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CHAPTER I

INTRODUCTION

Harmonic analysis is about linear spaces and how
a group acts upon them. More particularly, harmonic:
analysis is about how the linear space "breaks up"
under action by the group, and about the subspaces that
are invariant under action by the group. In this paper,
the linear spaces we consider are Banach algebras. For
these algebras the closed invariant subspaces are the
closed ideals.

An important part of harmonic analysis is spectral
synthesis, and it is to this topic that we address our-
selves. A Banach algebra will be said to be of spec-
tral synthesis in case its closed ideals, i.e., its
closed invariant subspaces, can be determined in a very

predictable manner. Some very important algebras that

are of spectral synthesis will be examined. However,
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the principal theorem proved in this paper, Malliavin's
Theorem, is negative in the sense that it proves the
existence of a large and important class of algebras
that are not of spectral synthesis.

In the course of our study of spectral synthesis
we will study the rudiments of the theory of commutative
Banach algebras which allow us to present portions of
classical Fourier analysis in a very natural way. For
example, Weiner's Theorem is an easy corollary to
results on Banach algebras applied to the Banach algebra
of functions with absolutely convergent Fourier series.

The use of tensor algebra techniques'in the study
of harmonic analysis was introduced by N. Th. Varapoulos.
In this paper, tensor algebras are introduced without
recourse to the general theory of tensor algebras of
topological spaces. The definition of tensor algebra
is restricted to two factors, although the results are
readily generalized.

The elements of Fourier analysis on locally com-
pact abelian groups are presented, and Fourier analysis
on the classical groups, the circle group, the integers,
-and the real numbers, is treated. The Lebesgue spaces

are discussed and Ll is given special emphasis.

In the last chapter, a complete proof of the
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counterexample of Schwartz is given. ZFinally, the tools
developed earlier, the results of Banach algebras,
Fourier analysis on locally compact abelian groups,

and the tensor algebra techniques of N. Th. Varapoulos
are all brought together in the proof of Malliavin's

Theorem.
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CHAPTER II
ELEMENTARY THEORY OF BANACH ALGEBRAS

l. Definitions and Examples.

Definition: A is a normed algebra in case A is a

normed linear space with norm || - || and an associative
algebra over the complex numbers, C, such that \lxyll £

|V x| |ly |l for all x, ye¢A.. A is a Banach algebre in

case A is a complete normed algebra. A is a commutative

Banach algebra in case the multiplication in A is com-

nutative.,

If A has a multiplicative identity, we denote it
by 1 and we denote scalar multiples of 1 by the cor-
responding complex number. Without loss of generality

5, p.197] we require that whenever A has 1, [|1 (| = 1.

Examples: The field of complex.numbers, C, with

][x” = {x| is a commutative Banach algebra with identity.
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5

Let X be a compact Hausdorff space. Let C(X) be
the algebra of all continuous complex-valued functions
on X, with pointwise multiplication and addition. Let
C(X) be normed by the sup-norm: Hfl{c(x) = ii?x £(x).
C(X) is a commutative Banach algebra with identity.

Let A be a Banach algebra and let L(A) be the alge-
bra of all linear operators on A with pointwise addition
and standard multiplication, endowed with the operator
norm: [|TH = sug(\\Tx{(. L(A) is a (non-commutative)
Banach algebrgxgi%i identity.

This paper is principally concerned with commuta-

tive Banach algebras with identity.

2. Resolvent and Spectrum.

Definition: ILet A be a Banach algebra with identiity.

An element x A is invertible if there exists an element

x'le A such that x1x = x=x~1 = 1. The set of all invert-

ible elements is denoted by AL, The resolvent of x, Réx),

——————

is the set jA€C: (A -x)e A'l}.A The gpectrum of x, sp(x),
is the.set CNR(x). Let U be an open subset of C. A
function g mapping U into A is analytic in case g is
locally a convergent power series, i.e., for all AeU

there exists & neighborhood N(A) of A\ such that ALé&
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6
N(A) implies g(w) = Enojl a8, x* for a €C and x€A.
The aim of these definitions is to present an
important result, the Gelfand=- Mazur Theorem. To this
end we examine the spectrum of x and the resolvent of x

in greater detail.

Lemma 1: Let A be a commutative Banach algebra
with identity, and let x €A and ,\ € C. If x|} < \/\)
then M\ ¢ R(x) and (A-x)'l f xk/)\k"'l

Proof: Set y = x/)\ so that |[|yl| <l. Then all

we must show is that 1€ R(y) and (l-y)v'l = EI-:O yk .
Set ¥ Zk_n 3#. Then for m <n, we have ||Y - lel =
HZE:—;-»-]. y < Zk_m+l Hka » using the additive
and multiplicative properties of the norm. Since |[ly[/<
1, Iﬁ is a Cauchy sequence and has a limit in A, say
T= S, 7 . Now (1-y)% = ¥ (1-y) = 1-y**1. Bus

yn"' 0 as n—yo so that (1-y)Y = Y(1l-y) =

Note that this lemma also says that for AeC,
A € sp(x) implies ||xl{] 2 l/\l , i.e., sp(x) is contained
in a disc of radius ||x||. This lemma further asserts
that if ||x-1|| < 1 then x eA”l ana xt = Zlfio (1-x)¥ .
For if (|x-1i| < 1, [l—(l-x)} Loyl o 2;_20 (1-x)K

by direct application of the lemma.
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7

Lemma, 2: Let xe A be invertible and let ye A

satisfy |ly~-x|| < llx_l\l -1

y"l =x1l= ]:__ o (1-x-ly)k.

« Then y is invertible and

Proof: )\l—x'lyllf”x'lu |} x=yll < 1. If we apply

the above observation to x'ly the proof is complete.

Lemma 3: The spectrum of x, sp(x), is non-empty
and is compact in the usual topology of the complex
numbers. The function A —>( A -x)~% is analytic on R(x).

Proof: We have already noted that sp(x) is con-
tained in a disc of radius ||x|l. Suppose then that Ay&
R(x). The series =, ( Ag= AX( og-x)"5* 1) o ney)
is analytic in the disec [A€C: |A= Xl< [[(Agx)7H| 7L,
Prom Lemma 2 we have

(A=1)"2 = (M) EE D (3= Ag=x) I A= A Ax)E

= =00 (Ag= AE(Ag=x)

= h(A).
Consequently R(x) is open and A—> (A -x):"l' is analytic
on R(x). We must show that R(x) is not the entire com~
plex plane. Assume that R(x) = C. Then A—s (A -x)"t
is an entire function. As |A]l—%®  (x- N =
x| “Li(x/ -1)7HI— \Al"™t— 0. We can argue from
Liouville's Theorem, which says that every bounded entire

function is a constant, that (x- ).)?-l = 0. This is
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8.
clearly impossible, so that R(x) is not the entire com-~

plex plane, and sp(x) is non-empty.

Theorem 45 (Gelfand-Mazur) If A is a communta-

tive Banach algebra with identity and A is also a field,
then A is isometrically isomorphic to the field of com-
plex numbers.

Proof: Every commutative Banach algebra with
identity has a subalgebra which is isometrically iso-
morphic to the field of complex numbers. All that must
be shown is that A consists only of scalar multiples of
le If xeA there exists aj{eép(x) by Loamea 3.. Now
A.-x#A"l so that A =-x = 0 since the only non-invertible
element of a field is O, Consequently, A= x and the

theorem is proved.

3. The Maximal Ideal Space.

Let A be a commutative Banach algebra with identity.
Denote by MA the set of all maximal ideals of A. MA is
called the maximal ideal space of A. We start the dis-
cussion of the maximal ideal space with & lemma about

commutative rings.

Lemma 5: Let A be a commutative ring with identity.

Every proper ideal of A is contained in a maximal ideal.
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9
Every non-invertible element of A is contained in a
maximal ideal. An ideal I of A is maximal if and only
if A/I is a field.

Proof: TLet I be a proper ideal of A. Let S be
the set of all proper ideals of A that contain I, and

.let S be inductively ordered by inclusion. Then the
hypotheses of Zorn's Lemma are satisfied for S and Zorn's
Lemma gives us a maximal ideal that contains I.

If xe A is not invertible, then xA = [xa: a€ A}
is a proper ideal of A. Since xe¢ xA and xA is contained
in a maximal ideal of A, x is contained in & maximal
ideal of A,

Suppose that A/I is a field. Then A/I has only
two ideals, {0} and A/I. Now there is a one-to-one
correspondence between the ideals of A/I and the ideals

of A that contain I. Thus I is maximal. On the other
hand, suppose I is maximal. Then 4/I can have no pro;

per ideals. Hence A/I is a field.

In case A is a commutative Banach algebra with
identity and I is a maximal ideal of A, we wish to show
that A/I is isometrically isomorphic to C. If A is an
algebra and I an ideal of A, then A/I is also an alge-

bra. If A is a normed algebra and I is a closed ideal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
of A then A/I is a normed algebra with quotient norms
[\ x+I ||l = inf {Hy“ : x+I = y+I,i.e., x-ytsI}. If A
is also complete, then so is A/I. Thus all that re-
mains to be shown is that if I is a maximal ideal of

A then I is closed.

Theorem 6: Let A be a commutative Banach alge-

bra with identity and let I be a proper ideal of A.
Then the closure of I, I, is a proper ideal of A.
Consequently all maximal ideals are closed.

Proof: Let I be a proper ideal of A. Clearly,
T is an ideal of A. Since I is proper, x<¢ I implies
X is not invertible. Thus as was observed after Lemma 1,
|| x=1]] 21 for all x¢ I and hence for all x€TI. Thus
14‘? so that I is proper. In case I is maximal, T
is proper implies I = I, that is, all maximal ideals

are closed,

Corollary 7: If A is a commutative Banach alge-

bra with identity and I is a maximal ideal of A, A/I

is isometrically isomorphic to the field of complex

numbers.

Proof: Lemma 5 and Theorem 6 combined with the

Gelfand-Mazur Theorem give the desired result.
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Definition: Let A be a commutative Banach alge-

bra with identity and let ct) be a non-zero linear func-
tional on A. & is a multiplicative linear functional

in case ¢(xy) = ¢(x) c{a(y) for all x, y<¢A, that is,

¢ is an algebra homomorphism of A into C.

Lemna 8: If ¢ is a multiplicative linear func-
tional then cf> is continuous and Hd‘)H = 1.

Proof: If xe¢dA and \Al » \\x|\ then A-x is
invertible by Lemma 1. Now cb(l -x) ¥ O. Hence
| ©(x)| ¢ xll so that Ckbis continuous. Since |\PI\ =

sup | P(x)| and (1) = 1, we have 1Pl = 1.
Hxi ¢l

Theorem 9: ILet A be a commutative Banach alge-

bra with identity. There is a one-to-one correspondence
between the multiplicative linear functionals on A and
the maximal ideals of A.

Proof: If gb is a multiplicative linear func-
tional, denote the kernel of ¢ by kerd. If x € kerd
¢(x) = 0. If‘xekergb and y€ A, sb(xy) = q5(x) fﬁ(y) =0
so that xyc kerd , that is, kerd is an ideal. Since
G (1) = 1 xerd is proper and since A/kerd =C kerd
is maximal. On the other hand, suppose that I is a |

maximal ideal of A. Then since A/I = C, the projection
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12
¢nAf—9A/i is a complex-valued homomorphism of A with

kernel I.

Following Gamelin, we hereafter identify each
maximal ideal with the multiplicative linear funetional

that it determines.

Definition: Let A be a commutative Banach alge-

bra with identity. The conjugate (or dual) space of A

is the set of all continuous linear functionals on A

and is denoted A¥*,

We are seeking to topologize MA' ObViously Mi'Q
A%, so0 that MA can inherit topologies from A*. A¥* has
two important topologies, the norm topology and the
weak-star topology. The weak-star topology is the weak-
est topology, in the sense that the collection of open
sets is minimal, such that the mapping L-—L(x) is
continuous on A¥ for each xe¢ A, L¢ A¥, Choose LoeA*
and Xys Xpr ees ,xneA and € > 0. A besic weak-star
open neighborhood, U, of L0 is given by the formula
U= (Lea®: |I(x;) - Iolx)l<€ 5 & =1, 2, oeu ynf.
A weak-star open set is any union of such basic neigh-

borhoods,.

Theorem 10: MA is a compact Hausdorff space
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with the weak-star topology.

Proof: M, is a subset of the unit ball of A¥
whi;:h is a compact set by Alaoglu's Theorém.n If {Cb/\g <
M, and Qb/\(x) —> ¢(x) for all xcA then @,(xy) =
CP) (x) CP)(Y)'—i' P(x) P(y) = P(xy). Hence M, is closed
and consequently compact. If (Pl + @, there exists
x<eA such that &,(x) + P,(x). Thus \QD]_("x) - CPZ(x)\ >€
for some real number €3> 0. Set Uy = [yel: | @i(x)- ¢(x)|<
€ /2{ ena U, = (Yemz | d,(x)=9(x)|< €/2]. Then
UNU, = fand ¢,€U;, §,€U,. Hence M, is Hausdorff.
4. The Gelfand Transform.

Definition: Let A be a commutative Banach alge-

bra with identity and let x¢ A. The Gelfand transform

£ of x is a complex-valued function on MA given by the
formula: X(QP) = P(x), for all d)éMA. The algebra
of all Gelfand transforms is denoted X and is called

the Gelfand space of A.

Lemma 1l: The Gelfand transform x—>% is an alge-
bra homomorphism of A onto X. The functions in A are
continuous and & separates the points of MA and contains
the constants. The Gelfand transform is norm-decreasing,

that is, [Xly < 1=,
A
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Proof: Since X#3(9) = dlx+y) = R(P) + §F( ¢),
and Xy(Q ) = d(xy) = &(x) Py) = £ $)F(P), for all
X, Y€ A, @ €M, it is easy to see that the Gelfand trans-
form is an algebra homomorphism. Also ﬁ contains the
constants since 1(®) = 1, for all $€M,. The weak-
star topology is defined to be the wezkest topology such
that the Gelfand transform is continuous. From the
proof of Lemma 8 we have that \cp(x)t < Ix|| for all
bem, xca, dce., RPN = |P(x)]| < i x\l. Thus
WSy, = gupy 18O < (1xll . Fimally if x( ¢)) -
x((pz) for all xe A, then 4’1"‘) = sz(x) for all x<A,
i.e., cpl = 452. Thus A separates the points of M,.

Lemma 12: If x €A then the spectrum of x, sp(x),

coincides with the range of %, £ (MA)'

Proof: Suppose A€ sp(x). Then A=-x is not in-
vertible and by Lemma 5 A~-x belongs to some maximal
ideal of A. By Theorem 9 this maximal ideal is the ker-
nel of a multiplicative linear functional, say ¢ . Then
Q(/\-x) = O implies qb(x) = :’E(cp) = . Hence, AeJ?(MA).
On the other hand, suppose ;Lex(MA). Choose @eMA such
that %(@) = A. Then @(x~ A) = O so that x-Ais not

invertible and A ¢ sp(x).
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5. Two Examples and Weiner's Theorem.

Example: If X is a compact Hausdorff space and
C(X) is the algebra of all continuous complex-valued
functions on X then C(X), endowed with the sup-norm is
a commutative Banach algebra with identity. For every
x ¢ X, the evaluation homomorphism dpx defined by QJx(f ) =
£(x) for'all ££C(X) belongs to M, (x)- On the other hand,
every ¢ €I, (x) is en evaluation homomorphism Cf)x at
some point x€ X. For suppose Q¢ MC(X) is distinct from
each ¢,. Then for every x¢X there is £ ¢ C(X) such
that fx(x) % 0 and cp(fx) = 0., Then )kaz)o in a neigh-
borhood of x and c'p(]fxiz) = ¢ (£,)¢ (F)) = 0. Since

X such that | £_1% +
*1

X is compact, choose X1s Xpy eee 3X

| £ \2 +oeee + (£ 12 = g is positive on all of X. Then

X

2 n
g is invertible so d(g) # O. This contradiction proves
that Q(D = d)x for some x ¢X. Thus XxX— CPX is a homeo-

morphism between X and Mc (X)"

Example: Let Il be the set of sequences a =

oo With
ao\a,n\-LCJD . it

(2,} no—e With norm all = =,

pointwise addition and convolution (o = axb, ¢ =

oo
= k=-q>an-kbk) as multiplication ﬂl is a commutative

Banach algebra with identity. Let e, € 11 be the sequence
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nth entry is 1 and all other entries are O. eg is the

n+k’ enjl = e, Also

so that 4 1 is generated by e, and e_q- For

identity for 11. Since e,xe,. = o
n L
(el) = en

1 _ _ o0
a(-,@ a = ' n,--aoanen wherea €C.
Choose A¢C such that \ll = 1., Then d)_k de-

©
fined by qu\(a) = = a AB i g multiplicative linear

n=-w ‘n
functional on _Ql, Choose_ q!'eM ¢1° Then \ dp(el)l £
leyll =1 and |Pe_ )= 'lct)(el)l"l_/; \\e_;\| = 1. Hence

l Cp (el)\ =1, ana Q= Cp(p(el) on the generators ofxl.
Thus N 1 can be identified with the unit circle. Set
X = o1 14,10 ® _i0

=e 7. Forac R %8(e”") = = __ ,ae . Consequently,
4% is the family of continuous functions on the wunit

circle with absolutely convergent Fourier series.

Lemma 13: Let A be a commutative Banach algebra
with identity and let Xir Xpy eee 9%, €A. Then either
Cb(xi)::o)l ¢i ¢n, for some C{DGM or else there exist
Y11 For ees 1Y €A such “that Zl__l x;y; = 1.

Proof: Let I be the ideal generated by X1s Xoy eee
x, that is I = {.Z;’_:lil X;¥; ¢ Y364, 1< ign}. If I is
proper, by Lemma 5 I is contained in a maximal ideal which
is the kernel of a multiplicative linear functional, say
® . Then cp(x ) = 0 for 1¢<i<n. If I is not proper

1€Il, i.e., ZJ' =n 1 X35 = 1l for some in-A, l<i<n,
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Theorem 14: (Weiner) If £15 £55 «ee,f are

continuous functions on the unit circle with absolutely
convergent Fourier series and no common zero, then there
exist 819 81 eee 18, continuous functions on the unit
¢circle with absolutely convergent Fourier series such
that &} 1'n £,8; = L.

_P_x_'g_gg: In the exsmple above we have identified
;Ei.with the family of continuous functions on the unit
circle which have absolutely c¢onvergent Fouier series.
Thus f; = Qi for some a;e ﬁl, 1<ién., The ideal gen-
erated by the a must be all of ,@l or else by Lemma 13
:E-‘i(eig) (elg) O for some ©, 0£ 82T, LeCe,
the fi have a common zero. Thus there exist bie=4?l,
1<i<¢ n, such that ;?i=? ajb; = 1. Set g =b;.

Then we have Zl__n £.8; (elg) = Zl‘n '\A (919) =
/Zlf:%\b (63€) = T(e19) = i€

form is an algebra homomorphism.

s since the Gelfand trans-

Lemma 15: Let x€A. Let h be a complex-valued
funetion which is defined and analytic on x(MA) = sp(x).
Then +there exists g €A such that & = hoX..

Proof: The Cauchy integral formula gives us that
n(zg) = /271 u& h(z)/z-z, dz, zoesp(x), for an
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appropriate contour T around sp(x). We define g =
1/2mi f‘]}] n(z)/z-x dz. Then {(g) = &(P) =
l/2mi fT h(z)/z- $(x) dz = h(P(x)). Thus g = hoX.

Theorem 16: (Weiner-Levy) If £ is a continuous

function on the unit circle with absolutely convergent
FPourier series and if g is a function analytic in a
neighborhood of the range of £, then geof has absolutely
convergent Fourier series.

Proof: As in Weiner's Theorem above, f = & for
some a ¢ ,(71. Now the range of £ is equal to Q(Mﬁl) =
sp(a) and g is analytic in a neighborhood of sp(a). By
Lemma 15 there exists be _Ql such that P = go'e\, = gof..
Thus gef is a continuous function on the unit circle

with absolutely convergent IFourier series.

6. The Spectral Radius Formula.

Definition: Let A be a commutative Banach alge-

bra with identity, and let x¢A. The spectral radius

of x is sup Ul“ Ae sp(X)} = “x“MA'

Theorem 17: The spectral radius of X< A is given

by llx!\MA = lim |} x?|| /n
n
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Proof: TFor any positive integer n and for cb € MA
la
| X ¢){ = | ¢ )\1/11;': \1,xnlll/n. Hence |[[x/l; <
A
lim inf \\xnlll/ B, Let L be any continuous linear func-
on

tional on A. Define h() = L{(A-x)"1) for A ¢ sp(x).

Now L is analytic on R(x) and h{(A) = E::_O L(xn)/l}um'l

is convergent for |[A[|> H%H . By the uniform bound-
A

edness principle sup (\anl/u,; = M for some real

number M. Consequen’cly, lim sup 1Bl 1/n —
lin sup yi/n ,\l #1/a _ | . Since this inequality

holds whenever I[A] 2 || xll y. We have lim sup [ =] 1/a <
A n
I % 1, ° Combining with the above inequality we have

i iium ¢ lim_inf || 2"l 1/n¢ q4m sup uxnlll/n sn:'c‘HM .
A n A

Hence lim || 2| 1/a exists and equals !l:AcHM
n A

A
Corollary 18: The Gelfand transform x—>x is an

igsometry if and only if Hxl/'2 = }Ile( for all xeA.

Proof: If szﬂ = (x|l 2 for all X ¢ A then || x2n
i ﬁc// 2n for 2all nz1l., Hence || X |l = [{ x2n l/2n > | x“r‘ﬁ

On the other hand if x—X is an isometry \| x°|| =

(! :22(( M, = || R 2MA = || x| 2
The spectral radius formula gives a description
of the kernel of the Gelfand transform: X = O if and
only if l;'.lml)xnli /a _ o, 1f 1im (15211 /2 _ 0 then
n
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X is called a generalized nilpotent. On the other hand
% = 0 if and only if ((x) = O for all Qel,, i.e., x

belongs to the intersection of all maximal ideals.

Definition: ZLet A be a commutative Banach alge-

bra with identity. The intersection of all maximal
ideals of A is called the (Jacobson) radical of A. A

is called semi-simple in case the radical of A ={O],

that is, A is semi-simple in case the Gelfand trans-

form is an isomorphism.

Let I be an ideal of A. The set of all maximal
‘ideals that contain I is called the hull of I. Alterna-
tively, the hull of I is the set of all *#e MA suoh_that
G(x) = 0 for all x€I. The hull of I is a closed sub-
set of MA.

Let E be a subset of MA’ The kernel of E is the
intersection of all ideals that belong to E. Alterna-
tively, the kernel of E is the set of all x€ A such

that ¥ ( ¢) = O for all ¢¢E.

Definition: A is regular on MA in case for every

closed subset E of I, and for every ¢ ¢ MNE there is

an x ¢ A such that X( ) = P(x) = 0 while X(¢P) = 0

for all e E. If A is regular on M, we say that A is a
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regular Banach algebra.

Finite unions of hulls are hulls and arbitrary
intersections of hulls are hulls so that the hulls of the
ideals of A can be taken as the closed sets for a topol-
ogy on M,. For any subset E of M, the closure of E, E,
in this topology is the hull of the kernel of E. Hence
this topology is called the hull-kernel topology.

Theorem 19: The weak-star topology on MA and the

hull-kernel topology on MA coincide if and only if A
is a regular Banach algebra.

Proof: We have already noted that every hull is
a weak-star closed subset of MA' What we must show then
is that if A is a regular Banach algebra every weak-star
closed subset of M, is a hull. Let E be a closed sub-
set of MA' Since A is a regular Banach algebra for
every fc M,\E there exists xcA such that A P) 0
but X = O on E. Then {x ¢A: £ =0 on E} is an ideal of
A and E is its hull. On the other hand, if the topologies
coincide and E is a closed subset of Mﬁ, E is the hull
of an ideal I. Now if ¢ ¢ M,NE there exists x &I such

that Q(q/) £ O while X vanishes on E. Thus A is regular

on MA_
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7. Spectral Synthesis.

Definition: Let A be a regular, semi-simple

commutative Banach algebra with identity. Let E be a
closed subset of MA‘ Define the following sets:
I(E) = {xcA: 2(8)=0 forall ¢ ¢ Ef
Io(E) = {xeA: £ =0 on a neighborhood of E}
J(E) = TB’(_ET, the closure of IO(E).

E is a set of spectral synthesis in case J(E) = I(E).

Note that I(E) is the kernel of E and that I(E)
is the largest ideal that has E for its hull and IO(E)
is the smallest ideal that has E for its hull so that
Io(E) <J(E)CI(E). To illustrate this definition we
return to an earlier example. ILet X be & compact
Hausdorff space, and let C(X) be the set of all contin-
uous complex-valued functions on X. We have already
i1dentified MC(X) and X. We will show that every
closed subset of MC(X) is a set of spectral synthesis.
Let E be & closed subset of My(y). Since J(E)SI(E)
all we must show is that I(E)S.J(E). Choose f€I(E),
so that f(x) = 0 for all x€E. Let U be any open
neighborhood of £, say U = {ge c(X): llf-gl\«‘:}, for
some real mumber ¢3>O0. Then UNEEYNIL(E) * 4, i.e.,

feIH(E) = J(E) and E is a set of spectral synthesis.
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We can in fact show more about the ideals of
C(X). Ve will show that every ideal is dense in the
kernel of its hull. ZLet H be an ideal of C(X) and let
Z(H) ve the hull of H. Then IO(Z(H))E.H[S.I(Z(H)) since
Io(BE) is the smallest. ideal that has Z(H) for a hull
and I(Z(H)) is the largest ideal that has Z(H) for a
hull. Since Z(H) is a closed subset of Ma (x) Z(H) is
a set of spectral synthesis. Thus T%KET?TT = I(Z(H))
so that & = I(Z(H)). 1In words; H is dense in the
kernel of its hull. In case H is a closed ideal of
C(X), H:is the kernel of its hull, that is, H is the
intersection of the maximal ideals of C(X) that contain
H. In this example we see that if E is a closed subset
of MC(X) the kernel of E, I(E), is the only closed ideal
of C(X) that has E for its hull. Thus the closed subsets
of My y) completely determine the closed ideals of C(X).

Spectral synthesis is frequently defined in
another non-equivalent fashion. Let A be a regular
semi-simple commutative Banach algebra with identity.

A closed subset E of MA is said to be a set of spectral

synthesis in the second sense in case the kernel of E

igs the only closed ideal H! of A such that the hull of H

is E.
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If E is a set of speciral synthesis in the second
sense then E is a set of spectral synthesis. What we
‘must show is that the hull of J(E) is E. Now M, is a
compact Hausdorff space so that we can find a closed
subset F of'Mk such that E is a subset of the interior
of e Since A is regular we can choose x¢ A such that
*(®) + 0 and x(F) = O for every P& M,\E. Since E is
a subset of the interior of F, xe;IO(E). Since this is
true for all ¢ ¢ MANE the hull of J(E) must be E. Thus
J(E) = I(E) so E is a set of spectral synthesis.
In general, it is not true that if E is a set of
spectral synthesis then E is a set of spectral synthesis
in the second sense. In the next section we will examine

a case in which the two definitions are equivalent.

Definition: A regular semi-~simple commutative

Banach algebra is said to be of spectral synthesis in

case every closed subset of‘MA is a set of spectral syn=-

thesis. Spectral synthesis is said to fail in A in case

A is not of spectral synthesis.

Note in the above example C(X) is of spectral
synthesis. One of the principal goals of this paper is

to0 prove Malliavin“s‘Theorem, which says that speciral
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synthesis fails for an important class of Banach algebras.

8. Some Basic Facts of Fourier Analysis.

Definition: A group G is an ICA group in case &

is a locally compact abelian group. If G'is an ILCA group

a character of G'is a continuous homomorphism of &G into

the group of complex numbers of modulus 1 (the circle
group). The set of all characters of &, denoted [ ,

is an abelian group under pointwise multiplication, and
is called the dual group of G or the character group of

G.

If G is an ICA group with normalized Haar measure
and 0<p<oo, LP(G) is the space of all
Borel measurable functions £ on & such that Jéjfipdx'<09.
A norm for LP(G) is given by |I£l], = ( J&jflpdx)l/p.
If we identify the functions in LP(G) that differ only
on a null set LP(G) is a Banach space.

For f, geLPQG), the convolution of £ and g, fxg,
is defined by

feg(x) = Jy tlxple(y ™y = Jo t(nely ™ x)ay
with convolution as multiplication LP(GJ is a Banach
algebra.

measurable
Lda(G) is the space of all boundgdAfunctions on G.
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A norm for L, (G) is given by |\f\l, = ess sup |[£(x)| =
inf {a: {k: J£(x)\ > a} is a null set}. *
We are principally concerned with Ly(¢). In
general, Ll(G) does not have an identity. However we

do have the following theorem.

Theorem 20: If G is a discrete ICA group then

LlCG$ has an identity.

Proof: In case G 1s discrete each point of G is
an open set and has equal Haar measure. If e is the
identity of G, define u(x) = 0 if x +# e, u(x) = 1 if x =
6. Then u is the identity of L,(G), for fxu(x) =
Jt@u™ey = £ o t(mwy ™) = 2(x).

The converse to this theorem is alsoc true [7, p.30]»

If G is an ICA group we can identify the ﬁaximal
ideal space of LlOG) and f’ by T—=>f(A) = fh,f(x)iZ?E}dx
for :lﬁl‘ . With the topology of uniform convergence on
compact sets fﬂ is an ICA group and is in fact homeo-
morphic to MLl(G9° Thus if G is discrete Ll(GQ is a
commutative Banach algebra with identity so that fﬁ is
compact by Theorem 1O0.

The following examples treat the ICA groups that
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are the objects of study of classical Fourier analysis.

Examples: ILet G be the additive group of real num—
bers R. Every character of R is of the form s-->eiSt
for some real number t. Thus if G = R, them G =["= R,
that is, R is its own dual group. For t€R, ?(,t) =
_f:f(x)e-iXtdx, the usual Fourier transform of +the line.

If G is the circle group T X(x) = eI Xt ong
K(x+217) = e ¥ for all ke ™ so that t must be en
integer. Thus {' is the group of integers Z and Q(t) =
1/21r j::ﬁ(eig)e-itgde.

If & is the group of integers 2 AX{n) = eint. Thus

AlLl) = e*? 5o that ’)’_-—-—Peit is an isomorphism between
s w —
the dual group of Z and T. %(elt) =.fn=‘wf(n)e :.nt’

the classical Fourier series.

The above examples, particularly the last two,
illustrate the Pontryagin Duality Theorem which states
that if G is an LCA group and [" is its dual group then
G is the dual group of ['. Thus it makes sense
to identify the maximal ideal space 0f L ((") with.g,If
G is compact <them [ is discrete [7, p. 9].

,‘ Thus if G is compact. Ll(- ) hasA an identity.
Furthermore, Ll( (") is regular and semi-simple ~E’7.,'.'p-30]
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s0 that we can examine spectral synthesis in Ll(r’).
In L, (") the two definitions of spectral synthesis
are equivalent [7, p.lGi].

In our attempt to prove Malliavin's Theorem, we
will consider an algebra which is isometrically iso-
morphic to Ll([“), namely A{(G) = ffe'C(G)x f =F for
some F € Li(M)]. A(G) will be given the norm defined by
[| £ “A(G) = 'ﬂFlll = %;F(u)du; rather than the norm of
C(G). Using A(G) and some tensor algebra techniques to
be introduced in the next chapter we will be able to
prove lalliavin's Theorem, which can now be stated:

Spectral syanthesis fails in A(G) for every non-discrete

compact abelian group G.
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CHAPTER III

TENSOR: ALGEBRAS

le Definition and Elementary Properties of Tensor Algebras.
The definition we will give of a tensor algebra is
a special case 0f the definition of tensor algebras for

topological spaces in general.

Definition: Let Xi and X2 be two compact spaces,
and set X = X; X X,, the product space, and let C(X) be
the space of all oontinuous complex-valued functions on

‘ A
X. The tensor algebra V(X) = C(Xl) i) C(X2) is the set

of all functions £ in C(X) of the form:

(3.1) f(xlsxg) = 2;:1 ajgj(xl)hj(x2)’ (Xl’xz) eX,

where g € C(Xl) and hje C(Xz) have sup-norm
at most one and

1 e > w
T = in® Ej=1 |2l <=0,
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where the infimum -is taken over all possible

o0
decompostions of f such that 2j=l lajl {eo

We can norm V(X) by setting Hf”v(x) =T, With
this norm it is easy to verify that V(X) is a Banach alge-
bra. The subalgebra of V(X) whose elements admit a
decomposition of the form (3.1) with only a finite num-
ber of texrms is denoted C(Xl) B C(X,) and V(X) =
¢(x;) 8 ¢(X,) is the completion of C(X;) B C(X,).

We have already seen in Chapter II that MC(X )y = Xl

1
and Mb(Xé) = Xé. We now have the following 1emma.

Lemma 1 MV(X) = X = XlK X2.

Proof:r A point in X, x = (xl,xz),,defines the
homomorphism i-——>f(xl,x2). On the other hand, every
complex-valued homomorphism on C(Xi) ﬁil z C(Xl) which
must be an evaluation homomorphism associated with a
point of Xi say Xj. Similarly, every complex-valued
homomorphism on V(X) defines a homomorphism on 1 ﬁ'C(Xé)
which must be an evaluation homomorphism of some point
in X2 say X,e. Thus if w is a complex-valued homomoxrphism

v e

- .
on V(X), then w(f) = w( Zij=l ajgjhj) = :Ej=l ajw(gj)w(hj) =

m .
= jm1 ajgj(xl)hj(xz) = £(xy,%,). Hence My(x) = X %% = X
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Lemma 2: V(X) is a regular Banach algebra.

Proof: Let D be a closed subset of X = Xl* X2
and let x = (xl,xz) be a point of X such that x¢ X\D.
Let N{(x) be a neighborhood of x such that DNAN(x) = Z.
There exists T, ¢ C(Xl) such that f.‘l(xl) =1and £f; =0
off Ny. Similarly, there exists f,¢€ C(Xz) such that
fz(xz) = 1 and £, = 0 off N,. Note that f; and £, are
such that for all (ti,tz)é X\N(x) either fl('bl) = 0 or
f2(f2) = 0. Define £(%y,%,) = £,(%;)E,(t,). Then f ¢
V(X) and f(xl,x2)' = 1 while :E'ID = O. Thus the algebra
V(X) is regular.

2. The ILinear Meppings P and M.
In case Xl =X, =G is a compact abelian group we
simply write V(G) = C(G) B C(G).
We define two linear mappings M and P, H:C(G)—>
C(GxG) and P:C(G xG)~»C(G) as follows:
(3.2) M(f)(x,y) = £(x+y) for £€ C(G), %,y €G and
P(g)(x) = jG g(x-y,y)dy, for g€ C(GXxG), xeG
where dy indicates integration with respect to

normalized Haar measure on G.

Lemma 3: Polf is the identity on C(G).
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Proof: Choose £ € C{G). ??F(f)(x) _F(E(‘f))(x) =
f F(f)(x—y,y)dy _f f(x)dy = £(x).

Let M be the dv.al of the comact group G. Recall
that A(G) = [:ff‘é c(@)e £ = P for some Fe¢ Ll(‘ P)}- Now
[7 is discrete since G is compact and so £ €A(G) implies
f(x) = i‘\'(x)‘ = Eker‘ 2, “X{x) where “f-l“.A('Gt) = 2’)&:—("18‘1—"
We define M to be the restriction of M to A(G) and we de=~
fine P to be the restriction of ¥ to V(&).

Lemma. 4z UM Is continuous and norm-decreasing.

Proof: Let £¢€A(G) and write £ = Z,.n a3, A(x)
“where Zké(‘ lay| < co. HNow M(T)(x,y) = 2?:(—[" By 7(,(x+y) =

s el = X{x)x(y) since M is linear and characters are
&
homomorphisms. Thus M(£)EV(E) and | M{(£) ) yrmy € £ lal=

i f“A(G)' that is, M is norm-decreasing.

Lemna 5: P is continuous and norm-decreasing.
Furthermore, P maps V(G) onto A(G).

Proof: Let £ ¢V(G) and write £(x,y) = Z;Oajgj(x)hj(y).
Evaluate P(f)(x) = fG 2;:0 ajgj,:(x—y)hj(y)dvy = '
Zc;o a.('g.*h.')(x). Now &; and hj‘ belong to L2(G1) and
we can argue that g;l*h -€ A(G) with the aid of the

j”A(G) <

“ gj“zllh}juz Sl\gal(mll hj”‘?" < 1, so that

Plancherel Theorem |7, p.26) . Also (| & 5xn
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(| 2(£) “A(G') < “f”V(G)’ Thus P is continuous and is
norm-decreasing. Since PoM is the identity on A(G) P

must map V(&) onto A(G).

Also since Pol is the identity on A(G) and |IMIl ¢ 1
and /[Pl & 1 we see that M is an i'sometry. Hence we'can
study V(G) to deduce properties of A(G) and vice versa.

As'an example of this we have the following theorem.

Theorem 6: If a closed subset E of G is not a set

of spectral synthesis for A(G), then the closed set E* =
{(‘x,y): x+yéE} is not a set of spectrsl synthesis for
v(G).

Proof: Since E is not a sct of spectral synthesis
for A(G) there exist a real number a >0 and a function
fé I(E) € A(G) such that (lf‘-gllA(G)> a for all g e J(E).
M(f) is then a function in I(E¥). Now every neighbsrhood
of E* contains a neighborhood U of the form {(x,y):' X+y €
W, where W is a neighborhood of E} . ILet u be a function
that vanishes on U. Then P(u)(x) = fG u(x-y,yldy =
O whenever x is in W, i.e., P(u) € IO(E) whenever u &
Io(E¥). sinee (JM(f£)-ully ey 2 UWPeM(E)P(u 5y =
I f:-P(u)HA(G)} a, E¥ 1is not a set of spectral synthesis
for V(G&).
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3. Kronecker Seits.

Definition: Let G be a locally compact group. 4

subset E of G is said to be indevendent in case for every

choice of k ;listj.nct poin.ts_in B, X9 Koy eee 13X, and k
=k ~ 0 imold
integers, N1y Doy eee 30, Ej:l njxj = 0 implies

njxj = Q for all j <k. A subset B of G is said to Dbe

a Kronecker set in case every continuous unitary function

on E can be uniformly approximated by the characters of
G, 1.2., for every unitary function £ on E and for every
real number €>0 there exists 2eT such that sup |£(x)- X(x)<
€. In groupé of finite order there are no noii}gmpty
Kronecker sets but the following definition provides
analogous objecté of interest. A subset E of G is said
to be of tyve Kp where p is a natural prime if gl(E’: ke[‘} =
{tec(e): ££ = 3.

Lemma 7: XKronecker sets and sets of type Kp are
independent.

Proof: Let E be a Kronecker set. Choose X, xz’ P

X in E and any integers Nys Bpy eee 3 Mo Suppose

=k = =K nx.)=1-=
gz% ’K(xj)nll . Now every function £ on E which can
be uniformly approximated on E by the characters of G

must satisfy fg:lf f(xj Y*J = 1. Since E is a Kronecker
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set, Z gz}f ajnj = 1 for arbitrary complex numbers 2

- of modulus 1. Hence ny = O for all 1 ¢j <k.

P
satisfied by every continuous function £ on E of modulus

If £ is of type XK. then ig:?. f(’xj )23 = 1 must be

1. Thus ny = C(mod p) for L<£j<k .

Let £ be a subset of an ICA group & and set A(E) =
[f}E: £ éA(G-‘)}.- Endow A(E) with the quotient norm, i.e.,
(\ f“A(E) = inf[ilFH a(g)y F =% on E}. Then A(E) can
be canonically identified with A(G)/ I(E) and My(g) = E-
If E is a compact Kronecker set, it can be shown that

A(E) and C(E) are isometric C’T/, p;ll3] .

Theorem 8: Let & be a compact group. If Kl and K,
are closed subsets of & such that Klﬂ K, = @ and KlU K,
is a Kronecker set: (or type Kp set), then A(Kl+K2) is
isometrically isomorphic to C(K;) B C(X,).

Proof: K;UK, is Kronecker and hence is independent.
Thus we have the canonical map K = le K2—>K1+K2 = B
which permits us to identify A(E) with a subalgebra A'(XK)
of C(XK) endowed with the norm of A(E). That is, A'(K) =
{Fec(x): Plig,k,) = £(ky+k,) where £ ¢ A(E) and (k;,k,)¢
K}, and 1l F”A'(K) = L A(E)® The remainder of this
proof is broken into two parts. PFirst, A'(K)cV(K) =

c(Ey) B C.(Kz) and the injection map is norm-decreasing.
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If Fean(X), then for every real number ¢)0 there exists

a function g = EXE(‘ a,x_')(, in A(G) such that F(kl,kz) =

g(k1+k2)'and “g“A(G), = Z;ce-(‘\la')d < “F“A(E) +€.
Now Flky,ky) = & 0 8y Alkytky) = Z o X(ky) Xky)

X
so that F<V(K) and “FIIV(JK),ﬁ ER:eP legl & NPl ug) * &

A'(K)*
Second, V(X) € A'(X) and the injection map is norm-

decreasing. If F€V(K) for every real number &€>0, F can
bg written F(kl,kg) = Z ;:l ajgj(kl)h‘»j(kz) where “gj“C(Kl)-é
1, “hj‘\c(Kz)é‘ 1 and Z;—-l l aj\ £ “F'“V'(K), +€ . Since

KlU K, is Kronecker (or of type Kp) so are K, and K,.
‘Consequently, A(Ki) and C'(’Ki_) are isometric for i = 1, 2.
Thus there exist for each positive integer j two functions

in A(G), g"j. and h'., equal respectively to g5 on K, and

J
hy on K, such that g'j(lcl). = Zur bx (k) and h'j(kz) =
E'&Per‘ Cy Y (k,) and %er‘“&‘ ¢ 1+¢ and Z’W-(" lcv] <

1+€ . F('kl,kz) is thus written: I*‘(‘kl,kz) =
2’1 e ak,ql ’)(.(kl)'glj(vkz) where 2"-,\?&(" lag, gyl &

/

: 2 :
I\ F “V(K)’(l.-l-Qé + &), Set ')(,Utp equal to the continuous
function on K = KX K, that is equal to X on K, and Y
on X,. Now x,u(})(kl,kz) = ')L(kl) Y(k,) so that LYY
is unitary. Since Klu K, is Kronecker there exists a

character © of G such that [I vy -61{/< h, for every
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real number W > 0. Also || %(k;) W(ip)=6(k; )6kl ¢ (yy &
2h « Thus if we set. f,.l ('kl,kz) = 27‘-,‘!)61"' ax’t\) 9(kl)9(k2),
then £y e A'(K), nf.,\\\ ar(x) S WPy ) (2+2e + ¢?) ana
WE-fpll g€ 2q WFIl gy (3e2¢ + €%). If we choose a
sequence {:“}i of real numbers tending toward zero we see
that P is the sum of a series of functions converging in
A'(K), i.e., NPyl y(gy™0 as N—> O. Thus F be-
longs to A'(X). ZFinally, [\ f,\ I\ A."(K)‘é \\F\\V(K)(l+26 + 62)

implies that |\F |\A,‘(K) < \\F\\V,(K).

4, Perfect Sets and Cantor Sets.

Definition: A set is said to be perfect in case
it is non-empty, compact, and has no isolated points.

A topological space is said to be totally disconnected

in case every open set is also closed. A Cantor set is

a perfect metric totally disconnected set.

All Cantor sets are homeomorphic to the Cantor set
of the real line. The group Doy = TT::O (Z'z)i, the
product of countably many times of the group of two elements
is a Cantor set. Our interest in Cantor sets and in D
is explained by the faet that every locally compact
abelian group contains a Cantor set which is a Kronecker

set or a type K_set [7, p.lOOJ .

p
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CHAPTER IV
MALLIAVIN®S THEOREM

1. Introduction.

We are now nearly ready to prove Malliavin's
Theorem that if G is a non-discrete compact abelian
group, then spectral synthesis fails in A(G). We have
already seen that if G is an infinite compact group
then G contains a compact Cantor set K which is also
a Kronecker set or a type Kp set. K can be partitioned
into K, and X, both Cantor sets such that K0\ K, = 2.
If we set E = K + K,, then A(E) is isomorphic to V(D., ) =
C(Deao ) 2 C(Des ) since Kyand K, are Cantor sets. If a

closed subset I of E is not a set of spectral synthesis

for A(E), a fortiori F is not a set of spectral synthesis

for A(G). Hence to prove Malliavin's Theorem all we must
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show is that spectrzl synthesis fails in A(E). Since
A(E) is isomorphic o V(Deo ) We can make one final re-
duction: Malliavin's Theorem is proved if spectral syn-
thesis fails in V(Dw). To prove this we need the

counterexample of Schwartz.

2. The Countérexample of Schwartz.
Let R be the additive group of real numbers and
‘let R3 = RXRAR, three-dimensional Buclidean space with
3 L 3. 3 2. 2. 2y,1/2 _
dual group R”. Let E = {ze Rz |z{ = (zl-+z2 +24 ) = l}.
The counterexemple of Schwartz [B8) states that E is not

a set of spectral synthesis for A(R3).

Theorem l: Spectral synthesis fails in A(R3).

In particular E is not a set of spectral synthesis for
A(R3).

Proof: We have already ﬁentioned in Chapter IIL
that in L;(G) which is isometrically isomorphic to A(G)
the two definitions of spectral synthesis are equivalent.
In our case G = R3 and to prove the theorem we will show
that E is not a set of spectral syanthesis in the second
sense for Ll(R3).

‘Let W be the set of all complex-valued infinitely

differentiable functions on R3. Then W is a subset of
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A(Rs) [7, p.165] . If geW, x = (xl,xz,x3), v =
(7159,5573) € B> then &(y) = 2(y) = 3 £(x)e™ T Vax
where f ¢ Ll(R3) and Xey = Xj¥q + X7, + XY 3. By
Leibnitz' Rule, 3&/¥y (¥) = Jg3 —ix f(x)e™* Vax,
Let J be the set of all £ €L, (R?) such that £ eW
and ?(y) = 0 on E. Let I be the set of all f € J such
that %/Byl = QG on E. Let I and T be the closures of
I and J respectively. Now Z(TI) = 2(J) = E. We will
show T + T by constructing & bounded linear functional
S on Ll(R3) such that S|; = O and Sf; + 0, i.e., §
ammihilates I but not J. Let u be the unit mass, uni-
formly distributed over E and set a(x) = .j£ eix'ydu(y).
Pix x 6R3 and let r be the Euclidean distance from X to
0. Then (x) = 1/4 § 5 ad .fg e1r058:5 = (gin r)/r,
by changing to spherical coordinates. Thus lxiﬁ(x)lé 1
for all x = (xl,x2”x3) in R°. Tet S be defined by
S(f) = .f£3 f(x)xlﬁ(-x)dx so that S is a bounded linear
functional om Ly (R3). If £¢W then xf €Ly(R%). So
s(£) = Jp3 f£(x)xf(-x)ax
= {3 % £(x) fE e X Vau(y) ax
= IE fRB xlf:'(X)e"ix'y dx au(y)
= Jp 3%/ vy au.

Thus S{f) = O for all £ €¢I. However it is obvious that
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there are functions in J on whieh S does not vanish.

Hence T # J and spectral synthesis fails in A(R3).

| Actually to prove Malliavin's Theorem we need the
fact that spectral synthesis fails in A(T9) where T3 is
the three-dimensional torus. Since T3 is locally iso-
morphic to R>, the above proof can be modified to show

that spectral synthesis fails in A(T°) (10, pp.95ff] .

3. Malliavin%s Theorem.
Malliavint's Theorem will be proved when we establish
the following result.

Theorem 2: Spectral synthesis fails in V(Deo).

Proof: We have just seen in the preceeding section
that spectral synthesis fails in A(T3). In view of
Theorem 3.6 spectral synthesis must also fail in V(T3).

We now define a mapping d from D onto T3 as the
composite d = d"ed' where d'iQ;-—aI3 = [0,1]3 is defined
by d'((al,az,a3,...)) = (O.ala4a7..., Osajagagessy O.a3a6a9...)
here the elements of I3 are written in their binary
expansions and g":I3—> 13 is defined by d"((xl,xz,xB)) =
(e27Tixl;327Tix2,e27Tix3). The mapping d is surjective
since both 4' and &" are. Also d is continuous and it

preserves normalized Haar measure. That is, if E is a
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sSubset of Do, and if m represents normalized Haar mea-
sure on D, and if m' represents normalized Haar mea-
sure on T3 then m(E) = m'(a(E)). The mapping d is also
injective if we remove from De a2 set of null measure,
i.e., a countable set. The mapping 4 thus permits us to
iden‘cify canonically Lg, (D) and Lw(‘l‘3) and hence to
define @ canonical isometric mapping from C(T3 ) onto
C(Dw). That is, if f € C(Dy, ) then £ = ged for some
géC(T3). Thus we can write:

c(23) @ ¢(73)~-E50(Dey) 8 C(Doo )T, (Daw ) B L v (Do)
Lo, (T3) & I, (T3) or |
V(23) B V(Doo )25V = T (D, ) & Ly (Da ) & Lap(T3) B L (T3),

od

where s'es is the canonical injection of V(T3) into V',
We will consider elements of V' as being in Ly (De ) ﬁ Ly (Deo )
or as being in Lw('T3) 7 L os (T3) as is appropriate.
Because of the definition of tensor products both s and
s' have overator norm at most one.

We want to show now that s' is an isometry. C(De )
contains an approximating iden‘tity, i.e., & sequence of
functions {pj] in C(Do ) such that each Py is positive,
fDoopj(y)dy = 1 for each j and the support of P; tends
to {O} as J tends to infinity. Thus there exists a
sequence of mappings '§n defined by 'ﬁn(f) = p,*f, each

mapping Low(Da ) into C(D'ew) such that ‘ﬁn('f)-af for
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all fe€C(Dy ). Similarly there exists a sequence of
mappings B B p, defined by D, B D (f B g) = p,(f) B P (g)
each mapping V' = L ,(De ) 2 Loy (Dow) into V(Deo)-

Now if s' were not an isometry there would exist a
function F in V(Des ) such that |{ D B b, s!(F) (I

V(Do) ¥
[ s'(P)lly, &£ “FHV'(DQJ)' When n goes t0 infinity
ﬁn 8 pos"(F)—F and we obtainllFHv(Daa) < llsn(F) Wy, {
(L P “V(Dco)’ which is clearly impossible. Thus s'
must be an isomeitry. |
If we utilize an approximating identity Pn ;i.n
C(T3) and the mappings
P_:L,, (23)—>C(03) defined by B(£) = B_#f, £ €L (23)
F_BF_: Vv—V(r>) defined by F, P (£ W g) =
’P'n(f) EFn(g), fEgeV!

we can apply the same argument mutatis mutandis to show

that s'es is an isometry. Hence so is s.
To help prevent confusion the following diagram

is presented:

— —_ S
L p. Bp
v 2 P V(Da ) — 5T

d ' » . o) = — S——
Both s and s' are isometries and both P, = Pn and P, T P

have operator norm at most one.
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Corresponding to s there is a continuous bijective
mepping § from My(p ) = DaoX Dag OmbO My(p3y = 13 X13
defined by'§f§f§)(ﬂ) = s(£)(x,y) for (x,y) ¢ DgoXx Dyand
f'GV(TB). Now spectral synthesis fails in V(TB) so there
exist a closed subset E of T3x.T3 = MV(T3)’ e real num-
ber a >0 and a function £ in I(E) & V(T3) such that
W £-hll y(p3y> 8, for each he J(E). Consider E¥ =5 ~(&),
a closed subset of D, XK D,, = MV(Dm )* We will show
that E*is not a set of spectral synthesis for V(D).
If £ €I(E) then s(f) < I(E¥). Let g be any function in
J(E¥*). Since s' is an isometry Hs(f)-gllv(ch) =
\\5'°S(f)-s'(g)“v,. Thus
V(B BF_)(s'es)(2) - (F, B F,)os"(&)\lypdy < \s(£)-gly(p, )
since ?ﬁ Eﬁ?ﬁ has operator norm at most one. Set

:E-"n = (?n ki) _P_n)(s"os)(f) and

g, = (?ﬁ ] ?n)os"(g).
Note that both £, end g are in v(T3). Now WE 2\ g 3y
tends 0 O as n tends to infinity so that if we choose
m sufficiently large I\fm-f\lv(T3) <a/2. We can also
require that m be sufficiently large so that &n be close
to O in a neighborhood of E, i.e., (lf‘-—gm\lV(QB)?.a-

Gathering our inequalities we have

[1s(£)=glly(p, )2 WEp=gull y(p3 )2 WE+E=F-g) Wy (p3) 2
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Hence E* is not a set of spectral synthesis for V(Deo )

and spectral synthesis fails in V(De ).

This concludes the proof of Malliavin's Theoremn.
For completeness we will restate Malliavin's Theorem and

summarize the reductions made to accomplish the proof.

Theoren 3:‘ (Malliavin) Let & be & non-discrete
compact abelian group. Then spectral synthesis fails in
a(@). |

Proof: If G is a non-discrete compact abelian
group, G contains a Cantor set K that is also a Kronecker
set or a type Kp set. K can be decomposed into Kl and K2,
both Cantor sets, such that K;UK, = K and K{NK, = 2.
Then A(X,+K,) = C(K;) 3 C(K,) = C(Daw ) B C(Deo ) = V(Do)
Now V(Doo) is not of spectral synthesis, so that A(K1+Kg

is not of spectral synthesis and hence spectral synthesis

fails in A(G).
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