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Moeckel, Jason B., M.S. May 1997 Resource Conservation

An Inventory of Streams on Theodore Roosevelt Memorial Ranch, Dupuyer, 

Montana: Implications for Livestock Grazing and Ranch Management

Director: Donald F.

This study is an inventory and baseline survey of all streams on Theodore 
Roosevelt Memorial Ranch, near Dupuyer, Montana. TRM Ranch, located on the 
northern Rocky Mountain Front, serves as a research, education, demonstration 
and public service facility. The primary methods of stream inventory follow 
Rosgen (1996) and Harrelson et al. (1994). This methodology includes surveying 
current channel morphology and historical analysis from aerial photographs. 
Results from this study indicate that stream crossings such as, fords and bridges, 
and an irrigation diversion have increased channel width-to-depth ratios and 
changed channel slope and particle size distributions. I also found, as predicted, 
that width-to-depth ratios of small streams (Rosgen E stream types) with predomi
nantly sût and clay banks, are significantly higher when sul^ect to spring and 
summ er livestock grazing, compared to no grazing. The results of this research 
indicate that Rosgen's stream classification and channel morphology measure
ments are useful management tools on Montana's northern Rocky M ountain Front.
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INTRODUCTION

Overgrazing in riparian areas in the western U.S. has degraded thousands of miles 

of streams (Armour et al. 1994) and threatens the integrity of headwater stream 

habitats (Behnke and Zam  1976). Studies have demonstrated that livestock grazing 

in riparian areas increases runoff and erosion, alters species abundance and 

composition, destabilizes streambanks, increases fine sediment, reduces pool 

frequency and depth, reduces undercut banks, widens channels, and increases 

sum m er stream temperatures (Armour et al. 1994, Behnke and Zam  1976, Kauff

m an and Krueger 1984, Kondolf 1994, Marlow et al. 1987, Platts 1991). Such 

changes in stream channels are related to decreases in salmonid populations (Platts 

1991, Riemann and McIntyre 1995).

Though many studies have found negative effects of livestock grazing, they have 

not fully identified the problems, described their magnitude or provided methods 

for their solution (Platts 1991). Previous studies have been inconclusive or con

founding due to one or more of the following factors: 1) a lack of pretreatment data 

(Rinne 1988); 2) ineffective methods (Platts 1991); 3) spatial and temporal variabil

ity in streams (Rinne 1988); and 4) the short-term nature of most scientific studies. 

These factors lead (Riime 1988) to suggest that future studies include complete 

watersheds, pretreatment data, and be long-term in nature. In addition, livestock 

grazing occurs on 114 million ha of public land and on 82 million ha of private

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



land in the western U.S. (Kondolf 1994). However, most research regarding 

livestock and riparian areas has focused on headwaters on public land.

The purpose of this study was to inventory and describe the current and historic 

condition of streams on privately owned Theodore Roosevelt Memorial Ranch 

(TRM Ranch) and begin monitoring these streams to assess long term changes due 

to ranch activities. Specifically, we were interested in differentiating between the 

cumulative effects of livestock grazing and other ranching activities and that of 

natural disturbances such as large floods. To realize this goal we inventoried and 

began monitoring streams using the Rosgen inventory and classification system 

(Rosgen 1994). This approach uses channel morphology, channel stability ratings, 

bank erosion ratings, riparian vegetation, streamflow, and sediment data to 

describe the condition of the stream and departure from its potential (Rosgen 

1996). Rosgen (1996) describes stream potential as the "best channel condition, 

based on quantifiable morphological characteristics, for each stream type." Because 

streams vary both temporally and spatially, defining the "best channel condition" 

for a particular stream can be subjective and may vary by geographic region. Only 

by monitoring these streams over many years will we be able to determine the 

compatibility of livestock grazing and other ranching activities with the goals of 

maintaining or restoring healthy, functioning aquatic and riparian systems. These 

long-term data will be used to develop a regional database of stream condition 

ratings for each stream type that is based on both physical and biological proper
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ties of streams. Such a regional database will guide future resource/land manage

m ent decisions on Montana's northern Rocky Mountain Front.

STUDY SITE DESCRIPTION

Dupuyer Creek, at the downstream boundary of TRM Ranch, drains a 9,350-ha 

watershed on the northern Rocky Mountain Front, west of Dupuyer, Montana 

(Figure 1) and is composed of three main forks (Figure 2). The North and South 

forks are the primary drainage's and are nearly equal in size. The Middle fork 

drainage is smaller and contributes littie streamflow, much of which is withdrawn 

for irrigation. Middle Fork Dupuyer Creek contains one of the few remaining 

populations of pure westslope cutthroat trout {Oncorhynchus clarki lewisi) (Robb 

Leary Pers. Comm. 1996). Much of the watershed is located in the Bob Marshall 

Wilderness of the Lewis and Clark National Forest and is not subject to intensive 

anthropogenic influences such as logging, mining or road building. The watershed 

is frequented by hunters, hikers, and campers and is subject to grazing on both 

public and private lands, and water diversions for irrigation.
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Geography and r^ io n a l geologic structure

The Dupuyer Creek watershed lies in the Sawtooth Range of the Northern Rocky 

Mountains. The Sawtooth Range is defined by its high ridges and deep valleys that 

trend from north to south. The ridge and valley configuration is determined by 

Paleozoic strata separated by Mesozoic beds (Alt 1985). The Mesozoic beds are 

more erodible and form deep valleys. The successive ridges are a series of south- 

westward-dipping overthrust and high angle reverse faults. The east front of the 

Sawtooth is an abrupt escarpment of Mississippian limestones that have been 

thrust over Mesozoic shales and sandstones (Alt 1985). Debris avalanches are 

frequent in the upper watershed £is evidenced by tracts of younger vegetation and 

abundance of talus slopes. Bedrock outcrops are numerous especially along scarp 

faces where vegetation is sparse.

The highest point in the watershed is Mt. Frazier at 2,533 m. The lowest elevation, 

where Dupuyer Creek leaves the ranch boundary, is approximately 1,400 m. The 

change in elevation divided by the length of the basin, from the highest point in 

the watershed to the ranch boundary is .07 or a 7% gradient. However, over the 

first 5 km, the western portion of the basin, the relief ratio is approximately 0.17 or 

17% gradient. This is considerably steeper than the lower, eastern portion that has 

an average gradient of 2.8%.

In the upper watershed deep valleys that formed in erodible sedimentary rocks 

trend generally north and south, while the main channel flows easterly dissecting 

less erodible limestones. Smaller tributaries connect w ith the main channel forming
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a trellis like drainage pattern (Figure 2). However, this pattern is not as clearly 

defined in the Dupuyer Creek basin as in other nearby watersheds such as in 

M uddy Creek and Blackleaf Creek or the headwaters of the Teton River drainage 

located just west and south of Dupuyer Creek. Field investigation of several 

tributaries in the N orth Fork and South Fork drainage basins found many channels 

flowing directly over bedrock.

Within the Dupuyer Creek watershed, vegetative associations vary from grassland 

w ith a cottonwood/willow  watercourse at low elevations, to limber pine, Douglas 

fir, Engleman Spruce and other conifers at higher elevations. Cottonwoods are 

present in the upper watershed, but are not nearly as abundant as in the lower 

elevations. The riparian vegetation along Dupuyer Creek on TRM Ranch is 

characterized primarily as Populus trichocarpa/Comus stolonifera (black cotton

w o o d / red-osier dogwood) community type (Hansen et al. 1995).

Most water resources on TRM Ranch are streams, however there are a few small 

lakes (not including beaver ponds) present in the lower portion of the drainage 

basin. These lakes appear to be associated with pleistocene glaciation and are 

found in terminal moraines. For example, on the face of Walling Reef, there is 

evidence of alpine glaciers w ith lakes in the resulting cirque basins. In the far 

w estern portion of the basin, in both the North and South Forks, there are a couple 

of lakes that have formed in w hat appears to be colluvium or possibly depressions 

in poorly developed cirque basins. There are two small ponds in the watershed.
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One pond, on Middle Fork Dupuyer Creek was created by an earthen dam  in the 

1960's or 1970's. This pond serves as a detention basin, to augment w ater used for 

irrigation on a neighboring ranch. A second pond, located on McCarthy Creek 

appears to be a natural depression, resembling a glacier formed kettle. However, 

the origin of this depression is uncertain. Both of these ponds support large 

populations of trout. The former contains native cutthroat trout (Oncorhynchus 

clarki lewisi) the latter non-native brook trout (Salvelinusjbntinalis).
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METHODS

Aerial photographs, USGS topographical maps (1:24,000), previous geologic 

reports, and field investigation were used to identify watershed and stream 

characteristics. Streams on TRM Ranch were classified using the Rosgen stream 

classification system (Rosgen 1994). The Rosgen classification groups stream 

reaches w ith similar channel and fioodplain dimensions and allows for compari

sons between watersheds and between stream reaches in the same watershed 

(Rosgen 1994). All stream channels and selected geomorphic features were 

digitized into PAMAP Geographical Information System (CIS). Aerial photo

graphs were used to digitize historical channels and Global Positioning System 

was used to digitize current channels. The watershed and sub-watershed bounda

ries were interpreted from USGS topographical maps and incorporated into the 

GIS to calculate area, perimeter, and stream length.

Geom orphic Description

Stream order was determined by the Strahler method and includes crenulations as 

draw n on USGS 7.5 Minute Series. Crenulations are depressions in hillslopes, but 

cartographers rarely draw  them  as stream channels because they conduct water for 

a limited part of the year. It is standard practice to include them in drainage basin 

calculations (Leopold 1994). Including crenulations in stream order calculations 

increases stream order by one or more levels, but is more consistent than using
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blue lines (perennial streams) draw n on topographic maps. Blue lines tend to be 

subjective and vary depending on individual cartographers (Leopold 1994).

Streamflow

The USGS maintained a stream gauging station on Dupuyer Creek, about 29-km 

east of TRM Ranch from 1913 to 1937. These data and precipitation data from the 

nearby town of Valier, 45-km east of TRM Ranch, were graphed (Figures 5 6  6 and 

Appendix A) to describe the historic hydrologie regime and to better understand 

the influence of precipitation and snowmelt on the hydrograph of Dupuyer Creek. 

During this study, streamflow on TRM Ranch was monitored with a stilling well 

and Stevens type F recorder to record stage. Both of these w ^ e  installed in the 

spring of 1995 prior to spring runoff. Stage rating curves were established begin

ning that spring using 20 discharge measurements at a variety of streamflows 

(Appendix B). Stream discharge was measured using a Price Type A A current 

meter. We also measured discharge in North Fork Dupuyer Creek and associated 

irrigation ditches to determine the amount and percent of streamflow diverted for 

irrigation. Precipitation data for the upper watershed were acquired from the 

NRCS SNOTEL site located near Middle Fork Dupuyer Creek and about 1.6 km 

west of TRM Ranch, at an elevation of 1737-m.

Channel M orphology

Channel morphology was determined from field data taken at a reach scale— 

usually 20-25 channel w idths in length. Sites selected for data collection are called 

reference reaches. Interpretations based on reference reaches can be extrapolated to

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



other similar reaches where field data are not available (Rosgen 1996). Hence, 

reference reaches on TRM Ranch (Figure 3) were selected to include: 1) at least one, 

but usually several reaches per stream type; 2) areas vdth different grazing 

regimes; and 3) reaches with obvious geomorphic differences, such as vehicle 

crossings. Once the reference reach was chosen, several cross-sections were 

surveyed—the number and location of cross sections varied depending on the 

complexity or heterogeneity of a given reach. For example, at each reference reach 

we surveyed at least one pool and one riffle but also included obvious areas of 

high bank erosion, antiuropogenic disturbance, an d /o r livestock trampling. A few 

vehicle crossings were surveyed to assess their effects on channel morphology. 

This deviates slightly from selection criteria described in Harrelson et al. (1994), 

but is consistent with the objectives of this study.

A morphological description of channels includes: width-at-bankfull, mean and 

maximum depth-at-bankfuU, width-to-mean-depth ratio, width-to-maximum- 

depth ratio, area-at-bankfuU, entrenchment, slope, sinuosity, pool-to-riffle ratio, 

and streambed particle size distribution (Rosgen 1996, Overton et al. 1995). 

Bankfull elevation was estimated in the field by identifying flat depositional areas, 

a marked change in vegetation, a change in slope of the streambank and changes in 

size distribution of particles at the surface (Leopold 1994, Harrelson et al. 1994). 

Williams (1978) found that visual determination of bankfull in the field is a reliable 

m ethod for determining bankfull, especially when marked along the longitudinal 

profile. Entrenchment is the ratio of floodprone-width to bankfull-width, where

11
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floodprone-width is the w idth of the channel at an elevation two times maximum 

depth at bankfull. These data were obtained by surveying 74 cross sections, 

longitudinal profiles at twenty reaches, mapping the entire stream, and taking 

pebble counts at 14 reaches on TRM Ranch. Surveying and pebble count proce

dures followed Harrelson et al. (1994) and Rosgen (1996). Pebble counts were not 

done on small silt and clay dominated streams.

12
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Bridge and ford crossings alter channel dimensions and affect the energy available 

for sediment transport. Although not a morphological feature, shear stress is 

influenced by channel shape, and by estmiatmg mean shear stress at all cross-

Reacli 14

Reach 10
Reach 11

Reach 18 Reach 9

Reach IS
Rccach 17 Reach 14

500 500 1000 M

Reach 11

Reach 7Reach S Reach 4

ReachS

South Folk Dupuyer Oeek

500 500 lOOO M

Figure 3 Map of Dupuyer Creek and its tributaries; showing locations of individual reaches. 
Inset shows Middle Fork Dupuyer Creek, refer to figure 2 for geographical location.

sections we can better understand the effect that crossings have on bedload 

transport. Shear stress is the frictional force causing flow resistance along the 

channel boundary (Gordon et al. 1992) and corresponds to the ability of the stream

13
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to transport sediment (Leopold 1994). In general, the higher the shear stress the 

larger the particle the stream is capable of transporting. Other factors, such as 

clumping, sorting, and hiding also influence bedload movement. Such factors are 

included in an equation proposed by Bathurst et al. (1987). The Bathurst equation 

includes adjustments for hiding and exposure and attempts to predict entrainment 

of individual particle sizes. This is called critical unit discharge and varies de

pending on individual characteristics of streams. Whitaker and Potts (1996) found 

that Dupuyer Creek exhibits a greater degree of mobility and size selectivity in 

bedload transport than previously reported in the literature for gravel bed streams. 

Bedload transport was monitored at only one cross-section on Dupuyer Creek, 

thus we can not know conclusively that similar mobility and selectivity apply 

elsewhere on Dupuyer Creek. Our observations suggest that such high mobility is 

occurring throughout the stream. If we assume that streambed characteristics are 

similar throughout, we can use mean shear stress as a way of comparing energy 

among cross-sections on Dupuyer Creek. Shear stress at bankfull is calculated by 

(Leopold 1994):

T = y R s (1)

where:

T = shear stress (Ibs./sq. ft.) 
y = density of water 
R = hydraulic radius^ 
s = stream slope

* Hydraulic Radius was calculated with XSPRO Professional cross-section analyzer, public domain software.

14
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Leopold (1994) provides a graph of shear stress values (Figure 4) required to 

entrain a given particle size. He cautions that these values represent simple 

conditions and should only be used as a first approximation. Since, we are not 

trying to predict exact particle sizes entrained by bankfull, it is reasonable to use 

such a comparison to illustrate the effect that vehicle crossings have on bedload 

transport. Such a comparison helps to explains why bridges on Dupuyer Creek 

routinely wash out during moderate to large floods.

15
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In 1987, four 1-ha grazing exclosures were established on spring-fed Lenstra Creek 

and Middle Draw. These exclosures are paired grazing treatments that include no 

grazing (cattle or wildlife) and wildlife grazing only. There are also large hay 

m eadows along both creeks. Hay meadows are not grazed in summer but are often 

grazed during other seasons. We surveyed four channel cross-sections in Middle 

Draw, one in each grazing treatment. We also surveyed three cross-sections on

16
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upper Lenstra Creek associated with three different grazing treatments. We 

analyzed these cross-sections as described in the next section.

Analysis

The effects of livestock grazing on channel morphology are a function of stream 

type and grazing intensity and duration (Platts 1981, Rosgen 1996, Myers and 

Swanson 1992). Width-to-mean-depth ratio is one of the more widely reported 

channel morphology measurements because it relates to the function of streams, 

namely transporting water and sediment. Width-to-depth ratio is in turn affected 

by the timing and am ount of water and sediment delivered and presumably by 

land use activities. Faush et al. (1988) reviewed 99 different models that predict 

standing crop of stream fish from habitat variables. They found that many models 

include some measure of w idth and depth and when applied locally these models 

often explained a large portion of the variation in fish population size. The US 

Forest Service uses wetted width-to-mean-depth and width-to-maximum-depth 

ratios to describe fish habitat in their R1/R4 (Northern Region/Intermountain 

Region) fish habitat inventory procedures (Overton et al. 1995). However, hy- 

drologists and geomorphologists use bankfull width-to-depth ratios w hen de

scribing streams, primarily for two reasons: (1) water levels vary throughout the 

year and (2) bankfull discharge is believed to be the channel forming discharge 

(Leopold 1994, Wolman and Miller 1960) Because water level varies throughout 

the year, we chose to use bankfull channel dimensions in all analyses.
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We could not compare width-to-depth ratios for large streams on TRM Ranch for 

the following reasons; (1) although both Dupuyer Creek and North Fork Dupuyer 

Creek are primarily C4 stream types, Dupuyer Creek has more than twice the 

drainage area as North Fork Dupuyer Creek and may pre-dispose it to higher 

width-to-depth ratios; (2) North Fork Dupuyer Creek is grazed primarily in 

summ er where as Dupuyer Creek is grazed primarily in spring; (3) there are no 

grazing exclosures on Dupuyer Creek or North Fork Dupuyer Creek large enough 

to compare in statistical tests; (4) confounding effects of vehicle crossings and the 

straightening of Dupuyer Creek that resulted from a 1964 flood (Moeckel et al. 

1996) would have made results of any tests difficult to interpret.

We were able to compare width-to-depth ratios for small streams, which are 

similar stream type and do not have large differences in drainage area. They are 

not affected by vehicle crossings and do not show widespread effects of the 1964 

flood. In addition, there were a sufficient number of no-grazing areas (n=4) to 

allow an unbiased sample for the following comparison. Values for bankfull 

width-to-mean-depth and width-to-maximum-depth ratios for these streams do 

not meet the assumptions of normal distribution or homogeneity of variance even 

after standard transformations; therefore, ANOVA was not applied. Instead, we 

used the Kruskal-Wallis 1-Way Anova (Knapp and Matthews 1996) to test for 

significant differences in the effects of grazing versus no grazing on bankfull 

width-to-mean-depth ratio and width-to-maximum-depth ratio. The Kruskal- 

Wallis 1-Way Anova is not concerned w ith specific parameters, such as the mean,
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only the distribution of the variâtes (Sokal and Rohlf 1995). To further distinguish 

effects of grazing treatments on bankfull width-to-mean-depth and width-to- 

maximum-depth ratios, we used a Wilcoxon Rank Sum test to compare width-to- 

mean-depth and width-to-maximum-depth ratios pairwise between three grazing 

treatments, no grazing (n = 7), summer grazing (n = 6), and spring grazing (n=10). 

Because these test statistics were not independent, we used a  sequential Bonferroni 

test (Rice 1989) to calculate the minimum table wide significance of p-values from 

the Wilcoxon Rank Sum test.

Stream Condition
Stream condition categories and ratings include: 1) riparian vegetation type and 

density (visual estimate); 2) flow regime; 3) size and stream order; 4) depositional 

patterns; 5) meander patterns; 6) debris and channel blockages; 7) stream channel 

stability rating; 8) streambank erosion potential and near-bank stress; and 9) 

degree of alteration. The first three categories are self explanatory; however, the 

remaining five categories and ratings require some explanation.

Depositional patterns are descriptions of channel bar features observed in streams, 

and m eander patterns are categorized into one of eight different, yet commonly 

observed patterns (Table 1) (Rosgen 1996). Similarly, stream channel debris and 

blockages are categorized into one of ten different categories depending on the size 

and extent. The Pfankuch stability rating (Pfankuch 1978), used widely by the U.S. 

Forest Service, was originally developed for moderate gradient, forested streams; 

therefore, the ratings were not widely applicable to all stream types without

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



modification (Rosgen 1996). The modifications applied here are presented in 

Rosgen (1996).

Table 1. Depositional features and meander patterns as described in Rosgen (1996).

B-1 Point Bars M-1 Regular meander
B-2 Point bars with few mid-channel bars M-2 Tortuous meander
B-3 Numerous mid-channel bars M-3 Irregular meander
B-4 Side bars M-4 Truncated meanders
B-5 Diagonal bars M-5 Unconfined meander scrolls

Main channel branching with numerous M-6 Confined meander scrolls
B-6 mid-bars and islands M-7 Distorted meander loops

Side bars and mid-channel bars with M-8 Irregular with oxbows, oxbow cutoffs
B-7 lei%th exceeding 2 to 3 times channel
B-8 Delta bars

Bank erodibility ratings use field-determined data to categorize the potential for 

bank erosion. The variables measured include: 1) bank height/bankfull height; 2) 

root dep th /bank  height; 3) root density; 4) bank angle; 5) surface protection; and 6) 

bank materials (Rosgen 1996). Each variable gets a score from 1-10 except bank 

materials which are included separately. A summation of scores for each variable 

provides an erodibility rating of very low (score 5-9.5), low (score 10-19.5), moder

ate (score 20-29.5), high (score 30-39.5), very high (score 40-45), and extreme (score 

46-50). Depending on bank materials, scores are adjusted according to the follow

ing guidelines: 1) bedrock, always very low; 2) boulders, always low; 3) cobble, 

decrease by one category unless mixture of gravel/sand is over 50% then no 

adjustment; 4) gravel, adjust values up by 5-10 points depending on composition
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of sand; 5) sand, adjust values up  by 10 points; 6) silt/clay, no adjustment (Rosgen 

1996).

The actual am ount of bank erosion is also dependent on the am ount of force 

applied to die bank by running water. To estimate this force, we divided the 

bankfull cross-section into thirds and calculated the percent of the total cross- 

section in the third nearest the bank (Rosgen 1996). This force is called stress in the 

near-bank region and is calculated by (Rosgen 1996):

Near-bank Stress = nb A /A  (2)

where:

nb A = width*mean depth for 1 /3  of the channel widtii in the near
bank region 

A= cross sectional area at bankfull

This equation yields values between 1.0 and 0.0, where ratings of stress are 

assigned as follows:

Table 2. Calculated stress values 
and adjective rating as presented 
by Rosgen (1996).

Calculated Stress Rating 
0.32 or less Low
0.33 - 0.41 Moderate
0.42 - 0.45 High
0.46 - 0.50 Very high
0.51 or more Extreme
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Bank erodibility and stress in the near-bank region were applied to 41 of 74 cross- 

sections; primarily the main fork of Dupuyer Creek and North Fork Dupuyer 

Creek.

Overton et al. (1995) defined stable banks as showing no evidence of active erosion, 

breakdown, tension cracking, or shearing. This definition classifies streambanks 

as stable or unstable, however placing such limits tends to ignore the middle 

range, which may be more useful in determining trends. In an effort to compare 

bank stability as assessed here with the results of Overton et al. (1995), we have 

further simplified our bank erodibility and near-bank stress ratings as follows: 1) 

stable (little if any observed bank erosion); 2) moderately stable (some signs of 

erosion but usually not major sloughing or calving); and 3) unstable (obvious 

sloughing, usually several to many feet of bank erosion annually). Actual erosion 

in 1995, was measured at six cross-sections and estimated during floods at the 

other cross-sections: Most cross-sections in this study were initially surveyed after 

spring runoff 1995 and re-surveyed in August 1996.

Assessing degree of alteration involves describing probable historic condition 

versus current observed condition. Examples of alteration include channelizing 

streams for bridge or ford crossings, constructing berms for irrigation diversions.
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and streambank trampling by livestock. Manure piles and bank trampling are the 

prim ary evidence of livestock use.

Monitoring
Each cross-section was resurveyed following spring runoff 1995 and 1996. We also 

monitored bedload transport as part of companion study of bedload hydraulics 

(Whitaker 1996). In this paper, we will discuss briefly maximum particle sizes 

gathered in bedload samples and how that relates to channel stability.

Bank erosion was monitored in three ways: (1) toe-pins—as described in Harrelson 

et al. (1994)—were installed at six cross-sections to provide detailed vertical 

profiles of streambanks; (2) annual re-survey of cross-sections indicates distance 

that streambanks eroded; and (3) visual observation of streambanks eroding 

during floods.
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RESULTS
The results in this study consist largely of cross-sections, long profiles, pebble 

counts from study reaches, and personal observations over a three year period. 

These data are summarized in this paper and are presented in fuU in Appendices 

(A-F) as indicated below.

Geomorphic Characterization
Drainage density is a quantitative description of the total length of streams in a 

given area that reflects the climate, geology, soils, and vegetation cover in a 

drainage basin. Drainage density for Dupuyer Creek is 4.64 km/km^- (7.47 mi/mi^) 

as mentioned previously, crenulations were included in our analysis and increased 

drainage density significantly. By excluding aU crenulations—most of which are 

not draw n as perennial streams on the topographic m aps—the estimated drainage 

density decreases to 0.98 km /km ^ (1.58 mi/mi^). These numbers are at the low end 

of the spectrum for drainage density for the Rocky Mountain region, which has a

Table 3. Summary of standard drainage basin calculations (Selby 1985, Gordon et al. 
1992) for Dupuyer Creek drainage basin to TRM Ranch.

Drainage Density =4.64 km/km^ Length of Basin -  15.82 km
Width of Basin =9.25 km Basin Form Factor = .37
Basin Elongation -  .69 Relief Ratio = .0715
Basin Area = 93.5 knf Basin Perimeter = 58.24 km
Basin Shape = 2.68 Qrculaiity Ratio = .35
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range from 8 to 16 mi/m i^ and 50 to 100 m i/m i^for drier areas (Strahler 1964). As a 

comparison, drainage densities in the Badlands National Monument, SD range 

from 200 to 400 mi/mi^.

Stream order is a quick and easy method of classifying strezuns, and can be a useful 

tool for stratifying stream surveys in a given region. The main fork of Dupuyer 

Creek is a sixth order stream and has a total length on TRM Ranch of 9.0-km. 

Middle Fork Dupuyer Creek is 3*̂*̂ order, N orüi Fork Dupuyer Creek and South 

Fork Dupuyer Creek are 5* order, Lenstra Creek is a  order, and McCarthy and 

Middle Draw are 1»‘ order streams. Additional drainage basin metrics are pre

sented in Table 3.

Streamflow

The peak flow hydrograph for Dupuyer Creek is dominated by snowmelt and 

spring rainstorms (Figure 4 & 5). Peak streamflows occur between March and July 

but most frequently in May and June (Appendix A). May and June are also 

typically the wettest months of the year averaging about 3.8 and 4.3 inches of 

precipitation per m onth respectively at the SNOTEL (12 year average from 1984 

through 1995). Mean precipitation in May and June at Valier, MT averages 1.6 and

2.2 inches respectively.

Spring rainstorms strongly influence the magnitude and timing of runoff. In 1995, 

two large peak flows, one May 6 the other June 7, resulted from several days of 

m oderate to heavy rain (Figure 5). These storms deposited 4.5 and 6 inches of rain
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respectively at the SNOTEL precipitation gauge near Middle Fork Dupuyer Creek. 

On TRM Ranch a precipitation gauge showed about 4 and 5 inches of rain, 

respectively. Many soils on TRM Ranch have a high clay content (personal 

observation and soil texture analysis), and when saturated, overland flow is 

common and probably decreases the time required for delivery to the stream. 

During these spring storms, overland flow on hillsides leading to Dupuyer Creek 

was common, especially along game and livestock trails. Snowmelt may have 

contributed largely to the flood in May. However, on June 2 we hiked in the 

Dupuyer Creek watershed and saw virtually no snow remaining, therefore 

snowmelt did not contribute significantly to the June peak other than saturating 

soil and possibly decreasing water infiltration rate. Precipitation at the SNOTEL 

guage (elevation 1737 m) from October 1 to April 30 was actually slightly higher 

for 1996 than for 1995 at 20.7 and 19.2 inches respectively (12 year average = 15.9 

inches). In 19%, there were no large spring rains like those observed in 1995, and 

although vrinter precipitation was measured at well over 100% of normal, stream

flow did not reach bankfull.

Streamflow monitoring at cross-section 2.3 yielded an estimated bankfull discharge 

of 220 cfs. At bankfull discharge, particle sizes between 98 and 125-mm, measured 

on the b-axis, were observed moving. This range in particle size corresponds to dS4 

- d95 (meaning 84 to 95 percent of particles in the streambed are smaller than these 

particles), and indicates that Dupuyer Creek is capable of transporting nearly all of

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



its bed material at bankfull stage. For further discussion on sediment transport in 

D upuyer Creek see Whitaker (19%).
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Figure 5. Annual hydrograph for Dupuyer Creek and daily precipitation in 
Valier, MT, water years 1917 (panel A) and 1937 (panel B). Data from USGS 
stream guage located between Dupuyer and Valier, MT. Notice the contrast 
in peak discharge and summer baseflow between water years.
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Figure 6. Annual hydrograph for Dupuyer Creek, water years 1995 (panel A) 
and 1996 (panel B) and daily precipitation at SNOTEL site in the watershed. 
Streamflow data from stream guage located on TRM Ranch. Area below [c] 
shows possible malfunction of gauge due to ice in or around the stilling well.
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Channel M orphology and Stream Condition

Channel morphology and condition categories are summarized by groups based 

on similar morphology and location on TRM Ranch. The location of individual 

reaches are represented in Figure 3, channel morphology data are summarized in 

Table 4 and listed by cross-section number in Appendix C. Mean width-to-mean- 

depth  and width-to-maximum-depth ratios are listed by stream type and similar 

channel size in Table 5. Stream condition categories and grazing treatments are 

summ arized by reach number in Table 6. Bank erodibility and stress in the near

bank region for all streams are summarized in Figure 6. Graphs of longitudinal 

profiles are presented in Appendix D, individual cross-sections are presented in 

Appendix E, and graphs of streambed particle size distributions are presented in 

Appendix F.

h/lain Fork Dupuyer Creek

There are nine reaches and twenty-eight permanent cross-sections on the main 

channel of Dupuyer Creek (Figure 3). These nine reaches are in five different 

pastures, which are primarily grazed in spring and summer, with a small reach 

grazed in winter (Table 5). There are no reaches w here grazing is excluded except 

for the Dupuyer Creek cattle exclosure (reach 10 in Figure 3) near middle crossing. 

Some reaches of Dupuyer Creek are less affected by livestock than others due to 

restricted access because of beaver ponds or steep hillslopes. Reach 1, 2 and 16 fit 

into this category, while reaches 7, 9, 10,11,12, and 15 are heavily used by live

stock. Dupuyer Creek is primarily a C4 stream type w ith a mean width-to-mean-
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depth ratio of 32.4 (Table 5). Reaches that are not a C4 stream type include John

son's crossing (reach 11), Middle crossing (reach 9) and a few short reaches 

intermittently throughout that are entrenched and therefore are F4 stream types.

Depositional features in Dupuyer Creek are primarily point bars w ith few m id

channel bars, however reach 11 has numerous mid-channel bars, diagonal bars, 

and  islands. The meander pattern for Dupuyer Creek is irregular. Channel 

debris/blockages, for most of Dupuyer Creek, consist of small to medium sized 

materials, such as large tree limbs, branches, or portions of logs that when accu

mulated effect 10% or less of the active channel. Exceptions to this pattern are 

reach 11, which has numerous downed trees either blocking or partially blocking 

the active channel. Intermittently in Dupuyer Creek, a downed cottonwood tree 

lies in the channel creating a deep scour pool—cross-section 16.2 is a good example 

of this type of pool.

Riparian vegetation along most of Dupuyer Creek is primarily cottonwood 

{Populus spp.) and willow {Salix spp.), but other common types of vegetation 

include red osier dogwood {Comus stolmijera), Woods rose {Rosa woodsii), Ken

tucky bluegrass {Poa pratensis), Timothy {Phleum pratense), Smooth brome {Brotnus 

inermis), silver berry (Elaeagnus comutata), and many others (for complete species 

list, see H urlburt 1996). Young cottonwoods and willows are abundant on the low 

terrace and many seedlings appear on recently developed gravel bars.
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M ost streambanks along Dupuyer Creek rated as high, very high, or extreme 

erodibility (Rosgen 1996) while very few reaches rated as very low, low, or 

moderate. During peak flows in 1995, streambanks at cross-section 1.1 and 2.1 

eroded 13 and 11 feet respectively (Figure 8); their bank erodibility and nearbank 

stress ratings were high, extreme and very high, extreme, respectively. Conversely, 

cross-section 2.5, which has a bank erodibility rating of moderate and nearbank 

stress rating of very high, showed no evidence of bank erosion during this study 

(Figure 9). Dupuyer Creek has very few undercut banks and many banks are 

nearly vertical, which increases erodibility ratings.

Channel dimensions, at reaches 9,11, and 12, are most affected by vehicle cross

ings. Two of these reaches, 9 and 12 have a narrow rail-car bridge and low water 

ford crossing, while reach 11 (Johnson's crossing) is a low water ford crossing only. 

Bridge crossings create an entrenched channel, w ith very low width-to-mean- 

depth ratios and steep banks. At estimated bankfull, the hydraulic radius for cross- 

section 12.2 is 1.78 and stream slope is 1%, from equation (1), shear stress equals 

1.11 lbs./ft.2, which corresponds to a particle size of about 120 m m  (Leopold 1994). 

Cross-section 2.3, a few hundred feet upstream, had a calculated shear stress of 

0.96 lbs./ft.2, which corresponds to a particle size of about 75 mm. Higher shear 

stress at bridge crossings resulted in rapid bank erosion in 1995, causing the 

m iddle crossing bridge to collapse and nearly collapsing two others. That summer 

all bridges were reinstalled. The banks upstream of the lower bridge crossing were 

arm ored w ith rip rap. The rip rap armor consists of mostly boulders, which are
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m ore resistant to erosion. Similarly, the bridge at middle crossing (reach 9), was 

washed out completely in 1995 and had to be moved to a newly formed channel 

about 150 feet away. At the ford crossing (Johnson^s Crossing, reach 11) the stream 

is artificially widened causing the channel to aggrade several feet. This deposition 

has resulted in a sharp change in stream slope (Figure 9) and vastly different 

particle size distribution (Appendix F) at the ford crossing compared to upstream. 

This reach is very unstable despite the abundance of riparian vegetation.

Channel cross-sections surveyed before and after spring runoff 1995 and 1996, 

showed that Dupuyer Creek is rapidly eroding many of its banks at flows of 

bankfull and larger (Figure 8). Peakflow in 1995 was about 5 to 6 times bankfull 

discharge. Stream discharge in 1996 did not reach bankfull and no appreciable 

changes were measured.
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Table 4. Summary of channel morphology values for Dupuyer Creek and its 
tributaries.

M ain Fork D upuyer Creek
V ariable M ean Std. Dev. M in. Max. n
Slope % 1.0 0.31 0.6 1.8 29
M ean D epth (ft) 1.3 0.45 0.5 2.6 29
M ax. D epth (ft) 2.4 0.85 1.1 5.9 29
W idth Bankfull (ft.) 53.8 35.66 21.0 164.7 29
W idtfi F loodprone (ft) 137.5 99 28.6 400.0 29
A rea Bankfull (sq. ft.) 57.5 17.75 35.0 111.9 29
Entrenchm ent Ratio 2.8 1.7 1.1 6.7 25
W iddi-to-m ean-depth Ratio 58.5 71.62 11.4 290.8 29
W idth-to-m ax.-depdi Ratio 27.3 28.57 7.3 130.1 29

N orth  Fork D upuyer Creek
V ariable M ean Std. Dev. M in. Max. n
Slope % 1.5 0.49 0.8 2 6 20
M ean D eptii (ft) 1.1 0 3 0.6 1.8 20
M ax. D epth (f t) 1.9 0.34 1.2 2.4 20
W idth Bankfull (ft.) 24.4 7.46 16.8 45.4 20
W idth F loodprone (ft.) 105.7 5234 37.1 200.0 20
A rea Bankfull (sq. f t) 24.6 6.8 15.5 420 20
Entrenchm ent Ratio 4.4 2.05 2.1 8.8 18
W idth-to-m ean-depth Ratio 27.0 15.25 13.3 66.8 20
W iddvtcv-m ax.-depth Ratio 13.3 5.72 8.1 28.7 20

M iddle Fork D upuyer Creek

V ariable M ean Std. Dev. M in. Max. n
Slope % 1.9 1.12 0.1 3.8 7
M ean D epdi (ft) 0.6 0.19 0.3 0.8 7
M ax. D epth (ft) 1.0 0.28 0.6 1.5 7
W idth Bankfull (ft.) 7.0 3.98 3.0 15.0 7
W idth F loodprone (ft) 21.1 4.61 16.5 31.0 7
A rea Bankfull (sq. f t) 4.0 1.63 2.2 6.2 7
Entrenchm ent Ratio 3.7 1.77 1.3 6.7 7
W idth-to-m ean-depth Ratio 13.7 11.71 4.0 36.6 7
W idtii-to-m ax.-depth Ratio 8.0 5.5 25 18.3 7

Lenstra Creek, M iddle D raw, and M iddle Fork D ry Fork Marias Creek

V ariable M ean Std. Dev. Min. Max. n
Slope % 2.1 1.31 0 2 4.3 16
M ean D epth (ft) 0.7 0.18 0.3 1.0 16
M ax. D epth (ft) 1.0 0.28 0 3 1.5 16
W idth Bankfull (ft.) 4.0 1.46 1.5 6.7 16
W idth F loodprone (ft.) 120 8.2 4.6 30.0 16
A rea Bankfull (sq. f t) 4.1 2.89 0.7 9.8 16
Entrenchm ent Ratio 3.7 3.27 1.0 121 16
W idth-to-m eem -depth Ratio 4.8 2.7 1.3 129 16
W idth-to-m ax-depth  Ratio 5.5 5.83 2.6 26.4 16
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Table 5. Means and standard deviations for bankfull channel and wetted channel width-to- 
depth ratios by Rosgen stream type.

Means and Standard Deviations

Rosgen
Stream
Type

Bankfull Channel W etted Channel

Sample
Size

W idth-to-M ean 
Depth Ratio

Width-to-Max. 
Depth Ratio

W idth-to-M ean W idth-to-Max. 
Depth Ratio Depth Ratio

B4c 2 35.61 (19.08) 18.82 (3.85) 38.78
Main Fcrrk Dupuyer Creek 

(16.43) 24.88 (10.95)
C4 15 32.38 (19.28) 17.84 (9.98) 53.24 (36.24) 25.11 (13.64)
D4 7 15226 (98.78) 59.28 (44.32) 118.03 (107.76) 45.6 (38.93)
F4 4 23.98 (6.5) 15.46 (5.65) 39.97 (21.18) 24.84 (15.11)
G4c 1 12.57 (n /a) 8.40 (n /a) 26.42 (n /a) 12.07 (n / a)

C3 6 16.1 (2.79) 1039 (1.75) 31.24
hlortit Fork Dupuyer Creek 

(13.52) 16.33 (6.6)
C4 17 27.02 (1531) 13.40 (4.99) 31.36 (16.00) 16.96 (7.52)
D4 2 42.08 (2.76) 22.72 (4.62) 67.03 (16.96) 26.44 (9.74)

C4 1 21.88 (n /a) 11.67 (n /a) (n /a)

Middle Fork Dupuyer Creek 

(n /a) (n /a) (n /a)
E4 2 11.1 (0.96) 6.59 (2.15) 2129 (19.77) 12.64 (11.7)
E4b 3 5.25 (2.051 4.21 (2.26) 9.94 (3.87) 5.73 (2.8)
F4 1 36.59 (n /a) 18.29 (n /a) 48.40 (n /a) 17.37 (n /a)

B6 1 26.8 (n /a) 12.88 (n /a) 1.10

Lenstra Creek, Middle Droao,and 
Middle Fork Dry Fork Marias Creek 

(n /a) 0.37 (n /a)
E6 7 5.1 (233) 2.96 (1.02) 8.56 (2.68) 4.45 (2.19)
E6b 1 3.19 (n /a) 2.78 (n /a) (n/a) (n /a) (n /a) (n /a)
G6 7 6.88 (1.84) 5.23 (1.55) 18.67 (17.59) 11.13 (9.64)
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Table 6. Condition categories, grazing regime, pool-to-riffle ratio, and particle size listed by reach 
number and stream (DC = Dupuyer Creek; NFDC = North Fork Dupuyer Creek; SFDC = South 
Fork Dupuyer Creek; MFDC * Middle Fork Dupuyer Creek).

Reach Stream
Stream
Type

Grazing
Season

Channel
Stability

Bank
Erodibility

Pool-RifiQe
Ratio Sinuosity

dSO
(mm)

dS4
(mm)

1 DC C4 late winter poor extreme 31 to 69 1.3 30 65

12 DC C4 early spm% fair very high 25 to 75 1.2 42 124

2 DC 04 late winter fair very high 24 to 76 1.2 42 91

10 DC C4 late spring fair high 39 to 61 U 32 84

9 DC D4 late spiii% poor low 26 to 74 1.1 42 124

15 DC C4 late sprii% poor high 32 to 68 12 51 110

16 DC C4 winter fair high 43 to 57 12 35 94

11 DC D4 summer poor high 10 to 90 n/a 17 47

7 DC C4 summer fair high 45 to 55 1.1 42 124

6 NFDC C4 summer fair moderate 40 to 60 1.4 50 95

5 NFDC 04 summer good low 36 to 64 1.1 50 130

4 NFDC a summer good low 42 to 58 1.4 65 190

8 SFDC G4 summer fair moderate 55 to 45 1.5 50 110

14 MFDC C4 summer good moderate 10 to 90 1.3 28 75

17 MFDC E4b None good low 50 to 50 12 9 105

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Low

î
S

I
m

I
n

Very Low 

Low

Near Bank Stress Rating

M oderate Very High Extrem e

‘ 4'' V • 'C-'a- , -4|

Moderate

VeryH^h

10 2 6 13

Likelihood of Streambank Erosion

Low High

Unstable 
29%

Stable
22%

M ^ g te ly
49%

§

w
c

1
c/3

I

-go

Figure 7. Streambank erodibility and near-bank stress for cross-sections on Dupuyer Creek. 
Numbers in each cell indicate the number of cross-sections in each category. Pie chart indicates 
streambank stability as percentage of 41 cross-sections.
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Figure 8. Cross-section 1.1 (panel A) and cross-section 2.1 (panel B) showing extreme bank 
erosion following May 1995 and June 1995 peak flows and very little bank erosion following 
peak flows in 1996.
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Figure 9. Longitudinal profile of reach 4 (panel A), reach 11 (panel B), and reach 10 
(panel C). Horizontal and vertical axis are equal among the three panels. Note the 
contrast between disturbed (panels A& B) and fairly undisturbed (panel B) reaches.
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Figure 10. Streambank profiles for selected cross-sections on Dupuyer Creek. 
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North Fork Dupuyer Creek

There are four reaches and eighteen permanent cross-sections on North Fork 

D upuyer Creek; two additional cross-sections were measured at the North Fork 

Bridge crossing. These four reaches are grazed primarily in summer (Table 5). 

Riparian vegetation along North Fork Dupuyer Creek is dominated by fairly 

young cottonwood (Populus spp.) and willow (Salix spp.). In historical aerial 

photographs (Sept. 1937 and Oct. 1951), North Fork Dupuyer Creek is virtually 

devoid of any riparian vegetation from the irrigation diversion to near the conflu

ence w ith the South Fork. In 1937 photographs, the stream is dry from just below 

the diversion down to the confluence. This section of stream also appeared to be 

braided, w ith many active channels during these years. By 1978, this reach had 

considerably more riparian vegetation but much of the stream was still braided. 

Presently, there is more riparian vegetation along the North Fork than at any other 

time observed in aerial photographs. However, there are still many active channels 

at low flow.

At most cross-sections, streambanks along North Fork Dupuyer Creek rated as 

moderate-to-very-low-erodibility. Cross-section (6.2) has a bank erodibility rating 

of high that is due to heavy livestock trampling along a fence line. A predominance 

of large particle sizes (cobble and boulder) in streambanks along North Fork 

D upuyer Creek decreased bank erodibility ratings by one category and presuma

bly inhibits bank erosion.
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The irrigation diversion for TRM Ranch is located on North Fork Dupuyer Creek 

several hundred feet upstream of the TRM Ranch boundary (Anderson's prop

erty). The diversion was initially constructed sometime before the 1930's, and is 

reconstructed almost annually depending on magnitude of peak flows each spring. 

A hand constructed boulder and cobble berm diverts water into a small channel. 

This diversion channel carries water to two irrigation ditches, which are controlled 

by headgates. Total water diverted into ditches is usually between 10 and 20 cfs 

based on discharge measurements taken on 16 June 1995 and 27 June 1996, 

respectively. Water not diverted, returns to the main channel via an overflow 

channel. Although irrigation is limited to about 1 m onth a year, usually during 

peak flows, the diversion channel carries water year around. Estimated bankfull 

discharge above the diversion is 100 cfs, therefore the irrigation channel diverts 

about 10 to 20% of bankfull discharge. The berm constructed for diversion is 

located at about the minus 220 foot mark on panel B in Figure 9. Just below the 

irrigation diversion, the stream is aggrading, resulting in a braided channel.

Middle Fork Dupuyer Creek

Middle Fork Dupuyer Creek has two permanent reference reaches w ith 5 cross- 

sections and two additional cross-sections that were surveyed in conjunction wiih 

a fish survey in 1996. High width-to-mean-depth ratios at cross-section 14.1 and

18.2 are due to bank trampling by livestock. Cross-section 14.1 is severely trampled 

by livestock and had a width-to-mean-depth ratio of 36.6. Cross-section 14.3, just 

30 m  upstream  and showing very little evidence of livestock trampling, had a
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width-to-mean-depth ratio of 11.8. Cross-sections 17.1 and 17.2 are on National 

Forest and show no evidence of grazing. Width-to-mean-depth ratios for these two 

cross-sections were 4.1 and 7.6, respectively.

Coarse woody debris is im portant in pool formation in this stream; making up a 

about 50% of pools. The upper reaches have occasional debris jams w ith plunge 

pools below. Channel dimensions indicate primarily an E4 stream type, but it has 

an uncharacteristically low sinuosity ratio of about 1.5. A road paralleling the 

stream for most of its length on TRM Ranch, is severely eroded and is contributing 

large am ounts of fine sediment to the stream. Streambanks on Middle Fork 

D upuyer Creek are composed of a high percentage of silt and clay w ith lesser 

amounts of gravel and some very large boulders. Some reaches of Middle Fork 

D upuyer Creek are heavily trampled by cattle and contribute a lot of fine sediment 

to the stream.

Small Streams

Small streams on TRM Ranch include: Lenstra Creek, Middle Draw, McCarthy 

Creek, and Middle Fork Dry Fork Marias Creek. McCarthy Creek is dominated by 

beaver ponds for about half of its length, otherwise it is similar to Lenstra Creek, 

bu t w ith slightly higher baseflow. In fall 1996, streambanks along McCarthy Creek 

were severely trampled by cattle. Among surveyed cross-sections, there were large 

differences in width-to-mean-depth ratios in different grazing treatments in 

M iddle Draw, but not in Lenstra Creek. In the Middle Draw cattle exclosure width- 

to-mean-depth ratio was 3 and entrenchment was 3.2; compared to outside the
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exclosure where width-to-mean-depth ratio was 26 and entrenchment was 1.6, 

indicating a shift in stream type, from an E to an F, due to grazing by cattle and 

probably elk. Similarly, two cross-sections on opposite sides of a fence had width- 

to-mean-depth ratios of 3 and 9, the latter is grazed in spring, the former showed 

no evidence of livestock grazing. Vegetation along most of Middle Draw is 

primarily sedge {Carex spp.) and willow {Salix spp.). Upper Middle Draw was 

grazed season long during summer 1995; sedges and willows were used heavily 

and streambanks were severely trampled throughout most of the pasture. This 

pasture was not grazed in 1996, and vegetation responded well, however stream

banks still showed signs of the previous years trampling.

M iddle Fork Dry Fork Marias has two pastures. The upper, southern most pasture 

is grazed summer long while the northern most pasture is a hay meadow, grazed 

occasionally in early fall. We measured one cross-section on the lower end of this 

stream, it had a width-to-mean-depth ratio of 3 and entrenchment of 6.7 (because 

there were no signs of livestock grazing in this reach it was included in the no 

grazing data set). There are many beaver ponds in the upper pasture and a few, 

recently constructed ponds near the boundary fence in the lower pasture. This 

stream  is an E6 stream type, and riparian vegetation is predominantly willow and 

sedge. Riparian vegetation in this reach was in good condition with several young 

willows and abundant sedges. Although not surveyed, die upper, grazed portion 

of the stream does show signs of bank damage from livestock trampling.
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Statistical Analysis

Results of the Kruskal-Wallis 1-Way Anova indicate a significant (p < 0.05) effect of 

grazing treatment on stream width-to-mean-depth and width-to-maximum-depth 

ratios (Table 7). Pairwise comparisons, using Wilcoxon rank sum  test w ith P-values 

adjusted by sequential Bonferroni, of effects of grazing treatment showed that 

grazing in both spring and summer had significant effects on width-to-mean-depth 

ratios of small streams (Table 8). There were also significant differences in width- 

to-max.-depth ratios for summer versus no grazing and nearly significant for 

sum m er versus spring and spring versus no grazing. It is likely that larger sample 

sizes w ould have found significant effects for all grazing treatments tested in this 

analysis.

Table 7. Results of Kruskal-WaUace 1-Way Anova for 
small streams on TRM Ranch.

Grazing
Treatment

Mean Rank

Cases
Width-to-mean- 
depth ratio

Width-to-max.- 
depth ratio

Spring 12.50 12.50 10
Summer 18.33 17.83 6
None 5.86 6.29 7

P = 0.0040 P = 0.0088
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Table 8. P-values from Wilcoxon Rank Sum test for 
small streams, adjusted by sequential Bonferroni (Rice 
1989).

P- Values
Pairwise Grazing Width~to~mean- Width-to-max.- 
Treatments depth ratio depth ratio

Spring vs. Summer 0.0302 0.0650
None vs. Summer 0.0297 0.0300
None vs. Spring 0.0297 0.0626
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DISCUSSION

The importance of riparian areas for wildlife habitat and ranching can not be 

overstated. Characteristics of riparian zones are determined by the quantity and 

tuning of water delivered to the site and the geology, vegetation and soil of the site 

(Platts 1981, Platts 1991, Thomas et al. 1979). Despite this complexity all riparian 

zones in  the western United States have the following in common: 1) they create 

well-defined habitat zones within much drier surrounding areas; 2) they make up 

a m inor proportion of the overall area; 3) they produce more biomass—plant and 

anim al—than the remainder of the area; and 4) they support most biodiversity of 

rangelands (Thomas et al. 1979). Aquatic insects, fish, waterfowl, and beavers 

depend entirely on riparian zones. Deer, elk, moose, bears, and birds spend a large 

part of their time in riparian zones for breeding or use them as corridors for 

migration. For example, in western Montana, 59% of land bird species breed in 

riparian habitats and 36% of those breed nowhere else (Kauffman and Krueger 

1984). Livestock also congregate in riparian areas because they provide water, 

shade, highly productive forage, and more gentle topography (Kauffman and 

Krueger 1984, Marlow et al. 1987, Platts 1981, Platts 1991, Thomas et al. 1979)

Herbaceous productivity in riparian areas decreases when vegetation is removed 

by grazing and increases when grazing is reduced (Kauffman and Krueger 1984). 

Riparian vegetation, especially willows and grasses, form mats that reduce water 

velocity and erosive energy during overbank flows. By slowing the water and 

decreasing energy, these mats cause sediment to settle and build floodplains (Platts
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1991). Schulz & Leininger (1990) found that canopy coverage of willows in 

exclosures was 8 1 /2  times greater than grazed areas, cind willows in exclosures 

were significantly older w ith mean ages of 8.1 vs. 4.8 yrs. Kauffman et al. (1983a) 

found that w hen grazing was excluded, density of cottonwood seedlings increased 

after two years rest. Personal observations of grazing exclosures on TRM Ranch 

concur w ith their findings. Willows appeared to do much better in exclosures as do 

sedges and cottonwood seedlings. While rating bank erodibüity on Dupuyer 

Creek, two of the main categories contributing to high erodibUity ratings were a 

lack of riparian vegetation or a lack of deep rooted species, such as willow and 

cottonwood, and bank heights of twice bankfull depth. Kaufiman et al. (1983b) also 

found that grazed areas had significantly greater streambank losses compcired to 

non-grazed areas. They suggested that livestock grazing may have weakened the 

streambank structure through trampling and forage removal to the point where ice 

flows and high water had a more damaging effect on grazed portions of the 

streambank.

Channel Morphology
The cattle exclosure on Dupuyer Creek is small and encompasses only about 250 

feet of stream. Despite its size, there are two obvious differences inside and outside 

the exclosure. The most obvious is the number of hoof prints outside the exclosure, 

e.g. cross-section 10.2, outside the exclosure, was trampled for about 20 feet of the 

floodplain and contained very little vegetation except high on the banks. In 

contrast, cross-section 10.1, inside the exclosure, had an abundance of cottonwood
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seedlings and no trampling. This suggests that over many years, trampling reduces 

riparian vegetation. Such vegetation when mature, stabilizes streambanks.

Even w ith fairly small sample sizes we found a significant difference in width-to- 

deptii ratios among grazing treatments. Grazing exclosures on TRM Ranch are still 

fairly new and encompass short reaches of streams, both of these factors may have 

limited recovery of the stream channel. Upstream disturbances might still have an 

effect on Lenstra Creek where grazing continues above exclosures. It is difficult to 

determine w hat effect upstream  grazing might have inside the exclosures. This is 

not as m uch of a problem on Middle Draw because the exclosures include the 

source of the spring.

All streams used in the small stream comparison were E stream types or would be 

E stream  types minus grazing disturbance. Lewis and Clark National Forest, on 

M iddle Fork Dupuyer Creek, provides a relatively large non-grazed area and 

probably represents the best possible condition for this stream. Myers and Swan

son (1992) found that stream stability could be predicted by Rosgen stream type, 

and that livestock trampling affected certain stream types much more than others. 

O ur results indicate similar findings, in that E4 and E6 stream types showed 

significant increases in width-to-depth ratios for both summer and spring grazing 

versus no grazing. But, no significant effects of grazing were observed on C3 and 

C4 stream  types. Such a disproportionate effect of livestock on small streams is 

likely due to two primary reasons: (1) silt and clay banks collapse more easily
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especially when wet, and (2) the percentage of stream width affected by a hoof is 

m uch greater for streams that are 1 or 2 feet wide versus streams that are 30 or 40 

feet wide.

We were unable to assess the effects of livestock grazing on width-to-depth ratios 

of large streams, because of the aforementioned reasons. Nevertheless, trampling 

on larger streams m ight have a significant effect, but be more difficult to detect. 

Deterrnining how far downstream from a disturbance that channel dimensions are 

affected is one of the biggest uncertainties confronting geomorphologists. In small 

streams, 1 or 2 feet wide, the distance might be as short as five or ten feet; on larger 

streams, 30 or 40 feet wide, downstream effects rnight go beyond several miles. 

This m ight seem quite a long distance, but consider that tracer particles, ranging in 

size from about 50 to 125 mm, in Dupuyer Creek moved a range of 0 to 3,300 ft. in 

one spring. Therefore, it is reasonable to suggest that gravel and cobbles knocked 

into the stream by livestock m ight be affecting downstream reaches a long way 

away from the point of disturbance. Whether or not these gravel and cobbles have 

a significant effect is probably one of the more difficult questions confronting land 

managers. Beschta and Platts (1986) stated that because bed material influences 

channel characteristics, a change in the median particle size of the bed can influ

ence the frequency and magnitude of bedload transport and might further affect 

channel dimensions. In the case of ford crossings such as Johnson's crossing, there 

is clearly a change in bed material size at the crossing (Moeckel et al. 1996) that 

continues downstream for an untold distance. We also observed dramatic in
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creases in width-to-depth ratios at the ford crossing that continue to influence 

channel dimensions downstream.

W ater diversion for irrigation has affected the channel in two ways. First, it has 

resulted in an aggrading channel near the diversion, which disrupts bedload and 

fine sediment transport. Second, it has probably limited survival and recruitment 

of riparian vegetation on North Fork Dupuyer Creek, especially in the early part of 

tihis century. The size and extent of existing irrigation ditches on TRM Ranch, 

suggest that irrigation was probably more extensive in years past dian under 

current management. The effect of such extensive irrigation was likely more 

pronounced in dry years, often a critical time for young riparian vegetation. Other 

possible explanations for a lack of riparian vegetation on North Fork Dupuyer 

Creek include, some natural fluctuation or cycle, although there is no indication of 

similar occurrences on Dupuyer Creek. Grazing by sheep around the turn  of the 

century might also have had a prominent influence on riparian vegetation recruit

m ent and survival.

Stream condition
Overton et al. (1995) state Ihe desired future condition for a C4 stream, in the 

Salmon River system, with a wetted w idth of 25 feet should have 47 pools/m ile; 

streambank stability should be >80% stable with >75% undercut banks w ith width- 

to-depth ratios < 10. By definition, a Rosgen C stream type can only have width-to- 

depth  ratios greater than 10. These values of stream condition are for the Salmon 

River drainage, which has different geology and climate than that of the east front.
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However, the study by Overton et al. (1995) is one of the few to quantify channel 

m orphology in an undisturbed system. If we compare data from Dupuyer Creek 

w e find a value of 30 pools/mile; streambank stability of 22% stable, and a mean 

width-to-depth ratio of 58.5. Although we did not measure undercut banks, it is 

unlikely to be greater than 20%. We do not have historical data for Dupuyer Creek, 

bu t it is unlikely that Dupuyer Creek ever had or will have vddth-to-depth ratios 

of < 10. Currently, the lowest width-to-depth ratios measured on Dupuyer Creek 

w ere in deep pools and even there width-to-depth ratios were about 12. Current 

channel dimensions, surveyed in 1996, indicate that 14 of 29 cross-sections have 

width-to-mean-depth ratios of less than 30. Considering some of the least- 

disturbed reaches on TRM Ranch and dimensions of an old channel, pre-1964 

flood, a more reasonable target may be a w idth to depth ratio in the mid to high 

20's.

SUMMARY
There were three primary objectives when beginning this study. The first and most 

immediate objective was to inventory and describe streams on TRM Ranch. This 

was satisfied and there is now a clearer picture of current condition of these 

streams. The second, more long-term objective was to try to differentiate the 

cumulative effects of livestock grazing and other activities from those of natural 

disturbances such as large floods. In this regard it appears that vehicle crossings 

have and continue to disrupt the function and process of streams. Livestock 

grazing appears to have a disproportionate effect on E4 and E6 stream types
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versus C4 and C3 stream types. The third objective was to develop a database of 

stream  channel morphology and condition categories with which to guide future 

m anagem ent decisions. This database of 74 cross-sections, long profiles, and 

streambed particle distributions provides a starting point from which to begin 

experimenting with different grazing practices. Future research should involve 

grazing experiments designed to study the effects of livestock grazing on different 

stream  types. Specifically, one or more large grazing exclosures on Dupuyer Creek 

are needed to allow a representative sample of channel dimensions.

At this time there are more questions than answers, but we have begun w hat will 

most likely be a long process of monitoring and experimenting w ith different 

m anagem ent strategies to discover the right combination of grazing intensity and 

grazing season that best protects streams on the northern Rocky Mountain Front. 

Myers and Swanson (1991) suggest that stream management must be stream type 

specific, and that classifying stream reaches and studying the nature and response 

potential of different stream types will allow managers to write objectives that 

target specific attainable goals. The results from this study indicate some promise 

in this regard.
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Appendix A
Annual hydrographs, 1913 to 1937, from USGS stream gauge on Dupuyer Creek near Valier, MT 
and box-plots of monthly precipitation at Valier, MT (1913 to 1917) and the SNOTEL site (1984 to 
1995) located in the Lewis and Clark National Forest, near Middle Fork Dupuyer Creek.
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Figure A2. Mean monthly precipitation at Valier, MT (panel A) from 1912 to 1937 and 
mean monthly precipitation at Dupuyer Creek SNOTEL (panel B) from 1984 to 1995.
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Appendix B

Stage rating curves for Stevens type F recorder, located on reach 2 of Dupuyer Creek.
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Appendix C

All channel morphology and classification data for all cross-sections surveyed for this study.
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Rosgen
Stream

Type

Wetted
Mean
Depth

ilt.)

Wetted Wetted 
Wetted Cross- Width-to- 

Width Sectional Mean 
(ft.) Area (It. '  2) Depth Ratio

Wetted Wetted 
Max. Width-to- 

Depth Max. Depth 
(ft.) Ratio

xsl.l Spring 1.07 48.45 2.40 4.80 140.00 51.80 45.28 20.19 2.89 .008 C4 .62 22.90 14.10 37.19 1.42 16.13

xsl .2 Spring 1.10 55.00 2.30 4.60 132.00 63.00 50.00 23.91 2.40 .008 C4 .60 23.70 14.20 39.56 .90 26.33
xsl.3 Spring 1,35 33.90 3.52 7.04 150.00 45.70 25.11 9.63 4.42 .012 C4 .61 16.70 10.20 27.34 .92 18.15
xsl 4 Spring .83 66.70 1.35 2.70 98.60 55.20 80.36 49.41 2.89 .008 C4 .26 43.90 11.50 167.58 .64 68.59

xs2.1 Spring 1.21 37.20 1.84 3.68 50.00 45.00 30.74 20.22 ' 1.34 .015 F4 .57 23.80 13.60 41.65 .84 28.33
xs2.2 Spring 1.42 31.40 1.95 3.80 57.00 44.50 22.11 16.10 1.82 .011 B4c .54 27.40 14.90 50.39 .84 32.62
xs2.3 Spring 1.49 30.90 1.80 3.60 35.00 46.10 20.74 17.17 1.13 Oil F4 .46 29.00 13.30 63.23 .68 42.65
xs2.4 Spring 1.56 29.90 2.10 4.20 200.00 46.60 19.17 14.24 6.69 Oil C4 .48 27.20 13.00 56.91 1.10 24.73
xs2.5 Spring 1.08 65.60 2.78 5.56 200.00 71.10 60.74 23.60 3.05 .009 C4 .46 32.60 15.00 70.85 1.62 20.12
xs3 1 Spring .95 3.90 1.50 3.00 11.20 4.10 4.11 2.60 2.87 .002 E6 .38 2.40 .90 6.40 .50 4.80
xs3.2 Spring .95 4.00 .84 1.68 7.00 4.20 4.21 4.76 1.75 .014 E6 .40 3.50 1.40 8.75 .48 7.29
xs3.3 Spring .62 6.10 .72 1.44 6.80 9.80 9.84 8.47 1.11 .034 G6 .10 5.90 ,60 58.02 .18 32.78
xs3.4 Spring .60 4.50 .82 1.62 4.60 7.50 7.50 5.49 1.02 .016 G6 .24 3.80 .90 16.04 .42 9.05
xs3.5 Spring .81 4.30 1.13 2.26 6.00 5.30 5.31 3.81 1.40 .018 G6 .36 3.60 1.30 9.97 .60 600
xs3.6 Spring .67 5.40 1.00 2.00 6.50 8.10 8.06 5.40 1.20 .018 G6 .24 3.80 .90 16.04 .40 9.50
xs3.7 Spring .71 4.90 1.06 2.12 5.60 6.90 6.90 4.62 1.14 .018 G6 .28 2.90 .80 10.51 .42 6.90
xs3.8 Spring .74 4.70 1.15 2.30 6.10 6.40 6.35 4.09 1.30 .018 G6 .28 3.20 .90 11.38 .50 6.40
xs4.1 Sum 1.75 24.00 2.23 4.45 69.00 42.00 13.71 10.76 2.88 .010 C4 .42 20.60 8.60 49.34 .84 24.52

xs4 2 Sum 1.36 18.10 2.23 4.45 69.00 24.60 1331 8.12 3.81 .010 C4 1.07 14.00 15.00 13.07 1.80 7.78
xs4 3 Sum 1.23 24.40 1.84 3.68 51.60 30.10 19.84 13.26 2.11 .016 C4 .49 19.60 9.70 39.60 .84 23.33
xs4.4 Sum 1.40 20.10 2.20 4.40 42.40 28.10 14.36 9.14 211 .008 C4 .83 16.00 13.20 19.39 1.30 12.31
xs4.5 Sum 1.22 20.00 1.96 3.92 74.00 24.40 16.39 10.20 3.70 Oil C4 .28 10.60 3.00 37.45 .62 17.10
xs4.6 Sum 1.39 26.40 2.43 4.86 90.00 36.80 18.99 10.86 3.41 .013 C4 .79 22.50 17.70 28.60 1.74 12.93
xs5.1 Sum .72 31.70 1.22 2.44 180.00 22.80 44.03 25.98 n /a .026 D4 .23 18.00 4.10 79.02 .54 33.33
xs5.2 Sum .80 22.70 2.40 4.80 200.00 19.30 28.38 9.46 8.81 .025 C4 .93 7.60 7.10 8.14 1.32 5.76
xs5.3 Sum .68 45.40 1.58 3.16 135.00 30.90 66.76 28.73 2.97 .012 C4 .43 22.30 9.70 51.27 .84 26.55
xs5.4 Sum .94 17.60 1.46 2.92 37.10 16.50 18.72 12.05 2.11 .014 C4 .40 13.10 5.20 33.00 .70 18.71
xs5.5 Sum .92 16.80 1.98 4.00 74.00 15.50 18.26 8.48 4.40 .017 C4 .40 12.90 5.10 32.63 .60 21.50
xs5.6 Sum .80 32.10 1.65 3.80 81.80 27.00 40.13 19.45 n /a .017 D4 .39 21.50 8.40 55.03 1.10 19.55
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xslS.l Spring 114 61.60 3.10 6.20 110.00 70.20 54.04 19.87 1.79 .008 D4 .97 30.20 29.30 31.13 2.28 13.25

xsl5.2 Spring .93 97.40 2.06 4.12 103.40 90.50 104.73 47.28 1.06 .011 D4 .22 33.90 7.60 151.21 .78 43.46
xslS.3 Spring 1.49 37.30 2.54 5.08 85.50 55.60 25.03 14.69 2.30 Oil C4 .62 22.20 13.80 35.71 1.16 19,14

xsl6.1 None 1.38 38.50 2.24 4.48 63.80 53.30 27.90 17.19 1.66 .013 F4 .72 31.10 22.40 43.18 1.40 22.21

xsl6.2 None 2.60 43.00 5.92 11.84 70.00 111.90 16.54 7.26 1.63 .013 F4 2,47 29.30 72.50 11.84 4.76 6.16
xsl6.3 None 1.15 46.60 2.06 4.12 96.00 53.70 40.52 22.62 2.06 .018 D4 .39 25.70 10.00 66.05 .82 31.34

xsl7.1 None .73 3.00 1.18 2.36 20.00 2.20 4.11 2.54 6.67 .038 E4b .33 2.40 .80 7.20 .64 3.75
xsl7.2 None .80 6.10 .90 1.80 20.00 4.90 7.63 6.78 3.28 .001 E4b .43 5.40 2.30 12,68 .70 7.71

xslS.l Sum .82 3.30 1.00 2.00 16.50 2.70 4.02 3.30 5.00 .026 E4B NA NA NA NA NA NA
XS18.2 Sum .32 7.00 .60 1.20 31.00 2.24 21.88 11.67 4.40 .014 C4 NA NA NA NA NA NA
xsl9-l Spring .54 4.00 .94 1.90 30.00 2.40 7.41 4.26 7.50 Oil E6 .33 2.70 .90 8.10 .50 5.40
XS19.2 None .67 2.40 .88 1.90 8.50 1.60 3.58 2.73 3.50 .008 E6 .20 2.00 .40 10.00 .36 5.56
xsl9.3 None .55 3.30 .88 1.76 25.00 1.80 6.00 3.75 7.60 .002 E6 .17 2.30 .40 13.22 .34 6.76

XS20.1 Sum 1.00 17.20 1.60 3.20 41.50 22.60 17.20 10.75 2.41 .022 C4 NA NA NA NA NA NA

XS20.2 Sum 1.13 20.00 1.70 3.40 90.00 22.60 17.70 11.76 4.50 .012 C4 NA NA NA NA NA NA

xs21.1 None .73 2.40 1.00 2.00 16.00 1.80 3.29 240 6.67 .010 C4 NA NA NA NA NA NA
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Appendix D
Longitudinal profiles for reference reaches (refer to figure 3 for general location) on TRM Ranch.
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Longitudinal Profile - Reach 17 - M. F. Dupuyer Creek
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Longitudinal Profile • Reach 1 - Dupuyer Creek
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Longitudinal Profile - Reach 4 - Dupuyer Creek
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Longitudinal Profile - Reach 6 > N. F. Dupuyer Creek
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Longitudinal Profile « Reach 8 - S. F. Dupuyer Creek
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Longitudinal Profile - Reach 10 - Dupuyer Creek
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Longitudinal Profile - Reach 11 - D upuyer Creek
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Longitudinal Profile - Reach 12 - Dupuyer Creek
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Longitudinal Profile - Reach 15 - Dupuyer Creek
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A ppendix E
All cross-sections surveyed on TRM Ranch and adjacent National Forest.
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Appendix F
Plots of particle size distributions.
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Particle Size Distribution - Reach 1 - Dupuyer Creek
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Particle Size Distribution - Reach 4 - N. F. Dupuyer Creek
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Particle Size Distribution - Reach 6 - N. F. Dupuyer Creek
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Particle Size Distribution • Reach 8 - S. F. Dupuyer Creek
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Particle Size Distribution - Reach 10 - Dupuyer Creek
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Particle Size Distribution - Reach 14 - M. F. Dupuyer Creek
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Particle Size Distribution - Reach 16 - Dupuyer Creek
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A ppendix G
Maps of surveyed cross-sections presented by reach. For general location refer to Figure 3.
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Figure Gl. Map of reach 4 cross-sections on North Fork Dupuyer Creek, Anderson Property. Benchmark 4 consists of a stove bolt set 
in concrete on high terrace.
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Figure G2. Map of reach 5 cross-sections on North Fork Dupuyer Creek, TRM Ranch. Benchmark 5 consists of a stove bolt set in 
concrete on high terrace.



7.2
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7.3
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8.2
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Figure G3. Map of reach 6 cross-sections on North Fork Dupuyer Creek, reach 8 cross-sections on 
South Fork Dupuyer Creek, and reach 7 cross-sections on Dupuyer Creek, TRM Ranch. 
Benchmark 6 consists of a stove bolt set in concrete on high terrace, all cross-sections in this map 
are relative to benchmark 6.
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11.2

50 Dm

Figure G4. Map of reach 11 cross-sections on Dupuyer Creek, Johnson's Crossing 
TRM Ranch. No benchmark was established for tiiese cross-sections other than the 
ends of the cross-sections marked with rebar.
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15.1

15.2

16

16
50 Cm

16.3

Figure G5. Map of reaches 15 and 16 and associated cross-sections on Dupuyer Creek, 
TRM Ranch. No benchmark was established for these cross-sections other than the ends 
of the cross-sections marked with rebar.
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9.3
9.1

9.2

50 Cm

Figure G6. Map of reach 9 cross-sections on Dupuyer Creek, middle crossing on 
TRM Ranch. No benchmark was established for these cross-sections other than the 
ends of the cross-sections marked with rebar.
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10

10.2

Benchmark 10

Dm50
Figure G7. Map of reach 10 cross-sections, Dupuyer Creek cattle exclosure on 
TRM Ranch. Benchmark 10 consists of rebar set in concrete near Southeast comer 
of grazing exlosure.
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12.1
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2 .4 Om50
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Figure G8. Map of cross-sections for reaches 2 and 12, Dupuyer Creek on TRM 
Ranch. Benchmark 2 consists of rebar set in concrete near stilling well and 
footbridge.
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t4" Benchmark

50 Om
Figure G9. Map of cross-sections for reach 1, Dupuyer Creek on TRM Ranch. 
Benchmark 1 consists of rebar set in concrete.
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Appendix H
UTM coordinates for cross-sections and concrete benchmarks. Note: coordinates for reaches 1,14, 
17,18,19,20 and 21 were not obtained.
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Cross-section x y Cross-section x V
2.1 37551662 533066699 7.1 37420819 532804500
2.1 37550452 533068990 7.1 37415715 532806849
2.2 37550202 533066168 7.2 37419145 532801402
2 .2 37547831 533067209 7.2 37415136 532805482
2 .3 37546317 533063840 7.3 37417599 532800079
2 .3 37547742 533062883 7.4 37416302 532798628
2 .4 37543577 533057100 7.4 37412059 532801089
2 .4 37541602 533059391 7.5 37414898 532794019
2.5 37542468 533053671 7.5 37411585 532799995
2.5 37539154 533053894 8.1 37415475 532793599
4.1 37178859 532792435 8.1 37413700 532792336
4.1 37178763 532798052 8.2 37414496 532789397
4.2 37176923 532798374 8.2 37414075 532790593
4 .2 37176230 532795959 9.1 37488560 532966523
4 .3 37175181 532799526 9.1 37490821 532969490
4 .3 37173211 532798827 9.2 37486016 532968725
4 .4 37173743 532805451 9.2 37490395 532972998
4 .4 37171653 532804796 9.3 37478396 532972455
4.5 37172153 532808094 10.1 37500836 533003095
4.5 37170439 532804836 10.1 37502654 533000030
4 .6 37167763 532808077 10.2 37499035 532997437
4 .6 37171025 532807079 10.2 37497489 532999667
5.1 37240652 532791163 11.1 37429726 532838615
5.1 3 7242103 532786526 11.1 37423589 532838725
5.2 3 7238453 532790496 11.2 3 7429770 532836483
5.2 3 7238629 532786270 11.2 37423557 532837439
5 .3 37235214 532789892 12.1 37560529 533073004
5 .3 37235351 532785224 12.1 37558262 533073891
5 .4 37230563 532790156 12.2 37560062 533071582
5 .4 37229719 532785218 12.2 37558971 533071820
5.5 37223856 532793713 15.1 37477971 532924073
5.5 37223621 532788456 15.1 37475021 532923435
5 .6 37220074 532788726 15.2 37477879 532919011
5 .6 37219589 532793979 15.2 37474909 532920922
5 .7 37215366 532787832 15.3 37471692 532917824
5 .7 37216666 532792144 15.3 37471251 532914689
6.1 37407083 532789242 16.1 37461231 532909704
6.1 37405806 532793542 16.1 37462467 532908178
6.2 3 7402769 532786249 16.2 37461333 532906582
6.2 3 7401393 532793553 16.2 37459747 532907900
6 .3 3 7400336 532786314 16.3 37455074 532904507
6 .3
6 .4
6 .4
6 .5
6 .5

3 7396975
37394721
37399680
37392845
3 7398333

532792713
532787360
532792705
532793728
532793693

16.3 37458185 532903236

Figure HI. UTM coordinates for cross-section markers.
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Benchmark # X y

1 37623746 533139508
2 37545426 533063518
4 37182124 532793070
5 37224618 532784412
6 37401202 532793370

10 37503405 532998232

Figure H2. UTM coordinates for concrete benchmarks.
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