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Roney, Michael E. H., MS.F., August 12, 1977 Forestry 

Influence of Temperature Variation Within the Forestry School 
Greenhouse Upon Development of Container-Grown Pinus Ponderosa 
Seedlings (66 pp.) 

Director: Dr. John D. Schultz 

Pinus ponderosa seedlings were grown at each of twelve locations 
in the Forestry School Greenhouse at the University of Montana. 
The seedlings were reared under uniform conditions except for the 
existing variation in microclimatic parameters. Temperature was 
monitored and six seedling parameters were recorded: height 
growth, total dry weight, shoot dry weight, root dry weight, root/ 
shoot ratio, and percent water content. A one-way analysis of 
variance indicated that temperature and seedling development varied 
significantly between test locations during a ninety-six day study 
period. Statistically significant correlations were found between 
temperature and total dry weight, root dry weight, and root/shoot 
ratio. Rotation of seedlings on a four-day interval helped mini­
mize, but did not eliminate, influences of microclimate. Computer 
graphics were used to illustrate the relationship between tempera­
ture and stationary seedlings and to provide contrasts between the 
influence of stationary and rotated treatments. 
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PREFACE 

The University of Montana Forestry Greenhouse has not been used to 

its fullest potential as a research or instructional facility in recent 

years. Reasons for this have been numerous and complex. However, this 

project was concerned with only one of the problems--temperature vari­

ation within the structure and the possible influences this has upon 

development of Pinus ponderosa seedlings. 

The impetus for a greenhouse evaluation and renovation project, as 

well as some of the funding for i t ,  was provided by Wayne Kite, Land Use 

Planning Division, Champion Timberlands Corporation. Mr. Hite had 

observed that the Forestry Greenhouse might be improved, particularly 

when compared to greenhouses where recent advances have been made in 

mechanization associated with production of containerized seedlings. 

Incorporating his assessment with the observations of others, I chose to 

conduct analytical work in order to evaluate the Forestry Greenhouse. 

Observations within the structure suggested that definite variations in 

microclimate did occur. Significant variations would cast doubt on any 

conclusions reached from other research conducted under existing green­

house conditions. 
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CHAPTER I 

LITERATURE REVIEW 

Experimental Design 

Backlund and Perttu (1971) discussed an extensive, complex, 

analytic system in which they monitored twenty-six environmental and two 

plant growth parameters (species not mentioned but assumed, from illus­

trations, to be in genus Pinus). A large volume of data was collected 

through time and fed directly into a computer for analysis. The authors'  

objectives were to describe nursery climate, greenhouse climate, plant 

climate, and the connection between environmental factors and plant 

growth. Some of their observations included: shoot elongation; 

increases in stem caliper; temperature of air,  needles, roots, and soil 

surface; air pressure; precipitation; air movement; soil moisture; and 

solar radiation. 

Whittle and Lawrence (1960) evaluated temperature variations in 

several greenhouses heated by steam. The steam heat in all cases was 

controlled by motorized on-off valves connected to centralized thermo­

stats. Temperature variation within the greenhouses was monitored 

fifty-four times daily at each location by a multi-channel temperature 

recorder modified to accommodate forty-five thermocouples. In one 

experiment, designed to evaluate uniformity of temperature, variations 

within one of the greenhouses never exceeded 1.4°C from September 7 to 

October 10 when compared on a static time bases. 

1 
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Kimball (1973) used thermocouples to determine differential inside 

temperatures while comparing a computer prediction of greenhouse energy 

balance with a real situation. However, other than reporting that he 

took four daily temperature readings on three days of distinct climatic 

characteristics, he does not detail his study design because i t  was 

secondary to the main work. 

Ekblad (1973) listed five factors to be considered when temperature 

measurements are made in the greenhouse: 1) shielding of sensors, 2) 

soil temperature, 3) leaf temperature, 4) radiometer readings, and 5) 

air temperature gradients. Kelsoe (1975) contended that shielded sensors 

should be located near plant level at locations chosen to represent the 

extremes of probable temperature distribution. He added that the most 

extreme temperature changes occurred during the winter months and that 

recordings every thirty minutes were sufficient to analyze both slow and 

rapid changes. Tanaka and Timmis (1974) used average daytime tempera­

tures from three positions: 1) the tip of the seedling, 2) the bottom 

of the stem, and 3) 6 cm into the soil.  Averages were computed from 

sixteen readings made at hourly intervals. Backlund and Perttu (1971) 

noted that their system logged the data at twenty minute intervals. 

Steinbrenner and Rediske (1964) conducted work on Pinus ponderosa 

and Pseudotsuga menziesii to determine the relative importance and inter­

relationships of several environmental factors. Seed source was from 

one tree and seedling uniformity was established after germination and 

before seedlings were placed in the growth chamber. Each of the follow­

ing environmental parameters was evaluated in terms of low and high 

conditions: soil productivity, light intensity, temperature, humidity. 
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soil temperature, soil moisture, and nitrogen level. The high and low 

values were based upon conditions which could be encountered by trees 

growing in a natural environment. The research work was conducted in 

four, ten-week periods. Four groups of 128 seedlings of each species 

were subjected to one of four combinations of either low or high tem­

perature and humidity. The 128 seedlings were subject to other climatic 

variations by means of partitions, water baths, and differential care. 

Because of limited space and the large number of environmental factors, 

any one combination of all factors allowed for only two sample measure­

ments per species. 

Cochran (1972) studied the effects of soil fertility and tempera­

ture upon Pinus ponderosa and Pinus contorta. He grew seedlings in the 

same soil type at four different nutrient levels. Using three growth 

chambers at different daytime temperature, he grew three groups of 

seedlings to obtain nine combinations with three different nighttime 

temperatures. Cochran used daily degree hours as one factor related to 

seedling growth. 

Brix (1967) analyzed dry matter production of Pseudotsuga 

menziesii in relation to nine combinations consisting of three tempera­

tures and three light intensities. He obtained twenty samples for dry 

weight calculations from each of the nine combinations at sixty-five 

days and 100 days. Larson (1967) evaluated the influence of different 

soil and air temperatures on initial growth of Pinus ponderosa from 

three different locations. Larson assumed that soil temperature for one 

test would be the same as the room temperature. Seedlings from the three 

sources were germinated ahead of time and selected for uniformity. 
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The time element involved in the study designs described above is 

listed here by increasing increments of time. Time periods allowed for 

tree growth, before harvesting in conjunction with data analysis, were 

as follows: Larson (1967)--forty-two days plus germination time, Brix 

(1967)--sixty-five days and 100 days, Steinbrenner and Rediske (1964)--

seventy days plus pregermination, and Cochran (1972)--133 days plus 

germination. 

Seed Size and Germination Rates 

Tests involving seed size and initial seedling development, 

according to Duffield (1960), yielded direct correlations between the 

two. He contended that screen size and air column separation were 

unsatisfactory for obtaining seed uniformity. Larson (1963) noted three 

important observations from studies involving seed size and germination 

data in nursery plantings. They were: 1) differences among seedlings 

from various size classes were not significant, 2) variation in seedlings 

with only seven days difference in germination data were statistically 

significant, 3) all seed sizes exhibited uniform germination percentages. 

Larson contended that variation in seedling growth due to seed size was 

minor compared with variation in germination date and other environmental 

factors for seedlings grown under nursery conditions. Different germina­

tion ratios were observed by Powells (1953). He found that medium size 

seed showed the greatest percentage of germination. Some of Larson's 

earlier work (1961) also pointed to problems of seed size and germina­

tion. He reported that field tests had shown approximately the same 

germination rates as Powell 's work. However, he stated the large seed 
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in a greenhouse test exhibited only 41% germination, whereas medium seed 

had 78% germination. 

Plant Growth Parameters 

Measurement of seedling dry weight is a straightforward procedure. 

All references found in this search listed a temperature of 70°C for 

obtaining dry weights (e.g.,  see Larson 1967). Edgren and Trappe (1970) 

dried the seedlings until they reached a constant weight. Steinbrenner 

and Rediske (1964) used a period of forty-eight hours which presumably 

would produce a constant weight. Measurements sometimes included more 

than total dry weight. Tinus (1972), to cite the extreme, measured the 

individual weights of stems, roots, and leaves, both wet and dry. Total 

dry weight measurements were usually expressed in milligrams. 

Two procedures dominate in the measurement of height growth. The 

first involves measurement of the epicotyl growth, i .e.,  from the 

cotyledonary node to the tip of the terminal bud (e.g.,  see Betts 1969). 

This method was used exclusively if the seedling had been transplanted 

for some reason (e.g.,  see Trappe and Edgren 1970). The second and more 

widely used procedure is that of measuring from the growth medium to the 

terminal bud. Tinus (1972) used a slight variation of this second pro­

cedure by measuring from the root collar to the terminal bud. Height 

growth was usually expressed in millimeters. Backlund and Perttu (1971) 

measured height growth on a continuous basis. All other authors measured 

height growth only at the end of the study period, with the exception of 

Betts (1969). He measured height growth biweekly. 
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Environmental Parameters 

Greenhouses modify the climate to provide more uniform environ­

mental conditions for plant growth. Ekblad (1973) noted that modifying 

the climate in a structure to provide uniformity of climatic conditions 

is always a complex problem. He stated that greenhouses present several 

problems which are unique: rapid heat build up, rapid cooling due to 

poor insulation, internal cooling and high humidity due to evapotrans-

piration, and differential shielding of sunlight due to equipment. 

Evaluations of variation in Pinus ponderosa growth due to climatic con­

ditions within the greenhouse, unique or otherwise, have not been 

located. However, the influences of many environmental parameters upon 

tree growth have been analyzed by use of growth chambers. 

Interrelati onshi ps 

Steinbrenner and Rediske (1964) contended that plant growth was 

influenced by a delicate intertwining of environmental parameters within 

their potential ranges. They stated that any factor at its extremes 

could severely limit or stop plant growth. However, even at these 

extremes, other environmental factors would still  be exerting some inter­

actions upon plant processes. Larson (1967), discussing interactions of 

soil and air temperature, specifically pointed out an interesting 

observation from his results. He stated that when either soil or air 

temperature was at optimum the variation in the other had the greater 

magnitude of effect upon the seedlings. In a discussion of the upper 

limits of seedling growth, Larson (1974) stated that there were very 

complex interactions among individual environmental factors and between 

those factors and the genetic constitution of the seedlings. 
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Augsburger, et a1. (1975) discussed in detail the interrelation­

ships of temperature and humidity. The main relationship is that, at 

constant moisture, relative humidity decreases proportionally as tempera­

ture increases. Larson (1967) assumed in his experimental design that 

soil temperature would be the same as the air in a constant temperature 

room. Steinbrenner and Rediske (1964) found that air temperature was 

more important to evaporation than soil type and that light intensity 

showed significant correlation with moisture reduction regardless of 

temperature. Whittle and Lawrence (1960) noted that temperature varia­

tion was much easier to control in a greenhouse when strong solar radia­

tion was absent. Tinus (1971) pointed out that, with high light 

intensities, photosynthesis was limited by the low concentrations of 

carbon dioxide. Air movement, according to Satoo (1962), can result in 

an increase or decrease in photosynthesis depending on velocity. Satoo 

related these phenomena to interrelationships with carbon dioxide and 

soil moisture, respectively. 

Relations to Plant Growth 

Steinbrenner and Rediske (1964) emphasized that interaction among 

environmental parameters was always present. Based on this assumption, 

their study was conducted to evaluate growth responses of Pinus ponderosa 

and Pseudotsuqa menziesii seedlings to high and low levels of several 

factors. Growth response was used to rank the relative importance of 

environmental parameters. Their results were as follows: 1) air 

temperature had the greatest influence on height growth; 2) the influ­

ence of air temperature was evident in the interaction with the other 

environmental factors; 3) air temperature increased the top weight by 
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the same magnitude as height growth, although light intensity had the 

strongest influence on top weight; 4) light intensity was most influen­

tial on the total dry weight, but temperature was responsible for con­

sistent weight increases; 5) air temperature and light intensity were 

also important to increased root weight. 

Backlund and Perttu (1971) stated that radiation and temperature 

were the main factors linked to an appropriate analysis of plant growth-

Many authors have found direct relationships between temperature and 

both height and dry weight; however, there is little agreement on which 

combination of day and night temperatures is optimum for growth of Pinus 

ponderosa seedlings. Tinus (1971) listed the following day-night tem­

perature combinations as optimum: height growth, day-25°C, night-25°C; 

caliper, day-23°C, night-25°C; dry weight, day-21°C, night-25°C. Tinus 

(1974) discussed a specific seed source of Pinus ponderosa from Nebraska 

and stated that: 1) the trees grew best at daytime temperatures of 25°C 

and nightime temperatures of 18.5°C; 2) growth dropped off rapidly above 

daytime temperatures of 25°C; 3) with daytime temperatures near optimum, 

nighttime temperatures within reason had l ittle effect on height growth; 

and 4) dry weight increased with increasing nighttime temperatures 

reaching optimum at 25°C. 

Cochran (1972) did not measure dry weight. His findings were as 

follows: 1) best growth occurred at daytime temperatures of 23°-30°C 

and nighttime temperatures of 8°C; 2) daytime temperature, nighttime 

temperature, and degree days all showed significant effects upon growth. 

Schubert and Baron (1965), working with shoot elongation in nursery beds, 

presented the following observations: 1) mean minimum air temperature 
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influenced root development greatly, and 2) best growth occurred when 

diurnal range between night and day was approximately 10-14°C and the 

mean temperature was above 5°C. Larson (1967) noted that seedlings from 

three separate seed source locations (Arizona, California, and South 

Dakota) all  grew best at a constant day-night temperature of 23°C. 

Humidity, as an influence upon seedling growth in a greenhouse, 

was considered to be of only limited importance. Steinbrenner and 

Rediske (1964) found some correlations of seedling growth with variation 

in relative humidity. However, they considered humidity to be more 

important in comparing Pinus ponderosa with Pseudotsuga Menziesii than 

to describe the influence upon growth of the individual species. Ekblad 

(1973) stated that, as an environmental factor, humidity becomes a 

problem only at extremes; e.g.,  high humidity increases disease and mold 

problems and low humidity, due to increased evaporations, can increase 

salt accumulation and can lower soil temperatures as much as 8°C. 

Larson (1974) stated that humidity fluctuation within reasonable limits 

would not seriously affect general tree growth. He also stated that as 

long as relative humidity does not exceed the 40-70% range, very l ittle 

is gained by trying to control the fluctuation. He noted that relative 

humidity below 40% can inhibit growth. Ekblad (1973) presented two 

criteria used in evaluating humidity fluctuations: 1) day and night 

levels, and 2) fluctuations outside established ranges. 

In a general discussion of seedling growth, Larson (1974) listed 

several influences related to light intensity: 1) low light intensity 

could limit growth in closely grouped containerized seedlings due to 

shading; 2) young needles may become saturated with light intensities of 
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1,500-3,000 foot candle, whereas other needles may not reach saturation 

until intensities of two to three times that magnitude; and 3) light 

intensity may influence height and dry weight differently, i .e.,  up to 

45% light produces tall seedlings, greater than 45% produces heavy seed­

lings. The important results presented by Steinbrenner and Rediske (1964) 

were noted above. They found that variation in light intensity had the 

greatest influence upon total seedling weight. Tinus (1971) hinted at 

one of the most serious problems of greenhouse climate control. He 

noted that Pinus ponderosa seedlings could utilize high intensities of 

solar radiation as long as carbon dioxide concentrations were maintained 

at a high level. He explained that the greenhouse must be a closed 

system in order to maintain high concentrations of carbon dioxide. This 

was where the problem became evident. In a closed greenhouse the tem­

perature under conditions of high solar radiation can severely limit 

seedling growth. 

The concentration of carbon dioxide in the air during periods of 

photosynthesis, even on the best site, could have easily become a limit­

ing factor to tree growth according to Spurr and Barnes (1973). Increased 

concentrations of carbon dioxide, as noted by several authors, can pro­

duce increased rates of seedling growth (e.g.,  see Tinus 1972). The 

variability of carbon dioxide in an empty, nonmanipulated greenhouse 

would have to have been theoretically nonexistent. However, variation 

in carbon dioxide concentration in a greenhouse in which Pinus ponderosa 

seedlings were being produced could be influenced by two factors: 1) 

the variability of air circulation and 2) the rate of carbon dioxide 

assimilation associated with photosynthesis. The variability of air 
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movement would have been related to numerous engineering features. 

Satoo (1962) pointed out that, for plants in general, movement of air 

at low velocities can increase photosynthesis by increasing carbon 

dioxide availability. He also stated that air movement could have 

adverse effects. Higher velocities of air movement quickly cause a 

reversal of photosynthetic activity due to increasing transpiration, 

except in some rare cases where large volumes of water are readily 

accessible. 



CHAPTER II 

OBJECTIVES AND PROBLEM STATEMENT 

The objective of this project was to determine if seedling growth, 

as quantified by six parameters, was significantly influenced by varia­

tion in microclimate as quantified by temperature. Statistical analyses 

were performed to ascertain the variability of growth and temperature, as 

well as to determine the degree of association between temperature and 

the six parameters. 

Environmental parameters which have been shown to influence seed­

ling growth include: air temperature, humidity, evaporation, light 

intensity (both natural and artificial),  carbon dioxide concentration, 

soil temperature, nutrient availability, and moisture content of the 

growth medium. Temperature has been singled out by numerous authors as 

being highly influential upon seedling development. Air temperature has 

been shown to have direct interrelationships with humidity, evaporation, 

soil temperature, and moisture content. The principal factors which 

cause variation in temperature are solar radiation, artificial heat, and 

air circulation. Air movement, as noted above, has been shown to be 

responsible for variation in plant growth by causing an increase in 

availability of carbon dioxide and by causing higher rates of transpira­

tion. 

This research project was based upon the following assumptions: 

1) moisture and nutrients would be supplied as uniformly as possible; 

12 
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2) air temperature would be one of the main factors influencing seedling 

growth; 3) air temperature would have a direct effect upon variation in 

humidity, evaporation, soil temperature, and soil moisture; 4) variation 

in air temperature would be directly related to variation in solar radi­

ation, supplementary light, artificial heat, and air circulation; 5) 

carbon dioxide concentrations would be fairly uniform, based on a normal 

atmospheric value of 325 parts/million; 6) influence of air movement 

would be negligible during the winter growing season; and 7) variation 

in the artificial lighting systems would be an unavoidable shortcoming. 

Two null-hypothesis statements were postulated in this research 

project: 1) Pinus ponderosa seedling development and temperature do not 

vary significantly within the east room, and 2) seedling development is 

not dependent on temperature. 



CHAPTER III 

EXPERIMENTAL DESIGN 

Planting Methods 

Seeds of Pinus ponderosa obtained from a single stand in Ryan 

Gulch^ were soaked in water for eight hours and then spread onto wetted 

cotton pads laid in metal pans. The metal pans were bagged in plastic 

and placed in a growth chamber set for sixteen-hour days, with a 29°C 

temperature setting for light periods and 18°C temperature for dark 

periods. After seven days, seeds which had a radicle length of between 

0.1 and 0.4 cm were sown one per cavity into thirty randomly assigned 

holes in each of twenty-four #2A styroblocks. The styroblocks had been 

filled ahead of time with a wetted peat-vermiculite mixture. The addi­

tional 210 cavities were seeded with the remaining seed. All cavities 

were covered with approximately 0.3 cm of #2 granite grit.  

The twenty-four containers were randomly placed in pairs at each 

of twelve locations within the east room of the Forestry Greenhouse 

(Figure 1). The styroblocks were labeled according to location number 

and with either the letter A or B. The "A" styroblocks, which were 

positioned to alternate between the north and south edge of the benches, 

were left in the same location for the length of the study period. The 

"B" styroblocks were rotated every fourth day according to the following 

^Ryan Gulch is located in section 6, T 11 N, R 15 W. Montana 
Principal Meridian. 

14 
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East Room 

E-l 

E-2 

bench 
numbers 

E-3 

E-4 

E a s  t  

Range Ro om Head 

Management House 

A 
Storage 
Room 

Figure 1. Data point locations and orientation of east room within the Forestry School 
Greenhouse. 
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pattern obtained from a random number table: 10, 3, 2, 5, 9, 4, 6, 1, 

11, 12, 7, 8. The remaining space on the benches was filled with 

seeded #2A styroblocks to simulate normal greenhouse conditions when 

filled with containers. The study period ran from October 6, 1976 to 

January 10, 1977--a total of ninety-six days. 

Parameter Measurements 

On January 11 the "B" styroblocks were moved for the last time, 

returning them to their original placements. All seedling parameter 

measurements were obtained as soon as possible thereafter. Height growth 

of the first ten seedlings in each container (i .e.,  twenty seedlings/ 

location or 240 total) was measured in millimeters (to.5 mm). Measure­

ments were made by placing a ruler on the growth medium next to the 

stems and determining the height of the shoot apex. (All of the test 

emergents had been chosen for uniform radicle length. Height of the 

individual seedlings should have been a result of the environmental con­

ditions encountered during the ninety-six day period. Thus, the term 

height growth has been used to express the amount of hypocotyl and stem 

elongation which occurred during the study). 

The same ten seedlings from each styroblock were lifted to obtain 

weight measurements. The growth medium was gently washed from the 

roots, and the seedlings were severed at the root collar. The wet weight 

of the shoot was measured, and the shoot and root were placed into 

individually numbered kraft bags. All plant materials were oven-dried 

at 70°C for forty-eight hours. Dry weight measurements, expressed in 

milligrams (±0.5 mg), were obtained for shoots and roots as well as the 

total weight for each group in a particular styroblock. The kraft bags 
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were removed from the oven one at a time to reduce water uptake before 

measurement. 

Temperature readings were collected throughout the research period 

with a Honeywell model #370790-999 multi-channel temperature recorder. 

Twelve copper-constantin thermocouples were placed at 5.08 cm (2.0 

inches) above the plant level between the two containers at each of the 

twelve locations shown in Figure 1. The average daily temperature was 

calculated for each location. Several unexplained malfunctions of the 

temperature recorder occurred during the period of study. Therefore, 

temperature data are not complete for all ninety-six days (Table 1). 

TABLE 1 

DATES OF MISSING AND INCOMPLETE TEMPERATURE DATA 

Dates Status 

October 6 and 7 Complete 
October 8 and 10 Partial 
October 11-13 Complete 
October 14 and 15 Partial 
October 16-26 Complete 
October 27 Partial 
October 28-November 17 None 
November 18 Partial 
November 19-December 19 Complete 
December 20 and 21 Partial 
December 22-January 9 Complete 
January 10 Partial 

In addition to temperature and the aforementioned seedling para­

meters of height growth, total dry weight, shoot dry weight, and root 

dry weight; two other seedling parameters were calculated—root/shoot 

ratios and percent water content of the shoot. The root/shoot ratios 
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were obtained by dividing root dry weight by shoot dry weight for each 

seedling. Percent water content was calculated for individual seedlings 

by dividing the weight of water contained in the succulent shoot by the 

dry weight of the shoot. 

Statistical Design 

The null hypothesis of no position effect, 

^0* Pj " ^2 ~ ~ *^12 '^r same, at •^ = .05 

for the seedling paramters was tested by analyses of variance and assum­

ing the statistical model (Table 2): 

Yij + Pi + e.. i = 1. .  .  .  ,  12 
4/^  >1.^ j = 1, . . . , 10 

Parameter ith random 
position error 
effect 

TABLE 2 

DEGREES OF FREEDOM USED IN ANALYSIS OF VARIANCE 
CALCULATIONS OF THE PLANT GROWTH PARAMETERS 

Source of Variation d.f.® 

Plant Growth Parameters (Rotated) 

Position (12) (a-1) 11 
Number of seedlings/position a(n-l) 108 

119 

Plant Growth Parameters (Stationary) 

Position (12) (a-1) 11 
Number of seedlings/position a(n-l) 108 

119 

The number of positions is indicated by 
"a", and "n" refers to number of seedlings 
measured at each position. 
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Bench E-3 was lighted by a bank of eight fluorescent lights, 

whereas the other three benches were lighted by regularly spaced incan­

descent lights. Therefore, measurements of growth parameters were 

separated by light type, and groups grown under incandescent lights were 

subjected to another analysis of variance (Table 3). (Locations eight 

and nine on bench E-3 were considered to have a known source of varia­

tion, due to the fluorescent lights, which was inconsistent with the 

normal greenhouse conditions. Thus, the group data for the incandescent 

lights were tested individually to make sure the statistically signifi­

cant position effects were not confounded by the influence of the 

fluorescent light). 

TABLE 3 

DEGREES OF FREEDOM USED IN ANALYSIS OF VARIANCE 
CALCULATIONS FOR INCANDESCENT GROWTH PARAMETERS 

Source of Variation d.f.® 

Incandescent (Rotated) 

Position (10) (a-1) 9 
Number of seedlings/position a(n-l) 90 

99 

Incandescent (Stationary) 

Position (10) (a-1) 9 
Number of seedlings/position a(n-l) 90 

99 

The number of positions is indicated by 
"a", and "n" refers to number of seedlings 
measured at each position. 
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Average temperature in the greenhouse for each of the locations 

was also subjected to an analysis of variance. The null hypothesis 

stated that no temperature variation existed between locations where: 

T, = To = .  .  .  = Tio vs H,: not all the same, at «< = .05 
0  1 2  1 2  1  

(Table 4). 

TABLE 4 

DEGREES OF FREEDOM USED IN ANALYSIS OF 
VARIANCE CALCULATIONS FOR TEMPERATURE 

Temperature (Average Daily Temperature) 

Source of Variation d.f. 

Position (12) (a-1) 11 
Readings/position a(n-l) 840 

851 

Correlation coefficients were calculated to quantify the degree of 

association between temperature and each of the six plant growth para­

meters. These correlation coefficients were calculated for rotated 

stationary treatments, as well as the stationary incandescent grouping. 



CHAPTER IV 

RESULTS 

Analysis of Variance 

F-values for temperature and the seedling parameters for both 

treatments and both groupings of data, with the exception of rotated 

root/shoot ratios, were statistically significant at the 95% level 

(Table 5). Therefore, the null hypothesis was rejected and the alterna­

tive accepted: temperature and seedling development was not the same at 

all positions within the east room of the greenhouse. The significant 

differences from one location to the next for temperature and seedling 

development implies that uniform environmental conditions were not 

maintained during the study period. 

Comparisons of F-values between stationary and rotated seedlings 

revealed several important observations. Even though the F-values for 

rotated parameters (except root/shoot ratios) were statistically sig­

nificant, these values were smaller in magnitude than the stationary 

values. The significant rotated values were most likely attributable to 

two causes: 1) the large degrees of freedom, resulting in a sensitive 

F-test; and 2) constantly changing environmental conditions within the 

structure, which provided some seedling groups better growth conditions 

than others. For example, if styroblock "x" was at location nine (one 

of the better locations for dry weight production) for a four-day 
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TABLE 5 

F VALUES ASSOCIATED WITH LOCATION SOURCE OF VARIATION 

g F Values for Different Variables^ 

Grouping Tpmnp^-aturp Heiaht Root/Shoot Percent 
p ature gn Weight Dry Weight Dry Weight Ratio Water Content 

Location (11,840) F=54.33*** 

Stationary 
All locations (11,108) 9.97*** 25.51*** 15.73*** 32.93*** 8. 54*** 17.68*** 

Incandescent ( 9,90 ) 4.91*** 14.49*** 9.92*** 16.05*** 6. 50*** 23.04*** 

Rotated 
All locations (11,108) 2.58** 3.13** 2.68** 2.81** 1. 05 2.50** 

Incandescent ( 9.90 ) 2.41** 2.95** 2.76** 2.61** 0. 77 3.00** 

^The number of positions is indicated by the digits to the left of the comma, and the digits to the 
right represent the number of seedlings measured at each position. 

'^Levels of statistical significance are as follows for various values of "F": 
* Significant at p less than 0.05 

** Significant at p less than 0.01 
*** Significant at p less than 0.001 
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interval characterized by warm sunny days, and styroblock "y" was at the 

same location during a period of cold and cloudy days, weight increase 

should have been better for styroblock "x". 

This problem of seedling growth could have been further complicated 

by the ontogenetic stage of the seedlings in relationship to when certain 

combinations of environmental factors were encountered. Larson (1974) 

contended that seedlings in different stages of development have distinct 

environmental optima which result in maximum growth. (For example, the 

seedlings in rotated styroblock four produced the second lightest total, 

shoot, and root dry weights [see Figures 5, 7, and 9 in the computer 

graphics section]. During the first sixteen days of the study period, 

styroblock four was at each of the three coldest locations. From 

October 6 to October 22, the seedlings were located at positions four, 

one, six, and three for four days each. Thus, during the period of seed­

ling establishment and hypocotyl elongation, the seedlings were subjected 

to the longest cold period and exhibited the second lowest dry weights. 

The rotated styroblock from location seven had the lowest average total 

dry weight. However, styroblock 7B had one seedling which was exceedingly 

small and affected the average substantially. Removal of this minimum 

data point brought the average total dry weight for styroblock 7B well 

above the average for 4B minimum value). 

The rotated seedlings, it  was hoped, would not have shown a 

significant difference; while the stationary group would have shown 

statistical significance. Thus, the procedure of rotation could have 

been presented as a way to eliminate seedling growth variation caused by 

the greenhouse environment. Rotation of the styroblocks reduced the 
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positional differences even though significance was not achieved, due in 

part to the high degrees of freedom associated with the error term. 

Thus, rotation of research material was only responsible for minimizing 

variation within the greenhouse. 

The experiment was designed to control as many known sources of 

variation as possible to avoid confounding the effects due to position 

of the styroblocks. To achieve this, seeds were selected from a single 

stand origin and separated for uniformity of size. Enough seed to fill 

fifty-four styroblocks was pregerminated and test emergents were selected 

for uniform radicle length. Some of the environmental factors were held 

as constant as possible. Water and fertilizer treatments were uniformly 

applied with hand-held spray-fan and watering can. Due to the known 

variation in the lighting system, computations were made with and without 

data from locations eight and nine (bench E-3). Corrections of the 

thermostat setting controlling the heat, roof vent, and exhaust fan were 

made as frequently as necessary to help maintain uniformity of micro­

climate. Therefore, it  seemed unlikely that the observed variations 

among locations occurred at random or were related to seed size, genetics, 

or water and fertilizer. Seedling parameters also exhibited significant 

variation with or without locations eight and nine. Temperature, which 

showed significant variation among locations, was considered as one of 

the more important influences upon seedling growth. Therefore, the 

variation within seedling parameter development, in the greenhouse, 

would appear to have been either influenced by temperature or a 

temperature-related phenomenon such as soil temperature or light inten­

sity. 
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Correlation Coefficients 

Correlation coefficients between average location temperature and 

averages of the six seedling parameters were calculated for five differ­

ent groupings of data: temperature and the size stationary parameters, 

temperature and the six rotated parameters, temperature and the six 

stationary parameters without the E-3 data, temperature and the six 

seedling parameters without E-3 and location eleven data, and temperature 

and percent water content for stationary seedlings without location 

eleven (Tables 6, 7, 8, 9, 10). 

The correlations between temperature and the six stationary seed­

ling parameters are statistically significant at the 95% level for: 

total dry weight, root dry weight, and root/shoot ratio (Table 6). In 

comparison, the correlations between temperature and the rotated para­

meters were not significant (Table 7). These observations tend to sub­

stantiate the theory that temperature variation is directly related to 

seedling development. However, when the explained relationships for 

light intensity and temperature at locations eight and nine are removed 

and the correlation coefficient reevaluated, the situation is altered 

dramatically. No significant correlations between temperature and 

stationary seedling parameters were obtained for the ten nonfluorescent 

locations (Table 8). 

Examination of the computer maps indicated a hidden relationship 

(see computer graphics section). Location eleven was subjected to a 

temperature change unlike the remaining study positions. On the tempera­

ture map (Figure 2 in the computer graphics section) there is a depres­

sion at location eleven which did not follow the normal relationship with 



TABLE 6 

CORRELATION COEFFICIENTS BETWEEN TEMPERATURE AND THE SIX STATIONARY SEEDLING PARAMETERS 
(d.f. 11) 

Temperature Height 
Growth 

Total 
Dry Weight 

Shoot 
Dry Weight 

Root 
Dry Weight 

Percent 
Water Content 

Root/Shoot 
Ratios 

1.000 -0.3711 0.5725* 0.5303 0.6201* 0.0562 0.6214* 
1.000 -0.5406 -0.4639 -0.6425* 0.3261 -0.6019 

1.000 0.9922* 0.9811* -0.4465 0.8713* 
1.000 0.9493* -0.4608 0.8215* 

1.000 -0.4105 0.9214* 
1.000 -0.4927 

1.000 

*Signifleant at p less than 0.05 



TABLE 7 

CORRELATION COEFFICIENTS BETWEEN TEMPERATURE AND THE SIX ROTATED SEEDLING PARAMETERS 
(d.f. 11) 

Temperature Height 
Growth 

Total 
Dry Weight 

Shoot 
Dry Weight 

Root 
Dry Weight 

Percent 
Water Content 

Root/Shoot 
Ratios 

1.000 •0.1946 
1.000 

0.2215 
0.3666 
1.000 

0.2105 
0.4047 
0.9906* 
1.000 

0.2308 
0.2765 
0.9665* 
0.9222* 
1.000 

-0.4989 
0.2279 

-0.5422 
-0.5095 
-0.5756* 

1.000 

0.1570 
0.0329 
0.6699* 
0.5670* 
0.8285* 

-0.4636 
1.000 

*Significant at p less than 0.05 



TABLE 8 

CORRELATION COEFFICIENTS BETWEEN TEMPERATURE AND THE SIX STATIONARY 
PARAMETERS WITHOUT THE E-3 DATA (d.f. 9) 

Temperature Height 
Growth 

Total 
Dry Weight 

Shoot 
Dry Weight 

Root 
Dry Weight 

Percent 
Water Content 

Root/Shoot 
Ratios 

1.000 -0.0364 0.3635 0.3070 0.4537 0.0912 0.4734 
1.000 0.0375 0.1044 -0.0938 0.4645 -0.1641 

1.000 0.9909* 0.9655* -0.6436* 0.81B1* 
1.000 0.9216* -0.6080* 0.7436* 

1.000 -0.6786 0.9193* 
1.000 -0.6841 

1.000 

*Significant at p less than 0.05 
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the seedling parameters which were observable for the remaining locations. 

Temperatures at location eleven were above average until the outside con­

ditions turned much colder in late November, at which time the tempera­

ture fell far below the average. Seedlings at location eleven were 

subjected to an intense cold air drainage associated with the adjacent 

exhaust fan. The deviations of seedling parameters from the norm may 

have occurred because seedlings began to harden off as a result of the 

change from warmer to colder temperature. 

Hardening in the plants would have caused changes in cell chem­

istry, including increased solute and decreased water content. Initi­

ation of the hardening process in nature has been attributed to a 

change in one or more of the following: day length, temperature, and 

soil moisture. The seedlings at location eleven are, therefore, con­

sidered to have a known cause of variation. 

For these reasons, additional correlations were also calculated 

for the stationary treatment without the E-3 and location eleven data 

(Table 9). These correlations, similar to the earlier ones, showed 

significance at the 95% level for total dry weight, root dry weight, 

and root/shoot ratio. The occurrence of these significant values with 

and without the three locations of explainable variation (eight, nine, 

and eleven) indicates that a direct relationship exists between tempera­

ture and total dry weight, root dry weight, and root/shoot ratio. The 

second part of the null hypothesis is, therefore, rejected. Furthermore, 

even though not significant, there is a strong correlation between 

temperature and shoot dry weight for stationary seedlings both with and 

without the three locations of explainable variation. 



TABLE 9 

CORRELATION COEFFICIENTS BETWEEN TEMPERATURE AND STATIONARY SEEDLING 
PARAMETERS WITHOUT E-3 AND LOCATION ELEVEN DATA (d.f. 8) 

Temperature 
Height 
Growth 

Total 
Dry Weight 

Shoot 
Dry Weight 

Root 
Dry Weight 

Percent 
Water Content 

Root/Shoot 
Ratios 

1.000 -0.4994 0.6909* 0.6148 0.7990* -0.5523 0.7770* 
1.000 0.1908 0.2693 0.0905 0.2161 -0.0806 

1.000 0.9902* 0.9633* -0.6565* 0.8102* 
1.000 0.9165* -0.6083 0.7317* 

1.000 -0.7128* 0.9165* 
1.000 -0.7556* 

1.000 

*Significant at p less than 0.05 
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Other statistically significant correlations are exhibited which 

are worthy of explanation (Table 6, 7, 8, and 9). Strong correlations 

are apparent between root/shoot ratios, and total, shoot and root dry 

weights. They are statistically significant at the 95% level in all 

correlations for the four groupings of data. Strong inverse, but not 

significant, correlations can be observed between water content of the 

shoot and the four above mentioned parameters for the stationary data 

and for the rotated data (Tables 6 and 7). Without the E-3 data, the 

inverse associations between shoot water content and total, shoot and 

root dry weights plus root/shoot ratio were statistically significant for 

the stationary grouping (Table 8). The stationary grouping without 

position eight, nine, and eleven had significant inverse correlation 

between shoot water content and total dry weight, root dry weight, and 

root/shoot ratio (Table 9). In addition, shoot dry weight exhibited a 

strong inverse, but not significant, association with percent water 

content (Table 9). 

The water content of the shoot, as defined earlier, was obtained 

by dividing the milligrams of water by the milligrams dry weight of the 

shoot. Thus, the relative amount of water in the seedling decreased as 

weights and root/shoot ratio increased. Since the correlations are 

statistically significant without the influence of locations eight and 

nine and significant in all but one case without eight, nine, and 

eleven; this appears to be a valid observation about seedling water con­

tent. The inverse correlation between water content and shoot dry 

weight may have been related to changes of shoot material from green 

succulence to woody stems as they increased in size and maturity. 
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However, the possible relationship between water content of the shoot 

and the root dry weight was not as easily rationalized until observations 

of the computer maps indicated the hidden relationship mentioned earlier. 

Comparisons of the computer maps for temperature and stationary 

water content show an inverse relationship of the two parameters except 

at location eleven (Figures 2 and 12 in computer graphics section). 

Location eleven was subjected to a temperature change unlike the remain­

ing study positions. Therefore, a correlation coefficient was calculated 

for temperature and stationary water content of the shoot without the 

data from position eleven, and this shows a strong inverse correlation 

(Table 10). Although the correlation is not significant, by removing 

the explained condition at position eleven, the correlation coefficient 

TABLE 10 

CORRELATION COEFFICIENTS BETWEEN TEMPERATURE AND PERCENT 
WATER CONTENT WITHOUT THE DATA FOR LOCATION ELEVEN 

(d.f. 10) 

Water'conLnt 

1.000 -0.5554 
1.000 

•Significant at p less than 0.05 

changes from 0.056 to -0.555. This indicates that there was a strong 

inverse relationship between temperature and water content for the re­

maining locations. Thus, i t  would seem logical to conclude that when 

temperatures were low, root growth was slowed, shoot dry weight was low, 

and water content was high. Inversely, when average temperatures were 



33 

high, root growth increased, total dry weight increased, and water con­

tent was low. 

Comparison Between Rotated and Stationary Mean Values 

Differences in average values were calculated by subtracting the 

rotated averages from the stationary averages for each of the parameters 

(Table 11). Comparison of the averages for all twelve locations between 

stationary and rotated groups underlined an interesting relationship. 

The average height growth, and total, shoot, and root weights were all 

greater for stationary seedlings than for rotated seedlings. These 

findings were somewhat contrary to expectation. It had been surmised 

that rotation would, on the average, have resulted in an increase in 

height and weight of the seedlings. The stationary treatment may have 

exhibited larger averages for heights and weights because the trees at 

each location were adjusted to the microclimate and produced the best 

possible growth under existing conditions. In contrast, the rotated 

seedlings would have been constantly readjusting to new situations and 

unable to maintain optimum growth at each location. 

A two sample t-test was used to determine if the average values 

were significantly different from each other. Statistically significant 

differences were exhibited in the twelve location grouping for total dry 

weight, shoot dry weight, root/shoot rotios, and percent water content 

at the 95% level. 

Removing the influence of the fluorescent lights changed the dif­

ferences in parameter averages. Changes were noted when comparing incan­

descent averages with the twelve location averages: for incandescent, 

seedling height became significant at the 95% level and total and shoot 



TABLE 11 

ROTATED AND STATIONARY MEAN VALUES FOR THE SIX SEEDLING PARAMETERS 

Height 
(mm) 

Total Dry 
Weight 

Shoot Dry 
Weight 

(mg) 

Root Dry 
Weight 

(mg) 

Percent 
Water 

Content 

Root 
Shoot 
Ratio 

Twelve location 

Stationary 87.16 396.96 289.63 110.02 285.74 0.359 

Rotated 83.86 359.88 258.13 101.75 296.96 0.391 

Difference 3.30 37.08* 31.50** 8.29 -11.22* -0.032* 

Incandescent 

Stationary 91.94 359.92 266.73 92.19 285.69 0.332 

Rotated 82.37 352.16 253.45 98.71 298.06 0.385 

Difference 9.57*** 7.76 13.28 -6.52 -12.37* -0.053*** 

Incandescent 
without location 
eleven 

Stationary 93.70 352.44 261.67 89.66 293.63 0.327 

Rotated 81.57 352.60 253.52 99.07 298.055 -0.060*** 

Difference 12.13*** -0.16 8.15 -9.41 -4.425 -0.060*** 

*Significant at p less than 0.05 
**Significant at p less than 0.01 

***Signifleant at p less than 0.001 
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dry weight lost significance (Table 11). Thus, the influence of the 

fluorescent lights was to produce shorter, heavier seedlings as suspected 

originally. 

Removal of the location eleven data helped to substantiate one 

more suspected relationship. Average differences for percent water con­

tent for both the twelve location and incandescent data were statisti­

cally significant. Without location eleven, the difference in average 

water content was not significant. The water content at location eleven 

depressed the stationary average downward, producing a significant dif­

ference in the averages. This depression of water content was contra­

dictory to the normal conditions, and thus it seems logical to conclude 

that the cold air drainage at location eleven was responsible for the 

change in water content. 

From the standpoint of seedling production, these observations 

illustrate some trade-offs and possible advantages related to the rota­

tion of styroblocks. The root/shoot ratios which developed at some of 

2 the locations within the greenhouse were very poor in terms of prepar­

ing a seedling for outplanting (for example, location four had a ratio 

of 0.195). The rotation of styroblocks resulted in significantly better 

ratios and should be considered for future crops of coniferous trees 

grown in the Forestry Greenhouse. The stationary treatment, in contrast, 

without the fluorescent data was responsible for better height growth. 

Height growth alone, according to Larson (1974), is not considered a 

good indicator of readiness for outplanting. Total, shoot and root dry 

2 
The "very poor" root/shoot ratio is in reference to local condi­

tions where summer drought and dry soil conditions dictate the need for 
seedlings with large root/shoot ratios. 
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weights were, however, considered better indicators of seedling develop­

ment. Without the fluorescent data, the differences in parameter 

averages were not significant. Therefore, rotation has been cited as 

producing seedlings which were more uniform in size, had significantly 

better root/shoot ratios, and slightly but not significantly lower 

weights. On the other hand, stationary treatments produced seedlings 

which were significantly taller and heavier, but had less favorable 

root/shoot ratios and varied significantly in size and weight. 



CHAPTER V 

COMPUTER GRAPHICS 

The statistical analysis of the temperature and plant growth para­

meters indicates that there was considerable variation in growth of 

Pinus ponderosa seedlings within the Forestry School Greenhouse. 

Statistically significant values were obtained for most parameters for 

both rotated and nonrotated treatments. However, the graphic compari­

sons of rotated and stationary parameters show considerable constrasts 

among treatment variations. The graphics were created on the University 

of Montana DEC system 10 using a Calcomp plotter. The SYMVU mapping 

program was used and executed with a data file created by the SYMAP 

program. The SYMAP program generated the data file by interpolating 

values for coordinates between the specified data points. Thus, for 

the greenhouse study, a base map was created with twelve data points 

(Figure 1). Each of the thirteen maps were then created by inputting 

the appropriate location averages for each of the seedling parameter 

groups. 

Data for all thirteen maps were truncated to allow for visual 

representation of the variation. The truncated ranges for each of the 

six seedling parameters were set equal for the rotated and stationary 

treatments. Thus, the truncation allowed for each pair of maps to be 

graphed on equal scales. Ranges were set slightly larger than the 

37 



38 

spread of the stationary data which, in all cases, were the greatest 

(Table 12). The stationary-to-rotated range ratios were obtained by 

dividing the range of the stationary parameters by the range of the 

rotated parameters. The value generated was an expression of how many 

times larger the stationary range was compared with the rotated range. 

Maps were drawn using an azimuth of 135°C (Figures 2-14). The 

projections were made as if the viewer were looking down from the north­

west corner of the east room (i.e., from the top left hand corner of 

Figure 1). 

Temperature 

Coldest temperature occurred near the two outside walls and 

temperature generally increased from north to south (Figure 2). The 

highest temperature occurred on bench E-3 under the fluorescent lights. 

A severe temperature depression at position eleven was caused both by 

shading and by cold air drainage associated with the nearby exhaust fan. 

It is likely that temperature generally increased from the north to the 

south side of the room because of differences in daytime solar radiation. 

The further north in the structure, the more obstructions there were to 

light penetration. 

High temperatures at locations eight and nine were probably 

related to three phenomena: radiation of heat from the lamps, reradia-

tion of heat from lamps and fixtures of heat originating from the bench 

and steam pipes, and radiation of heat from the densely packed seedlings 

due to the high light intensity. 



TABLE 12 

TRUNCATION AND RANGE DATA FOR COMPUTER MAPS 

Parameter Treatment Minimum and Maximum Range ^'"Range^'^ Rotated^Ratio Figure # 

Temperature 14.28°i C -  19.92°C 5.64 6.14 2 

Height Stationary 58.5 - 116.9 mm 58.4 60 3 
Rotated 65.3 - 93.8 mm 28.5 60 2.05 4 

Total Stationary 153.4 - 682.9 mg 538.2 540 5 
dry weight Rotated 290.2 - 407.1 mg 116.9 540 4.60 6 

Shoot Stationary 120.6 - 455.1 mg 334.5 336 7 
dry weight Rotated 202.8 - 290.4 mg 87.6 336 3.82 8 

Root Stationary 24.1 - 227.8 mg 203.7 205 9 
dry weight Rotated 78.0 - 125.8 mg 47.8 205 4.26 10 

Root/Shoot Stationary 0.195 - 0.496 mg 0.301 0.302 11 
ratio Rotated 0.333 - 0.454 mg 0.121 0.302 2.52 12 

Percent Stationary 214.1 - 341.2 % 127.1 128 13 
water content Rotated 279.9 - 325.3 % 45.4 128 2.80 14 



40 

-*.14 

Figure 2. Average temperature in the east room of the Forestry School Greenhouse. 
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Figure 3. Stationary seedling heigtit growth averages in the east room of the Forestry 

School Greenhouse. 
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Figure 4. Rotated seedling height growth averages in the east room of the Forestry 
School Greenhouse. 



Figure 5, """ f'-^rv School 
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Figure 6. Rotated seedling total dry weight averages in the east room of the Forestry 
School Greenhouse. 



Figure 7. Stationary seedling shoot dry weight averages in the east room of the Forestry 
School Greenhouse. 
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Figure 8. Rotated seedling shoot dry weight averages in the east room of the Forestry 
School Greenhouse. 



Figure 9. Stationary seedling root dry weight averages in the east room of the Forestry 
School Greenhou&e. 



Figure 10. Rotated seedling root dry weight averages in the east room of the Forestry 
School Greenhouse. 
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Schoo" GreSy ̂  ^atio averages in the east room of the Forestry 



Figure 12. Rotated seedling root/shoot ratio averages in the east room of the Forestry 
School Greenhouse. 



Figure 13. Stationary seedling percent water content of shoot averages in the east room 
of the Forestry School Greenhouse. 
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Figure 14. Rotated seedling percent water content of shoot averages in the east room of 
the Forestry School Greenhouse. 
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Height 

Height growth of stationary seedlings showed a nonsignificant but 

inverse relationship with temperature. Bench E-3, for example, exhibited 

the highest temperatures and the lowest height growth. Location one, 

however, had a low temperature and the tallest seedlings. And, at 

location eleven, low temperatures and short seedlings were found. Part 

of the relationship between temperature and height may be better explain­

ed by including the variables of light quality and intensity. The 

fluorescent lights over bench E-3 emit most of their spectral energy 

within the 400-650 nm region; thus, shorter and heavier plants should 

have been produced. Incandescent lights, however, such as those located 

over benches one, two, and four, would have tended to produce elongated 

plants because the wavelength energy peaks in the 700-800 nm region 

associated with shoot elongation. (Substantiation for these relation­

ships is available in several sources, including Ekblad 1973). 

Conditions at location eleven are less easily explained. Tempera­

tures during October and early November were in the same general range 

as those for locations ten and and twelve. However, when the outside 

temperatures turned colder from late November to January, the tempera­

tures at location eleven dropped 3-6°C below the other two locations on 

bench four. Thus, the first part of the growing period was consistent 

with locations ten and twelve and provided the seedlings with above 

average growth conditions. After the temperature turned colder, the 

seedlings appeared to have been stunted. 

Comparisons of height growth for both stationary and rotated styro-

blocks reveal a pattern which was repeated for all of the seedling 
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parameters (Figure 2 and 5). Stationary seedlings exhibited a far 

greater variation in growth than did seedlings within the rotated styro-

blocks. Each of the paired treatments, stationary and rotated, as noted 

above, was plotted on an equal scale showing maximum relief. Average 

height of the stationary seedlings ranged from 58.5 to 116.9 mm, compared 

with rotated seedlings which ranged from 65.8 to 93.8 mm tall.  Ranges 

for the data were, respectively, 58.4 and 28.5; and a stationary/rotated 

ratio of 2.05 was found. Height growth of the seedlings exhibited the 

most visible fluctuation among the seedling parameters. This variation 

may have been the result of several factors, including temperature 

changes during the study period and temperatures during the first few 

days of the study. 

Total, Shoot, and Root Dry Weights 

Total dry weight of the stationary seedlings was directly cor­

related with temperature. The visualizations of temperature variation 

and total dry weight are, therefore, strikingly similar (Figures 2 and 

5). Depressions occurred at locations one and four and a rise was 

obvious at bench three on both maps. A departure from the norm occurred 

at location eleven where total dry weight was about average and tempera­

ture was severely depressed. The map for rotated total dry weight is 

almost flat,  thus exhibiting less variation than for the stationary 

weights (Figure 6). The stationary seedlings had location averages 

varying between 153,4 to 682.9 mg (a range of 538.2 mg). Rotated groups 

averaged from 290.2 to 400.1 mg (a range of 116.9 mg). The stationary/ 

rotated ratio had the greatest value of 4.60. 
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The temperature correlation with root dry weight is significant. 

Correlation between temperature and shoot dry weight is not significant, 

however. Nevertheless, the similarities between maps of temperature and 

stationary shoot, root, and total seedling weights are readily apparent 

(Figures 2, 7, and 5). The reason for nonsignificant correlation between 

shoot dry weight and temperature is undetermined. Stationary shoot and 

root dry weights, which are combined to produce total dry weight, are 

similar in variation. Both root and shoot dry weights show depressions 

at locations one and four and the same rise at locations eight and nine 

(Figures 7 and 9). The rotated maps for root and shoot dry weight follow 

the norm in that they are relatively level in comparison with their paired 

counterparts (Figures 8 and 10). The range of average dry weight for 

stationary seedlings was from 120.6 to 455.1 mg and for rotated i t  was 

from 202.8 to 290.4 mg. The ranges were 334.5 and 87.6 mg and yielded a 

stationary/rotated ratio of 3.82. The respective ranges for stationary 

and rotated root weights were 24.1 to 227.8 mg and 78.0 to 125.8 mg, with 

ranges of 203.7 and 47.8 mg, respectively. The figure of 4.26 for 

stationary/rotated ratio was the second largest among the six seedling 

parameters. 

Root/Shoot Ratios and Percent Water Content 

The stationary root/shoot ratios (Figure 11) are highly correlated 

with temperature variation. Similar research, done at the Champion 

Timberlands Greenhouse in Bonner, Montana, during the winter of 1976-77, 

resulted in root/shoot ratio figures which averaged larger than the best 

ratios in the Forestry Greenhouse for equivalent periods of time. The 

Forestry Greenhouse, in general, produced an environment favorable to 
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shoot development. The Bonner facility promoted root growth while also 

producing good shoot growth. The major heating differences between 

greenhouses were as follows: steam heat under cement benches in the 

Forestry Greenhouse and forced air heat under wire screen benches in the 

Bonner Greenhouse. Thus, in the Forestry School Greenhouse, warm air 

was forced out from under the benches, moved upward, and warmed the 

structure from the roof down to the seedlings. Moisture from watering 

of seedlings was often retained under the styroblocks even though the 

containers were supported above the benches to allow for air circulation. 

This indicated that the tops of the benches were remaining cold. In the 

Bonner facility, the warm air moved up under the styroblocks as well as 

between the benches. Thus, the seedlings were warmed from above and 

below. Because soil temperature has been shown to be directly related 

to root development (Larson 1967), the better root/shoot ratios in the 

Bonner Greenhouse may have resulted from the warmer temperature of the 

soil medium. Larson (1967) assumed that constant air temperature in a 

controlled environment would result in soil temperature being nearly the 

same as air temperature. Therefore, the soil medium temperature of the 

test styroblocks should have been directly related to the recorded air 

temperatures. 

Most of the seedlings from locations one and four, when pulled out 

of the growing medium, exhibited only a single poorly developed root. 

Concurrently, the number one position produced the tallest seedlings. 

Positions one and four had the second and third lowest temperatures and 

second and first lowest root dry weight, respectively. The lowest average 

temperature occurred at location eleven. However, as noted earlier, the 



57 

temperature at location eleven went from above average to below average 

when the outside temperatures dropped in late November. This contrasted 

greatly with locations one and four which maintained below average 

temperature throughout the study. The root/shoot ratios were better 

where dry weight production was better and temperature warmer. The 

rotated root/shoot ratio map followed the established pattern of exhibit­

ing less variation than the stationary root/shoot ratio map (Figure 12). 

Stationary root/shoot ratios ranged from 0.195 to 0.496 and rotated 

ratios ranged from 0.333 to 0.454. The range of the data were 0.301 and 

0.121, with an associated ratio of 2.52. 

The percent water content of the shoots was obtained by dividing 

the weight of the water in the shoot by the dry weight of the shoot. It  

had been hypothesized that this parameter would vary directly with exist­

ing temperature. By comparing the stationary percent water and tempera­

ture maps without location eleven, the inverse relationship becomes 

readily apparent (Figures 13 and 2). Locations one and four were the 

coldest and had the highest water content. Bench three exhibited a 

depression of water content and a rise of temperature. The correlation 

between temperature and water content for all twelve locations was, 

however, almost nonexistent. This was due in part to the low tempera­

ture and water content at location eleven. Correlation between tem­

perature and water content without location eleven exhibited a strong 

inverse relationship. The rotated percent water content map shows 

expected characteristics for rotated parameters by expressing far less 

variation than the stationary maps (Figure 14). The average water con­

tent of seedlings in stationary locations varied from 214.1 to 341.2%. 
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Rotated seedling water content ranged from 279.9 to 325.3%. The station­

ary range value of 127.1, divided by the rotated value of 45.4, yielded 

a ratio of 2.80. 



CHAPTER VI 

DISSCUSSION 

The influences of environmental conditions within the Forestry 

School Greenhouse should be considered when seedlings are grown in the 

future. Rotating the styroblocks resulted in seedlings which were more 

uniform in size and weight and had better root/shoot ratios. The 

rotated seedlings were, as a group, much better suited for outplanting 

and survival than were seedlings not rotated. 

Future research projects in the east room should be designed to 

minimize the microclimatic variation. The conditions existing from 

October 6, 1976 through January 10, 1977 did not promote uniform climatic 

conditions nor uniform seedling development. Statistically significant 

locations effects were observed even though the experimental material 

was treated alike. Temperature was shown to be significantly correlated 

with total dry weight, root dry weight, and root/shoot ratio. The rota­

tion of seedlings on a four-day interval helped minimize, but did not 

eliminate, the influence of microclimate variation upon growth. A 

shorter rotation schedule might have reduced variation even more. 

The Forestry School Greenhouse has the potential to produce a more 

uniform environment. Several renovations could make this possible. The 

following suggestions are presented with two limitations: the author is 

not trained in either engineering or architecture, and the renovation 

suggestions are based on personal observations which seem to be 
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substantiated by this research work. These recommendations are pre­

sented for only one reason: to provide the Forestry School with ideas 

on how to improve the existing facility if a decision is made to do so. 

General Recommendations 

1. Paint windows yearly. 

2. Make second set of vent windows automatic in all rooms. 

3. Centralize thermostat controls in east room. 

4. Install a thermostat for control of water circulation in 
evaporation cooling system. 

5. Install outside coverings for evaporation cooling system 
which are thermostatically controlled. 

6. Maintain all equipment regularly. 

Specific Recommendations 

1. For research work: install automated watering and 
fertilizing systems. 

2. For seedling production: 

a. Remove cement benches in east room and replace with 
wood and/or metal bench supports with fencing wire 
tops. 

b. Lower steam heating pipes and install heat deflectors 
in conjunction with new benches. 



CHAPTER VII 

SUMMARY 

Containerized ponderosa pine seedlings were grown for a ninety-six 

day period in the Forestry School Greenhouse. The seedlings received 

equivalent care so that the tested variable would be microclimatic 

variation. Seedlings were divided into two groups--stationary and 

rotated--and were placed in twelve locations. Values for six seedling 

parameters were obtained: height growth, total dry weight, shoot dry 

weight, root dry weight, percent water content, and root/shoot ratio. 

Temperature was measured at each location on a continuous basis except­

ing periods of recorder malfunctions. Four procedures were used in 

evaluating the data: analysis of variance, correlation coefficients, 

two-sample t-test,  and computer graphics. 

Temperature and the seedling parameters showed statistically 

significant differences among locations, with the exception of rotated 

root/shoot ratio; thus indicating that neither temperature nor seedling 

development was the same for the twelve locations. Even with rotation 

of test material,  seedling development was not the same except for root/ 

shoot ratios. (Since root/shoot ratio is important in seedling produc­

tion for planting, this is a useful concept). The significant values for 

the five rotated parameters were the result of continuously changing con­

ditions within the structure and a sensitive f-test.  The f-values for 
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rotated seedlings were all less than those for staionary seedlings. 

Comparison of paired computer maps for the six parameters also indicated 

that variation among rotated locations was less than variation among 

stationary locations. 

Significant associations were found between temperature and total 

dry weight, root dry weight, and root/shoot ratio for all twelve loca­

tions. No significant associations were found between temperature and 

the rotated parameters. When the two locations of known variation, eight 

and nine, were removed from statistical analyses, no significant cor­

relations were found for the stationary parameters. In contrast,  after 

removal of the suspected source of variation at location eleven in 

addition to eight and nine, significant correlations between temperature 

and total dry weight, root dry weight, and root/shoot ratios were again 

exhibited. Thus, when combining the results of the f-values and cor­

relation coefficients, the following conclusions appear reasonable: 1) 

temperature and seedling development were not equal among locations; 2) 

temperature was significantly associated with total dry Weight, root dry 

weight, and root/shoot ratio. Therefore, variation in seedling develop­

ment was probably directly related to temperature variation. 

Significant associations were also found to exist between root/ 

shoot ratios, total dry weight, shoot dry weight, and root dry weight 

for all comparison. Although results are inclusive, inverse relation­

ships also seem to exist between percent water content and temperature, 

total dry weight, shoot dry weight, root dry weight, and root/shoot 

ratio. 
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On the average, rotated seedlings did not develop as well as 

stationary seedlings. It  has been hypothesized that this was because 

the stationary seedlings adapted to the environment and grew at the 

fastest rate during the study period. In contrast,  the rotated seedlings 

would have had to readjust to different growing conditions every fourth 

day. Fluorescent lights were shown to produce heavier, shorter seedlings, 

as expected. Location eleven was also shown to have significant influ­

ences upon percent water content of the shoot. 

Computer graphics showed that the amount of variation among 

rotated parameters was less than the variation for stationary parameters. 

The computer graphics helped to visualize the influence of the fluores­

cent lights and to make comparisons between temperature and seedling 

parameters. The maps were also helpful in explaining the conditions at 

location eleven where there was an unusual temperature change. 
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