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Naylor, Shawn, MS, May 2006 Geology

The Influence o f Glacial Erosion on Landscape Evolution and Basin Morphology in the 
Bitterroot Mountains, Montana

Committee Chairman: Emmanuel Gabet

The efficiency of glacial erosion compared to nonglacial processes has long been 
debated with most researchers acknowledging that glacial denudation exceeds even the 
most active fluvial systems. Constraining the relative efficiency of glacial erosion is vital 
to improving our understanding of alpine landscape evolution, but difficult because 1) 
erosional processes typically overlap in space and time and 2) comparisons must be made 
with uniform Ethology and precipitation. The Bitterroot Mountains in southwestern 
Montana represent a unique landscape where formerly glaciated north-facing slopes are 
juxtaposed with south-facing slopes whose dominant erosive processes are fluvial 
bedrock incision and mass wasting. Twelve east-west trending canyons are chosen in this 
area with Bass Creek Canyon the northernmost and Rock Creek Canyon the 
southernmost. High-resolution digital elevation models (OEMs) are used to quantify 
both south- and north-facing slopes to better understand glacial influences on landscape 
evolution. Hypsometry, sub-ridgeline relief, slope angles, and tributary longitudinal 
profiles are derived from 10-meter OEMs. Average south-facing slope angles are much 
steeper than north-facing slopes (34° compared to 28°) and hypsometric analyses suggest 
that north-facing slopes have experienced enhanced erosion with a greater area 
represented at lower elevations. Geophysical relief calculations also show that a 
significantly greater volume of material has been glacially eroded on north-facing slopes. 
Glacial denudation also varies up-canyon to the west. The upper reaches of longitudinal 
stream profiles show more concave forms up-canyon above paleo-equilibrium line 
altitudes (ELAs). This study demonstrates that glaciers have effectively moved 
ridgelines at a faster rate than fluvial and other nonglacial processes. Glaciated cirque 
basins represent an important hydrologie unit both in terms of snow accumulation and 
delayed snow-melt as snowfields persisting into summer months provide a significant 
source of summer streamflow. Therefore, improving our understanding of alpine 
landscape evolution is essential to managing water resources.
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Introduction

Mean elevations along the west coast of North and South America are spatially 

coincident with paleo equilibrium line altitudes (ELAs) (Broeker and Denton, 1990) 

suggesting that once mountains are uplifted past ELAs (or ELAs are lowered due to 

climate change) glaciers form and quickly lower the terrain. The pattern implies that 

glacial erosion exceeds non-glacial erosion as supported by Anderson (2005) who notes 

that mechanical erosion is typically an order of magnitude greater in glacial catchments 

and by Hallet et al. (1996) who found that sediment yields increase with glacial ice cover 

in Alaska.

Several researchers have attempted to compare the effects of glacial and fluvial 

erosion on landscapes (e.g. Brocklehurst and Whipple, 2005; Kirkbride and Matthews, 

1996; Montgomery, 2002). Montgomery (2002) used valley cross-sections from basins 

glaciated to varying degrees in the Olympic Mountains of western Washington to support 

the hypothesis of increased erosion due to glacial processes. He found that relief 

increases as one moves down-valley for both fluvially and glacially carved watersheds, 

but that glaciated terrain tends to show far greater relief enhancement. However, a 

fundamental problem with the study is that fluvial and glacial processes have both left 

prominent signatures on the observed landscape; therefore, the amount of relief 

production solely attributed to glacial processes is difficult to constrain. Brocklehurst 

and Whipple (2002) determined that relief enhancement by glaciers is dependent upon 

basin size, and restricted to topography above the equilibrium line altitude (ELA). 

Through fluvial and glacial longitudinal profile analysis they (Brocklehurst and Whipple,



2002) concluded that glacial erosion exceeds fluvial erosion only in terms of horizontal 

headwall incision, a poorly understood process: “further studies of the mechanisms of, 

and the controls on, headward erosion by alpine glaciers are warranted (Brocklehurst and 

Whipple 2002)."

The effects of headwall expansion are most profound where east-west trending 

ridgelines in glaciated and formerly glaciated regions display asymmetric form. G.K. 

Gilbert (1904) was one o f the first to document watershed asymmetry produced by 

glacially eroded slopes adjacent to non-glaciated slopes in the Sierra Nevada. More 

recently, Oskin and Burbank (2005) observed ridgeline retreat due to glacial erosion in 

the Kyrgyz Range of central Asia where uplift and glacial erosion are concurrent. Tuck 

(1935) also documented asymmetrical drainages within the Kenai Peninsula, the 

Talkeetna Mountains, and the Chugach Mountains of Alaska. Tuck’s (1935) quantitative 

analysis was limited to valley cross-sections that indicated southward ridgeline 

movement of a half mile or more based on the assumption that the drainages were 

symmetrical prior to glaciation. Tuck (1935) discussed the compounding effects of 

fractures and sedimentary bedding planes on his research in detail. This difficulty is 

faced by many researchers comparing glacial and non-glacial erosion as an unbiased 

study must hold precipitation and lithology constant.

The Bitterroot Front Range represents an ideal region to compare glacial and non­

glacial erosion where the main valleys of the range are oriented almost exactly east-west 

(Figure 1). Beaty (1961) concluded that microclimatic controls (e.g., slope exposure) 

have worked autonomously in creating the Bitterroots’ asymmetrical watersheds (i.e., in 

the absence of lithologie and structural controls). North-facing canyon slopes have been



graven by cirque glaciers while south-facing slopes and sub-basins generally lack signs of 

glacial incision (e.g. circular basin morphometry). Figure 2 displays cross-sectional 

minimum, maximum, and mean altitudes for a rectangular swath (8 km wide, 12 km 

long) encompassing Blodgett and Mill Creek Canyons. The line depicting maximum 

values represents the height o f interfluves sparming the watersheds from ridgeline to 

valley bottom. The maximum elevations along these cross-sections are fairly uniform 

from one side of the canyon to the other suggesting valley symmetry prior to late 

Cenozoic glacial incision (Figure 2). Minimum cross-sectional elevations portray the 

topography of sub-basins and highlight the effects of glacial denudation: a U-shaped 

trough exists at the bottom of the canyons, north-facing slopes have been flattened due to 

cirque overdeepening, and overall asymmetry is much greater. East-west trending 

watersheds in the surrounding area eroded solely by fluvial processes do not demonstrate 

the observed asymmetry (Plate 2).

Consistent with Beaty’s (1961) conclusions, subsequent geologic mapping of 

bedrock within the region (Lonn and Berg, 1996; Lewis, 1998) shows a massive 

assemblage of granite with no structural features that might influence intra-basin 

erosional processes. Weather patterns across the range show a dominant west to east 

trend (Finklin, 1983) indicating that precipitation is also held constant between north- and 

south-facing slopes. With precipitation and lithology uniform, the variance in erosional 

signatures must be attributed to aspect and solar insolation. The effects of aspect on 

glacial mass balance are poorly understood. Evans (2005) used vector and Fourier 

analysis on present day glaciers in hopes of gaining a better understanding of historic 

glacial distributions. Using World Glacier Inventory (WGI) data, he found that aspect



has its greatest influence in mid-latitude regions (30-70 degrees). Contrary to Evan’s 

(2005) findings, several researchers have argued that aspect has little control on cirque 

development (e.g. Trenhaile, 1976 and Gordon, 1977). Olyphant (1981) proposed that 

topographic shading has greater controls on radiation reduction than aspect.

Nevertheless, it appears aspect has strongly influenced differential slope erosion for the 

Bitterroot’s main canyons. Therefore, the Bitterroot Front Range represents an ideal 

study area to observe and quantify the effects of glacial headwall erosion. The prominent 

asymmetry expressed in the topography of the range is a direct result of ridgeline 

movement due to glacial denudation.

Study Area

This research encompasses most of the Bitterroot Mountains, a geomorphic 

province bounded on the west by the Montana -  Idaho border and on the east by the 

Bitterroot Valley. The range represents a prominent east-west drainage divide and 

extends longitudinally from Lolo Creek in the north to the West Fork of the Bitterroot 

River in the south. Numerous east-west trending streams flow east from the divide to the 

front of the range and then over unconsolidated sediments before emptying into the 

Bitterroot River.

Twelve o f these Canyons were chosen for the study ranging from Bass Creek 

Canyon in the north to South Lost Horse Canyon in the south (Plate 1). Two of the 

watersheds, Sawtooth Canyon and Roaring Lion Canyon are separated by a low-lying 

interfluve, therefore, consistent with a previous study (Beaty, 1961), asymmetry and



other parameters are compared for the north-facing slope of Roaring Lion Canyon and 

the south-facing slope of Sawtooth Canyon.

Geomorphology 

Trunk Streams

Although most of the streams are ungauged, USGS annual streamflow data exists 

for Blodgett, Fred Burr, Kootenai, and Rock Creek indicating average streamflows of 2.0, 

1.5, 2.3, and 4.3 m^/s respectively (http://nwis.waterdata.usgs.gov/nwis). The primary 

unconsolidated sediment within the canyons is glacial till and reworked glacial deposits. 

This is evident by the general hummocky topography of the till dominated valley bottoms 

and stream beds that primarily consist of cobbles and boulders.

The trunk streams’ upper reaches are fed by headwaters originating from north or 

northeast facing cirques (e.g. Blodgett, Fred Burr Canyons). Tam lakes are scattered 

throughout the headwater regions, some of which have been dammed for irrigation and 

recreational uses (e.g. Bass Creek Canyon). The upper longitudinal profiles of the 

channels are characterized by steps typical in glaciated valleys and by overdeepenings 

formed at tributary junctions (MacGregor et al., 2000). The main streams typically flow 

over bedrock along these reaches (Plate 3). Other up-stream reaches are typically step- 

pool reaches (Plate 4), as defined by Montgomery and Buffington (1997), alternating 

between boulder-filled turbulent runs and finer grained runs with relatively tranquil flow. 

Woody debris is common throughout the upper reaches and has a strong influence on 

channel morphology.

http://nwis.waterdata.usgs.gov/nwis


The lower reaches of the trunk streams are typically characterized by both step- 

pool reaches as well as pool-riffle and cascading reaches. Cascading reaches are 

common near the lower elevations where higher discharges and steep slopes exist, 

creating tumbling flow over cobbles and boulders (Montgomery and Buffington, 1997). 

Plate 5 shows a cascading reach o f Kootenai Creek while Plate 6 shows a pool-riffle 

reach along Bass Creek with abundant woody debris present. The trunk streams emerge 

from canyons cutting through Pleistocene morainal deposits and outwash fans in route to 

the Bitterroot River.

South-facing Slopes and Tributary Drainages

South-facing slopes have primarily been eroded by fluvial bedrock incision, 

periglacial processes, isolated glacial erosion, and mass wasting processes. Fluvial 

processes are more evident on south-facing slopes in the three northern canyons cut by 

Bass Creek, Big Creek, and Kootenai Creek. Most of these streams are ephemeral, 

cluttered with woody debris, and lacking clearly defined channels. The upper reaches of 

these channels are most likely dominated by colluvial processes with sediment 

transported to the centers of sub-basins by soil creep, tree-throw, and burrowing 

(Montgomery and Buffington, 1997). The southern canyons show signs of mass wasting 

on south-facing slopes more so than fluvial processes. For example, Blodgett Canyon 

displays numerous talus slopes along the canyon walls, most likely the result of mass 

wasting in the form of rock fall or debris flow (Figure 3).

Periglacial processes include nivation, freeze thaw action, and avalanches. 

Nivation hollows are typically regarded as overdeepened sub-basins showing some



elements o f cirque form, but generally lack pronounced features typical of long term 

erosion due to ice movement (Vilborg, 1977). Solifluction and increased chemical 

weathering are two processes attributed to the overdeepening of nivation surfaces (Rapp, 

1984). Figure 3 displays the location of nivation hollows within Blodgett Canyon.

North-facing Slopes and Tributarv Drainages

As Beaty (1961) noted, north-facing slopes in the Bitterroots bear the signature of 

prominent glacial erosion. A strong preference for cirque development on north-facing 

slopes was also noted by Federici and Spagnolo (2004) in the French-Italian Alps where 

37% of cirques occurred within the 315-345° (where true north is 0°) aspect interval (this 

is especially striking considering that only 6% of the slopes in the study were north- 

facing). King (1974) acknowledged a strong preference for northeast facing cirques in 

mid- to high- latitudes in the northern hemisphere, primarily due to decreased insolation 

on north-facing slopes.

Cirque morphology has been extensively studied by several authors (e.g., Federici 

and Spagnolo, 2004; Olyphant, 1981; and Vilborg, 1977). Most all recognize the semi­

circular shape of cirque headwalls in plan view attributed to relatively uniform erosion 

occurring in horizontal directions. Horizontal cirque growth is driven by frost shattering, 

pressure release jointing, high transport efficiency, and some amount of abrasion while 

overdeepening is fostered by abrasion via rotational sliding and alternating expansive and 

compressive flow (Vilborg, 1977). Identification of cirques is commonly accomplished 

through topographic map and aerial photo analysis. Rudberg (1954) used the following



classification scheme to describe cirques in the Scandinavian moimtains (as outlined by 

Vilborg, 1977):

/4; 7 -  Well developed, large glacial cirques with semi-circular form and overdeepened bottoms 

A:2 -  As A :l, but less developed. No overdeepened bottoms.

B:]  -  Hanging glacial cirques, relatively well developed, but smaller than A :l. Their bottoms are 

often not particularly smooth.

8:2  -  As B ;l, but less well developed. They seem to originate ftom fluvial valley ends.

C:1 -  Well developed glacial cirques, forming the ends o f trough valleys.

C:2 -  Less developed cirques, forming the ends o f  trough valleys. Their backwalls are poorly 

defined or even missing, perhaps because o f  the relation to rock structure.

D -  Asymmetric cirque forms, mainly small. Many may be mainly a result o f nivation or plucking 

by the inland ice.

E -  Rock walls, reminding o f cirques because they are slightly concave. Such a wall may be the 

location for a small wall-sided glacier unless it is formed by nivation only.

Figure 3 shows 6 north-facing cirques in Blodgett Canyon that are identified based on 

Rudberg's classification scheme. Classification of cirques is somewhat subjective, but it 

is evident that the cirques show a general increase in size and development in the up- 

canyon direction.

Glacial History

Alden (1953) produced the first detailed study of glaciation in the Bitterroots. He 

used moraine morphology to infer relative ages of glacial deposits at the mouths of 

several canyons ranging from Carlton Creek in the north to Tin Cup Creek in the south. 

He concluded that the Bitterroots experienced three major glaciations correlating to Early
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Pleistocene, Illinoian (or Early Wisconsin), and Wisconsin ages. These were also 

compared with Richmond’s (1965) Pinedale, Bull Lake, and Pre-Bull Lake sequences 

respectively.

Weber (1972) used granite-weathering ratios, topographic position, and soil 

development to establish relative dates for glacial deposits along the Bitterroot Front and 

correlated the deposits with Glacial Lake Missoula lake stands. Consistent with Alden’s 

findings, three main drift sequences were mapped with each sequence overlain by an 

interglacial paleosol: Judd Drift (probable pre-Wisconsin), Charlos Drift (probable early 

Wisconsin), and Lost Horse Drift (probable late Wisconsin). The latter includes three 

main members, but there is evidence of more glacial advances as Weber (1972) mapped 6 

end moraines composed of Lost Horse Drift beyond the mouth of Roaring Lion Canyon. 

He also noted that evidence of glaciation increased as he moved south along the 

Bitterroot front. Four northern canyons: Carlton, One Horse, Bass, and Kootenai were 

found to lack the typical U-shape and end moraine complexes at their canyon mouths 

(Weber 1972). A detailed study of glacial sequences was performed by Weber (1972) on 

four canyons to the south: Bear, Roaring Lion, Lost Horse, and Rock Creeks. Judd Drift 

mapped between Lost Horse and Rock Creek Canyons indicate the glaciers from both 

canyons merged beyond the canyon mouths (Weber 1972). This observation along with 

the presence of Judd Drift beyond that of other sequences was evidence that Judd (Pre- 

Bull Lake) aged glaciations were more extensive (Weber 1972).

The distribution of morainal deposits also varies where they extend beyond the 

mountain front. Weber’s (1972) mapped moraines at the mouths of Roaring Lion and 

Bear Creek Canyons show that the arcuate features are deposited primarily on the south



side o f the canyon mouth. Reconnaissance field work for the present study at Fred Burr 

and Mill Creek Canyons revealed the same distribution of morainal deposits as trunk 

streams are now forced to flow north around the deposits as they exit into the Bitterroot 

Valley. The tendency for moraines to be located along the south edge of canyon mouths 

is further evidence that glacial erosion favored north-facing slopes.

Bedrock Lithology

The Bitterroot Mountains are a metamorphic core complex consisting of 

metasedimentary rocks in the north and granitic rocks to the south (Lewis, 1998). 

Intrusive rocks of the Idaho-Bitterroot batholith are Late Cretaceous and Tertiary in age 

with the eastern plutons displaying crystallization dates between 57 and 53 Ma (Foster 

and Fanning 1997). Exhumation of the core complex occurred during the Eocene as the 

region shifted from crustal thickening to extension. The Sapphire Mountains, comprised 

of Proterozoic Belt Supergroup rocks, moved eastward into western Montana along a 

detachment fault that left a distinct zone of mylonite along the eastern flank of the 

Bitterroots (Foster et al. 2001). Fission track dating along the lower easternmost portions 

of the Bitterroot Front suggests that the mylonite was exposed by Early Miocene time 

(Foster and Raza, 2002). The mylonite zone is prominent along the lower reaches of 

each canyon. Mylonite transitions into Belt metasedimentary rocks in Bass, Big, and 

Kootenai Canyons as one moves up-canyon and into granitic rocks in canyons to the 

south (Plate 1). There is no lithologie variation between north-facing and south-facing 

slopes.

10



The drainage patterns within the Bitterroots are strikingly regular. The east-west 

trend of the main canyons is most likely attributed to the east-sloping nature of the 

Bitterroot Dome (Hyndman, personal communication) and the base level control imposed 

by the Bitterroot Valley to the east. Beaty (1961) postulated that the prominent north- 

south trend of tributary drainages is controlled by bedrock fractures. Such north-south 

trending fractures are visible within the mylonite zone (Plate 6) and are most likely the 

result of brittle response to eastward directed tectonic unloading (Hyndman, personal 

communication), however, there are no signs of east-west trending structural features that 

might influence basin asymmetry as outlined by Keller (1996).

Lifton (2005), used a Schmidt Hammer to study rock strength in the Salmon River 

Mountains to the southwest. He found that for varying lithologies, south-facing slopes 

consistently showed lower rebound data when compared to north-facing slopes. He 

concluded that two processes contribute to this phenomenon: 1) increased diurnal 

fluctuations in temperature exist on south-facing slopes thereby creating temperature 

gradients whose resulting stresses lead to fracturing and 2) south-facing slopes 

experience a greater number of freeze-thaw cycles during the winter that favor joint 

propagation and growth. It is assumed that rocks in the Bitterroot behave similarly and 

that south-facing slopes most likely exhibit “weaker” rocks due to these processes.

Bitterroot Valley Sediments

Bitterroot Valley sediments contain a geologic record that can be correlated to the 

evolution of the Bitterroot Range’s landscape. Each of the studied canyons flows into the 

valley to the east, which establishes base level control at the canyon mouths. A detailed

11



chronology of normal faulting is lacking, but as noted, Foster and Raza (2002) give an 

early Miocene date for the exposure of low lying mylonite. Lonn and Sears(1998) 

generated the most recent and extensive geologic map of the valley, which shows that 

Quaternary surficial deposits in the form of glacial till and alluvium are more widespread 

along the Bitterroot Front while Tertiary alluvial deposits predominate along the eastern 

valley margins. Streams are now incising through morainal deposits and Pleistocene 

alluvial fan deposits which form terraces along the Bitterroot front. Weber (1972) 

mapped three main terrace sequences: 1) the Dutch Hill terrace (pre-Bull Lake, possibly 

associated with the Judd Drift), 2) the Hamilton terrace (Bull Lake age associated with 

the Charlos Drift), and 3) the Riverside terrace (Pinedale age associated with the Lost 

Horse Drift). McMurtrey et al. (1959) suggest Pleistocene deposits up to 100 feet in 

thickness. Tertiary deposits reach thicknesses of 2,400 feet and include both ancestral 

Bitterroot River deposits and sediments of the Sixmile Creek Formation (McMurtrey et 

al., 1959).

Regional Climate Patterns

Paleo-climate Simulations

Pleistocene paleo-ELA reconstructions show that alpine glaciers in the Bitterroot 

Mountains moved significantly further down-valley when compared to other central and 

western Montana regions (Locke, 1989). The Bitterroot Mountains created an efficient 

orographic barrier to Pacific moisture, whereas most other mountain ranges in Western 

Montana were generally lacking a persistent source of precipitation (Locke, 1989). 

During Pinedale maxima (-18,000 years ago), summer temperatures were as much as 10°
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C cooler than the present and precipitation was reduced due to a southerly shift in the jet 

stream (Thompson et a l, 1993). Kutzbach et al. (1993) suggest the presence of an 

anticycIonic cell created by the ice sheets that could have imposed easterly winds over 

the northwestern United States.

Current Weather and Climate

A recent comprehensive study of weather and climate for the region is not available 

for the Bitterroot geomorphic province. Finklin (1983) produced the only known 

publication regarding this topic based on a limited data set that included publications 

from the former U.S. Weather Bureau and fire-weather observations (from stations 

operational during July and August). The two primary sources for climate data are 

SNOTEL sites located north of the study area at Lolo Pass and south of the study area at 

the Nez Perce Camp.

Finklin (1983) found that high altitude wind patterns for the Bitterroot-Selway 

Wilderness generally follow the prevailing westerlies. Ranger station data at lower 

elevations on the east side of the divide show a 68% frequency from the west or 

southwest, a product of dovm-canyon winds. Free atmosphere conditions display wind 

directions from the west and typically from the northwest in winter months (Finklin, 

1983). He also notes the existence of daytime up-canyon winds on south-facing slopes. 

However, this observation was most likely made during the summer months when this 

effect is most noticeable (fire season data). These up-canyon winds are most likely 

limited during winter months due to a lower angle of incidence and changes in albedo.
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Therefore, the role up-canyon winds play in re-distributing snow is most likely 

insignificant.

Precipitation Gradients

Cold air has the ability to hold less moisture when saturated compared to warmer 

air and, therefore, precipitation generally increases as air moves up. This phenomenon is 

evident in the Bitterroot Mountains as precipitation increases as one moves east towards 

the Bitterroot Divide and decreases as one moves westward away from the divide 

(Finklin, 1983). Finklin's (1983) precipitation data show that a steep east-west gradient 

exists, but little variation exists from north to south and vice versa. These data are 

supported by the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) which demonstrates a gradual increase in mean annual precipitation from west 

of the divide and a steep decreasing gradient toward the Bitterroot Valley to the east.

This indicates that precipitation on north- and south-facing slopes within canyons should 

be uniform.

Consistent with Finklin’s data (1983), Weber (1972) cited unpublished data that 

indicated annual precipitation at the Bitterroot front at approximately 76 cm while the 

Sapphire Mountains to the east received as little as 18 cm per year. He also noted that 

Bitterroot Valley paleosols contain widespread caliche horizons along the eastern side of 

the valley but not along the western valley margins. This indicates that a west-east 

precipitation gradient existed in the Pleistocene.

Stegman (1998) sighted SNOTEL data that indicate a general thinning of the 

snowpack from north to south and a decrease in temperature. He attributes this thinning
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to the presence of northwesterly prevailing storm tracks which deposit most of the 

Bitterroots annual precipitation in the form of snow (mid winter -  early spring). Only 

two SNOTEL sites were used for these interpretations and the thick snowpack near Lolo 

Pass could be due to topographic convergence of storm systems through the pass and 

Lolo Creek Canyon.

Methods

Data

High resolution 10-meter digital elevation models (OEMs) produced by the United 

States Geological Survey (USGS) were used in the study (metadata included in Appendix 

A). The data were downloaded as individual quadrangles and merged into two main 

DEMs in ArcGrid. The Fill command was used in ArcGrid to correct all sinks by setting 

those cells equal to their lowest surrounding cell that then becomes the cells pour point. 

Previous research using DEMs to quantify glaciated terrain (e.g. Brocklehurst 2005) used 

30-meter data therefore this study includes higher spatial resolution that enhances certain 

analyses (e.g. longitudinal profiles).

Watershed Delineation and Division

A flow routing routine was used in ArcGrid to extract individual watersheds from 

the 2 main DEMs. Watershed pour points were selected at the range front unless the 

targeted drainage network was intersected by another canyon west o f the front. 

Watersheds were then divided into north and south slopes along the main trunk stream, 

the location of which was derived using a flow routing algorithm in ArcGrid. Some of
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the canyons have distinct bends in the upper reaches of their trunk streams (e.g. Fred 

Burr) so the division was continued along an east-west trending line in these instances.

Modeling the Upper Extent o f  Valley Glaciers

Each of the canyons contained a valley glacier during the last glacial maxima as 

noted in previous research and expressed in prominent U-shaped valley cross-sections. 

Therefore, in order to truly isolate glaciated slopes from non-glaciated slopes, a general 

model of main valley glaciers was established so that subsequent analyses could be 

performed above their ice surface.

Multiple valley cross-sections were used to determine trimline elevations on south- 

facing slopes where they were most easily distinguished. The cross-sections were taken 

along truncated spurs (Plates 5, 8) and prominent breaks in slope were marked as the 

upper extent of ice (Figures 4 and 5 display valley cross-sections for Fred Burr Canyon at 

2.2 and 12 km up-canyon respectively). Slope breaks were not as discernable on north- 

facing slopes where hanging tributary valleys make it difficult to establish an ice 

elevation for the main valley. Ice elevations were taken from south-facing truncated 

spurs, extrapolated across-canyon to the north-facing slope, and a spline surface 

(interpolation method that fits a surface between points with minimum curvature) was 

used to interpolate the points thus creating a “snapshot” model of a paleo-ice surface.

Digital orthophoto files were overlain on DEMs to assist in distinguishing glacial 

features (e.g. lateral, terminal moraines). Reconnaissance field work was also conducted 

to check the accuracy o f the modeled ice surface. Slopes were often too steep to traverse
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and elevations of spurs, slope breaks, or lateral moraines were located on topographic 

maps in these instances.

Basal shear stress was calculated for each cross-section within each canyon to test 

the modeled ice elevations. Basal shear stress (%&) along the center-line of the modeled 

glacier is calculated with (Paterson, 1981):

=  Fpghsma

where F i s a  shape factor (0.709 for most canyons), p  is density (900 kg/m^), g is gravity 

(9.81 m/s^), h is centerline thickness determined from trimline elevation and valley 

bottom elevation, and a  is the slope (in degrees) of the ice surface. The shape factor 

incorporates the influence of valley walls into the shear stress calculation. The value was 

derived from Paterson’s Table 6.1 (1981) for calculated W values (half valley width 

divided by depth). The commonly assumed value for mean basal shear stress for glaciers 

is 1 bar (1x10^ N/m^).

Slope Calculations

Slope histograms were established for north- and south-facing sides of each 

canyon above the modeled ice surface. The complete north-facing slopes were included 

in the analysis while some of the up-canyon south-facing slopes were removed due to the 

presence of cirques (Plate 9). Slopes were calculated in ArcGrid by fitting a plane to a 

3x3 grid surrounding the target cell and calculating the slope of the plane in degrees.
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Canyon Asymmetry

In order to quantify canyon asymmetry, horizontal distance was measured from 

valley bottoms to watershed-bounding ridgelines. The horizontal distance from the trunk 

stream to the southern ridgeline was measured along a north-south trending line, and an 

average was taken from 10 equidistant measurements. The process was repeated for 

south-facing slopes but, consistent with the slope analysis, only for the portion of the 

slopes not distinctly influenced by glaciation. The average north-facing distance was 

then divided by the average south-facing distance to obtain a N:S ratio.

Geophysical Relief

Measuring relief is difficult due to its somewhat arbitrary nature. DEM analysis 

resolves this issue by allowing one to easily measure “geophysical relief’ as defined by 

Small and Anderson (1998). This is calculated by dividing the volume of material 

removed below ridgelines and peaks by the surface area. For this study, geophysical 

relief is calculated using a modified version of Brocklehurst and Whipple’s (2002) 

techniques. Their procedure fitted a cubic spline surface between ridgeline points 

outlining the basin to establish a pre-erosion surface. However, this method introduces 

significant error due to the underlying assumption that valleys were not incised below 

ridgelines prior to glaciation. For the present study, a spline surface is fitted between 

points outlining the basin and points located along tributary interfluves. The interfluves 

show similar slopes along their axis for both north- and south-facing slopes (Figure 2). 

Therefore, by integrating interfluve points into the spline interpolation we better isolate
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post-glacial relief production. Figure 6 shows the interfluves above which an interpolated 

pre-erosional surface was derived for Kootenai Canyon (Figure 7). The current 

topography was subtracted from the surface using the “cut and fill” command in ArcMap 

yielding the vacated volume of material. In some instances, the upper-cany on south- 

facing slopes were omitted to avoid the inclusion of glaciated terrain

Hypsometric Analysis

Hypsometric curves depict the proportion of a basin’s area that exists above a 

given elevation (Ritter et al., 1996). The hypsometric integral (HI), the area under the 

curve, is unique for particular curve shapes and is used as an indicator o f basin dissection 

or stage in landscape evolution. The integral is estimated using the following 

relationship:

H - H— mean min

H - Hmax min

where Hmean, HmdiTo and //min are the mean, maximum, and minimum basin elevations 

(Brocklehurst and Whipple, 2004). The curve’s shape also represents properties of 

landscape evolution as a convex shape generally represents youthful landscapes while 

extremely concave curves represent mature landscapes (Strahler, 1952). Hypsometric 

curves were generated for north-facing and south-facing slopes in each canyon with 

ArcMap. The influence of varying area from one slope to another is minimized by 

graphing normalized values.
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Longitudinal Profiles

Longitudinal profiles for tributary valleys feeding into the main canyons were 

extracted from watershed DEMs using an ARC Macro Language (AML) script. A 

minimum area of 0.3 km^ was used to delineate the sub-basins and a minimum flow 

accumulation of 0.01 km^ was used to establish the headwaters of the tributary streams. 

Various combinations were tested but these values produced the most complete 

longitudinal profiles without including numerous low order stream channels.

Results

Modeled Ice Surfaces

Figure 8 displays an orthophoto file overlain on a DEM of Fred Burr Canyon, and 

Figure 9 shows the corresponding modeled ice surface. Table 1 contains average ice 

elevations and average calculated shear stresses for each canyon. Most glaciers have 

basal shear stress values between SxlO'  ̂N/m^ and 1.5x10^ N/m^ (Paterson, 1981); with 

the exception of Kootenai Creek each of the canyon ice models are within this range 

suggesting that the estimated ice surfaces are reasonable. The terminus of the Kootenai 

Canyon glacier existed at approximately 1200 meters near the high stand of Glacial Lake 

Missoula during the Lost Horse Drift glacial maxima so calving might explain this 

anomalously high shear stress value. The terminus ice elevation was assumed to be at 

ground level for the shear stress calculation, but it may have been higher due to the 

calving of the glacier.
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Slope Calculations

Average slopes were calculated for the northern and southern halves of each 

canyon. Slope aspects vary within sub-basins, therefore the slope results represent 

composite slope values for the north- and south-facing sides of each canyon. Figures 10 

and 11 are histograms displaying the distribution of slope values for the glaciated and 

non-glaciated terrains in Blodgett Canyon. Slope values for each canyon are summarized 

in Table 2 along with the standard deviation for each drainage aspect. The average slope 

for glaciated terrain 27.7 degrees, is lower than the average slope for non-glaciated 

terrain, 33.7 degrees (t-test, P<0.001). Standard deviation also varies with aspect and 

glacial influence as north-facing and south-facing slope analyses produced standard 

deviations of 11.9 and 9.6 degrees respectively (t-test, P<0.001).

Relief Calculations

Geophysical relief values are listed in Table 3. North-facing slopes demonstrate 

greater relief production in each case and several canyons (Fred Burr, Mill Creek, 

Blodgett, Canyon Creek, and Sawtooth-Roaring Lion) have experienced a nearly two­

fold increase in relief production on north-facing slopes. Average north-facing 

geophysical relief values (221 m) are much greater than those of south-facing slopes (139 

m, P<0.001). Standard deviation is 57 m for relief calculations from both slopes. Figure 

12 demonstrates the relationship between differential relief production (expressed as a 

N:S facing relief ratio) and mean watershed elevation.
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Asymmetry

The average N:S canyon asymmetry ratio is 1.55 (values are presented in Table 

4). These data were compared with other variables (e.g. slope, relief) to determine 

whether general trends between them and ridgeline movement exist. There is a modest 

correlation (R^=035, P<0.001) between asymmetry and mean watershed elevation 

(Figure 13).

Hypsometry

Average hypsometric integrals are 0.538 for north-facing slopes and 0.561 for 

south-facing slopes (Table 4, Figures 14a-k). The data are normalized so that the effect 

of varying analyzed areas is minimized.

Longitudinal Profiles

Longitudinal profiles were extracted and analyzed for all canyons in the study 

area. Representative drainages are Kootenai Creek Canyon (Figures 25, 26) in the 

northern part o f the study area and Blodgett Canyon to the south (Figures 27, 28). 

Tributary profiles were chosen at similar distances up-canyon for comparison between 

aspects.

South-facing tributary profiles along Kootenai Creek Canyon are relatively 

straight at lower altitudes and increase in concavity as one moves up-canyon (Figure 26). 

A comparison between profiles 9 (south-facing) and 10 (north-facing) demonstrates that 

north-facing slopes within the drainage are more concave as altitude increases. Tributary 

profiles for Blodgett Canyon are straight in the lower reaches of the canyon with very
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low concavity, but as one moves up-canyon north-facing profiles show increased 

concavity in the upper reaches where cirque enlargement is most prominent. This effect 

is enhanced in profiles further up-canyon, reflecting increased cirque development above 

the EL A.

Discussion

The modeled ice surfaces represent general reconstructions of the main valley 

glaciers. It is not suggested that these models are entirely correct as their purpose is to 

simply remove the glacial trough from the analysis so that glacial and non-glacial 

processes can be compared. Potential errors in the modeled ice surfaces may be due to 

incorrect interpretations of cross-valley profiles (e.g. multiple slope breaks) and incorrect 

interpretations of trimline elevations from aerial photos. Actual error values are 

impossible to derive, but it is estimated that the ice surfaces lie within 50 meters of the 

actual ice surface during Pinedale aged glaciations. Furthermore, the modeled ice 

surfaces represent a “snapshot” in time whereas the extent of glaciers varied through time 

as they advanced down-valley and retreated during inter-glacials. Previously mapped 

glacial deposits support the models as the ice surface for Rock Creek Canyon joins lateral 

moraines near Lake Como at approximately 1585 meters. Weber (1972) mapped the 

moraines’ till as Lost Horse Drift (correlated to Pinedale age glacial maxima).

Moisture availability is the fundamental component of both glacial and fluvial 

erosion. Therefore, in order to isolate varying erosional processes as the cause of 

differential erosion in the Bitterroots, it must hold true that total moisture balances are 

relatively equal for both north- and south-facing slopes. There are two primary factors
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that could lead to moisture differences with respect to aspect: 1) redistribution of snow 

favoring north-facing slopes, and 2) increased rates of sublimation that lower the amount 

of water available for erosional processes.

Stegman’s (1998) research indicates that avalanche chutes show a strong 

preference for south-facing slopes, and a lesser, but frequent distribution on northwest 

facing slopes. Steeper slopes could result in greater avalanche frequency but prior to the 

onset of glacial maxima, slope angles were most likely comparable for both north- and 

south-facing slopes making differential distribution of snow unlikely (the occurrence of 

snow prior to the late Pliocene and Pleistocene is debatable). Currently, snow re­

distribution away from sub-basins into the main valley is probably greater for the south- 

facing aspect. However, this is a product of glacial erosion as allometric cirque growth 

and flattening of cirque bottoms allow cirque laden slopes to retain snow more efficiently 

(Olyphant, 1981).

Winds are currently dominated by westerlies with a southwest component and no 

data exist that indicate paleo-wind patterns were different. Erickson et al. (2005) found 

that wind sheltering is the primary component controlling the spatial distribution of snow 

in an alpine setting. Each of the tributary canyons show a north-south orientation 

indicating that the existence of north-south trending interfluves should in theory provide 

an equal amount of wind sheltering for both north- and south-facing slopes.

Several researchers have studied snowpack sublimation, but little information 

exists quantifying the influence of aspect on sublimation (Tarboton, written 

communication). Recent research quantifying sublimation has collected data over an 

annual cycle as the greatest latent heat fluxes occur during the accumulation season
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(Hood et al., 1999). Hood et al. (1999) found that sublimation accounted for 15% of the 

total snowpack along the Niwot Ridge in Colorado and 13% of annual precipitation for 

1994-1995 snow season. They also studied the impacts of wind speed, temperature, 

specific humidity, and net radiation on sublimation and concluded that wind speed and 

temperature are the primary influences. In the Bitterroots, wind speed variation on 

juxtaposed slopes is highly unlikely while temperature variation could cause differential 

sublimation rates. However, since we lack snowpack data for differing slope aspects, it 

remains difficult to quantify the amount of temperature induced sublimation within the 

range. Hood’s (1999) research took place on a flat saddle along Niwot Ridge where both 

high wind speeds and direct insolation are likely to result in sublimation rates exceeding 

those on any slope in the Bitterroot Range. Although sublimation rates were most likely 

constant along the Bitterroot Front, snow accumulation or ablation seems to vary 

longitudinally as suggested by mountain front glacial deposits and asymmetry results.

The three canyons to the north show less asymmetry when compared to other 

canyons, with the exception of Kootenai Creek Canyon (3:2 N:S stream-ridgeline 

distance ratio). Varying lithology could influence slope form within the 3 northern 

canyons where metasedimentary rocks are present (Plate 1). Chase’s (1973) geologic 

map of the petrology and structure of the northeastern Idaho-Bitterroot Batholith displays 

pelitic schist along Big Creek with a southerly dip to foliation planes, which could create 

a dip-slope effect for south-facing slopes. As mentioned, the three northern canyons 

display fewer signs of glacial erosion along their lower reaches when compared to the 

other canyons (e.g., terminal moraines, U-shaped profile are absent) and the reduced
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asymmetry could be a product of limited glacial erosion due to higher paleo-ELAs to the 

north.

Asymmetry and mean elevation display a slight correlation, which could be more 

significant {R^ = 0.70) by removing 3 outliers. The outliers for the regression are Bass 

Creek, Canyon Creek, and Sawtooth-Roaring Lion Canyons. Bass Creek is the 

northernmost canyon with limited cirque development on its north-facing slope and could 

justifiably be removed from the analysis, while Canyon Creek is a relatively small 

drainage that exists at high altitude between Blodgett and Sawtooth Canyons (Plate 9). 

The fact that Roaring Lion and Sawtooth Canyons are separated by a low interfluve make 

it difficult to compare their results as well since mean watershed elevation is calculated 

from two separate watersheds. The difference in relief production between slopes also 

increases with elevation as shown in Figure 12. Unlike asymmetry and relief, 

hypsometry results showed no correlation with mean watershed elevation.

Several authors argue that basin area strongly influences the general shape of 

hypsometric curves as smaller basins show a more convex curve whereas larger basins 

demonstrate a more concave, s-shaped curve (e.g. Hurtrez et al. 1999, Sinha-Roy 2002). 

However, this analysis examines hypsometry variations within basins, but the size of 

tributary sub-basins does vary. Sinha-Roy (2002) argues that smaller basins tend to be 

dominated by diffusive processes while larger basins tend to have more extensive channel 

networks that distribute a greater area to lower elevations. Figures 14a-k demonstrate 

this general trend for the Bitterroot canyons, but dendritic channel networks are generally 

lacking on north-facing slopes. Instead, the redistribution of basin area to lower 

elevations is most likely the product of glacial erosion during the Pleistocene.
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Hypsometric integrals (Table 4) are greater for north-facing slopes in 6 of the 

canyons, consistent with Brocklehurst and Whipples’ (2004) findings in the Sierra 

Nevada and Sangre de Cristo Ranges. The 5 remaining canyons demonstrate greater 

hypsometric integrals for non-glaciated south-facing slopes consistent with previous 

findings in the Ben Ohau Range in New Zealand. Brocklehurst and Whipple (2004) 

attributed this to relative positions of the mean Quaternary ELA (ELAmean) for each range 

as a slight lowering in this parameter can have significant impacts on watershed 

hypsometry. Weber (1972) as well as Lonn and Sears (1998) show more extensive 

terminal and lateral moraine deposits along the southern Bitterroot Front signifying a 

general lowering of the ELAmean for the southern canyons. Each of the canyons with 

lower north-facing hypsometric integrals lies to the south and contains a prominent 

terminal or lateral moraine complex extending beyond the range front suggesting that 

Brocklehurst and Whipples’ (2004) findings hold true for the Bitterroot Range. This 

effect was originally suggested for fluvial catchments by Strahler (1964) who proposed 

that a lowering of the hypsometric curve and therefore the hypsometric integral indicates 

a shift towards landscapes that have been subjected to greater amounts of erosion.

Slope calculations (Table 2) also suggest that glaciers erode more efficiently since 

north-facing slope values are 6 degrees less than those for non-glaciated areas. Standard 

deviation values are also greater for glaciated terrain (11.9 versus 9.6 for non-glaciated, 

P<0.001) indicating that variability is greater on north-facing slopes. The increased 

standard deviation is most likely caused by the development of steep cirque headwalls 

adjacent to flat, over-deepened cirque floors.
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Slope results for south-facing slopes indicate that the steep nature of these terrains 

currently support mass wasting processes as opposed to hydraulic activity. As 

mentioned, Stegman (1998) found that avalanche chutes show preference for south- 

facing slopes, but previous research has shown that avalanches can represent a minor 

component of sediment redistribution in alpine terrain (e.g. Gardner, 1986; Caine, 1986). 

Transport in the form of rock falls and debris flows most likely dominate Holocene 

sediment transport while transport through bedrock channels (Gardner, 1986) most likely 

represents a minor component. Numerous coarse-grained talus piles along the base of the 

south-facing slopes are strong evidence for the erosional importance of mass failures.

Glacial maxima represent major thresholds for alpine catchments through which 

previously established sub-basins are permanently altered. Brocklehurst and Whipple 

(2005) and Montgomery (2002) note that valley widening is greater than deepening 

where valley glaciers once existed. Montgomery (2002) found that glaciated valleys of 

the Olympic Peninsula expanded at the expense of tributary valleys. This effect is 

apparent on the south-facing slopes of the Bitterroot canyons where main valley glaciers 

have cannibalized the lower reaches of tributary drainages that developed during the 

Tertiary. The effect of widening the main valley walls is outlined in Figure 29. By 

establishing fluvial hanging valleys, a knickpoint is created along the original channel 

and disequilibrium follows as the knickpoint migrates up-slope. South-facing 

longitudinal profiles (Figures 26 and 28) are straight suggesting that the knickpoints have 

completed their upward migration. By steepening adjacent non-glaciated terrain, glacial 

erosion may enhance post-glacial sediment transport and continue their legacy of 

increasing erosion rates. It should be noted as a counter argument that Lifton (2005)
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observed oversteepening along the south-facing wall of Big Creek Valley (central Idaho) 

and attributed it to preferential lateral stream migration towards weaker bedrock. 

Therefore, the effect has been observed in fluvial valleys but it seems to be augmented by 

glacial erosion in the Bitterroots.

Tributary longitudinal profiles demonstrate similar form for each slope at lower 

elevations near the mouth of each canyon. However, the channel profiles evolve 

differentially as one moves up-canyon, above paleo EL As. These results are consistent 

with Brocklehurst and Whipples’ (2002) findings that demonstrate greater headwall 

retreat above paleo-ELAs. They (Brocklehurst and Whipple, 2002) also point out that 

glacial erosion exceeds fluvial erosion primarily through headwall retreat, A prominent 

variation can be seen when comparing headwall retreat between the Bitterroot’s north- 

and south-facing slopes since the upper reaches of north-facing longitudinal profiles have 

expanded further laterally away from the canyon’s trunk streams (Figures 26 and 28). 

These results are consistent with Brocklehurst and Whipple’s (2002) analysis of glaciated 

longitudinal profiles. They found that glacial erosion is concentrated above paleo-ELAs 

for smaller basins (similar to the north-facing sub-basins in this study).

Glacial denudation via headwall retreat is only partially described by extracting 

current longitudinal profiles. The circular form of cirque headwalls is produce by their 

allometric growth (i.e. they expand in length and width at the same rate). Therefore, in 

order to understand a glacier’s ability to enhance relief, one must consider the three- 

dimensionality o f their collective processes (i.e. headwall sapping). Geophysical relief 

calculations show that Pleistocene glaciations removed a much greater volume of 

bedrock when compared to erosional processes that acted upon the terrain prior to glacial
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maxima. Glaciated slopes display a near doubling of relief production (Table 3), but this 

is a conservative estimate of the overall effects on the range since relief production in the 

main valley is not considered. Although it cannot be concluded that main valleys were 

significantly deepened, truncated spurs indicate that valley widening did occur (Figures 

4, 5). Since the onset of cooler climate approximately 2.4 mya (Ruddiman et al., 1988) 

glaciers have catalyzed relief enhancement in the Bitterroots and shifted ridgelines to the 

south. South-facing slopes indicate that fluvial and mass wasting processes that 

dominated alpine relief production prior to Late Pliocene-Pleistocene glacial maxima 

were not nearly as efficient.

Several researchers acknowledge that mechanical weathering rates in glacial 

systems can exceed fluvial rates by an order of magnitude (Anderson, 2005; Hallet,

1996). The number and capabilities of glacial erosional processes is not trivial as 

abrasion, plucking, pressure release jointing, and basal meltwater all work in concert to 

enhance denudation (Martini et a l, 2001). Recent studies demonstrate that chemical 

weathering may be greatly enhanced as well (Anderson, 2005). The mechanical 

processes that break down material increase the surface area subject to chemical attack 

and thereby enhance chemical weathering. Hence, both mechanical and chemical 

processes are amplified by the presence of glaciers.

The implications of this research go beyond reconstructing the denudational 

history of a mountain range. Although the pre-glacial water budget was most likely 

comparable between north- and south-facing slopes in the Bitterroots, current conditions 

are quite the contrary. Temporal and spatial snowpack variations have not been studied 

for any of the Bitterroot watersheds, but it seems intuitive that snowfields would persist
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longer into summer months within north-facing cirque basins. Meltwater from these 

snowfields supports stream baseflow during late summer months when precipitation 

inputs are minimal. Therefore, understanding how relief structure influences snowpack 

variations and snowmelt timing could greatly enhance hydrologie models for the 

Bitterroot Valley where water demands are increasing. The methods presented herein 

improve our understanding of relief distribution within the Bitterroots, but future work 

should be focused toward modeling spatial and temporal variations of snowpack within 

the range.

Conclusion

Glacial erosion has exceeded other denudational processes in sculpting the 

Bitterroot geomorphic province. By comparing glaciated and non-glaciated terrain, it is 

demonstrated that relief production is far greater in glacial systems and that a prominent 

shift in elevation distribution has also occurred. Slope results and longitudinal profiles 

indicate that glacial maxima represent a profound shift away from pre-glacial equilibrium 

as south-facing paléo-fluvial networks have been drastically altered. Although the role of 

sediment transport remains dependent upon fluvial networks beyond glacial termini, the 

results indicate that glacial erosion dominates alpine landscape evolution where 

conditions favor the existence of glaciers.
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Figure 1. Hillshade DEM of the 
central Bitterroot Mountains 
showing prominent east-west 
trending canyons. Watershed 
asymmetry is expressed in the 
ridgeline locations of each 
watershed. Ridgelines on the 
south side of the canyons are at 
greater distances from the 
canyon center lines (i.e. trunk 
streams). The black rectangle 
outlines the area used to derive 
the swath elevation figure 
(Figure 2).

Shaded relief image generated from USGS 
National Elevation Dataset (30 meter DEM)

Hydrology vector data from U.S. Census Bureau 
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Figure 2. Cross-sectional profile extracted from a rectangular swath (8 km wide, 12 km 
long) encompassing Blodgett and Mill Creek Canyons. Maximum elevations represent the 
locations of sub-basin interfluves that display similar slopes on each side of the canyons. 
Minimum elevations represent the locations of sub-basin bottoms and show the effects of 
gradational processes for each slope. Dashed lines and arrows illustrate the southward 
migration of the divide. North-facing slopes have been flattened" due to cirque formation 
and expansion.
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Figure 4. Fred Burr valley cross-section derived along a truncated spur 
perpendicular to the main valley (2.2 km up-canyon). A prominent slope break 
exists on the south-facing slope (left-hand portion of graph) represents the top of the 
glacial trough and the top of the ice surface.
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Figure 5. Fred Burr valley cross-section derived along a truncated spur 
perpendicular to the main valley (12.0 km up-canyon). The break in slope located 
at approximately 2200 m is used to interpolate the modeled ice surface.
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Figure 6. Sub-ridgeline relief was calculated using a spline surface fitted between north- 
and south-facing interfluves. This figure displays prominent interfluves in Kootenai Creek 
Canyon. Points were marked along the interfluves and used to create the spline surface.

N

Figure 7. Spline surface fitted between interfluve points for Kootenai Creek Canyon. The 
spline interpolation provides a benchmark from which we can calculate the amount of 
material eroded. The cut-fill command was used in ArcMap to calculate the north- and 
south-facing volume removed below the spline surface.
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Figure 8. Fred Burr Canyon with an orthophoto overlain on the 10 m USGS DEM. The 
red line shows the approximate elevation of the trimiine on the north-facing slopes.

Figure 9. The modeled ice surface for Fred Burr Canyon sloping downward toward the 
Bitterroot Valley. A spline interpolation was fitted between points to derive the modeled 
glacier. The surface closely matches the trimiine shown in Figure 8. Slope, relief, and 
hypsometry analyses were performed on terrain above the surface.
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Figure 10. A histogram showing the distribution of slope calculations for Blodgett Canyon. 
The values represent composite slope calculations for the south-facing side of the canyon.
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Figure 11. Slope frequency distributions for the north-facing side of Blodgett Canyon. The 
mean slope angle on north-facing slopes is 7° lower than on the south-facing slopes. 
Standard deviation is 2.5° greater for north-facing slopes suggesting that greater variability 
exists within glaciated areas.
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Figure 12. The difference in relief production increases for canyons in the southern 
Bitterroot Range where higher altitudes exist (/t^=0.60). One outlier, Lost Horse Canyon, is 
removed from the regression because the south-facing analyzed slope only extends half the 
distance of the canyon (see Plate 9).
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Figure 13. A modest correlation (/t^=0.35> exists when plotting mean altitude versus canyon 
asymmetry. A better correlation (lî^=0.70) is obtained by omitting three outliers: Bass 
Creek, Canyon Creek, and Sawtooth-Roaring Lion Canyons (justification for removing 
these outliers is provided in the discussion). The correlation supports the hypothesis that 
asymmetry is a product of differential processes as glacial erosion is enhanced above the 
paleo-ELAs.
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Figures 14a - k. Hypsometric curves for each of the canyons display the effects of glacial 
erosion on elevation distributions. North-facing slopes generally show a shift in distribution 
towards lower altitudes suggesting that sediment transport mechanisms have more 
efficiently moved material on glaciated slopes.
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Figure 15. Longitudinal profiles were extracted for tributary streams in Kootenai Canyon 
using an AML script. Profiles starting at the similar up-canyon distance are compared for 
each slope (e.g. #9 and #10).
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Figure 16. Graph showing longitudinal profiles for both slopes in Kootenai Canyon. South- 
facing tributary profiles are generally straight except near the upper reaches of the canyon. 
North-facing profiles show greater concavity in the up-canyon direction and an increasing 
step-wise profile characteristic of glaciated terrain.
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Figure 17. Tributary longitudinal profiles extracted within Blodgett Canyon.
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Figure 18. Blodgett Canyon longitudinal profile comparison showing north-facing 
drainages with an increasingly step-wise form above paleo-ELAs. The change in form 
between profiles 10 and 13 demonstrates a prominent increase in headwall retreat.
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(A)

(B)

Figure 19. A diagram displaying the effects of main valley glaciation on tributary fluvial 
basins. The resulting hanging valleys contain a knickpoint that shifts the fluvial network 
into disequilibrium (or further disequilibrium). Although the sub-basins' pre-glacial 
maxima equilibrium is dependent upon the timing of normal faulting along the range front 
(faulting along the Bitterroot Fault would impose major base level changes), the widening 
of the main valley during glacial maxima will nonetheless propagate a knickpoint. (A) Pre­
glacial morphology, (B) Post-glacial morphology
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Table 1. Summary of Shear Stress Calculations

Average ice Average Shear stress (%)
Canyon thickness (m) N/m^

Bass Creek 231 1.54E+05
Big Creek 238 1.14E+05
Blodgett 318 1.42E+05

Canyon Creek 192 1.13E+05
Fred Burr 268 1.28E+05
Kootenai 303 1.97E+05

Lost Horse 508 7.12E+04
Mill Creek 334 151E+05

Roaring Lion 294 1.11E+05
Rock Creek 487 1 33E+05

Sawtooth 346 7.79E+04
South Lost Horse 299 9.97E+04

mean: 318 1.24E+05

Table 2. Slope Analysis Results

N-facing N-facing S-facing S-facing
Average slope Standard deviation Average slope Standard deviation

Watershed (degree) (degree) (degree) (degree)
Bass Creek 31.5 11.4 35.4 9.6

Kootenai Creek 30.8 10.9 33.6 8.2
Big Creek 29.3 11.7 30.5 9.0
Fred Burr 28.8 10.9 38.2 10.5
Mill Creek 29.0 11.5 36.6 11.6
Blodgett 29.1 12.9 36.5 10.4

Canyon Creek 25.7 12.1 28.6 10-8
Sawtooth-Roaring Lion 26.8 12.0 35.7 8.3

Lost Horse 22.4 11.1 31.3 6.9
South Lost Horse 26.6 12.6 37.4 9.6

Rock Creek 25.2 13.7 26.8 11.1
Average: 27.7 11.9 33.7 9.6
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Table 3. Geophysical Relief Resuits

S-facing N-facing S-facing N-facing S-facing N-facing
Volume Volume Area Area Vol./Area Vol./Area

Watershed (m") (m®) (m )̂ (m )̂ ratio (m) ratio (m)
8ass Creek 1.3E+09 2.3E+09 9.9E+06 1.2E+07 128 186

Kootenai Creek 2.2E+09 1.0E+10 1.2E+07 3.7E+07 190 272
Big Creek 6.0E+09 1.2E+10 1.9E+07 4.1E+07 267 298
Fred Burr 8.7E+08 5.7E+09 7.3E+06 2.5E+07 120 227
Mill Creek 7.8E+08 4.7E+09 6.8E+06 2.2E+07 114 210
Blodgett 1.5E+09 7.1E+09 1.2E+07 2.9E+07 132 244

Canyon Creek 1.7E+08 7.8E+08 3.3E+06 7.8E+06 53 101
Sawtooth-Roaring Lion 1.4E+09 7.3E+09 1.3E+07 3.5E+07 109 209

Lost Horse 3.8E+08 6.7E+09 4.9E+06 2.3E+07 89 185
South Lost Horse 8.9E+08 5.5E+09 6.3E+06 2.7E+07 142 203

Rock Creek 3.3E+09 1.5E+10 1.8E+07 4.9E+07 186 297
mean: 1.6E+09 7.0E+09 1.0E+07 2.8E+07 139 221

Table 4. Asymmetry and Hypsometry Results

North / South Mean N-facing S-facing
Stream-ridgeline length Elevation Hypsometric Hypsometric

Watershed ratio (m) integral integral
Bass Creek 0 86 2133.60 0.606 0.566

Kootenai Creek 1.50 2062.76 0.564 0.563
Big Creek 1.07 2008.82 0.571 0.495
Fred Burr 1.93 2195.05 0.512 0.541
Mill Creek 1.90 2163.33 0.558 0.543
Blodgett 1.59 2180.56 0.528 0.567

Canyon Creek 1.45 2218.37 0.616 0.603
Sawtooth-Roaring Lion 1.60 2226.56 0.595 0.569

Lost Horse 1.35 2098.95 0.461 0.560
South Lost Horse 2.27 2218.88 0.562 0.619

Rock Creek 1.53 2181.96 0.343 0.541
mean: 1.55 2153.53 0.538 0.561
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Plate 2. Sleeping Child Canyon (slight asymmetry favoring 
south-facing slope)

Plate 3. Bedrock Reach along Blodgett Creek
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Plate 4. Step-pool Reach along Kootenai Creek 
(Photo by Dick Gibson)

Plate 5. Cascading Reach along Blodgett Creek
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Plate 6. Pool-riffle Reach along Bass Creek 
(Photo by Dick Gibson)

' Y . -  ■

Plate 7. North-South Trending Fractures in 
Sweathouse Canyon
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Plate 8. Truncated Spur in Bass Creek Canyon 
(Photo by Dick Gibson)
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Appendix

USGS 10-meter DEM Metadata
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Metadata for 7.5-minute Digital Elevation Models (OEMs) 

- 10 meter resolution

These metadata describe the 7.5-minute digital elevation models with a 
resolution of 10 meters.

Table of Contents

Identification_Information

Da t a_Qualit y_In f ormat i on

Spatial_Data_Organization_Information

Spatial_Reference_Information

Entity_and_Attribute_Information

Distribution_Information

Metadata Reference Information

Identification Information:

Citation :

Citation_Information

Originator: U.S. Geological Survey 

Publication_Date: 199807

Title: 7.5 minute Digital Elevation Models
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Geospatial_Data_Presentation_Form: map

Publication_Information:

Publication_Place: Menlo Park, CA

Publisher: U. S. Geological Survey

Description :

Abstract :

Digitntains a series of

elevations ordered from south to north with the order of the 

columns from west to east. The DEM is formatted as one 

ASCII header record (A- record), followed by a series of profile 

records (B- records) each of which include a short B-record

header followed by a series of ASCII integer elevations per each

profile. The last physical record of the DEM is an accuracy 

record (C-record).

7.5-minute DEM (10- by 10-m data spacing, cast on Universal 

Transverse Mercator (UTM) projection). Provides coverage in

7.5- by 7.5-minute blocks. Each product provides the same 

coverage as a standard USGS 7.5-minute quadrangle without 

over edge.

Purpose :

DEM's can be used as source data for digital orthophotos, and, as

layers in geographic information systems, for earth science

analysis. DEM's can also serve as tools for volumetric analysis,
for

site location of towers, or for drainage basin delineation.
These

data were collected as part of the National Mapping Program.
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Supplemental_Information:

7,5-minute OEMs have rows and columns which vary in length 

and are staggered. The UTM bounding coordinates form a 

quadrilateral (no two sides are parallel to each other) , rather 

than a rectangle. The user will need to pad out the uneven 

rows and columns with blanks or flagged data values, if a 

rectangle is required for the user’s application. Some software 

vendors have incorporated this function into their software 

for input of standard formatted USGS DEMs.

Time_Period_of_Content;

Time_Period_Information :

Range_of_Dates/Times :

Beginning_Date: 197907 

Ending_Date: present 

Currentness_Reference: ground condition

Status

Progress: In work

Maintenance_and_Update_Frequency: Irregular

Spatial_Domain

Bounding_Coordinates:

West_Bounding_Coordinate: -124.7333

East_Bounding_Coordinate: -067.9500

North_Bounding_Coordinate: 4 9.3833

South_Bounding_Coordinate: 24.5333

Keywords :

Theme :

Theme_Keyword_Thesaurus: none

Theme Keyword: DEM
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Theme_Keyword: digital elevation model

Theme_Keyword: digital terrain model

Theme_Keyword: hypsography

Theme_Keyword: altitude 

Theme_Keyword: height 

Theme_Keyword: contour line 

Theme_Keyword: digital contours 

Place :

Place_Keyword_Thesaurus:

U.S. Department of Commerce, 1977, Countries, dependencies,

areas of special sovereignty, and their principal 
administrative divisions

D.C.,

of

C.,

areas

D.C.

(Federal Information Processing Standard 10-3):Washington,

National Institute of Standards and Technology.

Place_Keyword: US

Place_Keyword_Thesaurus:

U.S. Department of Commerce, 1987, Codes for the identification 

of the States, the District of Columbia and the outlying areas

The United States, and associated areas

(Federal Information Processing Standard 5-2): Washington, D.

National Institute of Standards and Technology,

Place_Keyword: FI PS code of State or Province

Place_Keyword_Thesaurus:

U.S. Department of Commerce,1990, Counties and equivalent 

entities of The United States, its possessions, and associated

(Federal Information Processing Standard 6-4): Washington,

National Institute of Standards and Technology.

61



Place_Keyword: FIPS code for county or counties.

Access_Constraints: None 

Use_Constraints:

None. Acknowledgement of the U.S. Geological Survey would be 

appreciated in products derived from these data.

Data_Quality_Information

Attribute_Accuracy :

Attribute_Accuracy_Report:

The accuracy of a DEM is dependent upon the level of 

detail of the source and the grid spacing used to sample 

that source. The primary limiting factor for the level of 

detail of the source is the scale of the source materials. 

The proper selection of grid spacing determines the level 

of content that may be extracted from a given source 

during digitization.

Logical_Consistency_Report:

The fidelity of the relationships encoded in the data 

structure of the DEM are automatically verified using 

a USGS software program upon completion of the data 

production cycle. The test verifies full compliance to the 

DEM specification.

Completeness_Report:

The DEM is visually inspected for completeness on a DEM view 

and edit system for the purpose of performing a final quality 

control and if necessary edit of the DEM. The physical format
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of each digital elevation model is validated for content 

completeness and logical consistency during production quality 

control and prior to archiving in the National Digital 

Cartographic Data Base.

Due to the variable orientation of the quadrilateral in relation 

to the Universal Transverse Mercator (UTM) projection grid, 

profiles that pass within the bounds of the DEM quadrilateral, 

may be void of elevation grid points, and are not represented 

in the DEM. This condition occurs infrequently and is always the 

first or last profile of the dataset.

Level 2 DEM: Level 2 DEM's may contain void areas due to 

interruptions to contours in the source graphic or DLG. Void 

area elevation grid posts are assigned the value of -32,767. In 

addition, suspect elevation areas may exist in the DEM but are 

not specifically identified. Suspect areas can be located on the 

source graphic as a "disturbed surface, " symbolized by 

contours overprinted with photorevised or other surface 

patterns.

Positional_Accuracy:

Horizontal_Positional_Accuracy:

Horizontal_Positional_Accuracy_Report:

The horizontal accuracy of the DEM is expressed 

as an estimated root mean square error (RMSE),

The estimate of the RMSE is based upon 

horizontal accuracy tests of the DEM source 

materials which are selected as equal to or less 

than intended horizontal RMSE error of the DEM.
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The testing of horizontal accuracy of the source 

materials isaccomplished by comparing the 

planimetric (X and Y) coordinates of well-defined 

ground points with the coordinates of the same 

points as determined from a source of higher 

accuracy.

Quantitative_Horizontal_Positional_Accuracy_Assessment: 

Horizontal_Positional_Accuracy_Value: RMSE of the DEM.

Horizontal_Positional_Accuracy_Explanation :

Digital elevation models meet horizontal National Map 

Accuracy Standards (NMAS) accuracy requirements.

Vertical_Positional_Accuracy:

Vertical_Positional_Accuracy_Report:

The vertical RMSE statistic is used to describe the 

vertical accuracy of a DEM, encompassing both 

random and systematic errors introduced during 

production of the data. The RMSE is encoded in 

element number 5 of record C of the DEM.

Accuracy is computed by a comparison of linear 

interpolated elevations in the DEM with 

corresponding known elevations. Test points are 

well distributed, representative of the terrain, and 

have true elevations with accuracies well within 

the DEM accuracy criteria. Acceptable test points 

include, in order of preference; field control, 

aerotriangulated test points, spot elevations, or 

points on contours from existing source maps 

with appropriate contour interval. A minimum of
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28 test points per DEM is required to compute the 

RMSE, which is composed of a single test using 20 

interior points and 8 edge points. Edge points are 

those which are located along, at, or near the 

quadrangle neatlines and are deemed by the 

editor to be useful to evaluating the accuracy of 

the edge of the DEM. Collection of test point data 

and comparison of the DEM with the quadrangle 

hypsography are conducted by the quality control 

units within the USGS.

There are three types of DEM vertical errors; 

blunder, systematic and random. These errors 

are reduced in magnitude by editing but cannot be 

completely eliminated. Blunder errors are those 

errors of major proportions and are easily 

identified and removed during interactive editing. 

Systematic errors are those errors that follow 

some fixed pattern and are introduced by data 

collection procedures and systems. These error 

artifacts include: vertical elevation shifts, 

misinterpretation of terrain surface due to trees, 

buildings and shadows, and fictitious ridges, tops, 

benches or striations. Random errors result from 

unknown or accidental causes.

OEM's are edited to correctly depict elevation 

surfaces that correspond to water bodies of 

specified size.
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Level 2 DEM; A vertical RMSE of one-half of the 

contour interval, determined by the source map, 

is the maximum permitted. Systematic errors 

may not exceed one contour interval, 

determined by the source map, is the maximum 

permitted. Systematic errors may not exceed 

one contour interval specified by the source 

graphic. Level 2 OEMs have been processed or 

smoothed for consistency and edited to remove 

identifiable systematic errors. 

Quantitative_Vertical_Positional_Accuracy_Assessment: 

Vertical_Positional_Accuracy_Value:

Vertical_Positional_Accuracy_Explanation : RMSE of the DEM.

Lineage :

Source_Information :

Source_Citation:

Citation_Information:

Originator: U.S. Geological Survey 

Publication_Date:

Title: digital contour lines

Geospatial_Data_Presentation_Form: map

Publication_Information:

Publication_Place: Reston, VA

Publisher: U.S. Geological Survey

Type of Source_Media; magnetic tape 

Source Time Period_of_Content:
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Time_Period_Information :

Range_of_Dates/Times:

Beginning_Date: 197907 

Ending_Date; present 

Source_Currentness_Reference: ground condition

Source_Citation_Abbreviation : CONTOURl

Source_Contribution:

hypsographic vector information which is interpolated to
regular

grid posts to form DEM grids in 10- by 10- meter ÜTM data
spacing

within the 7.5 minute DEM bounds.

Source_Information :

Source_Citation:

Citation_Information:

Originator: U.S. Geological Survey 

Publication_Date:

Title: photo ID number

Geospatial_Data_Presentation_Form: remote-sensing image

Publication_Information :

Publication_Place: Reston, VA

Publisher: U.S. Geological Survey

Type_of_Source_Media: transparency

Source_Time_Period_of_Content:

Time_Period_Information:

Range_of_Dates/Times:

Beginning_Date: various

Ending_Date: various

Source Currentness Reference: ground condition
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Source_Citation_Abbreviation : PHOTOl

Source_Contribution : elevation values

Source_Information:

Source_Citation:

Citation_Information:

Originator: U.S. Geological Survey 

Publication_Date: Unpublished material

Title: project control

Geospatial_Data_Presentation_Form: map 

Publication_Information

Publication_Place: Reston, VA

Publisher: U.S. Geological Survey

Type_of_Source_Media: magnetic tape

Source_Time_Period_of_Content:

Time_Period_Information 

Range_of_Dates/Times :

Beginning_Date: various

Ending_Date: various

Source_Currentness_Reference: ground condition

Source_Citation_Abbreviation : CONTROLl

Source_Contribution: ground control points

Process_Step:

Process_Description :

Level 2 DEM: Level 2 OEM's are produced by 

converting 1: 24, 000-scale and 1:100, 000-scale 

hypsography digital line graph (DLG) data to DEM
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format or the OEM’s are generated from vector 

data derived from scanned raster files of USGS 

1: 24.000-scale or 1:100, 000-scale map series 

contour separates.

Level 3 DEM: Level 3 OEM's are created from DLG 

data that has been vertically integrated with all 

categories of hypsography, hydrography, ridge 

line, break line, drain files and all vertical and 

horizontal control networks. The production of 

level 3 OEMs requires a system of logic 

incorporated into the software interpolation 

algorithms that clearly differentiates and 

correctly interpolates between the various types 

of terrain, data densities and data distribution.

Water body editing: OEM surface areas 

corresponding to water bodies are flattened and 

assigned map specified or estimated surface 

elevations. Water body areas are defined as 

ponds, lakes, and reservoirs that exceed 0.5 

inches at map scale and double line drainage that 

exceeds 0.25 inches at map scale. Water body 

shorelines are derived either from a hypsographic 

OLG or by interactive delineation from 1:24,000- 

scale or 1:100, 000—scale USGS map series.

Edge matching and edge joining: DEM datasets

within a project area {consisting of a number of
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adjacent files) are edge match and edge join 

edited to assure terrain surface continuity 

between files. Edge matching is the process of 

averaging adjacent elevation values along 

common edges within a zone of approximately 5 

row or column grid posts on both edges. When 

edge values exceed 3 elevation units difference, 

edge joining is performed. Edge joining is an 

extensive level of editing and requires editing 

elevation values internal to the DEM in order to 

create more accurate terrain representations by 

correcting the alignment of ridges and drains, and 

overall topographic shaping within an 

approximately 25-30 row or column grid post 

zone on both edges.

Quality control: OEM’s are viewed on interactive

editing systems to identify and correct blunder 

and systematic errors. OEM’s are verified for 

physical format and logical consistency at the 

production centers and before archiving in the 

National Digital Cartographic Data Base (NOCOB) 

utilizing the Digital Elevation Model Verification 

System (OVS) software.

Source Used_Citation_Abbreviation : CONTOURl, PHOTOl, CONTROLl

Process_Date:

S p a t ial_Oata_Organization_Information
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Direct_Spatiai_Reference_Method: raster 

Raster_Obj ect_Information:

Raster_Object_Type: grid cell 

Row_Count:

Column_Count:

Spatial Reference Information:

Horizontal_Coordinate_System_Definition:

Planar :

Grid_Coordinate_System:

Grid_Coordinate_System_Name: Universal Transverse Mercator 

Universal_Transverse_Mercator :

UTM_Zone_Number: 10-19 

Transverse_Mercator:

Scale_Factor_at_Central_Meridian: .09996 

Longitude_of_Central_Meridian: depends on zone 

Latitude_of_Projection_Origin: 0.0 

False_Easting: 500000 

False_Northing: 0.0 

Planar_Coordinate_Information:

Planar_Coordinate_Encoding_Method: row and column 

Coordinate_Representation :

Abscissa_Resolution: 10

Ordinate_Resolution: 10

Planar Distance Units: meters
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Geodetic_Model:

Horizontal_Datum_Name: North American Datum 1927 

Ellipsoid_Name: Clark 1866 

Semi-major_Axis: 6378206.4 

Denominator_of_Flattening Ratio: 294.9787

Vertical_Coordinate_System_Definition:

Altitude_System_Definition:

Altitude_Datum_Name: National Geodetic Vertical Datum of 1929

Altitude_Resolution: 1

Altitude_Distance_Units: meters

Altitude_Encoding_Method:

explicit elevation coordinate included with horizontal 
coordinates

Entity and Attribute Information:

Overview_Description :

Entity_and_Attribute_Overview:

The digital elevation model is composed of a 6- 

character integer raster representing a gridded form of 

a topographic map hypsography overlay. Each raster 

entity contains a 6-character integer value between 

-32,767 to 32,768.

E n t ity_and_Attribute_Detail_Citation:
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U.S.Department of the Interior, U.S. Geological Survey, 1992,

Standards for digital elevation models: Reston, VA,

A hypertext version is available at:

<URL:
ftp ://nmdpow9.er.usgs.gov/public/dem_html/standards_dem.html>

Softcopy in ASCII format is available at:

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdemptl.txt> 

<URL: ftp://nmdpow9.er.usgs.gov/public/demstnds/stdempt2.txt> 

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdempt3.txt>

Softcopy in WordPerfect format is available at:

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdemptl.wp5> 

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdempt2.wp5> 

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdempt3.wp5>

Softcopy in PostScript format is available at:

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdemptl.ps> 

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdempt2.ps> 

<URL: ftp ://nmdpow9.er.usgs.gov/public/demstnds/stdempt3.ps>

Distribution Information:

Distributor :

Contact_Information :

Contact_Organization_Primary: 

Contact Organization:
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Earth Science Information Center, U.S. Geological Survey 

Contact_Address:

Address_Type; mailing address 

Address; 507 National Center 

City: Reston

State_or_Province: Virginia

Postal_Code: 22092

Contact_Voice_Telephone: 1 800 USA MAPS

Hours_of_Service: 0800-1600

Contact_Instractions :

In addition to the address above there are other ESIC offices 

throughout the country. A full list of these offices is at: 

<URL: http ://www-nmd.usgs.gov/esic/esic_index.html>

Resource_Description: 7.5-minute digital elevation models

Distribution_Llability :

Although these data have been processed successfully on a 

computer system at the U.S. Geological Survey, no warranty 

expressed or implied is made by the Geological Survey 

regarding the utility of the data on any other system, nor shall 

the act of distribution constitute any such warranty.

Standard_Order_Process:

Digital__Form :

Digital_Transfer_Information:

Format_Name: DEM

Format_Information_Content :
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USGS standard DEM: The standard USGS 

DEM can be described as an ASCII formatted 

elevation file preceded by a metadata 

header file which consists of one 1024 byte 

ACSII record.

Transfer_Size: 1 

Digital_Transfer_Option :

Offline_Option:

Offline_Media:

Recording_Format:

Compatibility_Information: none

Fees :

The online copy of the data set (when available electronically)
may

be accessed without charge.

Metadata_Reference_Information:

Metadata_Date: 199807 

Metadata_Contact:

Contact_Information :

Contact_Organization_Primary:

Contact_Organization: U.S. Geological Survey

Contact_Address:

Address_Type: mailing address 

Address: 345 Middlefield Rd. MS 531 

City: Menlo Park 

State or Province: CA
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Postal_Code: 94025

Contact_Voice_Telephone: 650-329-4272

Metadata_Standard_Name; Content Standards for Digital Geospatial 
Metadata

Metadata Standard Version: 19940608
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