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Abstract. 
Across much of their diverse natural range in the Western US, species of the genus juniperus are 
expanding onto open grass and shrublands and infilling open woodland areas. In Southern 
Arizona’s Clifton Ranger District, landscape-scale restoration treatments have been used to stall 
this expansion and reduce canopy-cover. This study utilizes and compares two techniques – dot-
grid sampling and spatial wavelet analysis (SWA) – to estimate the efficacy of these treatments 
by measuring canopy-cover change pre-and post-treatment. Further, using the SWA dataset, the 
study explores the potential of SWA for landscape-scale ecological attribute estimation. This 
study found that restoration treatments significantly reduced canopy-cover with 18% and 42% 
mean reductions (p < 0.001), depending on treatment. The ability of SWA to estimate canopy-
cover, and crown diameter was good in open canopy-cover (EF values up to 0.587 for canopy-
cover estimation and 0.558 for crown diameter estimation), but diminished as canopy-cover 
increased, and systematically under-estimated as canopy-cover and crown diameter increased. 
Further, SWA showed that the potential for legacy tree and juniper expansion mapping was 
promising (68 to 79% of legacy trees correctly identified). Huge quantities of data and high 
technical complexity make SWA unsuitable for widespread adoption without addition of user-
friendly interface, but the quantity and quality of data suggests a vast utility in future forest and 
rangeland research and management.  
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Introduction 

 

Juniper Expansion and Infill 

 Since the beginning of the 19th century, woody plants have invaded and filled in open 

grasslands and savanna habitats worldwide (Archer et al. 1995). In the United States, over the 

range of geography inhabited by the genus juniperus, woody shrubs and trees of this genus have 

invaded previously-open sites (expansion), outcompeted their rivals on sites they historically 

inhabited, and infilled open woodlands, changing their character from open to closed (Archer et 

al. 1995, Jacobs 2008, Romme et al. 2008). Some of these changes may be attributed to 

management actions of the US Forest Service and other land management entities, especially a 

doctrine of total fire suppression and extensive and intensive grazing practices (West and Van 

Pelt 1987, Covington and Moore 1994). Further, fluctuations in climate or CO2 availability over 

centuries may have altered the distribution, extent, and character of vegetation communities 

through time (Miller and Wigand 1994, Archer et al. 1995).  

 It is often postulated that changes in juniper vegetation systems occurred due to the 

virtual removal of fire from the ecosystem during the majority of the 20th century (Baker and 

Shinnemann 2004). In this vein, research of fire history and fire ecology in pinon-juniper 

abounds. A 2004 literature review by Baker and Shinneman compares forty-six separate studies. 

This review found that the fire history and fire ecology of this ecosystem type is highly variable, 

and a subject of debate. Though it is sometimes accepted that juniper landscapes burn regularly 

at low severity (mean fire interval estimated at less than thirty-five years), this assertion over a 

broad area is not firmly based in science (Baker and Shinneman 2004).  

 The study area for my research is a portion of the Clifton Ranger District, Apache-

Sitgreaves National Forest in Arizona that is dominated by juniper savanna and woodland. 

Analysis of fire scars on old-growth alligator juniper and pockets of ponderosa pine indicates 

that fires occurred on Clifton Ranger District every three to seven years on average in ponderosa 

pine stands and surroundings, and less frequently, every twenty to forty years in pinon-juniper 

associations (Clifton Ranger District 2008). These relatively frequent fires may have kept 

vegetation communities from converting to subsequent successional stages (Johnsen 1962, 

Miller and Wigand 1994).  



Detrimental Effects of Juniper Habitat Change 

 Expansion and infill of juniper through greater survival due to decreased fire activity, site 

changes due to livestock grazing and vegetative succession (Johnsen 1962, Burkhart and Tisdale 

1976), and possibly reduction of vegetative competition by grazing animals (Johnsen 1962) have 

led to an increase in canopy-cover in once open or lightly wooded areas in my study area on the 

Clifton Ranger District (Clifton Ranger District 2008). Although desired canopy-cover 

percentage ranges generally from between one and twenty percent in savanna and woodland, US 

Forest Service monitoring indicates actual percentage now ranges from six to thirty-six percent, 

and as high as sixty-two percent in some locations (Clifton Ranger District 2008). These areas of 

closed canopy have been linked to decreased productivity and diversity of understory species, 

whether the main agent of these decreases is shading or litter cover (Blackburn and Tueller 1970, 

Jacobs 2008, Jameson 1966). In pre-settlement times, most of the canopy-cover was comprised 

by large alligator juniper (juniperus deppeana) trees over fifty cm in diameter at the root collar 

(Clifton Ranger District 2008). Recent field surveys have found that now less than five percent 

of canopy-cover comes from these larger trees, and that the landscape has experienced 

widespread juniper expansion and infill (Clifton Ranger District 2008). Most canopy-cover now 

is provided by trees less than twelve cm in diameter, indicating a change in forest structure away 

from open, old-growth stands, to more closed stands of younger and/or smaller trees.  

 Juniper canopy-cover increase has also led to a decrease in herbaceous vegetation 

production. Using both aerial and ground-based photographs from previous decades, Clifton 

managers concluded that herbaceous production had fallen off with increasing canopy-cover. 

(Clifton Ranger District 2008). The conversion of open savannas and the closing of once-open 

woodlands have caused a reduction in quality habitat for a variety of wildlife species (Clifton 

Ranger District 2008). 

 Soil characteristics are also negatively impacted by increases in canopy-cover. In arid 

environments like that of the study area, increased tree biomass alters the soil water budget, 

potentially monopolizing soil water and leaving inter-canopy zones drier and less hospitable for 

plant germination (Wilcox and Davenport 1995). Less herbaceous ground cover, resulting from 

either decreased available sunlight, intercepted precipitation, or cover by leaf litter increases the 

erodibility of now-exposed soils (Jameson 1966, Blackburn and Tueller 1970, Wilcox and 

Davenport 1995).   
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Restoration Treatments 

 The fire management personnel of Clifton Ranger District have used mechanical thinning 

and extensive prescribed burns to attempt to restore landscapes to pre-settlement levels of 

canopy-coverage and species composition of under- and over-story plants. Mechanical thinning 

includes the use of heavy equipment or chainsaws to cut and pile vegetation for burning at a later 

time – referred to hereafter as “thin-and-burn.” Thin-and-burn treatments both reduce canopy-

cover outright by removing tree crowns and provide greater available fuel to promote continuous 

fire spread and increase intensity.  

 Fire is most widely used on the Clifton Ranger District because it makes possible the 

treatment of thousands of hectares (ha) in a short amount of time for a comparatively small 

amount of money (Clifton Ranger District 2008). Treatment of 10-20,000 ha costs about 

$200,000, with per ha costs in Mesa project area of $5 for burning and $48 for thin-and-burn and 

$3 and $48 respectively in the NO Bar project area (Lever 2010). 

 Research has found that fire tends to kill smaller juniper trees (Jameson 1962, Dwyer and 

Pieper 1967, Baker and Shinneman 2004) in the size class Clifton Ranger District managers 

would like to eradicate (Clifton Ranger District 2008). Restoration burns are carried out in near-

wildfire conditions, in the early spring and late fall (Clifton Ranger District 2008). The 

availability of fuels to fire is high in warm, dry conditions, and fire effects are often suitably 

severe to top-kill juniper trees (Clifton Ranger District 2008). These weather and fuel conditions 

also allow for rapid and continuous fire spread, increasing the efficiency of restoration 

treatments.    

  Alligator juniper is particularly noted for its prolific re-sprouting following disturbance – 

including top-kill by cutting, mechanical “pushing” with heavy machinery, and fire (Tirmenstein 

1999). The most vigorous re-sprouters are the smallest individuals, and this propensity tapers off 

and disappears with larger, older trees (Tirmenstein 1999). Given this problematic fire ecology, 

Clifton managers plan burns as recurrent treatments, not single events (Clifton Ranger District 

2008). Reducing canopy-cover to promote fine fuel production could potentially lead to more 

regular fire, keeping re-sprouting individuals at bay into the future. 

 Scientific understanding regarding the effectiveness of thinning and fire in stalling 

juniper invasion and infill has diversified in the last decade (Baker 2009). Specifically, the 

prioritization of fire and thinning in reducing juniper canopy-cover is being challenged as a 
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general restoration need compared to limiting the spread of invasive plant species (Baker and 

Shinneman 2004, Baker 2009). Whether the traditional assumptions and restoration approaches 

described above are valid in the long run, or newer understanding leads to different restoration 

activities and goals which will displace them, management based on this traditional 

understanding is occurring across the West (Baker 2009). Ultimately, though one general 

restoration goal may not prove beneficial given the huge variety and spatial extent of juniper, 

burning and thinning for canopy reduction may prove effective in some specific areas where 

treatments have been sufficiently tailored to local environmental factors.  

 This study uses two techniques to examine the efficacy of restoration treatments in 

juniper savannas on the Clifton Ranger District, and test the validity of fire managers’ 

observations that some landscapes, based on soil characteristics, produce more favorable fire 

effects than others. Further, a remote-sensing technique is implemented to characterize 

vegetation size and trends in expansion and legacy tree location and density.  

 

Terrestrial Ecosystem Units 

 The 1987 Terrestrial Ecosystem Survey (TES) of the Apache-Sitgreaves National Forest 

(Laing et al. 1987) divides the forest into 123 Terrestrial Ecosystem Units (TEU) based primarily 

on soils and taking into account vegetation, climate, and special management concerns and other 

characteristics (Laing et al. 1987). These comprehensive surveys are described in a 1990 USFS 

Southwest Region directive (US Forest Service, 1990) as: 

…[a] systematic analysis, classification and mapping of terrestrial ecosystems. 

This integrated survey is hierarchical with respect to classification levels and 

mapping intensities. A terrestrial ecosystem is an integrated representation of the 

ecological relationship between climate, soil and vegetation. Phases of terrestrial 

ecosystems form the mapping units of the TES. 

 Through observation of prescribed fire effects, Clifton managers formulated the initial 

informal hypotheses regarding which of these units seemed to most produce desired fire effects, 

and which seemed most often to need additional thinning treatment to produce desired effects 

(Clifton Ranger District 2008, Lever 2008). TEU type 632 is thought by Clifton managers to 

possess greater water-holding capacity from its higher clay component. Theoretically, this soil 

type should sustain a more productive and continuous fuelbed. Fire introduced in warm, dry 
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conditions to these units could, in theory, achieve sufficient intensity to produce juniper 

mortality. Conversely, managers have observed the need for supplemental thinning in areas 

where fine fuels are not sufficient to carry and sustain intense fire. These areas are classified by 

the TES as 589 and 630. According to the TES data, these three TEU types have similar soil 

characteristics (classified as Vertic Argiustolls (589) and Lithic Argiustolls (630 and 632)) but 

TEU type 632 generally tends to occur on steeper slopes (15 to 45%) than TEU types 589 and 

630 (0-15%) (Laing et al. 1987). Clifton managers began to direct the application of restoration 

treatments based on the differences in effects by TEU type, and documented these observations 

in official reports (Clifton Ranger District 2008, Lever 2008).   

I have not found previous research that advocates such explicit use of specific TEU 

classifications to guide treatment applications for ecosystem restoration. The intent of the 

surveys of the Southwest Region of the Forest Service was to provide information to direct land 

management in multiple disciplines (US Forest Service 1990), however. Southwest Region 

national forests reference the utility of the TES data in planning and monitoring (such as on 

Arizona’s Kaibab NF website: Kaibab NF 2011). Ganey and Benoit (2002) suggest the use of 

TES survey data to identify habitat for the endangered Mexican Spotted Owl (Strix occidentalis 

lucida) on National Forest Lands in the Southwestern US.   

 

Multitemporal Aerial Image Analysis 

 Vertical aerial imagery has long been used to quantify vegetation changes on the ground 

at varying scales (Miller 1999). For example, vegetation changes have been tracked by using a 

record of historical aerial photographs in the Negrito watershed in New Mexico, adjacent to the 

Clifton Ranger District (Miller 1999). Miller suggested such photographs can be used to select 

desired historic conditions, while keeping in mind the natural variation within a system over time 

and space. Miller also noted the value of photographs to identify areas of increased canopy-

cover.  Though Miller used comparable aerial photographs to those in this study, he created 

polygons of cover class based on ocular estimates, and did not sample directly from the aerial 

photographs.  

 Land managers on the Clifton Ranger District are most concerned with areas of 

increasing canopy-cover and subsequent decreased understory productivity (Clifton Ranger 

District 2008). This study focuses on measuring canopy-cover change, as it can be measured 
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effectively with aerial photography at sub-project-level scale (Anderson et al. 1969, Clark et al. 

2004). Indeed, though high spatial and spectral resolution is becoming more available (1 m 

spatial resolution, four-band (red-green-blue and near infrared) imagery was available in this 

area from 2007), such data do not exist depicting historic scenes. The identification of live trees 

in multi-spectral imagery with the aid of a near infrared band, then, is not an option using older 

scenes. Multi-spectral Landsat imagery of the study area was available for the time period of 

interest, but spatial resolution is too low (15 m in imagery since 1999) to be of aid in identifying 

individual tree canopies. Finally, aerial photography is the most practical source of remote 

sensing data given their widespread availability and use at the Ranger District level, where fuels 

planning and treatment implementation occurs. 

 Estimating environmental attributes using aerial imagery is generally accomplished using 

either a sampling scheme to manually classify a subset of the total image and its features, or 

using an image analysis technique to process the entire image area and identify features 

automatically based on a preset rule. In this study I used a technique from each of these 

categories, described below.  

 

Digital Mylar 

 The US Forest Service Remote Sensing Application Center (RSAC) in 2004 developed a 

dot-grid sampling extension to operate in the ESRI ArcGIS (ESRI 2006) environment (Clark et 

al. 2004). This extension allows users to populate polygons in ArcGIS® with either a user-

defined number of randomly spaced points, or with a grid of points spaced an equal (user-

defined) distance apart. Selecting and attributing points based on the underlying imagery, the 

user can quickly estimate parameters (mean, total, abundance) of a feature of interest. This tool 

seemed a fitting choice for this project, as many forestry professionals and students of forestry 

have experience with this type of sampling on hard-copy photographs. Indeed this sampling 

method resembles the layout of common plot sampling schemes used to estimate environmental 

attributes such as forest fuel loading, and would likely be familiar to US Forest Service 

employees.    
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Spatial Wavelet Analysis 

Spatial wavelet analysis (SWA) is a novel approach in remote sensing used to identify 

and characterize certain attributes in natural systems (Dale and Mah 1998), such as the trees, 

shrubs, or canopy gaps.  Conceptually the wavelet function is similar to that of the Fourier 

analysis, a more traditional remote sensing tool. Where SWA differs from more traditional 

approaches is its lack of a “stationarity” assumption, relying instead on a moving window 

sequentially analyzing data (Dale and Mah 1998).  

As the window moves over data space, it reports a range of agreement between its shape 

and the “shape” of the pixel values which underlie it in the data (Dale and Mah 1998). Different 

wavelet functions representing different wavelet shapes are used in a variety of contexts to best 

“fit” or identify objects of interest in a scene. Wavelets have be used to analyze time-series data 

(identifying peaks and valleys in populations), identify astronomical features (light features on a 

dark background), or, as in the context of this study, analyze environmental images to quantify 

ecological attributes such as forest gaps or vegetation cover (Bradshaw and Spies 1992, Slezak et 

al. 1992, Dale and Mah 1998, Strand et al. 2006). Dale and Mah (1998) provide a figure 

(reproduced here as Figure 1) which shows the concepts of the wavelet template, data sequence, 

and wavelet “fit.” A more detailed description of the wavelet function’s mathematical 

foundation, rationale, and utilities can be found in and Chui (1992) and Daubechies (1992), in 

addition to the above citations.  

The SWA function used in this study is the “Mexican hat” wavelet, so called for its 

resemblance to a distinctive sombrero with its major central peak and surrounding circular ridge. 

This function is thought to match the form on a juniper crown in aerial photography (Figure 2) – 

round with smooth edges (Strand et al. 2006).  

 

 7



  
 Figure 2. The typical form of a juniper 
 crown in 0.245m resolution aerial 
 photography – circular with smooth edges, 
 standing at high contrast against a light, 
 uniform background. 

Figure 1. From Dale and Mah (1998), depicting the 
wavelet template and with a relatively poor fit on the 
left and a good fit on the right. The fit on the right 
would receive a positive value to denote a match with 
the template. 
 

 The wavelet algorithm is designed to search the image not just for a single template size, 

but for a range of user-defined sizes (Strand et al. 2006). Strand et al. (2006) describes a “range 

of dilation scales selected by the likely crown diameters of juniper trees (i.e. 1 to 10 m in 

increments of 0.1 m). . .” 

 Strand (2007), Strand et al. (2006 and 2008) and Garrity (2008) have shown the value of 

the SWA in identifying individual plants in similar ecosystems – semi-arid open woodlands and 

shrub steppe environments. Indeed, they have found SWA is effective in finding locations of 

objects and of estimating the size of these objects with reasonable accuracy and precision. In 

Strand et al. (2006), the SWA results from a small, open study area of juniper and sagebrush 

(fifteen ha, under ten percent canopy-cover) showed a five percent commission error and eight 

percent omission error, with sizes of identified crowns matching crown measurements in GIS 

with a Pearson’s r value of 0.96. On a larger scale (20 60m2 plots), Strand et al. (2007) found that 

commission error remained low (none recorded) but omission error rose to nineteen percent.  

 My study provides estimates of canopy-cover using the two methods described above, 

indicating areas of positive and negative change. The association between TEU type and burn 

effectiveness will be tested and discussed. I will implement, evaluate, and discuss the application 

of the Mexican hat SWA on a landscape scale. The value of SWA in identifying tree locations 

and sizes, characterizing forest structure, and locating legacy trees will be tested and discussed. 
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Finally, this study describes the strengths, shortcomings, and areas for future research regarding 

spatial wavelet analysis in landscape-scale ecological questions.  

  

 

Methods 

Overview 

 I employed two techniques – RSAC’s Digital Mylar extension and an SWA algorithm – 

to analyze forest attributes in the study area in the years 2000 and 2008, depicting the same area 

pre- and post-restoration treatment. Both techniques used color aerial photography covering 

14,700 ha as the data for analysis.  

 

Study Area 

This study focuses on restoration treatment areas on the Clifton Ranger District, Apache-

Sitgreaves National Forest (NF). The Mesa and NO Bar project areas are in the center of the 

district, which is the southernmost of the national forest. The district is located in the vicinity of 

the towns of Safford and Clifton, AZ, about 160 km east of Tucson, against the New Mexico 

border to the east (Figures 3a and b). Elevation ranges on the district from 1100 to 2800 m ASL 

over the 220,000 ha of the district.  

 Clifton Ranger District is largely of a remote character, with few roads and steep 

topography (Apache-Sitgreaves NF 2011). The district hosts a variety of vegetation 

communities: riparian broadleaf systems, arid grasslands, chaparral, and forests and woodlands 

of pinon-juniper, ponderosa pine, and higher elevation fir and spruce (US Forest Service website 

2011). The Mesa and NO Bar project areas include mesa-top open juniper savannas, and pinon-

juniper woodlands surrounding these mesas (Clifton Ranger District 2008).    
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a.   b.  
 

  Figures 3a and b.  Clifton Ranger District of the Apache-Sitgreaves NF, in southern  
  Arizona (a) and the Mesa and NO Bar project areas within the District (b).  
 

Aerial Photograph Digitization and Preparation 

Nine-by-nice inch, color aerial photographic prints covering the project areas (scanned at 

1840 dpi or 14µm) provided the data for digital analysis and interpretation. The photographs 

have a scale of 1:15,840, and the digital images a spatial resolution of 0.245 m. These 

photographs, provided by the Clifton Ranger District, were captured in two flights (in 2000 and 

2008) and thus the equipment used and other details of the flights differed from each other. 

Regardless, the contracting company for each flight provided documentation describing the 

camera and lens used, including geometry parameters, such as focal length, point of 

autocollination, and fiducial mark location, among others (Appendices F and G). 

I used the Autosync Workstation in ERDAS Imagine® 9.3 (ERDAS 2008) to ortho-

rectify each scanned aerial image.  Besides the individual scanned images, the ortho-rectification 

process requires a reference image to register each image, and a digital elevation model (DEM) 

and geometric model to rectify images in three dimensions. To fulfill these requirements I used  

1 m resolution, National Agriculture Imagery Program (NAIP) wall-to-wall ortho-photos 

acquired in 2007 as a reference image; a 10 m resolution DEM (US Geological Survey 2011); 

and documentation of camera geometry provided with the photographic prints. I matched the 

coordinates of eight fiducial marks from the original film documentation with the coordinates of 

the center of each of the eight fiducial marks in the raster image of each photograph using 

Ground Control Points (GCPs). I scattered additional GCPs (four to six per image) throughout 
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the scenes to cover the range of variation in elevation and viewing angle in each image. I 

examined the resulting individual ortho-rectified images visually to detect and eliminate, through 

reprocessing, any obvious deviations from the reference image.  

Using a default nearest-to-nadir mosaic algorithm in ERDAS Imagine®, I stitched all 

individual images into mosaics, and used the color balancing function to correct for changes in 

illumination between scenes. I examined each seamline visually to ensure areas of the images 

were not duplicated or left out. Three mosaic blocks were created for 2000 and 2008, with file 

sizes of around six gigabytes (GB) per block. Root mean square error values for these mosaics 

ranged between 2 and 3 m, or 8 to 12 pixels. One mosaic scene of the entire project area was also 

created for each time period, with a file size of about thirteen GB. These two mosaics represent 

30 individual aerial photographs of approximately one GB each. Deleting the 30% sidelap and 

60% percent endlap characteristic of aerial photography in each image accounted for this large 

reduction in file size.  

 

Digital Mylar Analysis 

Overview  

I quantified canopy-cover change systematically using a dot-grid sampling approach on the 

imagery described above acquired in 2000 and 2008 for the Mesa and NO Bar project areas. 

Both areas comprise 3900 ha each, accounting for seven percent of the total restoration treatment 

area on Clifton Ranger District.  

 

Canopy-Cover Estimation 

 Using ArcGIS®, 64 TEU polygons were overlaid upon treatment-type polygons and 

clipped to treatment areas for analysis. When TEUs were classified by treatment, 385 random 

points were populated inside each TEU using the USFS Remote Sensing Applications Center 

Digital Mylar extension to ArcGIS® (Figure 4). I selected a sample size of 385 points per 

polygon to develop estimates with 95% confidence with margins of error of about 1%. I used 

identical sample sizes for each polygon regardless of its spatial extent after determining the areas 

delineated displayed relatively uniform cover. I examined each point and tallied each as either 

“on canopy” or “off canopy.”  Shadowing often obscured complete tree crowns, especially on 

slopes. In these cases, I assumed the crown was symmetrical. I did not count points that overlay 

 11



indistinct “vegetation-like” features as canopy hits when these features cast no shadow, did not 

display the typical round tree form common throughout the area, and were a different shade of 

green than tree crowns. I compiled the resulting canopy-cover estimates – “on canopy” points 

divided by 385 points – resulting canopy-cover estimates were then compiled by TEU type and 

treatment, providing canopy-cover and change estimates over the Mesa and NO Bar project 

areas.  Canopy-cover estimates were tabulated and grouped (Appendices A through C) by TEU 

type and treatment in Microsoft Excel® 2003 (Microsoft 2003). 

 
  Figure 4.  A section of a TEU polygon showing sample points generated using  
  Digital Mylar. 
 

 In order to compare like polygons, I also categorized TEU polygons by topographic type. 

The topographic types I used were “mesa top,” where the entire polygon was situated on the top 

of a mesa, “draw,” where the entire polygon was situated in a draw, and “mixed,” where the 

polygon included both mesa tops and draws.  

 Finally, I investigated the proportion of TEU polygons by treatment type that had post-

treatment canopy-cover which matched an average target value of under 15% canopy-cover I set 

based on my examination of Clifton Ranger District restoration treatment plans (Clifton Ranger 

District 2008, Lever 2008). 
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Spatial Wavelet Analysis 

Overview 

I also implemented a wavelet analysis developed by Dr. David Hann and furnished by Dr. 

Alistair Smith of the University of Idaho. This algorithm, run on The MathWorks MATLAB® 

7.9 (The Mathworks 2009) programming platform, was used by Falkowski et al. (2006) and 

Garrity et al. (2008) and similar to the algorithm used by Strand (2007) and Strand et al. (2006, 

2008). Similar to an image classification exercise, SWA data represents a census method, not a 

sampling method like Digital Mylar.  

 

Data Preparation 

 I found through repeated trial that in using large subset areas of mosaic images, the 

maximum memory capabilities of text editors and the MATLAB® software were exhausted. 

Subsetting images into areas small enough to process at the photographs’ original spatial 

resolution was a prohibitively time consuming process. I therefore resampled the 2000 and 2008 

aerial imagery from their original 0.245 m spatial resolution to 1 m spatial resolution, using a 

cubic convolution resampling method in ERDAS Imagine®. I selected this method, which 

applies a cubic function to calculate pixel values in output images, to maintain a degree of 

integrity for small features in the imagery, which in nearest neighbor resampling could become 

indistinct or disappear entirely. Using these 1 m resolution images, I used the same mosaic 

process as above, selecting only the red band for mosaics, and using the color balancing 

algorithm in ERDAS Imagine® to correct for differences in illumination between aerial images. 

I selected the red band because it appeared to provide the greatest contrast between surrounding 

pixel values and canopy pixel values, when compared to the green and blue bands. The resultant 

diminution of file size allowed for the processing of image subsets of around 5M pixels each, 

covering an area of about 500 ha per tile.  

 Strand et al. (2008) used imagery at 1 m resolution, in one case resampling resolution 

from higher resolution to match the 1 m resolution of earlier imagery. This lower resolution 

resulted in a diminished ability to identify objects of about 1 m in size or smaller. In the Strand et 

al. (2008) study focusing on shrub cover, this inability to identify small objects proved 

problematic, as many shrubs were undetectable to the SWA algorithm. I considered this 

inevitable consequence of image resampling, but concluded that: 
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 1. In many cases these objects were not distinguishable as trees even to the eye at  

 0.245 m resolution as trees (versus shrubs or other patches of vegetation), and  

2. The growth of smaller juniper trees from 2000 to 2008 into trees large enough to 

appear distinct in 1 m resolution imagery is a measure of juniper expansion. 

 

 I subset the 2000 and 2008 1 m resolution mosaics into thirty-three tiles for each year and 

prepared the image area representing each of the TEU polygons areas for wavelet analysis. I 

created the thirty-three rectangular tiles by first dividing a shapefile in ArcGIS® 9.2 that 

represented the area of overlap between the two years’ mosaics. I buffered each of these 

shapefiles by 5 m to account for those tree crowns which might fall on the boundary of the tiles 

and ensure the entire area was covered.  

 I used the tiles as templates to create area of interest (.aoi) files in Imagine, and subset the 

2000 and 2008 mosaics using these .aoi files.  

 The final step of data preparation before files were process-ready was to convert each 

subset red-band image to an ASCII file format (a text file comprising a list of pixel values) for 

use by the wavelet transform algorithm. To perform this conversion I used the “Raster to ASCII” 

converter in ArcToolbox® (ESRI 2006). I removed the header from each ASCII file, transferring 

the left edge and top edge Universal Transverse Mercator (UTM) coordinates to a spreadsheet 

for later use.  

 

SWA Algorithm Operation 

 The wavelet transform algorithm I used loads each ASCII image file, convolves the 

image using a kernel size specified by the user, and propagates a user-defined wavelet transform 

over the image space. The wavelet transform identifies low (dark) pixel values and finds a 

wavelet of matching size to fit this anomaly. The user-defined threshold value sets the threshold 

for the minimum amount of departure from background pixel values that the wavelet will 

consider an anomaly. Wavelet size and range describe the size of the initial wavelet, and the 

range of waves which can propagate and fit low (dark) pixel value anomalies.  

 Having fit a wavelet over an area of low pixel values, the wavelet algorithm records the 

size and location of this anomaly, drawing a circle which bounds the wavelet fit “tree.”  
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 I altered the wavelet code for two purposes – to process images in a batch, and to create 

output shapefiles for further manipulation and analysis in ArcGIS®. The batch process changes 

allow the user to load images, analyze them, and create output files sequentially based on a linear 

naming scheme (i.e. “2008_Tile_01”). This alteration made it possible to analyze the entire set of 

imagery numerous times with different threshold settings, having the computer process the files 

and create output in separate folders sequentially without continuous user input.  

 Altering the code to create ArcGIS® shapefiles as output allowed me to easily view 

SWA results and streamline analysis and accuracy assessment. Each tile’s shapefile was 

comprised of individual points with Northing, Easting, and radius information recorded as 

attributes for each point. Northing and Easting values were appended to the image in MATLAB 

to describe each identified point’s spatial location using the list of left and top UTM coordinates 

mentioned above. Each tile represented a large number of records – around 25,000 identified 

points with associated attributes. 

 Following recommendations in Strand et al. (2006) I chose a dilation scale of one pixel to 

twelve pixels, moving in steps of 0.1 pixels (after the image resampling described above, one 

pixel was equivalent to 1 m). The dilation scale represents the range of possible radii of tree 

crowns on the landscape. I set my initial wavelet size to 6 m, and chose two thresholds (30 and 

70), intending one to have a high omission error and low commission error (70), and the other to 

have a low omission error and high commission error (30). These thresholds represent the 

minimum difference in pixel value required for SWA recognition of features. The enormous 

spatial extent and variability of the imagery made it difficult and time-consuming to choose one 

best threshold through empirical trial. Through this trial-and-error period, characteristics of SWA 

performance became evident.  

 

Canopy-Cover Estimation 

 In order to produce estimates of canopy-cover, I buffered each tree center point, in 

ArcGIS®, by the attribute field “radius.” I then dissolved these circles of various sizes together, 

to eliminate overlapping canopy areas. Finally, dividing the total area of dissolved canopy-cover 

by the area of the TEU polygon provided a percent-cover estimate (Appendices D and E).  
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Accuracy Assessment 

 Different statistics must be used to assess the accuracy of a census than would be used in 

estimating the quality of a sampling method, as a census does not estimate a population 

parameter but instead provides an estimate for every constituent of the population. Similar to the 

classification of a large image, SWA presented the problem of a substantial amount of data with 

no automated way to assess its accuracy. An error matrix is often used to evaluate the accuracy 

of a sample of classified pixels to those in the original image (Jensen 1996). For these data, 

however, I wanted to measure the accuracy of SWA in determining crown diameter, in locating 

features, and in recognizing the difference between other dark features and tree crowns. 

Formally, I sought to estimate model efficiency and errors, along with both commission error 

(identification of nonexistent tree crowns) and omission error (failing to identify tree crowns). 

To estimate commission error and SWA crown diameter accuracy, I selected a random 

sample of 146 SWA-indentified tree crowns (from the 2008 70-threshold SWA run, which I 

selected using a random number table). I divided these tree crowns into cover classes 

representing the quality of the canopy-cover immediately surrounding them: open (the crown is 

completely distinct from other crowns and from its background), mixed (the crown is impinged 

upon by other tree crowns or features in the image), and closed (the tree crown is 

indistinguishable from its background or other trees). These 146 points divided roughly into 

thirds based on this categorization: 41 in the open, 52 in the mixed, 51 in the closed category. 

Each class showed a small number of identified tree crowns which did not exist in the imagery. 

Therefore the final sample sizes were 38, 51, and 46, respectively. In GIS I measured the tree (if 

indeed there was one) that underlay each point, and compared this with the radius recorded by 

the SWA algorithm.  

To estimate omission error rate I implemented a plot-sampling approach, using 10 

randomly-placed 20 m radius circular plots for each SWA run and threshold setting (e.g. Year 

2000, Threshold 70) in GIS. This sample size and plot area was chosen to include 140 trees per 

plot, matching the sample size described above. I excluded trees visible in GIS with a diameter 

smaller than 2m, as these small crowns are too small for SWA to reliably detect. 

 

I used statistics measuring model efficiency (EF), mean absolute error (MAE), and mean 

bias error (MBE), comparing canopy-cover estimates using Digital Mylar and SWA, and SWA-
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identified tree crown diameters with their GIS-measured diameters. I chose these statistics 

because I wanted to estimate how closely SWA results matched a one-to-one relationship with 

Digital Mylar results and GIS-measurements.  EF, MAE, and MBE are calculated using the 

residuals of estimates vs. “truth” data, in this case SWA estimates of canopy-cover vs. Digital 

Mylar estimates and GIS-measured crown diameters. The resulting statistics provide measures of 

the overall value of a model (EF), the average error in model estimates (MAE) and the average 

bias in model estimates (MBE) (Toney and Reeves 2009). EF statistics occupy a range between -

1 and +1. Negative values indicate poor model efficiency, with zero representing a model’s 

equivalency with a simple mean of the data. Positive values indicate good model fit, with a value 

of one indicating perfect agreement between a model and reality (Toney and Reeves 2009). 

Pearson’s r-values with corresponding significance levels also give a measure of model fit, 

though without taking bias into account, and are provided for comparison with MAE, MBE and 

EF.   

 A preliminary look at wavelet-produced shapefiles demonstrated that the algorithm 

tended to face difficulty in identifying tree crowns in more closed-canopy areas. Similarly, 

Strand et al. (2008) noted that, “In the canopy-cover range of 25-55%, SWA is biased towards 

underestimating foliar cover and above 55% cover the method is unreliable for analysis of aerial 

photography.” Bearing in mind this caveat, I separated model efficiency statistics by canopy 

cover classes.  

 

Results 

 

Canopy-Cover Estimation 

 Estimates of canopy-cover derived from Digital Mylar dot grid sampling showed 

significant differences between three treatment types and levels of change characteristic of each 

treatment type, but no significant difference between TEU types matching my hypothesis that 

TEU type 632 would show greater change compared to types 589 and 630. I used SPSS 

Statistics® 19 (SPSS 2010) for statistical analysis and to produce figures. All change percentages 

were calculated as relative changes, not actual additions or subtractions (e.g. a decrease from 

10% canopy-cover to 9% canopy-cover would be a 10% decrease, not a 1% decrease). Using 
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relative canopy-cover changes makes it possible to compare effects of treatment regardless of 

actual canopy-cover values.  

 Table 1 shows all estimates of canopy cover in 2000 and 2008. I will discuss the 

comparison of Digital Mylar and SWA estimates below.  

 There was some variability in change due to burning and thin-and-burn treatments, with 

ranges from no change to a -24% reduction in the burn treatment, and -21% to -69% in thin-and-

burn polygons. Total change across both the NO Bar and Mesa project areas (Table 2) was -17% 

and -40% for burn and burn and thin, respectively. Burn and thin-and-burn treatment results were 

both highly significant (p < 0.001).  

 
 Table 1. Pre- and post-treatment canopy-cover (CC, in percent) estimates with standard errors for  
 Digital Mylar and SWA techniques. 

Digital Treatment n 2000 CC S.E. 2008 CC S.E.
Mylar Untreated 2695 28.20 0.009 30.39 0.009

Burn 19635 18.53 0.003 15.49 0.003
Thin & Burn 3080 19.84 0.007 11.98 0.006

SWA 30 Untreated 7 24.94 3.250 23.03 3.546
Burn 49 14.90 1.200 12.86 1.110

Thin & Burn 8 16.13 1.436 10.98 1.422
SWA 70 Untreated 7 24.20 3.782 22.14 3.701

Burn 49 13.90 1.204 11.41 1.130
Thin & Burn 8 15.28 1.508 9.17 1.472  

 
  Table 2. Total change in all polygons for both project areas from 2000 to 2008  
  using both Digital Mylar and SWA techniques. 

Digital Treatment n Change S.E. Sig.
Mylar Untreated 2695 7.97 3.24 p = 0.15

Burn 19635 -17.73 2.37 p < 0.001
Thin & Burn 3080 -41.74 5.59 p < 0.001

SWA 30 Untreated 7 -8.15 5.7 p = 0.203
Burn 49 -13.61 2.22 p < 0.0001

Thin & Burn 8 -33.02 4.41 p < 0.0001
SWA 70 Untreated 7 -9.02 2.3 p = 0.08

Burn 49 -20.16 2.09 p < 0.0001
Thin & Burn 8 -42.27 5.3 p < 0.0001  
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 Change estimates for untreated polygons showed greater variability, however. Estimates 

ranged from -5% to +18%. The mean change for all seven polygons was +7%, but this result was 

not significant (p = 0.15). 

 To investigate differences in canopy-cover reduction by treatment in similar topographic 

types, I divided polygons into topographic class. Table 3 summarizes the results of this analysis, 

showing that the greatest reductions occurred on mesa tops. Testing change means within 

topographic types and between burn and thin-and-burn (with an independent samples t-test) 

showed that thin-and-burn canopy-cover reductions were not statistically greater (p = 0.07 for 

mesa tops, and p = 0.06 for mixed topography).  

 
  Table 3.  Canopy-cover reduction by treatment and topographic type.  
  There were no thin-and burn treatments in draws. 

Burn Polygons
Topographic Type Change % n S.E. Sig.

Mesa Top -23.50 13 5.92 p = 0.004
Draw -7.85 11 2.20 p = 0.009
Mixed -19.08 25 3.09 p < 0.001

Thin & Burn Polygons
Mesa Top -46.80 4 9.46 p = 0.013

Mixed -36.67 4 6.24 p = 0.020  
 

 When comparing Digital Mylar post-treatment (2008) canopy-cover estimates with the 

target canopy-cover of under 15% for treated TEU polygons, I found that thin-and-burn 

treatments also more reliably reduced canopy-cover to within the target range.  Of eight thin-

and-burn polygons, five (63%) had post-treatment canopy-cover of 15% or less, while two 

polygons (25%) were not reduced to within the target range, and one polygon (13%) already had 

canopy-cover under 15%. Conversely, among the forty-nine burn polygons, twelve (24%) 

reached target canopy-cover, twelve were already in the target range, and twenty-five (51%) 

showed post-treatment canopy-cover greater than 15%. 
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TEU Types and Fire Effects 

 There was no evidence from Digital Mylar estimates to suggest significant differences 

between burn effectiveness based on TEU types.  Those polygons which I anticipated to show 

greater fire effects (TEU type 632) did not have statistically different change estimates  

(p = 0.910) than did other polygons: -13% canopy-cover reduction for 632 vs. -14% canopy-

mean reduction for burned polygons of TEU types other than 589, 630 and 632. Further, TEU 

types which were postulated to require thinning in addition to burning showed significantly 

greater change than the theoretically fire-amenable TEU types: A mean reduction of -29% for 

TEU types 630 and 589, compared to the -13% reduction in canopy-cover in TEU type 632  (p = 

0.03). These findings are summarized in Figure 5. 

 

 
  Figure 5.  Means and data distributions for reduction in canopy cover between three  
  TEU classes, estimated in Digital Mylar.  
    
  

Spatial Wavelet Analysis 

Comparing SWA Settings 

 My selection of threshold and initial wavelet size settings for the SWA algorithm was the 

result of an extended trial period in which I sought to understand the performance of SWA on 
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this imagery. The table below (Table 4) summarizes some of the results of a comparison of a 

variety of threshold and wavelet size settings on one image tile. I selected this tile for analysis 

due to its range of canopy-cover, slope, and contrast between crowns and background. The 

values for number of crowns identified, mean crown diameter and canopy-cover were taken 

directly (or calculated from these values) from each SWA run’s attribute table. I calculated the 

estimates of commission and omission error from ten 20 m-radius circular plots. The grey lines 

indicate the final settings used in this study.  

 
Table 4. A comparison of different threshold and wavelet size settings over one image tile. The values for the 
number of crowns identified, commission error, and omission error were the same for each wavelet seize within a 
threshold setting. 

Threshold & SWA Size Total Crowns Identified Commission Error Omission Error Mean Crown Diameter (m) Canopy Cover
0 & 2 m 0.80 3.52%
0 & 6 m 35566 14% 24% 2.71 18.69%
0 & 12 m 3.36 26.83%
30 & 2 m 0.83 3.14%
30 & 6 m 31956 6% 24% 2.80 17.46%
30 & 12 m 3.45 25.34%
70 & 2 m 0.82 2.67%
70 & 6 m 29364 0% 29% 2.85 16.42%
70 & 12 m 3.49 23.51%
100 & 2 m 0.84 1.57%
100 & 6 m 19986 0% 48% 3.01 12.15%
100 & 12 m 3.75 18.20%  

.  
 There are several aspects of SWA performance illustrated by the results of this 

comparison. Regarding the selection of threshold and wavelet size settings, the table indicates 

the following: 

 

1. The number of crowns identified is dependent on threshold settings and not on wavelet 

size settings. 

2. The mean crown diameters identified change with the wavelet size, but not because a 

different cohort of trees is identified – the same trees are identified regardless of the 

wavelet size setting. Changes in this setting only produce different diameter estimates.  

3. At low wavelet size settings – 2 m in this comparison – the SWA algorithm attributes 

the majority of crowns with a diameter of 0 m.  

 

 The results of this comparison indicate that my selection of settings comprised a balance 

of omission error and commission error, and wavelet size. For these data, a threshold value under 
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30 would have increased commission error without a decrease of omission error, while a 

threshold value over 70 would have increased omission error without decreasing commission 

error. Given the omnipresence of omission error in the table above, I considered a higher 

omission error worth the slight reduction in commission error. SWA settings that missed crowns 

at a certain rate but did not invent them would be more useful for estimation of canopy-cover and 

legacy and non-legacy density mapping that would settings which had had moderately high 

levels of both error types. Similarly, changing initial wavelet size would have shifted the mean 

value of crown diameters accordingly without improving the ability to locate crowns. My 

comparison of SWA-derived and GIS-measured crown diameters below addresses the 

performance SWA in estimating crown diameter.  

  

Comparison of Canopy-Cover Estimates 

SWA estimates of canopy-cover proved fairly efficient (EF from 0.158 to 0.501 overall 

depending on SWA run and year), but systematically underestimated canopy-cover, especially as 

cover increased (Figure 6). Separating low canopy-cover polygons, I found that SWA-derived 

cover estimates fairly match Digital Mylar estimates and show low bias up to 15% canopy-cover 

(Table 5).  

 
   Figure 6. Comparison of canopy-cover estimates from (n = 64) TEU  
   polygons using the 2000 30-threshold SWA run and Digital Mylar.  
   The black line indicates a one-to-one relationship, the blue line indicates  
   best data fit. 
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Table 5. Mean absolute error, mean bias error, and model efficiency statistics for all SWA canopy-cover estimates, 
and for SWA estimates on polygons below 15% canopy-cover. 

All Polygons
Year & Threshold MAE MBE EF Pearson's r Sig.

2000 & 30 0.056 0.036 0.311 0.722 p < 0.0001
2008 & 30 0.050 0.029 0.501 0.782 p < 0.0001
2000 & 70 0.062 0.046 0.158 0.699 p < 0.0001
2008 & 70 0.056 0.044 0.368 0.779 p < 0.0001

  Polygons Below 15% Canopy Cover
2000 & 30 0.022 0.009 0.326 0.665 p = 0.001
2008 & 30 0.023 -0.002 0.511 0.689 p = 0.001
2000 & 70 0.018 0.017 0.470 0.827 p < 0.0001
2008 & 70 0.029 0.013 0.587 0.814 p < 0.0001  

 
 

 Comparing estimates of change between the two methods showed even greater 

variability, as the errors from both years confounded accurate estimation. Though the trend is 

discernible, many paired SWA and Digital Mylar estimates diverge greatly, and there are 

numerous outliers (Figure 7).  

 
  Figure 7.  Comparison of canopy-cover change estimates from  
  (n = 64) TEU polygons using both techniques. Note bias in estimates    

   leading to overestimation of highly negative change and     
   underestimation of moderately negative to positive change. 
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 Comparing treatment means showed greater agreement between the two estimation types 

than is indicated in the above figure. Though change estimates on individual polygons often 

differ, there was considerable agreement in change means in burn and thin-and-burn treatments 

(Table 5 and Figure 8). Indeed, there is not statistical difference between these treatment means, 

the highest significance level suggesting a difference (p = 0.219) is far above my statistical cut-

off of significance (p = 0.05). To a greater extent than with Digital Mylar canopy-cover estimates 

in untreated polygons, SWA estimates varied widely, from -25% to no change with a threshold 

of 70 and -32% to +14% with a threshold of 30. SWA untreated change estimates are statistically 

different from the (statistically non-significant) Digital Mylar estimate, though the amount of 

change is on the same order of magnitude. 

 
 Figure 8.  Means and data distributions of treatment means from Digital Mylar 
 and SWA runs.  
 

Crown Diameter 
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 I measured the accuracy of SWA crown diameter estimates using 146 points identified as 

trees by the wavelet algorithm. As described above, estimation of tree location, diameter, and 

canopy-cover is most accurate in open areas, and degrades in accuracy as canopy-cover 

increases. Plotting these estimates together (Figure 9) shows the same heterogeneity of variance 

evident in the canopy-cover estimates above (Figure 6). The ability of SWA to estimate crown 

diameters with less overall error (compared to GIS-measured crown diameters) was higher in the 

open cover class (MAE = 0.963, MBE = 0.732, EF = 0.558) than in the other classes (Table 6 

and Figures 9 and 10).   

 This point-to-point analysis also produced an estimate of commission error – that is, 

those points that do not overlay tree crowns, but instead some other dark (or even faintly darker) 

object. Commission error was highest in the open cover class (three false positives, or a seven 

percent commission error rate), compared to the mixed class (one false positive, two percent 

commission error rate) and closed cover class (two false positives, four percent commission error 

rate). Total commission error was four percent.   

 
  Figure 9.  SWA-derived crown diameter estimates vs. GIS-measured  
  crowns, for all cover classes. The black line represents a one-to-one line. 

 25



   
   Figure 10. SWA-derived crown diameter estimates vs.  
   GIS-measured crowns in the open cover class. Black line  
   indicates one-to-one relationship 
 
 Table 6. Sample sizes, mean absolute and bias errors, model efficiency, and correlation statistics with 
 significance levels for SWA crown diameter estimation in each cover class. 

Cover Class n MAE MBE EF Pearson's r Sig.
Open 38 0.963 0.732 0.558 0.880 p < 0.0001
Mixed 51 1.543 0.445 -0.377 0.507 p < 0.0001
Closed 46 2.163 -1.563 -0.100 0.304 p = 0.04  

       
 

 To determine the rate of omission error in the SWA algorithm’s identification of tree 

crowns, I randomly placed ten 20m-radius plots on 2000 and 2008 SWA runs for both thresholds 

(for a total of forty circular plots). 

 Omission error rates were high in both thresholds (Table 7), but were lower in open cover 

class than overall.  I did not observe any commission errors on these forty plots. Only on a few 

portions of the analysis area did I observe commission error, but these areas proved sufficiently 

small for inclusion in my samples. Commission errors were detected in the sample of 140 SWA-

identified crowns and the comparison of wavelet settings, both described above. Commission 
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error occurrence was highly variable, but based on the estimates above seems to be between four 

and six percent.  

 
   Table 7. Omission errors overall and in the open cover class 
    for SWA tree identification in both threshold settings 

SWA Overall Open Cover Class
Threshold Omission Error Omission Error

30 62% 32%
70 70% 40%  

  

Crown Diameter Distribution 

 I used the virtual census produced by SWA and a sample of GIS-measured crown 

diameters to examine crown diameter frequencies across the landscape and assess the ability of 

SWA to estimate this basic forest characteristic on a landscape scale. Using the forty 20 m-radius 

plots described above, I created histograms of GIS-measured crown diameters for both years 

(Figures 11a and b).  

 These histograms appear roughly symmetrical, with means of 2.96 m + 0.09 m and  

3.19 m + 0.08 m crown diameter. The tailing off of frequency at the larger tree diameters may 

indicate multiple crowns forming a continuous, seemingly singular crown.  

 I randomly sampled 146 identified points from the 70-threshold 2000 and 2008 SWA 

runs to produce histograms of their crown diameter estimates. The results show a marked 

difference from the histograms above (Figures 11c and d). Both years display bimodal 

distributions with means between the two peaks in the distribution (5.9 m + 0.20 m and 5.57 m + 

0.21 m respectively). 
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a.   b.  
 

c.   d.  
 
Figures 11a through d.  Histograms of GIS-measured crown diameters in from 2000 imagery (a) and 2008 (b). 
Figures 11c and d depict SWA crown diameters in 2000 and 2008.  Note normal distribution of GIS-measured 
diameters and bimodal distribution of SWA diameters. 
 

Legacy and Expansion Trees 

 Finally, I strove to investigate the locations and concentrations of “legacy trees” – those 

old growth trees which would characterize the historical forest condition prior to Euro-American 

settlement and official government land management practices. I defined a legacy tree in the 

context of SWA results as those crowns with diameters from 6 meters to 10 meters, as they 

represented the right tail of the distribution of GIS-measured crown diameters (Figures 11a and 

b). This necessarily differs from Clifton’s definition of a legacy tree (Diameter at root collar > 24 

cm) as crown diameter is the only metric available from aerial imagery. I sampled legacy trees in 

both the 30- and 70-threshold SWA runs. I first randomly selected 50 crowns in the open from 

each of four diameter classes – 6 to 6.8 m, 7 to 7.8 m, 8 to 8.8 m, and 9 to 10 m – to determine if 
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different classes of legacy trees were more likely to have been correctly identified as legacy 

trees. I expected a steady improvement in SWA’s ability to correctly identify crowns in the 

legacy category as diameter increased (an incorrect identification in this case includes both 

identifying a tree that is not present, or identifying a tree whose canopy is under 6m in diameter a 

legacy tree). Instead, in the 70-threshold run, all classes correctly identified legacy trees at 

similarly high rates: 74 + 6.3% of the time for the 8 to 8.8m class, and 80 + 5.7% of the time for 

the other classes. Ignoring size classes, accuracy of all 70-threshold run legacy tree estimates was 

79 + 2.9%. 

 The second sample I took to determine the viability of a legacy tree map was on 100 

randomly selected open-grown crowns in from the entire range of legacy tree diameters (6 to 

10m) from the 30-threshold SWA run. As expected, the ability to correctly identify trees was 

diminished in this less discriminating run, but the accuracy for the group was 68 + 4.7%.  

 Though the 70-threshold SWA run had a higher accuracy rate (79% vs. 68%) than the 30-

threshold run, I used the latter for legacy tree mapping. The higher omission error associated 

with the higher threshold resulted in small areas of the image where trees were not identified, 

and therefore erroneous values in the density maps. Omission rates for these two thresholds 

estimated on plots above were 40% in open areas for 70-threshold runs and 32% in open areas 

for 30-threshold runs. Figures 12 and 13 display legacy tree crowns identified by the 2000 SWA 

30-threshold run.  
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 Figure 12. SWA-defined legacy trees overlaying 2000 aerial imagery of Mesa project area. 
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 Figure 13. SWA-defined legacy trees overlaying 2000 aerial imagery of the western portion of the  
 NO Bar project area.  
 
 
 Using legacy trees and non-legacy trees separately, I used the Spatial Analyst® extension 

to ArcGIS® to create raster images representing densities of legacy trees and non-legacy trees. I 

used a kernel of 50m in radius to produce pixel values. This mismatched kernel area and output 

pixel size creates a smoothed image of trends in center point densities. Such a smoothed image 

displays a generalized picture of relative tree densities without attempting to show exact 

locations of every tree.  

 On the following pages are density images of juniper expansion patterns (Figures 14, 16 

and 17) and a set of figures showing the similarity between aerial photography and SWA wavelet 

results (Figures 15a through d).   
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Figure 14.  A 50m pixel density image representing non-legacy tree, “juniper invasion” tree concentrations on a 
portion of the Mesa area in 2000. Values range from zero tree centers per ha (green areas) to 6100 tree centers per ha 
(red areas). 
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a.   b.  

c.   d.  
 

Figures 15a through d.  Figures 15a and b (aerial images from 2000 and 2008) depict the red-boxed area in Figure 
14 above pre- and post-treatment. Note the change in tree density on mesa tops following treatment. 
Figures 15c and d depict the above area with all 2000 SWA trees (c) and only SWA legacy trees (d) The SWA trees 
overlay a slope image derived from a DEM. Note the similarities between in tree densities, and the similarity 
between the legacy tree image and the 2008 post-treatment image (b). 
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Figure 16. A 50 m density image representing non-legacy tree concentration on a portion if the NO Bar area in 
2000. Higher densities (in orange and red) reach a maximum of 6100 tree centers per ha. The black-boxed area in 
the upper left is shown in Figure 17 below. 
 

 
Figure 17. A zoomed-in view of the black-boxed area in Figure 16, allows the viewer to compare areas of rampant 
juniper invasion (in orange and red) to areas of low invasion (in green). Note that the low invasion areas either show 
very few tree crowns, or may have a higher density of legacy tree crowns.  
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Discussion 
 

Restoration Treatments 

 Both burn and thin-and-burn treatments were shown to produce statistically significant 

reductions in canopy-cover. A separation of polygons by the general topographic type they 

overlay (mesa top, draw, and mixed) allowed for a comparison of topographically similar 

polygons, and to quantify the effect of topography on canopy-cover reduction. This 

categorization showed that no thin-and-burn treatments were carried out in draws, which is 

logical considering the vegetation density and steep terrain of draws in this landscape. 

Comparing mesa top and mixed burn treatments with mesa top and mixed thin-and-burn 

treatments showed non-significantly higher canopy-cover reduction in thin-and-burn polygons in 

both topographic types. Given the small sample sizes for thin-and-burn statistics when broken up 

into topographic types (n = 4 for each type), and the relatively low p-values (p = 0.07 and 0.06 

for mesa top and mixed, respectively), it is possibly reasonable to assume thin-and-burn canopy-

cover reduction is greater even when categorized by topographic type. This analysis shows, 

however, that topography is an important factor in affecting canopy-cover reduction from 

prescribed burning. 

 Comparing post-treatment canopy-cover estimates with a target canopy-cover value of 

under 15%, we find again that thin-and-burn treatments reduce canopy cover to target levels 

more often than burn treatments, even though the starting average canopy-cover for thin-and-

burn polygons was greater. This treatment, which provides added fuel for higher-intensity fire 

and reduction of canopy-cover from stem removal, proves a highly effective way to reduce 

canopy-cover to target levels. The increased cost of such treatments – almost ten times more 

expensive per hectare – calls for thoughtful, limited implementation given budget constraints.  

 

TEU Type and Fire Effects 

 This study found no evidence to support the assertion that fire effects in indicated TEU 

type 632 (Lithic Argiustolls on generally steeper slopes), are substantially greater than those in 

types 589 and 630 (Vertic and Lithic Argiustolls on generally gentler slopes). Without a very 

large sample size, in-depth knowledge of fire effects observed, prescribed fire lighting patterns, 

and other factors affecting burn intensity and severity, I do not report this disagreement between 
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data and expert opinion as conclusive. My analysis indicates that any perceived differences in 

fire effects may be illusive, or not universal for all TEU types indicated across the landscape. 

Based on this study, guiding treatments based on TEU type seems suspect without further data 

indicating the proposed relationship exists. 

 

Digital Mylar Effectiveness and Results 

 The initial favorable expectations of the viability of Digital Mylar as a means of 

measuring forest change proved well-founded. I found that with a brief introduction and training 

period, and with consistent rules in determining crown “hits” and “misses,” analysis of numerous 

discrete areas proved both easy and efficient. It is important that the areas being measured are 

relatively uniform in canopy-cover, and do not contain great variability within each discrete unit. 

Clumps of canopies distributed throughout the analysis unit would require the use of a systematic 

grid instead of the randomly placed sample points used in this study. Digital Mylar’s user-

friendly interface allows for either of these sampling schemes.  

 After I tallied preliminary results for each project area using Digital Mylar, I assisted 

Clifton Ranger District personnel in adopting the process for future technical reports and 

management planning. The quick adoption of the method speaks to its utility as a monitoring and 

planning tool.  

 Digital Mylar-produced change estimates for both burn and thin-and-burn units were not 

surprising given the nature and intent of the treatments. Upon reflection, the non-significant 

finding of change in untreated polygons is likewise not surprising. In an arid, minimally 

productive environment, an eight year interval between estimates proved insufficient to measure 

change on the landscape through the growth of new stems. In extrapolating change data from 

other studies in arid or semi-arid juniper environments, an annual expansion/infill addition to 

canopy-cover of around 1% (e.g. 10% to 11% canopy-cover would be an addition of 1%) 

appears plausible (Goslee et al. 2003, Sankey et al. 2008). Goslee et al. (2003) also reveals, 

however, a non-linear increase in shrub canopy-cover in New Mexico over 60 years. Per annum 

canopy-cover additions ranged from 0.7% to 5.2%, and decreases in cover were also observed. 

Without more definite findings in this study, however, I am wary of drawing many inferences 

from these data.  

 

 36



Spatial Wavelet Analysis Effectiveness and Results 

SWA as an Analysis Tool 

 The data preparation requirements, analysis process, and results of SWA all differ greatly 

from those of Digital Mylar analysis. Without a user-friendly interface of any kind, the algorithm 

used in this study would prove very difficult to learn in a reasonably short amount of time. 

Altering the algorithm to produce output files of a different type suitable for a user’s purposes 

would require a considerable devotion of time and energy to learn the basics of the MATLAB 

programming language and the specific functions of individual parts of the SWA algorithm. In 

my case, the process of understanding the language and this algorithm included one-on-one 

mentoring with experienced programmers, extensive reading, and most importantly, an extended 

period of trial-and-error occasioned by considerable frustration and infrequent, minor 

breakthroughs.  

 Beyond the initial extended training process, SWA presents several unique challenges to 

the user. First, although SWA provides the ability to process imagery depicting a potentially 

limitless geographic area, the process is not scalable in the same way as Digital Mylar. Given a 

level of uniformity of the analysis features on the landscape, estimation with Digital Mylar is 

possible for vast areas. Analysis with SWA requires breaking imagery into relatively small 

pieces and processing them sequentially, adding a significant step in image pre-processing.  

 Second, the SWA algorithm in its current form does not calculate canopy-cover. The list 

of features with their associated locations and radii initially seems to allow a simple 

mathematical calculation of total feature area, but is confounded by the tendency of the 

algorithm to define overlapping canopies, especially (but not only) where canopy-cover 

increases. The user must therefore further manipulate the data to produce estimates of canopy-

cover (as I did in dissolving canopies together and calculating the resulting area in ArcGIS). 

 Third, the quantity of data provided by SWA can prove overwhelming. Even given the 

high omission rates over much of the analysis area, each SWA run over the entire series of image 

tiles produced a total of 700,000 to 1 million records. Though this data represents a virtual 

census (bearing in mind considerable omission and commission errors) of all tree crowns in the 

analysis area, the accuracy of this census requires further sampling of the data. Indeed, I found it 

necessary to sample SWA data even in producing a histogram of SWA-derived crown diameters, 

as processing demands for such quantities of data proved unwieldy or impossible.  
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SWA Estimates 

 The documented inability of the SWA algorithm to reliably locate and properly attribute 

tree crowns at canopy-cover rates approaching 25% (Strand et al. 2006) proved a major factor in 

the analysis of my study area. I found that with my imagery and manipulation of the SWA 

algorithm, about 15% proved to be the cutoff for particularly accurate estimates of crown size.  

 In partially closed and closed canopy areas, the tendency was for the SWA to define large 

areas, particularly shadows, as tree crowns. The SWA algorithms acts consistently enough, 

however, that in closed canopy environments change estimates were consistent with Digital 

Mylar estimates either in their actual value, or at least the magnitude and direction of change. 

Consequently, despite high omission error and a general breakdown in closed canopy areas, 

treatment means for burn and thin-and-burn polygons proved statistically equivalent.  

 To a greater extent than discussed by Strand (2007) and Strand, et al. (2006 and 2008), I 

found that shadows from even open-grown, well-defined juniper crowns were problematic for 

SWA in determining crown diameter. In many cases, the SWA identified the shadow, and the 

quality of its estimate of crown diameter was hostage to the correlation of each individual 

crown’s shadow size to its diameter. This tendency explains the underestimation of both crown 

diameter and canopy-cover. Only in cases where illumination and slope factors caused the 

shadow to fall directly under the tree did SWA precisely delineated the center point and spatial 

extent of the tree crown. 

 Strand (2007) describes the inability of SWA to identify crowns with diameters smaller 

than 2 m to 3 m. This study found that SWA does tend to underestimate the prevalence of trees 

in this size class (compare crown diameter histograms from SWA in Figures 14 and 15 with GIS-

measured diameters in Figures 12 and 13), but did indeed identify thousands of them on the 

landscape. Examining these histograms, one should note the presence of two other phenomena. 

First is the bell-shaped, relatively symmetrical distribution of the GIS-measured crown 

diameters. Baker (2009) explains that, “[pinon-juniper woodlands] 100-200 years old often have 

a bell-shaped age structure, as a cohort of trees recovered after disturbance…” It may therefore 

be reasonable to conclude that some substantial subset of the study area falls into this age range, 

assuming a correlation between crown diameter and tree age.  

 The second phenomenon is the bimodal distribution of both SWA histograms of crown 

diameter. Not only does this distribution have the effect of shifting the mean significantly higher 
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than the GIS-measured mean, but it again reveals the effect of SWA’s unreliability to estimate 

crown diameter in closed-canopy areas. This peak of large diameter crowns centered around 8m 

overwhelmingly represents draws and other closed-canopy areas, where SWA identified large 

areas of shade as enormous tree crowns.  

   

Legacy and Expansion Tree Locations and Densities 

 Bearing in mind the accuracy rates of open-grown legacy tree identification (68% for 30-

threshold and 79% for 70-threshold SWA runs), images produced as generalized analogs for 

historic condition (Figures 11 and 12) and juniper expansion (Figures13 and 15) indicate some 

ecological characteristics of particular interest to managers pursuing landscape restoration goals. 

As one might expect, draws and canyons contain the preponderance of legacy trees. In previous 

centuries, it appears few trees occupied the mesa tops, and these areas maintained a very open 

condition. 

 These images also indicate that in areas of extensive shading and continuous crown cover 

legacy tree identification is unrealistically high. Because SWA is so unreliable in such 

conditions, and crown diameter measurement is difficult even with the naked eye, I did not 

measure the accuracy of legacy tree identification in closed canopy or highly-shaded areas. Use 

of the density images above, therefore, should be thoughtfully undertaken, and include accuracy 

assessment for particular areas of interest to users.  

 

Conclusions and Management Implications 

 

 In this study, I intended to both provide estimates of restoration treatment efficacy, and 

evaluate the utility of two estimation methods. I examined canopy-cover pre- and post-treatment 

and compared these results with adjacent untreated areas. I compared Digital Mylar and SWA 

estimation methods, and explored further analysis using SWA data, including a characterization 

of vegetation structure, and imagery illustrating legacy and non-legacy tree locations and 

densities. 

 Restoration treatments implemented by Clifton Ranger District fire personnel 

significantly reduced canopy-cover, but efficacy is somewhat dependent on the topography of 

the burned area and the cost of treatment. The significant reduction in canopy-cover from 
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burning alone is promising given its low per-ha cost, but its ability to reduce canopy-cover to 

target levels is limited. Repeated prescribed burning treatments with similar effects, however, 

would reach targets over time at a fraction of the cost of a single thinning-and-burning treatment. 

Thinning juniper stems and burning the residue in addition to natural fuels produces great 

reduction in canopy-cover and appears more likely to reduce cover to target levels – but at a cost 

that is ten times that, per ha, of burning alone.  

 Given the tendency of alligator juniper to re-sprout after disturbance, repeated treatment 

will likely be necessary. If understory vegetation productivity increases as a result of burning 

alone, repeated prescribed burns may produce greater reductions in canopy-cover in the 

succeeding years. Estimation of understory production is beyond the scope of this study, and 

likely would require field sampling or multi-spectral image analysis (or both). In the long run, a 

scientifically-based treatment prioritization system (possibly a variant of the current TEU type 

system) could direct costly thin-and-burn treatments where they are most needed and will prove 

most cost-effective.  

 It is hard to impeach the quick, reliable, statistically sound estimation technique Digital 

Mylar represents. The process is easy to teach, is fundamentally easy to understand and does not 

rely on higher mathematics. Once trained, any technician can produce accurate, usable estimates 

of canopy-cover and change in cover. Further, it is not nearly as dependent on image quality as 

an image analysis algorithm, so imagery in any spatial resolution fine enough to allow 

discernment of individual crowns can be quickly utilized without a need for image resampling. 

In this manner historic images of any time period can be used as a basis for estimating cover 

change over long time periods. The method’s one substantial downside is the time requirement 

involved in producing estimates in numerous areas. For the canopy-cover estimates used in this 

study, I looked at about 25,000 individual points. This process took about 50 total hours, spread 

out over two weeks. 

 Spatial Wavelet Analysis, on the other hand, presents unique challenges (described in the 

Discussion section above) to widespread implementation in a non-academic setting. Complex 

mathematics do not necessarily need to limit the use of SWA, as many functions in common 

image processing and GIS software are performed daily by users without technical understanding 

of their operation, or underlying theory. An interface which allows users to upload images, set 

thresholds and parameters and produce useful output in a user-friendly graphical environment 
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would drastically increase the utility of this tool among academics, researchers, and managers 

alike. With constraints in budget, equipment, and personnel, the time commitment and technical 

ability required to effectively use SWA is, at the present time, unrealistic for use in monitoring 

activities for land managers in most situations.  

 Despite these challenges and with accuracy caveats in mind, SWA provided a vast 

quantity of high quality data. Under certain conditions of open forest cover and quality imagery, 

SWA presents the opportunity of obtaining a virtual census of tree (or shrub) locations and 

crown diameters over a potentially vast landscape. The legacy tree and non-legacy tree images 

(Figures 11 through 16) are one example of a possible utility for such data. Though not a true 

census of juniper expansion or of legacy tree locations on the landscape, the images provide a 

potential guide to managers seeking an analog of historic conditions. Managers interesting in 

landscape restoration could use such images (with further sampling or ground-truthing for 

accuracy assessment of particular areas) to determine which areas appear the most departed from 

historic conditions and conduct treatments accordingly.  

  Investigation into the use of SWA data in questions of ecology, wildlife habitat potential, 

monitoring of management actions, and a wide variety other fields is at its beginning. The 

potential for performing analysis on an analog of reality, rather than a subset selected in 

sampling, is an exciting prospect. I expect that with further research, and the incorporation of this 

technique into standard image processing and/or GIS software packages, the utility of SWA will 

become further realized and streamlined.  
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Appendices 

 
Appendix A. Polygon ID, TEU type, treatment type, Digital Mylar canopy hits, canopy-cover, and canopy-cover 
change estimates categorized by treatment and TEU type in the Mesa project area.  
Mesa Unit

Polygon TEU type Treatment 2000 canopy hits 2000 CC 2008 canopy hits 2008 CC CHANGE
18262 630 Burn 64 16.62 56 14.55 -12.50
13433 514 Burn 85 22.08 73 18.96 -14.12
16235 632 Burn 69 17.92 41 10.65 -40.58
13705 630 Burn 55 14.29 36 9.35 -34.55
13208 630 Burn 77 20.00 54 14.03 -29.87
12828 630 Burn 100 25.97 50 12.99 -50.00
13424 514 Burn 129 33.51 102 26.49 -20.93
16029 589 Burn 69 17.92 64 16.62 -7.25
16100 582 Burn 73 18.96 71 18.44 -2.74
16250 632 Burn 122 31.69 107 27.79 -12.30
18263 573 Burn 43 11.17 44 11.43 2.33
18278 582 Burn 52 13.51 50 12.99 -3.85
18274 575 Burn 122 31.69 114 29.61 -6.56
18275 514 Untreated 98 25.45 111 28.83 13.27
16244 630 Untreated 113 29.35 128 33.25 13.27
17842 130 Untreated 111 28.83 109 28.31 -1.80
14849 60 Untreated 167 43.38 186 48.31 11.38
16079 514 Untreated 92 23.90 87 22.60 -5.43
13342 512 Untreated 56 14.55 66 17.14 17.86
18267 573 Burn/Thin 29 7.53 9 2.34 -68.97
13703 630 Burn/Thin 117 30.39 77 20.00 -34.19
15350 575 Burn/Thin 123 31.95 74 19.22 -39.84
15951 632 Burn/Thin 74 19.22 36 9.35 -51.35
14596 630 Burn/Thin 84 21.82 51 13.25 -39.29
13340 630 Burn/Thin 63 16.36 29 7.53 -53.97
12831 630 Burn/Thin 60 15.58 45 11.69 -25.00
14842 589 Burn/Thin 61 15.84 48 12.47 -21.31  
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Appendix B. Digital Mylar canopy hits, canopy-cover, and canopy-cover change estimates categorized by treatment 
and TEU type in the NO Bar project area.  
NO Bar Unit

Polygon TEU Treatment 2000 canopy hits 2000 CC 2008 canopy hits 2008 CC CHANGE
12708 630 Burn 97 25.19 89 23.12 -8.25
13209 481 Burn 13 3.38 15 3.90 15.38
13312 514 Burn 135 35.06 105 27.27 -22.22
13579 481 Burn 28 7.27 16 4.16 -42.86
13700 60 Burn 125 32.47 119 30.91 -4.80
13702 432 Burn 57 14.81 35 9.09 -38.60
13704 481 Burn 62 16.10 52 13.51 -16.13
14602 481 Burn 34 8.83 12 3.12 -64.71
14604 481 Burn 17 4.42 16 4.16 -5.88
15143 220 Burn 54 14.03 47 12.21 -12.96
15352 589 Burn 35 9.09 21 5.45 -40.00
14844 589 Burn 9 2.34 4 1.04 -55.56
14600 589 Burn 32 8.31 28 7.27 -12.50
15141 483 Burn 35 9.09 32 8.31 -8.57
14893 630 Burn 64 16.62 57 14.81 -10.94
17491 130 Burn 88 22.86 82 21.30 -6.82
14591 582 Burn 83 21.56 72 18.70 -13.25
14592 620 Burn 78 20.26 76 19.74 -2.56
14594 481 Burn 32 8.31 27 7.01 -15.63
14598 620 Burn 115 29.87 100 25.97 -13.04
15115 632 Burn 54 14.03 50 12.99 -7.41
15118 630 Burn 129 33.51 96 24.94 -25.58
15145 620 Burn 85 22.08 86 22.34 1.18
16095 632 Burn 90 23.38 80 20.78 -11.11
16098 482 Burn 31 8.05 28 7.27 -9.68
15351 130 Burn 94 24.42 97 25.19 3.19
15412 632 Burn 113 29.35 103 26.75 -8.85
16845 620 Burn 123 31.95 118 30.65 -4.07
16847 482 Burn 60 15.58 55 14.29 -8.33
16097 220 Burn 61 15.84 54 14.03 -11.48
15122 622 Burn 97 25.19 85 22.08 -12.37
15123 589 Burn 72 18.70 51 13.25 -29.17
16094 481 Burn 34 8.83 25 6.49 -26.47
13296 634 Burn 116 30.13 91 23.64 -21.55
17203 630 Burn 52 13.51 27 7.01 -48.08
17850 630 Burn 70 18.18 47 12.21 -32.86
18004 512 Burn 83 21.56 70 18.18 -15.66
14875 620 Untreated 123 31.95 132 34.29 7.32  
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Appendix C. 2000 and 2008 sample sizes, canopy-cover and canopy-cover change for each TEU type across both 
project areas. 
TEU TREATMENT Canopy Hits 2000 n Canopy Hits 2008 n 2000 CC 2008 CC CHANGE

60 BURN 125 385 119 385 32.47 30.91 -4.80
130 BURN 182 770 179 770 23.64 23.25 -1.65
220 BURN 115 770 101 770 14.94 13.12 -12.17
432 BURN 57 385 35 385 14.81 9.09 -38.60
481 BURN 220 2695 163 2695 8.16 6.05 -25.91
482 BURN 91 770 83 770 11.82 10.78 -8.79
483 BURN 35 385 32 385 9.09 8.31 -8.57
512 BURN 83 385 70 385 21.56 18.18 -15.66
514 BURN 349 1155 280 1155 30.22 24.24 -19.77
573 BURN 43 385 44 385 11.17 11.43 2.33
575 BURN 122 385 114 385 31.69 29.61 -6.56
582 BURN 208 1155 193 1155 18.01 16.71 -7.21
587 BURN 41 385 22 385 10.65 5.71 -46.34
589 BURN 217 1925 168 1925 11.27 8.73 -22.58
620 BURN 401 1540 380 1540 26.04 24.68 -5.24
622 BURN 97 385 85 385 25.19 22.08 -12.37
630 BURN 708 3465 512 3465 20.43 14.78 -27.68
632 BURN 448 1925 381 1925 23.27 19.79 -14.96
634 BURN 116 385 91 385 30.13 23.64 -21.55

TEU TREATMENT Canopy Hits 2000 n Canopy Hits 2008 n 2000 CC 2008 CC CHANGE
60 UNTREATED 167 385 186 385 43.38 48.31 11.38

130 UNTREATED 111 385 109 385 28.83 28.31 -1.80
512 UNTREATED 56 385 66 385 14.55 17.14 17.86
514 UNTREATED 190 770 198 770 24.68 25.71 4.21
620 UNTREATED 123 385 132 385 31.95 34.29 7.32
630 UNTREATED 113 385 128 385 29.35 33.25 13.27

TEU TREATMENT Canopy Hits 2000 n Canopy Hits 2008 n 2000 CC 2008 CC CHANGE
573 BURN/THIN 29 385 9 385 7.53 2.34 -68.97
575 BURN/THIN 123 385 74 385 31.95 19.22 -39.84
589 BURN/THIN 61 385 48 385 15.84 12.47 -21.31
630 BURN/THIN 324 1540 202 1540 21.04 13.12 -37.65
632 BURN/THIN 74 385 36 385 19.22 9.35 -51.35  
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Appendix D. SWA-derived canopy-cover estimates for TEU polygons in the Mesa project area. Crown area and 
polygon area are both recorded in square meters.  

2000 2008
30threshold 70threshold 30threshold 70threshold

Polygon ID Crown (m2^) Polygon Area Cover% Crown Cover Crown Cover Change Crown Cover Change
18262 156146.09 1136215.68 13.74 149824.39 13.19 133925.52 11.79 -14.23 123617.93 10.88 -17.49
13433 165572.54 775110.53 21.36 160217.18 20.67 134909.70 17.41 -18.52 126195.51 16.28 -21.23
16235 447246.44 2851332.80 15.69 423847.15 14.86 332642.59 11.67 -25.62 287553.33 10.08 -32.16
13705 11721.03 258388.86 4.54 19779.40 7.65 17454.02 6.75 48.91 15822.33 6.12 -20.01
13208 41850.07 444562.07 9.41 47366.75 10.65 40009.94 9.00 -4.40 36071.19 8.11 -23.85
12828 49526.10 372045.01 13.31 47616.87 12.80 32852.72 8.83 -33.67 26434.35 7.11 -44.49
13424 489622.93 2163289.85 22.63 470797.55 21.76 426409.41 19.71 -12.91 400730.37 18.52 -14.88
16029 12495.59 177194.55 7.05 19061.94 10.76 13762.82 7.77 10.14 12518.04 7.06 -34.33
16100 53214.90 616436.76 8.63 69260.54 11.24 65644.80 10.65 23.36 60400.58 9.80 -12.79
16250 13381.07 101647.52 13.16 6401.45 6.30 16335.67 16.07 22.08 15015.01 14.77 134.56
18263 17544.33 272679.18 6.43 15881.74 5.82 13906.81 5.10 -20.73 12793.93 4.69 -19.44
18278 29311.19 249227.08 11.76 27704.32 11.12 19687.31 7.90 -32.83 18933.20 7.60 -31.66
18274 163555.65 680323.53 24.04 161702.86 23.77 153313.24 22.54 -6.26 148840.49 21.88 -7.95
18275 1386958.67 6691029.19 20.73 896510.54 13.40 945837.40 14.14 -31.80 895154.62 13.38 -0.15
16244 40112.15 122022.83 32.87 39990.72 32.77 35287.96 28.92 -12.03 34700.72 28.44 -13.23
17842 816171.42 3616763.37 22.57 740119.11 20.46 700053.08 19.36 -14.23 652024.14 18.03 -11.90
14849 41565.45 158443.74 26.23 50206.11 31.69 47535.90 30.00 14.36 46628.81 29.43 -7.13
16079 687882.94 3289165.80 20.91 614550.63 18.68 579568.49 17.62 -15.75 530068.53 16.12 -13.75
13342 322310.34 2551665.46 12.63 355112.25 13.92 335043.85 13.13 3.95 301057.51 11.80 -15.22
18267 301927.78 3875293.99 7.79 242935.41 6.27 193594.78 5.00 -35.88 110279.80 2.85 -54.61
13703 646372.53 3265911.01 19.79 600413.05 18.38 401261.30 12.29 -37.92 350248.66 10.72 -41.67
15350 211709.96 1031234.49 20.53 207869.85 20.16 173288.94 16.80 -18.15 159226.23 15.44 -23.40
15951 501484.68 3118193.24 16.08 508799.51 16.32 363559.06 11.66 -27.50 313069.61 10.04 -38.47
14596 186896.11 1231545.27 15.18 171941.44 13.96 134361.45 10.91 -28.11 110412.39 8.97 -35.78
13340 142645.73 1023737.56 13.93 135757.46 13.26 65709.31 6.42 -53.94 42740.65 4.17 -68.52
12831 70616.82 414513.95 17.04 68797.43 16.60 39344.03 9.49 -44.29 34551.03 8.34 -49.78
14842 301955.52 1614386.70 18.70 279233.29 17.30 246487.63 15.27 -18.37 206692.03 12.80 -25.98  
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Appendix E. SWA-derived canopy-cover estimates for TEU polygons in the NO Bar project area 

2000 2008
30 threshold 70threshold 30threshold 70threshold

Polygon ID Crown Area (Polygon Area Cover% Crown Area Cover% Crown Area Cover% Change Crown Area Cover% Change
12708 181951.09 1086952.53 16.74 159186.92 14.65 149878.61 13.79 -17.63 138185.62 12.71 -13.19
13209 23229.97 362718.71 6.40 11198.83 3.09 14501.09 4.00 -37.58 11396.15 3.14 1.76
13312 15522.97 105552.67 14.71 8828.70 8.36 10610.89 10.05 -31.64 7606.17 7.21 -13.85
13579 25902.83 369558.06 7.01 22992.65 6.22 20981.33 5.68 -19.00 19579.15 5.30 -14.85
13700 48810.60 205817.34 23.72 47670.93 23.16 47404.30 23.03 -2.88 46014.16 22.36 -3.48
13702 81764.27 664680.12 12.30 76334.27 11.48 74190.48 11.16 -9.26 63140.00 9.50 -17.28
13704 23523.26 211425.09 11.13 21882.85 10.35 18275.60 8.64 -22.31 15679.16 7.42 -28.35
14602 27000.39 306659.36 8.80 16744.43 5.46 24465.55 7.98 -9.39 9208.93 3.00 -45.00
14604 22692.52 298322.27 7.61 15098.85 5.06 26829.41 8.99 18.23 9486.74 3.18 -37.17
15143 274770.14 1950644.57 14.09 259028.21 13.28 242079.00 12.41 -11.90 229789.91 11.78 -11.29
15352 85988.19 1019634.71 8.43 91209.96 8.95 79854.91 7.83 -7.13 75147.36 7.37 -17.61
14844 49029.35 1357013.89 3.61 30516.65 2.25 37572.98 2.77 -23.37 22514.02 1.66 -26.22
14600 48207.51 674967.62 7.14 47035.15 6.97 38783.64 5.75 -19.55 36732.36 5.44 -21.90
15141 39906.30 445878.37 8.95 37891.18 8.50 35684.30 8.00 -10.58 33548.68 7.52 -11.46
14893 38119.29 320750.70 11.88 21903.14 6.83 27382.77 8.54 -28.17 22667.78 7.07 3.49
17491 93888.29 409673.28 22.92 88628.88 21.63 69596.58 16.99 -25.87 49644.56 12.12 -43.99
14591 122608.35 656919.25 18.66 128369.03 19.54 124669.33 18.98 1.68 115100.14 17.52 -10.34
14592 728393.35 2074497.02 35.11 719588.44 34.69 643219.30 31.01 -11.69 620509.27 29.91 -13.77
14594 114652.43 1715170.77 6.68 107651.32 6.28 100476.58 5.86 -12.36 84434.88 4.92 -21.57
14598 145773.09 465984.51 31.28 142934.85 30.67 137820.47 29.58 -5.46 134209.94 28.80 -6.10
15115 146996.04 888614.15 16.54 142348.32 16.02 115353.26 12.98 -21.53 107434.57 12.09 -24.53
15118 61979.13 363508.57 17.05 56211.86 15.46 51809.47 14.25 -16.41 46085.88 12.68 -18.01
15145 82390.57 235923.47 34.92 81136.85 34.39 83898.53 35.56 1.83 82437.26 34.94 1.60
16095 67999.65 202956.07 33.50 67604.90 33.31 59688.76 29.41 -12.22 58386.93 28.77 -13.64
16098 27779.97 382678.54 7.26 25679.57 6.71 16952.41 4.43 -38.98 8752.84 2.29 -65.92
15351 86761.33 426671.61 20.33 80097.19 18.77 64464.74 15.11 -25.70 46511.57 10.90 -41.93
15412 270669.60 1469930.38 18.41 215719.32 14.68 228733.68 15.56 -15.49 203939.05 13.87 -5.46
16845 196927.08 560966.29 35.10 193596.03 34.51 165519.34 29.51 -15.95 155133.67 27.65 -19.87
16847 6847.74 72115.97 9.50 6094.47 8.45 5003.27 6.94 -26.94 3708.91 5.14 -39.14
16097 147826.00 1268583.58 11.65 135261.86 10.66 113346.47 8.93 -23.32 89264.27 7.04 -34.01
15122 31869.55 183623.25 17.36 24181.44 13.17 25225.49 13.74 -20.85 22778.51 12.41 -5.80
15123 424406.53 3532144.71 12.02 390436.07 11.05 329611.21 9.33 -22.34 261947.90 7.42 -32.91
16094 76391.97 1007383.07 7.58 72765.46 7.22 60361.39 5.99 -20.98 52536.82 5.22 -27.80
13296 949983.40 4911435.11 19.34 699487.16 14.24 871570.49 17.75 -8.25 786575.66 16.02 12.45
17203 17711.01 196989.83 8.99 15336.54 7.79 16003.83 8.12 -9.64 13232.09 6.72 -13.72
17850 109284.66 832578.20 13.13 102484.13 12.31 94162.95 11.31 -13.84 83122.57 9.98 -18.89
18004 48127.77 402938.57 11.94 44768.21 11.11 45202.92 11.22 -6.08 39597.57 9.83 -11.55
14875 130838.95 338755.23 38.62 130394.85 38.49 128813.28 38.03 -1.55 128076.79 37.81 -1.78  
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Appendix F. Aerial photography documentation describing 2000 geometry and other parameters. 
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Appendix G. Aerial photography documentation describing 2008 geometry and other parameters. 
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