this project. His expertise was the technical backbone of this paper. I am
proud to be his student.

I also would like to thank Professor Jerry Esmay and Professor Dick Walton for their
invaluable guidance, and to Dr. Alden Wright for his help with sovlving the BSD problem.

C ontents

1 Introduction 3
1.1 Overview .. 3
1.2 The Reasons to Build a L A N .. 4
1.3 Problem S ta te m e n t.. 5

2 A P ro to ty p e H eterogeneous N etw ork 6
2.1 D e s ig n ... 6

2.1.1 Network Topologies ... 6
2.1.2 Network P ro to c o ls .. 8
2.1.3 Network and Network Operating S ystem 11

2.2 Im plem entation .. 13
2.2.1 Physical Connections . .. 13
2.2.2 Hardware Architecture and Network C onfiguration 14
2.2.3 Software Components and Configuration.................................... 16
2.2.4 PC based Software Routing and G a te w a y 20

2.3 Network Services and Network M anagem ent... 22

3 N etw ork Security 24
3.1 General Approach .. 24

3.1.1 Authentication, Authorization and D ata Integrity 24
3.1.2 Encryption and K e r b e r o s ... 26
3.1.3 Firewalls .. 28

3.2 A Router-based Firewall Using P ack e t-filte rin g 31
3.2.1 Software Design and Im plem entation ... 32

4 Sum m ary 46

5 A pp en d ix 46

A T h e m ajor steps to set up each m achine o f th e netw ork 46

B T he m ajor custom ized files on each m achine o f th e netw ork 48
B .l The customized files on the NetWare Server: 48

B.1.1 S Y S :/system /au toexec.ncf:... 48
B.1.2 SYS:/etc/gateways: ... 48

B.2 The customized files on the L inux ... 49
B.2.1 /e tc /lilo .co n f:.. 49
B.2.2 /e tc / r c .d / r c . in e t l : .. 50

B.3 The customized files on the 4 .3 B S D :... 52
B.3.1 /e tc /n e ts ta r t : .. 52
B.3.2 /e tc /sen d m a il.c f:... 54

B.4 The customized files on the SunO S:....................... 75

1

B.4.1 /e tc / r c .lo c a l : .. 75
B.5 The customized file /e tc /hosts on each machine: 82

2

1 Introduction

1.1 Overview

The world of computing is undergoing fundamental changes. Network computing,

using PCs, workstations, LANs and WANs, is challenging traditional centralized

d a ta processing architectures. Many computer applications can be successfully

moved from minicomputer, mainframe, and even supercomputer platforms onto

networked PCs and workstations with significant cost savings and increased per

formance, flexibility and growth potential. The aggregate power of a L A N full of

PCs, workstations, and servers allows for the development of new applications and

user interfaces th a t would have been impractical or impossible in the past.

A network is a system th a t interconnects computers and devices using various

media for the efficient use of shared resources and distributed information. It is

also a tool for facilitating employee communications and conducting business in

a timely fashion through the access and sharing of software and data. A network

reduces resource redundancy. This allows every workstation to use the same program

from wherever it is located on the network without installing the program on each

w orkstation’s disk. W ith networks, the savings are substantial not only on software,

but on printers, disk storage devices and other expensive hardware devices as well.

A network also brings out new problems while it gives people great convenience

and savings. Much information, for example personnel files, should not be accessible

3

to the general public. Account information in a bank is not expected to be shared

by every user in the network either. In many situations, as networks grow and

are interconnected, the data in one network should not be accessed by the users in

another network. Thus, one aspect of management of a computer network, which is

essential in order to run the network most efficiently, is how to control and secure the

network. The rapid growth of the Internet for commercial use makes the problem

more serious and urgent.

1 .2 T h e R e a so n s to B u ild a L A N

A Local Area Network (LAN) is a group of computers and peripheral devices lo

cated in a close geographic region and connected by a communication medium.

The existence of large numbers of microcomputers has been a m ajor factor in the

development of LANs.

A Wide Area Network (W AN) was originally implemented to make more cost-

effective use of large and expensive mainframe computers. Traditionally, a WAN

has a t least one or more computers central to the operation of the network. Usually

the central computer is a timesharing minicomputer or a large mainframe computer.

The development of a WAN focuses on specific machines. The communications in

a WAN are usually point-to-point.

In contrast, the development of a LAN focuses on connectivity. It emphasizes

the connections of daily used devices such as microcomputers, fax machines, copy

machines and printers. It also pays more attention to the interconnections of LANs

and global networks. LANs are the currently foundations of computerization for

almost every field.

4

1 .3 P r o b le m S ta te m e n t

The purpose o f this project is to establish a prototype of a heterogeneous network

environment and assure security on it.

There is no doubt th a t connecting computers and other devices together makes

the computing environment more powerful, efficient and cost-saving. At the same

time, it is also true th a t a cluster of networked computers is more complicated than

individual computers. A network runs more software as the interface between users

and networks. There are many more facilities to be managed in a network than in

a stand-alone personal computer. It is not as easy for a system adm inistrator to

m aster the software and data processing in a network as in a centralized computer

system.

This project aims a t building a prototype of a heterogeneous network environ

ment to show:

o W hat the principles of networking are;

o W hat basic software networking requires;

o W hat kinds of services a network provides;

o How different protocols and internetworking software work together;

o How a network can be managed and maintained with security.

Additionally, there are many problems arising with computer internetworking. Net

work security in an internetworked environment is one of the most im portant issues.

A prototype heterogeneous network is an ideal experimental facility for network

security problem investigation.

In summary, the problems to be studied in the project are as follows:

o Design the heterogeneous network structure and topology;

5

o Install and run different protocols and network software;

o Offer autom atic routing services among different networks;

o Experiment with all the standard Internet network services, such as ftp, tel

net (rlogin), SMTP and email (small and sendmail) as well as Simple Network

Management Protocol (SNMPv2) in the heterogeneous internetworking envi

ronment.

o Design and implement a firewall as the major security mechanism in the het

erogeneous internetworking environment.

2 A P rototyp e H eterogeneous N etw ork

2 .1 D e s ig n

2.1.1 N etw ork T opologies

There are a variety of ways in which networks can be organized, and most networks

are in a constant state of change and growth. If the computer network has a main-

site or host computer th a t does all data processing for one or more remote computers,

it is a centralized network. If there are remote computers processing jobs for end-

users, as well as a main-site computer, then th a t is the beginning of a distributed

network. A distributed network can be either centralized or dispersed, but a network

th a t does not involve distributed processing can only be centralized since all data

processing is done on a main-site computer.

Several network topologies can be selected as a networking structure, such as

point-to-point (centralized), star (centralized), ring (distributed), bus structure (dis

tributed) and hierarchical (distributed).

Point-to-point has only a computer, a communications line (direct or through

the telephone system), and one computer at the end of the line. This was the earliest

6

and classical form of networks, mostly for wide area networks, and is undoubtedly

not sophisticated enough to be the network topology for the network environment

under consideration.

A star network, or centralized network, is one in which primary computing is

accomplished a t a single site, with each remote site workstation entering the central

system via a single communication line. Although a star network may have other

powerful computers at the end of its communication lines, it is not a good structure

to show distributed processing on a LAN without an extremely powerful computer.

A ring network is organized by connecting computers in a closed loop. Each

node is only linked to those adjacent on the right and the left. Hence, the maximum

distance a ring network covers is far larger than tha t of other topologies such as the

bus topology. Advantages of a ring network are tha t it can be run at high speeds

and th a t the mechanisms for avoiding collisions are simple. But a ring topology

does not have the flexibility th a t bus structures have and often carries a high price

tag. Ring networks sometimes use token passing schemes to determine which node

may have access to the communications system. Token Ring (IEEE 80S.5) and

Fiber Distributed Data Interface (FDDI) which use double ring connection are well

known networks using ring topology.

A bus network is configured with branches extending from a central backbone.

As a signal traverses the bus — normally a coaxial, fiber optic or twisted pair cable

— the connection listens for the signal tha t carries an address designation. The

products of bus systems, such as ETHERNET, are the least expensive and most

commonly used. Signal collision and signal attenuation limit the range covered by

the bus topology network. The bus structure of ETHERNET is chosen as the LAN

topology for this study.

7

A hierarchical network represents a fully distributed network, in which computers

feed into computers, which in turn feed into other computers. The computers used

for remote devices may have independent processing capabilities and draw upon the

resources a t higher or lower levels as information or other resources are required. A

hierarchical network is one form of a completely distributed network.

2.1.2 N etw ork P rotoco ls

A protocol is a set of rules th a t coordinates the exchange of messages between

partners. Standards for establishing a network benefit the users of computer network

and communications protocols. They force manufacturers to consider quality rather

than “gimmicks” .

To establish a network standard, the International Organization for Standard

ization provides a seven-layer reference model (OSI reference model). At present,

this model is generally used as a framework to describe protocol characteristics and

functions. The importance of the reference model is th a t it permits various net

works of the same or different types to communicate easily with one another as

if they constituted a single network. The layering is based on the principle th a t

any layer may use the services of the layer below it without knowing how the layer

below provides these services. The layer above offers specific services of its own.

In a layered architecture, each system is viewed as a logical composition of a set

of subsystems. Subsystems th a t are adjacent to one another in the vertical hierar

chy communicate through their common boundary. W ithin each subsystem or layer

are entities. When a computer communicates, it passes messages between adjacent

layers. Each layer, in this OSI model, defines a layer or level of functions. The

lower-level implementation can be hidden to achieve compatibility a t some higher

levels. It allows the implementation to be focused on its own level functions.

‘ Practically, network architecture varies in several layers in term s of this seven-

layer model. Both IPX and T C P /IP are layered protocol suites. Their purpose

is to provide a set of communication protocols th a t are manufacturer-independent.

When two computers are going to communicate, they break their messages down

into manageably sized packets, then send these packets across the network in a

format th a t other computers can understand and decode.

IPX, the Novell NetWare protocol, which stands for Internetwork Packet Ex

change, supports connectionless datagram delivery. Corresponding to the Network

layer of the OSI model, this protocol performs addressing, routing and switching to

deliver a packet to its destination. Datagram delivery is not guaranteed, but IPX

packets are correctly received about 95 percent of the time. The layer above IPX is

responsible for error control and reassembling the packets in correct order.

The motive for developing T C P /IP (Transmit Control Protocol/Internet P roto

col), is to broaden the base of hardware and software from which to choose for the

purpose of competitive binding, rather than be committed to a proprietary network

ing system. T C P /IP is a set of protocols unrelated to the physical and data link

layers. It can be implemented on top of any physical data communication medium.

TC P provides the packet sequential, error control and other services required to

provide reliable end-to-end communications. IP takes the packet from TCP and

passes it through whatever gateways are needed for delivery to the remote TCP

layer through the remote IP layer.

Figure 1 shows the structures of these two protocols comparing the ISO’s OSI

reference model.

9

N etw are
Application

Layer
User Shell;

Telnet
SNMP S- 1

V & /\ SMTP /
NetWare Presentation

Layer

I Session
Layer

8 /N e tW a re
i * C UDP 1 <8

/Transport
Layer

NetWare \
v 'IPX ’

Network i ip
Layer

; \ m a c /

:t - - r - -
Network a
Interface /
- Card /

Network"
Interface

i "-..Card y

Physical
Layer

DOS
Workstation

running
NetWare

UNIX
Workstation

running
TCP/IP

Figure 1: The comparison of three protocols — T C P /IP , IPX and ISO’s OSI.

Compared with the OSI seven-layer model, the lowest two layers of IPX and

T C P /IP are the same. For the network layer in OSI, NetWare and UNIX T C P /IP

are accomplished by IPX and IP, respectively. For the transport layer in the OSI

model, NetWare offers SPX and UNIX T C P /IP offers TCP and UDP. NetWare has

no functions in the session layer of OSI model, while UNIX T C P /IP has RPC (Re

mote Procedure Call). For the presentation and application layers in OSI model,

10

NetWare provides NCP as well as User Shell correspondly and UNIX T C P /IP pro

vides NFS, Telnet, FTP, SMTp and SNMP across these two layers.

2 .1 .3 N etw ork and N etw ork O perating S ystem

When designing a LAN, before connecting all computers and related resources to

gether, it must first be determined in which way it is to be used, what kind of

protocols to use for transm itting data, what kind of network operating system to

use for control of the network, and which networking services to be offered.

There are two m ajor LAN software design configurations. One is peer-to-peer

and the other is client-server. In a peer-to-peer network architecture, any computer

may make a request of any other computer. There is no dedicated file server, nor any

machine dedicated to only one task. Peer-to-peer is usually considered suitable only

for wide area networks. The largest network in the world, the Internet, works with

the peer-to-peer method for internetworking. In a client-server network architecture,

client machines make requests of another machine called the server. Both methods

are used in different networks in the prototype networking environment under study.

When looking for a typical client-server model, NetWare is an easy choice. Nov

ell’s NetWare running IPX protocol is one of the most widely used local area net

work (LAN) software in the business world. Novell NetWare (but not NetWare Lite)

uses the client-server architecture based on PC and UNIX clients requesting services

from the NetWare file server and print server. NetWare is m ature, robust and priced

reasonably for the IBM PC compatible environment. It can also be conveniently

connected to other popular internetworking protocols.

On the peer-to-peer side, T C P /IP and related protocols running on numerous

remotely located LANs are the base of the information super highway. Millions

11

of computers and networks are interconnected into the Internet running T C P /IP

protocols. UNIX is a popular, sophisticated and complete operating system. W ith

the development involving so much time and so many people, it provides many

network services. UNIX along with the aforementioned related network products

can work in a peer-to-peer architecture.

Another reason to choose these two kinds of network software is th a t IPX and

T C P /IP are the two major and most representative network protocols in the com

puter and network industry. Also, using these two protocols makes the environment

a heterogeneous network.

Using two different protocols creates a crucial problem — how to communicate

between the two. Fortunately, NetWare allows operating two protocols on one net

work interface card. NetWare version 3.1x and 4.x support T C P /IP in four ways:

o A NetWare file server can act like a UNIX server:

Running NetWare Network File System (NFS) lets UNIX workstations hook

up to a NetWare server and access the files on a server’s hard drive.

o A NetWare file server can act as a router for an IP network:

The NetWare server will behave like an IP router if users install the TCPIP.NLM

and connect the server to an IP network. The server can route between mul

tiple IP networks or between a NetWare network using the IPX protocol and

a UNIX network running T C P /IP using two network interface cards.

o NetWare LAN WorkPlace and LAN WorkGroup allow D O S workstations to

talk to a UNIX server:

LAN WorkPlace allows users to send da ta across an IP network connection to

a distant NetWare server.

12

o NetWare can sneak NetWare packets across an IP network with the IP tu n

neling feature:

Using the IP tunnel feature, a NetWare server can communicate w ith a second

NetWare server across an IP backbone. The tunnel feature sends the NetWare

IPX packets across the IP backbone embedded in IP packets.

W ith these methods, heterogeneous networks can run both IPX and T C P /IP at

the same time simply and smoothly.

2 .2 Im p le m e n ta t io n

2.2.1 P h ysica l C onnections

According to the layered network structure, the lowest level is a hardware base for

a network, which defines the physical fink between computers and networks. In

addition to computers which run everyday applications, network interface cards and

transmission media — cables are needed for the connection.

A network interface card (NIC) installed in a computer links a computer, whether

functioning as a file server, workstation or gateway, to a network or another com

munication device. A socket at the back of a card provides a connection to any

network cable. There are many different kinds of network cards which are usually

independent of computer type, network protocols and higher layer network software.

Each card has its own driver. Almost every operating system has built-in drivers

for most widely used cards to simplify the installation. Generally speaking, there

are three basic steps to install a network card: First, insert a card into a computer;

Second, load its own driver; Third, activate the driver and modify the operating

system to recognize the card. In the experimental network, four types of NICs are

used: an S-bus ETHERNET card for a Sun 3-110 workstation, an SMC Elite 16

13

ETHERNET card (Western Digital 8003 compatible) for a 486 running BSD 386

UNIX, NE2000 network cards for a 486 running Linux and PC 286s, and NE2000

compatible cards for the NetWare Server, an intel 386 computer.

A variety of media are used to provide LAN communication services. The most

common are twisted pair copper cables and coaxial cable (for either baseband or

broadband). As the engineering problems involved in using fiber optics have been

resolved, this technology has been gaining popularity and will probably overtake

coaxial cables as the main stream medium. However, there is no single best trans

mission medium. The selection of a medium is dependent on the use. Twisted pair

cable (lObaseT) is usually wired in a star pattern with a repeater hub in the center

of the star and workstations a t the end of the tentacles. Fiber optic cable has been

limited to the high-speed and high-security installations because of the high cost of

materials and installation. Coaxial cable is mostly used in bus topology networks.

Thin coaxial cable (10base2) is cheaper and computers are more easily connected.

A computer or other network device can be attached to the bus cable through a T-

connector at the back of its NIC. One term inator is attached to each end of the bus.

This configuration may become irritating when problems occur because it is very

difficult to isolate problems on a bus. Because of the resource availability, coaxial

cable is used for the experiment.

2.2 .2 H ardw are A rch itecture and N etw ork C onfiguration

To dem onstrate how different kinds of software (such as router, gateway, Simple

Network Management Protocol (SNMP), etc.) and different types of protocol work,

a limited number of computers are divided into three groups as three LANs. A

router and a gateway are used to connect the three LANs together. Figure 2 shows

the hardware architecture and network configurations.

14

PC 386

I/O = 0X340
IRQ = 2

I/O = 0X300
IRQ = 3

I/O = 0X300
IRQ = 3

I/O = 0X300

IRQ = 3

PC 286 1 PC 286 n

PC 486

I/O = 0X360

IRQ = 5

Sun Workstation

I/O = 0X340

IRQ = 3

I/O = 0X280
IRQ = 3

PC 486

Subnetwork 1 Subnetwork 2 Subnetwork 3

Figure 2: The Hardware Architecture and Network Configuration for Three In

ternetworked LANs.

The configuration for each node is as follow:

The Sun workstation works as a node. The network card comes with the work

station which uses default I/O base address and default interrupt.

The NetWare Server which is a PC386 works as a gateway between network 1

and network 2. It uses two NE2000 compatible cards. The. first is a YCL card with

15

I/O base address 0X340 and IRQ 2. The second is an AE-200JL-N with I/O base

address 0X300 and IRQ 3

A 486 PC works as a router between network 2 and network 3. It has two NE2000

cards attached. The configuration of one card is 0X340 for I/O base address and

IRQ 3. The other uses 0X360 for I/O base address and IRQ 5.

The BSD computer is a 486 PC th a t works as a node. The SMC network card

is installed, on which the I/O base address is 0X280 and IRQ is 3

Two 286PCs work as NetWare’s clients. They both use NE2000 cards with

default configuration, I/O base address 0X300 and IRQ 3.

2.2 .3 Softw are C om ponents and C onfiguration

The basic networking requirement of the experimental project is th a t the network

software and the internetworking software run seamlessly in the environment to

provide enhanced routing, security and management functions in addition to all

standard network services. Three UNIX workstations, running BSD386, Linux and

SunOS, and a NetWare LAN, including a server and several PCs running MS-DOS

and MS-Windows, are organized into three networks as in Figure 3.

Network 1 is a client-server LAN, running NetWare 3.12 with both IPX protocol

and T C P /IP protocol. IPX communication protocol is used to connect clients to

the NetWare server. The T C P /IP protocol functions on the server to connect it to

the other two LANs. Client applications on MSWindows and on MSDOS such as

rconsole, login etc. are installed in the two PC clients.

Both network 2 and network 3 are peer-to-peer networks running UNIX-based

software. Network 2 includes a Sun workstation running SunOS, a 486 PC running

16

Linux and the NetWare server (the gateway to network 1). Network 3 is comprised

of a 486 PC running BSD 4.3Net2 and the Linux 486 (the router to network 2).

The T C P /IP is chosen as the network protocol on network 2 and network 3. The

NetWare server works as a gateway between network 1 and network 2, and the 486

PC with Linux functions as a router between network 2 and network 3.

NetWare Linux
router

gateway Firewall

150.131.251.10
Pcware

IPX
TCP/IP

IPX IPX

NetWare NetWare
Client Client

150.131.252.10 150.131.252.111
Netware Darkstar

TCP/IP TCP/IP

TCP/IP

150.131.252.112
Fusion

SunOS

150.131.250.111
Linux

TCP/IP

TCP/IP

150.131.250.110

Bsd

BSD 4.3Net2

Subnetwork 1 Subnetwork 2 Subnetwork 3

Figure 3: The configuration and connection of a prototype internet with three sub

networks.

17

To make the internetworked networks communicate smoothly, an IP address

should be assigned to each computer and a routing table should be set up on each

node. On th a t basis, higher level protocols and facilities can run.

There are several levels of addressing required for T C P /IP :

o An application port address or port number.

o An Internet address used by IP.

o A hardware network address which uniquely identifies each network interface

card and is assigned by the card manufacturer.

A port number is used for addressing at the TCP and UDP (User D atagram P roto

col) level (UDP is the connectionless counterpart of TC P), which is a 16-bit field.

Different application have different port numbers. A host computer may theoreti

cally establish up to 65535 different TCP connections concurrently. T C P uses port

numbers to identify the ultim ate destination within a machine.

UDP also uses port numbers for addressing, but TCP and UDP port numbers are

independent. Usually, the designers have chosen to use the same integer port number

for any service th a t is accessible from both UDP and TCP. The interface between

TC P and the user accessing an Internet application is through the port address

on the host node. The combination of port and global network addresses uniquely

identifies a process within an environment of multiple networks and multiple hosts.

Some services, such as F TP and rwho, are assigned reserved or well known port

numbers. The port numbers assigned in a UNIX system can be found in the file

/etc/services.

For internetworking to take place, IP must be able to route according to the

global Internet address specific to each node. An Internet address or IP address

18

is a four-byte address assigned to each network device. IP addresses are globally

unique and hardware-independent. They are designed to facilitate the process of

routing packets from one network to another so th a t machines on different physical

networks can communicate with each other.

An IP address is four bytes long and is divided into a network portion and a

host portion. The network portion identifies a logical network to which the address

refers. Routing decisions are made on this information. The host portion identifies

a machine on th a t network.

There are three classes of IP addresses: A, B and C. They differ in the way th a t

bytes are allocated between the host and network portions. If the network portion

of an address is denoted by N, and host portion by H, class A addresses interpret

the bytes as N.H.H.H, class B as N.N.H.H and class C as N.N.N.H. The class of an

address can be determined by examining its first byte. The first byte of class A is

between 1 and 126, tha t of class B is from 128 to 191 and th a t of class C is from

192 to 223. 127 is for loopback. Class A and B addresses are usually subdivided in

a special way: subnetting, in which a part of the host portion of an address is used

to extend the network portion. For example, the four bytes of a class B address

would normally be interpreted as N.N.H.H. After subnetting is used to assign the

th ird byte to the network number rather than the host number, the address would

be interpreted as N.N.N.H. This turns a single class B address into a class C like

address. In this way, a mask 255.255.255.0 instead of 255.255.0.0, is used in this

pro ject.

In the UNIX system, ifconfig is used to assign the IP address, mask and broad

casting address to an interface card. In NetWare, command bind is used to assign

the IP address. Since IP addresses are long, seemingly random numbers, they may

be difficult to remember. Almost every system allows text names to be associated

19

with an IP address, which are defined in the file /e tc/hosts.

2.2 .4 P C based Softw are R outing and G atew ay

In many organizations, LANs cannot operate independently. They must be finked

either to other LANs or to a WAN. Different kinds of LANs have different implica

tions for interoperability. LANs are particularly im portant in th a t it is a LAN th a t

many workstations are connected to as the first stage in a distributed networking

and computing environment. However, LANs can rarely exist independently of large

networks, particularly in large organizations. The appropriate solution to connect

LANs is to use a gateway or router. ‘Gateway’ has become the term used to des

ignate the hardware and software necessary to make two technologically different

networks communicating with one another. Thus, a gateway needs to execute a

conversion of protocols. The term router is often used to denote the hardware and

software necessary for two physical networks using the same or similar technology

to communicate.

Both gateways and routers provide all interconnections among physical networks

and switch packets between different sections of the network. They operate at the

IP level and are capable of making routing decisions based on information in routing

tables. There are dedicated hardware routers with very high performance as well as

an extremely high price. However, a host computer with appropriate software can

also accomplish routing .

In the software based router, routing is the process of directing a packet through

the path of networks th a t provide the link between its source and destination. Rout

ing information is stored in a table in the kernel. Each table entry has several pa

rameters, including a reliability field tha t determines routes when the table contains

20

conflicting information. - To route a packet to a particular address, the kernel picks

the most specific of the available rules. If there is no relevant route and no default,

a “network unreachable” error is returned to the sender.

Packets come in on one interface card and are either delivered locally or compared

to the routing table to determine where they should be forwarded. The difficult part

is to make sure th a t the routing table contains the right data. The IP routing , which

is determined by searching the routing table and deciding which interface to send

a packet out, is a routing mechanism. This differs from a routing policy, which is a

set of rules th a t decides which routes go into the routing table.

The maintenance of routing tables can be done statically, dynamically or with

a combination of the two approaches. A static route is one th a t can be entered

explicitly using the command route. Static routes should stay in the routing table

forever. This method is very inflexible in respect to changes in the network config

uration. Dynamic routing is performed once every 30 seconds by a daemon process

th a t maintains and modifies the routing table. Routing daemons on different hosts

communicate to discover the topology of the network and to figure out how to reach

distant destinations. In the UNIX environment, the processes th a t m aintain and

update routing information are two daemon processes, routed and gated, based on

the well known Routing Information Protocol (RIP) and Open Shortest Path First

Protocol (OSPF). In addition, ICMP redirection can also add a route entry into the

routing table.

In this network prototype, routed runs on the SunOS, BSD and the NetWare

server (routed param eter is set in the “on” position) to dynamically manage the

routing table as well as establishing static entries when machines are started. In the

Linux computer, a static routing table is used and managed manually.

21

2 .3 N e tw o r k S e r v ic e s an d N etw o r k M a n a g e m e n t

Much of the impetus for the development of T C P /IP is the need for internetworking

services — the ability of an end-user to communicate through a local machine to

some remote machine or remote end-users. The traditional T C P /IP services are

supported by the appropriate protocols, such as:

o The File Transfer Protocol (FTP), which allows the transfer of files from one

computer on the Internet to another computer on the Internet.

o The Network Terminal Protocol (TE LN E T), which provides a means for al

lowing a user on the Internet to log onto any other computer on the network.

o Simple Mail Transfer Protocol (SM TP), which allows users to send messages

to one another on the Internet.

o In a T C P /IP Internet, IP routers form the active switches th a t managers need

to examine and control. The Management Information Base (M IB) based

SN M P and SNM Pv2 are the prevalent network management protocols.

Each of the services implied by these protocols is offered by this internetworking

prototype except SNMPv2

To use FTP, TCP port 21 is fixed as the command channel and TCP port 20 as

the da ta channel. In the UNIX system, the protocol consists of ftp and the server

daemon process ftpd.

FT P differs from other file transfer programs in many respects. The most promi

nent differences include the use of separate channels for control information and data

and the fact th a t FTP data transfers do not run in the background (work without

a spooler). Now FT P is available for each node running UNIX software to transfer

22

files between each other.

TELNET is intended to provide access, in the form of a terminal session, to a

computer connected to the network. The TELNET service is attached to TC P port

23. UNIX processors currently incorporate the command rlogin, which offers almost

the same functionality as TELNET but provides better support for the UNIX envi

ronment. Both TELNET and RLOGIN run on the prototype networks smoothly.

FTP and TELNET are configured in the file /etc/services and /e tc/passw d.

TCP port 25 is defined for SMTP. Like FTP and TELNET, SMTP is desirable

for its simplicity. It incorporates many features of FTP.

In the UNIX system, SMTP is implemented by the program sendmail. This

is a very complex program which can communicate with mail services other than

SM TP and which, to some extent, also operates as a gateway between different

mail systems. It is possible for sendmail to function only as an SMTP server, but

also as an SMTP client. However, users never use sendmail directly, but usually

pine or mail, which controls and simplifies the processing of a message. Sendmail

is only actived to forward the message. If forwarding is not immediately possible,

the message is entered into an output queue. Regular attem pts are then made to

forward the messages from there to the destination.

A configuration file, sendmail. cf, is used to control sendmail, which makes the

program very adaptable. In addition to the definition of the local-mail-forwarding

program and many other uses, this file also contains the commands for converting

the address for the connected mail system. File aliases, which may be used to create

distribution lists and for forwarding requests, is edited and then converted into an

indexed database using the command newaliases. Abas names may also be used to

send a message to a program, for example, to set up an autom atic answering service.

23

The prototype networks provide complete email services.

As the size of networks increases, network management becomes an increasing

challenge. The task of network management is to monitor the elements of the

network in order to identify malfunctions, faults or structural changes a t an early

stage and to take countermeasures. In some network architectures, this also includes

the control of access to the network and the allocation of information for metered

accounting. The basis for the Internet activities in this area is Simple Network

Management Protocol (SNM P), which is based on the m anager/agent paradigm.

SNMP is used by a manager which accesses data in the management information

base (MIB) implemented in the agent.

SNMP on NetWare is automatically loaded when TCP.NLM is started.

3 N etw ork Security

3 .1 G e n e r a l A p p ro a ch

Almost all network software provide ways of maintaining network security and sys

tem integrity. Network security falls into three broad sets. The first set focuses on

the problems of authorization, authentication and integrity. The second set focuses

on the problems of privacy, and the third set focuses on the problems of availability

by controlling access, i.e. to guarantee tha t outsiders cannot prevent legitimate data

access by saturating a network with traffic.

3.1.1 A u th en tica tion , A uthorization and D ata In tegrity

Authentication is the process of verifying identification. Many servers are configured

to reject a request unless the request originates from an authorized client. When

24

a client first makes contact, the server must verify th a t the client is authorized

before granting services. Authorization involves determining whether a user has

legitimate access to a resource and allowing the owner of a resource to define who

has what type of access to the resource. In an unsecured network environment,

such as the Internet, without reliable authentication and authorization mechanisms,

many services are unavailable.

There are a variety of authorization schemes. Access control is widely used.

Access control lets network managers restrict the use of specific files, directories,

and printers. All access control software require users to identify themselves with

a password before they can launch applications. The most popular package offers

audit trails to monitor user activity including which systems and files they have

used, automatically logs users off the network, and prevents im portant system files

(such as CONFIG.SYS and AUTOEXEC.BAT) from being altered. That feature is

particularly valuable because those files contain the commands to run the security

package. Some access control packages lock up the PC if they detect th a t systems

files have been modified.

Most access control packages generate and store audit trails, which give network

managers a way to monitor system activities. Some products only indicate when a

user logged on and off. O ther packages also indicate which files were opened and

closed.

Knowing th a t an audit trail exists and th a t changes can be traced back is often

enough to discourage anyone tem pted to tam per with data. But it is useless if

changes can be made under another user’s name, which can be accomplished easily

enough if employees walk away from their machines while they are logged on . To

guard against this sort of problem, most access control packages clear the screen

and lock the keyboard when a PC has remained idle for a predefined period. Once

25

a screen has been blanked, the user must enter a password to regain control of the

keyboard.

At present, authentication provides an easier way to administer passwords and

user IDs. Users can be required to change passwords periodically and choose pass

words th a t have a minimal length and some kind of combination of uppercase, lower

case letters and digits. Authorization also makes it possible to encrypt passwords

before they are sent over a network or stored to disk.

D ata integrity ensures tha t data have not been altered or destroyed in an unau

thorized manner.

3.1 .2 E ncryption and Kerberos

A prim ary method used to thw art passive hole is the use of encryption technique to

make the information unusable without possession of the decoding key. Encryption

is accomplished through the use of either a code or a cipher. W ith a code, a

predefined table substitutes a meaningless word or phrase for each message or part

of a message. A cipher, in contrast, uses a computable algorithm th a t translates a

bit stream into an indecipherable cryptogram. Cipher techniques can often be more

readily autom ated, and are therefore used more frequently in computer and network

security systems.

W ith conventional encryption, the original data, or plain text, are converted

into an unintelligible ciphertext. The conversion is accomplished using an algorithm

and a key composed of a bit string th a t controls the algorithm. The key must be

in the possession of both the sender and receiver, so key management becomes an

issue. The algorithm must be sufficiently powerful to preclude decipherment of the

message based solely on the ciphertext.

26

From a network perspective, there are two fundamental types of encryption: link

and end-to-end. Link encryption implies th a t data are encrypted independently on

each vulnerable communication link. The task of key management is the control of

key selection and key distribution in a cryptographic system. A key is a piece of

digital information th a t interacts with encryption algorithms to control encryption

of information. The classical approach to encryption/decryption was to use a sym

metric algorithm, in which both the sender and receiver of an encrypted message

were required to have the same key. The disadvantage of symmetric algorithms is

th a t for security, the algorithm as well as the key must be kept secret. Moreover,

the key must be communicated from one person to another, thus creating a security

th rea t. A m ajor advantage, however, is tha t some system of authentication can be

established so th a t problems involving bogus information can be reduced.

The sophistication of the algorithms has increased over the years. The newer

alternative methodology uses an asymmetric system. Public key encryption is the

outgrowth of this development. Instead of one key, PKC (Public-Key Cryptograph)

has two keys, one public and the other private. Moreover, it is impossible to deduce

the private key from the public key. A person with the public key can encrypt a

message but not decrypt it — only someone with the private key can decrypt the

message. PKC algorithms are complicated protocols, not ideally suited to encrypt

long messages. A common implementation is to use PKC to transfer the key for

another cryptographic algorithm and then use th a t algorithm to encrypt and decrypt

messages.

The advantage of an asymmetric system is tha t the second, private key is known

only to the receiver who calculates it. In such a system, the encryption/decryption

algorithms and the encryption (public) key may be made public. The decipherment

key is related to the encipherment key, but is actually a random sample of one of a

27

large universe of potential key values.

Kerberos is an add-on authentication system th a t delivers a higher level of secu

rity than afforded by passwords and access control. In effect, Kerberos is commonly

used on the Internet: it has also been adopted by OSF as part of its distributed

computing environment.

Kerberos — named for the three headed watchdog th a t guarded the gates of

Hades in Greek mythology — relies on three components to watch over the network

security: a database, authentication server, and ticket-granting server (TGS). All

three components sit on a single, physically secured server th a t is connected to the

network.

The Kerberos database contains all network user names, their passwords, the

network services to which each user has access, and an encryption key associated

with each service. The database is the only place on the network where passwords

are stored.

The Kerberos authentication server ensures th a t the person requesting a network

service, such as access to an application on a host, is actually authorized. The

ticket-granting server, as its name suggests, issues “tickets” to the user once the

authentication server has verified identity. To access an application a user needs

both a ticket and a second credential, called an authenticator, which is issued by

the client workstation. An authenticator consists of the user name, the IP address

of a workstation, and the time th a t a request originates.

3.1 .3 Firew alls

Today’s networked world has grown from the bottom up, with millions of new con

nections originating from personal computers and small networks. We connect our

28

organizations’ networks to thousands of other computer networks. It is no longer

possible to know who or what is on the other end of a network connection unless we

take extraordinary measures. W ith much more at risk, we must protect our data

and networks with stronger mechanisms than mere passwords. Mechanisms tha t

control the Internet access handle the problems of screening a particular network or

an organization from unwanted communication. Such mechanisms can help prevent

outsiders from: obtaining information, changing information or disrupting commu

nication on an organization’s internal internet. Unlike authentication and privacy

mechanisms, which can be added to an application programs, internet access control

usually requires changes to basic components of the internet infrastructure.

A single technique has emerged as the basis for internet access control. The

technique places a block known as an internet firewall at the entrance to the part

of the internet to be protected. A firewall partitions an internet into two regions,

referred to informally as the inside and outside. Actually, a firewall examines all in

coming and outgoing messages and blocks all unauthorized communication between

computers in the inside and the outside.

The firewall — a gateway or router through which all connections are made —

offers another layer of security against intruders getting into the network. Informa

tion technology also provides a facility th a t could monitor and restrict employees

exchanging information with outside world. Internet firewalls have their roots in

control mechanisms and security measures th a t have long been standard practice in

the mainframe community.

Firewalls can be built in several ways, using a variety of mechanisms. There are

three of them in common use:

o Router-based filters, or informally called packet filters.

29

Most routers include a high-speed filtering mechanism. It is the simplest

approach to create a firewall using a programmable router. In this way, a

system manager can further control packet processing, besides offering normal

routing. T hat is, the manager can specify how the router should dispose of

each packet. When a packet first arrives, the router passes the packet through

its packet filter before performing any other processing. If the filter rejects

the packet, the router drops it immediately. A packet filter forms the basis for

building block of a firewall - the kernel of a firewall.

o Host computer gateways, or bastions.

An alternative approach is to use a computer instead of a router, which is called

a bastion host. This offers many more capabilities, including the ability to log

all the activity over the gateway. This bastion host computer is a connection

between inside and outside networks. It has two conceptual barriers. The outer

barrier blocks all incoming traffic except packets destined for services on the

bastion host th a t the organization chooses to make available externally, and

packets destined for clients on the bastion. The inner barrier blocks incoming

traffic except packets th a t originate on the bastion host. Each barrier requires

a router th a t has a packet filter. While router-based firewall monitors data

packets a t the IP level, hosts exert their control a t an application level, where

traffic can be examined more thoroughly.

o A separate and isolated network.

This method is similar to the bastion system. Instead of interposing a bastion

host computer we create another network, an isolated subnetwork th a t sits

between the external and internal networks. Typically, this network is config

ured so th a t both the external and internal networks can access it, but traffic

across the isolated network is blocked. One advantage of isolated networks is

th a t they can also simplify the establishment and enforcement of new Internet

30

addresses, especially for large private networks th a t may otherwise face the

prospect of having to undergo significant reconfiguration.

In this project, packet filter is selected as the network firewall model. It solves the

problem in two aspects: to permit a manager to configure separate filter actions for

each interface, and to combine packet filtering with existing router.

3.2 A R outer-based Firewall U sing Packet-filtering

Routers work by controlling traffic a t the IP level, selectively passing or blocking

data packets based on source/destination address or port information in the packet’s

header. Many commercial routers offer a mechanism th a t augments normal routing

and permits a manager to further control the packet processing. Informally called

a packet filter, the mechanism requires the managers to specify how the router

should dispose of each datagram. Some routers permit a manager to configure all

interfaces, usually specifying datagrams on the IP address, protocol, source protocol

port number, and destination protocol port number.

To be effective, a firewall th a t uses datagram filtering should restrict access to all

IP sources, IP destinations, protocols, and protocol ports except those computers,

networks, and services the organization explicitly decides to make available exter

nally. A packet filter th a t allows a manager to specify which datagram s to admit

instead of which datagram s to block can make such restrictions easy to specify.

The problem with the router-based approach stems from the variety of different

protocols which are used on the Internet.

31

3.2.1 Softw are D esign and Im plem entation

The Linux operating system supports T C P /IP communication protocol and also

allows a computer running Linux to be configured as a router. It is possible to

implement a router-based packet filter on the existing router. To take advantage of

the Linux routing software,and to make the implementation more structured and

easy to use, the packet filter is separated into two parts: One is the modification of

the Linux IP software which manages the packet routing in th a t some new functions

are added to control the packets’ forwarding; The other is a utility th a t allows users

to specify their packet routing rules, th a t is how to process every arriving packet.

1. The Linux packet routing software.

The goal of packet routing is to provide a virtual network th a t encompasses

multiple physical networks and offers a connectionless datagram delivery ser

vice. IP routing chooses a path over which a datagram should be sent. Loosely

speaking, the routing is divided into two forms: direct delivery and indirect

delivery. Direct delivery, the transmission of a datagram from one machine

across a single physical network directly to another, is the basis on which all

internet communication rests. Indirect delivery occurs when the destination

is not on a directly attached network, forcing the sender to pass the datagram

to a router for delivery.

Transmission of an IP datagram between two machines on a single physical

network does not involve routers. The sender encapsulates the datagram into

a physical frame, binds the destination IP address to a physical hardware ad

dress, and sends the resulting frame directly to the destination. Because the

internet addresses of all machines on a single network include a common net

work prefix, and because extracting tha t prefix can be done in a few machine

32

instructions, testing whether a machine can be reached directly is extremely

efficient.

Indirect delivery is more difficult than direct delivery because the sender must

identify a router to which the datagram is to be sent. The router must then for

ward the datagram on toward the destination network. Routers in a T C P /IP

internet form a cooperative, interconnected structure. Datagrams pass from

router to router until they reach a router th a t can delivery the datagram

directly.

The usual IP routing algorithm employs a routing table on each machine th a t

stores information about possible destinations and how to reach them. Be

cause both hosts and routers route datagram s, both have IP routing tables.

Whenever the IP routing software in a host or a router needs to transm it a

datagram , it consults the routing table to decide where to send the datagram .

After taking into account everything about routing, an IP routing algorithm

becomes:

RouteDatagram (Datagram, Routing Table)

Extract destination IP address , D, from the datagram and compute the network
prefix, N;

If N matches any directly connected network address

deliver datagram to destination D over that network,

(This involves resolving D to a physical address, encapsulating the datagram,

and sending the frame.)

else if the table contains a host-specific route for D

send datagram to next-hop specified in the table

else if the table contains a route for network N

send datagram to next-hop specified in the table

33

else if the table contains a default route

send datagram to the default router specified in the table
else declare a routing error;

The algorithm is split around various routines in Linux. The m ajor functions

are as follow:

o in t ip .build,-header (struct sk.buff *skb, unsigned long saddr, unsigned long

daddr, struct device **dev, int type, struct options *opt, int len, int tos,

in t ttl)\
This routine builds the appropriate hardw are/IP headers for the routine.

It assumes th a t if *dev != NULL then the protocol knows what i t ’s doing,

otherwise it uses the routing/A RP tables to select a device struct,

o unsigned short ip.compute.csum(unsigned char * buff, int len)]
This routine does all the checksum computations th a t do not require

anything special (like copying or special headers),

o static struct sk.buff Hp.defrag (struct iphdr *iph, struct sk.buff *skb, struct

device *dev)\
Process an incoming IP datagram fragment,

o void ip-fragment(struct sock *sk, struct sk-buff *skb, struct device *dev,

int i s.frag)]
If the IP datagram is too large to be sent in one piece, break it up into

smaller pieces (each of size equal to the MAC header plus IP header plus

a block of the data of the original IP data part) th a t will yet lit in a

single device frame, and queue such a frame for sending by calling the

ip_queue_xmit().

o static void ip-forward(struct sk-buff *skb, struct device *dev, int is.frag)\
Forward an IP datagram to its next destination,

o int ip.rcv(struct sk.buff *skb, struct device *dev, struct packet-type *pt)\
This function receives all incoming IP datagrams.

34

o void ip.queue.xmit(struct sock *sk, struct device *dev, struct skJ)uff *skb,

in t free);
Queues a packet to be sent, and starts the transm itter if necessary, if

free = 1 then free the block after transm it, otherwise don’t. If free==2

not only free the block but also don’t assign a new ip seq number. This

routine also needs to put in the to tal length, and compute the checksum,

o int ip.setsockopt(struct sock *sk, int level, int optname, char *optval, int

opt len);
Socket option code for IP. This is the end of the line after any TCP,UDP

etc options on an IP socket,

o in t ip.getsockoptfstruct sock *sk, int level, int optname, char *optval, int

*op tlen);
Get the socket options.

2. Modification of the existing Linux routing software. New functions added at

IP level:

Several routines are added to the original Linux IP software so th a t when

any packet arrives, it is examined before doing normal routing. In the IP

software, there are functions which offer the different utlities to other layers

of the leveled T C P /IP protocol suite. They deal with the packet’s receiving,

sending, forwarding, header-building and sum-checking. They are the only

interfaces between the IP layer and any other layer. A new function ip.fw.chk

is added to these functions to do extra checking. That is to decide whether a

packet should be discarded or not. To make the ip_fw_chk work, some other

new functions are added, too.

The new functions are:

o extern inline int port.match (unsigned short *portptr,int nports, unsigned

short port,int range.flag);

35

Returns 1 if the port is matched by the vector, otherwise return 0.

o int ip-fw„chk(struct iphdr *ip, struct device *rif, struct ip jw *chain, int

policy, int opt)]
Returns 0 if packet should be dropped, 1 if it should be accepted, and -1

if an ICMP host unreachable packet should be sent,

o in t ip .fw .ctl(int stage, void *m, int len)]
In this function, freeJw .chain, add_to_chain and del_from_chain are called

depending on what the stage is.

o static void free.fw-chain(struct ip jw *volatile *chainptr)]
free every element in a chain,

o static int add-to.chain(struct ip.fw *volatile *chainptr, struct ip.fw *frwl)]
add an element in a chain,

o static int deLfrom^chain(struct ip.fw *volatile *chainptr, struct ip J w *frwl)]
delete an element from a chain.

3. The utility of using the packet-filter software: the user interface ipfw.

Actually, there are three steps to set up a packet filter: first, to decide the

security policy; second, express the policy in a format th a t the computer can

understand; third, make the policy work. There is no doubt th a t it is very

im portant to let the computer know what users want it to do. It is also the

most difficult part.

In this practical environment, an independent software package, ipfw, is of

fered for users to specify, what they want to do. Ipfw maintains two chains

which are forwarding and blocking. Through these two chains, a user decides

which packet needs to be forwarded or blocked. Add, delete and list are the

three types of commands provided. After ipfw parses a command, it sets the

correspond socket options and variables.

The general algorithm is:

36

FlushAdd I Del List

Forwardin. Blocking

Forwarding
or Blocking
v Chain? /

Correct
Command?

What Kind
ot the

Command?

Initailization

Set Variables

E x it

Parsing the
Command

Add to or
Delete from

Blocking Chain

List Every Entry
of Forwarding or
Blocking Chain

Show the Usage

Exit

Add to or
Delete from

Forwarding Chain

Remove All
Entries from
Forwarding or

Blocking Chain

Exit

Some im portant routines of this program are:

o static char *fmtip(uJong uaddr)
change an IP address into the four oxtets format.

37

o static int do_setsockopt(char *what, int fd, int proto, int cmd, void *data,

in t datalen, int ok.errno)
set the socket options,

o in t get-protocol(char *arg, void (*cmd.usage) (ipfJtind), ipfJtind kind)
parsing the command to get the protocol,

o void get-ipaddr(char *arg, struct in„addr *addr, struct in.addr *mask,

void (*usage) (ipfJtind), ipfJtind kind)
parsing the command to get the IP address,

o in t get..ports(char ***argv.ptr, u.short * ports, int min.ports, int max.ports,

void (*usage) (ipfJtind), ipfJtind kind, const char *proto„name)
parsing the command to get the prot number,

o void add(ipfJtind kind, int socket Jd , char **argv)
add an entry to the forwarding or blocking chain,

o void del(ipfJtind kind, int socket Jd, char **argv)
delete an entry from the forwarding or blocking chain,

o void list(int socket Jd, char **argv)

The usage of this utility is:

o ipfw <entry-action> <chain entry pattern>

o ipfw <chain-action> <chain[s] type>

These are the <entry-actions>:

o a[dd] blocking] - add entry to blocking firewall,

o d[el] blocking] - remove entry from blocking firewall,

o a[dd] f[orwarding] - add entry to forwarding firewall,

o d[el] f[orwarding] - remove entry from forwarding firewall.

These are the <chain-actions>:

o f[lush] - remove all entries in forwarding/blocking chains.

© l[ist] - show all entries in blocking/forwarding chains.

The <chain-entry pattern> is built like this:

38

o For forwarding/blocking chains:

— deny <proto/addr pattern>

— accept <proto/addr pattern>

o The <joroto/addr pattern> options are:

— all|icmp from <src addr/m ask> to < dst addr/m ask>

- tcp|udp from <src addr/m ask>[ports] to <dst addr/m ask>[ports]

- <src addr/m ask>: <IN ET IP addr | domain nam e>[/m ask bits |

m ask pattern]

- [ports]: [port,port....|port:port] where name of service can be used

instead of port numeric value.

The <chain[s] type> is:
forwarding or blocking.

4. An example of using firewall programs

T his file is a script file contain ing ipfw com m ands execu ted on th e

router Linux:

Script started on Tue Jim 20 17:36:16 1995

This command shows the ipfw usage

ipfw
us age: ipf irewall

1 [ist] b[locking]

I 1 [ist] f[orwarding]

I f [lush] b[locking]

I f[lush] f [orwarding]

I a[dd] b[locking] <type> [iface <addr>] from <src> to <dst>

I a[dd] f[orwarding] <type> [iface <addr>] from <src> to <dst>

I d[el] b[locking] <type> [iface <addr>] from <src> to <dst>

39

I d[el] f[orwarding] <type> [iface <addr>] from <src> to <dst>

#

This command lists every entry in the forwarding chain

ipfw 1 f

Type Proto From To Ports

#

This command adds entry which denies all tcp packets from bsd to telnet port

of fusion

ipfw add f deny tcp from bsd to fusion telnet

add forwarding deny tcp from bsd to fusion telnet

#

This command disallows any connection from bsd to fusion

ipfw add f deny all from bsd to fusion

add forwarding deny all from bsd to fusion

This command lists every entry in the forwarding chain

ipfw 1 f

Type Proto From

deny tcp bsdunix.net3

deny all bsdunix.net3

#

This command discards the entry which disallows any connection from bsd to

fusion

To Ports

fusion.net2 any -> telnet

fusion.net2

40

ipfw del f deny all from bsd to fusion

delete forwarding deny all from bsd to fusion
#

This command lists every entry in the forwarding chain

ipfw 1 f

Type Proto From To Ports

deny tcp bsdunix.net3 fusion.net2 any -> telnet

This command fiushs every entry in the forwarding chain

ipfw f f

This command lists every entry in the forwarding chain

ipfw 1 f

Type Proto From To Ports

exit

exit

Script done on Tue Jun 20 17:44:42 1995

T his file is a script file contain ing th e resu lts w ith different routing

restrictions on BSD :

Script started on Tue Jun 20 16:20:56 1995

Under the normal condition, any connections such as ping, rlogin and telnet

are allowable

41

ping fusion

PING fusion.net2 (150.131.252.112): 56 data bytes
64 bytes from 150.131.252.112: icmp_seq=0 ttl=254 time=6.719 ms

64 bytes from 150.131.252.112: icmp_seq=l ttl=254 time=4.265 ms

64 bytes from 150.131.252.112: icmp_seq=2 ttl=254 time=4.300 ms

64 bytes from 150.131.252.112: icmp_seq=3 ttl=254 time=4.273 ms

64 bytes from 150.131.252.112: icmp_seq=4 ttl=254 time=4.246 ms

64 bytes from 150.131.252.112: icmp_seq=4 ttl=254 time=4.246 ms

64 bytes from 150.131.252.112: icmp_seq=5 ttl=254 time=4.258 ms

 fusion.net2 ping statistics ---

6 packets transmitted, 6 packets received, 0'/, packet loss

round-trip min/avg/max = 4.246/4.670/6.719 ms

telnet fusion

Trying 150.131.252.112...

Connected to fusion.net2.

Escape character is ’

SunOS UNIX (fusion)

login: root

Password:

Last login: Tue Jun 20 14:18:04 from bsdunix.net3

SunOS Release 4.1.1 (FUSION.OS) #1: Thu Sep 26 15:14:59 EDT 1991

/

FUSION##/(1)>logout

42

Connection closed by foreign host.

rlogin fusion

Password:
Last login: Tue Jun 20 16:27:14 from bsdunix.net3

SunOS Release 4.1.1 (FUSION.OS) #1: Thu Sep 26 15:14:59 EDT 1991

/
FUSION##/(1)>logout

rlogin: connection closed.
#

After the command ipfw add f deny tcp from bsd to fusion telnet is executed

on Linux, the connection from bsd to fusion through telnet is denied. But the

other connections such rlogin and ping are still allowable.

ping fusion
PING fusion.net2 (150.131.252.112): 56 data bytes

64 bytes from 150.131.252.112: icmp_seq=0 ttl=254 time=5.200 ms
64 bytes from 150.131.252.112: icmp_seq=l ttl=254 time=6.145 ms

64 bytes from 150.131.252.112: icmp_seq=2 ttl=254 time=5.324 ms

64 bytes from 150.131.252.112: icmp_seq=2 ttl=254 time=5.324 ms

64 bytes from 150.131.252.112: icmp_seq=3 ttl=254 time=5.304 ms

64 bytes from 150.131.252.112: icmp_seq=3 ttl=254 time=5.304 ms

64 bytes from 150.131.252.112: icmp_seq=4 ttl=254 time=5.583 ms

 fusion.net2 ping statistics --

5 packets transmitted, 5 packets received, 0'/, packet loss

round-trip min/avg/max = 5.200/5.500/6.145 ms

rlogin fusion

43

Password:

Last login: Tue Jun 20 16:27:30 from bsdunix.net3

SunOS Release 4.1.1 (FUSION.OS) #1: Thu Sep 26 15:14:59 EDT 1991SunOS Release 4.1

/

FUSION##/(1)>logout

rlogin: connection closed.

telnet fusion

Trying 150.131.252.112...

telnet: Unable to connect to remote host: Connection timed out
#

After executing command ipfw add f deny all from bsd to fusion, any connec

tions are disallowable.

ping fusion

PING fusion.net2 (150.131.252.112): 56 data bytes

 fusion.net2 ping statistics ---
4 packets transmitted, 0 packets received, 100*/, packet loss

rlogin fusion

fusion.net2: Connection timed out

After ipfw f f is executed, th a t is there is no restriction on routing, any con

nection from bsd to fusion are allowable.

ping fusion

PING fusion.net2 (150.131.252.112): 56 data bytes

64 bytes from 150.131.252.112: icmp_seq=0 ttl=254 time=5.228 ms
64 bytes from 150.131.252.112: icmp_seq=l ttl=254 time=4.289 ms

44

 fusion.net2 ping statistics --
2 packets transmitted, 2 packets received, 0'/, packet loss

round-trip min/avg/max = 4.289/4.750/5.228 ms

rlogin fusion

Password:

Last login: Tue Jun 20 16:28:22 from bsdunix.net3
SunOS Release 4.1.1 (FUSI0N.0S) #1: Thu Sep 26 15:14:59 EDT 1991

/
FUSION##/(1)>logout

rlogin: connection closed.

telnet fusion

Trying 150.131.252.112...

Connected to fusion.net2.

Escape character is ’ .

SunOS UNIX (fusion)

login: root
Password:

Last login: Tue Jun 20 16:33:18 from bsdunix.net3

SunOS Release 4.1.1 (FUSION.OS) #1: Thu Sep 26 15:14:59 EDT 1991

/

FUSION##/(1)>logout

Connection closed by foreign host.

exit

45

Script done on Tue Jun 20 16:30:36 1995

4 Sum m ary

The Internet beckons us in some alluring ways, It promises many advantages in

the way of rewards and benefits — connections with a m ultitude of individuals

and organizations and access to information and resources on a scale heretofore

unparalleled. And yet hooking up to the Internet can also he the source of significant

dangers and risks.

Security is sometimes an elusive goal and can seem unattainable, especially when

you think in terms of the exposure th a t an Internet connection offers. But there are

workable, practical solutions today.

5 A ppendix

A T he m ajor steps to set up each m achine o f th e n et
work

o The m ajor steps to set up a NetWare Server

1. install the two network cards with the correct configuration;

2. modify the files:

— AUTOEXEC.NCF: add the two network cards’ drivers, assign IP

addresses and set the NetWare server’s system variables);

— /etc/hosts: add every host’s IP address;

— /etc/gateways: add the router information.

3. restart the server.

o The m ajor steps to set up a 486 PC running Linux

1. install the two network cards with the correct configuration;

2. modify the files:

46

— / etc/lilo.conf: set the second network card’s driver in Linux;

— /etc/hosts: add every host’s IP address;

— / etc /rc .c /rc .inetl: set the network variables including the routing

information and IP addresses of the two network cards;

— /etc/sendm ail.cf. set the email configuration.

3. run lilo, which passes the system variables to the Linux operating system;

4. reboot.

o The m ajor steps to set up a Sun workstation running SunOS

1. modify the files:

— /etc/hosts: add every host’s IP address;

— / etc/rc.local: set the network variables including the routing infor

mation and IP addresses of the network card;

— /etc/sendm ail.cf: set the email configuration.

2. reboot.

o The m ajor steps to set up a 486 PC running 4.3BSD

1. install the network card with the correct configuration;

2. modify the files:

— /etc/hosts: add every host’s IP address;

— /e tc/netstart: set the network variables including the routing infor

mation and IP addresses of the network card;

— /etc/sendm ail.cf: set the email configuration.

3. run isendmail -bz to generate the file sendmail.fc, another configuration

file for email;

4. reboot.

47

B T he m ajor custom ized files on each m achine o f th e
network

B .l T he custom ized files on the N etW are Server:

B .1.1 S Y S :/sy stem /a u to ex ec .n c f:

file server name SERVER312

ipx internal net 2F28054D

load nmagent

;install the interface for net 150 and 150.131.251.0

load ne2000 port=340 int=2 name=ipxnet

bind ipx to ipxnet net=150
load ne2000 port=340 int=2 frame=ethernet_ii name=ipipxnet

; install the interface for 150.131.252.0

load ne2000 port=300 int=3 frame=ethernet_ii name=tcpnet

load tcpip forward=yes

bind ip to tcpnet addr=150.131.252.10 mask=255.255.255.0

bind ip to ipipxnet addr=150.131.251.10 mask=255.255.255.0

;load ipconfig

;load btrieve

;load bspxcom

;search add sys:\mhs\exe

;search add sys:\mhs

B . l . 2 S Y S :/e tc /g a tew a y s:

#

48

SYS:ETC\GATEWAYS

#

List of unusual routes which must be added to the routing

database statically.

#

Normally you will not need this file, as most routing information

should be available through the routing protocols.

#

Examples. These entries will not be useful to you.
#net milnet gateway sj-in5 # to milnet through in5.

#net 26 gateway 130.57.6.144 metric 3 active # route to network 26
#net 10 gateway 192.67.172.71 passive # route to network 10 is

#host 130.57.6.40 gateway 192.67.172.55 # route to host 130.57.6

#net 150.131.252.0 gateway 150.131.252.10

#net 150.131.251.0 gateway 150.131.251.10

net 150.131.250.0 gateway 150.131.252.111

#

B .2 T he custom ized files on the Linux

B .2 .1 /e tc /lilo .c o n f:

LIL0 configuration file

generated by ’liloconfig’

#

Start LILO global section

boot = /dev/hda

49

•compact # faster, but won’t work on all systems,

delay = 50

vga * normal # force"sane state

ramdisk = 0 # paranoia setting

End LILO global section

append the second ethernet card NE2000

append * " ether=5,0x360,ethl "

Linux bootable partition config begins

image = /vmlinuz

root = /dev/hda2

label = linux

Linux bootable partition config ends

#

DOS bootable partition config begins

other = /dev/hdai

label = dos

table = /dev/hda

DOS bootable partition config ends

B .2 .2 /e tc /r c .d /r c .in e t l :

#! /bin/sh
#

rc.inetl This shell script boots up the base INET system.

#

Version: @(#)/etc/rc.d/rc.inetl 1.01 05/27/93

#

50

HOSTNAME*‘cat /etc/HOSTNAME‘

Attach the loopback device.

/sbin/ifconfig lo 127.0.0.1
/sbin/route add -net 127.0.0.0

IF YOU HAVE AN ETHERNET CONNECTION, use these lines below to configure the

ethO interface. If you’re only using loopback or SLIP, don’t include the

rest of the lines in this file.

Edit for your setup.

#IPADDR="150.131.250.Ill" # REPLACE with YOUR IP address!

•NETMASK*"255.255.255.0" # REPLACE with YOUR netmask!

•NETWORK-"150.131.251.0” # REPLACE with YOUR network address!

•BROADCAST*"ISO.131.252.255" # REPLACE with YOUR broadcast address, if you

have one. If not, leave blank and edit below.
•GATEWAY*"150.131.251.10" # REPLACE with YOUR gateway address!

Uncomment ONLY ONE of the three lines below. If one doesn’t work, try again.

/sbin/ifconfig ethO ${IPADDR> netmask ${NETMASK> broadcast ${BROADCAST>

#/sbin/ifconfig ethO ${IPADDR> broadcast ${BROADCAST> netmask ${NETMASK>

/sbin/ifconfig ethO ${IPADDR> netmask ${NETMASK}

Uncomment these to set up your IP routing table.

•/sbin/route add -net ${NETW0RK> netmask ${NETMASK}

•/sbin/route add default gw ${GATEWAY> metric 1

51

#/sbin/route add 150.131.252.0 gw ${GATEWAY> netmask ${NETMASK> metric 1

/sbin/ifconfig ethO 150.131.250.111 netmask 255.255.255.0 broadcast 150.131.250.255

/sbin/ifconfig ethi 150.131.252.111 netmask 255.255.255.0 broadcast 150.131.252.255

/sbin/route add 150.131.250.0 gw 150.131.250.111

/sbin/route add 150.131.251.0 gw 150.131.252.10

/sbin/route add 150.131.252.0 gw 150.131.252.111

/sbin/route add 150.131.251.0 gw 150.131.252.10

End of rc.inetl

B .3 T he custom ized files on the 4.3BSD :

B .3 .1 /e tc /n e ts ta r t:

#!/bin/sh -

#

@(#)netstart 5.9 (Berkeley) 3/30/91

#

These flags specify whether or not to run the daemons,

and the flags to run them with

rout edf1ags=-q

timedflags=NQ

rwhod=N0
rstatd=N0

NFSD_0PTS over-rides the default args for nfsd

52

NFSD_OPTS=’ -u 2 5 5 .2 5 5 .2 5 5 .0 ,1 9 2 .1 2 4 .1 3 9 .0 ,4 - t 2 5 5 .2 5 5 .2 5 5 .0 ,1 9 2 .1 2 4 .1 3 9 .0 ’

Change the following line to reflect your hostname
hostname=bsdunix

hostname $hostname

NOTE: If you are using an /etc/resolv.conf file then you may need to

use internet numbers instead of host names in the following commands

(e.g., use 192.27.45.1 instead of myhost.domain).

Uncomment lines corresponding to the interfaces you have installed,

you may also need to set a netmask if you are on a subnet.

Some adapters enable the BNC connector if given the linkO flag.
If you have multiple interfaces replace $hostname with the name or number

#ifconfig weO inet $hostname linkO # WD8003/8013 & 3COM 3C503 w/BNC
tifconfig weO inet $hostname # WD8003/8013 & 3COM 3C503
#ifconfig eoO inet $hostname # 3COM 3C501
#ifconfig epO inet $hostname # 3COM 3C505 EtherLink Plus
#ifconfig elO inet $hostname # 3COM 3C507
#ifconfig efO inet $hostname # 3COM 3C509 EtherLink III
#ifconfig exO inet $hostname # Intel EtherExpress 16
#ifconfig neO inet $hostname # Novell NE1000/NE2000

#ifconfig peO inet $hostname # Xircom Pocket Ethernet 2
#ifconfig rnO inet $hostname _remotehost__ # RISCom/Nl HDLC

Sample hardwired SL/IP connection

53

linkO means compress TCP traffic

linkl means suppress ICMP traffic

link2 means auto-enable TCP compression
#ifconfig slO $hostname remotehost__ link2 up

#stty -f /dev/ttyOO clocal

#slattach /dev/ttyOO 9600

set the address for the loopback interface
ifconfig loO inet localhost

use loopback, not the wire

#route add $hostname localhost

configure a default route

troute add default gateway_

#set up interface card and route table

ifconfig weO 150.131.250.110 netmask 255.255.255.0 broadcast 150.131.250.255
route add -net 150.131.250.0 150.131.250.110

route add -net 150.131.252.0 150.131.250.111

route add -net 150.131.251.0 150.131.250.111
#end of set up

B .3 .2 /e tc /sen d m a il.c f:

Copyright (c) 1983 Eric P. Allman

Copyright (c) 1988 The Regents of the University of California.

54

All rights reserved.

#

Redistribution and use in source and binary forms, with or without
modification, axe permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software

must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors

may be used to endorse or promote products derived from this software

without specific prior written permission.

«

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “ AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

55

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

#

@(#)sendmail.cf 5.2 (Berkeley) 4/23/91

#

#

###############*#######################################*###*

##################

#####

SENDMAIL CONFIGURATION FILE

#####

##

##

##################

local info
«##########«######

file containing our internet aliases

Fw/etc/sendmail.cw

uucp hostnames

(local uucp host name goes here)

DU

(local uucp host name aliases go here)
CU

56

local UUCP connections

(machines this machine contacts via uucp go here)

CV

#############################

Setup Information
#############################

#«####################

General Macros
######################

local domain name

your domain here!
DDnet3

Internet relay host — machines in our domain that are not

registered with the NIC will be "hidden" behind this relay machine
with the '/, kludge, although SMTP delivery will still be performed

by the sending machine. Someday this will go away.

DAbsdunix

UUCP relay host

DRdarkstar

csnet relay host

57

DC

bitnet relay host

DB

my official hostname

Dj$w

###############

Classes
###############

Internal ("fake") domains that we use in rewriting

CIUUCP BITNET CSNET

######################

Version Number
######################

DZ1.37

######################

Special macros
######################

my name

DnMAILER-DAEMON

58

UNIX header format

DIFrom $g $d
delimiter (operator) characters

Do. :*/.©!-=/[]
format of a total name

Dqg?x ($x)$.

SMTP login message

De$j Sendmail $v/$Z ready at $b

###############

Options
###############

location of alias file

OA/etc/aliases

wait up to ten minutes for alias file rebuild

OalO
substitution for space (blank) characters

OB.
(don't) connect to "expensive" mailers

#0c
default delivery mode (deliver in background)

Odbackground

temporary file mode

0F0600

default GID

Ogl

59

location of help file

OH/usr/share/misc/sendmail.hf

log level

0L9
default network name

ONARPA

default messages to old style

Oo

queue directory
OQ/var/spool/mqueue

read timeout — violates protocols

0r2h

status file

OS/var/log/sendmail.st

queue up everything before starting transmission

Os

default timeout interval

0T3d

time zone names (V6 only)

OtPST.PDT

default UID

Oul

wizard’s password

OW*

load average at which we just queue messages

0x8

load average at which we refuse connections

60

0X12

############*##############

Message precedences #

#####*#####################

Pfirst-class=0

Pspecial-delivery=100

Pbulk=-60

Pjunk=-100

###############«####«

Trusted users #

######«############*#

Troot
Tdaemon

Tuucp

#########################

Format of headers #
#########################

H?P?Return-Path: <$g>

HReceived: $?sfrom $s $.by $j ($v/$Z)

id $i; $b

H?D?Resent-Date: $a

61

H?D?Date: $a

H?F?Resent-From: $q

H?F?From: $q

H?x?Full-Name: $x

HSubject:

HPosted-Date: $a

H?l?Received-Date: $b

H?M?Resent-Message-Id: <$t.$i@$j>

H?M?Message-Id: <$t.$i@$j>

###########################

Rewriting Rules ###
############*#############«

####################*###########

Sender Field Pre-rewriting #
################################

51

#R$*<$*>$* $1$2$3 defocus

###################################

Recipient Field Pre-rewriting #
###################################

52

#R$*<$*>$* $1$2$3 defocus

ft############################**##

62

Final Output Post-rewriting #
ft######*#########################

S4

R© $@ handle <> error addr

resolve numeric addresses to name if possible
R$*<@[$+]>$* $:$i<@$[[$2]$]>$3 lookup numeric internet addr

externalize local domain info
R$*<$+>$* $1$2$3 defocus

R®$+:©$+:$+ @$1,©$2:$3 <route-addr> canonical

UUCP must always be presented in old form
R$+@$-.UUCP $2!$1 u@h.UUCP => h ‘u

delete duplicate local names
R$+'/,$=w@$=w $l@$w u*/,host©host => u@host

R$+'/.$=w@$=w.$D $l@$w u*/, host ©host => u©host

###########################

Name Canonicalization
###########################

S3

handle "from:<>" special case
R$*<>$* $@© turn into magic token

63

basic textual canonicalization — note RFC733 heuristic here
R$*<$*<$*<$+>$*>$*>$* $4 3-level <> nesting

R$*<$*<$+>$*>$* $3 2-level <> nesting

R$*<$+>$* $2 basic RFC821/822 parsing

make sure <®a,@b,@c:user@d> syntax is easy to parse — undone later

R®$+,$+ ®$1:$2 change all to

localize and dispose of route-based addresses

R@$+:$+ $@$>6<®$1>:$2 handle <route-addr>

more miscellaneous cleanup

R$+ $:$>8$1 host dependent cleanup

R$+:$*;@$+ $®$1:$2;@$3 list syntax

R$+:$*; $®$1:$2; list syntax
R$+®$+ $:$1<®$2> focus on domain

R$+<$+@$+> $1$2<@$3> move gaize right

R$+<@$+> $@$>6$1<@$2> already canonical

convert old-style addresses to a domain-based address

R$+“$+ $1!$2 convert ~ to !

R$-!$+ $@$>6$2<@$1.UUCP> resolve uucp names

R$+.$-!$+ $®$>6$3<®$1.$2> domain uucps
R$+!$+ $@$>6$2<@$1.UUCP> uucp subdomains

R$+‘/.$+ $:$>9$l'/,$2 user'/,host
R$+<@$+> $®$>6$1<@$2> already canonical

64

R$-.$+ 0>6$2<0$1> h o st.u se r

«################################

special local conversions #
#################################

S6
R$*<0$=w>$* $:$l<0$w>$3 get into u©$w form

R$*<0$=w.$D>$* $:$l<0$w>$3

R$*<0$=U.UUCP>$* $:$l<0$w>$3

################################

Change rightmost to 0. #

################################

S9

R$**/i$* $10$2 First make them all 0 ’s.
R$*0$*0$* $l*/,$20$3 Undo all but the last.

R$*0$* $0$1<0$2> Put back the brackets.

###################

Mailers
############*######

######################«######################*##############

###############*##

#####

65

Local and Program Mailer specification
#####

##

##

Mlocal, P=/usr/libexec/mail.local, F=lsDFMmn, S=10, R=20, A=mail -r $g -d $u

Mprog, P=/bin/sh, F=lsDFMe, S=10, R=20, A=sh -c $u

S10

R© $n errors to mailer-daemon

ft################*####################################*#####

##

#####

Local Domain SMTP Mailer specification

#####

Messages processed by this specification axe assumed to remain

the local domain. Hence, they can refer to hosts that are

not registered in the NIC host table.
#####

##

##

Mtcpld, P=[IPC], F=mDFMueXLC, S=17, R=27, A=IPC $h, E=\r\n

S17

66

cleanup forwarding a bit
R$*<$*>$* l2$3 defocus

R$* $:$>3$1 canonicalize

R$**/,$*<@$w> $:$>9$l'/,$2 user'/.localhostSlocaldomain

pass <route-addr>’s through

R<@$+>$* $@<®$ [1]>$2 resolve <route-addr>

map colons to dots everywhere
R$*:$* $1.$2 map colons to dots

output local host as userQhost.domain

R$- $®$l<@$w> user w/o host

R$+<@$w> $@$K@$w> this host

R$+<Q$=w> $©$l<@$w> or an alias

R$+<©$-> $:$i<©$[2]> ask nameserver
R$+<@$w> $©$l<©$w> this host

R$+<@$-> $©$1<@$2.$D> if nameserver fails

if not local, and not a "fake" domain, ask the nameserver
R$+<@$+.$"I> $©$1<@$[$2.3]> user@host.domain

R$+<@[$+]> $©$!<©[$2]> already ok

output fake domains as user'/.fake@relay

R$+<@$+.BITNET> $©$1'/,$2.BITNET<@$B> userShost.bitnet

R$+<®$+.CSNET> $©$17.$2.CSNET<0$C> userShost.CSNET

67

R$+<®$+.UUCP> $®$2!$l<@$w> user®host.UUCP

S27

cleanup

R$*<$*>$* i2$3 defocus

R$* $:$>3$1 now canonical form

R$*'/,$*<@$w> $:$>9$l'/,$2 user'/,localhost@localdomain

pass <route-addr>’s through

R<@$+>$* $@<®$[1]>$2 resolve <route-addr>

map colons to dots everywhere
R$*:$* $1.$2 map colons to dots

output local host as userOhost.domain
R$- $@$l<@$w> user w/o host

R$+«2$w> $@$l<®$w> this host

R$+«9$=w> $@$l<@$w> or an alias

R$+<@$-> $:$1<@$[$2$]> ask nameserver

R$+<@$w> $@$l<@$w> this host

R$+<@$-> $@$1<®$2.$D> if nameserver fails

if not local, and not a "fake" domain, ask the nameserver

R$+<@$+.$"I> $@$1<@$[$2.3]> userShost.domain

R$+<@[$+]> $@$1<@[$2]> already ok

68

output fake domains as user'/,fakeSrelay

R$+<@$+.BITNET> $@$i'/,$2 .BITNET<®$B> us er@host.BITNET

R$+<@$+. CSNET> $®$l‘/,$2. CSNET<@$C> user®host.CSNET

R$+<®$+.UUCP> $®$2!$1 user@host.UUCP

############*#*«##«###############################*#########

##

#####

Internet SMTP Mailer specification
#####

Messages processed by this specification are assumed to leave

the local domain — hence, they must be canonical according to

RFC822 etc. This means that machines not registered with

the NIC must be hidden behind our Internet relay.
#####

##

###«##########*#######

Mtcp, P=[IPC], F=mDFMueXLC, S=14, R=24, A=IPC $h, E=\r\n

S14

pass <route-addr>’s through

R<@$+>$* $@<@$[1]>$2 resolve <route-addr>

map colons to dots everywhere

69

R$*:$* $1.$2 map colons to dots

output local host in userOhost.domain syntax

R$- $l<®$w> user w/o host

R$+<0$=w> $:$l<0$w> this host
R$+<®$-> $:$1<©$[$2$]> canonicalize into dom

R$+<©$-> $:$1<©$2.$D> if nameserver fails

R$+<0$=N.$D> $©$1<0$2.$D> nic-reg hosts are ok

R$+<0$*.$D> $®$1'/,$2.$D<0$A> else -> u*/,h®gateway

if not local, and not a "fake" domain, ask the nameserver

R$+<©$+.$“I> $®$1<®$[$2.3]> userQhost.domain

R$+<®[$+]> $®$1<©[$2]> already ok

output internal ("fake") domains as "user'/,host©relay"

R$+<©$+.BITNET> $®$1'/.$2.BITNET<0$B> user®host.BITNET

R$+<©$+. CSNET> $©$l'/,$2. CSNET<0$C> user®host. CSNET

R$+<0$+.UUCP> $®$2!$l<0$w> userShost.UUCP

S24

put in <> kludge
R$*<$*>$* $1$2$3 defocus

R$* $:$>3$i now canonical form

pass <route-addr>’s through

70

R<©$+>$* $®<®$[1]>$2 resolve <route-addr>

map colons to dots everywhere....

$l.$2 map colons to dots

output local host in userOhost.domain syntax

R$- $l<@$w> user w/o host

R$+<@$=w> $:$l<@$w> this host

R$+<@$-> $:$i<©$[$2$]> canonicalize into dom

R$+<©$-> $:$1<@$2.$D> if nameserver fails

R$+<@$=N.$D> $@$1<©$2.$D> nic-reg hosts are ok

R$+<©$*.$D> $@$i'/,$2.$D<@$A> else -> u'/,h@gateway

if not local, and not a "fake" domain, ask the nameserver

R$+<@$+.$"I> $@$1<@$[$2.3]> userShost.domain

R$+<@[$+]> $@$1<@[$2]> already ok

Hide fake domains behind relays

R$+<@$+.BITNET> $@$1'/,$2.BITNET<®$B> userShost .BITNET

R$+<@$+.CSNET> $©$17.$2.CSNET<@$C> userShost.CSNET

R$+<@$+.UUCP> $@$2!$1 user@host.UUCP

###*##################

##«#############

#####

UUCP Mailer specification

71

#####

##

##

Muucp, P=/usr/bin/uux, F=DFMhuU, S=13, R=23, M=100000,

A=uux - -r -z -a$f -gC $h!rmail ($u)

S13

R$+ $:$>5$i convert to old style

R$*<@$=w>$* $l<@$w>$2 resolve abbreviations
R$*<©$->$* $1<@$2.$D>$3 resolve abbreviations

R$+<©$+> $2!$1 uucpize (no @ ’s in addr)

R$w!$+ $1 strip local name

R$+ $:$U!$1 stick on our host name

R$=U!$-'/,$- $:$1 !$2@$3.$D ucbvax!user@host .domain

S23

R$+ $:$>5$1 convert to old style

R$*<@$=w>$* $l<©$w>$2 resolve abbreviations
R$*<@$->$* $1<@$2.$D>$3 resolve abbreviations

R$+<©$w> $U!$1 a!b@here -> here!alb

R$=U!$+ $2 here!alb -> alb

sanity ... should not happen.

R$=U.$D!$+ $2 strip local name.domain

##############«######*########*#############################

##

72

#####

Provide Backward Compatibility

#####

##

##

#####################################*##########«####

It General code to convert back to old style names #

###

S5

R$+<@$w> $1 strip host

R$+<@$-,UUCP> $2!$i u@host.UUCP => hostlu

#####################

Rule Zero
####################*

##

#######################«####################################

#####

RULESET ZERO PREAMBLE
#####

The beginning of ruleset zero is constant through all

configurations.
#####

##########«*##

73

########*###################*##############*##*#############

so

first make canonical
R$*<$*>$* $1$2$3 defocus

R$+ $:$>3$1 make canonical

handle special cases
R$*<©[$+]>$* $:$!<©$[[$2]$]>$3 numeric internet addr

R$*<®[$+]>$* $#tcp$©[$2]$:$l®[$2]$3 numeric internet spec

R$+ $:$>6$1

R$-<@$w> $#local$:$l
R© $#error$:Invalid address handle <> form

canonicalize using the nameserver if not internal domain
R$*<@$*.$"I>$* $:$1<©$[$2.3]>$4

R$*<©$->$* $:$!<©$[$2$]>$3

R$*<@$->$* $:$1<@$2.$D>$3 if nameserver fails

now delete the local info

R<@$w>:$* $©$>0$1 ©here:... -> ...

R$*<@$w> $©$>0$1 ...©here -> ...

############################«#####

End of ruleset zero preamble #
##################################

74

########«#############«########################

Machine dependent part of Rule Zero ###
ft##*#####################################*#####

resolve local UUCP connections

R<@$=V.UUCP>:$+ $#uucp$®l:$2 ©host.UUCP:...

R$+<Q$=V.UUCP> $#uucp$S2:$l user©host.UUCP

resolve fake top level domains by forwarding to other hosts

R$*<@$+.BITNET>$* $#tcp$@B:$1<®$2.BITNET>$3 userChost.BITNET
R$*<©$+.CSNET>$* $#tcp$@C:$l<©$2.CSNET>$3 userShost.CSNET

forward non-local UUCP traffic to our UUCP relay

R$*<©$*,UUCP>$* $#tcpld$@R:$l<@$2.UUCP> uucp mail

resolve SMTP traffic

R$*<@$*.$D>$* $#tcpld$@$2.$D$:$l<@$2.$D>$3 userShost.ourdomain
R$*<@$+>$* $#tcp$©2:$i<@$2>$3 user@host.ourdomain

remaining names must be local

R$+ $#local$:$l everything else

B .4 T h e c u s to m iz e d files on th e SunO S:

B .4 .1 /e tc /r c .lo c a l:

75

#

@(#)rc.local 1.112 90/09/14 SMI; from UCB 4.3

#

PATH=/bin:/usr/bin:/usr/etc:/usr/ucb; export PATH

domainname ‘cat /etc/defaultdomain'

#

hostname now set in rc.boot

#

echo -n ’starting rpc and net services:’

if [-f /usr/etc/portmap]; then

portmap; echo -n ’ portmap’

fi
if [-f /usr/etc/ypserv -a -d /var/yp/‘domainname‘]; then

ypserv; echo -n ’ ypserv’

#

Master NIS server runs the XFR daemon

#

ypxfrd; echo -n ’ ypxfrd’

fi
if [-d /var/yp]; then

if [-f /etc/security/passwd.adjunct]; then

ypbind -s; echo -n ’ ypbind’

else

ypbind; echo -n ’ ypbind’

fi

fi

76

if [-f /usr/etc/keyserv]; then

keyserv; echo -n ’ keyserv’

fi
if [-f /usr/etc/rpc.ypupdated -a -d /var/yp/*domainname‘]; then

rpc.ypupdated; echo -n ’- ypupdated’

fi

set the netmask from NIS if running, or /etc/netmasks for all ether interfaces

ifconfig -a netmask + broadcast + > /dev/null

#

If we are a diskless client, synchronize time-of-day with the server.
Else, if applicable, run the router daemon. Note that for better

performance, we don’t enable the router daemon for diskless clients.
#

At the same time, terminate the currently printing line (for prettiness).
#

server=‘grep][]*/[]“ /etc/fstab I sed -e "/~#/d" -e "s/:.*//"‘
if ["$server"]; then

echo ’.’

intr -a rdate $server

else

#if [-f /usr/etc/in.routed] ; then

in.routed; echo -n ’ routed’

#fi

echo ’.’

77

f i

#

The following will mount /tmp if set up in /etc/fstab. If you want to use

the anonymous memory based file system, have an fstab entry of the form:

swap /tmp tmp rw 0 0

Make sure that option TMPFS is configured in the kernel

(consult the System and Network Administration Manual).

#

mount /tmp

intr -a mount -vat nfs

echo -n ’starting additional services:’

if [-f /usr/etc/in.named -a -f /etc/named.boot]; then

in.named; echo -n ’ named’

fi
if [-f /usr/etc/biod]; then

biod 4; echo -n ’ biod’

fi

echo ’.’

rm -f /tmp/tl

dmesg | grep SunOS I tail -1 I sed -e "s/‘ .*SunOS/SunOS/" >/tmp/tl

tail +2 /etc/motd >>/tmp/tl

mv /tmp/tl /etc/motd

chmod 666 /etc/motd

78

syslogd doesn’t belong here, but needs to be started before the others.

It needs to be started after NIS, though, so it can find the "syslog"
udp service.

if [-f /usr/etc/syslogd]; then

echo ’starting system logger’

rm -f /dev/log

syslogd

fi

#

Default is to not do a savecore

#

#mkdir -p /var/crash/‘hostname*

echo -n ’checking for crash dump... ’
#intr savecore /var/crash/‘hostname*
echo ”

if [-f /dev/sky]; then

skyrc /usr/lib/sky.ucode

fi

if [-f /dev/fpa]; then

/usr/etc/fpa/fpa_download -d -r

fi

if [-f /dev/fpa]; then

/usr/etc/fpa/fparel

fi

79

if [-f /usr/etc/gpconfig]; then

/usr/etc/gpconfig -f -b
fi

if [-f /dev/dialbox]; then

dbconfig /dev/dialbox

fi

add the gateway 150.131.252.10

/usr/etc/route add 0 150.131.252.10 1

route add net 150.131.250.0 150.131.252.111 1

echo -n ’starting local daemons:’

if [-f /usr/etc/auditd]; then

auditd; echo -n ’ auditd’

fi

if [-f /usr/lib/sendmail -a -f /etc/sendmail.cf]

(cd /var/spool/mqueue; rm -f nf* If*)

/usr/lib/sendmail -bd -qlh; echo -n ’ sendmail’
fi

if [-d /tftpboot -a -f /tftpboot/sun2.bb] ; then

ndbootd; echo -n ’ ndbootd’

fi

#

if /etc/exports file exists become nfs server
#

if [-f /etc/exports] ; then

> /etc/xtab

exportfs -a

nfsd 8 & echo -n ’ nfsd’

then

80

if [-f /etc/security/passwd.adjunct]; then

Warning! Turning on port checking may deny access to
older versions (pre-3.0) of NFS clients,

rpc.mountd

echo "nfs_portmon/Wl" I adb -w /vmunix /dev/kmem >/dev/null 2>&1
else

rpc.mountd -n

fi

fi

#

if /tftpboot exists become a boot server

#

if [-d /tftpboot]; then

echo -n ’ rarpd’; \

rarpd -a
rpc.bootparamd

fi
#

start up status monitor and locking daemon if present
#

if [-f /usr/etc/rpc.statd]; then
rpc.statd & echo -n ’ statd’

fi

if [-f /usr/etc/rpc.lockd] ; then

rpc.lockd & echo -n ’ lockd’

fi

#

81

start up authentication daemon if present and if adjunct file exists

#

if [-f /usr/etc/rpc.pwdauthd -a -f /etc/security/passwd.adjunct]; then

rpc.pwdauthd & echo -n ’ pwdauthd’

fi
«

start up the automounter

#

if [-f /usr/etc/automount] ; then
automount && echo -n ’ automount’

fi

echo *.’

#

Build the link-editor fast directory cache.

#

if [-f /usr/etc/ldconfig]; then

ldconfig; echo "link-editor directory cache"
fi

B.5 T he custom ized file /e tc /h o s ts on each machine:

#

hosts This file describes a number of hostname-to-address
mappings for the TCP/IP subsystem. It is mostly

used at boot time, when no name servers are running.

On small systems, this file can be used instead of a

"named" name server. Just add the names, addresses

82

and any aliases to this file...

#

Version: @(#)/etc/hosts 2.00 04/30/93

#

Author: Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>

#

For loopbacking.

127.0.0.1 localhost

150.131.250.110 bsdunix.net3 bsd

150.131.250.111 linux.net3 linux
150.131.252.111 darkstar.net2 daxkstar

150.131.252.112 fusion.net2 fusion

150.131.252.10 NetWare.net2 netware

50.131.251.10 pcware.netl pcware

End of hosts.

83

mailto:waltje@uwalt.nl.mugnet.org

Bibliography:

1. Douglas E. Commer.[1991]. Internetworking with T C P /IP Volume I

& II. Prentice-Hall, Inc..

2. Barry Nance.[1990]. Network Programming in C. Que Corporation.

3. Thomas W. M adron.[1994]. Local Area Network. Joh Wiley & Sons,

Inc..

4. Carl Malamud.[1992]. Analyzing Novell Networks. Van Nostrand Rei-

hold.

5. Charles G. Rose.[1990]. Programmer’s Guide to NetWare. McGraw-

Hill, Inc..

6. Michael Santifaller.[1994]. T C P /IP and O N C /N FS internetworking

in a UNIX environment. Addison-Wesley(Deutschland) GmbH.

7. Evi Nemeth.[1995]. UNIX System Administration. Prentice Hall PTR

8. NetWare documentation.

9. SunO S documentation.

10. Linux documentation.

84

	Heterogeneous internetworking model with enhanced routing security and management functions
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

