
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1991

Textual display program for the dyslexic: An example of object-Textual display program for the dyslexic: An example of object-

oriented software development oriented software development

Joyce H. Fu
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Fu, Joyce H., "Textual display program for the dyslexic: An example of object-oriented software
development" (1991). Graduate Student Theses, Dissertations, & Professional Papers. 7765.
https://scholarworks.umt.edu/etd/7765

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F7765&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/7765?utm_source=scholarworks.umt.edu%2Fetd%2F7765&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financM gain may be under^en only
with the author’s written consent.

University ofMontana

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A TEXTUAL DISPLAY PROGRAM FOR THE DYSLEXIC.
AN EXAMPLE OF OBJECT-ORIENTED

SOFTWARE DEVELOPMENT

Joyce H. Fu

B.S., Beijing Computer institute, 1983
M.S., University of Montana, 1991

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

University of Montana

1991

Approved by

Chairman, Board of Examiners

fan, Graduate School ■

} } / .l K. r J . v" X / ' • / ' • / /

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: EP38566

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI*
Oisswtation Publishing

UMI EP38566

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

uest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fu, Joyce H., M.S., March. 1991 Computer Science

A Textual Display Program For The Dyslexic,
An Example of Object-Oriented Software Development (69+v pp.)

Director: Alden H. Wright

According to the latest statistics, about six to eight percent of the people in the
U.S. have learning disabilities. Dyslexia is one of the major causes of these
disabilities. Dyslexic people have visual perception problems which cause many
difficulties in life, especially with reading.

Current computer applications extend more choices to the disabled learner than
the traditional methods. Computerized books and speech synthesizer together
provide a helpful learning environment for the visually disabled reader.
This project's goal is to create a textual display program whereby the user alters

the display characteristics to potentially enhance dyslexic readers' reading ability.
Using this program, the dyslexic may assign different colors to different letter
combinations, change the distance between lines and/or words, change letter
font or size. The program is developed with Actor, an object-oriented
programming language, and therefore, this project is also an experience in object-
oriented software development for the author.
This program focuses on the idea of helping the dyslexic readers toward a more

practical reality rather than simply producing a software product. Although the
program has not yet been used by dyslexies, it does achieve the requirements
specified in chapter two of this paper. Therefore, the author believes the program
to be not only a good start toward textual clarity but also a useful tool in the future
for dyslexic readers. Finally, the author anticipates this software will be a useful
tool for the educational researcher who desires to formally test the hypothesis that
this type of program can help dyslexies.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

With special thanks to Dr. Alden H. Wright of the Computer Science
Department, George Kerscher of the Computerized Books for the Blind and
everyone who gave me support through the entire process.

This effort is dedicated to my parents and to the memory of my
grandmother.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Abstract... ii
Acknowledgments... iii
Table of Contents.. iv
1. Introduction.. 1

1.1. Project Background.. 1
1.2. Project Idea... 2
1.3. Project Overview... 2

1.3.1. Goal of the Software Project ... 2
1.3.2. Process of Software Development.. 3

1.4. Object-Oriented Programming (OOP).. 7
1.4.1. The Concept... 7
1.4.2. Terminology.. 8

2. Requirements and Specifications... 11
2.1. Text Display Requirements.. 11
2.2. Speech Output Requirements... 14
2.3. Hardware and Operating System Specifications....................................... 15
2.4. Input File Requirements.. 16

3. Object-Oriented Design (OOD)...i 17
3.1. Chapter Overview... 17
3.2. Object M odel... 18

3.2.1. Object and C lass... 19
3.2.2. Problem Domain... 20
3.2.3. Initial Class Design....................... 22
3.2.4. Class Hierarchy... 24

3.3. User-lnterface Design... 28
4. Implementation.. 33

4.1. Chapter Overview... 33
4.2. MS-Windows and A c to r.. 33

4.2.1. MS-Windows..V-..................... 34
4.2.2. A ctor.. 34
4.2.3. Relationship Between Actor and MS-Windows................................ 34

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3. Case S tudy... 36
4.3.1. Polymorphism... 38
4.3.2. Inheritance... 38
4.3.3. Encapsulation... 40

4.4. Flexibility and Reusability.. 41
5. Conclusion... 44

5.1. What the Software Accomplished.. 44
5.2. Future Enhancements.. 44

Appendix A .. 47
Appendix B .. 50
Appendix C .. 59

Bibliography.. 86

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter One

introduction

1.1. Project Background

In general, a person of average or above average intelligence, who performs at a

level two years behind his/her normal grade-level expectancy, is considered to be

learning disabled. According to the latest statistics [Bureau of Statistics,

Washington D C. 1989], about six to eight percent of the people in the U.S. have a

learning disability. Dyslexia is one of the major causes of learning disabilities.

Dyslexic people have visual perception problems which cause many difficulties in

life, especially with their reading.

The traditional methods of providing access to standard print for those with visual

perception problems include large print versions, recordings, and braille.

However, current computer applications can extend more choices to the disabled

learner. For example, computerized books (software versions of books) provide

dyslexic readers with the ability to read books from the computer screen.

Adaptive computer technology such as speech synthesizers for the blind,

telecommunications devices for the deaf, voice recognition, and other control

devices for the motor-impaired, offer greater opportunities to people afflicted with

either sensory or physical disabilities. The speech synthesizer is one of the most

powerful and least expensive access devices. It converts ordinary ASCII text into

intelligible speech. Together, computerized books and speech synthesizers

provide a helpful learning environment for the visually disabled reader. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instance, today’s screen-review software couples the reader and the speech

synthesizer, allowing the dyslexie to depend upon auditory output to overcome

his/her reading disability when confronted with confusing textual displays.

1.2. Project Idea

In 1989, Disabled Student Services Counselor, Christie Horn, discovered that

students with dyslexia could read more effectively when using word processors

with modified colors and in some cases enlarged text [Horn 1989]. Some

students required only a change of background and foreground color to make the

text comprehensible, and others needed the additional enlarged characters to

assist them in their word processing endeavors. These observations now lead

reading specialists to speculate that, in some cases, dyslexies may gradually

overcome their difficulties through training and eventually achieve normal reading

ability [Horn 1989, Jakupcak 3/1990-3/1991 and Kerscher 3/1990-3/1991]. In

order to overcome reading deficiency and train toward reading proficiency,

dyslexies need not only to hear from a speech synthesizer but also to actively

manipulate the textual display. Therefore, this project's major concerns are to

enable the dyslexic to easily manipulate the textual display on a graphics screen

for enhanced readability and to provide the dyslexic wi#i a supplementary speech

synthesizer capability.

1.3. Project Overview

1.3.1. Goal of the Software Project

Based on Horn's discoveries, reading specialists now hypothesize that further

changes to the display of text are a possible way to help the dyslexic read more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

easily from a computer screen. Using this hypothesis, the primary goal of this

software project is to create a textual display program whereby the user alters the

display characteristics to potentially enhance his/her ability to read the text.

Horn’s findings inspire the use of more colors, fonts, and other alterable features

in the display of text. Thus, this software allows the dyslexic user to decide the

way in which the text will appear on the screen. Using this program, the dyslexic

may assign different colors to different letter combinations, change the distance

between lines and/or words, change letter font or size, etcetera. He/she also has

the option of using a speech synthesizer. Overall, this software should enable the

dyslexic to modify the display of text on the screen as desired while maintaining

the supportive aid of a speech synthesizer. The author anticipates that this

software will be a useful tool for the educational researcher who desires to

formally test the aforementioned hypothesis.

1.3.2. Process of Software Development

The choice of a software development methodology involves four interdependent

choices: Specification methodology, design methodology, type of display, user-

interface, and programming language.

Specification methodoloav

To choose a specification methodology, the developer has at least three choices:

Narrative English, Structured Analysis [Demarco 1979, 1978] and Object-Oriented

Analysis (OOA) [Goad and Yourdon 1990]. Narrative English uses mainly English

sentences to describe the user's problems and needs and to describe the system

specifications. This is the simplest methodology and maybe a good choice for a

small system. Both structured analysis and OOA use diagrams, dictionaries, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other tools to aid the developer in defining and analyzing the problems for a large

complex system. Since this project does not deal with a complicated system,

structured analysis or OOA is not necessary. Thus, the author chose narrative

English as the appropriate method for specification of this particular software

development project.

Design methodoloav

Two of the important software design techniques are: Structured Design

[Yourdon and Constantine 1979] (also called traditional design) and Object-

Oriented Design (OOD) [Booch 1991]. Structured design, a process of top-down

functional decomposition, is commonly used in software development. The OOD

technique applies object decomposition through the design process. It is not only

a new technique to most developers, but also maybe a better technology in terms

of software quality (especially for a complex system). In order to try out this new

technique, this project used OOD as the design methodology. More discussion

about OOD will follow in a later chapter.

Tvoe of disDlav

There are two kinds of displays: the standard character display which allows only

textual display, and the graphical display which handles both text and graphics.

Considering this program's changes to line space, letter size and font etc. (further

explained in chapter two), the standard character display is not sufficient.

However, the graphical display is capable of handling font and letter size etc. and

so meets this project's display requirements.

1 Jser-lnterface

One of the most complicated programming areas is user-interface development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are many kinds of user-lnterfaces based on different types of display: Vi

3.5/2.13 [University of California 1979 1980] which provides a character user-

interface, WordPerfect 5.0 [WordPerfect Corp. 1982 1989] which utilizes function-

key interface and Turbo C + + 1.01 [Borland International 1987 1988] which

contains a windows interface with menus, dialogues, scroll-bars etc.. However,

these three are all based on a standard character display and do not support

graphical displays. On the other hand, MS-Windows 3.0 [Microsoft Corp. 1985-

1990], a graphical user-interface, supports both standard character display and

graphic displays, providing an easy-to-use and a consistent graphics windowing

environment. Therefore, MS-Windows’ user-interface was the final choice.

Programming language

The choice of a specific programming language is obviously another important

factor in the development of a software project. Quite a few alternatives are

available for Microsoft Windows development. They include: C or C+ +

supplemented with the Microsoft Windows Software Development Kit (SDK)

[Microsoft Corp. 1990], ToolBook 1.0 [Asymetrix Corp. May 1990],

Knowledge Pro 1.0 [Knowledge Garden Inc. June 1990], Smalltalk-80 [Xerox

Corporation 1983] and Actor 3.0 [Whitewater Group 1990].

The Windows Software Development Kit (SDK) is a tool for the programmer who

is developing a MS-Windows application. It enables the user to interact directly

with a windows programming environment. SDK provides a set of C run-time

libraries which are compatible with a Microsoft C compiler and Microsoft

Windows. The development kit enables the programmer to use dialogues, menus,

and other windows resources, and provides debugging tools, sample source

code, on-line references, and so on. However, since SDK is not an Object-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

oriented library, the programmer still faces a heavy C or C + + coding task with

SDK.

In addition, two object-oriented development tools: ToolBook and KnowledgePro

for applications in MS-Windows 3.0 might be feasible tools for this program, but

they were not available at the time this project started.

Smalltalk-80 is an object-oriented programming language and also a windowing

environment. It now has software to support MS-Windows programming.

However, at the time this project started, the supportive MS-Windows software

has not been released. Thus, under the choice of MS-Windows as the user

interface, Smalltalk-80 was not a feasible language for this project.

Actor is an object-oriented language created for MS-Windows programming. It

provides a rich class library to manage graphical user-interface programming and

enables most of MS-Window's features. Actor benefits the programmer with both

simplified windows programming and maximum usage of windows features.

Another influential consideration is that Actor is priced inexpensively for academic

institutions. For these reasons, Actor was selected as the programming language

for this project.

The discussion above describes four methodology choices for this project. They

are different concepts but are interdependent. This is especially evident among

the design, user-interface and programming language. The OOD choice specifies

that an OOP language. With the choice of the MS-Windows user-interface, Actor

became the appropriate OOP language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4. Object-Oriented Programming (OOP)

Although it has been almost two decades since the idea of Object-Oriented

Programming came up for the first time [Bobrow 1989], it is still a relatively new

concept to most programmers. In the following sections, a brief introduction of

the OOP concept and a description of the OOP terminology will be discussed.

1.4.1. The Concept

"Object-oriented means that we organize software as a collection of discrete

objects that incorporate both data structure and behavior" [Rumbaugh et al.

1991]. The term object refers to the combination of data and procedures in the

OOP concept. Object-Oriented Programming is a conceptual model for software

development. Modularity (well packaged data and procedures that operate on

the data) is the key to improving software's reusability and extendibility.

Encapsulation and inheritance are the two OOP features which enhance software

with respect to modularity, resulting in higher quality software.

Encapsulation (also known as information hiding) is generally used to describe an

object's protection of its private data from outside access. In other words, data is

packaged only with the procedures that access that data. This concept is often

called data abstraction or modular programming [Thomas 1989].

Inheritance centers on the object construction and is a fundamental technique for

both reusability and extendibility. Each object is derived from a corresponding

class. Objects inherit both data and behaviors from their parents and may also

own their private data. In a class hierarchy, a lower-level class inherits both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

instance variables and methods that are have been defined in its parent classes.

Since inheritance allows partial modification to software, it not only simplifies the

program but also provides possibilities of reuse and extension.

The above description introduces the OOP concept through its features. It

illustrates that OOP encourages programming in terms of "objects", rather than

separate "procedures" and "data." Compare with structured technique, the

difference is obvious: data are no longer separated from the procedure under the

OOP paradigm.

1.4.2. Terminology

The idea of OOP consists of four major components: Object (the crucial

component), Class. Method, and Instance variable. The following definitions for

these terms will further explain the concept of OOP.

Object

"The initial appearance of the notion of an 'object' as a programming construction

was in Simula, a language for programming computer simulations." [Birtwistle et

al. 1973] One may ask two questions about "object": What is an object? What Is in

the object? The answer to the first question is that "an object is an entity in the

real world." In other words, we perceive the world around us as a variety of

objects. For example, a person is an object, a picture is an object, and a

"speclflc"-car is also an object. Each object contains its own characteristics

along with a set of manipulations on itself; this is the answer to the second

question. Using the car example given above, a car has its manufacture-name,

model-type, color and a series of functional behaviors. A more precise definition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with technical terms of "object" is as follows: "A data structure along with all the

procedures that operate on it is bundled together in a distinct module called an

object. Similarly, an 'object' is a self-contained entity which has its own private

data and a set of operations to manipulate that data. One can also say, an

"object" is a block of code that contains a data structure together with all of the

procedures that are required to operate on the data elements of the data

structure. Therefore, an object is capable of receiving, understanding, and

implementing high level "messages" from other objects.

Class

The class concept is central to OOP. Generally speaking, a class is a set of similar

objects. More specifically, a class is a template for creating individual objects that

behave in a similar manner. Each object belongs to a class that defines the type

of the object. Car is a class for the car example given above. Objects of this class

may include blue-91-Toyota-Camry and red-88-Ford-Taurus . One can also say

that an object is an instance of its class. Different classes are related according to

an inheritance hierarchy. One ancestor class might give rise to many descendant

classes, which might, in turn, be ancestors of yet other classes. The procedures

and data structures are passed along to descendants. This is called inheritance.

For example, the Car class and the MotorBoat class can both be descendant of

the MotorizedVehicIe class, and both inherit data and procedures from the

MotorizedVehlcle class. Two kinds of inheritance exist: single inheritance and

multiple inheritance. Under single inheritance, a class is only allowed to have a

single parent class. Multiple inheritance allows a class to have more than one

direct parent. Inherited behavior is used as the default if the behavior is not

redefined in the descendant. As mentioned before, inheritance is one of the

significant OOP characteristics which distinguishes OOP from other techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

Method

A message to an object is a request to execute a specific function or algorithm.

Such a message is called a method. Objects from the MotorizedVehicIe class

have behaviors: such as turn left, oo-straioht and stop. In other words, they can

respond to "turn-left", "go-straight" and "stop" messages. The corresponding

methods are defined in either the object's class definition or in the definition of its

ancestor classes. One attribute of a method is overloading which means different

classes may define methods of the same name. Therefore, objects of many

classes can respond in their own appropriate ways to the same request. For

example, the turnLeftQ method may be defined differently in both Car and

MotorBoat classes. Thus, a "specific"-car (instance of Car class) and a "speclfic"-

motor-boat (instance of MotorBoat class) can respond to the same "turn-left"

message in different way.

Instance variable

An instance variable is a variable contained in an object. Again using the above

example, instance variables in the Car class could be: manufacture-name, model-

type, color and so on. Instance variables may also be objects and can belong to

any other class. This permits nested data structures.

The capabilities of objects, classes, methods and instance variables together

make OOP a complete and powerful technique in the field of computer

programming. Subsequent chapters cover the OOP design and implementation

techniques used in the development of this software project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Two

Requirements and Specifications

To accomplish the goal of a software development project, the developer needs

initially to clarify the software requirements and system specifications.

Requirements and specifications are results of analyzing the user's needs. This

chapter covers two major requirements and two major specifications: The first

requirement includes textual information display on a computer screen with a

variety of formats of space, color and font. The second requirement concerns use

of the speech synthesizer. Specifications include the computer hardware, its

operating system, speech synthesizer and input file format.

2.1. Text Display Requirements

Dyslexic individuals have various reading difficulties. Some of them have one or

two specific problems, and others have more. Following are five specific problems

which have been identified as potential problems for dyslexies [Horn 1989,

Jakupcak 3/1990-3/1991 and Kerscher 3/1990-3/1991]. Although dyslexies have

many additional problems that this paper does not cover, the following problems

are sufficiently common to justify this program. In order to achieve the following

requirements, the software requires the fundamental precondition of opening a

text file for input.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Problem 1: The dyslexic may have problems separating lines. In other words,

lines may be perceived as crossing in text with commonly used formatting.

Requirement 1: The software should allow for easy modification of spacing

(measured in pixels) between lines.

Problem 2: For some dyslexies, words may perceptually overlap in a text with the

usually formatting.

Requirement 2: The software should allow for the modification of spacing

(measured in character width) between words.

Problem 3: The dyslexic may have problems distinguishing between a particular

pair of letters (such as b's and d's). Similarly, the dyslexic may have trouble

reading some letter combinations such as "ch," "the," or "I." Whenever these

combinations appear in a text, the dyslexic reader may have a hard time

perceiving these combinations.

Requirement 3 : Since most dyslexic readers may distinguish colors correctly, the

software should allow for color modification to letters so that all occurrences of

the particular letter pairs or letter combinations are displayed with an assigned

color. For example; The dyslexic reader may assign red color to "b," blue to "d,"

pink to "ch," and green to "the." All the occurrences of "b," "d," "ch" and "the" will

then appear corresponding to a specific color. In addition, the dyslexic may

choose to contrast background color against character color.

Problem 4 : Some dyslexies may have difficulty in perceiving the first letter of each

word.

Requirement s : The software should enable readers to modify the color of each

word, so that the first letter of each word will be displayed with a specific color

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

throughout the entire text.

Problem 5: The dyslexic reader may have problems reading the usual letter size of

text.

Requirement 5 : The software should enable the reader to modify the letter size, so

the entire text displays with that specific letter size. In other words, the dimensions

of letters can be adjusted to a bigger or smaller size. The result of this feature is

similar to enlarged or reduced print on paper.

These five problems and the corresponding requirements describe common

difficulties of dyslexic individuals, and the solutions that this software should

provide in order to help. The following are the extended requirements which can

be accomplished by the software. Some may prove useful for certain types of

dyslexia.

Requirement 6 : The software allows dyslexies to change the character’s font. For

instance, the reader can specify that the entire text be displayed in Roman,

Modern, Courier and etcetera.

Requirement 7: The character style, including "italic," "bold face," and "underline,"

is also changeable. The reader may assign a specific style for the entire text, for

the first letter of each word, or for certain letter combinations.

Requirement 8 : The software also allow the dyslexic reader to reverse the text

color and background color for the entire text. It will allow the reader to employ

this feature on a specific letter pair, or the first letter of each word.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Requirement 9 : Words in the text file can be traced with the use of the four arrow-

keys and subsequently highlighted with reverse-video display. For example, when

the user presses the key on the key-board, the word to the right of the

current word will be changed to a reverse-video display. Also, the software

defines a set of keys to handle horizontal and vertical page movements.

2.2. Speech Output Requirements

A speech synthesizer used on a computer converts text into simulated speech.

This software package will also allow the dyslexic to use a speech synthesizer.

The following are four main concerns of using a speech synthesizer in terms of

users' need.

First, the dyslexic reader may still have problems with reading even after

modifying the textual display characteristics. For instance, the reader might have

a particular problem which is not being taken care of through the display

attributes provided by this software. He/she might want to get some help from

some sort of speech device in order to overcome the problem. Therefore, the

software should not only allow textual modification, but also allow the reader to

employ a speech synthesizer while the text is being displayed.

Secondly, dyslexic individuals may prefer the synthesizer to spell out each letter,

rather than pronounce the complete words, or vice versa. The software should

give the reader two choices; spell out letter by letter, or read word by word. The

reader should be able to convert this setting at will.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

Third, the synthesizer can either sound out the whole text, or pronounce (or spell)

words which the current cursor marks. The dyslexic may use four arrow keys (on

the key board) to move the cursor around the text.

Finally, the dyslexic reader may not understand the speech with the default

settings of speech attributes which include; voice, rate, pitch, intonation, etcetera.

Thus, if the synthesizer permits, the software will allow the reader to reset those

speech attributes at any time.

2.3. Hardware and Operating System Specifications

The program requires an IBM PC or compatible with a hard disk and a color

monitor (EGA or VGA). The program also requires MS- Windows, version 3.0 or

later. MS-Windows requires 640K bytes of memory. The performance of MS-

Windows is better on a 286 or 386-based computer.

The speech synthesizer used in this program is called ACCENT Stand Alone

(ACCENT-SA), which is a stand alone device for all computers. It has a 640-byte

warp-around text buffer. A standard RS-232C serial port is provided for interface

with a computer or terminal as the host. It responds to four groups of software

commands: system option, speech option, index option, and status request.

The operating systems that support this software are those systems that support

MS-Windows, currently MS-DOS and PC-DOS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

2.4. Input File Requirements

The text file which can be displayed in this program is a DOS text file (also called

an ASCII text file), with no special formatting characters, where each line is at

most 80 characters long. A product of Computerized Books For the Blind and

Print-Disabled should fit the above requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Three

Object-Oriented Design (OOD)

Design means to plan or mark out the form and method of solving a problem.

Although there are many design techniques, problem decomposition is the key to

all techniques. For example, the top-down structured design, used for a

procedure-oriented style, approaches decomposition as a simple matter of

algorithmic decomposition. The object-oriented technique, on the other hand,

uses the technique of object decomposition rather than algorithmic

decomposition. The following is the definition of OOD; "Object-oriented design is a

method of encompassing the process of object-oriented decomposition and a

notation for depicting both logical and physical as well as static and dynamic

models of the system under design" [Booch 1991]. To apply the object-oriented

technique in software development, the developer's major task is to build an

object model to capture the static structure of the system. The definition of

object model will be given in section 3.2.

3.1. Chapter Overview

This chapter gives an overview of the use of object-oriented design in this project.

It explains, beginning with the initial class design and concluding with an outline of

the entire display project's hierarchy and class relationships, the process of

constructing an object model for this software. At the end of this paper, three

appendices: Appendix A (class-behaviors-collaborators). Appendix B (method-

description) and Appendix 0 (data-dictionary) further illustrate the detailed design

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

documentation for this project. The last section focuses on the design of the user-

interface.

3.2. Object Model

"An object model captures the static structure of the system by showing the

objects in the system, relationships between the objects, and attributes and

operations that characterize each class of objects" [Rumbaugh et al. 1991]. Within

the object model exist three important characteristics: abstraction, encapsulation

and hierarchy.

Abstraction: Abstraction is one way to deal with complexity in the real world. An

abstraction denotes the essential characteristics of an object that distinguish it

from all others and thus provides crisply defined conceptual boundaries.

Abstraction leads to an object model where each object has a greater

cohesiveness but a looser coupling relationship to other objects.

Encapsulation: As mentioned in the first chapter, encapsulation means

information hiding. It hides the internal implementation details of an object from

other objects. By employing encapsulation, one can modify an object without

affecting the applications that use the object. The two concepts, abstraction and

encapsulation, are complementary to each other. To an object, abstraction

focuses externally while encapsulation focuses internally.

Hierarchv: In the real world, objects are categorized or grouped into classes, and

classes can be further grouped into super-classes. Those objects and classes

form a hierarchy by their characteristics. Inheritance is the most important

hierarchy. Using object-oriented design, proper use of inheritance not only

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

simplifies the understanding and implementation of the problem, but also

enhances the software's reusability.

Both object and class are terms used in object-oriented programming, and

sometimes what distinguishes an object from a class is confused. Therefore, it is

very important to clarify these two terms before the object model construction

process.

3.2.1. Object and Class

As mentioned in chapter one, object is an entity in the real world. To be more

specific, there are two kinds of objects: physical entities which one can see in the

real world, and concepts which are not visible. A class is a template for a set of

similar objects and is an abstract data type implementation. Actually, a class is the

technical term applied in object-oriented programming to describe the data

structure and common behavior which characterize a set of similar objects.

Objects and classes are separate yet intimately related concepts. Specifically,

every object is the instance of some class, and every class has zero or more

instances.

In an object-oriented programming environment, an object Is dynamically created

during a system's execution, whereas a class is a statically describes of a set of

possible objects. Therefore, object-oriented design is actually embodied in class

design. In other words, the conceptual framework of object-oriented design is to

identify classes, state the relationships between classes, and define both data and

operations which characterize each class of objects. In order to construct an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

object model, the first step is to identify relevant classes from the problem

domain.

3.2.2. Problem Domain

Problem domain is a term to describe the problem space in the real world.

Looking at the entire problem from the top level: What is the problem? What is the

boundary of the problem? What is the software's responsibility in terms of solving

the problem? For example, the overall goal of the display software, as stated in

the first chapter, is to both empower the user to change the display attributes of

the text and to enable the use of a speech synthesizer if required. A context

diagram (figure 3.1) is a good way to depict problem space. The diagram shows

the program task, the interface with external entities and the problem boundary.

This particular problem contains four external entities: the user, the text file, the

computer screen and the speech synthesizer. These entities' actions rely on the

program as the central controller. Each entity has a relationship with the program.

Initially, the user specifies a text file name for the program, and the program then

opens the file and brings it up on the screen. Whenever the user changes display

requirements, the screen receives commands with display attributes to show the

newly specified text. Finally, if the user so desires, the speech synthesizer

receives commands from the program and then either pronounces or spells out

words. The context diagram clarifies what the program should and should not do.

It needs to handle the input from the user, manipulate the display to the screen,

and also operate the speech synthesizer. This is the domain of this particular

problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

User ScreenText F ile

Program 1text file name commands, words

display attributes

Display A ttributes S ypthesiser /

Figure 3 1 Context Diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

3.2.3. Initial Class Design

Four classes can be initially identified from the above problem domain: text file

(called DispCollection), display window (called DispWindow), synthesizer (called

Synthesizer) and display attributes (called Visual Attributes). They each have

responsibilities as described in table 3.1.

Class Name Responsibilities
DispCollection hold the text file as a collection of lines; seek words, letters

etc. In the text.
DispWindow draw text on the display window according to the visual

attributes; control the speech synthesizer
Synthesizer receive commands from the display window; connect serial

port and send text to serial port
VisualAttributes set visual attributes; provide different attributes to the display

window for textual display

Table 3.1 : Some major classes and their responsibilities

In addition, these four classes are interrelated. They collaborate with each other in

the course of satisfying responsibilities. For instance, DispWindow collaborates

with Synthesizer and other classes (Appendix A) to satisfy its responsibilities.

Each class contains both data and behavior. Moreover, each class defines a set

of instance variables and methods. For instance, the Synthesizer class defines

the instance variables: sVoice, sRate, sPitch and etc. (Appendix C) to hold the

speech attributes, and a set of methods: sVoiceQ, setVoiceQ and etc. (Appendix

B) to set and return the value of these variables. To apply the object-oriented

design technique, further decomposition is required.

In table 3.1, the VisualAttributes class carries the responsibility of setting and

providing different display attributes for the display window, and of representing

the visual property abstraction of the text display. However, since visual display

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

attributes include text attributes, letter combination attributes and first letter

attributes, visual attributes can be further divided Into text attributes, letter

combination attributes and first letter attributes. Thus, three classes;

TextAttributes, LetterCombAttributes and FirstLetterAttributes, are derived from

the VisualAttributes class. Furthermore, these three classes are sub-classes

which inherit from the VisualAttributes class. Therefore, these sub-classes may

have their own private data and behaviors while sharing basic data and behaviors

from the VisualAttributes class.

Table 3.2 describes the inheritance of the attributes classes. For example,

although no instance variables are defined in the TextAttributes class, instance

variables are inherited from the VisualAttributes class instead such as: vBkColor,

vFontColor. Methods inheritance applies to the TextAttributes class in a similar

manner. The TextAttributes class defines its private methods (such as

setLineSpaceQ, setWordSpaceQ: ■•■). and in addition inherits setBkCoiorQ,

setFontColorQ and etc. methods from the VisualAttributes class.

Class Name Responsibilities Instance Vars. Methods
VisualAttributes initialize visual attributes; set and

provide visual attributes to the
display window

vBkColor;
vFont Color;
vUnderline;

setBkCoIorQ;
setFontColorO;
setUnderllneO:

TextAttributes set and provide attributes for the
entire text;
especially set and provide the line-
space and word-space values

setLineSpaceQ;
setWord Space 0;
getFontsQ;
applyNewFontsQ;

LetterComb-Attributes set and provide attributes for
different letter combinations;

reverseFirst; getFontsQ;
applyNewFontsQ;

FirstLetterAttributes set and provide attributes for the
first letter of each word

letterCombDict getFontsQ;
applyNewFontsQ;

Table 3.2: Class inheritance for the visual attributes classes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Three tables; class-behaviors-collaborators, method-descriptlon and data-

dictionary, describe in detail the class design, data structure and the method

design respectively for the entire display program (see Appendices).

3.2.4. Class Hierarchy

The class hierarchy depends heavily upon the built-in class library of a certain

programming language. To properly place a newly created class into the existing

class hierarchy is very important. For instance, in terms of hierarchy, where

should the class DispWindow be placed into the Actor class library? Although

each different programming language provides a different class library with a

different class hierarchy, a clear understanding of each class is always the key.

Consider the behavior of this particular window. It is a window, of course, and it

allows text to be displayed but not modified in it. In the Actor class library, the

window branch contains WindowObject, Window, TextWindow, EditWindow etc.

in top-down order. Obviously, the display window should be placed under the

class Window since it acts as a window. As the display window does not allow any

modifications to it, one may quickly decide to make it a descendant of

TextWindow class. This may be correct theoretically but possibly inappropriate

pragmatically. Merely understanding the particular problem is not sufficient. One

has to know the characteristics of related, built-in classes to be able to create the

proper hierarchy. Returning to the example above, the DispWindow class actually

needs most EditWindow services, except the editing behavior. For example, the

user may insert, delete or modify characters to the text in an edit window. To

make DispWindow a descendant from the EditWindow class rather than from the

TextWindow class avoids definition redundancy. In addition, just one short

method is required to disable text modification, and this decision produces a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

more appropriate class hierarchy. Figure 3.2 shows all of the classes for this

project and their parent classes that exist in the Actor class library.

DisplayApp

Object

Application 1 Synthesizer | Visual
AttribuIt es

Text
Attributes

gFirstLetter-
ttributes

LetterComb-
Attributes

Voice-
Dialog

Pitch-
Dialog

X
Collection Window-

Obiect

Indexed-
Collection Window Dialog

' 1 '■*
.-... - 1-......-.-, 1

d)
Array Window

le x t-
window

Ordered-
Collection Font- Edit

. Window
Disp-

Col lection

Number-
Dialo^

Disp Help-
Window Window

Punci-
Dialog

Speech-
Dialog

inton-
Dialog

Pause-
Dialog

Rate-
JDialog_

Timeout-
Dialog

I I refers to the class that is used directly in the
project

refers to the class that is used indirectly in the
project

Figure 3.2: Class inheritance hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

3.2.5. Relationship Between Classes

It is clear that a real world system is not a collection of a number of unrelated

objects. Classes contribute to the behavior of a system by cooperating with one

another. Two major kinds of relationships exist between any two classes: Using or

inheritance.

Using relationship If a class plays an active or passive role, which means that it

uses or can be used by other classes, then the relationship among them is a

using relationship . For example, in the display program, DispWindow has a

using relationship with Synthesizer. Whenever the user wants to hear from the

speech synthesizer, the display window uses the synthesizer to handle the

speech. Therefore, the DispWindow class operates upon the Synthesizer class. In

this case, DispWindow is the actor, and Synthesizer has the supporting role.

Inheritance relationship If a class shares data structure and behaviors from

another class, then these two classes are in an inheritance relationship . Table 3.2

reveals the inheritance relationship between some of the classes from the display

software. TextAttributes, LetterCombAttributes and FirstLetterAttributes all share

common data and behaviors with VisualAttributes apart from their private data

and behaviors.

Figure 3.3 shows the complete view of all class relationships in the display

software program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Visual- ^
Attributes J

5
DisplayApp

MainWindow
TextAttributes

(HelpWindov^ ^ispWjndow^-------- LetterComb
Attributes

FirstLetier
AttributesDispCollection 1 (Synthesizer

FontWindow

inton Number- \ (Timeout
(Dialog j

Punct-]
Dialog y

Pause
Dialog

Fitch-
Dialog

[Speech-
\^ialog

^ ^Rate-
J \Dialog

A uses B

A inherit from B

Figure 3.3: Class Relationships

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

3.3. User-lnterface Design

The user-interface is the direct communication of a program with the user. It is a

medium used for the program to receive the user’s responses, choices or input

data. The objective of user interface design is to provide users with the most

reasonable presentation of the system’s state and its functions. The difficulty of

user-interface design is that it requires a fair bit of creativity to decide on a good

paradigm for both presentation and manipulation. Fortunately, the task of the

user-interface design for this software project is not too difficult. Actor, the

programming language used in this project, enables the programmer to easily

manipulate the MS-Windows' user-interface.

A window (figure 3.4) is the major interface in windows application. It has a title

bar, menus on a menu-bar and a view area. Windows provide two kinds of menu

items on the menu-bar: poo-uo menu item and action menu item. When selected,

a pop-up menu item derives another menu with more than one option (figure 3.5).

An action menu item directly performs an action once it is selected. Two kinds of

dialogue-boxes are involved in this project: a selection dialog-box (figure 3.6)

where the user can select from the given choices, and an input dialog-box (figure

3.7) where the user can type in data in the blank-space. A list-box (figure 3.8) is a

dialogue-box with a vertical scroll bar which provides the user with a list of files to

choose from. The user may select any file from the list-box, and read it into the

display window. These three major user-interface components provide the user

with a consistent and convenient means of communication to the program. Figure

3.9 gives the top-down user interface hierarchy of the display software. For

instance, the main window provides three action menu items: CloseMainWindow,

OpenDispWindow and OpenHelpWindow. Once the user selects the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

OpenDispWindow item, the display window shows on the screen with five pop-up

menu on its menu-bar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

QpenÜ>spi»yWifldow Clo>eM»inWindow OpentjcipWindw

Figure 3.4 A W indow

TcxX D is p la y W lird o w
f c i l t

p p e n T c K ir i ic
ÜP5cinfl B e v c fx V id e o Colof£&nl Sçeech

Ç lo-scW indow I

Figure 3.5 A window with a pop up menu

S e l A ve ra g e P kch

A v e ra g e P i lc h -------------

O d O l
Ofi

0 2
0 2

03
oa

0 4
Oa

Figure 3.6 A selection dialog-box

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Lctter-CambinoHon Dialog

Enter the ietier-combination needs to be
displayed In reverse video:

jUQ

I 1

Figure 3.7 An input dialog-box

D irtd o ry ; crU ctor}

Files:

D irectories:

e c c tw in d .s c c H (• I
a c c tw in d . lo d B [» r f l
a d o r.e x e H jb a d iu p l
sc to r.Im a H jc l asses)
b .io d ■ (dow n load)
b c h s r t lo d ■ jh e lp l
buttôA .lûd (res)
c h a n c e s .a d n lu p lo a d s l

Figure 3.8 A list-box

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

MalnWindow

/uMeMain^
Ŵindow)]

OpedOisp
Windw

DispWindow

File Space

ielpWiodow

Open-
File

CIsDitp-
Window

Line-
Spacint

Word-
Spacing

List-box ^LnSp-
Dialog

ReverteVideo

Entire-
Text

ColorFont Speech

Letier-
Comb

First-
Letter

Entire-
Text

WdSp- A
Dialog J

L̂tCom-
yPialog

Letter
Comb

First-
Letter

ÆtCom- A
VDialgLy

FootWlndow

©
Enable-
Syntbes

Text-
Mode

SetSpeech [
Spell-
Mode

SetVolee

Enable-
FastRd

Disable-
FastRd

Set Rate 1 SetPause

Track-
Text

Setlnton

Speecb-
011

SetTmoui

Dlsable-
Syntbes

SetPitcb SetNoPro

^ p e e c h -A f Voice- A C ^ f Pause- \ f Inton- \ f Tmout-A f Pitch- A f Norn-
vDialog J V Dialog J V Dialog J V Dialog J V Dialog J V Dialog J V Dialog J

f Puoct- ^
V Dialog J

Foots

I System j ^ermin^

Symbol I I Roman

Styles

Helv

][Script

I " " " " I

I

_L
TfflsRffls

Csîüü)
Color- y ^iJems- A

y Dialog J y Dialog J

Dimsoo

Italic ANSI OEM I

C_J 1__ 1 (__)I I I I I _ _ _ _ » 1- - - - - - - - 1 k) _ _ _ _ _ 1 I
I Window pop-up menu Action menu item pop-up menu item Dialog-box List-box |

Figure 3.9 User-Intt< Lace

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Four

Implementation

4.1. Chapter Overview

Although object-oriented programming has been around for about 20 years,

interest in it and usage of it have increased tremendously in the last 5 years.

OOP's recent popularity is the result of several factors. The most significant factor

is that "OOP improves code reuse by using less complex, loosely coupled, highly

cohesive components" [Duff and Howard 1990]. OOP technology is a real

breakthrough in programming since building highly reusable software

components is a difficult undertaking. This chapter focuses on the discussion of

the implementation with Actor, an OOP language, of the display software of this

project. The chapter starts with a brief introduction of MS-Windows, Actor, and

their relationship. The chapter then provides an example to further describe the

programming approach with the OOP technique. The end of the chapter

discussed code flexibility and reusability of this project.

4.2. MS-Windows and Actor

MS-Windows is a graphical user-interface for PCs running under MS-DOS and

PC-DOS. It provides an easy and friendly environment to the end-user. Actor is an

object-oriented programming language which runs under MS-Windows and is

used to produce windows applications.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

4.2.1. MS-Windows

Macintosh users have always had the advantage of a windowing environment and

an easy-to-use interface, while early MS-DOS based PC users were at a

disadvantage as they worked only in a non-windowing environment. However,

today MS-Windows is well on its way to becoming the standard windowing

environment for PCs. Among systems that run programs in a windowed or

graphical environment on MS-DOS based PC's, MS-Windows has taken the lead

in the past years.

4.2.2. Actor

Actor is both an object-oriented programming language and a sophisticated

environment for developing MS-Windows applications on PCs. It works with

Windows to provide a versatile environment for programmers as well as a simple,

standardized interface for users. Actor is one of the four (Digitalk's Smalltalk/V

and Smalltalk/V286, Interactive Software Engineering's Eiffel, Whitewater Group's

Actor) widely used pure OOP languages. Pure and hybrid are two types of OOP

languages. A pure language operates strictly within the rules of object-oriented

programming. In other words, in a pure object-oriented language, all variables

can be considered to be objects. A hybrid language (such as C-r +), on the other

hand, is a language that is an object-oriented extension to a non-object-oriented

language.

4.2.3. Relationship Between Actor and MS-Windows

Windows has the reputation of being easy for users but difficult for programmers.

It is very good for the end-user who desires to use graphics-oriented programs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

with a simple and standard interface. The programmer, however, has to learn a

vast set of new functions and a new style of programming. Actor is designed

especially for MS-Windows programming. Actor operates between MS-Windows

and the programmer to simplify windows programming. Actor plus MS-Windows

not only gives the user standardized applications but also provides the

programmer with the capability to develop standard windows applications in a

powerful and easy-to-use object-oriented environment.

Windows is an event-driven system, which means that programs respond to

events that the user or other programs initiate [Urlocker 1989]. Events refers to

actions such as clicking the mouse, pressing a key, or selecting a menu item.

Windows operates on a message-passing paradigm. In other words, Windows

sends a message to notify the program once an event occurs. For example, the

corresponding window object receives a WM LBUTTONDOWN message

whenever the user clicks in a window with the left mouse button. The "WM" is

mnemonic for a Windows Message. Actor has predefined window classes which

behave in a standard way. In fact, a window is an instance of a window class in

Actor. There are a wide array of predefined window classes (such as

TextWindow, EditWindow ...) in Actor's class library. Once a window class is

defined, a window of that class can be created with just one line of Actor code. To

program with Actor, the programmer can define more specialized window classes

as descendants of the standard window classes.

Actor provides simplified access to perhaps 85 percent of the Windows functions,

while the remaining functions must be Invoked using conventional programming

methods [Cummings 1987]. This simplification makes creating a Windows

application substantially easier and distinguishes Actor from other OOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

languages. For instance, using the C programming language to create a window

which displays "Hello world!" requires over a hundred lines of code. But just two

lines of Actor code will be sufficient to achieve the same result. In addition, Actor

handles memory management automatically, so that the programmer does not

need to worry about it. The following is a case study of employing polymorphism,

inheritance and encapsulation for this project with Actor.

4.3. Case Study

One of this project's major tasks is to enable the user to modify' the textual display

attributes. Of all the display attributes, color and font receive the most

modifications. The program uses a font window as a common interface to receive

newly specified colors and fonts from the user. As it is stated in chapter three,

three classes (TextAttributes, LetterCombAttributes and FirstLetterAttributes) are

defined to handle text-attributes, letter-combination-attributes and first-letter-

attributes respectively. Moreover, these three classes are sub-classes of the

VisualAttributes class. Since objects of these three classes all use the same font

window to get the user's requirements, the interface between these three classes

and the FontWindow class becomes problematic in the implementation phase. In

other words, it is very important that the way a font window object returns display

attributes to different textual attributes objects. A language like 0 requires that

each function have a unique name so that the function can be located at the

compile time. Thus, different objects can only receive display attributes through

different routines. However, with polymorphism, this can be done easily. The

following code is part of the command method that is defined in the FontWindow

class and is used to return display attributes to different objects:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Def command (sell. wP, IP)
{select

case wP = = IDM_ITALIC
is
endCase
case wP = = IDM CHARCOLOR
is
endCase

case wP = = IDM DOIT
Is setUnderline(attrlbObj, underline);

setltalic(attribObj, italic);
setWeight(attribObj .weight);
setFontColor(attribObj, fontColor);
setBkColor(attribObj, bkColor);
setHeight(attribObj, height);
setWidth(attribObj, width);
setCharSet(attribObj, charSet);
setStrikeout{attribObj, strikeout);
set Face Name (attribObj, fontUst[fontld]);
applyNewFonts(attribObj);

endCase;
endSelect;

}

where: attribObj is an instance variable of the FontWindow class that

refers to a visual attributes object

underline, italic, weight, fontColor,... are also instance variables of the

FontWindow class

set-"attributes”0 ere methods defined in the VisualAttributes class

applyNewFontsQ is a method defined in the TextAttributes.

LetterCombAttributes and FirstLetterAttributes classes

This is the command-dispatcher of font window. It handles the font window's

menu events. Each menu item corresponds to a "case " statement in the above

code. For instance, if the user selects "Italic" from the menu, then the methods

under "case wP = = IDM_ITALIC" will be invoked. Methods under "case wP = =

IDM DOIT" will be invoked if the user selects "Dolt" on the menu, so that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

newly specified fonts and colors are applied to the display window.

4.3.1. Polymorphism

As stated in previous chapters, polymorphism refers to use the same name for

different types of objects. This ability is based on the technique called "dynamic

binding." The process of matching up a message with a method is called binding .

Actor binds messages with methods at the run time, so it utilizes dynamic binding.

Return to the code given above, message "applyNewFonts" is sent to attribObj

which refers to different objects (textAttri, letterCombAttri, and firstLetterAttri) as

the program runs. This is where polymorphism is employed. Figure 4.1 shows this

polymorphism.

With this polymorphic implementation, fontWindow sends the message

"applyNewFonts" regardless of the applyNewFonts() operation. Therefore, the

relationship between fontWindow and objects (textAttri, letterCombAttri, and

firstLetterAttri) is clear and stable. If two additional classes: SentenceAttributes

and ParagraphAttributes were added into the system, then fontWindow would

communicate with the corresponding objects (paragAttri and sentsAttri) through

the same code given above.

4.3.2. Inheritance

Inheritance means that an object inherits all the attributes and methods from its

parents. In the above code, fontWindow sends set-"attributes" messages to

different objects (textAttri, letterCombAttri and firstLetterAttri). However, the

corresponding methods are not defined in any of these objects' classes, but In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

applyNewFontaO TextAttributes

LetterComb
Attributes

applyNewFontsQFontWindow

applyNewFontsQ FirstLetter
Attributes

Figure 4.1 Example of polymorphism

^TextAttributes

LetterComb
Attributes

FirstLetter
Attributes

Inherited data:
fontColor:
bkCobr;
fscoName:
charSet:
iaiic:
underline;

(Visual
Attributes

Inherited behavior:
selFonlColorO;
setdkColorO;
setFaceNameO;
setCharSetO;
seiltalicO;
setUnderllneO;
fontCohrO;
bkCobrO;
FaceNameO;
charSetO;
ttaUcO;
underUneO;

Figure 4.2 Example of inheritance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

their parent class (VisualAttributes). The inheritance enables these objects inherit

both data and methods from their parent, so that they can respond messages

without redefining methods in their classes. Figure 4.2 depicts this part of the

inheritance hierarchy.

4.3.3. Encapsulation

Encapsulation is the technical term for "information hiding." It is used to describe

an object’s protection of its private data from its clients (objects that use the

resources of other objects). Actor provides two techniques fusing messages and

using "dot notation") for clients accessing an object's instance variables. Using

messages follows the principle of encapsulation whereas “Dot notation" violates

encapsulation. Moreover, using messages implies that an object's clients can not

access its instance variables unless the object provides a public message that

gives the access to its data in an abstract way. "Dot notation" allows clients to

directly access an object's instance variables. Therefore, using messages is

highly recommended and "dot notation" is strongly discouraged in Actor language

usage.

As it shows in the above code, messages set-"attributes" are sent to different

objects to pass on textual display attributes. For example, message

setUnderline(attribObj, underline) is sent to attribObj for passing a newly

specified underline attribute. In the display program, "message sending" is the

only outside access to an object's instance variables. However, instead of using

message sending to set attribObj's instance variables, this can be accomplished

by: attribObj.vUnderline := underline , where vUnderline is an instance variable

of attribObj's class. This direct-accessing vUnderline results in building a tight

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

coupling between fontWindow and attribObj, which means that modifications to

the attribObj's class may effect fontWindow's class.

4.4. Flexibility and Reusabiiity

Flexibility and reusability measure the quality of a software package. A highly

flexible and reusable code makes a software package easily maintainable, so that

the software package lives longer. Consider the display program: suppose that

someone wants to use another kind of speech synthesizer, rather than

ACCENT-SA. If the new synthesizer enables the same speech attributes, then the

only modification would be made within the Synthesizer class; nothing would

need to be changed in other classes. If another user wants to distinguish the last

letter of each word, the program could be extended to handle this feature easily.

This can be accomplished by creating another class: LastLetterAttributes

(descendant of the VisualAttributes class) in the class hierarchy and adding no

more than five short methods to the class. It is also necessary to add another

method In the DispCollection class in order to traverse the last letter of each word

in the entire text. Finally, corresponding menu items, and the command

dispatcher of the DispWindow class need to be changed accordingly. Yet the

whole structure does not change for this purpose, and 95 percent of the code will

not be affected.

One might think that using an OOP language obviously signifies a better design.

That is not necessarily true. To solve a certain problem, one might make one or

two huge classes, or divide into many small ones. The OOD technique

encourages small classes with loose coupling and high cohesion. The

development of this project is an example. When I first started this project, I did

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

not really understand the substance of OOP except some terms such as object,

class and method. I designed this project making dispWindow object

responsibility for both window events and textual display attributes. As a result,

the DispWindow class became a huge class and difficult to maintain. It is

obviously not a good design from the OOP point of view, even though it was

based on an object-oriented programming language. The current design is better

since the dispWindow object no longer has the responsibility for textual display

attributes. However, if I was to do the project over again, I would break down the

DispWindow class even more, so as to create a class to handle all the key-actions

for the display window. This experience shows that the quality of software does

not merely depend on using an object-oriented programming language. Rather,

OOP languages add features that allow implementation of well-factored, minimally

coupled systems. Yet the programmer still has considerable leeway to build up

different object models for a particular problem. Different object models can lead

to various class hierarchies with different data-structures and methods design.

Assuming that the problem has been decomposed properly, the utilization of

polymorphism and encapsulation still affect the quality of the software. It is true

that OOP provides good preconditions for more flexible and reusable software,

but it is still a considerable challenge for the programmer.

For a programmer who does not know OOP techniques and languages well, the

start-up time expenditure is quite considerable. OOD requires the knowledge of a

particular object-oriented programming language. OOP languages can not be

mastered in a short time. They are quite different from traditional programming

languages. The time and efforts are fairly considerable in order to learn the OOP

language, along with the OOD technique. As a result, I spent at least 50 percent

of the development time learning the language before getting into the formal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

coding.

However, once I became familiar with the Actor language and better understood

the concept of OOP, to improve the program was easy. For instance, I spent less

than a month for the program improvement which includes design and coding.

This shows that object-oriented languages do simplify the work for the

programmer and Actor is a good language for developing windows application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Five

Conclusion

5.1. What the Software Accomplished

This software project's Idea originates from Horn's experimental results [Horn

1989]. This project's primary goal is to create a program that provides a dynamic

and changeable textual display environment for the dyslexic reader. It focuses on

carrying the aforementioned idea toward a more practical reality rather than

simply producing a software product. In addition, this software development

process gave the author a chance to try out both object-oriented design, graphic

user-interface programming, and the Actor programming language. Thus, it is

more an practice than an experiment. Though the program has not yet been used

by dyslexies, it does achieve the requirements specified in chapter two. Therefore,

the author believes the program to be not only a good start toward textual clarity

but also a useful tool in the future for dyslexic readers.

5.2. Future Enhancements

This display software's future enhancement will require attention to two aspects:

extension of the application functions and refinement in terms of software design

and implementation techniques.

The extension of the application functions depends upon the dyslexic user's

requirements. As this paper states in chapter two, this software is a start-up

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

program. It contains basic textual display functions which are aimed at the

dyslexies common problems. In fact, dyslexic individuals have various reading

difficulties; many of these problems may not be considered in this program.

However, this program is flexible for future functional extension. For example, the

dyslexic may like to use different display attributes for the last letter of each word,

a particular paragraph, a certain line and so on. Since the program applies the

object-oriented design technique, the objects have loose coupling relationships.

This allows the program to achieve the above requirements with fewer side affects

for existing functions.

From the viewpoint of software design and implementation technique, several

refinements could be considered. The first is the user-interface for font input. The

current software uses a font window as an interface to communicate user's fonts

updating. The alternative is to add font options on the Text Display Window's main

menu, thus simplifying the font-selection process and making it more convenient

for the user. Another consideration is to use a more direct method for color input.

The current user-interface for color modification is the numerical RGB color input

dialogue, which requires the user to input three numbers in order to balance the

RGB and to obtain the desired color. By using RGB color bars and moving the

mouse to adjust color bar scrolls, the user can visually calibrate his/her desired

textual display. Finally, it maybe helpful to provide two versions of text format in

terms of display manner; normal display, where text extends beyond the display

window's width, and a wraparound display, where text stays within the display

window's boundaries. The current program provides text display without special

handling for text which extends beyond the side borders of the window, so that

the user must use a mouse or space-bar to trace the text when the line length

exceeds the window's width. A wraparound text display would give the user

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

another version of the text with automatic wraparound line handling that would

eliminate the user’s needs to trace text beyond the window, thereby enhancing

the user's reading speed. Until further experimentation allows dyslexies to suggest

further enhancements, these are just a few refinements the author can now

recommend.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Class — Behaviors — Collaborators

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

CLASS-NAME BEHAVIORS COLLABORATORS
DispCollection a collection of lines; handle

different searches on the input
file

DispWindow

DIsplayApp start-up the program and
create the main window

MainWindow

DispWindow handle the menu events, and
draw text file on the display
window

MainWindow
TextAttributes
LetterCombAttributes
FirstLetterAttributes
Synthesizer
DispCollection
project.h @

FirstLetterAttributes handle first letter of words'
display attributes

DispWindow
FontWindow
VisualAttributes

FontWindow behave like a text window;
provide font and color menu;
handle menu events

DispWindow
TextAttributes
LetterCombAttributes
FirstLetterAttributes

HelpWindow bring up help messages as
desired

MainWindow
*.hlp {&)

IntonDlaiog show a sentence-levei-
intonation selection dialog;
get input from users

Synthesizer
intonati.h @

LetterCombAttributes handle letter-combi nation
display attributes

DispWindow
FontWindow

MainWindow parent window of the display
window and the help window

DisplayApp
DispWindow
HelpWindow
main.h @

NumberDialog show a number-processor
selection dialog; get input
from users

Synthesizer
number, h @

PauseDialog show a space-pause selection
dialog; get input from users

Synthesizer
pause, h @

PitchDialog show a pitch selection dialog;
get input from users

Synthesizer
pitch.h @

PunctDialog show a punctuation dialog;
get input from users

Synthesizer
punctuation.h @

RateDialog show a speech-rate selection
dialog; get Input from users

Synthesizer
rate.h @

SpeechDialog show a speech dialog; get
input from users

Synthesizer
speech, h @

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

Synthesizer connect to the serial port,;
handle the speech options

DispWindow
SpeechDialog
VoiceDialog
PitchDialog
PunctDialog
RateDialog
IntonDiaiog
NumberDialog
PauseDialog
TimeoutDialog

TextAttributes handle line space, word space DispWindow
FontWindow
VisualAttributes

TimeoutDialog show a time-out selection
dialog; get input from users

Synthesizer
timeout, h @

VisualAttributes parent class of TextAttributes,
FirstLetterAttributes and
LetterCombAttributes; handle
common textual display
attributes

TextAttributes
LetterCombAttributes
FirstLetterAttributes

VoiceDialog show a voice selection dialog;
get input from users

Synthesizer
voice, h @

@ — refers to the resources (.h) files

& --- refers to set of (.hip) files which provide help messages

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Method-Descrlptfon

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

METHOD-NAME FROM INPUT RESULTS
alterMenu FontWindow value

menultem
checked
unchecked

change the menu
item and return the
new value

applyNewFonts TextAttributes apply new fonts for
the entire text to the
display window

applyNewFonts FirstLetterAttributes apply new fonts for
the first letter of each
word to the display
window

applyNewFonts LetterCombAttributes fill in the dictionary
then apply new font of
letter-combination to
the display window

appiySpeech Synthesizer str send str to the serial
port

arrowDown DispWindow adj adjust window’s view
when "arrow-down"
key is used

arrowLeft DispWindow adj adjust window's view
when key is used

arrowRight DispWindow adj adjust window’s view
when key is used

arrowUp DispWindow adjust window’s view
when
"arrow-up" key is used

changeFont FontWindow idVal change new fonts to
the font window

Chari n DispWindow wP
IP

turn off the display
window's character
input ability

charin HelpWindow wP
IP

turn off the help
window's character
input ability

cioseSerialPort Synthesizer disable the speech
synthesizer and close
the serial port

command MainWindow wP
IP

menu events handling
for the main window

command DispWindow wP
IP

menu events handling
for the display
window

command HelpWindow wP menu events handling
IP for the help window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

command PontWindow wP
IP

menu events handling
for the font window;
bring back the new
fonts to the display
window through
attribObj

createDictionary LetterCombAttributes set letterCombDict
(#)

createMenus PontWindow create menu for the
font window

dictionary LetterCombAttributes return letterCombDict
disabiePastRead Synthesizer send signal to

synthesizer to disable
the fast read

drawLetter DispWindow textual attributes
(%)

draw letter with
passed-in attributes

drawText DispWindow hdc
textual
attributes (%)

draw the entire text
with passed-in
attributes

enablePastRead Synthesizer send signal to
synthesizer to enable
the fast read ability

enableSpeechMenu DispWindow make speech menu
available for selecting

exchangeColors TextAttributes swap vPontColor (#)
and vBkColor (#)

find Down DispCollection strtLine
strtChar
ISp

return a tuple of (x, y,
word). X and y are
location of word
which is down to the
current char

findPirst DispCollection StrtLine
StrtChar

return a tuple: (x. y.
ch). X and y are
starting pos of first
char

find Left DispCollection StrtLine
StrtChar
ISp

return a tuple of (x, y,
word). X and y are
location of word
which is left to the
current char

findRight DispCollection StrtLine
StrtChar
ISp

return a tuple of (x, y,
word). X and y are
location of word
which is right to the
current char

findString DispCollection Str
StrtLine
StrtChar

return the position (x,
y) of str

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

find Up DispCollection StrtLine
StrtChar
ISp

return a tuple of (x, y,
word). X and y are
location of word
which is up to the
current char

find Words DispCollection StrtLine
StrtChar
wSp

return a tuple; (x, y,
str) of each word, x
and y are starting pos
of word

flushSpeakBuffer Synthesizer stop synthesizer
working immediately

getChar DispCollection strtLin
strtLoc

return "true" if the
char in given location
is a sign or
punctuation

getCurrentChar DispCollection line
char

return "true" if current
char Is neither “space"
nor "nil"

getDimensions FontWindow create dynamic dialog
and get: height (#)
and width (#) from
users

getPonts FirstLetterAttributes open the font window
to get attributes for
first letter of each
words

getPonts LetterCombAttributes open the font window
to get attributes for
letter-combinations

getPonts TextAttributes open the font window
to get attributes for
the entire text

getPontList PontWindow enumerate over the
fonts available to the
font system and
return a font list

getLastChar DispCollection ISp return the index of the
last char in the entire
text

getLeftPirst DispCollection In return the index of
left-first char in the
given line

getNextPos DispCollection endL
endC

return location (x, y)
of next position while
cursor moves "down"

getPreChar DispCollection endL
endC

return the pre-char’s
index number

getPreLine DispCollection endL return the pre-line's
index number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

getPrePos DispCollection endL
endC

return location (x, y)
of pre-position while
cursor moves "up"

getRGB FontWindow create dynamic dialog
and get RGB color
from users

getRight DispCollection In return the size of
given line

gotPocus FontWindow hWndPrev redefine gotFocus to
do nothing

graySpeechMenu DispWindow disconnect speech
menu

handleColorFont DispWindow fontColor dispatch the users'
choice for color &
font changing

handleFileOpen DispWindow open a file and enable
the textual display
menu

handleReverseVideo DispWindow choice dispatch the user's
choice for reverse-
video

handleSpace DispWindow space dispatch space
selection events and
reset caretExt (#)

init DispWindow set: speech (#),
caretExt (#) &
initialize the display
window

init DisplayApp command-Str bring up the main
window

init FontWindow set fonts for the font
window

init Synthesizer set speech attributes
m

init VisualAttributes set textual attributes
(%)

initAttributes DispWindow set: textAttri (#),
letterCombAttri (#),
firstAttri (#) and send
message to
letterCombAttri and
create letter-comb-
dictionary

initTextColors FontColor hdc select font attributes
and reset char color
and bk color

initTextMetrics DispWindow set default height &
width for letters

initWorkT ext DispWindow set workText (#)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

insertText DispCollection aStr
line
pos
ISp

insert a string of lines
into the collection at
specified line and
char position

keyDown DispWindow reverse video for the
word that is below the
current word

keyLeft DispWindow reverse video for the
word that is left of the
current word

keyRight DispWindow reverse video for the
word that is to the
right of the current
word

key Up DispWindow reverse video for the
word that is above the
current word

lastChar DispWindow return the last char of
the whole text

leftFlrstChar DispWindow line return the index of the
first char of the given
line

lineSpace TextAttributes return vLineSpaceL
(#)

loadFlIe DispWindow load a file to the
display window

maxFlieSize DispWindow return the maximum
file size available to
read

maxFileSize HelpWindow return the maximum
file size available to
read

newFont FontWindow idVal change the font for
strings on the font
window

openPiie DispWindow fl open a new file &
replace work text with
its contents

openFile HelpWindow fl open a new file &
replace work text with
its contents

openSerialPort Synthesizer init and set-up a serial
port

outRange DispWindow StrtLine
StrtChar

return “true" if the
current position is out
of right-bottom corner
of the window

paint DispWindow hdc repaint the window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

paintFirstLetter DispWindow get first-letter
attributes from
firstAttri then send
message "drawLetter"

paintLetterComb DispWindow get letter-comb
attributes from
letterCombAttri then
send message
"drawLetter"

paintText DispWindow hdc get text attributes
from textAttri. then
send message
"drawText"

readText DispWindow fName replace the selection
range with the
contents of a file

readText HelpWindow fName replace the selection
range with the
contents of a file

reverseCombStatus LetterCombAttributes return reverseComb
(#)

reversePirstLetter DispWindow reverse video for the
first letter of each
word

reversePirstStatus FirstLetterAttributes return reversePirst (#)
reverseLetterComb DispWindow reverse video for the

letter combination
reverseText DispWindow send message

"exchangeColors" to
textAttri

rightChar DispWindow line return the index of the
last char of given line
in text

selectPont PontWindow hdc select the new fonts
setArray DispCollection init numBlank (#)
setAttribObj PontWindow txtAttrib set attribObj (#)
setBkColor PontWindow newBkColor set bkColor (#)
setCharColor PontWindow newPontColor set fontColor (#)
setLineSpace TextAttributes create an input dialog

to get user's desired
line-space; set
vLineSpaceL (#) &
vLineSpaceP (#)

setReverseComb LetterCombAttributes set reverseComb (#)
setReversePirst FirstLetterAttributes set reversePirst (#)
sets pell Mode Synthesizer send signal to

synthesizer to change
to spell mode

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

setTextMode Synthesizer send signai to
synthesizer to change
to speech mode

setWordSpace TextAttributes create an input dialog
and get user's desired
word space:
vWordSpace(#)

show FontWindow state show the font window
with two strings on it

speechOn Synthesizer return "true " if
speechFlag is not nil

trackText DispWindow reverse video on each
word when tracing
the entire text (used
while speaking)

transSpeech Synthesizer wp translate dialog
message to a string of
chars that numerate
speech options

transSpeechll Synthesizer wp translate dialog
message to a string of
chars that numerate
speech options

updateAttributes FirstLetterAttributes return "true" if
attriChangeFlag < >
nil

updateAttributes LetterCombAttributes return "true" if
letterCombDict < >
nil

visChars DispWindow return the number of
chars which are
visible in the current
window

visibleChar DispWindow StrtLine
StrtChar

return "true" if the
current position is
visible

WM_KEYUP DispWindow wP
IP

respond to the arrow
keys

wordLlmits DispCollection line
char

return the position in
(x,y) of start and end
the current word

wordSpace TextAttributes return vWordSpace
(#)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

— refers to instance variables for textual-attributes

— refers to instance variables for speech attributes

— refers to corresponding instance variables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

Data-Dlctlonary

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

NAME TYPE FROM USED-BY
alterMenu method FontWindow FontWindow
applyNewFonts method TextAttributes

LetterCombAttributes
FirstLetterAttributes

FontWindow

appiySpeech method Synthesizer DispWindow
arrowDown method DispWindow DispWindow
arrowLeft method DispWindow DispWindow
arrowRight method DispWindow DispWindow
arrowUp method DispWindow DispWindow
attribObj instance FontWindow TextAttributes

LetterCombAttributes
FirstLetterAttributes

attriChangeFlag instance FirstLetterAttributes FirstLetterAttributes
bkColor instance FontWindow FontWindow
caretExt instance DispWindow DispWindow
ChangeFont method FontWindow FontWindow
charin method DispWindow DispWindow
charin method HelpWindow HelpWindow
charSet instance FontWindow FontWindow
CioseSerialPort method Synthesizer DispWindow
command method Dialog classes @ Dialog classes @
command method DispWindow DispWindow
command method FontWindow FontWindow
command method HelpWindow HelpWindow
command method MainWindow MainWindow
createDictionary method LetterCombAttributes DispWindow

LetterCom bAttri butes
createMenus method FontWindow FontWindow
dictionary method LetterCombAttributes DispWindow
disableFastRead method Synthesizer DispWindow
DispCollection class OrderedCollection DispWindow
DisplayApp class Object the user
DispWindow class EditWindow MainWindow
drawLetter method DispWindow DispWindow
drawText method DispWindow DispWindow
enableFastRead method Synthesizer DispWindow
enableSpeechMenu method DispWindow DispWindow
exchangeColors method TextAttributes DispWindow
fileName instance DispWindow DispWindow
findDown method DispCollection DispWindow
findFirst method DispCollection DispWindow
find Left method DispCollection DispWindow
findRight method DispCollection DispWindow
findString method DispCollection DispWindow
findUp method DispCollection DispWindow
findWords method DispCollection DispWindow
firstAttri instance DispWindow DispWindow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

FirstLetterAttributes class VisualAttributes DispWindow
FontWindow

flipFormat method Dialog classes @ Dialog classes @
flushSpeakBuffer method Synthesizer DispWindow
fontColor instance FontWindow FontWindow
fontld instance FontWindow FontWindow
fontList instance FontWindow FontWindow
FontWindow class Text Window TextAttributes

LetterCombAttributes
FirstLetterAttributes

fontWindow instance VisualAttributes TextAttributes
LetterCombAttributes
FirstLetterAttributes

getChar method DispCollection DispCollection
getCurrentChar method DispCollection DispWindow
getDimensions method FontWindow FontWindow
getFontlist method FontWindow FontWindow
getFonts method TextAttributes

LetterCombAttributes
FirstLetterAttributes

DispWndow

getLastChar method DispCollection DispWindow
getLeftFirst method DispCollection DispCollection

DispWindow
getNextPos method DispCollection DispWindow
getPreChar method DispCollection DispWindow
getPreLine method DispCollection DispWindow
getPrePos method DispCollection DispWindow
getRGB method FontWindow FontWindow
getRight method DispCollection DispWindow
gotFocus method FontWindow FontWindow
graySpeechMenu method DispWindow DispWindow
handleColorFont method DispWindow DispWindow
handleFileOpen method DispWindow DispWindow
handleReverseVideo method DispWindow DispWindow
handleSpace method DispWindow DispWindow
height instance FontWindow FontWindow
HelpWindow class EditWindow MainWindow
init method DisplayApp DisplayApp
init method DispWindow DispWindow
init method FontWindow FontWindow
init method Synthesizer Synthesizer
init method VisualAttributes VisualAttributes
initAttributes method DispWindow DispWindow
initOialog method Dialog classes @ Dialog classes @
initTextColors method FontWindow FontWindow
initTextMetrics method DispWindow DispWindow
initWorkText method DispWindow DispWindow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

insertText method DispCollection DispWindow
HelpWindow

intonation instance IntonDiaiog IntonDiaiog
Synthesizer

IntonDiaiog class InputDialog Synthesizer
italic instance FontWindow FontWindow
keyDown method DispWindow DispWindow
keyLeft method DispWindow DispWindow
keyRight method DispWindow DispWindow
keyUp method DispWindow DispWindow
lastChar method DispWindow DispWindow
leftFirstChar method DispWindow DispWindow
letterCombAttri instance DispWindow DispWindow
LetterCombAttributes ciass VisualAttributes DispWindow

FontWindow
letterCombDict Instance LetterCombAttributes LetterCombAttributes

DispWindow
lineSpace method TextAttributes DispWindow
loadPile method DispWindow DispWindow
MainWindow class Window DisplayApp
maxFileSize method DispWindow DispWindow
maxFileSize method HelpWindow HelpWindow
newFont method FontWindow FontWindow
number instance NumberDialog NumberDialog

Synthesizer
numberBlank instance DispCollection DispCollection
NumberDialog class InputDialog Synthesizer
OpenFile method DispWindow DispWindow
openFile method HelpWindow HelpWindow
openSerialPort method Synthesizer DispWindow
outRange method DispWindow DispWindow
paint method DispWindow DispWindow
paintFirstLetter method DispWindow DispWindow
paintLetterComb method DispWindow DispWindow
paintText method DispWindow DispWindow
parWind instance VisualAttributes FirstLetterAttributes

LetterCombAttributes
TextAttributes

pause instance PauseDialog PauseDialog
Synthesizer

PauseDialog class InputDialog Synthesizer
pitch instance PitchDialog PitchDialog

Synthesizer
PitchDialog class InputDialog Synthesizer
PunctDialog class InputDialog Synthesizer
punctuation instance PunctDialog PunctDialog

Synthesizer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

rate instance RateDialog RateDialog
Synthesizer

RateDialog class InputDialog Synthesizer
readText method DispWindow DispWindow
readT ext method HelpWindow HelpWindow
reverseComb instance LetterCombAttributes LetterCombAttributes
reverseCombStatus method LetterCombAttributes DispWindow
reversePirst instance FirstLetterAttributes FirstLetterAttributes
reversePirstLetter method DispWindow DispWindow
reversePirstStatus method FirstLetterAttributes DispWindow
reverseLetterComb method DispWindow DispWindow
reverseText method DispWindow DispWindow
rightChar method DispWindow DispWindow
sAbbrevatlon (&) instance Synthesizer Synthesizer
sDash (&) instance Synthesizer Synthesizer
selectPont method PontWindow PontWindow
serialPort instance Synthesizer Synthesizer
setArray method DispCollection DispWindow
setAttribObj method PontWindow TextAttributes

LetterCombAttributes
FirstLetterAttributes

setBkColor method PontWindow PontWindow
setCharColor method PontWindow PontWindow
setLineSpace method TextAttributes DispWindow
setParent method VisualAttributes DispWindow
setReverseComb method LetterCombAttributes DispWindow
setReversePirst method FirstLetterAttributes DispWindow
setSpellMode method Synthesizer DispWindow
setTextMode method Synthesizer DispWndow
setWordSpace method TextAttributes DispWindow
show method PontWindow TextAttributes

LetterCombAttributes
FirstLetterAttributes

sintonation (&) instance Synthesizer Synthesizer
sNumber (&) instance Synthesizer Synthesizer
sPause(&) instance Synthesizer Synthesizer
speech instance DispWindow DispWindow
SpeechDialog class InputDialog Synthesizer
speechFlag instance Synthesizer Synthesizer
SpeechOn method Synthesizer DispWindow
speechAbbre instance SpeechDialog SpeechDialog

Synthesizer
speechDash instance SpeechDialog SpeechDialog

Synthesizer
speechPunct instance SpeechDialog SpeechDialog

Synthesizer
sPitch (&) instance Synthesizer Synthesizer
sPunctSet (&) instance Synthesizer Synthesizer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

sPunctuation (&) instance Synthesizer Synthesizer
sRate (&) instance Synthesizer Synthesizer
sTImeout (&) instance Synthesizer Synthesizer
strikeout instance FontWindow FontWindow
sVolce (&) instance Synthesizer Synthesizer
Synthesizer class Object DispWindow
textAttri instance DispWindow DispWindow
TextAttributes class VisualAttributes DispWindow

FontWindow
timeout instance TimeoutDialog TimeoutDialog

Synthesizer
TimeoutDialog class InputDialog Synthesizer
trackText method DispWindow DispWindow
trackText instance DispWindow DispWindow
transSpeech method Synthesizer Synthesizer
transSpeech method Synthesizer Synthesizer
updateAttributes method FirstLetterAttributes DispWindow
updateAttributes method LetterCombAttributes DispWindow
vBkCoior (#) instance VisualAttributes VisualAttributes;

DispWindow
vCharSet (#) Instance VisualAttributes VisualAttributes

DispWindow
vPaceName (#) instance VisualAttributes VisualAttributes

DispWindow
vFontColor (#) instance VisualAttributes VisualAttributes

DispWindow
vHeight (#) instance VisualAttributes VisualAttributes

DispWindow
visChars method DispWindow DispWindow
visibleChar method DispWindow DispWindow
VisualAttributes class Object DispWindow
vital ic (#) instance VisualAttributes VisualAttributes

DispWindow
vLineSpaceL instance VisualAttributes TextAttributes

DispWindow
vLineSpaceP instance VisualAttributes TextAttributes

DispWindow
voice instance VoiceDialog VoiceDialog

Synthesizer
VoiceDialog class InputDialog Synthesizer
vStrikout (#) instance VisualAttributes VisualAttributes

DispWindow

vUnderline (#) instance VisualAttributes VisualAttributes
DispWindow

vWeight (#) instance VisualAttributes VisualAttributes
DispWindow

vWidth (#) instance VisualAttributes VisualAttributes
DispWindow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

vWordSpace instance VisualAttributes TextAttributes
DispWindow

weight instance FontWindow FontWindow
width instance FontWindow FontWindow
WM KEYUP method DispWindow DispWindow
word Limits method DispCollection DispCollection

DispWindow
wordSpace method TextAttributes DispWindow

-- refers to that same method is defined-in / used-by Dialog-classes

- refers to that corresponding "get" methods exist in Dialog-classes and "send"
methods exist in methods exist in both Synthesizer and DispWindow classes

- refers to that corresponding "set" methods and return methods exist in the
VisualAttributes class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

ACCENTTM USER’S MANUAL (VERSION 3.1). (1986-1989). San Jose, California:
Aicom Corporation.

Actor User's Manual. (1990). Evanston. Illinois: The Whitewater Group.

Asymetrix Corp. (May 1990). Bellevue, Washington.

Beck, Kent, & Cunningham, Ward. (1989). A Laboratory For Teaching Object-
Oriented Thinking. OOPSLA

Birtwistle, Graham, & Dahl, J. Ole, & Myhrhaug, Bjorn, & Nygaard, Kristen.
(1973). Simula Begin. Philadelphia: Auerbach Press.

Bobrow, G. Daniel. (1989, May 1). The Object of Desire. DATAMATION.

Bond, George. (1990, July). Actor Sets a New Stage for OOP. BYTE.

Booch, Grady. (1991). Object Oriented Design with Applications. Redwood City,
California: The Benjamin/Cummings Publishing Company, Inc.

Borland International. (1987 1988). Scotts Valley, California.

Coad, Peter, & Yourdon, Edward. (1990). Object-oriented Analvsis. Englewood
Cliffs, New Jersey: Prentice Hall Inc.

Cox, J. Brad. (1986). Object Oriented Programming: An Evolutionarv Approach.
Sandy Hook, Connecticut: Addison-Wesley Publishing Company.

Cummings, Stephen. (1987, October 27). Actor Gives Windows Programmers a
Hand. PC WEEK.

Demarco, Tom. (1979, 1978). Structured Analvsis and System Specification.
Englewood Cliffs, New Jersey: Yourdon Press, A Prentice-Hall Company.

Dodani, H. Mahesh, & Hughes, E. Charlesand, & J. Michael Moshell. (1989,
March). Separation of Powers. BYTE

Doler, Kathleen. (1989, September 18). OOPS, an Old Friend Aids Language
Developers. PC WEEK.

Duff, Chuck, & Howard, Bob. (1990, October). Migration Patterns: Moving to
object-oriented technology is more involved than simply buying a compiler. BYTE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Duntemann, Jeff. (1990, April/May). Our Object AH Sublime. PCTECHNIOUFS.

Horn, Christie. (1989). Reported in the American Higher Special Services Program
Post-secondary Education (AHSSPPE) computer special interest group meeting,
Seattle.

Hummel, L. Robert. (1989, May 30). Actor: Object-oriented Development Tool
Lessens MS Windows Programming Load. PC MAGAZINE.

Jakupcak, Michael. [Personal Interview]. March, 1990-March, 1991.

Keough, Lee. (1989, February). The New Face of Computing. COMPUTER
DECISIONS

Kerscher, George. [Personal Interview]. March, 1990-March, 1991.

Kim, Won, & Lochovsky, H. Frederick. (1989). Object-Oriented Concepts.
Databases, and Applications. New York, New York: a division of the Association
for Computing Machinery, Inc.

Knowledge Garden Inc. (May 1990). Nassau, New York.

Lazzaro, J. Joseph. (1990, August). Opening Doors For The Disabled. BYTE.

Martin, James. (1989, September 4). OOP Holds Promise of Simplifying Computer
Programming. PC WEEK.

Martin, James. (1989, September 18). OOP's Intuitive Interface Widens Range of
Applications. PC WEEK.

Meyer, Bertrand. (1988). Object-oriented Software Construction. New Jersey:
Prentice Hall Inc.

Micallef, Josephine. (1988, April/May). Encapsulation, Reusability and
Extensibility in Object-Oriented Programming Languages. JOOP.

Microsoft Corp. (1990). Redmond, Washington.

Microsoft Corp. (1985-1990). Redmond, Washington.

O'Connell, Daniel. (1989, September 18). Razing structured approaches.
COMPUTERWORLD.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Petzold, Charles. (1988). Programming Windows. Redmond, Washington:
Microsoft Press.

Rumbaugh, James, & Blaha, Michael, & Premerlani, William, & Eddy, Frederick, &
Lorensen, William. (1991). Object-oriented Modeling and Dasinn Englewood
Cliffs, New Jersey: Prentice Hall Inc.

Sherer, M. Paul. (1990, January 15). Actor 2.0 Breaks Through 640K-Byte Limit
on Code. PC WEEK.

Terry, Chris. (1989, November 9). Object-Oriented Programming: Objects
facilitate modular, reusable code. EDN.

Thomas, Dave. (1989, March). What's in an Object?. BYTE

Thompson, Tom. (1989, March). The Next Step. BYTE.

The Whitewater Group. (1990). Evanston, Illinois.

The Whitewater Group. For Faster, Better, Smaller, Smarter Windows
Programming.

University of California. (1979). Berkeley, California.

Uriocker, Zack. (1989, November/December). Abstracting the User Interface.
JOOP.

Uriocker, Zack. (1990, May). Object-Oriented Programming For Windows: Using
OOP to develop applications for Microsoft Windows. BYTE.

Uriocker, Zack. (1989, March). Whitewater's Actor: An Introduction to Object-
Oriented Programming Concepts. MICROSOFT SYSTEM JOURNAL.

Wegner, Peter. (1989, March). Learning the Language. BYTE

Xerox Corporation. (1983). Salt Lake City, Utah.

Yourdon, Edward, & Constantine, L. Larry. (1979). Structured Design:
Fundamentals of a Disoline of Computer Program and System Design.
Englewood Cliffs, New Jersey: Prentice Hall Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Textual display program for the dyslexic: An example of object-oriented software development
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.chLix

