
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1993

Clock synchronization in multiprocessor systems Clock synchronization in multiprocessor systems

Gokuldas K. Hegde
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hegde, Gokuldas K., "Clock synchronization in multiprocessor systems" (1993). Graduate Student Theses,
Dissertations, & Professional Papers. 5122.
https://scholarworks.umt.edu/etd/5122

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5122?utm_source=scholarworks.umt.edu%2Fetd%2F5122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financial gain may be undertaken only
with the author’s written consent.

University of

CLOCK SYNCHRONIZATION IN MULTIPROCESSOR SYSTEMS

BY
GOKULDAS HEGDE K

B.E., University of Mysore--INDIA, 1984.

THESIS REPORT

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Computer

Science at Graduate School of University of Montana.

April, 1993

Approved by

Principle Advisor: Ray F. Ford
Associate Professor CS Dept

Date "

UMI Number: EP40586

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP40586

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

ft

ABSTRACT
GOKULDAS HEGDE K. , MS APRIL 1993 COMPUTER SCIENCE

CLOCK SYNCHRONIZATION IN MULTIPROCESSOR SYSTEMS

Principle Advisor: Ray F. Ford, Associate Professor CS Dept.

A fault tolerant algorithm to synchronize clocks in
multiprocessor systems, which is independent of local clock
conditions, and unrestricted in terms of minimal connectivity
requirements is proposed. In the proposed algorithm each
processor receives clock values from its adjacent processors
and computes the error correction value after filtering out
the faulty clock values in two stages. Usage of difference of
clock values and filtering based on limits set at each stage,
eliminates the drawbacks of previously proposed algorithms.

The algorithm is compared with two other algorithms for
performance in terms of synchronization achieved and fault
tolerance. A software simulation system written in Ada
implements a multiprocessor system. Drifts can be introduced
into each processor to simulate errors in clocks. The error
correction values generated by the algorithms are compared for
performance.

Results obtained by the simulation run demonstrate the
advantages of the proposed algorithm in certain situations.
The algorithm is independent of the local clock, and does not
contain restrictions on the number of minimum connectivity
required to be fault tolerant in terms of number of maximum
faulty clocks tolerated by the algorithm before failing. The
synchronization achieved is better or within tolerable limits
in all cases.

ii

ACKNOWLEDGEMENT

I express my heartfelt thanks for Dr. Ray Ford for his
invaluable guidance, suggestions and comments in every phase
of the work. I also thank Dr Youlu Zheng, and Prof. Paul B.
Wilson for accepting to serve as members of advisory committee
and their guidance. My thanks to the Chair of the Computer
Science department for extending all the facilities and
computers for carrying out this work. I also thank all the
faculty and staff of the Computer Science department for their
cooperation and assistance given to me through out my work.

GOKULDAS HEGDE K.

TABLE OF CONTENTS
INTRODUCTION 1
SURVEY OF RELEVANT WORK 4

UPDATE METHODS 4
REVIEW OF EXISTING ALGORITHMS 6
REFERENCE ALGORITHMS 11

PROPOSED ALGORITHM 13
PROPOSAL 13
LIST OF SYMBOLS 15
GH DEFINITION AND ANALYSIS 16
CNV DEFINITION AND ANALYSIS 18
LW DEFINITION AND ANALYSIS 19
COMPARATIVE ANALYSIS 20

COMPLEXITY ANALYSIS 20
SIMULATION SYSTEM 24

SYSTEM REQUIREMENTS 24
SYSTEM DESCRIPTION 25
INPUT AND OUTPUT DATA 2 6
PROCESS DESCRIPTION 27
EVENT QUEUE 28
STARTUP TASK 28
TERMINATOR TASK 28
PROCESSOR TASK 30
DATA STRUCTURES 30
OUTPUT FILE 31
SYNCHRONIZATION 31

RESULTS AND CONCLUSION 35
INTERPRETATION OF RESULTS 37

REFERENCES 55

CHAPTER 1
INTRODUCTION.

One of the problems in a multiprocessor or distributed
system is synchronization of multiple independent clocks.
Every processor in a multiprocessor or distributed system
contains its own clock. By nature these clocks have a
tendency to drift away from their ideal time. This is due
to varying frequencies of oscillators used in implementing
the clocks. Clocks which are supposed to run at a definite
rate may be slower or faster than the standard rate, thus
creating differences between their actual and ideal value.
Factors causing variations in the oscillator frequency are
many, e.g., humidity, temperature, crystal oscillators, and
electrical behavior of electronic components used in the
oscillator circuitry. The problem of bounding the variation
between a set of independent clocks, each varying to some
extent from an ideal rate is referred to as the CLOCK
SYNCHRONIZATION problem.

In designing multiprocessor and distributed systems the
need often arises to generate a unique global clock, which
can be referenced by all processors in the system. Clocks
from different processors tend to drift at an unpredictable
rate, thus a time value in one processor is generally not
valid in another processor, whose local clock drifts at a
different rate. This necessitates creation of a global

clock standard to be referred by all the processors in the
network of processors.

There are several methods that can be used to create a
global clock. Factors such as the cost of implementation
and relative accuracy generally determine the feasibility
of any particular method for a given application. Apart
from these, other factors that are of importance, are the
tolerance of the synchronization method to faulty clock
values and faulty processors or communication subsystem. In
any case best approaches typically can only bound the drift
error and some small difference in clock values must be
tolerated by the system. The selection of any method for
clock synchronization thus requires careful analysis of the
methods cost and the accuracy that it can achieve.

The following chapter contains a review of relevant
work in this field, along with a brief discussion about the
general methods used to implement a global clock, and their
advantages and disadvantages. Certain parameters and
relevant terms involving clock synchronization are also
described. Assumptions made in implementing clock
synchronization in various methods are also explained.

In Chapter Three a novel method for implementing clock
synchronization is proposed. Comparison is made with two

2

3
existing algorithms which fall under the same category, in
terms of implementation cost and abstract complexity.

Chapter Four contains the description of a simulation
system built to study the performance of the three clock
synchronization algorithms in various simple contexts. All
the three methods under study are implemented and verified
for results. Data obtained by simulating the performance is
also shown and explained.

Chapter Five contains the conclusions drawn from
analysis of the simulation data, along with possible
additional modifications that could be implemented to
improve the proposed algorithms.

CHAPTER 2
SURVEY OF RELEVANT WORK

Several methods have been proposed and implemented to
synchronize clocks. A general survey of relevant algorithms
of interest is presented in this chapter.

UPDATE METHODS
Attaining a common clock between all the processors can

be achieved in many ways. A simple method described by Levi
and Agarwala [5] is by establishing a MASTER and SLAVE
relation between the processors. One of the processors is
selected as the MASTER and all the other processors are
SLAVES. The MASTER transmits the clock to the SLAVES and
the SLAVES operate using this clock. This arrangement is
only appropriate for tightly coupled processors because the
transmission delay of clocks causes difference in clocks
among the processors. Failure of the Master clock brings
down the entire system. Hence this method is unsuitable in
critical applications that require fault tolerance.

Another method described by Parameshwaran Ramanathan,
Kang G. Shin, Ricky W. Butler [2], Anne Dinning [3], and
Leslie Lamport and P. M. Melliar-Smith [6] involves
generating a logical clock at each of the processors using
the local clock and clock values from the adjacent

4

processors. The logical clock value is computed based on an
algorithm, which we call the clock synchronization
algorithm. The logical clock can be generated by various
methods: hardware, software, and hybrid, a combination of
both hardware and software. Ramanathan, Shin, and Butler
[2] briefly explain these methods. They refer to Hardware
methods as "Continuous Update Methods" because the special
hardware allows the clocks to be updated or corrected
continuously in real time. The clock values are transmitted
to adjacent processors continuously, and hardware-based
algorithms, such as phase correction or frequency
correction, are used to generate an error signal from the
received clocks. They refer to software methods as
"Discrete Update Methods", because the clock correction is
calculated and updated in discrete intervals by an
algorithm implemented in software. Software methods are
further classified into three categories: convergence
averaging algorithms, convergence nonaveraging algorithms,
and consistency algorithms.

Generally all software methods involve transmitting a
clock value from processor A to B at a certain time
interval. The clock values thus received by B are used by B
to compute the error value, and to generate the corrected
global clock. Assumptions made in these methods are that
the clocks do not drift beyond certain limits within the

6
synchronization period, and that no two processors differ in
their clock values by more than a certain limit at any time.
Several different software algorithms have been proposed,
two of which are discussed in more detail below.

Hybrid methods use a combination of both hardware and
software techniques. The extent of hardware and software
involved depends upon the method of synchronization.

REVIEW OF EXISTING ALGORITHMS
Any study of clock synchronization algorithms assumes

that the global clock is used to provide critical software
synchronization for distributed systems. Lamport [1]
describes the concepts of "time" and "clocks" in
distributed processing along with the importance of clock
synchronization and global clock based event ordering.

All global clock synchronization algorithms must
satisfy two key conditions, though the precise structure of
the conditions are suitably stated or modified for various
methods of synchronization. The basic form of these
conditions is stated below. Consider N processors, and let
Pr,Pa, and Pb be any three processors:

1. Any two nonfaulty processes Pa and Pb
obtain approximately the same value for
Pr's clock even if Pr is faulty.

2. If Pr is nonfaulty then every nonfaulty
processor obtains approximately the same
value of Pr's clock.

Apart from satisfying these two conditions several
other factors affect the clocks. Parameters like
transmission delays incurred while conveying time values
from one processor to another, time required for reading
clocks, and time for computing the clock synchronization
algorithm, are of importance in implementing a
synchronization system. Several assumptions are made about
these and other time intervals while designing an algorithm
The time elapse between two synchronization events, which i
called the "Synchronization period", plays a major role in
considering various delays. For larger synchronization
periods, time intervals such as transmission and clock
reading delays may be neglected. Several articles [1,2,6,7
] have detailed analysis of such assumptions and proofs.

As described in [2] and [3] synchronization algorithms
can be broadly classified as Interactive Convergence
Algorithms and Interactive Consistency Algorithms. One
example coming under the classification of Interactive
Convergence Algorithms is the algorithm explained in [3,7],
which we refer to as CNV. In this algorithm the clock
synchronization correction value is computed as the average

8
of the clock values read by the processor. This algorithm
is one of the algorithms used in analysis of the proposed
algorithm for comparison purposes.

The other two algorithms described in [3,7], COM and
CSM are classified under Interactive Consistency Algorithms.
In algorithm COM the correction value is computed as the
"median" of the clock values received from the adjacent
processors. Algorithm CSM associates a "signature" from
every processor handling the clock value and calculates the
correction value from the signatures and incoming clock
values. In this scheme it is assumed that every processor
generates a unique signature that cannot be altered by other
processors. Every processor attaches its signature with
every clock it reads and transmits. Each processor verifies
the signatures associated with the clock it receives before
validating the clock. By this method each processor
ascertains that the clock is read by m+1 processors by
identifying m+1 signatures, where m is the number of faulty
clocks tolerated in the system. This is to assert that at
least one nonfaulty processor has read the clock. This
satisfies a modified requirement of the conditions stated
above. The discussion in [2,3] also describes problems
associated with reading clock values and methods to reduce
errors in reading clocks.

9
Further classification of Interactive Convergence

algorithms leads to the two sub-categories Convergence
Averaging and Convergence Nonaveraging algorithms. In
Convergence Averaging Algorithms each processor computes a
fault tolerant average from the clock values it receives
from the adjacent processor clocks. This is similar to the
Interactive Convergence Algorithm. In Convergence
NonAveraging Algorithms not all processors compute a
correction value. This synchronization process follows a
MASTER-SLAVE relation in which one processor computes the
correction value and behaves as a system synchronizer,
sending the correction value to all other processors (i.e.,
slaves). The processors may also take turns in acting as
the system synchronizers.

Schemes for synchronizing networks are explained in
[3]. Synchronization can be achieved at different levels.
At a lower level a few nodes connected as a cluster can be
locally synchronized. Several such clusters can be
interconnected and synchronized to form higher levels of
synchronization. Hybrid synchronization methods are often
used in such applications to avoid high cost of hardware
synchronization yet achieve tighter synchronization than
which can be achieved through software only synchronization
methods. Dinning [4] introduces several synchronization
mechanisms used in different parallel computers and

10
discusses implementations of synchronization like semaphore,
monitors and message passing methods. A formal explanation
of such methods is given by Welch and Lynch [6]. Generally
in these applications, if m is the number of faulty
processors tolerated, then each processor on receiving
clocks from its adjacent nodes rejects the highest m and
lowest m values and then computes the correction value. The
second algorithm to be used as a basis for comparing our
proposed algorithm is one derived from the Welch and Lynch
proposal. We refer to this algorithm as LW for analysis and
comparison purposes.

The requirements for an algorithm to be fault tolerant,
as explained in [5] are,

"In a Comprehensive approach to constructing a
fault-tolerant time-server, one must start with
providing the means for a local resynchronization
of each time server in the system. This
resynchronization updates the server's parameters,
and thus the interpretation of the local clock.
However, one must introduce additional facilities
such as clock broadcasts and participant-forum
establishment. This additional support serves the
requirements for fault tolerance. Combining the
above facilities results in a comprehensive
solution to a system-wide distributed time
service".

Hence any system built to be fault tolerant must have
facilities for local resynchronization, clock broadcast, and
a forum for participant processors to communicate.

11

REFERENCE ALGORITHMS
The two algorithms falling under the same category of

Interactive Convergence Averaging Algorithms are selected as
reference algorithms to compare with our proposed algorithm.
These algorithms are simple in terms of the fault tolerant
averaging function used to compute the correction. Thus do
not involve complications of generating complex signatures
for each processor in the network, as required by other
class of algorithms. Finally, these algorithms do not
involve extensive or specialized communication protocols.
The two algorithms are the CNV and LW algorithms described
above. More details on the methods used in these two
algorithms are presented below.

Algorithm LW, requires that m maximum and minimum
values be eliminated. This imposes a condition on the number
of processors that must be connected to any processor.
Since 2 * m values are eliminated, and there must be at
least one value for computation of the correcting value, the
minimum number of processors that must be connected to any
processor Pr is,

<1> Min_connectivity (Pr) = (2 * m) + 1

12
Algorithm CNV uses clock values from its adjacent

processors to compute its clock correction value. Though no
limitations exist on number of processors that must be
connected, the process of validating clock values is of
concern. Each clock value received from an adjacent
processor is compared with the local clock value. If this
difference exceeds a.specified limit the adjacent
processor's clock value is eliminated from computation. The
valid clock values are used to compute the average which is
used as the correction value. This causes problems in case
the local clock is faulty. A faulty local clock would
qualify clocks which are out of range, thus skewing the
correction value towards the faulty clocks. The cumulative
effect pushes the processor further out of synchronization,
rather than pushing it into synchronization. This also
makes it hard to reintroduce a repaired processor into the
network, without the network being halted.

CHAPTER 3
PROPOSED ALGORITHM

PROPOSAL
This thesis proposes an algorithm that overcomes some

of the drawbacks of the two algorithms mentioned in the
previous chapter. The proposed algorithm herein after
referred as algorithm " GH ", can be compared with these two
algorithms in terms of the synchronization achieved and cost
of implementation. A theoretical comparison can be made for
the worst case cost of computation, relative to a particular
network and particular node. Comparison can also be based
on performance.

In most of the above mentioned algorithms one
assumption made about the processors is that every processor
receives clock values from every other processor and then
computes the error value. Certainly, this may not be
necessary based on the transitive
nature of the problem. Consider
three nodes A, B and C connected
as shown in Figure 1. If node B
is synchronized with node A, and
node C is synchronized with node
B, then certainly node C is

13

Figure 3.1

14
synchronized with respect to A. Thus by transitivity, it
may not be necessary for every node in a system to be
synchronized with every other node.

In the new GH algorithm the processor under
consideration reads clock values from upto N neighboring
connected processors. Each processor then computes the
average difference between its local clock and the clock
values it receives from its neighbors. A filtering is done
with the average value as the midpoint, and using a
bandwidth parameter that depends upon the accuracy of the
synchronization required. The bandwidth is the range up to
which the values are accepted both on the higher and lower
side of the midpoint value. Filtering consists of marking
all those difference values exceeding the specified
bandwidth and calculating a new average based upon those
values falling within the bandwidth. The filtering reduces
the skew created by out of range values and helps obtain a
more accurate correction value. This filtering is done at
two stages to reduce the errors. At each stage the
filtering marks out of range clock values as "bad" and helps
reduce the effects of faulty neighboring processors.

The following section contains the details and
comparison of three algorithms: the newly proposed GH
algorithm, the interactive consistence algorithm CNV and the

15
fault tolerant algorithm LW. For each algorithm we show the
algorithm (in pseudocode), present a brief explanation of
each of its stages of computation, and finally describe its
abstract time complexity.

LIST OF SYMBOLS
A list of the symbols used in the pseudocode and

analysis is given below.

DEGi : Number of processors connected to processor
i.

CLK(J): Clock value read from adjacent processor J.
This is an array to store all the clock
values read from adjacent processors.

LMT1 : Range limit for qualifying values for first
level filtering in GH.

LMT2 : Range limit for qualifying values for second
level filtering in GH.

D_LMT : Range limit for qualifying values in the
CNV algorithm.

AVGi : Averages computed from the values.
Tr : Time on average for clock read.
Tadd : Time to compute an average.
TcomP : Time for comparison.
Tavg : Time for division or computation of average.
Tatagei : Time for a certain stage 'i' of computation.

Ttotai : Total time for algorithm.
16

PSEUDOCODE:
Read DEGi clock values; N1 = DEGi
1 > for INDX1 from 1 to DEGi do
2 > " Read CLK(INDX1) and compute SUM "
3 > end for;
4 > AVG1 := SUM / DEGi;
stage 1 filtering and computation.
5 > for INDX1 from 1 to DEG± do
6 > " Filter based on AVG1 and compute SUM

for remaining N2 filtered clock values ".
7 > end for;
8 > AVG2 := SUM / N2;
stage 2 filtering and computation.
9 > for INDX1 from 1 to N2 do
10> " Filter based on AVG2, and compute SUM

for remaining N3 filtered clock values ".
11> end for;
12> CORR := SUM / N3.

Figure 3.2: ALGORITHM GH

GH DEFINITION AND ANALYSIS
The GH Algorithm is presented in Figure 3.2.

Lines 1 to 4 constitute the clock read, sum, and
average computation. Assuming Nl = Deg±, the time
computation for this stage is

< 2 > Tstagel := Nl * Tr + Tave (Nl)

Lines 5 to 8 are the first filter stage. In this
step the clocks are compared and all values passing the
comparison test are used to compute the sum for next
stage of computation. Assuming N2 is the number of

17
clock values qualifying from the comparison operation
and satisfies condition N2 < Nl, the computation time
for this stage is

< 3 > T3tage2 : = N2 * Tcomp + Tave (N2)

Lines 9 to 12 are the second filtering stage.
Following filtering the number of output values N3
satisfies N3 < N2. The computation time is

< 4 > Tstage3 : = N3 * Tcomp + Tave (N3)

The total time for execution of this algorithm is
given by the sum of execution time for three stages.

< 5 > Ttotal : = T stagel + f stage2 + T stage3

< 6 > Ttotal := Nl*Tr + N2*Tcomp + N3*Toomp + Tave (
N3) + Tave (N2) + Tave (Nl)

< 7 > Ttotal := Nl*Tr + Tave (Nl) + Tave(N2) +
Tave(N3) + (N2+N3) *Tcomp

Since N3 < N2 < Nl, we replace N2 and N3 by Nl and
bound the total exec time as

18
< 8 > Ttotal < Nl*Tr + 3*Tave(Nl) + 2*Nl*Tcomp

PSEUDOCODE:
Read Nl = DEGi number of clock values, filter, and sum.
1 > for INDX1 from 1 to DEG± do
2 > " Read CLK(INDX1), filter based on local clock
value, leaving N2 clock values, and compute sum
3 > end for;
4 > CORR := SUM / N2.

Figure 3.3: ALGORITHM CNV

CNV DEFINITION AND ANALYSIS
The details of CNV are shown in Figure 3.3. Lines

1 to 3 implement clock reads, validation and summation
of clock values. The validation is done by comparing
each clock value to some parameter giving the limit for
the maximum deviation allowed. The computation time is

< 9 > ^ s t a g e l • Nl*Tr + Nl *Tcomp + Tave (Nl)

19

PSEUDOCODE: ,
Read N1 = DEG£ number of clock values.
1 > for INDX1 from 1 to DEGi do
2 > " Read CLK(INDX1)
3 > " Find m maximum and m minimum values ".
4 > end for;
5 > Delete m maximum and m minimum values.
6 > for INDX1 in 1 to N1 - 2*m do
7 > " sum the values "
8 > end for;
9 > CORR := SUM / (N1 - 2 * m).

FIGURE 3.4: ALGORITHM LW

LW DEFINITION AND ANALYSIS
The details of LW are shown in Figure 3.4. Lines

1 to 4 implement clock reads and identify m maximum and
m minimum values. The time for finding m maximum and
minimum values is estimated as m * N1 * Tcomp- T^e time
for the read stage is as

< 10 > Tstagei :« N1 * Tr + m * N1 * Tconip

Line 5 is the deletion stage. Lines 6 to 9
constitute the summation and computation of correction
value. The computation time and total time are shown
below.

< 11 > Tstage2 := Tave (N1 — m)

< 12 > T total ■ ^"stagel ^stage2

20
< 13 > Ttotal := Nl*Tr + m*Nl*Tcomp + Tave (N1 - 2*m >

COMPARATIVE ANALYSIS:

I . COMPLEXITY ANALYSIS:

Comparison of the total time for the three algorithms
gives a relative measure of the potential cost for the three
algorithms. The three equations are given below.

GH: Ttotal := Nl*Tr + 3*Tave(Nl) + 2*Nl*Tcomp

CNV: Ttotal := Nl*Tr + Nl*Tcomp + Tave(Nl)

LW: Ttotal := Nl*Tr + rn*Nl*Tcomp + Tave (N1 - 2*m)

Assuming that N1 is the same for all the three cases,
we compare the computation cost for the three cases.
Canceling the common factor in all the three cases i.e., N1
* Tr, we compare the relative cost, Rcost, of remaining
factors. Let the cost of computation of Tcomp + Tave be equal
to some value " k ". Considering the worst case we have
the cost of computation for each case.

GH: Rcost := 3 * N1 * k
CNV: Rcost := N1 * k

21
LW: Rcost := m * N1 * k

From the above three equations we note that the
computation cost for CNV is the least, and that the cost for
LW is less than that of GH only under the condition of m <
3. Also, note that the cost of GH is a constant
irrespective of the degree of fault tolerance, but the cost
for LW increases with the degree of fault tolerance.

In reality the value of N1 varies for the three
algorithms. In CNV the value of N1 is assumed to be the
total number of processors in the network, i.e., N1 = N.
In LW the value of N1 has to satisfy the condition given by
< 1 >, but it is assumed to be less then the total number of
processors in the network. Substituting f for m in < 1 >,
then if f is one then N1 cannot be less than 3, so that 3 <
N1 < N. For algorithm GH no apriori constraints exist on
Nl, i.e., 1 < N1 < N.

Certain drawbacks of the algorithms are discussed
below. In CNV the incoming clock values are compared with
the local clock value and qualified for computation. This
would cause serious errors if the local clock is erroneous.
In LW and GH the local clock is used only to compute the
clock difference. In case of LW the error correction value
is computed by eliminating m maximum and m minimum values.

22
In the case of GH the error value is computed based on
computing the average of the clock differences and selecting
clocks lying within suitable range. Since the local clock
is not the only basis for computation of the error
correction value, both the algorithms LW and GH are more
suitable to tolerate local clock skew.

Algorithm LW imposes a condition on the minimum
connectivity required for any processor, based on the degree
of fault tolerance specified. Hence if the network is to
tolerate upto one faulty processor then the minimum degree
of connectivity of any processor has to be three by equation
< 1 >. This does not fully address problems such as the
inability of a processor PA to read the adjacent processor
PB's clock. The inability to read an adjacent processor's
clock within a specified timeout period reduces the number
of clock values available for computation. Allowing for
such failures implies that actual connectivity must be
greater than the minimum connectivity given in equation <1>.

GH is designed to overcome the drawbacks described
above, i.e., to reduce errors in computation due to
erroneous local clock, and to reduce the minimum
connectivity required for fault tolerance. The table below
gives a comparative fault tolerance for each algorithm.

23

ALGORITHM: GH CNV LW
CONNECTIVITY: N N 2 * m + 1 + N ^ 1
FAULT-TOLERANCE: N-l N—1 m

This comparison shows that algorithm GH and CNV are better
in terms of fault tolerance than LW. Hence for the same
degree of fault tolerance the connectivity required for
algorithm GH and CNV is less than that for algorithm LW.

Finally comparing the cost of computation for the three
algorithms we have:

ALGORITHM: GH CNV LW
COST: 3*N*k N*k m*N*k

Cost comparison shows that for small values of tolerance m
cost for algorithm LW is low. But since N is large in case
of LW the cost is higher than the other two algorithms. The
value of N is relatively small in case of GH and CNV, thus
reducing the cost considerably.

Thus, based on this high level comparison algorithm GH
provides better fault tolerance than LW and CNV with a
reasonable constant-bounded increase in compute cost.

1 Nto = number of values unable to read beyond time-out.

CHAPTER 4
SIMULATION SYSTEM

SYSTEM REQUIREMENTS
The simulation system requirements are

1. A network of multiple processors.
2. Communication medium and means for

communicating clocks.
3. A process or means to simulate simultaneous

startup of the simulation system, thus
satisfying the assumptions made about the
algorithms.

4. A process or means to simulate clock drift.

Building a simulation system using hardware components
would require multiple processors, a communication network,
and extensive sophisticated monitoring hardware and
software. Building a software simulation systems requires
that comparable facilities be built in software. A hardware
based simulator would be expensive and somewhat limited in
scope. Software methods on the other hand are much cheaper
and flexible. Any programming language which has the means
to implement multiple processes would be a suitable choice
to implement a simulation system. One such language is Ada,
which directly supports multiple processes through its task
construct and interprocess communication facilities based on

24

25
"accept" statements and "entry" calls. Ada is the language
used to implement the simulation system described here.

SYSTEM DESCRIPTION
The system contains a collection of tasks that each

implement a single processor. Each processor performs
synchronization activity after a certain period called the
Synchronization Period. At this point the processor expects
to receive clock values from its adjacent connected
processors. If the processor does not receive the clock
value from one or more of its adjacent connected processors
it goes into a state called 'timeout', where the processor
waits for a certain amount of time to receive this clock
value. Eventually the value either arrives or the wait time
expires. In either case, the process eventually proceeds
into the synchronization computation state. On completing
the computation state, each processor updates its clock to
the new clock value using the computed correction value.
The mode of communication of the clock values may be either
by broadcast or direct transmission to specific adjacent
connected processors.

From the above description two types of events are
evident, the synchronization event and the timeout event.
These events are discrete events occurring at specific
times. The nature of occurrence of these events and their

26
ordering based on time makes it possible to implement a
simulation system for these events using standard discrete
events simulation techniques. Details on discrete event
simulation techniques and program components can be obtained
from reference[8].

There are certain other tasks that are essential during
the startup of the simulation and completion of the
simulation. The assumption that all processors are
initially assumed to be synchronized within certain limits
means that the simulation must start with (relatively)
synchronized processors. Hence there is a startup task
which ensures the initial synchronization of the processors.
A termination task is also required to ensure proper
termination of all the tasks on completion of the simulation
run.

INPUT AND OUTPUT DATA
Apart from the tasks, the next most important aspects

of the simulation system are the inputs it requires and the
output it generates. The input data for the simulation
defines algorithm-specific data constants, the network
configuration, processor attributes, and the number of
synchronization cycles the simulation has to run. Among the
processor attributes is the specification of "drift" for
that processor.

The simulation output contains all data related to
system synchronization. This includes, for each processor,
the clock differences observed during each synchronization
cycle and the correction value computed for each
synchronization cycle. The set of correction values
provides a measure of drift in the clock over certain
period, as well as a measure of the degree of
synchronization achieved by a particular algorithm.

PROCESS DESCRIPTION

A set of processors is simulated by an Ada task type.
This type is instantiated "N" times to produce "N"
(simulated) processors. Each processor contains functions
for clock synchronization and communication. The simulation
system is implemented on traditional discrete event
simulation principles. Each processor is scheduled into
synchronization by a scheduler task. The scheduler task
picks the top most request from an event queue and schedules
that particular processor. An event queue is built upon
request from each processor requesting service. The request
contains the time at which the service is required and the
type of service required by the processor. The event queue
is dynamically built by placing the event requests in order
of time, contained in the request, from each processor.

28
Thus the event queue server functions as the driver for the
entire simulation.

EVENT QUEUE
The event queue is serviced by the queue_server task or

the scheduler. The queue_server picks top most item from
the queue and makes a call to the particular processor task
activating the function specified in the event item.
In case there is no event posted in the event queue, the
queue_server continues to loop waiting for new events to be
posted into the event queue.

STARTUP TASK
The startup task has the function of building the

initial event queue. The startup task creates an initial
event queue with one event for each processor. The initial
function for each event is the event 'synchronize'.
The time for synchronization for each processor task is
computed based on the synchronization period and drift
specified for each processor. This is to satisfy the
initial assumption made in the algorithm that initially all
the processors are synchronized within certain limits.

TERMINATOR TASK
The terminator task accepts termination signals from

the processor tasks. On receiving termination signals from

29
all the processors it terminates the queue_server task.
This is done to terminate all the tasks in an orderly
fashion, and assure that all tasks are terminated.

30

PROCESSOR TASK
The processor task contains the processes for

synchronization. The call from queue_server instantiates
the synchronization process. The synchronization process
reads the clock values from the adjacent processes and
initiates the error computation function. In case any one
of the processor is unable to deliver its clock value the
processor initiates a timeout call and posts an timeout
event into the event queue. The queue_server reads the
timeout event and initiates the clock read and the error
computation function. Upon computing the error correction
for the clock the clock is updated to the new correct value.
It then computes the time for the next synchronization and
posts a new synchronization event into the event queue.
This continues until the number of synchronizations
performed reaches the limit set for the simulation run.
Once this limit is reached the processor task initiates a
call to terminate, by calling the termination task and
registering termination.

DATA STRUCTURES
The simulation system implements "broadcast"

communication mode using an array data structure, of size
equal to number of processors. This array contains the
clock values broadcast by each processor. Another array of

31
the same size is implemented to validate the clock value.
Every instant a processors clock value is broadcast, the
respective synchronization count is written to validate the
clock value. Every time any processor reads the clock
values from the broadcast array and finds one of the clock
value is not valid it initiates a timeout event. Other
data structures are local to respective tasks and functions.

OUTPUT FILE
Each processor creates an output file. The output file

contains relevant data to that processor, like the processor
id in the network, its adjacent connected node ids, and
clock drift for the local clock, and data pertaining to the
synchronization computation. Data relevant to
synchronization are the clock difference computed between
the local clock and its adjacent processor clocks, and error
computed by the algorithm as the error correction value for
the clock. Data such as clock difference and correction
values for the synchronization cycles are recorded into the
respective processor's output file.

SYNCHRONIZATION
The synchronization function is implemented as a

function in the processor task. This function implements a
particular algorithm. Several simulation runs are conducted
for different configurations, different drift values, and

32
for all the three algorithms. Data generated is used to
study the synchronization pattern with each algorithm, on
different processors, with differing configuration and drift
rates.

Since the drift value in practice is impredictable,
some random number is set which is within a certain range.
A normal drift allowed with the clocks in real life is about
five to eight cycles, higher or lower for one MHz clock
cycle. Hence a drift value within this range is normally
selected. Anything beyond this value is considered an error
in the clock. Since we can control drift as a simulation
parameter any clock can be set with a larger drift to study
effect on the synchronization algorithm.

All the three algorithms in this study compute
correction values applied to local clocks. These values can
be used to compare the quality of algorithm performance, in
terms of the fastest convergence of clocks along with the
required minimum degree of connectivity for this
convergence. Based on the requirement of the algorithms
several suitable configurations have been selected for
running the simulation. The algorithms are also tested for
the number of faulty processors that are tolerated. This is
done by introducing drift in more than one processor. In
case of more than one faulty processors the degree of

33
adjacency required increases considerably, particularly the
LW algorithm, which has implications on the configurations
selected for study.

The actual functioning of the simulation system is as
follows. Initially the startup task contains the task of
building an event queue for all the processors. The first
event created for all processors is the synchronization
event. The synchronization timing for each processor is set
upon considering the drift associated with each processor.
The schedular task is activated by this time, which starts
reading the event queue and activates appropriate events in
the respective processor. Each processor upon completion of
the current activated event, posts its next event into the
event queue, along with the time value at which this event
is to be activated. The queue server continues to pick the
next (in time) event from the queue, and activates that
event in the appropriate processor. This process continues
until a termination condition is satisfied at each of the
processor. At this point the termination task is activated
which sets the final termination condition for each
processor task, terminates the other tasks, then terminates
itself, thus completing the simulation run.

The simulation generates data for effective comparison
of the algorithms. The primary data of interest are the

34
correction values applied to the clocks. Analysis of this
data shows how soon the error value has stabilized close to
zero, and in how many cycles this occurs. This gives a very
good measure of performance quality for each algorithm.
Another data of particular interest is the time taken to
execute the algorithms. This is generated by the time taken
by the simulation to execute a specific number
synchronization cycles. Comparison of the times for
different algorithms gives a good measure of overall system
overhead.

35
CHAPTER 5

RESULTS AND CONCLUSION

Next we compare the data generated by our collection of
simulation runs. Comparisons are made for drift error
correction values generated for the three algorithms, and
also for drift observed by processors adjacent to erroneous
processors. Several configurations and drift conditions are
simulated for comparison. Configurations selected are the
hypercube, the array configuration, and a cube of twenty
seven processors with 3 X 3 in each plane, with three such
planes. Figures 5.1, 5.2, and 5.3 below show the
configurations.

Figure 5.1: HYPERCUBE CONFIGURATION

36

1813

13
242321 2220

Figure 5.2 : A 6 X 4 ARRAY CONFIGURATION

1 9 2 0 2 1

1Q.
1

18
7 g

8

Figure 5.3 : A NETWORK OF 27 PROCESSORS ARRANGED IN 3 X
3 X 3 SETUP

37
INTERPRETATION OF RESULTS

As the case of standard behaviour of any system,
transient behaviour in the system could be expected as the
error correction values is computed and applied. Initially
as the correction values are applied the processor clock
takes few cycles to attain stability for synchronization.
The behaviour of processors under both cases could be
considered for comparison of the behaviour of the
algorithms. As an effect of the transient behaviour large
variations in the computed correction values may be
expected. This transient nature should not continue for
larger number of synchronization cycles. A good measure of
the behaviour of an algorithm is how fast the algorithm
stabilizes. Under stabilized conditions the correction
values computed may continue at a constant level or vary
around a central value, with the variations lying within a
prespecified limits. The smaller the computed correction
value, or the smaller the variation of the computed
correction value, the better the performance of the
algorithm. Based on these factors we continue to compare
the results of the simulation run plotting graph for the
error correction value computed in Y axis, verses the
synchronization cycles in X axis.

38
Graphs depicting error correction value versus number

of synchronizations are shown for selected processor nodes.
In general the graphs describe drift and correction at a
specific node in a particular configuration. Performance
is compared for each of the three algorithms under the same
conditions.

OO

NUMBER OF SYNCHRONIZATIONS

Figure 5.4 : Drift without any correction applied

Figure 5.4 shows how a clock with drift moves away from real
time with passage of time if no correction is applied. The
clock difference increases with the number of

39
synchronizations. In this specific case the drift in the
processor is negative hence the clock values is lower than
the real time.

Figure 5.5 compares the performance of the three
algorithms, for reference node 4 in the Hypercube
configuration with a drift of -0.000003. If the values
are within acceptable limits the performance of the
algorithm is acceptable, but a better performance is
represented by smaller error correction values and faster
stabilization of the clock. As shown in this graph,
algorithm CNV attains stability faster than algorithm GH,
which stabilizes faster then algorithm LW. The error
correction values computed by algorithms GH and LW on
attaining stability are the same. Hence we conclude that in
terms of attaining stability algorithm CNV is better than
GH, which is better than algorithm LW. The graph shown here
is representative of the results obtained for this
configuration and various values of drift upto the limit of
±0.000005. This scenario represents a normal condition with
tolerable drift limit.

40

4 . 5

4

3 . 5

3

ft
3
f t 2 5
V
> r\
c “ >
0 t i

2

L ®
t i

a?
1 5

b w
L

i b

0 . 5

□

■CD EB □ II H -H-H-l III I I M I I I I I H M +-H II I I l-H

10 20 30 40 so 60

Nuirber o f S y n c h r o n iz a t io n s
□ A lg o : GH + A lg o : CNV o A lg o : LW

Figure 5.5 A sample graph showing drift correction
values over synchronization cycles.

Figure 5.6 is a case of processor with unacceptable
drift. The graph shows the clock difference perceived by
processor 3 and the drifty processor 4. Processor 3 is set
as a healthy processor without any drift and processor 4 is
set with a drift of -0.000009. The graph represents clock
difference between processor 3 and 4 for the three
algorithms as computed in processor 3. In case of algorithm
CNV, processor 4 because of its large drift rejects clock
values received from its neighbors due to a large difference

41
between the clocks. This forces the processor to continue
with the same clock without applying any correction to the
clock. This result justifies the assumption made about this
algorithm that if the local clock is faulty the processor
fails to synchronize. Thus with algorithm CNV we see that
the clock difference increases without any control. In
contrast, with algorithm GH and LW since the clock filtering
is not done based on the local clock the process corrects
the clock values and hence we see a smaller clock
difference. The configuration for this graph is an
hypercube.

o o o o o o o o o o o o o o!□□□□□□□□□□□!
++.

- 0 .0 0 0 0 4
++

-Q 0001
++.

-0 0002

- 0 0 0 0 2 4

- 0 ,0 0 0 2 6 10 20 30 40 500

Num ber o f S y n c h r o n i z a t i o n s

□ GH + CNV O LW

Figure 5.6 : Graph showing drift observed by processor 3
in terms of clock difference between processor 3 and 4.
Drift in 4 = -0.000009.

42

Figures 5.7, 5.8 and 5.9 are graphs for the three
algorithms GH, CNV and LW respectively. The specific
condition is a situation with two processors drifting in a
hypercube configuration. One processor is set with a larger
drift, and the second almost to the limit. The drift is as
observed from a processor which is adjacent to both of the
drifting processors. The situation is viewed from processor
5, a processor adjacent to the drifty processors. The
graphs represent the clock differences between processor 4
and 5 and processor 6 and 5, and the error correction value
computed at processor 5. From the three graphs we see that
only algorithm GH continues to keep processor 5 synchronized
despite its adjacent processors being erroneous. The graphs
show the requirement of minimum connectivity required for
the processors to synchronize. Figure 5.9 shows the case
for algorithm LW that processor 5 fails to synchronize,
forced due to its two faulty neighbors. A similar situation
in case of GH has processor 5 still synchronized.

43

oj□
a>
v.Lou
+J
h
a»-*-
vuo

D.00DD2
0

-0 00002
-0 .0 0 0 0 4

- 0 0 0006

-0 .0 0 0 0 8

-0.0001
- 0.00012
-0 .0 0 0 1 4

-0 .0 0 0 1 6

-0 .0 0 0 1 8

- 0.0002
- 0.00022
-0 0 0 0 2 4

-0 .0 0 0 2 6

-0 .0 0 0 2 8

- 0 .0 0 0 3

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ D O q

□□
□
□
□
□□

□□
□□

□O□
Do□ □

10 20 30 40 50

Number o f S y n c h r o n iz a t io n s
□ P ro c 4 + P ro c 6 b E r r Cor Val

Figure 5.7 Graph showing clock difference values and
drift correction for a specific processor. Ref prof: 5,
proc 4 drift = -0.000009, proc 6 drift = 0.000005.
Algorithm GH

C
lo

ck

d
ff

f
&

D
ri

ft

C
or

r
V

al
u

e

44

0.00002
0.00001

□ .
- 0 .00 0 0 1
- 0 .0 0 0 0 2
- 0 .0 0 0 0 3

- 0 .0 0 0 0 4

- 0 .0 0 0 0 5

-□ 00000
- 0 0 0 0 0 7

- 0 .0 0 0 0 B

- 0 .0 0 0 0 9

- 0 .0 0 0 1
- 0 .0 0 0 1 1
- 0 .0 0 0 1 2
-0 QDD13
- 0 .0 0 0 1 4

- 0 .0 0 0 1 5

- 0 . 0 0 0 1 6

- 0 . 0 0 0 1 7 j

-0. 0001B
0 10 2 0 3 0 4 0 50

N um ber o f S y n c h r o n i z a t i o n s
□ P r o c 4 + P ro c B O Brr C or V al

Figure 5.8 Graph showing clock difference and error
correction value in processor 5. Proc 4 drift = -
0.000009, Proc 6 drift = 0.000005, Algorithm : CNV

45

1 0

9 - +

8 +

7 -

6 + + + + + + +

5 -+ + + + + + + +

1 + + + + + + + + + + + + + + - H - + + + + + + + + + + + + + + - -
ID3 3 -I 2 -
Li 1 +
o r\ O (D 0 - Q +
+J LU

O
— r

- 1 □
❖

h co
- 2 —

0
<0 E - 3

*(- h -1
5 - 5 - g f i S S f l f l 8

Mu -B 6 6 0 o ° n 0 n 0 D ° D ^
0 - 7 -

-B -

- 9 -a
- 1 0 i i i i

D 1 0 2D 3 0 1 0 5 0

Number o f S y n c h r o n iz a t io n s
□ P ro c 1 + P ro c B o Err C or Va I

Figure 5.9 Graph showing clock difference and drift
computed at processor 5. Proc 4 drift = -0.000009, Proc
6 drift = 0.000005. Algorithm : LW

46
The next three graphs, Figures 5.10, 5.11, and 5.12,

show a sample of range of the error correction values
computed by the processors. The graphs are for the
algorithms GH, CNV and LW respectively. The configuration
is the hypercube configuration. The graphs compare the
error correction values and a sample range of these values
as computed by different processors.

a)
> r\IDa i O Uic o a *-l_a> co 1- ©
i- Eo Puoo

A A A A A A A A A

A A A A

-A AA AA A A A A A X X X X X X X X X

A A A AAAAAAA A A A A

XX XX XX XX

XXXXXXXXXXXXXXX VA7A7A7AVA7A7AVAVA

V V HX XX XX XX
-7WVVVVVVV VVVV V V V V V

7 7 7 7 X X X X X X X X X

V 7 7 V

7 7 V 7 7 7 7 V V
 1 1_

10 20 30 10 50 60

Number o f S y n c h r o n i z a t i o n s
A P ro c 4 E r r Cor Val X P ro c 5 E r r Cor Val 7 P ro c 6 E r r Cor Val

Figure 5.10 : Range of error correction values computed
by the processors. Processors 4, 5 and 6. For
Algorithm GH

47

CO3s
>9 3 AC O a> r-b in *- s
ot-wX

-AAAAAAAA

-2

-3

- 4

AAAAAAAAAAAAAAAAAAAAAMAAAAAAAAAAAAAAAAAAA

-KXXX

-VVVVVVV VVVVW W V W W V W W W W V W V W W W V W V W W W

10 20 30 40 50 60

Nuntoer o f S y n c f r o n t z a x i o n s
A P ro c 4 E r r Cor V al X P ro c 5 B - r C or V al V P ro c B E r r C or V al

Figure 5.11 : Range of error correction values computed
by different processors. Processors: A, 5 and 6.
Algorithm : CNV

In case of Figure 5.10 the transient behaviour though
lies well within safe limits the stabilized condition shows
the correction value about to fail. The correction values
for processor 4 swings between 0 and +8 cycles and for
processor 4 swings between 0 and -8. This is a case of
processor operating within its limits. Under similar
circumstances for algorithm CNV and LW the behaviour is vary

46
well within limits and algorithm CNV and LW's performance is
better in this specific case.

H0 r
b <n
M- 9)

□ I- V
00

7

6
5

4

3
2
1
0
-1
-2
-3
- 4

- 5

-6
- 7

- a

- 9

A A A A

A A A
■A A A

A A A A A A A

A A A A A A X X X X X X XA AAAAAAAAAAAAAAAA

A A A

X X X X X X X A A A AX XXXXXXXXXXXXXXXX

XX A A A
- X X X X X X X S V V V V V V

9 V V V

X V V V V J B X X X X X X V H W V W W W W W V W

- V V V V V V V

V

- V

V V V V V V V V

_L I _L10 20 3 0 4 0 50 8 0

N urrber o f S y n c f r o n t z a t I o n s

A P ro c 4 E r r Cor V a l X P r o c 5 E r r C or V a l V P r o c B E r r C or V a l

Figure 5.12 : Range of error correction values computed
by processors. Processors: 4, 5 and 6. Algorithm : LW.

Figures 5.13 and 5.14 are for an array network of 24
processors arranged as a 6 X 4 network. The graphs show a
comparative performance of the three algorithms in node 10
and 15 of the network. The graphs show the performance of
the algorithms. Algorithm GH has a larger value of error
correction values but is still within the acceptable range
The overall performance is comparable to the other two
algorithms.

5

4 -

3 -

2 -

1 - □ □ O □

0 -

0) - 1 _ □ +

3 -2 -+ O O O O □ E Q + n + O + O + D + O O + O O 0 o o o o
rS
> to

i
C Ui -3 -OfflBfflHfflBHBEffl+ffi+ffl+ffl ffi S3 □ + □ + □ □ + □ + □ + + + + +
0 o•— V
+J -4 - O O O O O Q Q D B O o + o o o + o o □ □ offl d b a s
O CO
2 1
0 P

- 5

o u -6 - O O O O O O O O o

o -7

- 8

-9

- 1 0 1 1

-a----------

□□□

0 1 0 2 0 3 0 4 0 5 0

N u rb e r o f S y n c h r o n i z a t i o n s
□ GH + CNV o LW

Figure 5.13 Graph comparing error correction value
computed by the three algorithms in a 24 processor 6 X 4
network. Reference processor : 10 , drift : 0.000003

Clk

Co
rr

ec
ti

on

Va
lu

es

CT
lm
es

1D
E-

B5

50

9 ---------

B - O O O O O O O O O

7 -

B - O O O O O O O O D d D D

5 - O O O O □ □ □ □ □ □ □ □ □ □ □ □ □

4 -o HfflnfflCfflfflHBafflfflfflfflaoononoffloaoBOffloao o o o + o o + o o + o <>

3 -+ffl O O O O O O +

2 —00 □ □ □ □ ! !

-I - □ O □ □

Q _________ I______;___I_________ I_________ I_________
D 4 0 2 0 30 4 0 50

Number o f S y n c h r o n iz a t io n s
□ GH + CNV O LW

Figure 5.14 Graph comparing error correction values
computed by the three algorithms at node 15 with drift of
-0.000004 in a 24 node 6 X 4 network.

o o o o o o o o o

o o o o o o o □□ □ □ □

O O O O □ □ □ □ □ □ □ □ □ □ □ □ □

- a B S Q S E lE B S S fflff iS S S D O O D O D O ffiO a o m O S O P O O O O + O 0 + 0 o + o <

- O O □ D □ □ t

□ o □ □

51
Figure 5.15 shows a sample input file for the

simulation run. The file contains the number of processors
in the configuration, and the number of synchronizations the
simulation executes. Other information like the adjacency
information among the processors is input as "adj_matrix"
and the drift specification for each processor is input
through the "drift_spec_array". The "mul_matrix" array
contains the number of processors connected to each
processor. The index for an element of the array acts as an
id for the processor to which this value is associated.

52

SYNCHCOUNT : integer := 50; — number of synchronization cycles to
set termination
NUM_OF_PROCESSORS : integer ;= 8; — * * * * * * * * * MUM OF NODES IN SETUP

EXPT_NUM : integer := 6;

adj_matrix : array (l..num_ofprocessors , 1. . num_of_processors) of
integer:=

(6, 4, 2, 0, 0, 0, 0, 0)
(1, 3, 7, 0, o, 0, 0, 0)
(2, 8, 4, 0, 0, 0, 0, 0)
(1, 3, 5, 0, 0, 0, 0, 0)
(4, 6, 8, 0, 0, 0, 0, 0)
(5, 7, 1, 0, 0, 0, 0, 0)
(2, 6, 8, 0, 0, 0, 0, 0)
(5, 3, 7, 0, 0, 0, 0, 0)

drift__spec_array : array (1. ,num_ofprocessors) of real ; =
(0.000000, 0.000000, 0.000000, -0.000004,
0.000000, 0.000003, 0.000000, 0.000000);

mulpnatrix ; array (1.. n u m p f p r o c e s s o r s) of integer : —
(3, 3, 3, 3, 3, 3, 3, 3); — * * * * * * * MULTIPLICITY ARRAY

Figure 5.15: Sample input data file showing configuration
data.

53
Conclusions:

The data collected from the simulation is used to
verify the initial arguments made about the proposed
algorithm. Arguments made about the algorithm GH as being

1. More or equally robust in terms of fault
tolerance than LW and CNV
2. Less overhead in terms of requirement of
minimal connectivity for satisfactory
synchronization,
3. Tolerance against faults in local clocks, has
been proved.

This is rightly indicated by the graphs in Figure 5.6,
5.7, 5.8 and 5.9. The failure of processor with fault in
local clock to synchronize, with algorithm CNV for
synchronization is shown in Figure 5.6. The graphs from
Figure 5.7 proves that GH is tolerant against local clock
failure thus overcomes a major drawback from algorithm CNV.
Figure 5.8 and 5.9 clearly shows how GH over comes the
requirement of minimal connectivity despite being connected
to two faulty processors and still continuing to
synchronize, where under similar situation algorithm LW
fails to do so. The discussion from comparing the graphs
clearly show comparable to better performance of algorithm
GH over the other two algorithms in worst case situations,

54
as well under normal situations. Hence algorithm GH proves
its merits over the other two algorithms.

55
REFERENCES

1. Leslie Lamport, "TIME CLOCKS AND THE ORDERING OF
EVENTS IN A DISTRIBUTED SYSTEMS", Communication of
the ACM, July 1978.

2. Parameshwaran Ramanathan, Kang G. Shin, Ricky
W.Butler, "FAULT TOLERANT CLOCK SYNCHRONIZATION IN
DISTRIBUTED SYSTEMS", Computer 1990 October.

3. Leslie Lamport, P.M.Mellier Smith, " BYZANTINE
CLOCK SYNCHRONIZATION ", ACM, June 1984.

4. Anne Dinning, " A SURVEY OF SYNCHRONIZATION
METHODS FOR PARALLEL COMPUTERS", Computer, July
1989.

5. " REAL TIME SYSTEM DESIGN ", Levi, Agrawala,
McGraw Hill Pub.

6. Jennifer Lundelius Welch and Nancy Lynch, " A
FAULT - TOLERANT ALGORITHM FOR CLOCK
SYNCHRONIZATION ", Information and Computation Vol
77, Number 1, April 1988.

7. Leslie Lamport and P. M. Melliar-Smith, "
SYNCHRONIZING CLOCKS IN THE PRESENCE OF FAULTS ",
Journal of the Association for Computing
Machinery, Vol 32, No. 1, January 1985.

8. " Discrete Event Systems, Modeling and Performance
Analysis ", Christos G. Cassandras, Aksen Associates
Inc., Publications.

	Clock synchronization in multiprocessor systems
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

