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Cilimburg, Amy B., M. S. March 2001

Su r v iv a l  a n d  D isper sa l  of Y ellow  W a r b l e r s  in  M o n t a n a

Advisors: Dr. R. L Hutto 
Dr. S. J. Hejl

Survival probability estimates for songbirds are generally conservative because 
dispersal between breeding seasons is not differentiated from mortality. Presently, 
knowledge o f between-year breeding dispersal is lacking for most songbirds. To assess 
adult survival probabilities and dispersal, 436 Yellow Warblers {Dendroica petechia) 
were color-banded and resighted over five breeding seasons at 11 study sites in the 
Bitterroot Valley, Montana as part of the Bitterroot Riparian Bird Project (BRBP).
During the last two seasons, field assistants and I searched extensively for marked 
warblers between and surrounding these study sites.

In the first chapter, I compare Yellow Warbler survival probabilities with and without 
data on dispersal and assess the effectiveness o f estimating survival probabilities with 
transient models. Survival probabilities were calculated using open population models, 
and model selection was based on Akaike’s Information Criterion. The best model 
indicated that survival probabilities differed between males and females and varied 
among years. I found that dispersal was common (30% of resighted birds dispersed off 
their original study site in 1999), and survival probabilities increased by 6.5-22.9% with 
the inclusion of dispersed birds. Overall, transient models appeared ineffective at 
distinguishing permanent emigrants from mortalities. I suggest emigration can have 
substantial effects on survival probabilities and advise against the use of return rates from 
small study areas. My results also suggest that transient models may not reliably increase 
the accuracy of survival probability estimates.

In the second chapter, I use these dispersal data together with BRBP nest success data to 
determine whether movements were related to reproductive success in the previous year.
I compare dispersal distance, dispersal rates and return rates of successful and 
unsuccessful males and females. Results indicate that median dispersal distance was 
greater for females than males, and breeding dispersal was related to nest success for 
females. Unsuccessful females dispersed farther and returned at significantly lower rates 
than successful females. There were no differences in dispersal distance, dispersal rates, 
or return rates between successful and unsuccessful males. I suggest other unsuccessful 
females likely dispersed, and this may explain why survival probabilities for females of 
this population are lower than those of males.
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P r e f a c e

“Lack o f data on dispersal is the major gap in understanding the population 
dynamics o f Neotropical migrants and prescribing effective conservation 
measures.”

Brawn and Robinson (1996)

Songbird dispersal remains one of the demographic parameters of which we 

understand the least (Rockwell and Barrowclough 1987). Often, logistical constraints are 

cited as one o f the main reasons for our lack of knowledge of movement patterns (Haas 

1998, Lindberg et al. 1998). However, as I discovered, these constraints are 

surmountable, at least for some species. In the following thesis, I present results from 

two years o f field studies in which my assistants and I searched for marked adult Yellow 

Warblers {Dendroica petechia) to study dispersal patterns.

This study benefited from collaboration with another graduate research study. In 

1995 Josh Tewksbury initiated the Bitterroot Riparian Bird Project (BRBP) to study 

riparian songbirds in the Bitterroot Valley, Montana for his PhD dissertation. One 

component of the BRBP involved color banding Yellow Warblers on a number of 

different study sites. During the second and third BRBP seasons, Tewksbury noted that a 

few individuals banded at one study site had dispersed between years and were breeding 

at different study sites. With the encouragement of my advisors, I decided to explore 

these movement patterns for my Master’s thesis work, and while Tewksbury and the 

BRBP continued their research, I spent two field seasons searching for dispersed 

individuals. Without the collaboration and subsequent sharing o f data, this study would



not have been feasible. I have benefited immensely from five years of data and eleven 

study sites, a treasure for a Master of Science study.

The following thesis is divided into two chapters. The first chapter. Survival 

Probability o f Adult Yellow Warblers in Montana: Effects o f Dispersal and Model Types 

compares adult apparent survival probabilities for this population with and without the 

additional dispersal information. I also explore the applicability of transient models to 

help quantify dispersal. In the second chapter. Are patterns o f Yellow Warbler breeding 

dispersal related to nest success?, I compare differences in dispersal related to seasonal 

nest success in the previous breeding season. Because these chapters are each written for 

eventual separate publication, there is considerable overlap in some of the sections, 

especially the Study Area and Methods.
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C h a p t e r  1 :

S u r v iv a l  P r o b a b il it y  o f  A d u l t  Y e l l o w  W a r b l e r s  in  

M o n t a n a : E f f e c t s  o f  D is p e r s a l  a n d  M o d e l  T y p e s

A b s t r a c t

Annual survival probability estimates for songbirds are generally conservative

because dispersal between breeding seasons is not differentiated from mortality.

Presently, knowledge of between-year breeding dispersal is lacking for most songbirds.

To assess adult survival probabilities and dispersal, 436 Yellow Warblers {Dendroica

petechia) were color-banded and resighted over five breeding seasons at 11 study sites in

the Bitterroot Valley, Montana. During the last two of these seasons, field assistants and

I searched extensively for marked warblers between and surrounding these sites. I

compared survival probabilities estimated with and without this added dispersal

information and assessed the effectiveness of adjusting survival probabilities with

transient models. Survival probabilities were calculated using open population models,

and model selection was based on Akaike’s Information Criterion (AIC) within program

MARK. The best model indicated that survival probabilities differed between males and

females and varied among years. I found that dispersal off the study site was common (in

1999, 30% of resighted birds were found off their original study site), and survival

probabilities increased by 6.5-22.9% (0.02 ± 0.07 -  0.106 ± 0.06) with the inclusion of

dispersed birds. Overall, transient models appeared ineffective at distinguishing

permanent emigrants from mortalities. I suggest that emigration can have substantial
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effects on survival probabilities and advise against the use of return rates from small 

study areas. In addition, my results suggest that transient models may not reliably 

increase the accuracy o f survival probability estimates.

Keywords: apparent survival probability, breeding dispersal, Dendroica petechia, 

mortality, transient models. Yellow Warbler

I n t r o d u c t io n

Loss, alteration, and fragmentation of songbird habitat may cause changes in 

population status (Terborgh 1989, Hagen and Johnston 1992, Donovan et al. 1995a, 

1995b, Faaborg et al. 1995, Freemark et al. 1995). Population status is commonly 

assessed by monitoring trends in abundance over time through programs such as the 

North American Breeding Bird Survey (Sauer et al. 1999). Presently, analyses of trend 

data are disputable, at times contradictory (e.g., Bohning-Gaese et al. 1993, James et al. 

1996, Sauer et al. 1996), and cannot inform us of the reasons for population changes (Van 

Horn 1983, James and McCulloch 1995, Thompson et al. 1998, Nichols 1999). Accurate 

estimates of demographic parameters are necessary to understand songbird population 

dynamics and the underlying mechanisms causing population changes (Temple and 

Wiens 1989, Brawn and Robinson 1996, Loery et al. 1997). Knowledge o f demographic 

parameters may also clarify discrepancies in population trend analyses (Brawn and 

Robinson 1996).

The demographic parameters responsible for changes in population size are 

fecundity, survival probability, and dispersal probability (emigration and immigration)
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(Temple and Wiens 1989, Hestbeck et al. 1991, Brownie et al. 1993, Loery et al. 1997, 

Koenig et al. 2000). Fecundity in birds is estimated by combining data from nest 

monitoring studies with seasonal productivity models (Donovan et al. 1995b, Pease and 

Gryzbowski 1995). Adult survival probability is commonly estimated from recapturing 

or resighting marked individuals over multiple years at one or more study sites (Clobert 

and Lebreton 1991, Lebreton et al. 1992). Estimates o f juvenile survival probability are 

not generally available because juveniles commonly disperse from natal areas 

(Greenwood and Harvey 1982). These estimates have often been obtained by dividing 

adult mortality by mean number of young fledged (Ricklefs 1973, Anders et al. 1997), 

resulting in rates Vz to % of adult survival (Greenberg 1980, Temple and Carey 1988, 

Thompson 1993, Donovan et al. 1995b, Brawn and Robinson 1996). Arguably, the least 

known and most often ignored parameter is dispersal (Rockwell and Barrowclough 1987, 

Brawn and Robinson 1996; Koenig et al. 2000; Walters 2000). Because natal and 

breeding dispersal are difficult to observe, permanent emigration and mortality are not 

distinguished in estimates of passerine survival (Zeng and Brown 1987, Payne and Payne 

1990, Peach 1993, Johnston et al. 1997).

Although avian adult survival probability is a commonly reported and critical

demographic parameter, its use and definition are inconsistent. True survival probability

(5), often the param eter o f  interest, is defined as the probability that an individual alive at

time t survives to time t+  This parameter is generally estimated with band recovery

models (Brownie et al. 1985) and, in some cases, with multi state models (Brownie et al.

1993, Nichols and Kaiser 1999). Apparent survival probability ((|)) is defined as the

probability that an individual alive at time t survives to time t + \ and does not
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permanently emigrate from the study area between time t and f +1. Apparent survival 

probability is usually estimated with open population models (Lebreton et al. 1992), and 

in these models, true survival and permanent emigration probabilities are confounded, but 

the detection probability (p\ the probability of detection, given a bird is alive and in the 

population associated with the study area) is estimated separately. Return rates are the 

product o f apparent survival probability and detection probability (Martin et al. 1995, 

Lindberg et al. 1998, Anderson et al. in press). True survival, permanent emigration, and 

capture probabilities are all confounded in this metric, yet many bird studies erroneously 

report the return rate, as an estimate of apparent or true survival probability (Lebreton et 

al. 1993; Martin et al. 1995).

Estimates o f true survival probability are unlikely to be obtained for small 

passerines without additional advances in radio marking technology (or the initiation of a 

hunting season on songbirds). Therefore, we need assessments of the extent that 

permanent emigration affects estimates o f apparent survival probability. These 

assessments require data on the movements of birds between breeding seasons. In 

breeding bird studies from relatively small, single study areas, dispersal is generally not 

considered in demographic analysis, although some have proposed mathematical 

adjustments to correct for bias in dispersal distance due to finite study areas 

(Cunningham 1986, Barrowclough 1987, Zeng and Brown 1987, Baker et al. 1995). 

However, to my knowledge, few songbird mark-resight studies were designed with the 

objective o f resighting individuals outside the boundaries of the original study area (but 

see Tiainan 1983, Beletsky and Orians 1987, Jakobsson 1988, Wheelwright and Mauck



1998, Woodworth et al. 1998), and none with the goal of using this information to refine 

estimates of adult survival probability.

An alternative approach for adjusting estimates o f apparent survival probability 

for permanent emigration is transient modeling (DeSante et al. 1995, Pradel et al. 1997, 

Loery et al. 1997). These models attempt to identify and exclude transients (individuals 

that are thought to be permanent emigrants) from estimates of survival probability. 

However, heterogeneity in survival probability and capture probability may bias 

estimates of survival probability in these models (Carothers 1973). Individuals that are 

excluded because they are believed to be transients may be mortalities or individuals with 

low capture probabilities. Therefore, we might expect these transient models to produce 

over-estimates of survival probabilities.

This study was inspired by the combination of a paucity o f accurate avian survival 

and dispersal information and evidence of year-to-year movements of a population of 

Yellow Warblers {Dendroica petechia) that breed primarily within riparian corridors.

My primary objectives were to 1) refine apparent survival estimates using knowledge of 

between-year breeding dispersal; 2) determine the value of altering the sampling design 

to include extended searches for marked individuals surrounding the study sites; and 3) 

assess the effectiveness of transient models to reduce the effects of permanent emigration 

on estimates of songbird survival probability.

S t u d y  A r e a  a n d  M e t h o d s

I conducted my research on seven study sites on a combination o f pubic and 

private lands along the Bitterroot River in western Montana and four smaller sites along
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riparian drainages within the western foothills, primarily in the Bitterroot National Forest 

(Fig.l) (a subset of the sites described in Tewksbury et al. 1998). These core sites 

averaged 15 ha in size (range 5-20 ha) with elevations of 1050-1350 m. All sites were 

primarily deciduous riparian habitats. The Bitterroot River sites were dominated by 

deciduous trees and shrubs, especially black cottonwood {Populus trichocarpd) and were 

surrounded by residential areas, agricultural lands (cultivated and/or grazed by cattle or 

horses), and deciduous and coniferous forest communities. The foothill sites were 

dominated by shrubs and deciduous trees, especially quaking aspen {Populus 

tremuloides), and were surrounded by coniferous forests and some grazed lands. Study 

sites were initially chosen to minimize differences in habitat character among sites, 

although there was a range in landscape variation surrounding the sites (see Tewksbury et 

al. 1998).

During the breeding season. Yellow Warblers are the most common species of 

deciduous riparian areas within the Rocky Mountain West (Tewksbury et al. in press). In 

western Montana, they arrive on the breeding grounds and begin to establish territories 

during the last two weeks of May, with males generally arriving two to seven days before 

females (Tewksbury and Cilimburg unpubl. data). They are found in association with 

streamside shrubs or large deciduous trees, especially black cottonwood, and may also be 

found within the deciduous vegetation o f residential areas (Hutto and Young 1999; 

Cilimburg unpubl. data).

During the 1995-1998 breeding seasons (approximately 23 May — 1 August), field 

assistants and I created territory maps of breeding Yellow Warblers on the 11 core sites 

and target mist-netted adults, often using playbacks of songs and calls. Both females and

6



males respond to playbacks, though females less so, especially during incubation. We 

aged and sexed all birds captured and marked individuals with one US Fish and Wildlife 

Service aluminum band and a unique combination of three color bands. As this was part 

o f a larger study (Tewksbury et al. 1998, Tewksbury 1999), field assistants searched for 

and monitored nests, mist-netted, or resighted marked individuals at each core site every 

one to three days throughout the season. The perimeters of each site (approximately 100- 

200 m depending on available habitat) were searched for banded birds in 1996 and 1997.

During the 1998 and 1999 seasons, I expanded the resighting area and, together 

with an assistant, searched for banded individuals within suitable habitat along the 

Bitterroot River between and surrounding the core sites (Fig. 1). We concentrated our 

efforts around the sites where the most birds were banded (sites #1, 2, 3, 4, 6). We 

surveyed about 85-90% o f available Yellow Warbler habitat between sites #1-3 during 

each o f these two seasons; surveys around the other sites were less complete (see Fig. 1). 

For these searches, we systematically traveled sections of the river corridor, sighted 

individuals and determined the presence or absence of bands and, when present, the color 

combination. We again used song playbacks to attract pairs and played songs in 

appropriate warbler habitat when there was no visible or audible activity. As males are 

commonly located first, we placed extra effort in sighting the female associated with each 

male. We approached sites by foot whenever possible and used kayaks to access small 

islands. Resighting time for the expanded dispersal searches totaled approximately 220 

hours in 1998 and 380 hours in 1999 and generally occurred between 0600 and 1300 

hours. In 1998, sampling occurred from 26 May — 8 July. In 1999,1 divided the season 

in half, resighting from 27 May -  12 June and repeating the surveys from 20 June -  12

7



July. I split the season to avoid confounding survival probabilities and detection 

probabilities in the fully time-dependent Cormack-Jolly-Seber models (Lebreton et al. 

1992). This allowed time-specific parameter estimations to be assessed in 1999.

Territory centers were used to determine the distance moved between years. I 

used a Trimble Geoexplorer GPS unit to mark exact locations of banded individuals 

found off the core sites in 1998 and 1999. In 1999, the territory centers for all banded 

individuals and the boundaries o f all core sites were mapped via GPS. From the territory 

site maps, I digitized the approximate territory center for each bird in 1995-1998, and 

from these, computed straight-line dispersal distances using UTM coordinates.

Data analysis — parameter estimation. — I used Cormack-Jolly-Seber (CJS) 

models to estimate annual apparent survival probabilities (<|)) and detection probabilities 

ip) (Lebreton et al. 1992, Nichols 1996). The model set was determined a priori and was 

based on Yellow Warbler biology and the question of interest (Burnham and Anderson 

1998, Anderson and Burnham 1999). For both (|) andp, 1 assessed gender- and year- 

specificity and the interaction between these variables (Table 1).

To assess how resighting in the expanded search areas affected estimates of 

apparent survival and detection probabilities, I conducted two analyses. The data for the 

first analysis included all individuals banded and those resighted in subsequent years on 

the study site on which they were originally banded (hereafter termed “core analysis”). 

For the second analysis, I included core analysis data, banded birds sighted off the study 

sites (via the extended searches in 1998 and 1999), and sightings of individuals on sites 

other than their site of origin (hereafter termed “dispersal analysis”).



I used program MARK (White and Burnham 1999) to generate maximum 

likelihood estimates of (|) andp  and relied on Akaike Information Criteria (AICc, adjusted 

for sample size) to determine the best approximating model among the suite of candidate 

models. This approach determines the model that best explains the data while 

incorporating the fewest parameters, thus balancing tradeoffs between sampling variance 

and bias (Burnham and Anderson 1998, Anderson and Burnham 1999). To test my 

assumptions of model fit (lack of independence among individuals, heterogeneity in <|) 

and/or /?), I ran bootstrap Goodness of Fit (OOP) tests (1,000 replications) on the global 

model for both sets of analyses (Lebreton et al. 1992, Burnham and Anderson 1998). 

From this analysis, I calculated c, the variance inflation factor, defined as the global 

model deviance divided by the mean bootstrap deviance (White and Burnham 1999).

Data analysis -  transient models. -  Pradel et al. (1997) developed mark-recapture 

models that eliminate transients (permanent emigrants) from a sample to provide 

estimates of true survival for residents. These models assume individuals resighted at 

least once are residents, and a high but unknown proportion of those initially marked and 

never resighted are transients. Transients are operationally defined as having an apparent 

survival probability of 0.00 (Loery et al. 1997, Pradel et al. 1997). According to Pradel et 

al. (1997), two modeling approaches can be used to detect transients, the ad hoc model 

and the Robson model. For the ad hoc model, parameters are estimated only for 

residents, those individuals recaptured or resighted at least once. With the Robson 

model, apparent survival probabilities are estimated separately for those individuals 

newly captured and those individuals resighted at least once. The proportion of residents 

in the population is then estimated by dividing the survival probability of the newly



marked individuals by the survival probability of the residents. Pradel et al. (1997) 

showed that the ad hoc model was a reasonable approximation of the Robson model 

when detection probabilities were high, and my data permitted a comparison of both 

approaches.

To assess the appropriateness of using transient models to clarify the proportion 

of residents and transients, I ran the ad hoc and Robson models using the core analysis 

data set and compared these results to estimates obtained from the dispersal analysis. I 

used program MARK (White and Burnham 1999), altering the input file for the ad hoc 

model (suppressing the first capture within the capture history for each individual), and 

altering the parameter index matrix within MARK for the Robson model (Pradel et al. 

1997). I report the survival probabilities and detection probabilities using the model 

structure from the previously determined best approximating model for the core analysis.
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Bitterroot Valley
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Bitterroot Valley
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Area not searched
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Fig 1. The core sites and expanded search areas within the riparian corridor 
surrounding the Bitterroot River, Ravalli County, MT. Sites # 1 —7 are the core 
Bitterroot River sites; sites a -  d are the core foothill sites. The core sites were 
studied 1995-1999; resighting in the expanded search area occurred in 1998-1999.
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T a b l e  1. Candidate sets of Cormack-Jolly-Seber models used in program MARK 

ranked by Akaike’s Information Criterion (AICc; adjusted for small sample size) for the 

core and dispersal analyses.

CORE ANALYSIS DISPERSAL ANALYSIS

Model “ A AICc ̂
AICc 
weight ̂ np'^ ModeP A AICc’’

AICc
weight np'’

4>(g + t)X g + T) 0.00 0.213 9 *(g + OXg + T) 0.00 0.406 9
4)(t)Xg + T) 0.11 0.202 8 # ) X g  + T) 1.08 0.236 8
<l>(g + 1)/?(.) 0.28 0.186 6 <t>(g + t)X g + 1) 1.52 0.190 11
<t>(g + t)p(g) 0.89 0.137 7 4)(t)Xg + 1) 2.31 0.128 10
<t>(g + t)j^(T) 2.41 0.064 8 4>(g * OXg* t) 6.10 0.019 18
#)j?(g ) 2.57 0.059 6 (Kg + t)XO 6.19 0.018 10
<t>(t)/?(g + 1) 2.67 0.056 10 (KOXt) 10.63 0.002 9
(t)(g + t)/>(g + 1) 2.80 0.053 11 (t>(g + t)p(g) 14.57 0.000 7
(Kt)X-) 4.22 0.026 5 (Kg + t ) X ) 15.50 0.000 6
(l)(t)p(t) 7.78 0.004 9 (KOXg ) 17.17 0.000 6
4)(g * t)X g * t) 12.50 0.000 18 <t>(t)X-) 21.59 0.000 5
(|)(g + T)/7(g + T) 32.33 0.000 6 (Kg + T)p(g + T) 43.89 0.000 6
4)(g)X) 50.33 0.000 3 (Kg * T)Xg * T) 47.22 0.000 8
(|)(g + T)Xg) 60.14 0.000 5 (Kg)Xg + t) 53.72 0.000 7

® Model type. ^ is apparent survival probability; p  is detection probability; g is group (male, 

female), t is time (year); T is trend in time; (.) is no variation; + is additive effect; * is 

interaction effect.

Difference in AICc values between this model and the model with the lowest AICc value.

Estimates of the likelihood of the model, given the data; normalized to sum to one (Burnham 

and Anderson 1998).

Number o f estimable parameters.
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R e s u l t s

Return and dispersal o f marked birds, -  Between 1995-1998, 149 females and 

287 males were banded, with 86% of these from the Bitterroot River sites and 14% from 

the foothill sites. Of these, 44 females and 133 males were resighted at least once in any 

one or more of the subsequent years. In 1998, the first year of the expanded searches, 

17.0% (9 of 47) of the banded birds resighted were found either off the core sites or on a 

core site other than their site of origin, and in 1999 this increased to 29.6% (21 of 71; five 

of these 21 were also found dispersed off the sites in 1998). Only four of the birds found 

via the expanded searches were within 0.5 km of their original banding site. Distance 

moved between years for all resighted birds ranged from 4 -  24,728 m (for females, 

median = 153 m; for males, median = 86 m) and the distribution of detected dispersal 

distance was strongly skewed to the right (Fig. 2). Although the linear area searched 

surrounding and between the core sites was incomplete (Fig. 1 ), the farthest distance that 

an individual could have dispersed and been detected was approximately 45 km.

CJS model assumptions and model selection. — The global models fit the data,

and no overdispersion adjustments were made (core analysis, c = 0.952; dispersal

analysis, c = 0.995) (White and Burnham1999). The best approximating model for both

the core and dispersal analyses indicated an additive effect of time on survival probability

for males and females (Table 1). Detection probability also differed between sexes with

an increasing trend over time (Table 1). Any model with an AIC value within two points

of the best model is thought to be a reasonable model given the data (Burnham and

Anderson 1998). There were four models for the core analysis and three models for the

dispersal analysis with A AIC < 2.00 (Table 1), and estimates of (|) and p  are slightly
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different with each model (Appendix I and II). The second best model for both analyses 

suggested apparent survival varied over time although not between sexes. For the results 

described below, I report the estimates from the best model (AAICc = 0.00); however, the 

inference would not change substantially with any o f the other estimates (Appendix I and

n).

Estimates o f  apparent survival probability and detection probability. — Apparent 

survival probabilities from the dispersal analysis were consistently higher than survival 

probabilities from the core analysis for both males and females (Table 2 and Fig. 3A and 

3B). The degree of difference depended on year and gender, with ^ being 0.024 (SE = 

0.066) — 0.106 (SE = 0.064) higher when the dispersed birds were included. For males, 

the core analysis mean ^ was 0.418 (SE = 0.034, range 0.346-0.490), and the dispersal 

analysis mean ^ was 0.493 (SE = 0.037, range 0.410-0.588). For females, the core 

analysis mean ^ was 0.350 (SE = 0.033; range 0.28-0.42), and the dispersal analysis 

mean ^ was 0.413 (SE = 0.037; range 0.33-0.588).

For each year, male detection probabilities were consistently higher than those of 

females (Table 3) in both analyses. Estimates o f detection probabilities in the core 

analysis were consistently higher than in the dispersal analysis (Table 3). The greatest 

difference between the two analyses occurred in the first two years of resighting for both 

sexes; the core p 's  were 0.06-0.11 higher. For the last two years,/? estimates differed by 

only 0.02 — 0.06.

Estimates using transient models. — As expected based on Pradel et aTs (1997)

finding, the ad hoc model and the previously marked birds within the Robson model

provided similar estimates of apparent survival probabilities (Table 2). For males, the ad
14



hoc (|) were higher than the core analysis ^ for 1996 only; in the Robson model, 

previously marked <|)s were higher than the core (j) for 1996 and slightly higher for 1998 

(Table 2). The ad hoc ^ estimates were also higher than the dispersal analysis (|) for 1996, 

but lower in the following years (Table 2 and Table 4). In 1997, ^  for the newly marked 

males was higher (0.02) than the previously marked. Based on the Robson model, an 

estimated 94% o f the sampled population males were residents. For females, survival 

estimates from the transient models did increase relative to both core and dispersal 

analysis (Table 2 and Table 4), but the transient model estimates varied considerably year 

to year and had relatively high levels of variation (± 0.08-0.17 SE). The Robson model 

results suggested 54% o f females marked were residents.
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Fig. 2: (A) Distribution of between-year breeding dispersal for adult male (w = 

169) and female (« = 49) Yellow Warblers, 1996 —1999, in 50 m increments to 1500 m 

(range 4-24,728 m). Twelve percent of females and 7% of males dispersed farther than 

1500 m between years. Distance moved is non-cumulative (e.g. "< 200" is between 100 

and 200). (B) Cumulative distribution functions of dispersal distance for both sexes, 

showing the proportion of resighted individuals that were within a given distance of their 

previous territory center.
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Ta b l e  2. Adult Yellow Warbler estimates of apparent survival probability 

(± 1 SE) from the best approximating model for the four different analyses. Core 

analysis data include all individuals resighted on their original banding site; dispersal 

analysis data include all individuals resighted on any of the core sites and within the 

expanded search areas.

DATA 1995 1996 1997 1998

Core analysis
males 0.49 (0.06) 
females 0.42 (0.07)

0.46 (0.05) 
0.39 (0.06)

0.35 (0.05) 
0.28 (0.05)

0.37 (0.05) 
0.31 (0.05)

Dispersal analysis
males 0.59 (0.06) 
females 0.51 (0.07)

0.49 (0.05) 
0.41 (0.06)

0.41 (0.05) 
0.33 (0.05)

0.48 (0.04) 
0.40 (0.05)

Transient models 
Ad hoc model ^

males NA 
females NA

0.57 (0.11) 
0.64 (0.12)

0.28 (0.06) 
0.34 (0.09)

0.38 (0.08) 
0.46 (0.10)

Robson model ^
Newly marked 

males 0.50 (0.06) 
females 0.30 (0.07)

0.43 (0.06) 
0.26 (0.10)

0.34 (0.08) 
0.31 (0.10)

0.39 (0.07) 
0.22 (0.07)

Previously marked (all others) 
males NA 
females NA

0.50 (0.08) 
0.62 (0.17)

0.32 (0.07) 
0.33 (0.13)

0.39 (0.09) 
0.45 (0.15)

® Using core analysis data, capture history was truncated to include only individuals 

resighted at least once.

 ̂Using core analysis data, (j) for newly marked (one year post banding) were modeled 

separately from those resighted at least once.
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Fig. 3. Apparent survival probabilities (± 1 SE) for adult Yellow Warblers in the 

Bitterroot Valley, MT, 1995-1998 estimated without accounting for dispersal (core 

analysis) compared to apparent survival probabilities that incorporate dispersal (dispersal 

analysis). Data for males (A) and females (B) are from the best approximating model 

(see Table 2).
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T a b l e  3. Adult Yellow Warbler estimates of detection probability (± 1 SE) from 

the best approximating model for the four different analyses. Core analysis data include 

all individuals resighted on their original banding site; dispersal analysis data include all 

individuals resighted on any of the core sites and within the expanded search areas.

DATA 1996 1997 1998 1999

Core analysis
males
females

0.78 (0.07) 
0.56 (0.12)

0.84 (0.06) 
0.65 (0.09)

0.88 (0.04) 
0.73 (0.08)

0.92 (0.04) 
0.80 (0.08)

Dispersal analysis
males 0.69 (0.07) 
females 0.45 (0.09)

0.78 (0.04) 
0.56 (0.08)

0.85 (0.03) 
0.67 (0.07)

0.90 (0.03) 
0.77 (0.07)

Transient models 
Ad hoc model ^

males NA 
females NA

0.79 (0.14) 
0.57 (0.20)

0.92 (0.06) 
0.81 (0.12)

0.97 (0.03) 
0.93 (0.08)

Robson model ^
males
females

0.80 (0.07) 
0.67 (0.11)

0.84 (0.04) 
0.73 (0.08)

0.88 (0.04) 
0.78 (0.07)

0.90 (0.04) 
0.83 (0.07)

 ̂Using core analysis data, capture history was truncated to include only individuals 

resighted at least once.

 ̂Detection probability modeled as with the core analysis. A priori there was no reason to 

believe detection probability would differ between the newly marked individuals and 

those resighted at least once.
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Ta b l e  4. Differences in estimates of Yellow Warbler apparent survival 

probability (± 1 SE o f the difference) for the transient models relative to the dispersal 

analysis (from Table 2). indicates the transient estimate was higher than the dispersal 

estimate; indicates the transient estimate was lower.

DATA 1995 1996 1997 1998

Dispersal analysis
males
females

0.59 (0.06) 
0.51 (0.07)

0.49 (0.05) 
0.41 (0.06)

0.41 (0.05) 
0.33 (0.05)

0.48 (0.04) 
0.40 (0.05)

Transient models 
Ad hoc model ^

males
females

NA
NA

+ 0.08 (0.12) 
+ 0.23 (0.13)

-0.13 (0.08) 
+ 0.01 (0.10)

-0.10(0.09) 
+ 0.06 (0.11)

Robson model ^
Newly marked 

males 
females

0.09 (0.08) 
0.21 (0.10)

- 0.06 (0.08) 
-0.15 (0.12)

- 0.07 (0.09) 
-0.02 (0.11)

- 0.09 (0.08) 
-0.18(0.09)

Previously marked (all others) 
males NA 
females NA

+ 0.01 (0.09) 
+ 0.21 (0.18)

- 0.09 (0.09) 
0.00 (0.14)

-0.09 (0.10) 
+ 0.05 (0.16)

 ̂Using core analysis data, capture history was truncated to include only individuals 

resighted at least once.

 ̂Using core analysis data, (|) for newly marked (one year post banding) were modeled 

separately from those resighted at least once.
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D is c u s s io n

Apparent survival probabilities. — My analysis indicates that emigration can have 

substantial effects on estimates of apparent survival probability for Yellow Warblers. 

Depending on the year, estimates of (|) increased by 6.5 to 22.9% for males and 5.1 to 

29.0% for females when I increased the search area. These results suggest that 

researchers must carefully consider the factors affecting apparent survival probability 

(permanent emigration and mortality) when study areas are small relative to the ecology 

of the species of interest.

Given the potential impacts of permanent emigration on interpretation of apparent 

survival probability as an estimate of true survival probability, I believe that any attempt 

to use return rates as an estimate of true survival probability is probably unwise. For 

example, in 1998 there were 37 female and 52 males banded on the Bitterroot River sites. 

The return rate in 1999 for these sites combined would have been 0.24 for females, 

compared to an apparent survival probability of 0.40 for the dispersal analysis; for males 

the return rate would have been 0.42, compared to an apparent survival probability of 

0.48. Additionally, differences in return rates for males and females in this study were 

caused by varying effects of permanent emigration and detection probability on these 

estimates. These results contradict the suggestion by some investigators that movements 

of migratory songbirds are well understood and that return rates are reasonable substitutes 

for survival rates (e.g. Mewaldt and King 1985, Villard et al. 1995). Furthermore, return 

rates are difficult to compare because of spatial and temporal variation in both survival 

and movement probabilities. For example, at least three passerine studies incorporating 

multiple study areas have shown that the character of the site affected site fidelity and
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therefore rates of return. Lawn (1994) color banded Willow Warblers (Phylloscopus 

trochilus) at four adjacent sites of varying habitat quality and found rates of return to the 

site o f banding varied from 14 — 41%. However, he documented breeding dispersal 

between sites, demonstrating that these return rates differed because o f inconsistencies in 

site fidelity, not survival. Two other studies found differential returns depending on 

breeding success and quality of site (Black-throated Blue Warbler, Dendroica 

caerulescens. Holmes et al. 1996; Bobolink, Dolichonyx oryzivorus, Bollinger and Gavin 

1989). However, if individuals are highly site faithful, they may return to unsuitable 

habitat, resulting in a time lag of responses to habitat modifications (Wiens and 

Rotenberry 1985, Temple and Wiens 1989).

Studies that find differential returns of one or both sexes based on breeding 

success in the year prior (e.g., Beletsky and Orians 1987, Bollinger and Gavin 1989, Roth 

and Johnson 1993, Lemon et al. 1996, Haas 1998, Forero et al. 1999; reviewed in 

Greenwood and Harvey 1982) are widespread in the avian literature, yet most cannot 

differentiate dispersal from mortality because those birds that were assumed to have 

dispersed were never located. In this study, four of the six female Yellow Warblers that 

experienced seasonal nest failure and were located again had dispersed over 2000 m (see 

Chapter 2). Haas (1998) experimentally showed that differences in returns for American 

Robins (Turdus migratorius) and Brown Thrashers {Toxostoma rufum) were related to 

breeding success in the previous season and not because of renesting stress (i.e. increased 

reproductive effort) or the quality of the individual.

To my knowledge, this is the first songbird study explicitly designed to use 

observations of banded songbirds to compare apparent survival probabilities and
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detection probabilities in an expanded search area to those from a core search area.

Others have used mark-recapture with the Constant Effort Mist Netting scheme (CEMN) 

and assessed changes in the apparent survival probabilities of songbirds when one study 

area was expanded to include multiple study areas (Peach et al. 1990, Peach 1993).

Peach et al. (1990) captured Reed Warblers (Acrocephalus scirpaceus) and Sedge 

Warblers {Acrocephalus schoenobaneus) over 23 years and estimated ^ and p  from one 

sampling area and again when a secondary study area was included. Survival probability 

was 29% higher for Reed Warblers and 54% higher for Sedge Warblers when both study 

sites were included. However, their comparison involved two small study sites only 80 m 

apart. I had a total o f 11 study sites, with a 3.5 km minimum distance between the main 

Bitterroot River sites, although paired foothill sites were as close as 0.5 km (Fig. 1). In a 

separate study, Peach (1993) compared ^  for five different songbird species from single 

and multiple study sites and reported that with inclusion of the recaptures from additional 

study sites, (j) changed from a decrease of 11% to an increase of 128%, depending on the 

species. However, direct comparisons between CEMN studies and intensive resighting 

studies such as ours are difficult because CEMN studies are more likely to violate 

Cormack-Jolly-Seber model assumptions of equal catchability of individuals and 

geographic closure (resident birds moving in and out o f the netting area) (Thompson et 

al. 1998).

Other non-passerine studies have effectively used multistate models to estimate

survival probabilities, detection probabilities and movement parameters. Spendelow et

al. (1995) sampled four large breeding colonies of Roseate Terns {Sterna dougallii) and

found estimates o f apparent survival probabilities increased by 8% as compared to
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estimates from a previously studied single colony, with this difference attributed entirely 

to movement and not mortality. Lindberg et al. (1998) estimated dispersal probabilities 

and natal and breeding philopatry in a metapopulation of Black Brant {Branta bernicla 

nigricans). These studies benefited from large sample sizes and discreet breeding sites, 

conditions not generally available for passerines.

The assumption that adult songbird dispersal is a negligible parameter (e.g., 

Pulliam et al. 1992, Villard et al. 1995) appears widespread in the literature (Koenig et al. 

2000) and is often explicit in modeling attempts such as some spatially explicit 

population models (e.g., Pulliam et al. 1992). Assumptions regarding lack of dispersal 

stem from evidence of strong site-fidelity. For example, many studies report that adults 

commonly return to the same territory as the previous year (e.g.. Prairie Warbler 

{Dendroica discolor), Nolan 1978; Willow Warbler {Phylloscopus trochilus), Tiainen 

1983; Painted Bunting {Passerina ciris), Lanyon and Thompson 1986; Indigo Bunting 

{Passerina cyanea), Payne and Payne 1990; Savannah Sparrow (Passerculus 

sandwhichensis), Wheefright and Mauck 1998; White-eyed Vireo {Vireo griseus), Hopp 

et al. 1999). However, as this study demonstrates, site faithfulness by some in a 

population tells us little about the proportion of birds that may have dispersed.

Transients. — I expected estimates from the transient models (ad hoc and Robson 

models) to exceed estimates from the dispersal analysis if I did not sample all permanent 

emigrants in the expanded search or if  “transients” that were eliminated from the 

transient models included individuals other than permanent emigrants. For example, 

transients eliminated from the analysis may include individuals from the resident 

population with low survival or recapture probability, especially in systems with
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extensive heterogeneity. Without knowing true survival, I am limited in my ability to 

evaluate the performance of transient models in this study. Nonetheless, transient models 

did not provide estimates that were consistent with the anticipated patterns and these 

estimates were less precise because of the reduction in the data set. As discussed, 

survival estimates from the dispersal analysis were consistently higher than estimates 

from the core analysis, although the degree of difference in estimates between these 

analyses was variable. In contrast, estimates of survival probability from the ad hoc 

models were not consistently higher than estimates from the dispersal analysis; in two of 

the six comparisons ^  estimates were lower than ^ estimates from the dispersal analysis. 

Estimates from the Robson models were consistently lower than estimates from the 

dispersal analysis for newly marked individuals, but estimates for previously marked 

individuals were equal or lower than dispersal analysis estimates in three o f the six 

comparisons. Interestingly, survival estimates for newly marked males were higher or 

equal to estimates for previously marked birds in 1997 and 1998 and elimination of some 

of the newly marked birds from the transient models may have lowered survival 

estimates for the transient models.

Such discrepancies among estimates o f survival probabilities makes interpretation 

challenging. I suggest that use of transient models in the presence of few transients may 

produce misleading results. I agree with Pradel et al. (1997) that diagnostic analysis 

about the presence o f transients should be performed before using transient models. I me 

also concerned about the inconsistent pattern of transient model estimates and the 

elimination o f individuals from an analysis. Inappropriately excluding individuals from 

an analysis results in unnecessary increases in sampling variance. Furthermore, I
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question the biological rational for excluding individuals that are seen only once as 

transients. Based on Pradel et al. (1997), I estimated 54% of the newly marked females 

in this study were classified as transients (survival probability o f newly marked 

individuals/survival probability of residents). I believe this number is high, considering 

that most o f these birds were known to breed on the study area. I am not convinced that 

transient models will increase the accuracy of survival estimates as argued by others 

(Peach 1993, DeSante et al. 1995, Pradel et al. 1997) when the “transients” eliminated 

from the analysis may include resident individuals with low survival or capture 

probabilities. Other researchers are obviously concerned about the definition of 

transients as a variety of criteria have been used to exclude these birds form the analysis. 

For his survival analysis. Lawn (1994) included only those individuals known to be 

residents for the majority of the breeding season. Some CEMN studies define residents 

as individuals recaptured 7-10 days later within the same season (Peach et al. 1991,

Chase et al. 1997, Gardali et al. 2000). Other definitions o f residents or transients are 

certainly possible. Finally, even if transient analysis appropriately identifies and 

eliminates individuals that permanently emigrate from the sampling area, these models 

assume that the meaningful population definition for these analyses is individuals that are 

resident on what may be a very small sampling area. These definitions of “populations” 

may not be meaningful for management.

I think that transient models may represent an attempt to rectify a sampling 

problem through analysis and the effectiveness of this approach remains unknown. At 

minimum I suggest that studies are designed to evaluate the performance o f these models. 

The performance of transient models and the effect of permanent emigration on survival
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estimates may be effectively evaluated by estimating survival probability for several 

different size study areas. Regression analysis of these survival estimates may reveal 

asymptotic values for estimates when all or most permanent emigrants are included in the 

study area. Transient models should produce estimates similar to asymptotic values for 

all scales o f the analysis if they appropriately identify and eliminate permanent emigrants 

from the analysis. Alternatively, I suggest that changes to sampling design may reduce 

the prevalence and concerns about transients individuals. Passerine population dynamics 

may be most accurately monitored by sampling individuals during the breeding season.

Detection probabilities. — For each year, probabilities o f detection, were higher

for males than females (Table 3). Males are more territorially vocal and aggressive, 

making them easier to resight. Female Yellow Warblers are less visible during 

incubation, although at other times they will respond to playbacks and allow for 

resighting of bands.

Detection probabilities for the core analysis were higher than for the dispersal 

analysis because there were more banded birds alive and available to be seen in the 

expanded search area and the search proficiency was lower. Additionally, as the search 

area increased, we found more birds that had not been resighted for at least two years 

post-marking, negatively affecting the detection probabilities. Because field workers 

were consistently resighting on the core sites throughout the season, I believe we found a 

high percentage of those that held territories within the boundaries of the core sites 

(possibly as high as 95% of the males and 85% of the females). Therefore, I suspect that 

birds that were resighted after being absent for one or more years were more likely to 

have been temporary emigrants than undetected birds residing within the sites. Studies in
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which the authors report that because band status of all known pairs was confirmed, 

detection probability approached 100% are potentially misleading because they do not 

consider temporary emigration, and I caution researchers not to confidently assume that 

because detection probabilities are high, all marked birds are accounted for.

Comparative life history. — Even with the expanded search area, my mean 

survival probability estimates were still relatively low (c|) for males was 0.49; ^  for 

females was 0.41) compared to Yellow Warblers studied elsewhere. Roberts (1971) 

reported Yellow Warbler apparent survival probability estimates o f 0.53 (± 0.07).

Nichols et al. (1981), using a portion of the data from Roberts (1971), found ^  was 0.62. 

The only other mark-resight studies for Yellow Warblers reported a 32.5% return rate for 

males, but a 90% territory fidelity rate (occupying the same or adjacent territory) among 

those that did return (Yeserinac and Weatherhead 1997).

My Yellow Warbler survival probabilities appear to be low relative to other North

American migratory songbirds. Comparisons among species, however, can be

misleading because the same metric for survival probabilities was not always used,

results depend on the shape and size of the study site, and investigations involving small

study sites in general did not account for dispersal (Barrowclough 1978). For reviews of

published survival estimates see Nichols et al. (1981), Karr et al. (1990), Martin and Li

(1992), DeSante et al. (1995), and Johnston et al. (1997); most of these reported estimates

stem from CEMN studies. For North American passerine populations, few survival

probability estimates are from intensive mark-resight studies. Recently, Budnik et al.

(2000) estimated survival probabilities for Bell’s Vireo {Vireo bellii) and found male <|)

was 0.68 ± 0.05 and female (j) was 0.47 ± 0.07. Loery (1997) estimated Black-capped
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Chickadee (Parus atricapillus) mean apparent survival probability to be 0.62 for males 

and females combined. Finally, Powell et al. (2000) found ^  for Wood Tbrusb 

(Hylocichla mustelina) to be 0.58 ±.17, again for males and females combined.

Although trend analysis from the Breeding Bird Survey does not report declines 

in Yellow Warbler numbers in Montana (Sauer et al. 1999), my highest (j) combined with 

the known seasonal fecundity rate for this population (1.47 to 2.02 young/pair/season), 

results in a population that appears unsustainable (Tewksbury 1999). Tewksbury (1999) 

suggests such low growth rates are reflective of high rates o f parasitism by Brown

headed Cowbirds (Molothrus ater).

Dispersal quantification approaches. — Two distinct approaches are commonly

used to quantify dispersal — mathematical adjustments and field design alterations.

Unfortunately, mathematical adjustments lack knowledge o f the underlying dispersal

distribution and the pattern of long distance dispersal (Koenig et al. 2000), and there is no

universal correction factor. Field designs can be altered by searching for marked birds in

either an expanded study area or on secondary study sites, via radio tracking the

movements of individuals, or a combination of these (reviewed in Koenig et al. 2000).

Dispersal information can then be incorporated into various newly developed modeling

approaches (reviewed in Nichols 1996 and Nichols and Kaiser 1999). My study

demonstrates the feasibility o f  combining multiple sites with expanded searches,

especially for species restricted to linear habitats. Some argue that dispersal studies are

necessarily labor intensive and logistically complex (Moore and Dolbeer 1989), but

compared to other techniques (radio and/or satellite tagging), resighting is inexpensive

and requires minimal training. Advanced technologies allowing satellite and/or radio
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transmitters attached to 5-10 gram warblers are years away at best (Faaborg et al. 1998, 

W. Cunningham pers. comm.).

In a very different type of study, comparison of genetic markers have been used to 

analyze population structure and sex-biased dispersal. Recently, Gibbs et al. (2000) 

studied microsatellite DNA variation among eight northern populations of Yellow 

Warblers and found evidence for male-biased dispersal — either long distance dispersal or 

rare episodic instances o f high rates o f movement. Genetic studies such as these can 

compare populations that are widely separated geographically and incorporate evidence 

for long distance dispersal that would otherwise be missed by mark-recapture field 

studies. Unfortunately, natal and adult dispersal are not distinguished in these studies.

Conclusions. — The importance of dispersal information extends beyond issues of 

survival estimation. Increasingly, in the face of changing landscapes, demographic 

investigations attempt to assess the source-sink status of one or more populations. By 

definition, source-sink populations are linked by emigration and immigration, yet 

movement is often not considered explicitly and direct evidence of dispersal is needed 

(Faaborg et al. 1998). Landscape structure likely affects movement into and out of 

habitat patches, and this movement has real consequences regarding persistence in 

increasingly fragmented landscapes (Faaborg et al. 1998, Walters 1998).

Even though dispersal has received considerable recent attention in the 

ornithological literature (see Haas 1995, Brawn and Robinson 1996, Koenig et al. 1996, 

Clarke et al. 1997, Haas 1998, Ferriere et al. 2000, Koenig et al. 2000, Walters 2000), our 

understanding is limited. Koenig et al. (2000) noted that the problem is not simply the 

lack of unbiased dispersal data, but also the misconception that the frequency o f long
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distance dispersal diminishes to insignificance beyond the boundaries of the study area, 

allowing investigators to be lulled into believing they have a reasonable understanding of 

fidelity and dispersal. I concur with Koenig et al. (2000) and hope this study will 

encourage additional passerine dispersal studies.

According to Clobert and Lebreton (1991), the primary weaknesses in estimating 

survival probabilities with open population mark-recapture studies are that survival 

probabilities are underestimated by an unknown factor because o f dispersal and that 

survival probabilities are not necessarily applicable to the entire population, especially if  

investigators choose highly productive study areas. Designing investigations with 

multiple years, multiple study sites and a dispersal component will allow the use of 

sophisticated modeling and will provide less biased demographic estimations, avoiding 

the pitfalls of return rates. Brawn and Robinson (1996) argue that for songbirds, lack of 

dispersal data is the most prominent missing piece of the songbird demographic puzzle. 

Studies o f dispersal can help address the discrepancy between monitoring programs and 

demographic studies. I support intensive mark-resight studies that offer the best 

demographic information possible.
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Appendix I. Adult Yellow Warbler estimates of apparent survival probabilities 

(<|) ± 1 SE) for models with A AICc < 2.00 (see Table 1) for the core and dispersal 

analyses.

Model = 1995 1996 1997 1998

CORE ANALYSIS
<l>(g + t)p (g  + T ) AAICc = 0.00

males 0.49 (0.06) 0.46 (0.05) 0.35 (0.05) 0.37 (0.05)
females 0.42 (0.07) 0.39 (0.06) 0.28 (0.05) 0.31 (0.05)

m x g + T ) AAICc = 0.11
males 0.48 (0.06) 0.44 (0.04) 0.33 (0.04) 0.35 (0.04)
females 0.48 (0.06) 0.44 (0.04) 0.33 (0.04) 0.35 (0.04)

<t»(g +  t) /? ( .)  AAICc = 0.28
males 0.46 (0.05) 0.47 (0.05) 0.36 (0.05) 0.39 (0.05)
females 0.35 (0.05) 0.36 (0.05) 0.27 (0.05) 0.29 (0.05)

<t>(g + t) /3 (g ) AAICc = 0.89
males 0.45 (0.05) 0.47 (0.05) 0.36 (0.05) 0.39 (0.05)
females 0.36 (0.05) 0.37 (0.06) 0.28 (0.05) 0.30 (0.05)

DISPERSAL ANALYSIS ‘
<Mg + 1) p(g + T ) AAICc = 0.00

males 0.59 (0.06) 0.49 (0.05) 0.41 (0.05) 0.48 (0.04)
females 0.51 (0.07) 0.41 (0.06) 0.33 (0.05) 0.40 (0.05)

<f>(t)p(g + T) AAICc = 1.08
males 0.57 (0.06) 0.48 (0.05) 0.39 (0.04) 0.45 (0.04)
females 0.57 (0.06) 0.48 (0.05) 0.39 (0.04) 0.45 (0.04)

4>(g +  t ) / ) (g  + t) AAICc = 1.52
males 0.56 (0.06) 0.53 (0.06) 0.41 (0.05) 0.47 (0.04)
females 0.48 (0.07) 0.45 (0.07) 0.34 (0.06) 0.39 (0.05)

 ̂Model type; ^ is apparent survival probability; p  is detection probability; g is group 

(male, female), t is time (year); T is trend in time; (.) is no variation; + is additive 

effect; * is interaction effect.

 ̂Core analysis data includes all individuals resighted on their original banding site.

 ̂Dispersal analysis data includes all individuals re sighted on any of the core sites and 

within the expanded search areas.
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Appendix H. Adult Yellow Warbler estimates of detection probabilities 

(p ± 1 SE) for models with A AICc < 2.00 (see Table 1) for the core and dispersal 

analyses.

Model “ 1996 1997 1998 1999

CORE ANALYSIS
(Kg + t) p(g + T)

males 0.78 (0.07) 0.84 (0.04) 0.88 (0.04) 0.92 (0.04)
females 0.58 (0.12) 0.65 (0.09) 0.73 (0.08) 0.80 (0.08)

(Kt)p(g + T)
males 0.78 (0.06) 0.84 (0.04) 0.89 (0.03) 0.92 (0.03)
females 0.51 (0.11) 0.61 (0.08) 0.70 (0.08) 0.77 (0.08)

<t>(g + t) p(.)
males 0.83 (0.03) 0.83 (0.03) 0.83 (0.03) 0.83 (0.03)
females 0.83 (0.03) 0.83 (0.03) 0.83 (0.03) 0.83 (0.03)

<|)(g + t)p(g)
males 0.85 (0.03) 0.85 (0.03) 0.85 (0.03) 0.85 (0.03)
females 0.76 (0.07) 0.76 (0.07) 0.76 (0.07) 0.76 (0.07)

DISPERSAL ANALYSIS
<Kg + t) p(g + T)

males 0.69 (0.07) 0.78 (0.04) 0.85 (0.03) 0.90 (0.03)
females 0.45 (0.09) 0.56 (0.07) 0.67 (0.07) 0.77 (0.07)

(Kt) p(g + T)
males 0.69 (0.06) 0.78 (0.04) 0.85 (0.03) 0.91 (0.03)
females 0.41 (0.09) 0.53 (0.07) 0.65 (0.07) 0.75 (0.07)

<|)(g + t) p(g + t)
males 0.74 (0.07) 0.72 (0.07) 0.79 (0.07) 0.92 (0.03)
females 0.51 (0.11) 0.49 (0.11) 0.59 (0.11) 0.82 (0.07)

 ̂Model type: ([) is apparent survival probability; p  is detection probability; g is group 

(male, female), t is time (year); T is trend in time; (.) is no variation; + is additive 

effect; * is interaction effect.

Core analysis data includes all individuals resighted on their original banding site.

 ̂Dispersal analysis data includes all individuals resighted on any of the core sites and 

within the expanded search areas.
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C h a p t e r  2:

A r e  Pa t t e r n s  o f  Y e l l o w  W a r b l e r  B r e e d in g  

D is p e r s a l  R e l a t e d  t o  N e s t  S u c c e s s ?

A b s t r a c t

Differentiating between mortality and dispersal remains a challenge to avian

researchers. Evidence of breeding dispersal related to nest success can suggest a causal

mechanism for dispersal and help distinguish movement from mortality. To assess the

relationship between dispersal and reproductive success, 287 male and 149 female adult

Yellow Warblers {Dendroica petechia) were color-banded and resighted over five

breeding seasons at 11 study sites in the Bitterroot Valley, Montana. To document

dispersal, during the last two seasons, field assistants and I searched extensively for

marked warblers between and surrounding these sites. Additionally, reproductive success

in the previous season (1995-1998) was known for many o f these marked birds. I

compared dispersal distance, dispersal rates, and return rates of successful and

unsuccessful males and females. I also assessed dispersal and return in relation to

reproductive effort. Results indicate that these Yellow Warblers were not completely

breeding site faithful. Median dispersal distance was 123 m for females and 85 m for

males. Breeding dispersal appeared to be related to prior nest success for females;

unsuccessful females dispersed farther and returned at lower rates than successful

females. There were no real differences in dispersal distance, dispersal rates, or return

rates between successful and unsuccessful males. Return was not influenced by

reproductive effort of males. It was unlikely that female return rate was related to
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reproductive effort; however, I could not definitively differentiate between effort and 

success. I suggest that other unsuccessful females may have dispersed, and this could 

explain why survival probabilities for females of this population are lower than those of 

males.

Keywords: breeding dispersal, Dendroica petechia, reproducitve success. Yellow 

Warbler

In t r o d u c t io n

Although avian dispersal is a critical population parameter (Temple and Wiens 

1989, Loery et al. 1997, Koenig et al. 2000), our understanding of year-to-year movement 

is limited. For songbirds, it is widely believed that dispersal is far greater in the first year 

of life than in subsequent years, and that adults have strong breeding site fidelity 

(Greenwood and Harvey 1982). However, because dispersal away from a breeding site is 

difficult to track, the probability and extent o f such movements remain unknown for most 

species. Additionally, the mechanisms that promote or discourage dispersal in passerines 

have only recently begun to be studied adequately (e.g., Bollinger and Gavin 1989, Haas 

1998, Lindberg 1998). Differences in dispersal patterns between sexes are frequently 

reported. Site fidelity is often assumed to be strong in territory-establishing males 

because previous breeding experience may confer a competitive advantage for a breeding 

territory (Greenwood 1980, Slagsvold and Lifleld 1990), and knowledge of a particular 

area may increase a bird’s ability to acquire food, escape predators, and reproduce 

(Wheelwright and Mauck 1998). In most songbird species studied, females are less site
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faithful than males, presumably because females are selecting breeding sites based on 

mate quality foremost, and territory quality either secondarily or indirectly (Greenwood 

and Harvey 1982, Payne and Payne 1993, Clarke et al. 1997). However, stronger site 

fidelity has been found in males of some species (reviewed in Clarke et al. 1997).

Many studies suggest that dispersal is related to reproductive success in the 

previous breeding season (e.g., Nolan 1978, Drilling and Thompson 1988, Bollinger and 

Gavin 1989, Haas 1998). Recently, Haas (1998) experimentally manipulated the 

breeding system for American Robins {Turdis migratorious) and Brown Thrashers 

{Toxostoma rufum) and found strong support for the “prior experience” hypothesis in 

which individuals choose breeding sites based on experience in the previous season. 

Robins and thrashers subjected to human-induced nest failure returned to their previous 

nesting sites the following year at significantly lower rates than successful breeders, and 

dispersal distances tended to be greater after both natural and experimental failures than 

after successful nests. She assumed that a proportion of those that did not return had 

dispersed. In another example, Bollinger and Gavin (1989) compared the breeding-site 

fidelity of male and female Bobolinks (Dolichonx oryzivorus) at two low-quality sites 

and one high-quality site. Unsuccessful individuals at the low-quality sites were less 

likely to return the following year than were successful individuals, and the unsuccessful 

individuals that did return moved a greater distance between nest sites than those that 

were successful. A number of other researchers have determined that success in one 

breeding season resulted in increased likelihood of returning to the same site the next 

year (e.g., Harvey et al. 1979, Grotto et al. 1985, Gavin and Bollinger 1988, Payne and 

Payne 1993). However, few birds that disperse farther than the boundaries of the study
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site were ever found, and mortality and dispersal remain confounded in most studies 

(Haas 1998). An alternative explanation for low returns o f unsuccessful nesters include 

the cost o f reproduction or extra energy hypothesis, which posits that birds that renest 

within a season expend extra energetic effort which increases mortality (Resnick 1985, 

Roff 1992, Haas 1998, Lukacs et al. in review).

Documenting dispersal is therefore crucial in order to differentiate between 

movement and mortality. Some argue that dispersal has two components: decision 

regarding return (i.e. dispersal rate) and decision regarding distance moved (Gratto et al 

1985, Clarke et al. 1997). Because the two together determine how individuals in a 

population are distributed in space and time (Waser and Jones 1983, Clarke et al. 1997), 

both are important in understanding the biological significance of sex-biased dispersal. 

Based in part on evidence of between-year dispersal within a population of marked 

Yellow Warblers {Dendroica petechia), I designed a study to locate dispersed breeding 

birds beyond the boundaries of the study sites. In western Montana, Yellow Warblers 

breed within linear riparian corridors, and expanded surveys are feasible. The aim of this 

study was to determine whether breeding dispersal distance, dispersal rates, or return 

rates were linked to reproductive success in the previous season and whether differences 

existed between males and females. I also assessed one measure of reproductive effort to 

determine if  this cost influenced the return of males or females.

S t u d y  A r e a  a n d  M e t h o d s

I conducted my research on seven study sites on a combination o f public and 

private lands along the Bitterroot River in western Montana and four smaller sites along
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riparian drainages within the western foothills, primarily in the Bitterroot National Forest 

(Fig.l) (a subset of the sites described in Tewksbury et al. 1998). These core sites 

averaged 15 ha in size (range 5-20 ha) with elevations of 1050-1350 m. All sites were 

primarily deciduous riparian habitats. The Bitterroot River sites were dominated by 

deciduous trees and shrubs, especially black cottonwood (Populus trichocarpd) and were 

surrounded by residential areas, agricultural lands (cultivated and/or grazed by cattle or 

horses), and deciduous and coniferous forest communities. The foothill sites were 

dominated by shrubs and deciduous trees, especially quaking aspen {Populus 

tremuloides), and were surrounded by coniferous forests and some grazed lands. Study 

sites were initially chosen to minimize differences in habitat character among sites, 

although there was a range in landscape variation surrounding the sites (see Tewksbury et 

al. 1998).

During the breeding season. Yellow Warblers are the most common species of 

deciduous riparian areas within the Rocky Mountain West (Tewksbury et al. in press). In 

western Montana, they arrive on the breeding grounds and begin to establish territories 

during the last two weeks of May, with males generally arriving two to seven days before 

females (Tewksbury and Cilimburg unpubl. data). They are found in association with 

streamside shrubs or large deciduous trees, especially black cottonwood, and may also be 

found within the deciduous vegetation of residential areas (Hutto and Young 1999; 

Cilimburg unpubl. data).

During the 1995-1998 breeding seasons (approximately 23 May -  1 August), field 

assistants and I created territory maps of breeding Yellow Warblers on the 11 core sites 

and target mist-netted adults, often with the help of playback songs and calls. Both
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females and males respond to playback songs or calls, though females less so, especially 

during incubation. Field assistants aged and sexed by plumage all captured birds, and 

marked individuals with one US Fish and Wildlife Service metal band and a unique 

combination o f three color bands. Over four years, 287 males and 149 females were 

banded, with over 85% of these from the Bitterroot River sites. As this was part o f a 

larger study (Tewksbury et al. 1998, Tewksbury 1999), field assistants searched for and 

monitored nests, mist netted, or resighted marked individuals at each core site every one 

to three days throughout the season. The perimeter of each site (approximately 100-200 

m depending on available habitat) was searched for banded birds in 1996 and 1997.

During the 1998 and 1999 seasons, I expanded the resighting area and, together 

with an assistant, searched for banded individuals within suitable habitat along the 

Bitterroot River between and surrounding the core sites (Fig. 1). We concentrated our 

efforts around the sites where the most birds were banded (sites #1, 2, 3, 4, 6). We 

surveyed about 85-90% of available Yellow Warbler habitat between sites #1-3 during 

each o f these two seasons; surveys around the other sites were less complete (see Fig. 1). 

For these searches, we systematically traveled sections o f the river corridor, sighted 

individuals and determined the presence or absence of bands and, when present, the color 

combination. We again used song playbacks to attract pairs and played songs in 

appropriate warbler habitat when there was no visible or audible activity. As males are 

commonly located first, we placed extra effort in sighting the female associated with each 

male. We approached sites by foot whenever possible and used kayaks to access small 

islands. Resighting time for the expanded dispersal searches totaled approximately 220
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hours in 1998 and 380 hours in 1999 and generally occurred between 0600 and 1300 

hours. In both years, this resighting occurred from approximately 26 May -  10 July.

Territory centers were used to determine the distance moved between years. We 

used a Trimble Geoexplorer GPS unit to mark exact locations of banded individuals 

found off the core sites in 1998 and 1999. In 1999, the territory centers for all banded 

individuals and the boundaries o f all core sites were mapped via GPS. From the territory 

site maps, I digitized the approximate territory center for each bird in 1995-1998, and 

from these locations, computed straight-line dispersal distances using UTM coordinates.

Tewksbury (1999) collected data for nest success during the 1995-1998 seasons. 

Nest fates were based on periodic nests checks (every 2-4 days) and fate protocols 

established by Martin et al. (1996), with nest failure rates estimated using the Mayfield 

Method (Mayfield 1975, modified by Hensler and Nichols 1981). A bird was considered 

successful if it was associated with a nest that fledged at least one young within a season. 

Some o f these nests were parasitized by Brown-headed Cowbirds. Pairs infrequently 

fledged one cowbird young and no natal young (four returning males had this history). 

For the main analyses, I assumed such situations would not be considered failure by the 

warbler host and considered these individuals to have been successful. In a separate 

analysis, I considered whether inference would change if  raising a cowbird young alone 

were considered failure instead of success.

Yellow Warblers produce only one brood per season, yet pairs may renest 

multiple times following nest failures. Although they usually renested within the same 

territory, not all nests were located and some pairs may have moved to new territories.

To be reasonably assured that those that failed in their last monitored attempt did not
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successfully renest, I restricted the analysis to those pairs that were followed late into the 

season (see Martin 1995, Pease and Grysbowski 1995). I used 3 July as a cut-off date 

(less than 5% of all successful nests were initiated after this date), but I also incorporated 

other resighting information from territorial maps. Using the date after which no 

successful nests were initiated would have resulted in a sample size too small to run these 

analyses. Thus, not included in this analysis were pairs in which all nests failed before 

this date and either no additional nests were found or monitoring was discontinued.

Data analysis. — I considered males and females as independent sampling units 

because in only two cases did a marked pair reestablish in the following season. I 

assumed that the detection probability (probability of re sighting a marked bird, given that 

it was associated with the population) for successful and unsuccessful individuals did not 

differ at any given location. Because of sample size limitations, it was necessary to 

combine data from all years. All tests were two-tailed.

To test for differences between dispersal distributions, I used the two-sample 

Kolmogorov-Smimov Goodness of Fit test (Zar 1984). Using a test, I assessed 

differences in the median dispersal distance for males and females and separately for 

successful and unsuccessful males and successful and unsuccessful females. To test for 

differences in return rates based on nest success in the previous season, I used 2 x 2  

contingency tables and the Fisher’s exact test. Return rate was simply defined as the 

percentage o f birds that returned to the study site on which they were originally banded.

I also tested whether the dispersal rate (yes, dispersed versus no, did not disperse) varied 

with nest success with the Fisher’s exact test. A priori and as a conservative measure, I 

arbitrarily defined distance breeding dispersal as between-year movement greater than
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700 m (or approximately 10 territories for this population). Thus, movement less than 

700 m was not considered dispersal. Additionally, I assessed this relationship at a finer 

scale, and in a separate analysis, defined dispersal as movement greater than 200 m. 

Individuals may have knowledge of reproductive success for not only themselves, but 

also o f those in the surrounding territories (Boulinier and Danchin 1997), and beyond this 

distance (200 m), that information would likely be less well known.

Finally, I was interested in whether reproductive effort influenced rates of return, 

as a way to assess probable mortality. Because Yellow Warblers commonly renest many 

times within a season and because field assistants were rarely certain of finding all 

nesting attempts, an accurate measure of effort was difficult. However, assuming birds 

that successfully fledged young early in the season (with limited time to have failed 

attempts) expended less effort than those that either produced a successful nest later (and 

presumably failed prior to this) or produced no successful nests (and presumably failed 

after multiple attempts), comparisons of effort can be made. I used 7 July to split the 

season and compared both the return of successful individuals with nests completed on or 

prior to this date to all other individuals. If renesting is stressful, its effects should be 

apparent regardless of final nest success or failure, and removing unsuccessful 

individuals leaves out one group of interest (those that failed) (Haas 1998). Because nest 

success is confounded with reproductive effort, I also compared return before and after 7 

July for only the successful individuals. I again tested these differences for males and 

females via a 2 x 2 contingency table and the Fisher’s exact test.
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Montana

Bitterroot Valley
northHamilton

Bitterroot Valley
south half

2000 m

Core sites 

I— I Expanded search area 

Area not searched
2000 m

Fig 1. The core sites and expanded search areas within the riparian corridor 
surrounding the Bitterroot River, Ravalli County, MX. Sites #1 -  7 are the core 
Bitterroot River sites; sites a -  d are the core foothill sites. The core sites were 
studied 1995-1999; resighting in the expanded search area occurred in 1998-1999.
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Results

Returning female Yellow Warblers dispersed between 13 and 5,862 m; for males 

the range was 4-24,728 m. Although searches of the linear habitat between and 

surrounding the core study sites was incomplete (Fig.l), the farthest an individual could 

have dispersed and been detected was about 45 km. Median dispersal distance for all 

females was 123 m (« = 41, mean = 583 m, SE = 226), and for males the median distance 

was 85 m (« = 157, mean = 609 m, SE = 193). These medians did not differ significantly 

(X  ̂= 2.492, d f = 1, P = 0.114), nor did female and male distributions differ 

(Kolmogorov-Smimov = 0.869, P = 0.437) (Fig. 2). Dispersal data included multiple 

year moves by some individuals (e.g., dispersal distance 1995 to 1996 and 1996 to 1997).

O f the above 198 cases, I had corresponding nest success data in the previous 

season for 132 individuals (67%). For females in which nest success was known, median 

dispersal distance was 162 m (« = 32; mean = 710.0 m, SE = 281), for males it was 79 m 

(n — 100; mean = 734 m, SE = 294), and these medians differed significantly (x  ̂= 4.99, 

df = 1, P = 0.025). There was a significant difference in the dispersal distributions 

between females and males (Kolmogorov-Smimov = 1.902, P = 0.001).

In comparisons of dispersal distances with nest success, the median distance for 

six seasonally unsuccessful females was 3,546 m (range 159-5,862 m, mean = 3,191 m, 

SE = 1,043), and for 26 successful females it was 113 m (range 22-505 m, mean = 137.5 

m, SE = 103; x̂  = 3.282, df = 1, P = 0.070). The dispersal distribution o f the 

unsuccessful females was, however, not significantly different than that of successful 

females (Kolmogorov-Smimov = 0.566, P = 0.906) (Fig. 3A). There was no difference 

in the median dispersal distance for 32 unsuccessful males (median = 79 m, range 6-
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6,055 m, mean = 3191 m, SE = 1043) compared to 68 successful males (median = 82 m, 

range 15-24,728 m, mean = 1,795 m, SE = 4,960) (x  ̂=0.000, d f = 1, P = 1.00), but the 

dispersal distributions differed (Kolmogorov-Smimov = 2.152, P = 1.000) (Fig. 3B). 

Considering a cowbird fledgling as a failure instead of a success did not alter these 

results.

For male Yellow Warblers, 42.8% of successful males returned to their study site 

o f origin and 46.6% of unsuccessful males returned, demonstrating that returns were 

unrelated to an individual’s nesting success in the previous year (Table 1 ; Fisher’s exact 

test, P = 0.645). However, more females returned to the study site of origin if successful 

the previous year (35.1% returned if  successful; 6.5% returned if  unsuccessful; Table 1; 

Fisher’s exact test, P = 0.002). Again, if  a cowbird young was considered a failure, this 

finding did not change.

Comparisons of long distance dispersal rates ( >700 m) and their relation to 

breeding success again showed females were more likely to disperse after failed nest 

success (Table 2; Fisher’s exact test, P = 0.002). For males there was also a trend in the 

same direction (Table 2; Fisher’s exact test, P = 0.106). When dispersal is defined as 

movement ^ 0 0  m, this trend for males did not hold (Table 2; Fisher’s exact test, P = 

0.333), although it did for females (Table 2; Fishers exact test, P = 0.023).

For males, there did not appear to be a difference in the return rate for those who 

successfully nested early in the season (42.0% returned) and those that either successfully 

nested later in the season or were not successful (45.2% returned; Table 3; M = 215, 

Fishers exact test, P = 0.789). Nor were there differences in returns for successful males 

relative to whether they completed their nest early (41.3% returned) or late in the season
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(44.2% returned; Table 4; « = 149, Fisher’s Exact test, P = 0.741). For females, those 

with successful nests early in the season returned at a higher rate (40.0%) than all others 

(22.2%; Table 3; n = 125, Fishers exact test, P = 0.054). When the analysis was 

restricted to only successful females, there were no significant differences in returns 

between those that completed nesting early (45.7% returned) and those that completed 

nesting later in the season (32.1% returned; Table 4; n = 88, Fisher’s Exact test, P = 

0.261).
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Fig. 2: Distribution of between-year breeding dispersal for adult male (n = 159) 

and female (« = 41) Yellow Warblers, 1996 —1999, in 100-m increments to 1500 m 

(range 4-24,728 m). Distance moved is non-cumulative (e.g. ”< 300" is between 200 and 

300).
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58



T a b l e  L The percentage of Yellow Warbler males (« = 217) 

and females {n = 125) that returned to their original study site between 

1996-1999 in relation to nest success in the previous breeding season.

Nest % Fisher’s
Sex success return exact test

Males yes 42.8
P = 0.645

no 46.6

Females yes 35.1
P = 0.002

no 6.5

T a b l e  2. Differences in dispersal in relation to seasonal nest success for 

Yellow Warblers. The percentage of males {n = 100) and females {n = 32) that either 

dispersed or did not disperse between 1996-1999 relative to nest success in the previous 

breeding season, for two different measures of dispersal. Long distance dispersal is 

operationally defined as movement >700 m and short distance dispersal is ^ 0 0  m.

nest
Sex success

% dispersal 
>700 m^’"

Fisher’s 
exact test

% dispersal 
^00m ^'"=

Fisher’s 
exact test

Males yes 95.6 22.1
P = 0.106 P = 0.333

no 84.4 31.3

Females yes 96.2 15.4
P = 0.002 P = 0.023

no 33.3 66.7

® Long distance dispersal only ( >approximately 10 territories). 

 ̂Short and long distance dispersal combined.

Distance from territory center.
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T a b l e  3. Observed return rates of Yellow Warblers that 

expended low reproductive effort (early successful nesters) versus those 

that expended greater effort (successful later in the season or not at all), 

1996-1999 (males, « = 215; females, n = 125). The season was split, and 

7 July was used as the cutoff date (see S t u d y  A r e a  a n d  M e t h o d s ) .

Early % Fisher’s
Sex success return exact test

Males yes 42.0
P = 0.769

no 45.2

Females yes 40.0
P = 0.054

no 22.4

T a b l e  4. Observed return rates o f successful Yellow Warblers 

that expended low reproductive effort (early successful nesters) versus 

those that expended greater effort (successful later in the season), 1996- 

1999 (males, n = 149; females, n = 88).

Early % Fisher’s
Sex success return exact test

Males yes 41.3
P = 0.741

no 44.2

Females yes 45.7
P = 0.261

no 32.1
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D is c u s s io n

Although the majority of returning adult Yellow Warblers demonstrated the 

strong between-year site fidelity considered typical for warblers (i.e. moved less than 

approximately 10 territories; e.g.. Fig. 4A), others were not breeding site-faithful (e.g.. 

Fig. 4B). The additional movement data collected in this study allowed for less biased 

breeding dispersal distributions. These dispersal distributions reflect those individuals 

that field assistants and I were able to locate, and undoubtedly there were males and 

females alive and missed, especially if  they returned to territories not within core study 

sites. Nonetheless, with these data, associations between movement and nest success are 

evident.

By most measures, female dispersal was strongly related to breeding success. Of

the 26 females successful in fledging at least one young the previous year, just one

dispersed more than 700 m. Yet of the six unsuccessful females resighted, four dispersed

over 3000 m. Although 35% (n = 94) of successful females returned to their study site of

origin, only 7% (n = 31) of those with seasonal nest failure returned. Thus, successful

females were almost eight times more likely to return. The low return rate for

unsuccessful females, combined with their apparent propensity to disperse far beyond the

confines of the study area (for which the four individuals mentioned above are evidence),

suggests that some proportion of those females never seen again were dispersers, not

mortalities. Even accounting for dispersal, apparent survival estimates for females of this

population were relatively low, averaging 0.41 (range 0.33 ± 0.05 to 0.51 ± 0.07

depending on the year; Chapter 1). Detection probabilities were moderate, (range 0.45 ±

0.09 to 0.77 ± 0.07 depending on the year; Chapter 1), indicating that not all surviving
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females were resighted. Females are harder to relocate than males, especially when 

incubating. However, because resighting continued throughout the breeding season on 

the study sites, field assistants resighted most individuals that returned to those areas.

Less time was spent in each area of the expanded searches, and these were, as mentioned, 

incomplete. Acknowledging that the sample size for unsuccessful females was small and 

conclusions drawn are necessarily tentative, I suspect that an unknown proportion of 

unsuccessful females dispersed off the core study areas.

By most measures, male dispersal distance was unrelated to prior breeding 

success. The exception was the long distance dispersal rate, in which unsuccessful males 

appeared more likely than successful males to disperse over 700 m. Evidence indicates 

that some males in this population undertook long dispersals (9.5% moved more than 700 

m), yet it remains unclear if  this was related to reproductive success or other factors. As 

with females, there were likely males missed within the expanded search area and males 

that dispersed even longer distances. I have previously shown (Chapter 1) that estimates 

o f survival probabilities were higher for males than females (mean for males = 0.49, 

range 0.41 ± 0.05 to 0.49 ± 0.06) and that detection probabilities, although variable 

among years, were relatively high for males in this study (range 0.69 ± 0.07 to 0.90 ± 

0.03). The finding that dispersal distances tended to be shorter for males than females, 

together with higher detection probabilities for males, leads me to believe that we failed 

to resight proportionally more surviving females than males.

A number of other songbird studies have also found evidence o f female-biased

dispersal (e.g.. Drilling and Thompson 1988, Bollinger and Gavin 1989, Roth and

Johnson 1993; reviewed in Greenwood and Harvey 1982, Clarke et al. 1997). Fewer
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studies, however, demonstrated a difference in male and female return rates associated 

with prior breeding success. In a long-term study o f Blue Tits {Parus major), Harvey et 

al. (1979) showed that females whose nests were depredated moved a greater distance to 

breed the following year than did successful females, a pattern not evident for males. 

Lemon et al. (1996) found that for female American Redstarts {Setophaga ruticilld), 

breeding success was a strong predictor of their return to the study area. For males, the 

duration of time on their territory was a better predictor of return to the study area than 

was nest success, but whether they returned to their previous territory or not was related 

to prior success.

A variety of other passerine studies have demonstrated a relationship between 

return to the study area and reproductive success in the previous season for both sexes.

As mentioned, Haas (1998) confirmed this pattern in her study of male and female robins 

and thrashers. Darley et al. (1977) also found that reproductively successful male and 

female Grey Catbirds {Dumetella carolinensis) returned in greater numbers than those 

unsuccessful. Gavin and Bollinger (1988) reported that for Bobolinks {Dolichonyx 

oryzivorus) o f both sexes, breeding success in one year influenced breeding site location 

in the year following. In particular, those that fledged more young returned more often 

than those with fewer fledged young. Holmes and Sherry (1992) found that American 

Redstarts and Black-throated Blue Warblers {Dendroica caerulescens) showed a 

tendency to return if  successful. Jacobsson (1988) found that unsuccessful male Willow 

Warblers {Phy lias copus trochilus) dispersed to new territories at significantly higher rates 

than successful males, although sample sizes were small.
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Nonetheless, songbird nest success and dispersal or return rates do not always to 

follow these patterns. For example, female Cassin’s Finches (Carpodacus cassinii) have 

been found to be more site faithful than males (Mewaldt and King 1985). In contrast to 

Jacobsson (1988), Lawn (1994) reported that the return of older male Willow Warblers 

was not related to prior breeding success. Payne and Payne (1993) reported that although 

female Indigo Buntings (Passerina cyanea) were more likely to disperse than males, 

female dispersal was not related to breeding success in the previous year. In contrast to 

Yellow Warbler females in this study, Drilling and Thompson (1988) found no 

relationship between the success at the last breeding attempt of the previous year and the 

likelihood o f returning female House Wrens {Troglodytes aedon). However, they did 

find that returning females had produced more offspring in the previous season than non- 

retuming females. In concordance with my results, the reproductive success o f male 

House Wrens was not related to distance moved or return.

An alternative hypothesis to explain the patterns of return observed in this study is 

that differential returns reflect the energetic stress associated with multiple nesting 

efforts, and this extra effort results in higher rates of mortality. I found no evidence that 

extra nesting effort resulted in lower return rates for male Yellow Warblers. For females, 

there was a difference in return between presumed lower stress individuals (successful 

early) and presumed higher stress individuals (successful later or not at all). However, 

when I restricted the analysis to successful females only and then compared return 

relative to the timing of nest completion, the relationship did nor hold. Although Haas 

(1998) used a similar measure, she had an experimental framework designed to 

distinguish between dispersal and mortality (see below). I remain unconvinced that those
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with extra effort are truly mortalities and not dispersers; the two remain confounded in 

my study. Nonetheless, increased breeding effort and decreased nesting success together 

may affect both adult breeding dispersal and survival (Anders et al. 1997, Payne and 

Payne 1993).

Although life history theory predicts that the energetic stress o f renesting would 

have associated costs (Resnick 1985, Roff 1992), this remains difficult to demonstrate. 

Haas (1998) showed that the cost of reproduction hypothesis did not explain differential 

returns in American Robins and Brown Thrashers (assuming that renesting was 

correlated with reproductive costs). She was able to rule out this competing hypothesis 

because individuals that nested once per season returned at rates indistinguishable from 

those that nested repeatedly. However, Lukacs et al. {in review) compared the survival 

probabilities o f breeding versus non-breeding male and male versus female Orange- 

crowned Warblers {Vermivora celatd) and found that the lower survival rates for 

breeding males was consistent with the cost o f reproduction explanation. They were 

unable to rule out dispersal, but did note that non-breeding males are generally thought to 

have higher dispersal and would be expected to show lower survival (not higher) if 

significant levels of dispersal were occurring. Lacking evidence of sex-biased dispersal, 

they also suggest lower female survival probabilities reflect true differences in mortality 

(via a cost o f reproduction), but acknowledge this could be due to differences in dispersal 

(permanent emigration away from the study area).

I have previously shown (Chapter 1) that although model-based estimates of 

apparent survival probabilities varied among years, they were consistently higher for 

males than for females. In light of higher rates of dispersal for unsuccessful females
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versus unsuccessful males, further assessment of Yellow Warbler nesting attempts may 

help to clarify if  there is a detectable cost to reproductive effort. Again, differentiating 

between dispersal and mortality remains a challenge.

The reasons for differences in male and female dispersal and return patterns 

remain open to speculation. As mentioned, males may be more constrained in their 

abilities to disperse. Drilling and Thompson (1988) noted that dispersing males risk 

either not locating a suitable territory or being expelled from this new territory when the 

previous owner returns. Females, however, are thought to settle based, at least in part, on 

male attractiveness, and this has been demonstrated for Yellow Warblers (Yesemac and 

Weatherhead 1997).

In summary, further studies that focus on locating dispersed birds are necessary to 

understand the influence o f prior experience on year-to-year songbird movement. As this 

study shows, searching for marked songbirds in an extended area can be a successful 

technique for documenting dispersal, especially for birds breeding in linear or otherwise 

limited areas, and I hope this encourages further dispersal studies. Dispersal should not 

be considered a negligible parameter. As Haas (1998) suggested, evidence that breeding 

dispersal may be linked to reproductive success ties these two demographic parameters 

together and has important implications for the management of bird populations. 

Dispersers may originate disproportionately from low quality habitats (Bollinger and 

Gavin 1989, Holmes et al. 1996), and additional studies of dispersal could lead to better 

understanding o f source-sink dynamics.
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Fig. 4 (A). Breeding territories for one male at Bitterroot 

River site #I (not seen in 1997), demonstrating strong site-fidelity. 

(B) Breeding territories for one female in three consecutive years, 

demonstrating dispersal (darkened plots are Bitterroot River study 

sites # 1-3).
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