
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2003

Using Visual Basic & ArcObjects to create ActiveX controls for Using Visual Basic & ArcObjects to create ActiveX controls for

MAGIS-Express Import Wizard MAGIS-Express Import Wizard

Li Mei Piao
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Piao, Li Mei, "Using Visual Basic & ArcObjects to create ActiveX controls for MAGIS-Express Import
Wizard" (2003). Graduate Student Theses, Dissertations, & Professional Papers. 8357.
https://scholarworks.umt.edu/etd/8357

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8357?utm_source=scholarworks.umt.edu%2Fetd%2F8357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

mm
Maureen and Mike

MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited
in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission

No, I do not grant permission

X

Author’s Signature:

Date: S f X ̂ / X ^ j

Any copying for commercial purposes or financial gain may be undertaken
only with the author’s explicit consent.

8/98

USING VISUAL BASIC & ARCOBJECTS TO CREATE
ACTIVEX CONTROLS FOR MAGIS EXPRESS IMPORT WIZARD

By

Piao Li Mel

B.S. Capital University of Medicine, P R. China

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

2003

Approved by:

Dean, Graduate School

9 - % - o S

Date

UMI Number: EP39158

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Oisssriation P\jblish*n^

UMI EP39158

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Li Mei, Piao, M.S., August 2003 Computer Science

Using Visual Basic & ArcObjects to Create ActiveX Controls for MAGIS-Express
Import Wizard

Director; Joel Henry

This project describes the creation o f three ActiveX controls for the Import Wizard of
MAGIS-Express, a large software package for making plans and schedules o f land
management and transportation-related activities on a geographic and temporal basis in
the presence o f multiple and sometimes conflicting objectives. All the controls are
implemented in Microsoft Visual Basic 6 together with ESRI ArcObjects to handle some
issues related to geographic data, like coverages and shapefiles. All three controls have
their own user interfaces to gather the user’s input and produce corresponding actions.
The import wizard contains four forms written in Microsoft Visual FoxPro, in which the
first three forms are the containers of the three ActiveX controls. The Import Wizard is a
part o f the MAGIS-Express software. The purpose o f the Import wizard is to lead the user
through a sequence o f steps to import area geographic data into MAGIS-Express, such as
selecting geospatial databases, selecting exit nodes, performing data checks (i.e. format,
completeness, integrity), and populating MAGIS internal tables with attribute values
from the associated databases.

11

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 MAGIS-EXPRESS & ITS IMPORT W IZA R D....................................... 4
2.1 What are MAGIS, MAGIS-Express and Import W izard?..................................4

CHAPTER 3 SPECIFICATIONS AND REQUIREM ENTS...9
3.1 ActiveX Control for Import Wizard Forml .. 9
3.2 ActiveX Control for Import Wizard F orm 2... 16
3.3 ActiveX Control for Import Wizard F orm 3...21

CHAPTER 4 DESIGN DOCUM ENTS.. 26
4.1 UML & Detail D esign .. 26

4.1.1 UML and Detail Design fo r ActiveX control in
Import Wizard fo r m l ...26

4.1.2 UML and D eta il Design fo r A ctiveX coritrol In Im port W izard f o r m 249

4.1.3 UML and D eta il D esign f o r A ctiveX control In Im port W izard f o r m 265

CHAPTER 5 IMPLEMENTATION & TESTING ... 79
5.1 OLE (A ctiveX)..79
5.2 Architecture of the Component Object Model (C O M)...................................... 80
5.3 ActiveX Controls (OLE controls)..85

5.3.1 Types o f ActiveX Components... 86
5.4 Creating ActiveX Controls Using Visual B as ic .. 89

5.4.1 Why Use Visual Basic 6 .. 89
5.4.2 Visual Basic ActiveX Control Creations Basics.................................. 90

5.5 Some o f ArcObjects used in MAGIS-Express Import W izard93
5.6 Testing and D ebugging... 96

5. 6.1 Testing S tra te g ie s .. 96
5.6.2 D ebugging M e th o d ..98

CHAPTER 6 DISCCUSION... 100
6.1 Why use ActiveX controls in the MAGIS-Express Import W izard 100
6.2 Visual Basic vs. VC++ in ActiveX Controls Implementation for the MAGIS-

Express Import Wizard...102
6.3 Software R eu se ...102

APPENDIX A: A QUICK REFERENCE TO TABLES INVOLVED IN THIS
PROJECT.. 103

REFERENCES... 108

111

Acknowledgements:

I would like t o t hank p rofessor J cel H enry, m y a d visor, f or his inv aluable guidance,
patience and encouragement.

Special thanks are also due to professor Hans Zurring for giving me such a great
opportunity to take part in the development o f MAGIS, also for his guidance, suggestion
and comments on this paper.

Thanks also go to professor Alden Wright for accepting to be a member o f my committee
and his guidance.

I am particular grateful to my supervisor, Ms Judy Troutwine, for her technical guidance,
suggestion, patience and support in every phase of the work.

Finally I would like to thank all the members in MAGIS software developing team for
their cooperation and assistance.

IV

CHAPTER 1

INTRODUCTION

This project illustrates the process o f building the ActiveX controls for the

MAGIS-Express Import Wizard. The process includes the following steps.

Multi-Resource Analysis and Geographic Information System (MAGIS) is a

sophisticated planning and decision-making tool for natural resource managers that

enables forest managers to schedule management activities and analyze the ecological

and economic consequences of those activities. MAGIS is composed o f a commercial

mathematical linear programming software package, GIS software, and an optional tree

growth simulator, all sharing a common graphical user interface. MAGIS provides a

convenient tool for solving a wide variety o f natural resources management problems.

MAGIS Express, one o f the two modes o f MAGIS, is a simplified version of MAGIS

with a timber and road emphasis and numerous pre-defined variables to streamline the

model building process. MAGIS-Express contains a number o f graphical user interface

wizards to simplify the use of the software. The Import Wizard is one of these used for

importing area data.

OLE technology was introduced by Microsoft. OLE, which stands for Object

Linking and Embedding, is a collection of unrelated technologies, all based on a standard

approach for working with objects. All the objects handled by OLE are component

objects or window objects. These objects incorporate the same technology called

Component Object Model (COM). COM makes it possible for different applications to

manipulate objects they know nothing about. COM technology enables the data-centric

computing that forms the foundation for everything from future Microsoft operating

systems to OLE controls [7]. ActiveX control is another name for OLE control.

The MAGIS-Express Import Wizard contains four Visual FoxPro (VFP) forms,

each o f the first three contain an ActiveX control created by the author using Microsoft

Visual Basic in combination with ArcObjects.

ArcObjects comes with the ESRI ArcGIS software package. They are the

development platform of ArcGIS DeskTop software that is comprised o f three

components namely ArcMap, ArcCatalog, and ArcToolBox. The reason that we can use

ArcObjects with Visual Basic (Visual Basic) is that these ArcObjects are created using

Microsoft Component Object Model (COM) technology mentioned above. So, any COM

compliant programming language like Visual Basic can extend these ArcObjects.

Besides ArcObjects, the MAGIS-Express Import Wizard also uses an ActiveX

control called MapControl. MapControl is provided by ArcGIS for creating standalone

applications to display and manipulate geographic data.

The type of geographic data manipulated in this wizard project are coverages and

shapefiles, both o f them belong to the ArcGIS Vector data model that represents

geographic phenomena with points, lines, and polygons.

The Import Wizard is designed for importing user selected area geospatial data

into the MAGIS-Express working space. The purpose of the Import Wizard is to guide

the user through a sequence o f steps to select geospatial databases, select exit nodes,

perform data checks (i.e. format, completeness, integrity), and populate MAGIS internal

tables with attribute values from the associated databases [5]. The ActiveX control for

Form l asks the user to select one ‘‘Roads” and one “Treatment Units” geospatial

database, and then copies the data to the desired Arclnfo workspace. It also performs the

data conversions as needed (coverages to shapefiles, or shapefiles to coverages). The

ActiveX control in Form2 o f the wizard is used to select “Exit node(s)” for each traffic

type and check the connectivity. The ActiveX control for FormS allows the user to select

the ID fields for “Treatment Units” and “Roads” data. All of the forms in this Import

Wizard are Microsoft Visual FoxPro (VFP) forms supporting the ActiveX controls.

The following chapters will look into some details o f developing these ActiveX

controls. Chapter2 contains a brief introduction to MAGIS, MAGIS-Express, and its

Import Wizard. ChapterS lists the detail specifications and requirements o f the Import

Wizard. Chapter4 provides the different kinds o f design documents of the wizard.

Chapters illustrates the implementation technologies applied to this project as well as the

testing strategies and debugging methods. Finally, in Chapterô, three related issues will

be discussed, such as the reasons we use ActiveX controls in this Import Wizard, the

reasons we use Visual Basic to create these ActiveX controls, and the software reuse

issues.

CHAPTER 2

MAGIS-EXPRESS & ITS IMPORT WIZARD

2.1 What are MAGIS, MAGIS-Express and Import Wizard?

MAGIS is a large software package that helps natural resource managers to make

plans and schedules for land management and transportation-related activities based on

geographic and temporal information for different objectives, such as providing habitat

for terrestrial and aquatic organisms, producing commodity outputs such as forage and

sawlogs, and providing recreational access and use. MAGIS focuses on tactical planning,

and provides both optimization and simulation modes [7].

MAGIS was built and introduced by the Montana Department o f Natural

Resources & Conservation, Forestry Division, the School of Forestry at the University of

Montana, and the Intermountain Research Station, Forest Service, U.S. Department of

Agriculture for the purpose of proving a sophisticated planning and decision-making tool

to meet the more and more complex requirements for creating feasible forest

management plans [7].

MAGIS consists of three major parts: a commercial mathematical programming

package (MPSIII/pc) for solving the defined matrix (generated by the DATAFORM here

based on the geospatial data imported into MAGIS), GIS software for data input and

display o f results (ArcGIS), and an optional tree growth simulator (SPS or an equivalent).

The control programs o f MAGIS are written in Visual FoxPro and DATAFORM (a

mathematical database manager and a data manipulation language managing MPSIII/pc

for matrix generation and report writing in this project.) that is associated with DBMSs.

The Visual FoxPro DBMS in this project is used for managing DBF format (*.dbf files, a

type o f database table files that can be recognized by Visual FoxPro.) spatial data linked

to geographic locations, as well as providing the graphical user interfaces [7].

The following steps briefly describe how MAGIS works

1. User defined datum for making a management plan are imported into

MAGIS from a GIS environment and can be modified as needed. Two

kinds o f data are involved. One, Forest- wide data form the basis for

calculations, such as activity costs; management regimes; vegetative states

and pathways; road types; construction and re-construction options; and

fixed road costs. Two, Area data (GIS coverages), are used by the model

to make the calculations.

2. A calculating matrix model is generated by MAGIS based on the data

obtained in step 1.

3. Then the SETUP procedure in MAGIS is used to enter the specifications

for building a management scenario that contains the selection of land

management projects, road network link projects, and traffic routing to the

traffic termination locations.

4. The MAGIS optimizer, C-WHIZ, solves the LP matrix for that

management scenario according to the user selected objectives,

constraints, decision variables, and special relations.

5. Finally MAGIS displays the result to the user in either tabular reports or

GIS-based graphics format as preferred.

MAGIS runs on a minimum-computing platform consisting o f Windows 95 (or

later) environment and requires a 486 or Pentium-class processor having a minimum of

256 MB RAM.

MAGIS-EXPRESS is one of two versions of MAGIS that has a timber and road

emphasis and numerous pre-defined variables to simplify the model building procedures.

MAGIS-Express contains several wizards written in Visual FoxPro (VFP) to lead uses

step-by-step t hrough t he m odel s olving p rocedures. E ach o f t hose w izards c ontains a

friendly graphical user interface. The MAGIS-Express Import Wizard is one o f them. The

reason why Visual FoxPro forms are used here instead o f Visual Basic forms directly is

because Visual FoxPro can manage those DBF format geographic data, such as the

attribute tables for Shapefiles.

The Import Wizard is designed for importing user selected area geospatial data

into the MAGIS-Express working space. The purpose o f the Import Wizard is to guide

the user through a sequence of steps to select geospatial databases, select exit nodes,

perform data checks (i.e. format, completeness, integrity), and populate MAGIS internal

tables with attribute values from the associated databases [5]. The ActiveX control for

Form l asks the user to select one “road” and one “Treatment Units” geospatial database,

then copies the data to a desired Arclnfo workspace, and performs the data conversions

as needed (coverages to shapefiles, or shapefiles to coverages). The ActiveX control in

Form2 o f the wizard is used to select “Exit node(s)” for each traffic type and check the

connectivity o f th e road n e twork. T he A ctiveX control fo r FormS allows t he us er t o

select the ID fields for “treatment units” and “roads” data.

The menu system o f MAGIS-Express and the location of the Import Wizard in

this system is shown in Figure 2.2.1 - Figure 2.2.7.

Figure 2.2.1 MAGIS-Express menu system

: MAGIS Model Area (Name: DV MIPS Test Model (zip) Name; DV_TESTINFEASIBIEJ#
File ^ d e l Specifications ^ild Model Scenarios Help

Figure 2.2.2 MAGIS-Express menu system - File menu and its sub­
menus

MAGIS Model Area Name: DV MIPS Test Model (zip) Name: OV„TESTINFEASlBtE_HP
File Model Specificatims

New

Model Scenarios Help

Ŝ ave

Save As
Delete

Copy
Exit

Figure 2.2.3 MAGIS-Express menu system - Model Specifications -
Planning Framework - Resource Information and its sub menus

: MAGIS Model Area Name: DV MIPS Test Model (zip) Name: DV_TESTINFEASIBLEip>
Fie Model Specifications Build Model Scenarkjs Help

Model Information

Plannina Framework

Management Regimes

Project Area ►

Spatid Specs

Effects Fmcticms

Attribute Names

Network Information

R esource Information ► I Activity Costs

Import States

Define/Edit States

Growth Rates

Timber Products

Harvest Specificabons and Mortality

Logging Methods

Figure 2.2.4 MAGIS-Express menu system - Mode! Specifications - Project
Area - NetWork Specification and its sub menus

FÜe [Model Spécifierions BuÉJ Model Scenarios Help

Model Information ^ ------ --------- ^

Planning Framework ► Click here will activate

Management Re#nes f the M AGIS-Express

Required Attribikes
Import W izard

Spatial Specs GIS I m p o r t | -------- ----------
Effects Functions |■

Treatment Urwt Spectfications ► Traffic Costs

Figure 2.2.5 MAGIS-Express menu system - Build Model and its sub menus

: MAGIS Model Area Name; DV MIPS Test Model (zip) Nawws D#JfTES
File f^del 5pec#ications i Build Mtxlei Scenarios Help

Generate Organizing Tables

View Organizing TaWes

Gener^e Model
Delete Model
View Model

Figure 2.2.6 MAGIS-Express menu system - Scenario menu and its sub
menus

: MAGIS Model Area Name: DV MIPS Test Model (zip) Name; DV_TESTINFEASIMfJ#
File Model Specifications Build Model | Scenwios Help

Setup Scenario

Solve
Display Solutions

OLD View Solutions View Tables

View Overall Schedule

View Schedule by Period

Export to GIS

Figure 2.2.7 MAGIS-Express menu system - Help menu and its sub menus

; MAGIS M udel A re a N am e; DV M IPS T ea l M odel (^ ip) N am e; D V _TC 5T IN fC A SlB U J#

Fite Model Spedtications Bufld Mcxlel %enarios Hê p

Maois Express Help
Technical Support Information

About

CHAPTER 3

SPECIFICATIONS AND REQUIREMENTS

The Import Wizard of MAGIS-Express consists o f 4 VFP forms to meet the

requirements of MAGIS-Express. Each of the first three contains an ActiveX control

built in Visual Basic. The four VFP forms are integrated into one form set.

Programming Language and System Requirement:

The three ActiveX controls were built using Microsoft Visual Basic. Microsoft

Visual FoxPro will be used to create the four forms of the Import Wizard with the first

three forms as the ActiveX containers.

The minimum computing system required to run the wizard is similar to MAGIS:

Windows NT (or later) environment on Pentium-class processor having a minimum of

256 MB RAM.

Location of the Import Wizard in MAGIS-Express Menu System

The user can load the wizard by selecting the following menu items from the

MAGIS-Express Menu System (Figure 2.2.1):

Project Area GIS Import WizardModel Specifications

Purpose of the Import Wizard

The purpose o f the Import Wizard is to provide a graphical streamlined method

that permits the user to select and import spatial data of a selected geographical project

area for which a planning project is to be formulated through MAGIS-Express.

Tasks of the Import Wizard include

• Selecting geospatial databases, such as coverages or shapefiles, and converting

their data formats into those used by MAGIS-Express.

• Selecting exit nodes for each traffic type.

• Selecting feature identification fields for the specified feature classes o f the user

selected import database,

• Performing data checks (i.e. format, completeness, integrity) and populating

MAGIS-Express internal tables with attribute values from the user selected

databases.

Error handling and screen messages

• A standard error control method is needed to handle run time errors and provide

error messages to the user.

• Other messages should be prompted to the user to provide required information at

run time.

3.1 ActiveX Control for Import Wizard Forml

This ActiveX control will reside in the first Visual FoxPro form of the Import

Wizard. It will occupy th e whole surface o f V FP Forml o f the wizard. No other

graphical components will show in Forml. The main task o f this control is to allow

the user to select geospatial databases, such as coverages or shapefiles, and convert

their data into those formats used by MAGIS-Express.

1. Graphical interfaces Design for Import Wizard Forml

Figure 3.1.1 shows the graphical user interface o f the first ActiveX control

in forml o f the MAGIS-Express Import Wizard [3].

10

Figure 3.1.2 shows the “Select directory interface” after the user selects

the “coverage” radio button and clicks the “Browse” button.

Figure 3.1.3 shows the “Select Roads Shapefile” interface after the user

selects the “shapefile” radio button and clicks the “Browse” button (the sample is

for “roads” theme).

Figure 3.1.1 Graphical User interface for MAGIS-Express Import Wizard
Forml

ii. MAGIS-Express Import W»2 ard I n x|

1. Select geospatial databases
Select one Roads and one Treatment Units geospatial database.

Coverage ShapeFiie

Roads ^ ^ I

Coverage ShapeFiie
Treatment r

Help

Brome.

Brome.

Next > I Cancel

11

Figure 3.1.2 MAGIS-Express Import Wizard Forml - Select Directory
Interface

— ̂■ '% - ^ xiil. MAGIS-Express Import Wizard 1

Locate Roads:

C:\Documents and S ettings\gLlpiao\D esk top\N ew
Folder\Magis Wizardl
31903\MagisWizafd1021303eifagisW izardl 031903ed Drive:

_jC:\
_J Documents and Settings
_j|g_lpiao
_J Desktop
_j|New Folder
_J Magis Wizardl 31903

'i MagisWizardI 021303ed

l - J c : 3
i

1 Select 1

—
Cancel |

Figure 3.1.3 MAGIS-Express Import Wizard Forml - Select Shape file
interface

J j x jSelect Roads Shape File

Look in: Lœal Disk (C:

kç-'gal

3 IS r i B -

J arcgis I Program Files
 I Documents and Settings , 1 project
 I EmaH I SysState

J express_ma^s I temp
J magis I unzipped

_JMAGI58 _JWINNT
_ J ModifiedFÜes Backups I Workspace
LJMSSQL7
 I piaotest

FSe name:

Files of type: (shapeftesC shp)

r* Open as read-only

3

3
Open

Cancel

12

2. Graphical user interface will include:

□ A brief user guide on the top of the graphical interface

□ For each theme (“Roads” and “Treatment Units”) the interface should

provide a way to allow the user to select a database (geospatial database,

such as coverage or shapefile) type and display the full path for it in a text

box.

□ A way to launch the help files.

□ A way to cancel the wizard.

□ A way to go to the next form of the Import Wizard.

□ If the Wizard goes from the Form2 back to Form l, the interface of Forml

should contain information of the latest selected databases.

3. Customized properties in this control should be the following:

□ “runpath”, property let (write only):

The full path on the user’s computer where MAGIS-Express will run, such

as “C:\magis_express\main.

□ “RoadName”, property get (read only):

The name o f the user selected “Roads” database (e.g. coverage or

shapefile).

□ “RoadPath”, property get (read only):

The full path of the user selected “Roads” database (e.g. coverage or

shapefile).

13

□ TreatName % property get (read only):

The name o f the user selected “Treatment Unit” database (e.g. coverage or

shapefile).

□ “TreatPath”, property get (read only):

The full path o f the user selected “Treatment Unit” database (coverage or

shapefile).

4. Events will be raised from this ActiveX control to its container:

Some events should be raised by the ActiveX control to its container (VFP

form) so that the container can handler these events, as they were their own event

procedures.

□ HelpButton Click event: allows the container form to access help files.

□ NextButton Click event: allows the container to go to next form in the form

set of the project.

□ CancelButton Click event: allows the container to exit the project.

5. Validating and checking tasks are as following:

For coverage data format:

□ Ensure that any coverage selected is in an Arclnfo coverage workspace.

□ Validate the presence of a map projection definition file (*.pij) in the

coverage directory (or that a map projection has been defined).

□ Validate for topology on “Treatment Units” coverage polygon and arc feature

classes, and for “Roads” coverage arc and node feature classes.

14

For shapefile data format:

□ Validate for presence o f these files: <name>.shp, <name>.dbf, <name>.shx,

and <name>.prj).

For any format:

□ Validate both the user selected databases for each of the two themes, the

“Treatment Units” database and the “Roads” database, have the same m ap

projection.

Error handling:

□ If any of the above validations fails inform the user and exit the Import

wizard, else continue to execute task 5 as followed.

Preprocessing user selected Geospatial database:

□ Creating the new Arclnfo workspace named “gis” under the relative directory:

“[drive name]:” + “\magis_express\temp\magisTemp\” . If this directory

doesn’t exist, create one.

□ Copy the user selected geospatial databases to the new workspace.

□ For each of the two themes, “Roads” and “Treatment Units”, in the new “gis”

workspace, make a data set for both coverage and shapefile format.

□ Rename the coverages and the root name o f shapefiles in the new “gis”

workspace using the MAGIS-Express specific names: “roads” for “Roads”

database, “treat” for “Treatment Units” database.

15

3.2 ActiveX Control for Import Wizard Form2

This ActiveX control will sit in the second Visual FoxPro form o f the Import Wizard.

It will occupy the whole surface of Visual FoxPro Form2 o f the wizard. No other

graphical components will show in Form2. This control is used for selecting exit nodes

for each traffic type.

1. Graphical interfaces Design for Import Wizard For m2

Figure 3.1.4 on the next page shows the graphical user interface o f the second

ActiveX control in Form2 o f the MAGIS-Express Import Wizard [3].

16

Figure 3.1.4 MAGIS-Express Import Wizard Form2 Graphical User interface

B S S E B B
2. S e lec t Exit n od es and ch eck connectivity

instructions: S elect one or more exit nodes for e a c h traffic type. Right click to sw itch be tw een add n odes .
sub trac t nodes and com plete selection . P ress "N ext" button when finished with all traffic types

-lOl x|

I Select Traffic Type

Help

719211 49 5154172.9

< Back I Next > i C ancel

17

2. The graphical user interface will include:

□ A brief user guide on the top of the graphical interface

□ The ability to launch the help files.

□ The ability to cancel the wizard.

□ The ability to go to the next form of the Import Wizard.

□ An ESRI Map Control that is used to display the maps and interact

with the users.

□ A status bar for displaying the map coordinates of the current position

of the mouse.

□ A tool bar control for containing the ESRI or customized map

commands and tools used for managing map data. ArcMap standard

commands and tools are: Zoom in, Zoom out, Pan, Back and forward

zoom. Zoom to full extent. Commands and tools particular to this

control a re: Identify feature, M easure dis tance t ool, C lear s election,

and a customized toll - Zoom to Selected.

□ A customized selecting tool for the users to select the exit nodes from

the map in the map control

□ A combo box that contains traffic types.

□ A context menu that appears when the map control is right-clicked.

Commands in that menu include:

Select more nodes - for triggering the customized selecting tool and

_ adding more exit nodes to the map’s selection set.

Unselect nodes - for triggering the customized selecting tool and

18

_ removing selected nodes from the selection set.

Done - for ending the selection process and starting further data

_ Validation and /or checking.

3. Customized properties in this control include the following:

□ frunpath % property let (write only):

The full path on the user’s computer where MAGIS-Express will run, such

as “C:\magis_express\main.

□ “DoResize”, property let (write only):

A boolean value telling the ActiveX control if it should be resizable.

□ “mapProjUnits”, property get (read only):

Provide the map projection unit of the user selected geospatial database,

such as inches, feet, miles yard, etc.

4. Events will be raised from this ActiveX control to its container:

Some events should be raised by the ActiveX control to its container (VFP

form) so that the container can handler these events, as they were their own

events.

□ HelpButton Click event: allows the container form to access help files.

□ BackButton Click event: allows the container to go to previous form in the

form set o f the project.

□ NextButton Click event: allows the container to go to next form in the form

set o f the project.

□ CancelButton Click event: allows the container to exit the project.

19

5. Validating and checking tasks are as following:

□ Check that one or more exit nodes for the current traffic type have been

selected before deleting and replacing the records in table “_6a.dbf’

(Appendix A). This insures that table “ 6a.dbf ’ does not have records for

that traffic type replaced unless the user has made a new selection for that

traffic type.

□ There must be at least one exit node for each traffic type in table “_6.dbf ’

that contains the selected exit nodes (Locations in the road network where

the forest products are loaded out o f the planning area through the road

network.).

□ The context menu should not be available unless the user has selected a

traffic type.

□ The background of the map displayed in map control will be polygon

coverage in a light neutral color for geographic reference. Polygon

boundaries are drawn as a separate feature in a neutral, but darker color.

□ The “Roads” coverage will be drawn with symbols for existing and

proposed roads in black. Road nodes are displayed with marker symbols

in contrasting color. As a node is selected the identification value is

displayed as a label for the node. The label font should be black and in a

size easily visible at any display scale [3].

□ The context menu o f the map control will only be available after the user

has selected a traffic type from the combo box.

20

□ The customized selecting tool will only be active after the user has

selected a traffic type from the combo box.

□ Commands and tools on the toolbar control will be available at any time.

If, during the node selection process, the user selects a command or tool

on the toolbar, such as “Pan Zoom in”, then to continue the selection, the

user must use the context menu to reactivate the selecting tool.

□ The “Zoom to selected” tool will only be available when at least one “exit

nodes” is selected.

6. Two DBF tables are used in this ActiveX control (Appendix A)

□ _6.dbf - Used to provide traffic type values.

□ 6a.dbf - Used to store selected “exit node” information.

3.3 ActiveX Control for Import Wizard Form3

This ActiveX control will sit in the third Visual FoxPro form o f the Import Wizard.

It will occupy the whole surface o f FormS o f the wizard. No other graphical components

will s how in F ormS. T h e m ain t ask o f t his c ontrol is to a How t he us er t o s elect t he

identification fields for “Treatment Units” and “Roads”.

1. G raphical interfaces Design for Import Wizard For m3

The following Figure 3.1.5 shows the graphical user interface of the third

ActiveX control in FormS o f the MAGIS-Express Import Wizard [3].

21

Figure 4.1.5 Graphical User Interface for MAGIS-Express Import Wizard

FormS

Hi, GIS Import Wizard 3

3. Select ID fields
Select the identification fields for treatment units and roads

Treatment Units ID field

From Node Field |~

To Node Field

Help < Jack Me*t >

3

3
3

Cancel

2. The graphical user interface will provide the following features:

□ A brief user guide on the top of the graphical interface

□ The ability to launch the help files.

□ The ability to cancel the wizard.

□ The ability to go to the next form of the Import Wizard.

22

□ A combo box populated with all the non-internal field names o f the “treatment

units” database selected by the user as the candidates for the identification

field for the “treatment units” data set.

□ Two combo boxes populated with all the non-internal field names o f the

“Roads” database selected by the user as the candidates for the identification

field for the “Roads” data “From node field” and “To node field”.

3. Customized properties in this control should be the following:

□ “runpath”, property let (write only);

The full path on the user’s computer where MAGIS-Express will run, such

as “C:\magis_express\main”.

□ “SelTreatlDFldName”, property let/get (read/write):

The selected identification field name for “Treatment Units”.

□ SelRdToIDFldName % property let/get (read/write):

The selected identification field name for “Roads” “To node field”.

□ “SelRdFromlDFldName”, property let/get (read/write):

The selected identification field name for “Roads” “From node field” .

□ delAddedFlds % property let (write):

A Boolean value that indicates if the old selected ID fields need to be

removed from the database.

4. Events will be raised from this ActiveX control to its container:

23

Some events should be raised by the ActiveX control to its container (VFP form)

so that the container can handler these events, as they were their own events.

□ HelpButton Click event: allows the container form to access help files.

□ BackButton Click event: allows the container to go to previous form in the

form set o f the project.

□ NextButton Click event: allows the container to go to next form in the form

set o f the project.

□ CancelButton Click event: allows the container to exit the project.

5. Validating and checking tasks are as following:

□ The coverage or shapefile internal field names can not be put into the combo

boxes drop down lists, such as ""covname_lD'\

□ Ensure that the user has selected one identification field for “Treatment Units”

and two for “Roads”. If not, print a message to the screen to try again or

cancel.

□ The user selected ID fields for both the shapefile DBF tables and the coverage

feature classes must be renamed as the MAGIS Express VFP procedures

standard names namely: “CUT UN ID” for “treatment units” IDs,

“FROM NODE” for “Roads” “FROM NODE” ID and “TO NODE” for

“Roads” “TO NODE” ID.

□ If the attribute tables contain any fields named the same as the above standard

field names, only those standard names can be populated into any of the three

suitable combo boxes.

24

□ If the window control comes back from Wizard Form4 (A VFP form without

any ActiveX control in it), the previous selected and renamed fields will be

removed from the database DBF and attribute tables, according to the value of

the property “delAddedFlds”.

After the user has selected all three ID fields, the control must add a new field to

the DBF and attribute tables for each data type (coverage and shapefile) o f the

two selected databases (“Roads” and “Treatment units”) using the three standard

names (“CUT UN ID”, “FROM NODE”, “TO NODE”) as needed for the new

field name.

25

CHAPTER 4

DESIGN DOCUMENTS

4.1 UML & Detail Design

4.1.1 UML and Detail Design for A ctiveX control in Import Wizard

Form i

The only module in this ActiveX control is the UserControl class.

1. UML

The UML for this control contains three window classes. The main window

represents the UserControl Object. The other two are MS Common Dialog Box

window and the Select Directory (Figure 4.1.1.1).

The main window, the UserControl Object, will open the Common Dialog

window or the Select Directory window after the corresponding command button

in the main window was clicked.

26

F igu re 4 .1 .1 .1 U M L for Act iveX control 1 in Import W I z a rd

Main Window (UserControl Class)

Properties:
RoadName; read
RoadPath: read
TreatName: read
TreatPath: read
RunPath: write

Component controls:
Instructions: Label (See figure 4 .LI)
OptRoads: OptionButton group
OptTreatment Units: Optionbutton group
TxtRoads; Textbox
TxtTreatment: Textbox
CmdBrowseRoads: CommandButton Instantiation
CmdBrowseTreatmentUnits;

CommandButton
CmdHelp: CommandButton
CmdNext: CommandButton
CmdCancel: Com m andButton

General methods
(See detail functions part)

buildTopoO
checkCovTopoO
checkDirsO
checkProjectionO
checkRoadFilesO
checkTreatPilesO
CheckShapePilesO
ClearCurWSO
CopyShapefileO
CovPCToShapePCO
CovToShapeO
CpToTempPathO
CreateCovWSO
creatMagistempO
initializelnterfaceO Instantiation
shapeToCovO
OpenTabieO
updateTabIe_3l()
GetShapePileO
populateTxtBoxesO
renameCov()

Events:
UserControl ResizeO
UserControl EnterPocusO
cmdBrowseRoads_Click()
cmdBrowseTreatmentUnitsClickO
cmdCancel_Click()
cmdCancelSelect ClickO
Dir1_Change()
Drive I ChangeO
cmdHelp_Click()
OptRoads ClickO
optTreatmentUnits Click()

Com mon Dialog Window
(Component)

Properties:
Type: Open/saveUp dialog
DefaultExt: “shp”
InitDir: “C:\”
FiIter: "shapefiles(*.shp)|*.shp"
DialogTltie:

ShowOpenO

Select Directory Window (Frame
control)

Component controls:
D irl: DirListbox
D rivel: DriveListBox
CmdSelect: commandButton
CmdCancelSelect: commandButton

M ethods and events:
D irl_Change()
Drive IC h an g eO
cmdCancelSeIect_Click()
cm dSelectC lickO

27

2. Flowchart

The Flowchart displays the actions that are taken after this ActiveX

control is initiated (Figure 4.1.1.2).

After ActiveX control is initiated (Could be first time or back from form

2). The control will initialize the component controls in the interface according to

a serial checking (such as path checking...). After the user selected spatial

databases for both ‘Treatment Units” and “Roads”, the control will execute

required validations. If both types o f databases pass the validations, the control

will copy these databases to designated MAGIS-Express directory and make the

data conversion there as needed, such as coverage file into shapefile or vise versa.

The original paths for the two databases will be written into table “_31gis.dbf’

(For description o f this table, see Appendix A.) for later use. Then the control will

raise “NextButton Click” event to its container form and from there the program

flow will go to the next form in the same wizard.

28

F i gu re 4 . 1 1 . 2 Flowchart for Act i control 1 in I rrport
Wi z a rd

r
 ActiveX control initiated (Could be
first time or back from form 2)

1r

Initialize Constituent
controls

r

Populate Text Boxes with the
values o f fields "treatdata"
and "Roaddata". Also adjust
the values for option buttons.

Prom pt “
Directory

Select
” w indow

1r
Get the
coverage path
and put into
the text box

Go to
next page

Check if S l.d b f
Table is empty

Get the database
type for Roads
theme

Is coverage
type
selected?

The two text boxes
should be empty. The
option buttons for
coverage are selected

Prompt “Select Road
shapefile” window

Get the
shapefile path
and put it into
the text box

29

Get the
database type
for Treatment
Units theme

yes ^

r

Prom pt “Select
D irectory” w indow

1r

Is coverage
type selected?

\ no

r
P r o m p t “Select Road
shapefile” window

1r
Get the
coverage path
and put into the
text box

Get the
shapefile path
and put it into
the text box

next button
clicked

Check the two
text boxes

Prom pt
message ask
the user to try
again

Are any o f the
two text boxes
empty?

Check Road files and Treat files

Go to
next page

30

Yes No
Has
“Coverage”
been selected?

No YesDoes Info
directory exists

Is base name
longer than 8
characters?

Noes

Does“prj.a
d f ’ exist?

Do all o f the
three files

Jhki.

Yes

Yes

Is the name
longer than 9
characters?

Yes

Exit Wizard

No

Go to
next page

C heck the existence o f
file “p rg .a d f’

Check the length o f
name o f the coverage

Check the existence o f
Info directory

Check the length o f the
selected shapefile base name.

Check the existence o f
file “ *.prj” , “ * .d b f’ and
“ *.shx” .

31

Check projections for both
Roads and Treatment Units
database

Are the projections for
Roads and Treatment
Units Database identical?

Exit W izard
1

Yes

r
Check the existence o f
directory
“drive :\magi s_express\temp\
m agistem p”

Does directory
exist?

Create directory
“drive:\magis_express\tem
pVmagistemp”

Check the existence o f directory
“drive:\m agis_express\tem p\m agi
stempVgis”

Go to
next page

32

Does “gis”
workspace exist?

Yes No

Clear it Create Arclnfo workspace
“drive:\m agis_express\tem p\
magistem p\gis”

1
For both Roads and Treatment Units
databases create two set o f the data in
coverage and shapefile format in the
A rclnfo workspace:
“drive:\magis express\tem p\m agistem p\
gis”

Rename the new datasets using M AGIS-Express
standard names: for coverage use “roads” and
“treat” for Roads and treatm ent Units databases.
For shapefile use “roads” and “treat” as the
shapefiles root name.

Update the _ 3 l.d b f with the new selected
databases’ paths.

Raise event N extButtonClick to container

Click next button to go to next page

(End actions o f ActiveX control! A

33

3. Detailed functions of this ActiveX control:

Properties:

□ Property Get RoadNameQ

Returns the root name (without file extensions) of the “Road” coverage or

shapefiles.

□ Property Get RoadPathQ

Return the original path of the “Roads” coverage or shapefiles on the

user's computer.

□ Property Let runPathQ

Returns the path where MAGIS-Express runs.

□ Property Get TreatNameQ

Returns the root name (without file extensions) of the “Treatment Unit”

coverage or shapefiles.

□ Property Get TreatPathQ

Returns the original path of the “Treatment Units” coverage or shapefiles

on the user's machine.

General Functions:

□ Private Function buildTopo(covPath As String, CovName As String,

topoNum As Integer, covType As Integer) As Boolean

Parameter list:

String CovPath: Path of the coverage that needs the new topology.

34

String CovName: Name of the coverage

Integer: topoNum: Type of the needed topology

Integer: covType: Type of the coverage (‘"Roads” or “Treatment

Units”)

Output: Return a Boolean value indicating if the function is successful.

Description: Build the topology for a coverage feature class

□ Private Function checkCovTopo(covPath As String, CovName As

String, covType As Integer) As Integer

Parameter list:

String CovPath: Path of the coverage that needs the new topology.

String CovName: Name of the coverage

Integer: covType: Type of the coverage (“Roads” or “Treatment

Units”)

Output: Return an Integer value indicating the needed topology type.

Description: Checks the topology for a coverage and returns the topology

type wanted.

□ Private Function checkDirsQ As Boolean

Parameter list: Null

Output: Return a Boolean value indicating if the function is successful.

Description: Check if any o f the two path text boxes is empty. If so return

false, else return true.

35

□ Private Function checkProjection(roadCov As Boolean, treatCov As

Boolean) As Boolean

Parameter list:

Boolean roadCov: True if it’s a “Roads” coverage, false if it’s a

“roads” shapefile.

Boolean treatCov: True if it’s a “Treatment Units” coverage, false

if it’s a shapefile.

Output: Return a Boolean value indicating if the function is successful.

Description: Call getProjectionName() function and check the projections

for “Roads” and “Treatment Units” databases to see if they are identical.

□ Private Function checkRoadFilesQ As Boolean

Parameter list: Null.

Output: Return a Boolean value indicating if the function is successful.

Description: Call getPathOrName(),CheckShapeFiles() function and check

if the files selected for the “Roads” database are in correct format. If not

return false to let caller cancel the event.

□ Private Function CheckShapeFiles(tempPath As String, tType As

Integer) As Boolean

Parameter list:

String tempPath: Path of the shapefile to be checked.

Integer tType: Indicating if it’s the “Roads” or “Treatment

Units” database.

36

Output: Return a Boolean value indicating if the function is successful.

Description: Check if the file basename.shx, basename.prj, basename.dhf

exist.

□ Private Function checkTreatFilesQ As Boolean

Parameter list: Null.

Output: Return a Boolean value indicating if the function is successful.

Description: Call getPathOrName(),CheckShapeFiles() and check if the

files selected for “Treatment Units” database is in correct format. If not

return false to let caller cancel the event.

□ Private Sub clearCurWS(myPath As String, keyFile As String)

Parameter list:

String myPath: Directory that needs to be cleared.

String keyFile: File prefix that needs to be deleted.

Output: Null.

Description: Delete all sub directories under "myPath".

□ Private Function CopyShapefiie(SourcePath As String,

sourceShapeName As String, destPath As String, newName As String)

As Boolean

Parameter list:

String SourcePath: Directory path o f the copied shapefile.

String sourceShapefileName: Name of the copied shapefile.

String destPath: Directory path of the copy shapefile.

String newName: New shapefile name.

37

Output: Return a Boolean value indicating if the function is successful.

Description: Copy shapefiles to “\magistemp\gis” directory as needed.

□ Private Function CovFCToShapeFC(destPath As String, destFCName

As String, sourcePath As String, sourceFCName As String) As

Boolean

Parameter list:

String destPath: Destination directory.

String destFCName: Destination feature class name.

String sourcePath: Source directory.

String sourceFCName: Source feature class name.

Output: Return a Boolean value indicating if the function is successful.

Description: Convert coverage feature class to shapefile feature class.

□ Private Function CovToShape(sourcePath As String, CovName As

String, destWSPath As String, covType As Integer) As Boolean

Parameter list:

String sourcePath: Source path of the converted coverage.

String Covname: Source coverage name.

String destWSPath: Destination workspace path.

Integer covType: Database type (“Roads” or “Treatment Units”).

Output: Return a Boolean value indicating if the function is successful.

Description: Call CovFCToShapeFC() and convert coverage to shapefile.

□ Private Function CreateCovWS(wsName As String) As Boolean

Parameter list:

38

String wsName: Create new coverage workspace (Arclnfo

workspace).

Output: Return a Boolean value, indicating if the function is successful.

Description: Create a coverage workspace given a workspace name.

□ Private Function creatMagistempQ As Boolean

Parameter list: Null.

Output: Return a Boolean value, indicating if the function is successful.

Description: Create Magistemp subdirectory under the directory:

“X:\magis\temp\” .

□ Private Sub delShpFiles(filePath As String)

Parameter list:

String filePath: Directory path of the shapefiles to be deleted.

Output: null

Description: Delete old shapefiles in "..magis\temp".

□ Private Function delShpTableFd(pTablename As String, cboType As

Integer) As Boolean

Parameter list:

String pTablename: Name of the table from which the internal

fields need to be deleted.

Integer cboType: Databases type (“Roads” or “Treatment units”).

Output: Return a Boolean value- indicating if the function is successful.

Description: Delete the internal ID fields for shapefiles to prevent the

duplicated ID fields.

39

□ Private Function findDir(myPath As String, key As String) As

Boolean

Parameter List:

String myPath: The directory where the “key” directory might be.

String key: The key directory looked for.

Output: Return a Boolean value- indicating if the function is successful

Description: Check to see if the directory “key” exists in “myPath”.

□ Private Function getPathOrName(tempPath As String, pathType As

Integer) As String

Parameter list:

String TempPath: The directory used to find the file or directory

name.

Integer pathType: Type o f the Return value.

Output: Return a String, directory path name.

Description: Return a directory path or a file or directory name

according to the second parameter "pathType".

□ Private Function getProjectionName(fileType As Integer, isRoad As

Boolean) As String

Parameter list:

Integer fileType: Coverage or shapefile.

Boolean isRoads: Flag to indicate if it is a “roads” database

Output: return a String, projection name.

Description: Return the spatial reference name.

40

□ Private Sub GetShapeFile(themeType As Integer)

Parameter list: Integer themeType: database type, such as coverage or

shapefile

Output: null.

Description: Open the open/save dialog box, that allows the user to choose

the file path.

□ Private Sub initializelnterfaceO

Parameter list: Null.

Output: Null

Description: Initialize the values o f the controls on the interface.

□ Private Function OpenTable(strWorkspace As String, strTableName

As String) As ITable

Parameter list:

String strWorkspace: The path of the table to be opened.

String StrTableName: The name of the table.

Output: Return an object of type ‘Ttable”, an object of table.

Description: Open a DBF table, return the opened table to calling

procedure.

□ Private Sub populateTxtBoxesO

Parameter list: Null.

Output: Null

Description: Initialize the values of the textbox controls with the values in

“_31gis.dbf’ (See Appendix A for table description).

41

□ Private Function renameCov(SourcePath As String, sourceCvrgName

As String, covType As Integer) As Boolean

Parameter list:

String SourcePath: Directory path o f the coverage to be renamed.

String sourceCvrgName: Name of the renamed coverage.

Integer covType: Type o f the renamed coverage (“Roads” or

“Treatment Unit”)

Output: Return a Boolean value indicating if the function is successful.

Description: Rename “Treatment Units” coverage to "treat”, and “Roads”

coverages to “Roads”.

□ Private Function renameFiles(folderPath As String) As Boolean

Parameter list:

String folderPath: Directory path of the shapefiles to be renamed.

Output: Return a Boolean value indicating if the function is successful.

Description: Rename shape files to treat.shp and roads.shp.

□ Private Function shapeToCov(inShpName As String, outCovName As

String, isRoad As Boolean) As Boolean

Parameter list:

String inShpName: Directory path of the shpafiles to be converted.

String outCovName: The out coverage name.

Boolean isRoad: Indicates if it is for “Roads” database.

Output: Return a Boolean value indicating if the function is successful.

Description: Convert shapefile to coverage.

42

□ Private Sub updateTable_31(roadChanged As Boolean, treatChanged

As Boolean)

Parameter list:

Boolean roadChanged: Indicates if the “Roads” database path has

changed.

Boolean treatChanged: Indicates if the “Treatment Units” database

path has changed.

Output: Null.

Description: Convert shapefile to coverage.

General events o f the constituent controls in the ActiveX control:

□ CmdBrowseRoads ClickQ

Triggered when the upper Browse button is clicked. This will prompt the

“select directory” or “select shapefile” interface for “Roads” database.

□ cmdBrowseTreatmentUnitsClickO

Triggered when the lower Browse button is clicked. This will prompt the

“select directory” or “select shapefile” interface for “Treatment Units”

database.

□ cmdNext ClickO

Triggered when the “Next” button is clicked. When this event occurs the

following tasks will be performed:

a. Call checkDirsO to validate if both text boxes are empty, if so

prompt the user and ask the user to try again, else go to b.

43

b. Call checkRoadFilesO to validate the selected “Roads” database:

If the user selected coverage for “Roads” database:

a) Validate the coverages are in an Arclnfo coverage

workspace. If not exit wizard, else go to b).

b) Validate the “p ij.ad f’ exists in coverage. If not exit wizard,

else go to c)

c) Validate the name o f the coverage is longer than 9

characters. If so exit wizard, else go to c.

If the user selected shapefile for “Roads” database:

a) Validate the name o f the base name of the selected

shapefile is longer than 8. If so exit wizard, else go to b).

b) Call CheckShapeFilesO to validate “ .pij”, “ .dbf ’ and “ shx”

files exist. If any o f these doesn’t exist, that means the

selected shapefile is not valid, so exit wizard, else go to c.

c. Call checkTreatFilesO to Validate the selected “Treatment Units”

database:

If the user selected coverage for “Treatment Units” database:

a) Validate the coverages are in an Arclnfo coverage

workspace. If not exit wizard, else go to b).

b) Validate the “p ij.ad f’ exists in coverage. If not exit wizard,

else go to c).

c) Validate the name o f the coverage is longer than 9

characters. If so exit wizard, else go to d.

44

If the user selected shapefile for “Treatment Units” database:

a) Validate the name of the base name o f the selected

shapefile is longer than 8 characters. If so exit wizard, else

go to b).

b) Call CheckShapeFilesO to validate “.pij”, “.dbf ’ and “.shx”

files exist. If any of these doesn’t exist, that means the

selected shapefile is not valid, so exit wizard, else go to

step d.

d. Call checkProjectionQ to validate if the projections for both

“Roads” and “Treatment Units” databases are identical. If not, exit

wizard, else go to step e.

e. Call findDirO to validate if the subdirectory “\MAGISTemp” exits

under the directory “drive:\magis\temp”, if not create one.

f. Call findDirO to validate if the subdirectory “\gis” exits under the

directory “âfnve:\magis\temp\MAGlSTemp”, if it is, clear it. If not,

call createCovWSO to create one.

g. For both “Roads” and “Treatment Units” databases there must be

two the data sets in the “t/r/v^:\magis\temp\MAGlSTemp\gis”

workspace, one in shapefiles format, the other in coverage format.

Methods to be used include:

a) CopyShapefileO to copy the selected shapefiles to the

specified workspace.

45

b) ShapeToCovO to convert the selected shapefile into

coverage format.

c) BuildTopoO to build the topology for the new converted

coverages.

d) CovToShape(): convert coverages into shapefile format.

e) CpToTempPath(): copy user selected coverages to the

Specified workspace:‘Wnve:\magis\temp\MAGISTemp\gis”

h. Rename the coverages and shapefiles in the ‘WnVe:\magis\temp

\MAGISTemp\gis” using the MAGIS-Express standard names: for

coverage use “roads” and “treat” for “Roads” and “Treatment

Units” databases; for shapefiles use “roads” and “treat” as the root

names.

i. Call “updateTable 31 ()” function to update the databases path

records in table “_31gis.dbf’ (See Appendex A.) with current user

selected the two database paths.

j. Raise “NextButtonClick” event.

□ cm dCancelClickO

Triggered when the cancel button is clicked. The “CancelButtonClick”

event will be raised.

□ cm dHelpClickO

Triggered when the help button is clicked. The “HelpButtonClick” event

will be raised.

46

□ cmdCancelSelectClickO

Triggered when the cancel button in the “select directory” interface is

clicked. This will close the “select directory” interface and return to

wizard Forml.

□ cmdSelect_ClickO

Triggered when the select button in the “select directory” interface is

clicked. This will close the “select directory” interface and populate the

text box in the same row with the directory the user selected, then return to

wizard Forml.

□ Dirl_ChangeO

Triggered when the directory selection is changed in the directory list of

“Select Directory” interface. This will change the logo on top of the

Directory Listbox to display the current highlighted directory.

□ D rivelC hangeO

Triggered when the drive selection changed in the drive box of “Select

Directory” interface. This will change path the “DirectoryListbox” to

display the Drive in the Drive box is changed.

□ optRoads Click & optTreatmentUnits Ciick

Triggered when the option buttons are clicked. If the option buttons for

coverage are clicked, the cmdBrowse clicked() event will prompt the

“Select Directory” window (Figure 3.1.2). If the option buttons for

shapefile are clicked, the cmdBrowse_clicked() event will prompt the

“Select Shapefile” window (Figure 3.1.3).

47

□ UserControlEnterFocusO

Triggered after ActiveX control in the container receives focus. The

'‘initializelnterfaceQ” will be called to initialize the graphical interface

including:

a. Initialize all the constituent controls in the ActiveX control: The

“Select Directory” interface is invisible.

b. Call “populateTxtBoxesO” to initialize the text boxes using the

values in “_31gis.dbf’ table (Appendex A.). The values for the

options buttons will correspond to the values in the two text boxes.

If the two text boxes are empty, the first two option buttons (for

coverage) should be selected.

□ UserControlResizeQ

Triggered when the ActiveX control is resized.

Events to be raised by this ActiveX control to its container:

□ NextButtonClickQ

Raised when the “Next” button is clicked.

□ CancelButtonClickO

Raised when the “Cancel” button is clicked. This will cause the wizard to

exit.

□ HelpButtonClickO

Raised when the “Help” button is clicked. This will prompt the help files.

48

4.1.2 UML and Detail Design for A ctiveX control In Import Wizard

Form2

This ActiveX control consists o f UserControl class, ExitNodeSelection class,

IconForCommands module and globalData module.

1. UML

The “UserControl” object provides the main graphical user interface and contains

the constituent controls. It also initiates an object o f “ExitNodeSelection” class.

The standard module “globalData” contains a global variable “g BlAdd” that will

be used by the “UserControl” object and “ExitNodeSelection” object to determine

the status o f the customized selection tool. The “ExitNodeSelection” class module

is a template o f the customized selection tool that can be instantiated by the

“UserControl” object. The “IconForCommands” module contains a method to

load icons for commands and tools (Figure 4.1.2,1).

49

F i gu re 4 .1 .2 .1 U M L for A ct iveX control 2 in Import W I z a rd

CtlExitNode (UserControl Class)

Properties:
CvrgPolygon: write only
CvrgRoad: write only
DoResize: write only
M apPro)Units: read only
Runpath: write only

Constituent controls:
Instructions: Label (See fihure 4.1.4)
Toolbar 1 : toolbar control
Im ageL istl: I mage List control
M apC ontroll: ESRJ m apControl 8.1
Stamain: statusBar
CmdHelp: com m andButton
CmsBack: com m andButton
CmdNext: com m andButton
C m d C a n c e l : c o m m a n d B u t t o n

General M ethods:
(See detail function part)

BuildTable6a()
OpenTableO
CheckSelectionsO
CheckT rafficType()
clear_6a()
clearM apLayersO
CreateCom m andO
DeleteTableO
delSelRowsO
InitializeM apO
insertNewSelectionsO
LoadLayersO
Prepare6a()
ProcessSelectionO
resetTrafficCom boO
SetC om bol_T ()
SetCom m andsO
SetSelectionT ool()
setTrafficIntTypeO
UpdateCommandsControlO
Update Labe I s()

Events:
U serC ontro lE nterFocusO
U serC ontro lIn itia lizeO
UserControl ResizeO
M apControl 1 _OnM ouseDown()
M apControl 1 _OnM ouseM ove()
m nuD oneSelect Click()
m nuA ddN ode_Click()
m nuSubtractNodes_Click()
Toolbar IB u tto n C lick O
cm d B ack C lick O

Instantiation

ExitNodesSelection (Class Module)

Data:
m_pCursor: IPictureDisp
m_pPoint: 1 Point

General Methods:
GetMapO
UpdateLabelsO

Events:
C lassIn itia lizeO
ITool OnM ouseDown()

Use

Use

GlobalData (Standard Module)

Public g BlAdd: Boolean

Use

IconForCommands (Standard Module)

Data:
Private GUID: User defined type
Private PicDesc: User defined type

Functions:
CreateBitm apPicture(): W in32API

function

50

2. Flowchart

Flowchart displays the normal action steps executed after this ActiveX control is

initiated (Figure 4.1.2.2).

After ActiveX control is initiated (Could be first time or back from

Form2). The control will initialize the component controls in the interface

according to a serial validation rules (such as required properties have valid

values available). Then the control will set up the commands and tools on the tool

bar and prepare the tables that will used in this control. After that map layers will

be loaded into the map control. The user then can select exit nodes (Geological

locations on road network for loading products out of forest) from the map for

every traffic type. The user finishes selection by clicking the next button. Then

the control will validate the user’s selection. If the selection passes the validation

the control will raise “NextButton_Click” event to its container form and from

there the program flow will go to the next form in the same wizard.

51

F i gu re 4 .1 .2 .2 Flowchart for A c t iv e X control 2 in Import
W i z a rd

r
 ActiveX control initiated (Could be
from form2 or form 3)

r

Set the ToolBar and
ImageList properties. Also
m ask the pink color for
images used by tool
commands.

1r
Check Property “runPath”

Is “runPath
empty?

Yes

No
r

Initialize module level
variables.

1r

Set up command bar

Inform the user

^ E x i t wizard

Has command bar
been set up
successfully?

No

1

Yes

r

Prepare _6a.dbf table: If
6a exists, delete it then

create a new one. If not
create a new one.

f
Go to
next page

Inform the user

r
RaiseEvent
CancelButtonClic
k to the container
to cancel the
wizard process.

52

NoHas the new
_6a table been
created ?

Yes

Has the map
been loaded
successfully?

No

Yes

Has the traffic
type combo box
been nonulated?

No

Yes

Go to
next page

Inform the user

Load the map into the
map control.

RaiseEvent
CancelButtonClic
k to the container
to cancel the
wizard process.

Populate the combo box
with the traffic types with
the values from table

6.dbf.

User selects “Exit Nodes” for
each traffic type listed in the
traffic type combo box
according to the instruction in
the top logon using the
customized selecting tool.

53

W ant to stop
selection and go
to next form?

No

Yes

Pass the
check?

No

Yes

Go to
next page

Click the next button

Inform the user to
continue selection.

Refresh the map
interface and the combo
box.

Com plete the selection by
right-clicking the map and
selecting menu item “ Done”.

Delete old records in
_6a.dbf for the current
traffic type and add the
selection for this traffic
type to _6a table.

Check if at least one “ Exit
N ode” has been selected for
each traffic type listed in the
traffic type combo box.

54

Clear the map layers

1r
Raise the next
event to the c(

ButtonClick
Dntainer.

ActiveX control lost focus

55

3. Detailed attributes and functions of the UserControl Object in this ActiveX

control:

Properties o f the UserControl object:

□ Property Let DoResize

Indicates if the actions in event UserControl_Resize() will be executed.

□ Property Get mapProjUnitsQ

Returns "mapUnits" property o f the “UserControl”.

□ Property Let runpathQ

The relative path where MAGIS-Express exists on the user’s computer.

General Functions o f UserControl object:

□ Private Function BuildTable6a(path As String, name As String) As

ITable

Parameter list:

String path: Directory path of the DBF table.

String name: Name of the DBF table.

Output: Return an “ Itable” object.

Description: Build a new dbf table named “_6a.dbf ’ (See Appendix A.).

□ Private Function checkSelectionsQ As String

Parameter list: Null.

Output: Return a String that defines a chosen traffic type.

56

Description: Check the “_6a.dbf’ table to see if there are no nodes

selected for every traffic type. Return the traffic type from which no node

was selected.

□ Private Sub clear 6aQ

Parameter list: Null.

Output: Null.

Description: Delete all records in table “_6a.dbf ’ (Appendix A for table

description).

□ Private Sub clearMapLayersQ

Parameter list: Null.

Output: Null.

Description: Clear the map layers in the MapControl.

□ Private Sub CreateCommand(pCommand As ICommand, bSeparator

As Boolean)

Parameter list:

ICommand pCommand: A command object.

Boolean bSeparator: Indicates if a separator is needed.

Output: Null.

Description: Create commands that will be used in this project and put

them to a toolbar control.

□ Private Function DeleteTable(path As String, name As String) As

Boolean

Parameter list:

57

String path: Directory path o f the table to be deleted.

String name: Name of the table to be deleted.

Output: Return a Boolean value indicating if the function is successful.

Description: Delete an old dbf table “_6a.dbf’.

□ Private Sub delSelRowsQ

Parameter list: Null.

Output: Null.

Description: Delete the rows in table “_6a.dbf’ whose Int t type is

IntType.

□ Private Function InitializeMapO As Boolean

Parameter list: Null.

Output: Null.

Description: Call LoadLayers() to initialize the map in map control.

□ Private Sub insertNewSelectionsO

Parameter list: Null.

Output: Null.

Description: Insert the selected features to dbf table "_6a.dbf

□ Private Function OpenTable(strWorkspace As String, strTableName

As String) As Itable

Parameter list:

String strWorkspace: Directory path of the coverage workspace.

String StrTableName: Name o f the table to be opened.

Output: Return an Itable object.

58

Description: Open a DBF table named strTableName in “strWorkspace”.

□ Private Function FreparebaQ As Boolean

Parameter list: Null.

Output: Null.

Description: Call OpenTable(), BuildTable6a(), DeleteTable() to open dbf

table “_6a.dbf’. If table doesn't exist, build one or delete it and create a

new one.

□ Private Sub ProcessSelectionO

Parameter list: Null.

Output: Null.

Description: Call function resetTraffîcCombo(), insertNewSelectionsO,

and UpdateLabelsO to store the selected features to dbf table " ba.dbf.

□ Private Sub resetTrafficComboQ

Parameter list: Null.

Output: Null.

Description: call UpdateLabelsO to clear the labels on the map and reset

the “listlndex” o f the “traffic type” combo box.

□ Private Function selectionlsEmptyO As Boolean

Parameter list: Null.

Output: Return a Boolean value indicating if the current map selection is

empty.

Description: Check if the current map selection is empty and return a

Boolean result.

59

□ Private Function SetCommandsO As Boolean

Parameter list: Null.

Output: Return a Boolean value indicating if the function is successful.

Description: Call CreateCommand() and UpdateCommandsControlO to

set the command tool bar.

□ Private Sub setSelectionTooIQ

Parameter list: Null.

Output: Null.

Description: Activate the customized selection tool.

□ Private Sub setTrafficIntTypeQ

Parameter list: Null.

Output: Null.

Description: Get the “int_t_type” value for the current traffic type from

array “TrArray”.

□ Private Sub UpdateLabelsO

Parameter list: Null.

Output: Null.

Description: Update labels on the map displayed by the map control when

a selection has been made.

General events o f the constituent controls in the ActiveX control:

□ UserControl EnterFocusO

60

Triggered after the ActiveX control was activated. In this event the map in

the Map Control will be initialized and the traffic type combo box will be

populated.

□ UserControl_Initialize()

Triggered when the ActiveX control is initiated. This event initializes the

constituent control in the user interface.

□ UserControl_ResizeO

Triggered when the size of the ActiveX control is changed. This event

repositions all the constituent controls in the user interface of the ActiveX

control.

□ cboTrafficType_ChangeO

Triggered when the content of the traffic combo box changes. This event

keeps the content in the combo box from being edited.

□ cm dBackClickO

Triggered when the back button is clicked. It leads to wizard Forml. It

also raises “BackButtonClick” event to its container.

□ cm dCancelClickO

Triggered when the Cancel button is clicked. It exits the Import Wizard. It

also raises the “CancelButtonClick” event to its container.

□ cm dHelpClickO

Triggered when the Help button is clicked. It also raises the

“HelpButtonClick” event to its container.

61

□ cm dNextClickO

Triggered when the next button is clicked. The following tasks will be

executed in order:

a. Call checkSelections() to validate at least one exitnode was

selected for each traffic type. If not, remind the user of the traffic

type for which no node has been selected and ask the user to try

again. Else, call clearMapLayers() to clear the selection o f the

focus map in the map control.

b. Raise “NextButtonClick” event to the container.

□ M apControllOnM ouseDownO

Triggered when the user clicks the object with either mouse button. This

event decides when the context menu will be prompted up.

□ M apControllOnM ouseM oveQ

Invoked when the user moves the mouse over the control. This event will

make the status bar changes its texts to the map coordinates o f current

position that the mouse points to.

□ mnuAddNodeClickO

Occurs when the user presses and then releases a mouse button over menu

item “mnuAddNode” in the context menu. This event activates the “Add

Node” status o f the customized selection tool.

□ mnuDoneSelectClickO

62

Occurs when the user presses and then releases a mouse button over menu

item “nanuDoneSelect” in the context menu. This event activates the

following actions:

a. Call function “setTrafficIntTypeO” to add the current traffic type

(“IntType”) into array “trArrayO”.

b. Call function “delSelRows()” to delete the existing records in table

_6a.dbf whose “Int t type” is “IntType”.

c. Call function “ProcessSelectionO” to process the new selections

o f the focus map in the map control. The process steps includes:

a) Call “insertNewSelectionsO” to insert the new selections.

b) Call “UpdateLabelsO” to update the labels the selection

tool made.

c) Call “resetTrafficComboO” to reset the traffic combo box

again to its initial state.

□ mnuSubtractNodesClickO

Occurs when the user presses and then releases a mouse button over menu

item “mnuSubtractNodes” in the context menu. This event activates the

“Subtract Node” status of the customized selection tool.

□ Toolbar l_ButtonClick

Occurs when the user presses and then releases a mouse button over a

command or tool item on the tool bar. It actives the clicked command or

tool and sets it as the map control’s current tool.

63

Events to be raised by this ActiveX control to its container:

□ NextButtonClickQ

Raised when the “Next button” is clicked. It will lead the wizard to FormS

□ BackButtonClickQ

Raised when the back button is clicked. It will lead the wizard back to

Form l.

□ CancelButtonClickO

Raised when the “Cancel” button is clicked. This will cause the wizard to

exit.

□ HelpButtonClickQ

Raised when the “Help” button is clicked. This will allow the container

form to prompt the help files.

4. The ExitNodesSelection class in this ActiveX control:

This class is used as the template for instantiating the customized selection tool. It

should have the ability to add or delete exit nodes to the current selections of the

focus map in the Map Control. It will implement ArcObject “Itool” and

“Icommand” interfaces. This tool user a global Boolean flag “g BlAdd” in the

standard module “globalData” to decide whether to add new nodes to the map

selection or delete a node from the selection.

Some important functions and events in this class are:

□ GetMapO : Return the focus map.

64

□ UpdateLabelsO: Show labels for the selected exit nodes.

□ Class Initialize(): Set the cursor for this tool.

□ ITool_OnMouseDown():When the tool is activated, the user can select

features by clicking the mouse.

2. The standard module “globalData” in this ActiveX control:

This module contains only a global Boolean variable “g BlAdd” used by the

“UserControl” object and “ExitNodesSelection” object to decide whether the

status o f the selection tool is "add to selection" or “deleted from selection”.

3. The standard module “IconForCommands” in this ActiveX control:

This standard module contains a method for creating icons for commands and

tools. A “ Win32 API” f unction “ 01eCreatePictureIndirect()” is c ailed f rom t his

module to finish the task.

4.1.3 UML and Detail Design for A ctiveX control in Import Wizard

Forms

This ActiveX control project contains only the “UserControl” class

“ctlSelectlDFields”.

1. UML

UML for this ActiveX control contains only the “UserControl” class

“ctlSelectlDFields” (Figure 4.1.3.1).

65

F ig u r e 4 .1 .3 .1 U M L for A c t iveX control 3 in Import
W i z a rd

UserControl Class

Properties:
DelAddedFlds: write only
SelRdFrom lD FldN am e: read/write
SelRdToID FldN am e: read/write
SelTreatlD FldN am e: read/w rite
TreatCovN am e: write only
RoadCovNam e; w rite only
Run Path: w rite only

Constituent controls:
Instructions: labels (See figure 4.1.5)
CboFrom Node: Com boBox
CboToN ode: com boBox
CboTreat: Com boBox
Cm dBack: com m andButton
Cm dNext: com m andButton
Cm dCancel: com m andButton
Cm dHelp: coom andbutton

G eneral M ethod:
checkCom bosO
checkPropertiesO
clearDirDbfO
copyDBFsO
copyFilesO
createN ew lD FldO
delA ddedlD FldsO
initlnterfaceO
OpenTableO
populateCom boO
renam eSellD FieldO

Events;
U serControl EnterFocusO
UserControl InitializeO
UserControl ResizeO
Cm dBack ClickO
C m d N ex tC lick O
C m d C an celc lick O
Cm dH elp click()
cboF romN o d e C h ange()
cboToN ode_Change()
cboTreat ChangeO

66

2. Flowchart

The flow chart dis plays the s teps e xecuted a her t his Ac tiveX c ontrol

instantiated (Figure 4.1.3.2).

After ActiveX control was initiated (Could be first time or back fro:

Form4). The control will initialize the component controls in the interfac

according to a serial validation (such as required properties have valid valut

available). Then the control will populate the three combo boxes wit

corresponding table field names. After that the user can select ID values from th

combo boxes. The user finishes selection by clicking the next button. Then th

control will validate the user’s selection and create new field in those tables wit

the selected fields’ values. The new created fields will be assigned MAGIS

Express standard names. The control then will raise “NextButton Click” event h

its container and from there the program flow will go to the next form in the sam

wizard.

67

F i gu re 4 .1 .3 .2 F Icwchart for A c t i v ^ control 3 in 1 mport
W i z a rd

ActiveX control initiated (Could be from
form2 or form 3)

Initialize m odule level
variables.

Check property “delA ddedFlds”

1r

Initialize properties for
constituent controls.

1r
Check Property "runPath"

1r

Is the
runPath”

Yes

TRUE

Inform the user

No

^Yes

Check if any o f the previous three
user selected ID field names are
standard names.

r

Delete previous added fields
whose name are not standard
nam esfrom the attribute tables.

Exit wizard

Go to
next page

68

1
Populate the three com bo boxes Populate the
cboT reat with fields nam es for attributes in treat.dbf;
cboFrom node and cboToN ode with field nam es for
attributes in roads.dbf.

U ser selects ID fields from
the three com bo boxes

r

User clicks the next button

1r

Check if the user selected
values for three combos

Have all three
values been selected

Ask the user to try
again

No

i L

Disable com m and buttons when in process

1r

Assign values to the properties for ID fields

1r

Renam e the user-selected fields with
standard field nam es used by M AGIS-
Express procedures.

Rename process
successful?

Raise N extB uttonC lick

Yes (cancel) to container where
cancel is true.

r̂
Go to next
page

£
^ Exit wizard

69

Copy
"express_m agis\tem p\M A G IStem p\gis"
folder to "express_m agis\dbl\gis"

Is the copy
successful?

Yes

M ake copies o f the roads
shapefile DBF and treat shapefile
DFB to “express_m agis\dbA”

Raise NextButtonClick
(cancel) to container
where cancel is true.

Is the copy
successful?

Exit w izard

1
Yes
f

Raise Event N extButtonClick() to
container

1f

/ ActiveX control
I lost focus

70

4. D eta iled fu n ction s in this A ctiveX control:

Properties o f the UserControl object in this ActiveX control:

□ Property Let delAddedFldsQ

Indicates if it is necessary to delete the previous added fields from the

attribute tables o f the data sets.

□ Property Let roadCovNameO

Set the coverage name for “Roads” database.

□ Property Let treatCovNameQ

Set the coverage name for “Treatment Unit” database.

□ Property Let runPathQ

Set the relative path where MAGIS-Express exists on the user’s machine.

□ Property Get / Let SelRdFromIDFldName()

Returns / set the user selected fields ID for “Roads” "From node".

□ Property Get / Let SelRdToIDFldNameO

Returns / set the user selected fields ID for “Roads” "To node".

□ Property Get / Let SelTreatlDFldNameQ

Returns / set the user selected fields ID for “Treatment Units” database.

General Functions:

□ Private Function checkCombosQ As Boolean

Parameter list: Null.

Output: Return a Boolean value indicating if the function if successful.

71

Description: Check if the three combo boxes are empty.

□ Private Function checkPropertiesQ As Integer

Parameter list: Null.

Output: Return an integer value indicating which attribute has been

assigned.

Description: Check variables "m strSelTreatID", "m strSelRdFromlD",

and "m strSelRdToID" to see if any o f them have been assigned specific

values o f the fields in coverage and shapefile tables, return the number of

ones whose values are not "CUT UN ID", "FROM NODE" or

"TO N O D E".

□ Private Sub ciearDirDbf(dbfGisPath As String)

Parameter list:

String dbfGisPath: The directory path of the dbf tables.

Output: Null.

Description: Clear the "..express_magis\dbf\gis" folder if it exists.

□ Private Function copyDBFs(sourcePath, desPath) As Boolean

Parameter list:

String sourcePath: Directory path o f the copied file.

String desPath: Directory path o f the copy file.

Output: return a Boolean value indicating if the function is successful.

Description: Copy the “Roads" shapefile DBF and “Treatment Units"

shapefile DBF tables to "..\\express_magis\dbf'.

72

□ Private Sub copyFCFld(pFeatClass As IFeatureClass, oldName As

String, newName As String)

Parameter list:

IFeatureClass pFeatClass: A Feature class object.

String oldName: Old name o f the feature class object.

String newName: New name o f the feature class object.

Output: Null.

Description: Copy all features o f the user selected ID field to the new field

o f the feature class.

□ Private Function copyFiles(sourcePath As String, desPath As String)

As Boolean

Parameter list:

String sourcePath: Directory path of the copied file.

String desPath: Directory path o f the copy file.

Output: Return a Boolean value indicating if the function is successful.

Description: Copy the"..\\MAGIStemp\gis" folder to

"..\\express_magis\dbf\gis”

□ Private Function createNewIDFId(newfldName As String,

oldFldLength As Long, oldFidType As esriFieldType) As IField

Parameter list:

String newFldName: New field name.

Long oldFldLength: Old field character length.

esriFieldTYpe oldFldType: Data type o f the old field.

73

Output: Return an IField object.

Description: Returns a newly created field.

□ Private Sub delAddedIDFlds(idType As Integer)

Parameter list:

Integer idXype: Type o f the ID field.

Output: Null.

Description: Delete the added ID fields "CUT UN ID'% "FROM NODE",

"TO NODE" according to the value o f idType.

□ Private Sub initlnterfaceQ

Parameter list: Null.

Output: Null.

Description: Initialize the values o f the controls on the interface. Delete

the added ID fields from the attribute tables.

□ Private Sub populateCombo(pFC As IFeatureClass, cboType As

Integer)

Parameter list:

IFatureClass pFC: A feature class object.

Integer cboType: Type o f the combo box.

Output: Null.

Description: Populate the combo box named ‘̂cboTreaf’ with field names

for attributes in table “treat.dbf’. Populate combo boxes “cboFromnode”

and “cboToNode” with field names for attributes in “roads.dbf’

(Appendix A).

74

□ Private Function renameSeiIDField(idType As Integer) As Boolean

Parameter list:

Integer idType: Type of the ID field.

Output: Return a Boolean value indicating if the function is successful.

Description: Make decision to select suitable actions to rename different

fields by calling functions renameTreatID() and renameRoadID().

General events o f the constituent controls in this ActiveX control:

□ UserControl EnterFocusO

Triggered after ActiveX control in the container was activated. This event

calls function initlnterface() to initialize the values o f the controls on the

interface. Delete the added three fields from the coverage or shapefiles'

attribute tables.

□ UserControl InltializeO

Initialize the attributes o f the constituent controls on the interface.

□ UserControl ReslzeQ

Triggered when the size o f the ActiveX control is changed. This event

repositions all the constituent controls in the user interface o f the ActiveX

control.

□ cboFromNode ChangeO

75

Triggered when the content o f the “cboFromNode” combo box is changed

by the user. This event helps prevent the user from editing the contents of

the cboFromNode.

□ cboToNode ChangeO

Triggered when content o f the “cboToNode” combo box is changed by the

user. This event helps prevent the user from editing the contents o f the

combo box named “cboToNode”.

□ cboT reat_ChangeO

Triggered when th e us er changes th e c ontent o f th e “ cboTreat” c ombo

box. This event helps prevent the user from editing the contents o f the

combo box named “cboTreat” ,

□ cm dBackC lickO

Triggered when the “Back” button is clicked. It leads to wizard Form2. It

also raises the “BackButtonClick” event to its container.

□ cm dC ancelC lickO

Triggered when the “Cancel” button is clicked. It exits the Import Wizard.

It also raises “CancelButtonClick” event to its container.

□ cmdHelpCUckO

Triggered when the “Help” button is clicked. It also raises

“HelpButtonClick” event to its container.

□ cm dN extC lickO

76

Triggered when the “Next” button is clicked. The following tasks will be

executed in order;

a. Check if the user has selected values for all three Combo Boxes. If

not prompt a message to ask the user to try again. Else, go to b.

b. Disable command buttons and combo boxes when in process.

c. Assign values to the properties for the new user selected id fields.

d. Call checkPropertiesO method to check if any o f the new user

selected ID fields has a MAGIS-Express standard name.

e. Call renameSellDField () to rename the user-selected fields whose

names are not the standard names with standard field names used

by MAGIS-Express procedures. Such as “CUT UN ID” for

“Treatment Units” Ids, “FROM NODE” for “Roads” from nodes

IDs, “TO NODE “ for “Roads to nodes IDs. If the rename process

succeeds, go to f. Else raise nextButtonClick() event with the

“cancel” parameter set to “true” to the container form to exit the

wizard.

f. Call function “clearDirDbf()” to delete the “\gis\” sub directory

from the dbf path.

g. Call “copyFilesO” to Copy the"..\\MAGIStemp\gis" folder to

"..\\express_magis\dbf\gis". If successful, go to h. Else raise event

“nextButtonClickO” with the “cancel” parameter set to “true" to

exit the wizard.

77

h. Call “copyDBFsO” function to make copies o f the ‘‘Roads”

shapefile DBF table and “Treatment Units” shapefile DBF table to

“express_magis\dbf\”. If successful, go to i. Else raise event

nextButtonClickO to the container form with the “cancel”

parameter set to “true” to exit the wizard.

i. Raise event “NextButtonClick”.

Events to be raised by this ActiveX control to its container:

□ NextButtonClickO

Raised when the “Next” button is clicked. It will lead the wizard to

Form4.

□ BackButtonCiickO

Raised when the “Back” button is clicked. It will lead the wizard back to

Form 2.

□ CancelButtonCiickO

Raised when the “Cancel” button is clicked. This will cause the wizard

exits.

□ HelpButtonClickO

Raised when the “Help” button is clicked. This will allow the container

form to display the help files.

78

CHAPTER 5

IMPLEMENTATION and TESTING

ActiveX control is one type o f COM component based on the COM standard. The

three ActiveX controls for MAGIS-Express I mport Wizard were created in Microsoft

Visual Basic 6 programming language. Some ESRI ArcObjects had also been used.

5.1 OLE (ActiveX)

OLE stands for “object linking and embedding”. OLE was suggested by Microsoft to

implement its data-centric computing o f its Windows operating system [1]. OLE is a

collection o f technologies for transferring and sharing information among applications;

allowing them work with objects in a standard way.

The “Object Linking” means that a compound document can have a reference to the

linked object, so any changes in the object can be shown in the document. For example,

you may create a spreadsheet document using EXCEL and link it to a WORD document.

“Object Embedding” means a compound document has only a copy o f the object, and any

changes in the object will not appear in the compound document until the object copy in

the document is updated.

All the objects manipulated by OLE are special type o f objects called Component

Objects or Window objects that follow the same standard named Component Object

Model (COM) which will be introduced next

Besides the COM technology, OLE also contains some other important technologies.

It uses Universally Unique Identifier (UUID), Globally Unique Identifier (GUID), Class

Identifier (CLSID), and Interface Identifier (IID) to recognize different kinds o f items. It

79

also uses a standard method to direct an object container, like a MS Word application, on

how to display different objects in it like an image, a table or a spreadsheet. OLE also

helps to manipulate the marshaling o f objects, a process to transfer objects among

applications under 32-bits Windows operating systems. By using OLE Structured

Storage, OLE helps the application to create its own file system to save the different kind

o f objects it contains together with their GUIDs. OLE Automation, a COM-based

technology, enables one application to operate on the objects contained in other

applications. It also supports late-binding, that is at run-time, to the objects.

AcitveX is another name for OLE. OLE (ActiveX) and COM architecture enable the

component software to be reused. They also enable third parties’ portable component

software development that can be used by everyone who understands OLE and COM.

This is why this project can create our own ActiveX components using Visual Basic 6

and use them in Visual FoxPro.

5.2 Architecture of the Component Object Model (COM)

The Component Object Model (COM) is a component software architecture that

allows components developed by different software vendors to be built together into

different kinds o f applications, COM provides a standard for component interoperability.

It is programming language-independent. It is portable to any platform that supports

COM. It can be extended by anyone.

COM is t he unde dying a rchitecture t hat f orms th e f oundation f or hi gher-level

software technologies, like OLE. (Figure 5.2.1.)

80

OLE Compound Documents

OLE Structured Storage

OLE Automation & Data Transfer

OLE Reusable Software Component

Component Object Model (COM)

Figure 5.2.1 High-level OLE application services are built on the common

Component Object Model foundation.

The fundamental standards provided by COM includes: a standard for function calls

among the components (objects); a standard for interfaces that groups functions and

properties; a standard for a basic interface that exists in every COM object acting in a

standard way to help the object use other interfaces in other components. It also helps the

COM object to track and control its own running existing references; a way to uniquely

identify objects and interfaces and a mechanism to help manage the interactions o f COM

objects across processes or a network.

5.2.1 Managing Function Calls among the Components

81

The objects we mentioned here in the context o f COM are different kinds o f

objects created using Object-oriented Programming (OOP) Objects languages like C++

or JAVA. These COM objects are pieces o f codes that provide services to the rest o f the

systems. They are sometime called components objects.

For any given platform (hardware and operating system combination), COM

defines a standard way to lay out virtual function tables (vtables) in memory, and a

standard way to call functions through the vtables. Thus, any language that can call

functions via pointers (C, C++, Small Talk®, Ada, and even Basic) all can be used to

write components that can interoperate with other components written to the same binary

standard [1]. The function calls are finished in the following way; The client holds a

pointer to a vtable in a component object, that vtable contains some pointers pointing to

the actual functions.

5.2.2 COM Interfaces

Attributes

Another characteristic o f a COM component is that it can contain one or more sets

o f functions, each o f those sets is called an interface. Every component object can ONLY

access other components by using the pointers to their interfaces. So we could say that all

OLE services are simply interfaces. This is an implementation o f object encapsulation

that is one o f the fundamentals o f the component software standard. The interfaces we

mention here in the context o f COM are different from those OOP related interfaces. A

COM interface is actually a contract between software components to provide a small but

useful set o f syntax-related operations (methods). An interface is the definition o f an

82

expected behavior and expected responsibilities, different objects can implement it in

different ways but must all conform to the interface definition. This is another

fundamental o f the component software standard - polymorphism. An interface defines a

standard through which the clients and the component objects communicate. Its interface

identifier, a globally unique ID (GUID), identifies an interface. The GUID used by COM

is 128 bits long, definitely unique in the world across space and time. When an interface

is created, it is assigned a GUID. Anyone who wants to use the interface must use the

identifier to get a pointer to the interface.

(Figure 5.2.2, 5.2.3, 5.2.4.)

Interfaces
Object

Figure 5.2.2 A typical diagram of a component object that supports three interfaces
A, B, and C.

Client Application
Interface Pointer

COM Object

Figure 5.2.3 A client application uses an interface pointer to access an Interface of
the COM object[4].

83

COM Object

COM Object
Application B

Application A

Figure 5.2.4 Two applications (A and B) may connect to each other's objects, in
which case they extend their interfaces toward each other [4].

COM and the Client / Server Model

In COM, the interactions between a component object and its users are

established based on a Client / Server paradigm. The component providing its services to

its users is the server and the users o f those services are the clients o f the component.

This client/server mechanism is secure because COM permits the server component and

its clients to run in different process spaces. So if one component in a component-based

application fails, it does not destroy other parts o f the application. A COM component

could be both a server and a client. For example Component A has interface pointers

pointing to interfaces in another component B, so A is a client of B and B is the server.

Component B at the same time has interface pointers pointing to interfaces in A, so A is

also the server for component B and B is a client o f A, as shown in Figure 5.2.4.

84

Component Object Library

The Component Object Library is component implemented by the Windows

operating system that provides the mechanics of COM. The Component Object Library

manipulates the COM mechanism behind all the component objects. It makes it possible

for calls to the “lUnknow” interfaces. It helps launch components and establish

connections between components.

The Component Object Library also enables the COM client/server model

mentioned above. For instance when an application creates a component object, it passes

the CLSID (class identifier) o f that component object class to the Component Object

Library. The Component Object Library uses that CLSID to look up the associated server

code in the registration database. If the server is an executable, COM launches the .EXE

file and waits for it to register its class factory through a call to CoRegisterClassFactory

(a class factory is the mechanism in COM used to instantiate new component objects). If

that code happens to be a dynamic-link library (DLL), COM loads the DLL and calls

DllGetClassFactory. COM uses the object's IClassFactory to ask the class factory to

create an instance o f the component object and returns a pointer to the requested interface

back to the calling application. The calling application doesn’t need to know where the

server application is run; it simply uses the returned interface pointer to communicate

with the newly created component object [1].

To summarize, a COM component object should have a GUID as its identifier; it

should support at least one interface (could be more than one); it can have data associated

with it, but the only way to access these data is through the use o f its interfaces.

85

5.3 ActiveX CONTROLS (OLE CONTROLS)

ActiveX components are COM Objects built based on the COM mechanism that

enables building robust and reusable components. COM also allows components created

by different parties to work together to form a new application. This is a key difference

from the objects in the context o f OOP. ActiveX Components can run either in-process

or out-of-process with respect to the clients that use their objects. ActiveX controls are

one o f the several types o f COM component objects. These different types o f components

are explained in section 5.3.1.

5.3.1 Types o f ActiveX Components

Several types o f ActiveX control are files having the following extensions: .exe,

.dll, .OCX and others. These types o f files are just some o f compiled files following the

OLE (ActiveX) specifications. They are actually the same type o f components.

• ActiveX EXE Component (*.exe file)

An Ac five E XE C omponent is a n o ut-of-process c omponent b ecause it

runs in its own process space. The client application o f the EXE component runs

in another process space (Figure 5.3.1).

An ActiveX EXE component is usually needed under a circumstance

when services should be provided to multiple applications by an ActiveX

component running on a remote computer. ActiveX EXE controls typically have

no visible user interfaces.

86

Figure 5.3.1 Client and out-of-process component [4]

C lient A pp is a client
application. It uses an out-
of-process activeX EXE
com ponent by creating
objects from classes the
com ponent provides

ActiveX EXE com ponent
runs in its ow n process
space. It provides Class I
objects.

All functions and properties are
invoked by client are cross processes
calls.

An in-process com ponent
like a DLL com ponent used
in the client application can
create its own C lass 1 object
or use references passed by
the client App

E xeC om pl .exe
(O ut-of-process com ponent
server)

Interfaces

Dim X as exeC om pI.c lassl
—Set X = new class I

X.function 1-------- --------------

DIlComp.DLL
Dim X as exeC om pI.c lassl

—Set X - new Class 1
X.function I

CiientApp.exe(Cnent)

• ActiveX DLL component (*.dll file)

DLL stands for Dynamic Linked Library. An ActiveX DLL component is

like libraries o f objects. As with an ActiveX EXE component, a client application

uses a code component by creating an object from one of the classes the

87

component provides, and invoking the object’s properties, methods, and events.

Unlike the EXE component, a DLL component runs in the same process space as

the client application, so it is called an in-process component (Figure 5.3.2).

Figure 5.3.2 In-process components are used by applications or other
in-process components [4]

The .exe runs in its own process space

ClientApp.exe(A Client Application)
Dim my O bject as dllCom p 1.Class 1
Set m yObJect = new Class 1 ______
M yO bject.function 1

D llCom pl.dll (in-process DLL
component)
Public sub hm ction 1 ()

Dim obj as dllCom p2.class2
Set obj = new class2

end sub

dllComp2.dll
(Another DLL component)

\

The client application uses the dll
C om ponent by creating objects from
the classes the dll provides.

D llCom p2.dll is another dll com ponent
Running the sam e process space.

Dllcom p 1 an create objects using the
Classes provided by dllCom p2.dll

All dll com ponents in current exam ple
run in the sam e client space.

ActiveX Control (*.ocx file)

ActiveX controls, formerly called OLE controls, are standard user

interface elements that allow you to assemble forms and dialog boxes rapidly.

ActiveX controls are also in-process controls. They can be visible at the design

time o f a window application. For the MAGIS-Express Import Wizards, where we

need a visible component that can be put into Visual FoxPro container forms at

the design time o f these forms, we need to build ActiveX controls.

88

5.4 Creating ActiveX Controis in Visuai Basic

5.4.1 W hy Use Visual Basic 6

Visual Basic and Object-Oriented Programming

Microsoft Visual Basic 6 provides a way to handle objects. You can create your

own class in Visual Basic. It supports encapsulation, the first characteristic o f the Object-

Oriented Programming (OOP). It allows a single command name to be shared by multiple

objects, the second characteristic o f OOP called polymorphism. Although Visual Basic

doesn’t implement the third OOP characteristic named inheritance, and therefore is not a

real OOP language, but it is an object-based programming language. Visual Basic does

allow the programmers to accomplish many tasks that inheritance supports using

technologies like Aggregation and Polymorphism.

Visual Basic and ActiveX controls creation

Although programming in Visual Basic is not as easy a s it once was - many

features have been added- Visual Basic is still one o f the easiest ways to create Windows

applications. For creating ActiveX controls. Visual Basic is also one of the safest ways.

It provides an easy and reliable programming environment for creating ActiveX controls.

Visual Basic handles many ActiveX (OLE) technologies for the programmer. It

encapsulates many o f the ActiveX objects and control-related interfaces into the Visual

Basic development environment to make ActiveX control creation easy and quick so the

programmer need not worry about many o f the complexities o f the OLE or COM. Visual

89

Basic also allows the programmers to extend the power o f it by using Win32 API calls

and third-party ActiveX controls and DLLs.

5.4.2 Visual Basic ActiveX Control Creations Basics

Visual Basic provides a graphical designer similar to a form designer for the

author to create ActiveX controls.

1. Objects involved in the creation o f the ActiveX controls in this project

Objects involved in creating an ActiveX control include:

□ The UserControl Object

This is a sub object o f the created ActiveX control object. Like

other internal controls the UserControl object method and properties can

be accessed by the created control. It also raises events to the created

control. It provides graphical interface for the created ActiveX control

where other constituent controls could be put into this interface to

compose the visible interface o f the whole ActiveX control. The

“UserControl” object is the default object in an ActiveX control in a

similar way that a form is the default object in a Visual Basic standard

EXE project.

The “UserControl” object is a COM object. It contains interfaces

that are sets o f properties, methods and events to make an ActiveX control

work and allow the container to communicate with it.

90

The events and properties o f the “UserControl’’s for the MAGIS-

Express Import Wizard were implemented according to the detailed design

outlined in the previous chapters.

□ Constituent Control Objects

Different kinds o f Visual Basic internal controls can be put into the

ActiveX control designer to compose the A ctiveX control. Each o f the

three ActiveX controls o f the Import Wizard contains such constituent

controls, such as command buttons, radio buttons, text boxes, labels,

frames and line. Other ActiveX controls can also be put into the created

ActiveX control. For example: In ActiveX control for wizard Form !, we

used MS Common Dialog; in ActiveX control for wizard Form2, we used

ESRI Map control, Image List control, tool bar control...

The constituent controls used in th e ActiveX controls for the MAGIS-

Express Import Wizard follow the graphical interface design described in

chapter 4 (figure 4.1.1 - 4.1.5.).

2. Methods create ActiveX controls for the MAGIS-Express Import Wizard

Generally speaking, there are three ways to create an ActiveX control:

□ Enhancing an exiting control:

Creating an ActiveX control by adding new properties or methods to an

existing control, such as a Command button.

□ User-Draw Control:

Creating a control from scratch.

□ Assembling a control from constituent controls:

91

Creating an ActiveX control using one or more existing controls. In Visual

Basic the constituent controls that can be used by an ActiveX control

include Visual Basic internal controls and other components [4].

All o f the three ActiveX controls for the Import Wizard were built this

way. The appearances o f the graphical user interfaces o f these controls are

consistent o f visible constituent controls.

4. General steps to code the ActiveX controls for the MAGIS-Express Import

Wizard:

a. Create a project group in Visual Basic consisting o f the control project

and a test project.

b. Implement the appearance of the control by adding controls and/or

code to the UserControl object according to the graphical interface

design described in previous chapter.

c. Implement the interface and features o f your control (properties and

methods).

d. Declare and raise events as required so that the developer who’s going

to use those controls can have a way to response to those events as

needed.

e. Test new added features in the testing project one by one as they are

added.

f. Compile the new control component (.ocx file) and test it with all

potential target applications.

92

5.5 ArcObjects Used in MAGIS-Express Import Wizard

ArcObjects is the development platform for ArcGIS Desktop that containing a suite o f

applications, such as ArcMap, ArcCatolog, ArcToolbox etc. ArcGIS is an integrated

geographic information system. ArcGIS Desktop is one o f its three key part, providing

functions including mapping, data management, geographic analysis, data editing, and

geoprocessing to meet the needs o f a wide range o f GIS users.

ArcObjects is built using Microsoft Component Object Model (COM) standard.

Therefore, it is possible to extend ArcObjects by writing COM components using any

COM-compliant development language, such as Visual C++ or Visual Basic.

The ArcObjects library that contains over 1000 classes and 2000 interfaces, is a

comprehensive set o f COM components designed to provide developers with the ability

to extend and customize existing ArcGIS applications such as ArcMap and ArcCatolog or

build their own applications [6].

ArcObjects helped to complete many tasks when building the Import Wizard ActiveX

controls:

1. In the ActiveX control for Form l :

□ Objects such as Workspace?actory, FeatureWorspace, Dataset, etc. are

used to help build the topologies for coverages, create new Arc Info

workspaces, get the database projections, etc.

□ Objects: WorkspaceName, QueryFilter, Row, etc. helps to manage tabular

data in database attribute tables.

2. In the ActiveX control for Form2:

93

Besides the ArcObjects m entioned in item 1, this ActiveX control a Iso

uses map-related ArcObjects, such as GeoFeatureLayer, SimpleRenderer and

RgbColor to implement tasks fro manipulating map content including “loading

map layers”, “clearing map layers”, “getting map units”, “managing map

selections” , and so on.

The “customized selection tool” for this control implements both

ICommand and ITool interfaces to build the tool.

Figure 5.5.1 on next page shows the situation after the user selected

several traffic exit nodes on the map in running Form2.

3. In the ActiveX control for Form3:

In the implementation o f this ActiveX control, ArcObjects related to handle

coverages, shapefiles, and tabular data have also been used, such as

W orkspaceF actory, Workspace, Dataset, Row, QueryFilter and so on.

94

Figure 5.5.1 Using customized selection tool to select “exitnodes” on
mapControl In import Wizard Form2

GIS Im p o rt W izard 3

2. Select Exit nodes and check connectivity
Inslfuctmns: Select tme oi mote exit mMies toi eadb tiaftk: type. Right click to switch twtween add n

subtract nodes aswt ccMaplete selection. Press "Next" button when firushed mth aN tratHc

r

Help < Back

719087 96 5147080 69

Next > Cancel

95

5.6 Testing and Debugging

5.6.1 Testing Strategies

1. Defect Tracking:

The purpose o f defect tracking is to record and track defects from the time

they are detected until the time they are fixed [2].

A defect report table (VFP table) was used for this purpose. The structure o f

the defect table is as following:

Field name Date Type Width Description
ID Character 4 Defect ID
Date found Date 8 Date the defect is found
Finder Character 15 Person who found the defect
Defect loc Memo 4 Defect location (in which class or

procedure)
Priority Character 1 H(igh), M(edium) or L(ow)
How found Memo 4 Actions used to find the defect
Description Memo 4 Description o f the defect
Date fixed Date 8 Date the defect is fixed
Fixer Character 10 Person who fixed the defect
Fix method Memo 4 Actions used to fix the defection
Doc Type Memo 4 The Document type the bug occurs
Doc version Character 10 Current version of the document contains

the bug (e.g. 08-23-02)
Data file Character 30 Testing data set used to produce this bug
Others Memo

(binary)
4 Other description as needed

2. Unit Testing

Unit testing strategies employed for this Import Wizard includes:

• Block T esting: Set up different conditions for each tested code block

(such as loop or “i f ’ decision making block) run the block to see if the

result is correct.

96

• Subroutine Testing: Provide the parameter list for the tested subroutine,

run the tested subroutine to see if the subroutine can produce correct

results.

• Error Trapping: The Visual Basic Standard Error-Trapping device was

used in every method (not including events) to provide more information

on an error. Steps include:

a. Make the first line o f the procedure:

On error goto errorhandler

The statement “On error goto errorhandler” activates the error -

trapping. If an error occurs the program will jum p to the Error-

handling routine.

b. Type in regular statements for the procedure.

c. End the procedure with:

Exit sub

Errorhandler:

Error-handling routine

Resume

The statement “Resume” causes the program to jump back to the

line causing the error. The “Exit sub” causes the program to exit as

soon as an error occurs. The “Errorhandler:” is a line label that can

be replaced by any word less than 40 characters in length. It must

be in the same procedure with the “On error goto Errorhandler”

statement.

97

3. Integrating Testing & System Testing

Integrating Testing and System Testing were executed by other QA members

in MA GIS working team. Tasks include integrating the final ActiveX controls

into their respective VFP forms one by one and testing the whole wizard in the

VFP environment.

5.6.2 Debugging methods:

1. Print methods:

Placing print statements at strategic points in the program and displaying the

values o f the selected variables or expressions until the error is detected.

2. Using the Visual Basic debugger:

The Visual Basic debugger provides a way for the programmer to pause the

program during the execution in order to view and alter the values o f the variables

that could be accessed through the three “Debug windows” on the tool bar. Figure

5.6.1 shows the situation when the program’ execution paused at a break point

and the immediate window is used to print the value o f a variable.

98

Figure 5.6.1 Using Visual Basic debugger

M agisW izardC on tro îl M icrosoft Vi<sual B aslc^b rea tcJ

Fte %iew project Format Qrisug &un Query Diagram lo d s ^ d - I n s iisÿidow Üdp

i SU► u

li ̂ It ■

 m m

C» '*31 El m %

fW M ag isW i^ardC on tro ll - c tlS e le c l (C ode) ^ X j
(General) hnitlirfizeliitefface

O

fraSelectDir.Visible = F a l s e ^

m strTable3iPath *= Left (m strRunPath, Len(m__strRunPath) - 4) fi "*
' initialize textboxes

IpopalateT xtB oxeal

If UCase(Right
optRoads(1

Else
optRoads(0

End If

print m strTable3Ipath
c:NmagisN\dbf

l U’ initializ t
If UCase (Right (Trim(txtTreatmentUnits.Text) r 3)) • UCase C'shp'*) T

optTreatmentUnits(1).Value = True
Else

optTreatmentUnits(O).Value = True
End If

99

CHAPTER 6

DISCUSION

6.1 Why use ActiveX controls in the MAGiS-Express import
Wizard

MAGIS-Express was created by reconstructing many existing graphical user

interfaces written in Visual FoxPro (VFP) programming language. VFP is needed to

manage DBF formated spatial data associated with geographic locations. The Import

Wizard is a ne w s et o f g raphical us er interfaces th a t heIps to facilitate th e area d ata

import procedure. It is a part o f a suite o f MAGIS-Express GUIs that are in VFP format.

Microsoft VFP is a database management system that can also be used as a programming

language to create some simple GUIs to handle data. It supports COM technology, which

means that it allows ActiveX components as part o f its project to improve its

functionality.

ActiveX controls are ideal for creating reusable objects that have graphical user

interfaces. Unlike other types o f ActiveX components, such as DLL or EXE server,

ActiveX controls are intended to support user interactions by providing graphical user

interface. They run in-process, which means in the same process space with the calling

application, the OLE need not to create a proxy object for it to establish server/client the

communication path (This is an overhead for the system), therefore they have good

performance. They are activated as soon as the user selects them. In addition to properties

and methods, ActiveX controls can raise events to their container (such as a VFP form).

The application programmer who uses the ActiveX control can add his own statements in

the event procedures raised by the ActiveX controls to handle the events in their

application. ActiveX controls are compatible with many containers, including Microsoft

Office applications, VFP applications and Internet browsers.

100

6.2 Visual Basic vs. Visual C++ in ActiveX Controls Creation for

MAGIS-Express Import Wizard.

Both Visual Basic and Visual C++ can be used to create ActiveX controls. Visual

Basic was chosen for this project because:

• Compared to VC++, Visual Basic makes the process o f creating an

ActiveX control much easier and faster.

The ActiveX controls used in the MAGIS-Exprss hnport Wizard need to

contain different kinds o f constituent controls, such as combo boxes, map

controls, command buttons, etc. It is very difficult to create an ActiveX

control using constituent controls using VC++. Using Visual Basic

instead, this process can be completed very easily. Since Visual Basic

encapsulated many o f the ActiveX control-related interfaces and objects

into the language itself and the programming environment.

• Visual Basic provides one o f the safest ways to create the ActiveX

controls.

Programmers who use VC++ need to deal with frequent memory

exceptions during the creation of the applications. Visual Basic itself

handles these situations for the programmer.

6.3 Software Reuse

ActiveX control is an example o f software reuse. Once the controls are compiled

into OCX files, they can be used in different kind o f containers in different applications

that want a user interface.

ActiveX controls in the Import Wizard have many unusual features specific to

M AGIS-Express. T h e complexity o f t hese controls m akes t hem unique t o th e Import

W izard. But each control has a lot o f functions that can be used by other applications. So

these functions are put into a utility package as samples according to their purposes. For

example those functions related to managing GIS datum (coverages or shapfiles) are put

101

in a Visual Basic standard model named “CoveragesAndShapeflles” , with a graphic user

interface as a sample use for it. Functions related to handle DBF tables are put into a

model called “ItableUtilities”, also with the sample that shows the way to use them.

These samples help other programmers to create similar ArcObjects related

applications in Visual Basic. Therefore this is another form o f software reuse.

102

Appendix A

A Quick Reference To Tables Involved In This Project

Table _31gis.dbf

Description:

Store model information, such as “Road” and “Treatment Units” database paths

and last modify time.

Structure:

(Only those fields with a * will be used in the development o f MAGIS-Express Import

Wizard.)

Field Name Data Type Description
*roadsdata Character “Roads” database path
*treatdata Character “Treatment Units” database path.
standdata Character Not used in MAGIS-Express version.
* treat time Character The last modify time

Table _6.dbf

Description:

Store traffic types for road network in planning area.

103

structure:

(Only those fields with a * will be used in the development o f MAGIS-Express Import

W izard.)

Field Name Data Type Description
*Int t type Numeric Integer format o f the traffic type
*Traf type Character Traffic types, such as
Out type Character Output type, such timber or non-timber.
Cony fact Numeric Capacity measure unit conversion factor.
cost Numeric Cost per unit for this traffic type
Ini id l Numeric Internal code for Nontimber output or species group#.
Ini id2 Numeric Internal code for Nontimber output or species group#.
Ini id3 Numeric Internal code for Nontimber output or species group#.
Ini id4 Numeric Internal code for Nontimber output or species group#.
Ini id5 Numeric Internal code for Nontimber output or species group#.
Int act id Numeric Internal activity id.
Int m nt cd Numeric Internal code for attribute class
Int flo cd Numeric Internal code for output
descrip Memo Description

Table 6a.dbf

Description:

Store the user selected ' ‘Exit nodes” (demand nodes in the road network where

forest products such as timber are loaded out o f the planning area through the road

network)

104

Structure:

(Only those fields with a * will be used in the development o f MAGIS-Express Import

W izard.)

Field Name Data Type Description
*Int t type Numeric Integer format of the traffic type.
^demand nod Character The user selected “Exitnode” number.

Table roads.dbf

Description:

This is the attribute table for “roads” line type shapefile. It is associated with the

“roads” geographic features in the planning area. Each row in the table represents a

geographic feature (a road link). Each column represents one attribute o f a feature, such

as horizon length, surface type, number o f lanes, and so on.

Structure (Sample):

(Only those fields with a * will be used in the development o f MAGIS-Express Import

Wizard.)

Field Name Data Type Description
fhode Numeric Shapefile internal id field
tnode- Numeric Shapefile internal id field
Ipoly Numeric Shapefile internal id field
rpoly Numeric Shapefile internal id field
* Length Float Length o f this segment
Roads Numeric Shapefile internal id field
Roads id Numeric Shapefile internal id field
Fnodel Float Shapefile internal id field
Tnodel Float Shapefile internal id field
*Cur status Character Current status o f the road link

105

*Aligmnt Character Road alignment
*Surf ty Character Surface type of the road link
*Num lanes Numeric Number o f lanes on this road
*Horz len Numeric Horizon length o f the road link
*Terr n Character
*speed Float Speed allowed on this road segment
*Rd option Character Road option for this road link
^Average Character
* segment Character Road segment id
^suitable Character Indicating o f this road segment is suitable.
*Fr to Character ID field
*From node Numeric The from node number o f this road segment
*To node Numeric The to node number o f this road segment

Table treatdbf

Description:

This is the attribute table for “Treatment Units” polygon type shapefile. It is

associated with the “Treatment Unit” geographic features in the planning area. Each row

in the table represents a geographic feature (a treatment unit area). Each column

represents one attribute o f a feature, such as area, acres, dominant tree species, and so on.

Structure (Sample):

(Only those fields with a * will be used in the development o f MAGIS-Express Import

W izard.)

Field Name Data Type Description
*area Float Area o f this unit area
*perimeter Float Perimeter o f this unit area
Treat Numeric Shapefile internal id field
Treat id Numeric Shapefile internal id field
*Acres Float Number o f acres in this area unit
*mgtarea Character Management area
*Dom sp Character Dominant tree species in this unit

106

* Density Character Density o f the trees in this unit
*Average Character
*hbty grp Character Habit type group in this unit
*vol Float Volumes o f log in this unit
*Sz class Character Size class o f the trees in this unit
*Time inc Numeric Increasing time unit used in management o f this unit
*Pas act id Character Past activity ID
* slope Float How slope it is in this area unit
*Yr sin act Float Number o f years past since last treatment activity
*Log_meth Character Logging method used
*risk Character Risk class
polyid Numeric Shapefile internal id field
*Cut un id Numeric ID field

107

References:

1. Appleman, Dan, 1999. Developing COM/ActiveX Components with Visual
Basic 6. Indianapolis, Indiana: SAMS.

2. McCarthy, Jim, 1995, Dynamics o f Software Development^ Pg. 10-11.
Redmond, Washington: Microsoft Press.

3. Troutwine, Judy, 2002. “Specifications and requirements document fo r
MAGIS-Express Import W izard”. Missoula, Montana: School o f Forestry,
University o f Montana. Typewritten.

4. MSDN Library 2001, Control Creation Basics. Redmond, Washington:
Microsoft Press.

5. Willliams, Sara and Kindel, Charlie, 1994. The Component Object Model: A
Technical Overview. MSDN Library. Seattle, WA: Microsoft Corp.

6. Zeiler, Michael, editor, 2001. Exploring ArcObjects. Redlands, California:
ESRI.

7. Zurring, Hans, 1998, “'Overview o f MAGIS: A Multi- Resource Analysis and
Geographic Information System ". Missoula, Montana: School o f Forestry,
University o f Montana.

108

	Using Visual Basic & ArcObjects to create ActiveX controls for MAGIS-Express Import Wizard
	Let us know how access to this document benefits you.
	Recommended Citation

	Unknown

