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ABSTRACT
GOKULDAS HEGDE K. , MS APRIL 1993 COMPUTER SCIENCE

CLOCK SYNCHRONIZATION IN MULTIPROCESSOR SYSTEMS

Principle Advisor: Ray F. Ford, Associate Professor CS Dept.

A fault tolerant algorithm to synchronize clocks in 
multiprocessor systems, which is independent of local clock 
conditions, and unrestricted in terms of minimal connectivity 
requirements is proposed. In the proposed algorithm each 
processor receives clock values from its adjacent processors 
and computes the error correction value after filtering out 
the faulty clock values in two stages. Usage of difference of 
clock values and filtering based on limits set at each stage, 
eliminates the drawbacks of previously proposed algorithms.

The algorithm is compared with two other algorithms for 
performance in terms of synchronization achieved and fault 
tolerance. A software simulation system written in Ada 
implements a multiprocessor system. Drifts can be introduced 
into each processor to simulate errors in clocks. The error 
correction values generated by the algorithms are compared for 
performance.

Results obtained by the simulation run demonstrate the 
advantages of the proposed algorithm in certain situations. 
The algorithm is independent of the local clock, and does not 
contain restrictions on the number of minimum connectivity 
required to be fault tolerant in terms of number of maximum 
faulty clocks tolerated by the algorithm before failing. The 
synchronization achieved is better or within tolerable limits 
in all cases.
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CHAPTER 1
INTRODUCTION.

One of the problems in a multiprocessor or distributed 
system is synchronization of multiple independent clocks. 
Every processor in a multiprocessor or distributed system 
contains its own clock. By nature these clocks have a 
tendency to drift away from their ideal time. This is due 
to varying frequencies of oscillators used in implementing 
the clocks. Clocks which are supposed to run at a definite 
rate may be slower or faster than the standard rate, thus 
creating differences between their actual and ideal value. 
Factors causing variations in the oscillator frequency are 
many, e.g., humidity, temperature, crystal oscillators, and 
electrical behavior of electronic components used in the 
oscillator circuitry. The problem of bounding the variation 
between a set of independent clocks, each varying to some 
extent from an ideal rate is referred to as the CLOCK 
SYNCHRONIZATION problem.

In designing multiprocessor and distributed systems the 
need often arises to generate a unique global clock, which 
can be referenced by all processors in the system. Clocks 
from different processors tend to drift at an unpredictable 
rate, thus a time value in one processor is generally not 
valid in another processor, whose local clock drifts at a 
different rate. This necessitates creation of a global



clock standard to be referred by all the processors in the 
network of processors.

There are several methods that can be used to create a 
global clock. Factors such as the cost of implementation 
and relative accuracy generally determine the feasibility 
of any particular method for a given application. Apart 
from these, other factors that are of importance, are the 
tolerance of the synchronization method to faulty clock 
values and faulty processors or communication subsystem. In 
any case best approaches typically can only bound the drift 
error and some small difference in clock values must be 
tolerated by the system. The selection of any method for 
clock synchronization thus requires careful analysis of the 
methods cost and the accuracy that it can achieve.

The following chapter contains a review of relevant 
work in this field, along with a brief discussion about the 
general methods used to implement a global clock, and their 
advantages and disadvantages. Certain parameters and 
relevant terms involving clock synchronization are also 
described. Assumptions made in implementing clock 
synchronization in various methods are also explained.

In Chapter Three a novel method for implementing clock 
synchronization is proposed. Comparison is made with two

2
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existing algorithms which fall under the same category, in 
terms of implementation cost and abstract complexity.

Chapter Four contains the description of a simulation 
system built to study the performance of the three clock 
synchronization algorithms in various simple contexts. All 
the three methods under study are implemented and verified 
for results. Data obtained by simulating the performance is 
also shown and explained.

Chapter Five contains the conclusions drawn from 
analysis of the simulation data, along with possible 
additional modifications that could be implemented to 
improve the proposed algorithms.



CHAPTER 2
SURVEY OF RELEVANT WORK

Several methods have been proposed and implemented to 
synchronize clocks. A general survey of relevant algorithms 
of interest is presented in this chapter.

UPDATE METHODS
Attaining a common clock between all the processors can 

be achieved in many ways. A simple method described by Levi 
and Agarwala [5] is by establishing a MASTER and SLAVE 
relation between the processors. One of the processors is 
selected as the MASTER and all the other processors are 
SLAVES. The MASTER transmits the clock to the SLAVES and 
the SLAVES operate using this clock. This arrangement is 
only appropriate for tightly coupled processors because the 
transmission delay of clocks causes difference in clocks 
among the processors. Failure of the Master clock brings 
down the entire system. Hence this method is unsuitable in 
critical applications that require fault tolerance.

Another method described by Parameshwaran Ramanathan, 
Kang G. Shin, Ricky W. Butler [2], Anne Dinning [3], and 
Leslie Lamport and P. M. Melliar-Smith [6] involves 
generating a logical clock at each of the processors using 
the local clock and clock values from the adjacent

4



processors. The logical clock value is computed based on an 
algorithm, which we call the clock synchronization 
algorithm. The logical clock can be generated by various 
methods: hardware, software, and hybrid, a combination of 
both hardware and software. Ramanathan, Shin, and Butler
[2] briefly explain these methods. They refer to Hardware 
methods as "Continuous Update Methods" because the special 
hardware allows the clocks to be updated or corrected 
continuously in real time. The clock values are transmitted 
to adjacent processors continuously, and hardware-based 
algorithms, such as phase correction or frequency 
correction, are used to generate an error signal from the 
received clocks. They refer to software methods as 
"Discrete Update Methods", because the clock correction is 
calculated and updated in discrete intervals by an 
algorithm implemented in software. Software methods are 
further classified into three categories: convergence 
averaging algorithms, convergence nonaveraging algorithms, 
and consistency algorithms.

Generally all software methods involve transmitting a 
clock value from processor A to B at a certain time 
interval. The clock values thus received by B are used by B 
to compute the error value, and to generate the corrected 
global clock. Assumptions made in these methods are that 
the clocks do not drift beyond certain limits within the
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synchronization period, and that no two processors differ in 
their clock values by more than a certain limit at any time. 
Several different software algorithms have been proposed, 
two of which are discussed in more detail below.

Hybrid methods use a combination of both hardware and 
software techniques. The extent of hardware and software 
involved depends upon the method of synchronization.

REVIEW OF EXISTING ALGORITHMS
Any study of clock synchronization algorithms assumes 

that the global clock is used to provide critical software 
synchronization for distributed systems. Lamport [1] 
describes the concepts of "time" and "clocks" in 
distributed processing along with the importance of clock 
synchronization and global clock based event ordering.

All global clock synchronization algorithms must 
satisfy two key conditions, though the precise structure of 
the conditions are suitably stated or modified for various 
methods of synchronization. The basic form of these 
conditions is stated below. Consider N processors, and let 
Pr,Pa, and Pb be any three processors:

1. Any two nonfaulty processes Pa and Pb
obtain approximately the same value for 
Pr's clock even if Pr is faulty.



2. If Pr is nonfaulty then every nonfaulty 
processor obtains approximately the same 
value of Pr's clock.

Apart from satisfying these two conditions several 
other factors affect the clocks. Parameters like 
transmission delays incurred while conveying time values 
from one processor to another, time required for reading 
clocks, and time for computing the clock synchronization 
algorithm, are of importance in implementing a 
synchronization system. Several assumptions are made about 
these and other time intervals while designing an algorithm 
The time elapse between two synchronization events, which i 
called the "Synchronization period", plays a major role in 
considering various delays. For larger synchronization 
periods, time intervals such as transmission and clock 
reading delays may be neglected. Several articles [1,2,6,7 
] have detailed analysis of such assumptions and proofs.

As described in [2] and [3] synchronization algorithms 
can be broadly classified as Interactive Convergence 
Algorithms and Interactive Consistency Algorithms. One 
example coming under the classification of Interactive 
Convergence Algorithms is the algorithm explained in [3,7], 
which we refer to as CNV. In this algorithm the clock 
synchronization correction value is computed as the average
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of the clock values read by the processor. This algorithm 
is one of the algorithms used in analysis of the proposed 
algorithm for comparison purposes.

The other two algorithms described in [3,7], COM and 
CSM are classified under Interactive Consistency Algorithms. 
In algorithm COM the correction value is computed as the 
"median" of the clock values received from the adjacent 
processors. Algorithm CSM associates a "signature" from 
every processor handling the clock value and calculates the 
correction value from the signatures and incoming clock 
values. In this scheme it is assumed that every processor 
generates a unique signature that cannot be altered by other 
processors. Every processor attaches its signature with 
every clock it reads and transmits. Each processor verifies 
the signatures associated with the clock it receives before 
validating the clock. By this method each processor 
ascertains that the clock is read by m+1 processors by 
identifying m+1 signatures, where m is the number of faulty 
clocks tolerated in the system. This is to assert that at 
least one nonfaulty processor has read the clock. This 
satisfies a modified requirement of the conditions stated 
above. The discussion in [2,3] also describes problems 
associated with reading clock values and methods to reduce 
errors in reading clocks.
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Further classification of Interactive Convergence 

algorithms leads to the two sub-categories Convergence 
Averaging and Convergence Nonaveraging algorithms. In 
Convergence Averaging Algorithms each processor computes a 
fault tolerant average from the clock values it receives 
from the adjacent processor clocks. This is similar to the 
Interactive Convergence Algorithm. In Convergence 
NonAveraging Algorithms not all processors compute a 
correction value. This synchronization process follows a 
MASTER-SLAVE relation in which one processor computes the 
correction value and behaves as a system synchronizer, 
sending the correction value to all other processors (i.e., 
slaves). The processors may also take turns in acting as 
the system synchronizers.

Schemes for synchronizing networks are explained in
[3]. Synchronization can be achieved at different levels.
At a lower level a few nodes connected as a cluster can be 
locally synchronized. Several such clusters can be 
interconnected and synchronized to form higher levels of 
synchronization. Hybrid synchronization methods are often 
used in such applications to avoid high cost of hardware 
synchronization yet achieve tighter synchronization than 
which can be achieved through software only synchronization 
methods. Dinning [4] introduces several synchronization 
mechanisms used in different parallel computers and
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discusses implementations of synchronization like semaphore, 
monitors and message passing methods. A formal explanation 
of such methods is given by Welch and Lynch [6]. Generally 
in these applications, if m is the number of faulty 
processors tolerated, then each processor on receiving 
clocks from its adjacent nodes rejects the highest m and 
lowest m values and then computes the correction value. The 
second algorithm to be used as a basis for comparing our 
proposed algorithm is one derived from the Welch and Lynch 
proposal. We refer to this algorithm as LW for analysis and 
comparison purposes.

The requirements for an algorithm to be fault tolerant, 
as explained in [5] are,

"In a Comprehensive approach to constructing a 
fault-tolerant time-server, one must start with 
providing the means for a local resynchronization 
of each time server in the system. This 
resynchronization updates the server's parameters, 
and thus the interpretation of the local clock.
However, one must introduce additional facilities 
such as clock broadcasts and participant-forum 
establishment. This additional support serves the 
requirements for fault tolerance. Combining the 
above facilities results in a comprehensive 
solution to a system-wide distributed time 
service".

Hence any system built to be fault tolerant must have 
facilities for local resynchronization, clock broadcast, and 
a forum for participant processors to communicate.
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REFERENCE ALGORITHMS
The two algorithms falling under the same category of 

Interactive Convergence Averaging Algorithms are selected as 
reference algorithms to compare with our proposed algorithm. 
These algorithms are simple in terms of the fault tolerant 
averaging function used to compute the correction. Thus do 
not involve complications of generating complex signatures 
for each processor in the network, as required by other 
class of algorithms. Finally, these algorithms do not 
involve extensive or specialized communication protocols.
The two algorithms are the CNV and LW algorithms described 
above. More details on the methods used in these two 
algorithms are presented below.

Algorithm LW, requires that m maximum and minimum 
values be eliminated. This imposes a condition on the number 
of processors that must be connected to any processor.
Since 2 * m values are eliminated, and there must be at 
least one value for computation of the correcting value, the 
minimum number of processors that must be connected to any 
processor Pr is,

<1> Min_connectivity (Pr) = ( 2 * m ) + 1
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Algorithm CNV uses clock values from its adjacent 

processors to compute its clock correction value. Though no 
limitations exist on number of processors that must be 
connected, the process of validating clock values is of 
concern. Each clock value received from an adjacent 
processor is compared with the local clock value. If this 
difference exceeds a.specified limit the adjacent 
processor's clock value is eliminated from computation. The 
valid clock values are used to compute the average which is 
used as the correction value. This causes problems in case 
the local clock is faulty. A faulty local clock would 
qualify clocks which are out of range, thus skewing the 
correction value towards the faulty clocks. The cumulative 
effect pushes the processor further out of synchronization, 
rather than pushing it into synchronization. This also 
makes it hard to reintroduce a repaired processor into the 
network, without the network being halted.



CHAPTER 3
PROPOSED ALGORITHM 

PROPOSAL
This thesis proposes an algorithm that overcomes some 

of the drawbacks of the two algorithms mentioned in the 
previous chapter. The proposed algorithm herein after 
referred as algorithm " GH ", can be compared with these two 
algorithms in terms of the synchronization achieved and cost 
of implementation. A theoretical comparison can be made for 
the worst case cost of computation, relative to a particular 
network and particular node. Comparison can also be based 
on performance.

In most of the above mentioned algorithms one
assumption made about the processors is that every processor
receives clock values from every other processor and then 
computes the error value. Certainly, this may not be 
necessary based on the transitive 
nature of the problem. Consider 
three nodes A, B and C connected 
as shown in Figure 1. If node B
is synchronized with node A, and
node C is synchronized with node 
B, then certainly node C is

13
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synchronized with respect to A. Thus by transitivity, it 
may not be necessary for every node in a system to be 
synchronized with every other node.

In the new GH algorithm the processor under 
consideration reads clock values from upto N neighboring 
connected processors. Each processor then computes the 
average difference between its local clock and the clock 
values it receives from its neighbors. A filtering is done 
with the average value as the midpoint, and using a 
bandwidth parameter that depends upon the accuracy of the 
synchronization required. The bandwidth is the range up to 
which the values are accepted both on the higher and lower 
side of the midpoint value. Filtering consists of marking 
all those difference values exceeding the specified 
bandwidth and calculating a new average based upon those 
values falling within the bandwidth. The filtering reduces 
the skew created by out of range values and helps obtain a 
more accurate correction value. This filtering is done at 
two stages to reduce the errors. At each stage the 
filtering marks out of range clock values as "bad" and helps 
reduce the effects of faulty neighboring processors.

The following section contains the details and 
comparison of three algorithms: the newly proposed GH 
algorithm, the interactive consistence algorithm CNV and the
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fault tolerant algorithm LW. For each algorithm we show the 
algorithm (in pseudocode), present a brief explanation of 
each of its stages of computation, and finally describe its 
abstract time complexity.

LIST OF SYMBOLS
A list of the symbols used in the pseudocode and 

analysis is given below.

DEGi : Number of processors connected to processor
i.

CLK( J ): Clock value read from adjacent processor J. 
This is an array to store all the clock 
values read from adjacent processors.

LMT1 : Range limit for qualifying values for first
level filtering in GH.

LMT2 : Range limit for qualifying values for second
level filtering in GH.

D_LMT : Range limit for qualifying values in the
CNV algorithm.

AVGi : Averages computed from the values.
Tr : Time on average for clock read.
Tadd : Time to compute an average.
TcomP : Time for comparison.
Tavg : Time for division or computation of average.
Tatagei : Time for a certain stage 'i' of computation.



Ttotai : Total time for algorithm.
16

PSEUDOCODE:
# Read DEGi clock values; N1 = DEGi
1 > for INDX1 from 1 to DEGi do
2 > " Read CLK( INDX1 ) and compute SUM "
3 > end for;
4 > AVG1 := SUM / DEGi;
# stage 1 filtering and computation.
5 > for INDX1 from 1 to DEG± do
6 > " Filter based on AVG1 and compute SUM

for remaining N2 filtered clock values ".
7 > end for;
8 > AVG2 := SUM / N2;
# stage 2 filtering and computation.
9 > for INDX1 from 1 to N2 do
10> " Filter based on AVG2, and compute SUM

for remaining N3 filtered clock values ". 
11> end for;
12> CORR := SUM / N3.

Figure 3.2: ALGORITHM GH

GH DEFINITION AND ANALYSIS
The GH Algorithm is presented in Figure 3.2. 

Lines 1 to 4 constitute the clock read, sum, and 
average computation. Assuming Nl = Deg±, the time 
computation for this stage is

< 2 > Tstagel := Nl * Tr + Tave ( Nl )

Lines 5 to 8 are the first filter stage. In this 
step the clocks are compared and all values passing the 
comparison test are used to compute the sum for next 
stage of computation. Assuming N2 is the number of



17
clock values qualifying from the comparison operation 
and satisfies condition N2 < Nl, the computation time 
for this stage is

< 3 > T3tage2 : = N2 * Tcomp + Tave ( N2 )

Lines 9 to 12 are the second filtering stage. 
Following filtering the number of output values N3 
satisfies N3 < N2. The computation time is

< 4 > Tstage3 : = N3 * Tcomp + Tave ( N3 )

The total time for execution of this algorithm is
given by the sum of execution time for three stages.

<  5  >  Ttotal : =  T stagel +  f  stage2 +  T stage3

< 6 > Ttotal := Nl*Tr + N2*Tcomp + N3*Toomp + Tave (
N3 ) + Tave ( N2 ) + Tave ( Nl )

< 7 > Ttotal := Nl*Tr + Tave (Nl) + Tave(N2) +
Tave(N3) + (N2+N3) *Tcomp

Since N3 < N2 < Nl, we replace N2 and N3 by Nl and 
bound the total exec time as
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< 8 > Ttotal < Nl*Tr + 3*Tave(Nl) + 2*Nl*Tcomp

PSEUDOCODE:
# Read Nl = DEGi number of clock values, filter, and sum.
1 > for INDX1 from 1 to DEG± do
2 > " Read CLK( INDX1 ), filter based on local clock
value, leaving N2 clock values, and compute sum
3 > end for;
4 > CORR := SUM / N2.

Figure 3.3: ALGORITHM CNV

CNV DEFINITION AND ANALYSIS
The details of CNV are shown in Figure 3.3. Lines 

1 to 3 implement clock reads, validation and summation
of clock values. The validation is done by comparing
each clock value to some parameter giving the limit for 
the maximum deviation allowed. The computation time is

< 9 > ^ s t a g e l  • Nl*Tr + Nl *Tcomp + Tave (Nl)
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PSEUDOCODE: ,
# Read N1 = DEG£ number of clock values.
1 > for INDX1 from 1 to DEGi do
2 > " Read CLK( INDX1 )
3 > " Find m maximum and m minimum values ".
4 > end for;
5 > Delete m maximum and m minimum values.
6 > for INDX1 in 1 to N1 - 2*m do
7 > " sum the values "
8 > end for;
9 > CORR := SUM / ( N1 - 2 * m ).

FIGURE 3.4: ALGORITHM LW

LW DEFINITION AND ANALYSIS
The details of LW are shown in Figure 3.4. Lines 

1 to 4 implement clock reads and identify m maximum and 
m minimum values. The time for finding m maximum and 
minimum values is estimated as m * N1 * Tcomp- T^e time 
for the read stage is as

< 10 > Tstagei :« N1 * Tr + m * N1 * Tconip

Line 5 is the deletion stage. Lines 6 to 9 
constitute the summation and computation of correction 
value. The computation time and total time are shown 
below.

< 11 > Tstage2 := Tave ( N1 — m )

< 12 > T total ■ ^"stagel ^stage2
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< 13 > Ttotal := Nl*Tr + m*Nl*Tcomp + Tave ( N1 - 2*m > 

COMPARATIVE ANALYSIS:

I . COMPLEXITY ANALYSIS:

Comparison of the total time for the three algorithms 
gives a relative measure of the potential cost for the three 
algorithms. The three equations are given below.

GH: Ttotal := Nl*Tr + 3*Tave(Nl) + 2*Nl*Tcomp

CNV: Ttotal := Nl*Tr + Nl*Tcomp + Tave(Nl)

LW: Ttotal := Nl*Tr + rn*Nl*Tcomp + Tave ( N1 - 2*m )

Assuming that N1 is the same for all the three cases, 
we compare the computation cost for the three cases. 
Canceling the common factor in all the three cases i.e., N1 
* Tr, we compare the relative cost, Rcost, of remaining 
factors. Let the cost of computation of Tcomp + Tave be equal 
to some value " k ". Considering the worst case we have
the cost of computation for each case.

GH: Rcost := 3 * N1 * k 
CNV: Rcost := N1 * k
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LW: Rcost := m * N1 * k

From the above three equations we note that the 
computation cost for CNV is the least, and that the cost for 
LW is less than that of GH only under the condition of m <
3. Also, note that the cost of GH is a constant 
irrespective of the degree of fault tolerance, but the cost 
for LW increases with the degree of fault tolerance.

In reality the value of N1 varies for the three 
algorithms. In CNV the value of N1 is assumed to be the 
total number of processors in the network, i.e., N1 = N.
In LW the value of N1 has to satisfy the condition given by 
< 1 >, but it is assumed to be less then the total number of 
processors in the network. Substituting f for m in < 1 >, 
then if f is one then N1 cannot be less than 3, so that 3 < 
N1 < N. For algorithm GH no apriori constraints exist on 
Nl, i.e., 1 < N1 < N.

Certain drawbacks of the algorithms are discussed 
below. In CNV the incoming clock values are compared with 
the local clock value and qualified for computation. This 
would cause serious errors if the local clock is erroneous. 
In LW and GH the local clock is used only to compute the 
clock difference. In case of LW the error correction value 
is computed by eliminating m maximum and m minimum values.
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In the case of GH the error value is computed based on 
computing the average of the clock differences and selecting 
clocks lying within suitable range. Since the local clock 
is not the only basis for computation of the error 
correction value, both the algorithms LW and GH are more 
suitable to tolerate local clock skew.

Algorithm LW imposes a condition on the minimum 
connectivity required for any processor, based on the degree 
of fault tolerance specified. Hence if the network is to 
tolerate upto one faulty processor then the minimum degree 
of connectivity of any processor has to be three by equation 
< 1 >. This does not fully address problems such as the 
inability of a processor PA to read the adjacent processor 
PB's clock. The inability to read an adjacent processor's 
clock within a specified timeout period reduces the number 
of clock values available for computation. Allowing for 
such failures implies that actual connectivity must be 
greater than the minimum connectivity given in equation <1>.

GH is designed to overcome the drawbacks described 
above, i.e., to reduce errors in computation due to 
erroneous local clock, and to reduce the minimum 
connectivity required for fault tolerance. The table below 
gives a comparative fault tolerance for each algorithm.
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ALGORITHM: GH CNV LW
CONNECTIVITY: N N 2 * m + 1 + N ^ 1
FAULT-TOLERANCE: N-l N—1 m

This comparison shows that algorithm GH and CNV are better 
in terms of fault tolerance than LW. Hence for the same 
degree of fault tolerance the connectivity required for 
algorithm GH and CNV is less than that for algorithm LW.

Finally comparing the cost of computation for the three 
algorithms we have:

ALGORITHM: GH CNV LW
COST: 3*N*k N*k m*N*k

Cost comparison shows that for small values of tolerance m 
cost for algorithm LW is low. But since N is large in case 
of LW the cost is higher than the other two algorithms. The 
value of N is relatively small in case of GH and CNV, thus 
reducing the cost considerably.

Thus, based on this high level comparison algorithm GH 
provides better fault tolerance than LW and CNV with a 
reasonable constant-bounded increase in compute cost.

1 Nto = number of values unable to read beyond time-out.



CHAPTER 4 
SIMULATION SYSTEM

SYSTEM REQUIREMENTS
The simulation system requirements are

1. A network of multiple processors.
2. Communication medium and means for 

communicating clocks.
3. A process or means to simulate simultaneous 

startup of the simulation system, thus 
satisfying the assumptions made about the 
algorithms.

4. A process or means to simulate clock drift.

Building a simulation system using hardware components 
would require multiple processors, a communication network, 
and extensive sophisticated monitoring hardware and 
software. Building a software simulation systems requires 
that comparable facilities be built in software. A hardware 
based simulator would be expensive and somewhat limited in 
scope. Software methods on the other hand are much cheaper 
and flexible. Any programming language which has the means 
to implement multiple processes would be a suitable choice 
to implement a simulation system. One such language is Ada, 
which directly supports multiple processes through its task 
construct and interprocess communication facilities based on

24
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"accept" statements and "entry" calls. Ada is the language 
used to implement the simulation system described here.

SYSTEM DESCRIPTION
The system contains a collection of tasks that each 

implement a single processor. Each processor performs 
synchronization activity after a certain period called the 
Synchronization Period. At this point the processor expects 
to receive clock values from its adjacent connected 
processors. If the processor does not receive the clock 
value from one or more of its adjacent connected processors 
it goes into a state called 'timeout', where the processor 
waits for a certain amount of time to receive this clock 
value. Eventually the value either arrives or the wait time 
expires. In either case, the process eventually proceeds 
into the synchronization computation state. On completing 
the computation state, each processor updates its clock to 
the new clock value using the computed correction value.
The mode of communication of the clock values may be either 
by broadcast or direct transmission to specific adjacent 
connected processors.

From the above description two types of events are 
evident, the synchronization event and the timeout event. 
These events are discrete events occurring at specific 
times. The nature of occurrence of these events and their
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ordering based on time makes it possible to implement a 
simulation system for these events using standard discrete 
events simulation techniques. Details on discrete event 
simulation techniques and program components can be obtained 
from reference[8].

There are certain other tasks that are essential during 
the startup of the simulation and completion of the 
simulation. The assumption that all processors are 
initially assumed to be synchronized within certain limits 
means that the simulation must start with (relatively) 
synchronized processors. Hence there is a startup task 
which ensures the initial synchronization of the processors. 
A termination task is also required to ensure proper 
termination of all the tasks on completion of the simulation 
run.

INPUT AND OUTPUT DATA
Apart from the tasks, the next most important aspects 

of the simulation system are the inputs it requires and the 
output it generates. The input data for the simulation 
defines algorithm-specific data constants, the network 
configuration, processor attributes, and the number of 
synchronization cycles the simulation has to run. Among the 
processor attributes is the specification of "drift" for 
that processor.



The simulation output contains all data related to 
system synchronization. This includes, for each processor, 
the clock differences observed during each synchronization 
cycle and the correction value computed for each 
synchronization cycle. The set of correction values 
provides a measure of drift in the clock over certain 
period, as well as a measure of the degree of 
synchronization achieved by a particular algorithm.

PROCESS DESCRIPTION

A set of processors is simulated by an Ada task type. 
This type is instantiated "N" times to produce "N" 
(simulated) processors. Each processor contains functions 
for clock synchronization and communication. The simulation 
system is implemented on traditional discrete event 
simulation principles. Each processor is scheduled into 
synchronization by a scheduler task. The scheduler task 
picks the top most request from an event queue and schedules 
that particular processor. An event queue is built upon 
request from each processor requesting service. The request 
contains the time at which the service is required and the 
type of service required by the processor. The event queue 
is dynamically built by placing the event requests in order 
of time, contained in the request, from each processor.
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Thus the event queue server functions as the driver for the 
entire simulation.

EVENT QUEUE
The event queue is serviced by the queue_server task or 

the scheduler. The queue_server picks top most item from 
the queue and makes a call to the particular processor task 
activating the function specified in the event item.
In case there is no event posted in the event queue, the 
queue_server continues to loop waiting for new events to be 
posted into the event queue.

STARTUP TASK
The startup task has the function of building the 

initial event queue. The startup task creates an initial 
event queue with one event for each processor. The initial 
function for each event is the event 'synchronize'.
The time for synchronization for each processor task is 
computed based on the synchronization period and drift 
specified for each processor. This is to satisfy the 
initial assumption made in the algorithm that initially all 
the processors are synchronized within certain limits.

TERMINATOR TASK
The terminator task accepts termination signals from 

the processor tasks. On receiving termination signals from
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all the processors it terminates the queue_server task. 
This is done to terminate all the tasks in an orderly 
fashion, and assure that all tasks are terminated.
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PROCESSOR TASK
The processor task contains the processes for 

synchronization. The call from queue_server instantiates 
the synchronization process. The synchronization process 
reads the clock values from the adjacent processes and 
initiates the error computation function. In case any one 
of the processor is unable to deliver its clock value the 
processor initiates a timeout call and posts an timeout 
event into the event queue. The queue_server reads the 
timeout event and initiates the clock read and the error 
computation function. Upon computing the error correction 
for the clock the clock is updated to the new correct value. 
It then computes the time for the next synchronization and 
posts a new synchronization event into the event queue.
This continues until the number of synchronizations 
performed reaches the limit set for the simulation run.
Once this limit is reached the processor task initiates a 
call to terminate, by calling the termination task and 
registering termination.

DATA STRUCTURES
The simulation system implements "broadcast" 

communication mode using an array data structure, of size 
equal to number of processors. This array contains the 
clock values broadcast by each processor. Another array of
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the same size is implemented to validate the clock value. 
Every instant a processors clock value is broadcast, the 
respective synchronization count is written to validate the 
clock value. Every time any processor reads the clock 
values from the broadcast array and finds one of the clock 
value is not valid it initiates a timeout event. Other 
data structures are local to respective tasks and functions.

OUTPUT FILE
Each processor creates an output file. The output file 

contains relevant data to that processor, like the processor 
id in the network, its adjacent connected node ids, and 
clock drift for the local clock, and data pertaining to the 
synchronization computation. Data relevant to 
synchronization are the clock difference computed between 
the local clock and its adjacent processor clocks, and error 
computed by the algorithm as the error correction value for 
the clock. Data such as clock difference and correction 
values for the synchronization cycles are recorded into the 
respective processor's output file.

SYNCHRONIZATION
The synchronization function is implemented as a 

function in the processor task. This function implements a 
particular algorithm. Several simulation runs are conducted 
for different configurations, different drift values, and
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for all the three algorithms. Data generated is used to 
study the synchronization pattern with each algorithm, on 
different processors, with differing configuration and drift 
rates.

Since the drift value in practice is impredictable, 
some random number is set which is within a certain range.
A normal drift allowed with the clocks in real life is about 
five to eight cycles, higher or lower for one MHz clock 
cycle. Hence a drift value within this range is normally 
selected. Anything beyond this value is considered an error 
in the clock. Since we can control drift as a simulation 
parameter any clock can be set with a larger drift to study 
effect on the synchronization algorithm.

All the three algorithms in this study compute 
correction values applied to local clocks. These values can 
be used to compare the quality of algorithm performance, in 
terms of the fastest convergence of clocks along with the 
required minimum degree of connectivity for this 
convergence. Based on the requirement of the algorithms 
several suitable configurations have been selected for 
running the simulation. The algorithms are also tested for 
the number of faulty processors that are tolerated. This is 
done by introducing drift in more than one processor. In 
case of more than one faulty processors the degree of
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adjacency required increases considerably, particularly the 
LW algorithm, which has implications on the configurations 
selected for study.

The actual functioning of the simulation system is as 
follows. Initially the startup task contains the task of 
building an event queue for all the processors. The first 
event created for all processors is the synchronization 
event. The synchronization timing for each processor is set 
upon considering the drift associated with each processor. 
The schedular task is activated by this time, which starts 
reading the event queue and activates appropriate events in 
the respective processor. Each processor upon completion of 
the current activated event, posts its next event into the 
event queue, along with the time value at which this event 
is to be activated. The queue server continues to pick the 
next (in time) event from the queue, and activates that 
event in the appropriate processor. This process continues 
until a termination condition is satisfied at each of the 
processor. At this point the termination task is activated 
which sets the final termination condition for each 
processor task, terminates the other tasks, then terminates 
itself, thus completing the simulation run.

The simulation generates data for effective comparison 
of the algorithms. The primary data of interest are the
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correction values applied to the clocks. Analysis of this 
data shows how soon the error value has stabilized close to 
zero, and in how many cycles this occurs. This gives a very 
good measure of performance quality for each algorithm. 
Another data of particular interest is the time taken to 
execute the algorithms. This is generated by the time taken 
by the simulation to execute a specific number 
synchronization cycles. Comparison of the times for 
different algorithms gives a good measure of overall system 
overhead.
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CHAPTER 5 

RESULTS AND CONCLUSION

Next we compare the data generated by our collection of 
simulation runs. Comparisons are made for drift error 
correction values generated for the three algorithms, and 
also for drift observed by processors adjacent to erroneous 
processors. Several configurations and drift conditions are 
simulated for comparison. Configurations selected are the 
hypercube, the array configuration, and a cube of twenty 
seven processors with 3 X 3 in each plane, with three such 
planes. Figures 5.1, 5.2, and 5.3 below show the 
configurations.

Figure 5.1: HYPERCUBE CONFIGURATION
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INTERPRETATION OF RESULTS

As the case of standard behaviour of any system, 
transient behaviour in the system could be expected as the 
error correction values is computed and applied. Initially 
as the correction values are applied the processor clock 
takes few cycles to attain stability for synchronization. 
The behaviour of processors under both cases could be 
considered for comparison of the behaviour of the 
algorithms. As an effect of the transient behaviour large 
variations in the computed correction values may be 
expected. This transient nature should not continue for 
larger number of synchronization cycles. A good measure of 
the behaviour of an algorithm is how fast the algorithm 
stabilizes. Under stabilized conditions the correction 
values computed may continue at a constant level or vary 
around a central value, with the variations lying within a 
prespecified limits. The smaller the computed correction 
value, or the smaller the variation of the computed 
correction value, the better the performance of the 
algorithm. Based on these factors we continue to compare 
the results of the simulation run plotting graph for the 
error correction value computed in Y axis, verses the 
synchronization cycles in X axis.
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Graphs depicting error correction value versus number 

of synchronizations are shown for selected processor nodes. 
In general the graphs describe drift and correction at a 
specific node in a particular configuration. Performance 
is compared for each of the three algorithms under the same 
conditions.

OO

NUMBER OF SYNCHRONIZATIONS

Figure 5.4 : Drift without any correction applied

Figure 5.4 shows how a clock with drift moves away from real 
time with passage of time if no correction is applied. The 
clock difference increases with the number of
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synchronizations. In this specific case the drift in the 
processor is negative hence the clock values is lower than 
the real time.

Figure 5.5 compares the performance of the three 
algorithms, for reference node 4 in the Hypercube 
configuration with a drift of -0.000003. If the values 
are within acceptable limits the performance of the 
algorithm is acceptable, but a better performance is 
represented by smaller error correction values and faster 
stabilization of the clock. As shown in this graph, 
algorithm CNV attains stability faster than algorithm GH, 
which stabilizes faster then algorithm LW. The error 
correction values computed by algorithms GH and LW on 
attaining stability are the same. Hence we conclude that in 
terms of attaining stability algorithm CNV is better than 
GH, which is better than algorithm LW. The graph shown here 
is representative of the results obtained for this 
configuration and various values of drift upto the limit of 
±0.000005. This scenario represents a normal condition with 
tolerable drift limit.
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Figure 5.5 A sample graph showing drift correction 
values over synchronization cycles.

Figure 5.6 is a case of processor with unacceptable 
drift. The graph shows the clock difference perceived by 
processor 3 and the drifty processor 4. Processor 3 is set 
as a healthy processor without any drift and processor 4 is 
set with a drift of -0.000009. The graph represents clock 
difference between processor 3 and 4 for the three 
algorithms as computed in processor 3. In case of algorithm 
CNV, processor 4 because of its large drift rejects clock 
values received from its neighbors due to a large difference
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between the clocks. This forces the processor to continue 
with the same clock without applying any correction to the 
clock. This result justifies the assumption made about this 
algorithm that if the local clock is faulty the processor 
fails to synchronize. Thus with algorithm CNV we see that 
the clock difference increases without any control. In 
contrast, with algorithm GH and LW since the clock filtering 
is not done based on the local clock the process corrects 
the clock values and hence we see a smaller clock 
difference. The configuration for this graph is an 
hypercube.

o o o o o o o o o o o o o o!□□□□□□□□□□□!
++.

- 0 .0 0 0 0 4
++

-Q 0001
++.

-0 0002

- 0  0 0 0 2 4

- 0 ,0 0 0 2 6 10 20 30 40 500

Num ber o f  S y n c h r o n i z a t i o n s  

□  GH +  CNV O LW

Figure 5.6 : Graph showing drift observed by processor 3 
in terms of clock difference between processor 3 and 4. 
Drift in 4 = -0.000009.
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Figures 5.7, 5.8 and 5.9 are graphs for the three 
algorithms GH, CNV and LW respectively. The specific 
condition is a situation with two processors drifting in a 
hypercube configuration. One processor is set with a larger 
drift, and the second almost to the limit. The drift is as 
observed from a processor which is adjacent to both of the 
drifting processors. The situation is viewed from processor 
5, a processor adjacent to the drifty processors. The 
graphs represent the clock differences between processor 4 
and 5 and processor 6 and 5, and the error correction value 
computed at processor 5. From the three graphs we see that 
only algorithm GH continues to keep processor 5 synchronized 
despite its adjacent processors being erroneous. The graphs 
show the requirement of minimum connectivity required for 
the processors to synchronize. Figure 5.9 shows the case 
for algorithm LW that processor 5 fails to synchronize, 
forced due to its two faulty neighbors. A similar situation 
in case of GH has processor 5 still synchronized.
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The next three graphs, Figures 5.10, 5.11, and 5.12, 

show a sample of range of the error correction values 
computed by the processors. The graphs are for the 
algorithms GH, CNV and LW respectively. The configuration 
is the hypercube configuration. The graphs compare the 
error correction values and a sample range of these values 
as computed by different processors.
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Figure 5.10 : Range of error correction values computed 
by the processors. Processors 4, 5 and 6. For
Algorithm GH
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Algorithm : CNV

In case of Figure 5.10 the transient behaviour though 
lies well within safe limits the stabilized condition shows 
the correction value about to fail. The correction values 
for processor 4 swings between 0 and +8 cycles and for 
processor 4 swings between 0 and -8. This is a case of 
processor operating within its limits. Under similar 
circumstances for algorithm CNV and LW the behaviour is vary
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well within limits and algorithm CNV and LW's performance is 
better in this specific case.
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Figures 5.13 and 5.14 are for an array network of 24 
processors arranged as a 6 X 4 network. The graphs show a 
comparative performance of the three algorithms in node 10 
and 15 of the network. The graphs show the performance of 
the algorithms. Algorithm GH has a larger value of error 
correction values but is still within the acceptable range 
The overall performance is comparable to the other two 
algorithms.
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Figure 5.13 Graph comparing error correction value 
computed by the three algorithms in a 24 processor 6 X 4  
network. Reference processor : 10 , drift : 0.000003
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Figure 5.15 shows a sample input file for the 

simulation run. The file contains the number of processors 
in the configuration, and the number of synchronizations the 
simulation executes. Other information like the adjacency 
information among the processors is input as "adj_matrix" 
and the drift specification for each processor is input 
through the "drift_spec_array". The "mul_matrix" array 
contains the number of processors connected to each 
processor. The index for an element of the array acts as an 
id for the processor to which this value is associated.
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SYNCHCOUNT : integer := 50; —  number of synchronization cycles to
set termination
NUM_OF_PROCESSORS : integer ;= 8; —  * * * * * * * * *  MUM OF NODES IN SETUP 

EXPT_NUM : integer := 6;

adj_matrix : array ( l..num_ofprocessors , 1. . num_of_processors ) of 
integer:=

( 6, 4, 2, 0, 0, 0, 0, 0 )
( 1, 3, 7, 0, o, 0, 0, 0 )
( 2, 8, 4, 0, 0, 0, 0, 0 )
( 1, 3, 5, 0, 0, 0, 0, 0 )
( 4, 6, 8, 0, 0, 0, 0, 0 )
( 5, 7, 1, 0, 0, 0, 0, 0 )
( 2, 6, 8, 0, 0, 0, 0, 0 )
( 5, 3, 7, 0, 0, 0, 0, 0 )

drift__spec_array : array (1. ,num_ofprocessors) of real ; =
( 0.000000, 0.000000, 0.000000, -0.000004, 
0.000000, 0.000003, 0.000000, 0.000000 );

mulpnatrix ; array ( 1.. n u m p f p r o c e s s o r s  ) of integer : —
( 3, 3, 3, 3, 3, 3, 3, 3 ); —  * * * * * * *  MULTIPLICITY ARRAY

Figure 5.15: Sample input data file showing configuration 
data.
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Conclusions:

The data collected from the simulation is used to 
verify the initial arguments made about the proposed 
algorithm. Arguments made about the algorithm GH as being

1. More or equally robust in terms of fault
tolerance than LW and CNV
2. Less overhead in terms of requirement of 
minimal connectivity for satisfactory 
synchronization,
3. Tolerance against faults in local clocks, has 
been proved.

This is rightly indicated by the graphs in Figure 5.6,
5.7, 5.8 and 5.9. The failure of processor with fault in
local clock to synchronize, with algorithm CNV for 
synchronization is shown in Figure 5.6. The graphs from 
Figure 5.7 proves that GH is tolerant against local clock 
failure thus overcomes a major drawback from algorithm CNV. 
Figure 5.8 and 5.9 clearly shows how GH over comes the 
requirement of minimal connectivity despite being connected 
to two faulty processors and still continuing to 
synchronize, where under similar situation algorithm LW 
fails to do so. The discussion from comparing the graphs 
clearly show comparable to better performance of algorithm 
GH over the other two algorithms in worst case situations,
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as well under normal situations. Hence algorithm GH proves 
its merits over the other two algorithms.
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