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(l) INTRODUCTION

In analyzing the results of an experiment, the experi­
menter may wish to use least squares techniques to determine 
a functional relationship between values of some observed 
variable and values of an independent variable. To pro­
ceed, he sets up an experimental model involving one or 
more unknown parameters, takes a number of observations at 
certain values of the independent variable, and uses these 
observations to estimate the parameters by minimizing the 
squares of the difference between the observed values of 
the dependent variable and the estimated functional values. 
To use a simple example, he may consider the relationship to 
be linear and hence his model would be : E(y) = ax + b
where E denotes expected value and a and b are the unknown 
parameters. To estimate these parameters, he takes a sample
of n observations and solves for a and b by minimizing 
n 2
2 (T^ - ax^ - b) . The reader is expected to have a general 
knowledge of these standard techniques.

If the results of an experiment follow the same alge­
braic relationship throughout the range of the independent 
variable, then the above method provides satisfactory 
estimates for the unknown parameters. However, many experi­
ments are known to yield results which require the use of 
several submodels to describe the expected outcome in terms 
of a functional value of the independent variable, each 
submodel being appropriate throughout some specific range
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of values of the independent variable. If so, it may be 
necessary to estimate the values of the independent variable 
(refered to as switching points) at which a change taJces 
place from one phase to another and the proper parameters 
for the submodel describing each phase. For example, an 
experiment may yield results which indicate a linear rela­
tionship throughout lower values of the independent variable, 
but which also indicate that an exponential relationship is 
appropriate for values above some "switching point". In 
this case, instead of attempting to design a single phase 
model which will indicate the general regression (through 
some presumably happy medium such as a quadratic of a 
cubic polynomial), the techniques of multiple phase regres­
sion allow the experimenter to use appropriate submodels 
for the linear phase and for the exponential phase and to 
estimate the point at which the switch is made from one 
phase to the next. Thus the total model for the above 
experiment is: E(y) = ax + b x S

= A exp(-Bx) X > S
where S denotes the unknown switching point which must be 
estimated from the data in addition to the parameters a, b,
A, and B.

It is the aim of this paper to consider multiple phase 
regression techniques which will enable us to estimate the 
switching points and the appropriate parameters for each 
phase in a multiple phase problem. The method of least 
squares estimation subject to side conditions will be the
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3
chief analytic basis for the results obtained. Several 
theorems are proved yielding a workable plan for solving 
this sort of problem and, since the primary purpose of 
this paper is to describe a technique for estimating the 
parameters in a multiple phase regression problem, only 
those theorems related directly to this end are proved.
For reasons of simplicity of definition, most of the analysis 
is done for the case where there are presumed to be only two 
distinct phases, but these results can be generalized at 
the cost of extensive algebraic computation to a system 
having an arbitrary number of phases.

A two phase problem is solved as an illustration and 
a computer program to perform the computations is described 
in Section IV.

The submodels are linear and the program is listed 
in the appendix.
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(il) STATEMENT OF THE PEOBLEM

Let 5̂ 2» * * * * sample of independent
observations taken at n ordered values of some variable x. 
The general multiple phase regression problem is to estimate 
a specified number k of switching points and the appropriate 
regression parameters for each of the k + 1 phases deter­
mined by these switching points. Approaching this in a 
manner similar to that used for regular least squares esti­
mation, we have the system:
f(x) = E[y(x)] = f^(x, B^) = ^ = ^1

= f2(x, Bg) g X ^ S2

= S ^ S
where B^ indicates the vector of parameters to be estimated 
for the functional relationship f^ in phase i, and indi­
cates the switching point from phase i to phase i + 1 . These 
estimations are to be made in such a way that the overall 
function f is continuous and such that the switching point 
from phase i to phase i + 1 falls in the interval deter­
mined by the last point used in the estimation of B^ and 
the first point used in the estimation of B^^^.

Each of the fĵ 's is assiuned to be expressable in the 
form: f^(x. B^) =

where the unknown vector B. = ( b . , b. 0 , b. ) is to beX X X  X^— X ̂
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estimated and the g.,'s are all known and differentiable^ J
functions of x for i = 1 , 2 , . . . , c^,(these functions can be
assumed to be linearly independent without loss of generality)
Note that the requirement that the total function f be con­
tinuous throughout the range of the variable x is equivalent 
to requiring that it be continuous at the points where a 
switch occurs.

We are searching for a set of estimates ...» 8^»
which satisfy:

CONSTRAINT (l): f.(S., B.) = f (S ., B ) andJ J 0 J + J- 0 Ü + J-
CONSTRAINT (II): x^(2 ) < ^  ^j + l(l)

where sind + denote the last sample point in
phase j and the first sample point in phase j + 1 respectively.

As in all problems involving least squares techniques, 
we will need at least q observations in phase i if the dim­
ension of B^ is q. If there are less than this number of 
observations, the least squares solution will not be unique 
and some adjustment to the model must be made such as de­
creasing the diminsion of B^ or perhaps choosing that 
solution out of the many possible which best suits the 
individual experimenter's ideas as to what the results 
should be. The undesirability of having to do either is 
the same in multiple phase problems as it is in regular 
regression problems„ However, for either case, the 
occurance of this situation is rare enough that the acknow­
ledgement of its possibility is the only reference which
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will be made to it. Throughout this paper, it will be pre­
sumed that the dimension of is less than or equal to the 
number of observations in phase i.

A least squares estimate made in phase i without regard 
to either constraint (I)or (II) will be refered to as a 
"local” least squares estimate and will be denoted by BJ.
This local estimate will depend on what interval [ 
is considered pertinent to phase i since the addition or 
deletion of one or more sample points from the pertinent 
range will, in general, change the result of the regression. 
This dependence will not be indicated unless ambiguity exists 
since bulky notation results.

In view of the constraint (I), the switching point 
from phase j to phase j + 1 is also a "join point” for the 
functions f^ and f a n d  these two terms will be used 
interchangeably throughout the paper. A "local” join point 
will merely be the true intersection of the local regression 
lines f* and f a n d  is denoted by 8^, It should be noted 
that this intersection may fail to occur or there may be 
several intersections if the regression is nonlinear.

The estimates considered to be the actual solution to 
the multiple phase problem will be denoted by B^ and S^. It 
is apparent that the estimate of the function fj is completely 
determined by Sj, Bj , and S .

In single phase regression the parameters are estimated
-C. oby minimizing - f (x̂ ,̂ B)J over all possible values of

the parameter vector B and a slight modification of this
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technique will assist in determining the solutions in a multi - 
pie phase problem. In order to use an analysis of sums of 
squares in the multiple phase problem, we define the multiple
phase residual to be R(S^, Sg, ... , Sĵ ; Eg» ...  ̂ ~

k+1 j(2) p k+1
R = i§j(l)^^i ~ f j (3:, B j ) ] Each term in the is
simply the regular residual sum of squares in the jth phase 
if that phase is considered as an individual regression. In 
other words, it is the sum of squares over all i such that 
is between the switching points S^ and Although the
Sĵ *s do not appear explicitly in the equation for R, they are 
implicitly determined by the constraints (I) and (II). With 
respect to the index of sumation for i in the double sum 
defining H, it should be noted that the first sample point
in phase one is ^̂ .Cl) “ ^i the last sample point in the
(k+l)st phase is 3Cĵ +-̂ (2) ~ ^n* ^ solution to this problem is
any set of estimates Cs^, 8^, ..., 8^; B^, Bg, ...,
which yields a minimum value for R out of all sets of esti­
mates which satisfy the constraints (I) and (II). Least 
squares estimates applied separately to each regime yield 
these estimates. Note, that we need only examine values of 
R for those sets of possible solutions which satisfy the 
constraints (I) and (II). If we denote this total collection
of "admissible" estimate sets by H then we need only find the
Min (R).
H

The proceeding discussion completely specifies the 
multiple phase problem with k + 1  phases. To proceed, now.
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in the development of an analytic framework for the actual 
solutions to this problem, we will restrict ourselves to the 
case where the number of phases is presumed to be two. (The 
technique is adapted from a paper by D. HudsonC6]). Phase 
one in the two phase problem will be appropriate on the 
interval Cx^, S] and phase two on the interval [s, where
S denotes the single switching point which we wish to esti­
mate. The set H mentioned above is now the collection of all 
sets {b^. Eg, si which satisfies the constraints (I) and (II). 
That is, we must have f^(S, B^) = f^(8 , B^) and x^ < 8 < ^i+i* 
(For simplicity we denote the last sample point in phase one 
by Xj and the first sample point in phase two by x̂ _̂  ̂; the 
local least squares solutions will be denoted by B*(I), and 
B|(I); and the local join point will be denoted by S*(I).)
The role played by I in the evaluation of R for any admissable
set is explicit, so we define the two phase residual to be

I P
R(B^, Bg, 8 , I) = R = iiiCyi - +
n

i^I+l’-^i
The task of finding a set in H which yields a Min (R)

H
can be simplified somewhat "by first examining subsets of H 
and then pooling the results. With this end in mind we define 
the following three subsets of H:

{iB^, Bg, 8 } e HI x ^ < 8 < for some I and
f{(8 , B.̂ )  ̂f »(8 , Bg) }

Hg = 1 {B^, Bg, 8 } e H| 8 = Xj for some I }
= C{B^, Bg, 8 j eHj x^ < 8 < for some I and

f{(S, B^) = f^(8 , Bg)}.
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The set Hg differentiates those solutions having a join point 
precisely at a sample point from the others while and 
breaks those solution sets yielding a join strictly between 
two sample points into those having equal values of the deriva­
tives at the join point and those not having equal derivatives 
there. It is obvious that the sets are mutually exclusive 
and, furthermore, that H = U Hg U (A fourth set is
sometimes considered in which the solution set yields a join 
which is strictly greater that or strictly less than x^ 
but since either one of these cases is simply a degenerate 
one phase regression this set will not be considered to be
contained in H ). Thus, Min (R) = MinCmin (R), min (R), min (R)l

H
(Note that this minimum may not be unique and if so, all 
solution sets yielding the minimum must be considered as 
solutions). Following the notation of Hudson [6], solution 
sets in are said to yield a join of type 1 ; those in Hg, 
a join of type 2 , and those in H^, a join of type 3. It 
should be noted that if the submodels are both linear then 
the set will be empty since equality of the derivatives 
would imply a single phase regression. Before proving some 
theorems related to the various types of joins, we will now 
describe the problem in precise form. The problem yields the 
following systemÎ
f(x) = S[y(x)] = f^(x, B^) X < S,

= f g( X, Bg ) S < X.

Considering the case where x^ is the last point in
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phase one let

10

^1 =

^1
^2 and Yg =

^I+l
^1+2 be the vectors of observations

/I. / n  .
pertinent to phase one and phase two respectively, and let

be the vectors of parameters

"b Id11 21

®1 = and Eg = ^22

> . S r .
to be estimated in phase one and phase two respectively. 
(Note : we presume that q < I and r < n - I to allow for a
unique least squares estimation in each phase). We can now 
write the system as;
(1) E[y(x)] = f^(x, B^) = x < S

(2 )

where the , i = 1 , ..., q, and the hĵ , i = 1 , ..., r, are
all known differentiable and linearly independent functions 
of X. If we apply equations (1) and (2) specifically to the 
sample points used in the experiment, we can describe the 
system at these sample points in the following matrix nota­
tion;
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(3) E(Y^) =

 ̂̂ 1 ̂ 
) So ( )

S^(Xj) S2(x^)

B.

(4) E(Yg) =

(̂ %+%) ^2 ̂ ̂ I+l̂  ••• r̂̂ l̂+1^
^2^^1+2 ̂ ^2^^1+2 ̂ ^j+2 ̂

h^(x„) hgCx^) .... h^(x^)

B.

If we now denote the design matrices in equations (3) 
and (4) by and Mg, we can write the system simply as
(5) E(Y^) = M^B^
(6) E(Yg) = MgBg.

It is presumed throughout this paper that M.ĵ and Mg are 
of full rank.

To allow for more concise notation, if we let

(o^ Mg)' ^ = (ïg) . and B = , we can describe
2' ' "2'

the system completely by
(7) E(Y) = ZB.

With this notation, we get the following equation:
(8) R(B^, Bg, S, I) = R = (Y - ZB)' (Y - ZB).

The overall solution to our problem will thus be given 
by that solution set which minimizes this quantity and 
satisfies the constraints (I) and (II).
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In order to satisfy constraint (I), we need f^(S, B^) = 

f2(8 , Bg); this implies that b^^g^(S) + ... + b^^g^(S) = 
b2ihi(S) + ... + bg^h^(8 ) or in vector notation,
[g^(S), ...» Sq(S)l -B^ = Ch^(S), ..., h^(S)3'Bg. However, 
the left hand vector on each side of this equation is simply 
a vector of real numbers for each S (the known functions 
evaluated at S). Hence, if we denote these vectors by and 
Qg* we have simply

(9 ) ^l®l ~ ^2^2 *
This reduces to Q-ĵ B̂  - QgBg = 0 and upon combining,

(10) [Qj.,-«2] - ( B y  = 0 .
This is just a linear constraint on B for each S so we arrive
finally at the equation QB = O for constraint (I). Thus, we
wish to find Min(Y - ZB)’ (Y - ZB) subject to:

B
(11) QB = O and
CONSTRAINT (II): < S < x^^^.

Using this framework, we can proceed to prove the theorems 
necessary to Justify our technique of solution.
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III. THEOREMS

Solution sets which yield a join of type one have a 
simplifying quality which allows the experimenter to determine 
them simply by examining the local least squares estimates 
without regard to either constraint. To show this, we prove 
the following theorem:
THEOREM 1: If the solution to the two phase regression
problem yields a join of type one between x^ and x^_^^, then 

= B^(I), Bg = B|(I), and S = S*(I). In other words, the 
estimates in the solution set are the local least squares 
estimates made with x^ assigned to the first phase.
Proof: It will suffice to show that the solution set
obtained by minimizing R with respect to the constraint 
f2 (8, B^) = f2 (8, Bg) is the same as that set obtained with­
out the constraint. Consider that we wish to minimize 
R(B^, Bg, S) subject to the constraint that f^(S, B^) - fg(S,Bg)
= 0. Since the join is of type one, we know that
f^(S, B^) - f^(S, Bg) ^ O so that this minimization problem 
lends itself to a Lagrangian multiplier attack. (Courant, 
pp. 192-199, Cl]). Thus we are led to the equation
T(B^, Bg, 8, ^) = R(B^, Bg, S) + 2<f^(S, B^ ) - fg(S, Bg)]
and the solution set which we seek will be contained in that 
set (B^, Bg, S, ^) which yields the value zero simultaneously 
in each of the four equations obtained by differentiating T 
with respect to each of its arguments. We wish to solve:
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n
ôBg ^ ’®2^ “ ^1^ 0B2^2^^1’®2 3

(3) U  = 2[f^(S,B^) - fgCS^Bg)] = 0

(4) II = 2=^[f£(S,B^) - f^(S,Bg) ] = O.

Examination of equation (4) and the fact that a join of type 
one implies that the derivatives of the f^ are not equal at 
S yields that ^ = 0. Therefore, equations one and two are 
reduced to the equations used in finding the local least 
squares solutions. In other words, B^ = B£(I) and Bg= B|(I). 
It follows that S*(I) = S since if not, the regression para­
meters must be constrained to cause the f *s to join at a 
point other than their natural intersection and this would 
cause the residual R(B^, B^, S) to increase and, in fact, to
be larger than R(B*, B*, S*(I)) which would contradict the
fact that the solution set minimizes R out of all such sets.

Q.E.D.
The ease with which the above theorem can be proved for 

joins of type one verifies the assertion that our analysis 
can be simplified a great deal through considering the joins 
separately. Perhaps the implications of the above theorem 
can be made more explicit through the statement of the 
following corollary:
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If there is no S*(I) such that < S*(I) < ^i+i» 
it is not possible that there is a join of type one 
between x^ and The proof of this corollary is
by contradiction. Assuming that there is a join of 
type one between x^ and x̂ .̂  ̂would imply that S was 
between these two points. However, by the theorem we 
know that S = 8*(I) which contradicts the fact that 
there is no S*(I) lying strictly between Xj and .

Q. E). D .
As a result of the theorem and corollary we may now 

state that if there is no "natural" join of type one in the 
interval (x^, x^_^^) then there can be no type one join after 
applying the constraints, and thus it is not necessary to 
use iterative numerical techniques to test for joins of 
this kind at all points in the interval.

This result is all that is necessary to fully examine 
the system for a join of type one. The experimenter need 
only examine the local regressions for the cases where a 
switching point is possible and evaluate R for each of those 
cases yielding a natural join in the proper interval. The 
solution set which yields a minimum value from these several 
computations will be that set which yields a Min(R).

It may happen, that there is no natural join in the 
correct interval and even if so, there may be a solution set 
in or which will yield a smaller value of R so we must 
now consider some techniques for treating these cases.
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If the solution set is in H g , we have S = Xj for some 

particular I and the question arises as to how Xj should be 
treated with respect to the local regressions. At first 
glance, it seems that we should assign the point x^ to the 
right hand regression, compute R with the estimates con­
strained to cause a join at x^, assign x^ to the left hand 
regression, compute new estimates constrained to cause a 
join at Xj, and then choose that set of estimates which 
yields the smallest value of R as being the "best** of the 
two. The situation Is surprisingly simpler than this, how­
ever, and the following theorem establishes that we may 
assign x^ to either the right or left hand regression and 
still get the same results.
THEOREM 2: If the join is of type two then the estimates of

and Bg are the same whether the join point is assigned to 
the left hand regression or to the right hand regression. 
Proof; We have S = x^ for some particular I. Developing the 
problem along lines similar to those used in section II, 
we have :

^1
II (1) E(y) = f^(X, B^) = ^ i i ^ i ( X  £ Xj

2
II (2) = fg(x, Bg) = bg^hj^(x) X  > Xj

emd, letting M^ and Mg denote the respective design matrices 
we wish to compare the results obtained by using
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rgl(x^) g2(Xg) ... gq^^(x^)

( ̂ 2 ) ®2 ̂ ̂ 2 ̂ • • * Sq̂  ( ^

M. and

Mg =

hqCXn) h^Cx^) .... hq (X^)
L

with the results obtained by using 

«1( • • •  Sq 1

= and

h^(Xj) hgCxj) ... hq^(x^)

M-

Lh^(x„) hg(x^) ...

The constraint that fq(xj, B^) = fgCXj, Bg) can be written as
C^l ( Xj- ) f g g  ( X j  ) J . . .  g q  ( Xj. ) ̂ ~ 0^1 ( x ^  ) * ■” hg ( X j  ) , . . .  1

- h (sg) o.
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Following the notation of 11(10), this is simply

(S
Letting 

Z
/M, 0 \

1 \0 M J and Q = ( , -Qg)♦

if we can show that MinC(Y
3

- Z^B)*(Y - ZgB) ] subject to QB = 0

is the same as Min[
B

(Y - ZgB)*(Y - ZgB) ] subject to QB = 0, we

are done.
0 0 0 • 0

Let T =
Ô 0 
0 0

0
0

-^2'

6
0

= (Z^ - Zg) and proceed.
0 0 0 0

0 0 0 • • 6
MinC(Y - Z,B)•
B

(Y - Z^B) ] = MinC(Y - (Z« + T)B)*(Y - (Z
B

2 + T)B)]

= Min[Y - 
B

Z^B - TB) *(Y - Z gB - TB)]. In view of the constraint

QB = 0, we have that TB = (0,0,0, .,.,,0)* so that the last
Min is equivalent toMLn[(Y - Z^B)*(Y - Z„B)] subject to QB = O.

B
Q.E.D.

This theorem allows us to assign the join point to 
whichever phase is convenient and, in view of the techniques 
which we will now develop for determining the actual estimates 
yielding a join of type two, this is a considerable advantage. 
Before proving the theorem which will allow us to compute 
these estimates, we will prove a necessary identity.
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Recall, that we have 11(8); H = (y - ZB)*(Y - ZB) 

which is the residual sum of squares for any B. Using the 
techniques of single phase analysis, the local solutions are 
given by B* = (Z*Z)~^Z*Y and the local residual sums of 
squares are given by R* = (Y - ZB*)*(Y - ZB*). We wish to 
establish a relationship between the residual for the local 
least squares estimates and the residual for an arbitrary 
vector B Namely, (Y - ZB)»(Y - ZB) = (Y - ZB*)*(Y - ZB*) +
(B* - B) Z*Z(B* - B).
Proof: (Y - ZB) = Y - ZB* + ZB* - ZB = (Y - ZB*) + Z(B* - B).
This is a vector equality, so we may take the transpose of
each side times the original vector and still retain equality. 
Thus, (Y - ZB)*(Y - ZB) = C(Y - ZB*)*

+ (B* - B)'Z'][(Y - ZB*) + Z(B* - B)] =
(1) (Y - ZB*)*(Y - ZB*) + (B* - B)*Z*Z(B* - B)

+ (B* - B)*Z*(Y - ZB*)
+ (Y - ZB*)*Z(B* - B).

Examining the third term in this sum, we get B**Z*Y - 6**Z*ZB*
B*Z*Y + B*Z*ZB* and substituting B* = (Z *Z)"^Z*Y into this we
have [(Z*Z)”^Z'Y]*Z*Y - [(Z *Z )~^Z•Y 1 *(Z »Z )(Z •Z )~^Z*Y - B*Z*Y + 
3 *(Z*Z)(Z*Z)"^Z•Y, All of these terms cancel^yielding zero. 
Further, the fourth term in equation (1) is simply the trans­
pose of the third so it is also zero, and we have:
(Y - ZB)'(Y - ZB) = (Y - ZB*)*(Y - ZB*) + (B* - B)*Z*Z(B* - B),

Q.E.D.
Using this identity we can now prove the following which 

will yeild a technique for computing the constrained estimates
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from the local least squares estimates. With B, B*, Z, and 
Q defined as In section II and letting G = Z*Z we have:
THEOREM 3* If the local least squares estimates are given by 
B* then the least squares estimates B subject to the con­
straint that f^(x* , B.̂ ) = f^(x*, Bg) [note that this is QB = O] 
for any x* are given by:
B = B* - C”^Q* (QC“^Q*)“^QB*.
Proof: We wish to find Mln(Y - ZB)'(I - ZB) subject to QB = O.

B
In view of the Identity just proved, this is equivalent to
finding MlnKï - ZB*)*(Y - ZB*) + (B* - B)*G(B* - B)] subject 

B
to QB = 0. The first term Is constant for all B so our pro­
blem reduces to finding Mln(B* - B)*C(B* - B) subject to the

B
constraint. We now have a minimization problem subject to a 
constraint and since any extremum must be a minimum we shall 
proceed to solve It using a Lagranglan multiplier Let
(1) S = (B* - B)*G(B* - B) + s£QB. Differentiating with 
respect to each of the elements b^ which compose the vector 
B, we have the following system of simultaneous equations In 
matrix form:
(2) 1^ = -C(B* - B) + a&Q' = O, which Implies
(3) C(B* - B) = â Q* = Q*=̂ , Now, C Is a positive definite 
matrix (since G = Z»Z and Z Is of full rank) and hence G ^ 
exists. Thus we have G ^G(B* - B) = G ^Q*sd which simplifies 
to
(4) (B* - B) = g "^Q*<
Multiplying both sides of (4) by Q yields: Q(B* - B) = QG~^Q*sd
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and since QC”^Q* is a real number, we get
(5) ( Q G " ^ Q * - B) =
Using this value in (3) yields
(6) C(B* - B) = Q»(QC’^ Q * - B)

= Q*(QG"^Q»)“^QB* - Q*(QG~^Q')“^QB.
Now, the constraint is that QB = O so we have simply
(7) G(B* - B) = Q* (QG'"®-Q* ) ~^QB*. Multiplication by yields
(8) B* - B = G"^Q*(QG“^Q*)“^QB* which yields the desired 
conclusion, B = B* - G"^Q*(QG"^Q*)“^QB*. Q.E.D.

For purposes of using the equation derived above, it
—Ishould be noted that, for a particular x*, QB* and QG Q* are 

Just two real numbers say a and b. If we use this, the com­
plicated formula derived can be simplified by evaluating each 
of the above numbers and setting B = B* - (a/b)G ^Q*.

We can now compute the constrained estimates, but since 
we are searching for a minimum value of R, we must evaluate 
this residual for each of the estimate sets thus obtained.
This task can be accomplished through the use of the follow­
ing:
Gorollary: With a and b defined as above, the Residual Sum
of Squares is equal to the Local Residual Sum of Squares plus 
a^/b. That is, R = R* + a^/b.
Proof: R = (Y - ZB)*(Y - ZB) = Y»Y - B'Z'Y - Y»ZB + B*Z»ZB =
Y*Y - (B*> - a/bQG"^)Z»Y - Y ’Z(B* - a/bG"^Q*) +
(B* - a/bQC"’̂)Z'Z(B* - a/bG"^Q' = Y*Y - B*»Z'Y - Y 'ZB*
+ B**Z"ZB* + a/b[QG“^Z'Y + Y*ZG“^Q* - B**Z*ZG"^Q’ - QG“^Z'ZB*]
+ aVb^[QG“^Z»ZG'^Q* ]. But, B* = G"^Z*Y and Z»Z = G , so the
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2 2coefficient of a/b is zero. àlso, the coefficient of a /b 

reduces to QG ^Q* which is what we defined b to be so we have 
(Y - ZB)*(Y - ZB) = (Y - ZB*)’(Y - ZB*) + (a^/b^)*b or 
R = R* + a^/b. Q.E.D.

Notice, that as a result of this corollary it is possible 
to evaluate the residual sum of squares which would result 
from constraining the estimates without ever computing the 
actual constrained estimates. For purposes of manual calcula­
tions this would be desirable but for use on a high speed 
computer it is not practical, and the above corollary is 
used simply as a formula to evaluate R after the estimates 
have been made.

The theorems which we have proved so far are sufficient 
to allow us to search completely for joins of type one or 
type two. However, no such nice results have been derived 
for joins of type three. Fortunately, it appears that this 
type of join occurs infrequently and, for that matter, need 
not be considered as a possibility if the submodels are 
linear. If it happens, however, that a join of this type 
must be searched for, then the experimenter is forced to use 
some technique of succesive approximation throughout the 
interval under consideration. This method is somewhat 
tedious at best, but the following can simplify the job 
greatly :
THEOREM 4: If the residual sum of squares for the local
least squares solutions with Xj assigned to the first phase 
is greater than the residual sum of squares computed for any
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acceptable type one Join in previous steps, then it is not 
possible that a Join of type three will occur between Xj and

^I+l*
Proof: If the local Join point S*(I) is not an element of
Cxj, then the residual obtained when the are con­
strained to cause a Join anywhere in that interval will be 
greater than the original and hence will be greater than at 
least one acceptable Join of type one or type two. Hence, 
the solution could not lie in [x^, . If it happens that
S*(I) is in the interval [x^, , then the added constraint
that the derivatives must be equal certainly could not reduce 
the original Local Residual and hence, again, a Join of type 
three in that interval would have to yield a larger value of 
R than some other acceptable solution set. Q.E.D.

As a result of this theorem, the number of intervals 
which will have to be examined for Joins of type three can 
be reduced considerably since any interval which yields a 
local solution satisfying the above hypothesis can be 
omitted.

A brief discussion of a numerical attack to solve for 
Joins of type three will be given in the next section.

Using the results from this section, we can now outline 
a specific approach to solving the two phase regression 
problem.
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IV. PROCEDURE

Consider a sample of n observations ...» y^ taken
at ordered values of an independent variable x. We wish to 
search throughout the interval (x^, x^) for a switching point 
of one of the three types discussed and,theoretically, this 
requires the examination of each of the intervals [x^, Xg), 
[xg, x^), ...» [x^_^, x^^. In practice, however, this is 
generally not necessary since it may happen that the experi­
menter has prior knowledge concerning the general location of 
the switching point which allows him to restrict his attention 
to some subinterval of Cx^, x^]. This prior knowledge may be 
the result of either a technical restriction on the switch­
ing point or observing obvious trend lines in a scatter 
diagram. Let us suppose that, in this discussion, the 
switching point is known to fall in the interval [x^,

The intervals [x^, x^^^ ) , ^k+2 ̂ * *'•’ ^-^k+j-l'
must be searched individually and we proceed with this task 
by examining each of them for joins of type one and type two 
simultaneously. (A brief discussion for joins of type three 
will follow). Let B*(I), B|(I), S*(I), and R*(I) be 
associated, as usual, with the local estimates and let these 
same symbols with the * replaced by a denote the estimates 
and computations associated with estimates which are con­
strained to cause a join of type two at x^.
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We wish to complete the following table:

Xj BJ(I) B*(I) S*(I) R*(I) B**(I) S**(I) R**(I)

for all pertinent values of , from which the minimum value 
of R over the sets and can be determined simply by 
examining the columns headed R* and R**,

Begin by estimating B^(k) and B*(k), calculating S*(k), 
and then determining if S*(k) is in the interval (x^, ^k+1^’ 
If S*(k) is in the correct interval, compute R*(k) in the 
usual fashion. If it is not, theorem one implies that there 
can be no join of type one in this interval and we will use 
the convention of setting R*(k) equal to infinity. We can 
now fill the first five columns in the above table for the 
case when I = k. To compute the necessary figures for the 
last four columns, consider, first, that if S*(k) is in the 
"right** pl^ce then constraining the estimates to cause a 
join at x^ must increase the residual sum of squares and 
hence R**(k) cannot yield a minimum and it is unnecessary to 
compute any of these estimates so we may simply set R**(k) 
equal to plus infinity. If S*(k) is not in the proper in­
terval, we proceed as described in theorem 3 to calculate 
the constrained estimates from the local estimates and 
using the corollary to theorem three we can compute R**(k) 
directly from the original value of R*(k). Enter these 
figures in the last four columns of the table. We are now
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finished with the interval ^+1^ and can proceed to the
interval C^^+1 * ^k+2^ which is treated identically. Con­
tinuing in this manner until we have examined all the intervals » 
the table is completed.

If the submodels are both straight lines or if the 
possibility of a join of type three can be legitimately 
Ignored, we are done and the solution set [ ,  Bg, S] is 
simply that set associated with the smallest of all values 
listed for R* and R**. If, on the other hand, we must
search for joins of type three, we first eliminate those
intervals which could not contain a join of type three using 
theorem 4 and in the remaining intervals must apply some 
combination of numerical techniques and least squares estima­
tion to determine the best location for a join of type three.
The following discussion briefly describes how one might 
proceed with this problem. Let the interval (x̂ ,̂ ) be
a possible location for a join of type three and begin by 
dividing it into 100 segments (or 10 or 1000 segments depend­
ing upon the degree of accuracy desired). We must now 
systematically fit B^(q, k), Bg(q, k) subject to 
f^(Zj^, B^) = fg( Bg) and f ^ , B^) = f^(z^, Bg) where
Zĵ  denotes the kth point in the subdivision and then compute
R(g , k) for each of these constrained estimates for all 
k = 1, 2, ..., 100. Repeat this in all intervals where a
join of type three is possible, choose the smallest value of 
R(t, k), compare it to the minimum obtained in the table and 
if it is smaller, there is a join of type three. If it is
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larger choose the appropriate solution set from the table and 
the problem is finished.
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V. AN APPLICATION

James H. Veghte of the Aerospace Medical Research 
Laboratories has conducted an experiment in which he mea­
sured the amount of oxygen consumed by Gray Jays at various 
temperature levels. The results of this experiment indicate 
that a two phase regression would be appropriate and Mr, 
Veghte has generously supplied his data for this problem.

The nature of the experiment and the techniques which 
were used are best explained by the following quote from 
his article, "Thermal and Metabolic Responses of the Gray 
Jay to Cold Stress":

"Skin and Gloacal temperatures and oxygen consumption 
were measured in this 12-month study of gray jays to 
determine the thermoregulatory responses which enable 
a native Alaskan bird to withstand the extreme cold
environment of subarctic regions.....................

Adult birds were captured near Fairbanks, Alaska 
in a simple bait trap. Most birds were subjected to 
cold-stress experiments within 24 hours of capture 
to determine their natural response. Usually the 
experiments were conducted at the same time each 
day, but, due to difficulties of capture, this schedule
could not always be followed.......The birds* oxygen
consumption was determined with an open-circuit system. 
An airflow rate of 64 ml/min was maintained through 
a small plexiglass metabolic chamber by adjusting the 
air resistance of the system. A 200-300 cm. air sample 
was passed in through the chamber, a desicant, a 
continuously recording F-3 Beckman oxygen analyzer, a
wet flowmeter, and a variable-speed vacume pump.....

The matabolic chamber was placed in a thermostatically 
controlled cold box. Its air temperature was recorded 
by means of a thermocouple placed near the inlet.
The sampling flow rate was sufficient to maintain 
uniform temperatures within the metabolic chamber.
The temperature of the metabolic chamber was contin­
uously decreased from 25° to -50° C. over a period of 
4 hours...The monthly metabolic data were grouped 
according to seasons to discern the average seasonal 
oxygen-consumption response of the gray jay to the
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emrironmentai temperature profile. Data were calculated
and plotted at 5-minute Intervals........ The seasonal
critical temperatures were determined to compare these 
data with Scholander*s. The critical temperatures were 
determined by two techniques : (1) by employing Scholander*
method In which the average cloacal temperature of 
the birds In the thermoneutral zone, 41,6°+. 0.3°C, S.D. , 
was connected with the best fit of the consumption data, 
and (2) the least squares method In which the regression 
line equation was determined for all ozygen-consumptlon 
values between 6° and -50° C. or the values below the 
thermoneutral zone. The Intercept of these two lines 
determine the critical temperature."
The critical temperature referred to by Mr. Veghte Is 

that temperature at which the birds are presumed to have 
reached their basal metabolism level (I.e., that temperature 
at which they are no longer breathing to keep warm, but 
simply to maintain bodily functions). This point on the 
temperature scale Is the "switching point" which we wish to 
determine using the methods outlined In this paper.

The rate of oxygen consumption once this basal metabo­
lism level has been reached can be presumed (as Mr. Veghte 
did) to be relatively constant so that f^ (our regression 
function In phase 2) will simply be an estimate of a constant.
In phase one, a linear model was considered appropriate and 
the data (see page 55) were handled through a program like 
that listed In the appendix with the second phase constrained 
to be constant Instead of arbitrarily linear. Note that we 
need only search for joins of type one or type two. The 
results for each season are listed, In table form, below.
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SUMMER

1^11 1̂ 12 ! 1S* 1R* 1bîl 1Ibg; 1: S** j! R**

-1.5 -.028 3. 26 2. 34 33.53 + 00 -.043 2 . 62 2.69 -1.5 7.04
2 . 5 -.028 3.25 2 . 26 35.20 + CD -.041 2.71 2.61 2.5 5.88
5.1 -.029 3. 21 2.19 35.20 + 00 -.040 2.76 2.56 5-1 5.193 . 0 -.030 3. 16 2.15 33.56 + CD -.039 2.81 2. 50 8.0 4. 5010.8 -.031 3. 12 2.10 32.37 + CD -,038 2.85 2.44 10.8 3. 94

13.8 -.032 3.08 2.07 31.23 + 00 -.037 2.89 2 . 38 13.8 3. 4616. 8 -.033 3.05 2.04 30. 29 + CD -.036 2. 92 2. 31 16.8 3.1019.4 -.034 3.03 2.00 30. 63 + CD -.036 2.95 2.25 19.4 2 . 8722. 3 -.034 3.02 1.95 31.81 + CD -.035 2.97 2.19 22. 3 2 . 7022. 6 034 3.00 1 . 94 31.06 + CD - . 035 2.97 2.17 22. 6 2 , 68

Mln(R) = 2.63 
The join is of type two.
S = 22.6

= (-.035, 2.97); 
f^(T) = -.035T +2.97; fg(T) = 2.17

Bg = (2.17)

Q

w 5
CvjOÜÜ

st—I EH

§O

Xo

3

2

1

2010-50
METABOLIC CHAMBER TEMPERATURE (°C)
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PALL

h î l ^Î2 S* R* b## '12 r 2 i  1^** I-b** b** R**
- 1 -  5 “ . 0 5 9 2 . 9 0 2 . 4 0 8 . 4 4 OD - ,  0 6 8 2 . 5 1 2 , 6 1 - 1 . 5 4 , 2 0

2 . 5 - ,  0 5 8 2 , 9 3 2 . 3 5 1 0 . 0 2 00 — . 0 6 5 2 , 6 7 2 . 5 1 2 , 5 3 . 2 6
5 . 1 - . 0 5 8 2 . 9 2 2 . 3 2 1 0 , 4 1 0 0 - . 0 6 2 2 . 7 6 2 , 4 5 5 . 1 2 . 8 2
8 . 0 - ,  0 5 8 2 , 9 4 2 . 2 9 1 1 . 1 6 0 0 — , 0 6 0 2 . 8 5 2 . 3 7 8 , 0 2 . 5 2

1 0 . 8 - . 0 5 7 2 .  9 7 2 . 2 4 1 2 . 8 7 2 .  3 5 — — — ^  “  — CD
1 3 . 8 - . 0 5 6 3 . 0 1 2 . 1 9 1 4 . 5 2 2 . 3 6 — ^  ̂ — — — m m  m m 0 0
1 6 . 8 - . 0 5 6 3 . 0 3 2 . 1 7 1 5 . 5 2 0 0 - . 0 5 5 3 . 0 5 2 . 1 3 1 6 . 8 2 . 4 1
1 9 . 4 - . 0 5 4 3 . 0 7 2 . 1 1 1 7 . 5 7 0 0 - . 0 5 4 3 . 0 9 2 . 0 4 1 9 . 4 2 , 5 3
2 2 .  3 - . 0 5 3 3 . 1 1 2 . 0 3 2 0 . 1 3 CD - . 0 5 3 3 . 1 3 1 . 9 5 2 2 .  3 2 . 6 7
2 2 .  6 - . 0 5 2 3 . 1 4 1 . 8 4 2 4 , 8 0 0 0 - . 0 5 3 3 . 1 3 1 . 9 3 2 2 .  6 2 . 6 8

Min (R) = 2.35
The join is of type one.
S = 12.87
B, = (-.057, 2.97); (2.24)
f^(T) = -.057T + 2.97; fg(T) = 2.17

uXi
bD

üü

O
o

J i

3 *

.50 -40 -30 -20 -10 O 10 20 30
METABOLIC CHAMBER TEMPERATURE (°C)

40
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^Î1 ^Î2 Ü :  ü b - b g *  I S * * R**
-1.5 “ .058 2. 46 2.14 5.51 0 0 -.064 2.19 2 . 29 -1.5 1.84
2.5 -.059 2.46 2.12 5 . 8 8 OD -.060 2 . 3 5 2. 20 2.5 1.29
5.1 -.057 2 . 49 2.09 6.97 1.11 — — — — — — — —  — GO
3,0 -.056 2. 51 2.09 7.44 0 0 -.056 2.52 2.07 8 . 0 1.12

10.8 -.056 2. 52 2.09 7.76 00 -.054 2. 59 2. 01 10.8 1. 24
13.8 -.055 2, 56 2.09 8 . 6 7 0 0 -.053 2.65 1 . 9 3 13.8 1. 52
16.8 -.054 2 . 61 2.07 9 . 9 5 0 0 -.051 2 . 7 1 1.85 16.8 1 . 8 3
19.4 -.053 2.65 2.07 11. 23 00 -.050 2 . 7 5 1.73 19.4 2 . 21
2 2 . 3 -.051 2 .  7 1 2.01 13.88 00 -.049 2 . 7 9 1.69 2 2 . 3 2 . 5 9
2 2 . 6  - . 0 5 0 2 . 7 5 1.95 16.08 00 - . 0 4 9 2.79 1 . 6 8 2 2 . 6 2.62

Min(R) =  1 . 1 1

The join is of type 1one.
S = 6.97

B, (2.09)= (-.057, 2 .49);
f^(T) = -.057T + 2 .49; fg(T) = 2.09

&m
uXi
hû

Üü

gM54IrOgO

5

-50 -40 -30 -20 -10 10 40
METABOLIC CHAMBER TEMPERATURE (°C)
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^21 1s* 1!h* M l M !  1|^!1 1s»* 1R**
2 . 1 9 6.37 OD -.078 2 . 2 7 2.38 -1. 5 5.97
2 . 1 6 6.75 00 -.073 2.46 2 . 2 7 2.5 5.042.14 7.35 4. 67 M M M M M MMM CO2.11 8 . 4 3 4.68 • * MMM MM M «•MM CO
2 . 0 6 10.21 CD —. 0 6 6 2.75 2.04 10.8 4 . 7 62.01 11.89 00 -.064 2 . 8 3 1. 94 1 3 . 8 4. 942.00 1 2 . 9 0 00 -. 0 6 2 2.89 1.85 1 6 . 8 5.212.02 13.04 OD - . 0 6 1 2 . 9 4 1. 76 1 9 . 4 5 . 5 22.02 14.01 00 - . 0 6 0 2.98 1 . 6 5 2 2 . 3 5 . 9 61.95 1 6 . 3 9 00 - . 0 6 0 2 . 9 8 1.64 22.6 6 . 0 1

-1.52.55.18.010.8
13.816.8 19.4 22.3 
22.6

- . 0 6 9  
- . 0 6 9  
- . 0 6 9  —, 0 6 8  —. 0 6 6  -, 0 6 5
—. 064" 
- . 0 6 3  
- . 0 6 2  
- . 0 6 1

2 . 6 3
2 . 6 32.64 2.68 
2.73 2.78 2.82 2.85 
2.89 2.94

Mln{R) = 4 . 6 7

The Join Is of type one.
8 = 7.35

= (-.0 6 9 , 2.64); Bg = (2,14) 
f^(T) = -.0 6 9T + 2.64; fg(T) = 2.14

&

s
bO

ÜÜ

§

io
I

3

2

1

T»

20 30 4010
METABOLIC CHAMBER TEMPERATURE (°C)
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To compare the results obtained using the multiple phase 
regression technique with those obtained by Sholander and 
Veghte (see page 29), consider the following table:

ESTIMATES OF CRITICAL TEMPERATURES (°C)

Sholander*s Multiple Phase Modified Least
Method Regression Method Squares Method

______________________________ ;_______________________ (Veghte)____
Winter 5 6.97 7
Spring 9 7.35 7
Summer 5 22,6 36
Fall 6 12.87 9
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DATA

Temp C. -- OXYGEN CONSUMPTION—
SPRING SUMMER FALL WINTER-4 9 .6 6 . 0 5 4 . 8 2 6 . 3 2 5.24-4 9 .5 6 . 1 9 4.91 6.11 5 . 3 0-4 9 . 4 6.42 4.79 5 . 9 6 5 . 2 7-4 9 . 1 6.40 4 . 5 7 5 . 7 7 5 . 1 9-4 9 . 0 6 . 1 5 4 . 6 2 5 . 7 0 5 . 3 8—48.6 6 . 1 5 4.78 5.77 5.27—48 « 4 6 . 4 7 4.46 6.22 5.01-4 7 . 9 6.28 4 . 3 4 5 . 9 8 5.10-4 7 . 4 6. 34 4.24 5.73 5.15-46.9 6.18 4.19 5.73 5 . 0 7-46. 3 5 . 9 0 4 . 1 9 5 . 5 4 5.12-4 5 . 3 5 . 6 3 4 . 2 6 5 . 4 3 5 . 0 6-44.7 5.64 4 . 2 3 5 . 3 0 5 . 0 0-4 3 .4 5 . 3 8 4 . 2 3 5.28 5.14-4 3 . 1 5 . 0 7 4 . 3 1 5.40 5.22-41.9 4.87 4 . 5 2 5 . 4 7 5 . 2 5-40. S’ 5 . 0 7 4 . 5 4 5.21 4 . 8 9-39.7 5.12 4.75 4 . 9 0 4 . 7 6-3 8 . 7 4 . 9 2 4.68 4 . 7 6 4 . 6 3

-37.5 5.18 4.68 4 . 9 2 4.44-3 6 . 3 4.80 4 . 6 9 5.04 4 . 5 1-3 .̂ 8 4.88 4.04 4.81 4 . 6 9-33.2 4 . 3 5 4.04 4. 59 4. 54-3 1 . 5 4 . 5 0 4 . 1 3 4 . 5 7 4.28-2 9 . 6 4 . 6 9 4. 22 4. 52 3 . 8 9-2 7 . 8 4. 69 4.22 4 . 5 0 3 . 7 7-2 6 . 0 4.01 4 . 0 6 4.14 3 . 7 8-2 3 . 6 3 . 5 6 4 . 1 9 4. 24 3 . 9 6-21.5 3.97 4 . 0 9 4.35 3.85-1 9 . 3 3.86 3.87 4 . 0 7 3 . 8 0-1 6 . 8 3 . 9 4 3 . 6 2 4 . 0 9 3 . 7 4-14. 6 3 . 7 2 3 . 4 3 3 . 64 3.33-12.2 3 . 6 0 3.37 3 . 5 7 3 . 1 3-9.6 3 . 6 0 3 . 3 6 3 . 4 7 2.87-6 . 9 3 . 6 9 3.40 3-39 2 . 8 9-4.0 3.10 3 . 3 5 3 . 2 9 2.51“1.5 2 . 9 2 3.28 3 . 3 0 2.46
2 . 5 2 . 4 5 3-09 2 95 2.33S.l 2 . 38 2.85 2 . 60 2 . 3 88.0 2 . 38 2. 57 2 55 2 . 1 610.8 2 . 4 5 2 . 4 5 2.64 2 06

1 3 . 8 2. 32 2. 31 2. 52 2.12
1 6 . 8 2 . 0 9 2.20 2 . 3 1 2.14
1 9 . 4 1.89 2. 21 2.40 2.1122. 3 2.02 2.17 2.35 2.24
2 3 . 6 2.18 1.97 2.41 2.12
2 3 . 5 2.06 2.00 2.12 2.1424.0 1 . 8 3 1.87 1 . 5 6 1 . 7 6
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G A PROGRAM TO COMPUTE TWO PHASE REGRESSIONS

DIMENSION A(8,8),B(8,l),IR0W(8),JGODCs ),Bl(lO),B2(lO), 
1 B5(lO),B4(lO),BBl(lO),BB2(lO),BB3(l0),BB4(l0),Rl(l0),
1 R2(io),a i p h a(i o),s (i o),t (i o ),x (i o o),x (i o o)

COMMON A ,B ,IROW,JGOL 
1001 READ 100, M 

G THIS IS THE TOTAL NUMBER OP OBSERVATIONS
100 FORMAT (l2)

READ 101, (X(l),Y(l), I = I,M)
G X(l) IS INDEPENDENT VAR., x(l) IS DEPENDENT VAR.

101 FORMAT (5X,F18.8,10X,F18.8)
READ 102, II,JJ

G II and JJ REPRESENT THE SUBSCRIPTS OF THE INDEPENDENT
G VARIABLE WHICH DETERMINE THE RANGE TO BE EXAMINED FOR
G A SWITCHING POINT. (jJ - II)LESS THAN 10.

102 FORMAT (5X,12,5X,12)
DO 1 I = II,JJ
L = I + 1 - II 
DO 2 E = 1,8
b (k ,i ) = 0.
DO 3 J = 1,8 

3 a (k ,j ) = 0.
2 CONTINUE

DO 4 J = 1,1
A(l,l) = A(l,l) + X(j)**2
A(l,2) = A(l,2) + X(j)
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B(l,l) = + X(j )*Y(j )

4 B(2,l) = b C2,i ) + Y(J)
A(2,l) = A(l,2)
A(2,2) = I
K = I + 1
DO 5 J = K,M
A(3,3) = A(3,3) + X(j)**2
A(3,4) = A(3,4) + X(J)
b (3,i ) = b (3,i ) + x (j ) * y (j )

5 B(4,i ) = B(4,i ) + Y(j )
A(4,3) = A(3,4)
K = M - I 
A(4,4) = H
GALL HAINV (A,4,B,1,DET,IFS)
MAINV IS A GAOTTED SUBPROGRAM
b b i Cl ) = B(l,l)
BB2(l ) = B(2,i )
BB3(l ) = B(3,1)
BB4(l ) = B(4,l)
THIS REMEMBERS THE I*TH LOGAL LEAST SQUARES SOLUTIONS
r i (l ) = 0.
R2(l ) = 0.
DO 6 J = 1,1

6 R1(l ) = R1(l ) + (y (j ) - B(1,i )*X(j ) - B(2,l))#HK2 
DO 7 J = K,M

7 R2(l ) = R2(l ) + (y (j ) - B(3,l)*X(j) - B(4,l))**2
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C THIS HAS COMPUTED LOCAL RESIDUAL SUMS OF SQUARES
ALPHA(L) = (BB4(l ) - BB2(l ))/(BB1(l ) - BB3(l ))

C THIS HAS COMPUTED THE INTERSECTION OF THE TWO LINES
C THE FOLLOWING TESTS TO SEE IF IT IS IN THE RIGHT PLACE

IF(ALPHA(l ) - X(l)) 17,17,18
18 IF (ALPHA(l ) - X(l + l)) 19,17,17
19 S(l ) = R1(l ) + R2(l )

T(l) = 9999.
B1(l ) = 0.
B2(l ) = 0.
B3(l ) = 0.
B3(l ) = 0
GO TO 1

17 SS = X(l)*(B(l,l) - B(3,1)) + (b (2,i ) - B(4,1))
TT = (A(i ,i )+A(3,3)>X(i )^2+2.*(A(2,i )+A(4,3)>X(i ) + 
1 A(2,2) + AC4,4)
s(l) = 999.
T(l ) = R1(l ) + R2(l ) + SS**2/TT
B1(l ) = BBl(L) -SS/TT*(A(l,l)*X(l) + A(l,2))
B2(l ) = BB2(l ) -SS/TT*(A(l,2)*X(l) + A(2,2))
B3(l ) = BB3(l ) +S8/TT *(A (3,3)*X(I) + A(3,4))
B4(l ) = BB4(l ) +SS/T1*(A(4,3)*X(i ) + A(4,4>)

1 CONTINUE
N = JJ — II + 1 

C THE FOLLOWING PUNCHES THE RESULTS FOR EACH STEP.
PUNCH 109, (X(l), I = II,JJ)
PUNCH 109, (BBl(l), I = 1,N)
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C THIS PUNCHES THE GOEEEICIENT FOR X IN PHASE ONE
PUNCH 109, (BB2(l), I = 1,n )

C THIS PUNCHES THE CONSTANT TERM FOR PHASE ONE
PUNCH 109, (BB5(l), I = 1,N)

C THIS PUNCHES THE COEFFICIENT FOR X IN PHASE TWO
PUNCH 109, (BB4(i ), I = 1,n )

C THIS PUNCHES THE CONSTANT TERM IN PHASE TWO.
PUNCH 110,(R1(i ), I = 1,N)

C THIS PUNCHES THE LOCAL RESIDUAL FROM PHASE ONE
PUNCH 110,(R2(i ), I = 1,n )

C THIS PUNCHES THE LOCAL RESIDUAL FROM PHASE TWO
PUNCH 109, (X(l), I = II,Jj)
PUNCH 109, (ALPHA(i ), I = l,N)

C THIS PUNCHES THE LOCAL JOIN POINT FOR EACH STEP.
MM = II + 1 
MMM = JJ + 1
PUNCH 109, (X(l), I = MM,MMM)
PUNCH 111, (S(l), I = 1,N)

C THIS PUNCHES THE TOTAL SUM OF THE SQUARED RESIDUALS
C IF A JOIN OF TYPE ONE IS NOT POSSIBLE, S(l) = 9999.
C THE FOLLOWING FOUR STATEMENTS PUNCH THE CONSTRAINED
C ESTIMATES FOR EACH STEP. THEY ARE 0 IF A JOIN OF TYPE
C ONE WAS POSSIBLE IN THE INTERVAL.

PUNCH 109, (B1(i ), I = 1,N)
PUNCH 109, (B2(i ), I = 1,n )
PUNCH 109, (B3(i ), I = 1,N)
PUNCH 109, (B4(l), I = 1,N)
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PUNCH 111, (T(l), I = 1,n )
C THIS PUNCHES THE TOTAL RESIDUAL SUM OF SQUARES USING
C THE CONSTRAINED ESTIMATES. T(i ) = 9999. IF A JOIN OF
C TYPE ONE WAS POSSIBLE

GO TO 1001
109 FORMAT (10F8.4/)
110 FORMAT (10F8.3/)
111 FORMAT (10F8.2/)

END
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