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CÜAPTER I
«

INTRODUCTION

Harmonie analysis is about linear spaces and how 
a group acts upon them. More particularly, harmonic; 
analysis is about how the linear space "breaks up" 
under action by the group, and about the subspaces that 
are invariant under action by the group. In this paper, 
the linear spaces we consider are Banach algebras. For 
these algebras the closed invariant subspaces are the 
closed ideals.

An important part of harmonic analysis is spectral 
synthesis, and it is to this topic that we address our­
selves, A Banach algebra will be said to be of spec­
tral synthesis in case its closed ideals, i.e., its 
closed invariant subspaces, can be determined in a very 
predictable manner. Some very important algebras that 
are of spectral synthesis will be examined. However,
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the principal theorem proved in this paper, Malliavin*s 
Theorem, is negative in the sense that it proves the 
existence of a large and important class of algebras 
that are not of spectral synthesis.

In the course of our study of spectral synthesis 
we will study the rudiments of the theory of commutative 
Banach algebras which allow us to present portions of 
classical Fourier analysis in a very natural way. For 
example, V/einer's Theorem is an easy corollary to 
results on Banach algebras applied to the Banach algebra 
of functions with absolutely convergent Fourier series.

The use of tensor algebra techniq.ues in the study 
of harmonic analysis was introduced by N. Th. Varapoulos. 
In this paper, tensor algebras are introduced without 
recourse to the general theory of tensor algebras of 
topological spaces. The definition of tensor algebra 
is restricted to two factors, althou^ the results are 
readily generalized.

The elements of Fourier analysis on locally com­
pact abelian groups are presented, and Fourier analysis 
on the classical groups, the circle group, the integers, 
•and the real numbers, is treated. The Lebesgue spaces 
are discussed and is given special emphasis.

In the last chapter, a complete proof of the
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counterexample of Schwartz is given. Finally, the tools 
developed earlier, the results of Bhnach algebras, 
Fourier analysis on locally compact abelian groups, 
and the tensor algebra techniq.ues of N. Th. Varapoulos 
are all brou^t together in the proof of Malliavin’s 
Theorem.
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CHàPTEH IX

ELEBCENTARY THEORY CE BANACH ALGEBRAH

1. Definitions and Examples,
Définition; A is a normed algebra in case A is a 

normed linear space with norm (I -|l and an associative 
algebra over the complex numbers, C, such that \lxy U £
11 % 11 lly ll for all X, y 6 A,.. A is a Banach algebra in 
case A is a complete normed algebra. A is a commutative 
Banach algebra in case the multiplication in A is com­
mutative .

If A has a multiplicative identity, we denote it 
by 1 and we denote scalar multiples of 1 by the cor­
responding complex number. Without loss of generality 

p.l97]l we require that whenever A has 1,- 111 | \ = 1.
Examples: The field of complex numbers, 0, with

I [ x/| = ixl is a commutative Banach algebra with identity,
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5
Let Z be a compact Hausdorff space. Let C(X) be

the algebra of all continuous complex-valued functions
on Z, with pointwise multiplication and addition. Let
C(Z) be normed by the sup-norm: | |f U = sup f(x).

X 6 Z
0(Z) is a commutative Banach algebra with identity.

Let A be a Banach algebra and let L(A) be the alge­
bra of all linear operators on A with pointwise addition 
and standard multiplication, endowed with the operator
norm: (|T|I = sup || Tx . L(A) is a (non-commutative)

)ix|l f 1
Banach algebra with identity.

This paper is principally concerned with commuta­
tive Banach algebras with identity.

2. Resolvent and Spectrum.
Definition: Let A be a Banach algebra with identity.

An element x A is invertible if there exists an element 
x“^€ A such that x”^x = xx“^ - 1. The set of all invert^ 
ible elements is denoted by A~^. The resolvent of x . R^x), 
is the set {AcC: (A-x)é A"^]. The spectrum of x . sp(x), 
is the set C\R(x). Let Ü be an open subset of C. A 
function g mapping U into A is analytic in case g; is 
locally a convergent power series, i.e., for all \é Ü 
there exists a neighborhood K(A) of A such that
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6
CO y,

N(A) implies g(nO = ^n=l C and xCA,
The aim of these definitions is to present an 

important result, the Gelfand- Mazur Theorem. To this 
end we examine the spectrum of x and the resolvent of x 
in greater detail.

Lemma 1; Let A be a commutative Banach algebra 
with identity, and let x € A and A e C. If |jx |l < \/\ 1 
then AtR(x) and (^-x)“^ = ' ^ = 0

Proof; Set y - x/x so that |/yl/ <1*. Then all

we must show is that l6R(y) and (l-y)“^ = ^  *

Set Then for m <n, we have Y^- Y^ 11 =
\ t ̂  II 6 ^kÏÏ+1 II y II ̂  » using the additive
and multiplicative properties of the norm. Since ||y//<
1, Y^ is a Cauchy sequence and has a limit in A, say
r = 7^ . Now (l-y)% = Y^(l-y) =

— > 0 as n — >«o so that (l-y)Y - Y(l-y) = 1.
But

Note that this lemma also says that for A &C,
A  6 sp(x) implies ||xjj > |A| , i.e., sp(x) is contained
in a disc of radius jlxij . This lemma further asserts

Oo 
k=0that if \lx-lH < 1 then x eA~^ and x“^ = 2  v=o •

For if l̂ x-llj < 1, [l-(l-x)]“^ = (1-x)^
by direct application of the lemma.
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7
Iiemma 2; Let % e A be invertible and let y e A  

satisfy |iy-x 11 <  Then y is invertible and

Proof; I ll-x^Vll f || x-yll < 1. If we apply
the above observation to x“^y the proof is complete.

Lemma 3: The spectrum of x, sp(x), is non-empty
and is compact in the usual topology of the complex 
numbers* The function A — > ( A  -x)"^ is analytic on R(x),

Proof: We have already noted that sp(x) is con­
tained in a disc of radius |(x |l . Suppose then that Aq ̂  
R(x). The series ( Aq-A)^( - h(A)
is analytic in the disc jfA^C; | A  - /(( A q-x )“ Î1
From Lemma 2 we have

(X-x)-^ = ( (1- Ao-x)-l( X- Aq-x )^

= 0 ( V  Ao-x)
= h(vL).

“1Oonsequently R(x) is open and A — > (A -x)“ is analytic 
on R(x). We must show that R(x) is not the entire com­
plex plane. Assume that R(x) = 0. Then A — ?(A-x) ^ 
is an entire function. As |Aj— (x- A) =
IX I "^/l(x/ -l)“ (̂l — ^ lAl”^ >0, We can argue from
Liouville’s Theorem, which says that every bounded entire 
function is a constant, that (x-A)”^ = 0. This is
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8
clearly impossible, so that R(x) is not the entire com­
plex plane, and sp(x) is non-empty.

Theorem 4:: (Gelfand-Mazur) If A is a oommunta- 
tive Banach algebra with identity and A is also a field, 
then A is isometrically isomorphic to the field of com­
plex nnmbers.

Proof; Every commutative Banach algebra with 
identity has a subalgebra which is isometrically iso­
morphic to the field of complex numbers. All that must 
be shown is that A consists only of scalar multiples of 
1. If X € A there exists a^esp(x) by lemma 3. Now 
X - x ^A"*^ so that A - x  = 0 since the only non-invertible 
element of a field is 0. Consequently, x and the 
theorem is proved.

3. The Maximal Ideal Space.
Let A be a commutative Banach algebra with identity. 

Denote by the set of all maximal ideals of A. is 
called the maximal ideal space of A. We start the dis­
cussion of the maximal ideal space with a lemma about 
commutative rings.

Lemma 5 : Let A be a commutative ring with identity,
Every proper ideal of A is contained in a maximal ideal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9
Every non-invertible element of A is contained in a 
maximal ideal* An ideal I of A is maximal if and only 
if a /i is a field.

Proof: let I be a proper ideal of A. Let S be
the set of all proper ideals of A that contain I, and 
let S be inductively ordered by inclusion. Then the 
hypotheses of Zorn* s Lemma are satisfied for S and Zom*’s 
Lemma gives us a maximal ideal that contains I.

If X € A is not invertible, then xA = (xa: a e A^ 
is a proper ideal of A. Since x e xA and xA is contained 
in a maximal ideal of A, x is contained in a maximal 
ideal of A.

Suppose that A/I is a field. Then A/I has only 
two ideals, {Oj and A/l. Now there is a one-to-one 
correspondence between the ideals of A/I and the ideals 
of A that contain I. Thus I is maximal. On the other 

hand, suppose I is maximal. Then A/I can have no pro­
per ideals. Hence a /I is a field.

In case A is a commutative Banach algebra with 
identity and I is a maximal ideal of A, we wish to show 
that A/I is isometrically isomorphic to C. If A is an 
algebra and I an ideal of A, then A/l is also an alge­
bra. If A is a normed algebra and I is a closed ideal
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of A then a/i is a normed algebra with quotient normr 
11 x+I II = inf {(lylj : x+r = y+I, i. e., x-y 6 ij . If A 
is also complete, then so is A/l, Thus all that re­
mains to be shown is that if I is a maximal ideal of 
A then I is closed.

Theorem 6; let A be a commutative Banach alge­
bra with identity and let I be a proper ideal of A.
Then the closure of I, T, is a proper ideal of A, 
Consequently all maximal ideals are closed.

Proof : Let I be a proper ideal of A, Clearly,
T is an ideal of A. Since I is proper, x £ l  implies 
X is not invertible. Thus as was observed after Lemma 1, 
II x-1 II > 1 for all X 6 I and hence for all x eT, Thus 
l ^ T  so that T  is proper. In case I is maximal, 3T 
is proper implies I = T, that is,, all maximal ideals 
are closed.

Corollary 7: If A is a commutative Banach alge­
bra with identity and I is a maximal ideal of A, A/l 
is isometrically isomorphic to the field of complex 
numbers,

Proof: Lemma 5 and Theorem 6 combined with the
Gelfand-Mazur Theorem give the desired result.
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Definition: Let A be a conmiutative Banach alge­
bra with identity and let be a non-zero linear func­
tional on A. ^  is a multiplicative linear functional 
in case <^(xy) = 4>(y) for all x, yéA, that is,
cj) is an algebra homomorphism of A into C.

Lemma 6 : If is a multiplicative linear func­
tional then is continuous and U (̂ 1 j = 1 ,

Proof; If X 6 A and \Xi > [\x\\ then JL-x is
invertible by Lemma 1. ETow c^(A. -x) ^ 0. Hence
I c|)(x)I fr l\xl\ so that ^ is continuous. Since \\(̂ \\ -
sup ld>(x)| and d)(l) = 1„ we have ll^^U = 1.
| jx l l<  1  ^

Theorem 9: Let A be a commutative Banach alge­
bra with identity. There is a one-to-one correspondence 
between the multiplicative linear functionals on A and 
the maximal ideals of A.

Proof; If is a multiplicative linear func­
tional, denote the kernel of by kercj). If x é kercj) 
0(x) = 0. If X e ker^ and y^ A, ^(xy) = i^(x) ̂ (y) = 0 
so that xyé kercj> , that is, ker4) is an ideal. Since 
cf>(l) = 1 kercp is proper and since A/ker<p = C ker<(> 
is maximal. On the other hand, suppose that I is a 
maximal ideal of A.. Then since A/l = C, the projection
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<():A — > A/l is a complex-valued homomorphism of A with 
kernel I.

Following Gamelin, we hereafter identify each 
maximal ideal with the multiplicative linear functional 
that it; determines.

Definition: let A be a commutative Banach alge­
bra with identity. The con .jugate (or dual) space of A 
is the set of all continuous linear functionals on A 
and is denoted A*.

We are seeking to topologize M^. Obviously C 
A*, so that can inherit topologies from A*. A* has 
two important topologies, the norm topology and the 
v/eak-star topology. The weak-star topology is the weak­
est topology, in the sense that the collection of open 
sets is minimal, such that the mapping 1 — »l(x) is 
continuous on A* for each xe A, Lé A*. Choose Lq^A* 
and x^, Xg, ... ,x^ ( A and 6 > 0, A basic weak-star 
open neighborhood, XJ, of Lq is given by the formula 
U = 1̂ Ê A*: \ l(Xĵ  ) —  ̂^ ̂  2, ... ,n|.
A weak-star open set is any union of such basic nei^- 
borhoods.

Theorem 10: is a compact Hausdorff space
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with the weak-star topology.

Proof; is a subset of the unit ball of A* 
which is a compact set by Ala oglu's Theorem,. If [9^^ 5  

and — >4>(x) for all x € A  then 4^^(xy) =
(^) ^ ( y ) — ^4^(x)<|)(y) = <^(xy). Hence is closed 

and consequently compact. If 4= ^ 2  there exists 
x<sA such that 9>j,(x) 4= $>2 ^^^* i >€
for some real number € > 0 ,  Set | (J)̂ (x)- ^(x)l<
 ̂/2I and Ug = Y ̂ ^A' I 4>2(^)- | < ^/2], Then

% ^ ^ 2  ” ^ ^1^^1> 4^ ^^2* ^Gnce is Hausdorff,

4, The Golfand Transform,
Definition: Let A be a commutative Banach alge­

bra with identity and let xéA, The Gelfand transform 
X of X is a complex-valued function on given by the 
formula: x( (j) ) = (j)(x), for all 9 6 11̂ . The algebra
of all Gelfand transforms is denoted Î and is called 
the Gelfand space of A,

Lemma 11: The Gelfand transform x — >x is an alge­
bra homomorphism of A onto A, The functions in "A are 
continuous and separates the points of and contains 
the constants. The Gelfand transform is norm-decreasing, 
that is, jlxl/ ̂  i 11x11,
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Proof: Since 5̂ fy( ) = <|p (x+y ) = x( ) + y( 4 ),

and ^((p ) = (|̂ (%y) = <̂ (x) c)>(y) = x( 4> )y( cĵ ), for all
X, ytf A, 4> fi it is easy to see that the Gelfand trans­
form is an algebra homomorphism. Also A contains the 
constants since 1(4)) = 1, for all <p6 Mĵ , The weak- 
star topology is defined to be the weakest topology such 
that the Gelfand transform is continuous. From the 
proof, of Lemma 8 we have that \c|)(x)l < |[x|| for all

£ M^, X Ç A, i.e., 1̂ ( 4 )1 = \<f)(x) I < H xU . Thus
4>)1 ^ (Ixll ,. Finally if x( = 

x( 2) for all X6 A, then 4]^(x) = for all xeA,
i.e., 4>2_ = 4̂  2" A separates the points of M^.

Lemma 12: If x &A then the spectrum of x, sp(x), 
coincides with the range o£ x, ^  (M^).

Proof: Suppose ^  e sp(x). Then X - x  is not in­
vertible and by Lemma 5) X-x belongs to some maximal 
ideal of A. By Theorem 9 this maximal ideal is the ker­
nel of a multiplicative linear functional, say cj) . Then 

(X-x) = 0 implies (^(x) <p ) = yb. Hence, Aéx(M^),
On the other hand, suppose A^x(M^). Choose such
that x( ) - A *  Then <^(x-A) - 0 so that x-Ais not 
invertible and A  € sp(x).
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5. Two Examples and Y/einer's Theorem.

Example : If X is a compact Hausdorff space and 
C(X) is the algebra of all continuous complex-valued 
functions on X then C(X), endowed with the sup-norm is 
a commutative Banach algebra with identity. Bor every 
X &X, the. evaluation homomorphism <b defined by d) (f ) = 
f(x) f^r'all f£C(X) belongs to . On the other hand,
every (f) € is an evaluation homomorphism at
some point x^X. Bor suppose ^  ̂  ̂ ^C(X) distinct from 
each (j)_. Then for every x 6 X there is f ^ C(X) such 
that f^(x) 4= 0 and c()(f̂ ) = 0. Then )f^|^>0 in a neigh­
borhood of X and ( | f^| ̂ ) = 4>(f^)4>(f^) = 0* Since
X is compact, choose x^, Xg, ... ,x^ X such that ) f ^ +

If I^ + ... + tf i ̂  = g is positive on all of X. Then
^2 n

g is invertible so (i)(g) ^ 0. This contradiction proves
that (̂  = (j) ̂  for some x 6 X. Thus x —  ̂ is a homeo-
morphism between X  and

Example : Let: be the set of seq.uences a =
QÛ OO

l®n] n=-« with norm lUll =
pointwise addition and convolution (o = a*b, c^ =

oo
^  k=-»^n-k\^ multiplication X is a commutative
Banach algebra with identity. Let e^ 6 be the seq.uence
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nth. entry is 1  and all other entries are 0 ,  S q  is the 
identity for Since = e_^^ Also
(©2.̂  ̂= so that is generated by ê  ̂and e^^* Por
a e a = ^  n;=-Z ̂ n®n ^

Choose X ^ O  such that \^l - 1. Then de­
fined by a) = ^  n=“o> ^ n ^ ^  ^ multiplicative linear
functional on Choose gM Then \ (!̂ (ê )̂ | <
11 ê l̂l = 1 and I (f>(e_2_)l = | cjl() 1 ^ \V®-iU = Hence
I 4* ^®lH " on the generators of
Thus M 0S133. be identified with the unit circle. Set 
A- - For aé "a(e^^) = n=-oc>^n®^^* Consequently,

is the family of continuous functions on the unit 
circle v/ith absolutely convergent Fourier series.

Lemma 13: Let A be a commutative Banach algebra
v/ith identity and let x^, x^, ... ,x^6 A. Then either 
Cj> ii cn, for some c{)éM^ or else there exist

y2 » ,y^ 6  A such that £*^^1 ^i^i
Proof: Let I be the ideal generated by x^, x^,

x^ that is I = ^i^i : A, 1< i 5 nj. If I is
proper, by Lemma 5 I is contained in a maximal ideal which 
is the kernel of a multiplicative linear functional, say 
<p . Then Cjb(x̂ ) = 0 for l i i  in. If I is not proper 
1 (SI, i.e., ^  x^y^ = 1 for some  ̂A, 1 S i < n.

• »
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Theorem 14: (Weiner) If f^, f^, ...,f^ are

continuous functions on the unit circle with absolutely 
convergent Fourier series and no common zero, then there 
exist g^, gg, ... continuous functions on the unit 
circle with absolutely convergent Fourier series such
that ^  ^i^i -

Proof: In the example above we have identified
Jl ,with the family of continuous functions on the unit 
circle which have absolutely convergent Fouier series.
Thus f^ = a^ for some a^e 1 < i ̂  n. The ideal gen­
erated by the must be all of or else by Lemma 13
f^(e^®) = ^(e^^) - 0 for some ©, Of © < 2  17, i.e., 
the f^ have a common zero. Thus there exist b̂ <£
1 ̂  if: n, such that ®'î i ” Set g^ = b^.
Then we have ^  = Z  =

'5^T^^~'aTbT (e^®) = l(e^®) = e^^, since the Gelfand trans- ^  1=1 1 1
form is an algebra homomorphism.

Lemma 15: Let x6 A. Let h be a complex-valued
function which is defined and analytic on x(M^) = sp(x). 
Then there exists g € A  such that g = h»x.

Proof: The Cauchy integral formula gives us that
h(zQ> = 1/2 TTi h(z)/z-ZQ dz, z^f sp(x), for an
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appropriate contour T? around sp(x). We define g =
1/2 IT i h(z)/z-x dz. Then c{)(g) = g(c^) = 
l/2rriXj h(z)/z-cj>(x) dz = h( (x) ). Thus g = h®x.

Theorem 16: (Weiner-Levy) If f is a continuous 
function on the unit circle with absolutely convergent 
Fourier series and if,' g is a function analytic in a 
neighborhood of the range of f , then g of has absolutely 
convergent Fourier series.

Proof; As in Yileiner*s Theorem above, f = a for 
some a € Now the range of f. is equal to a(M^^) =
sp(a) and g is analytic in a neighborhood of sp(a). By
Lemma 15 there exists be such that b = goa = g«f.. 
Thus g of is a continuous function on the unit circle 
with absolutely convergent Fourier series.

6. The Spectral Radius Formula.
Definition: Let A be a commutative Banach alge­

bra with identity, and let xeA. The spectral radius 
of X is sup : A  6 sp(x)} = lixU ̂  .

Theorem 17: The spectral radius of x C A is given
by (Ixll g = limjl x̂ \l •

A n
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Proof: For any positive integer n and for (j) £

I X( ) ( = \x^( 4> S W X ^ W  Hence (| x / I <

lim inf 11 Let L be any continuous linear func-n
tional on A, Define h( Jl ) = L((A-x) ) for A  ̂  sp(x). 
Now L is analytic on R(x) and h(A) = ^ L(x̂ )//J|ĵ **’̂  
is convergent for (A|> llxllĵ  . By the uniform bound­
edness principle sup II/[JL j ^ for some real
number M. Consequently, lim sup Ijx^li 6
lim sup = y.| . Since this inequality
holds whenever lÂj ^ j| xj( ̂  we have lim sup Ux^ll 4

A n
II XII ̂  . Combining with the above inequality we have

A
11 X]),, <, lim inf 11x 1̂1 ^^^’llim sup llx^lt^^^ 6 llx IL, .

^A ^ n ^A
Hence lim {I x^K exists and equals llxli^ . 

n %

Corollary 18; The Gelfand transform x — ?x is an 
i some try if and only if ||x//^ = )|x̂ |f for all x 6 A.

Proof: If l(x̂ ({ = |(xll ^ for all x 6 A then || x̂ /̂| =
l/x// for all n > 1. Hence Hxj( = (( x̂ |̂| x^L^
On the other hand if x — j»x is an i some try \( x 11 =
1 1 x^ll JJ = | | 2 | |  \ = li x l | 2 .

A A
The spectral radius formula gives a description

of the kernel of the Gelfand transform: x - 0 if and
only if lim l)x̂ || = 0. If lim |lx̂  ll = 0 then

n n
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X is called a generalized nilpotent. On the other hand 
X = 0 if and only if <p(x) ~ 0 for all i.e., x
belongs; to the intersection of all maximal ideals.

Definition: let A be a commutative Banach alge­
bra with identity. The intersection of all maximal 
ideals of A is called the (Jacobson) radical of A. A
is called semi-simple in case the radical of A = (o] ,

that is, A is semi-simple in case the Gelfand trans­
form is an isomorphism.

Let I be an ideal of A, The set of all maximal 
ideals that contain I is called the hull of I. Alterna­
tively, the hull of I is the set of all such that
Cj>(x) = 0 for all x<SI. The hull of I is a closed sub­
set of Mĵ ,

Let E be a subset of M^. The kernel of E is the 
intersection of all ideals that belong to E. Alterna­
tively, the kernel of E is the set of all x 6 A such
that $(({>) = 0  for all ^ 6 E.

Definition; A is regular on in case for every 
closed subset E of and for every (j> € M ^ E  there is 
an X f A such that x( (̂ ) = <j)(x)-0 while x( ) = 0 
for all E. If A is regular on we say that A is a
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reCTilar Banach algebra.

Finite unions of hulls are hulls and arbitrary 
intersections of hulls are hulls so that the hulls of the 
ideals of A can be taken as the closed sets for a topol­
ogy on For any subset E of the closure of E, Ê,
in this topology is the hull of the kernel of E. Hence 
this topology is called the hull-kernel topology.

Theorem 19: The weak-star topology on and the
hull-kernel topology on coincide if and only if A 
is a regular Banach algebra.

Proof: V/e have already noted that every hull is
a weak-star closed subset of M^. What we must show then 
is that if A is a regular Banach algebra every weak-star 
closed subset of is a hull. Let E be a closed sub­
set of M^. Since A is a regular Banach algebra for
every 4* a M^\E there exists x A such that cj)) ^ 0 
but X = 0 on E. Then [x e A: x = 0 on eJ is an ideal of 
A and E is its hull. On the other hand, if the topologies 
coincide and E is a closed subset of E is the hull
of an ideal I, Now if i/ M ^ E  there exists x such
that x( y  ) ^ 0 while x vanishes on E. Thus A is regular 
on
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7. Spectral Synthesis.

Definition: Let A be a regular, semi-simple
commutative Banach algebra v;ith. identity. Let E be a 
closed subset of M^, Define the following sets:

I(E) = x̂€. A: 3c()=0 for8.11 0 6 E ]
Iq (E) = ^xe,A: x = 0 on a neighborhood of E}
J(E) = Iq CE) , the closure of Iq (E),

E is a set of spectral synthesis in case J(E) = 1(E).

note that X(E) is the kernel of E and that 1(E) 
is the largest ideal that has E for its hull and lQ(E) 
is the smallest ideal that has E for its hull so that 
Iq (E) J(E) Ç 1(E). To illustrate this definition we 
return to an earlier example. Let X be a compact 
Hausdorff space, and let C(X) be the set of all contin­
uous complex-valued functions on X. We have already 
identified and X. We will show that every
closed subset of ^q (x ) ^ set of spectral synthesis.
Let E be a closed subset of M^(%) - Since J(E) S 1(E) 
all v/e must show is that I(E)^J(E). Choose f € I(E), 
so that f(x) = 0 for all x6E. Let TJ be any open 
neighborhood of f, say U =  [ge, C(X): llf-gll<&}, for
some real number €>0. Then USÎf\ r\lQ(E)  ̂0, i.e., 
f 4 Iq (E) = J(E) and S is a set of spectral synthesis.
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We can in fact shov/ more about the ideals of 

C(X), We will show that every ideal is dense in the 
kernel of its hull. Let H be an ideal of C(X) and let 
Z(H) be the hull of. H. Then Iq (Z.(H) ) 5.HlEI(Z(H) ) since 
Iq (E) is the smallest, ideal that has Z(H) for a hull 
and I(Z(H)) is the largest ideal that has Z(H) for a 
hull. Since Z(H) is a closed subset of is
a set of spectral synthesis. Thus T^Tz Th TT = I(Z(H)) 
so that Ü  = I(Z.(Ei)). In words, H is dense in the 
kernel of its hull. In case H is a closed ideal of 
C(X), H; is the kernel of its hull, that is, E  is the 
intersection of the maximal ideals of C(X) that contain
H. In this example we see that if E is a closed subset 
of the kernel of E, 1(E), is the only closed ideal
of C(X) that has E for its hull. Thus the closed subsets 
of completely determine the closed ideals of C(X).

Spectral synthesis is frequently defined in 
another non-equivalent fashion. Let A be a regular 
semi-simple commutative Banach algebra with identity.
A closed subset E of is said to be a set of spectral 
synthesis in the second sense in case the kernel of E 
is the only closed ideal HI of A such that the hull of Hi 
is E.
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If E is a set of spectral synthesis in the second 

sense then E is a set of spectral synthesis. What we 
must show is that the hull of J(E) is E. Now is a 
compact Hausdorff space so that we can find a closed 
subset P of such that E is a subset of the interior 
of P. Since A is regular v/e can choose x ^ A  such that 
x( ) 4= 0 and x(P) = 0 for every p é  M^SE. Since E is
a subset of the interior of P, x1Iq(E). Since this is 
true for all 4> Q M ^ E  the hull of J(E) must be E. Thus 
J(E) = 1(E) so E is a set of spectral synthesis.

In general, it is not true that if E is a set of 
spectral synthesis then E is a set of spectral synthesis 
in the second sense. In the next section we will examine 
a case in which the two definitions are equivalent.

Definition; A regular semi-simple commutative 
Banach algebra is said to be of spectral synthesis in 
case every closed subset of is a set of spectral syn­
thesis. Spectral synthesis is said to fail in A in case 
A fs not of spectral synthesis.

Note in the above example C(X) is of spectral 
synthesis. One of the principal goals of this paper is 
to prove Malliavin*'s Theorem, which says that spectral
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synthesis fails for an important class of Banach algebras.

8j. Some Basic Pacts of Pourier Analysis.
Definition: A group G is an DCA group in case Gr

is a locally compact abelian group. If G: is an DCA group 
a character of G: is a continuous homomorphism of G into 
the group of complex numbers of modulus 1 (the circle 
group). The set of all characters of G, denoted P  , 
is an abelian group under pointwise multiplication, and 
is called the dual group of G or the character group of 
G.

If G is an DCA group with normalized Haar measure
and 0 < p < o o ,  D^(G) is the space of all
Borel measurable functions f on G such that Jg^jfl^dx <co, 
A norm for D^(G) is given by j|f i | ̂  = ( J^|fI ̂ dx)^/^.
If we identify the functions in D^(G) that differ only 
on a null set Lp(G) is a Banach space.

Per f, g€Lp(G), the convolution of f and g,. f*g,
is defined by

f*g(x) = f(xy)g(y“^)dy = f(y)g(yT^x)dy ; 
with convolution as multiplication D^(G) is a Banach 
algebra.

. . measurable .L^(G) is the space of all boundedAfunctions on G.
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A norm for (G) is given by = ess sup lf(x)l =
inf ^a: |x: jf(x)\ > a] is a null set j.

We are principally concerned with L^(G). In 
general, L^(G) does not have an identity- However we 
do have the following theorem-

Theorem 20; If G is a discrete LCA group then 
L̂ C.GO' has an identity.

Proof: In case G is discrete each point of G is
an open set and has, equal Haar measure. If e is the 
identity of G, define u(x) = 0 if x ^ e, u(x) = 1 if x = 
e. Then u is the identity of Ij|̂ (G;), for f^u(x) =
/ ^ f  (y)u(y“^x)dy = ^  y ̂  q i‘Cy)u(y~^x) = f (x).

The converse to this theorem is also true p .3o]..
If G is aniLCA group we can identify the maximal 

ideal space of L^(G) and T  Ly f->f(X. ) = S q f(x)X(x)dx 
for P . With the topology of uniform convergence on 
compact sets P  is an LCA group and is in fact homeo- 
morphic to Thus if G is discrete L̂ (Ĝ ) is a
commutative Banach algebra with identity so that P  is 
compact by Theorem 10.

The following examples treat the LCA groups that
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are the objects of study of classical Pourier analysis.

Exam-pleg; Let G- be the additive group of real num­
bers R. Every character of R is of the form s —
for some real number t. Thus if G = R, then G =T = R»
that is, R is its own dual group. For t<£R, $(t) =

Y“f"J f(x)e dx, the usual Fourier transform of the line.-CO
If. G is the circle group I’ %(x) = e^^^ and

'7C(x + 2 tt) = e^^^ for all X é  P' so that t must be an
integer. Thus P  is the group of integers Z and f(t) =
l/2;r J^(e^®)e~^’̂®dO.-r

If G' is the group of integers B 9 U n ) = e ^ .  Thus 
/C(l) = e^^ so that % — r^e^^ is an isomorphism between 
the dual group of Z and T.V f(e^^) (n)e"^^^,
the classical Fourier series.

The above examples, particularly the last two, 
illustrate the Pontryagin Duality Theorem which states 
that if G is an LOA group and P  is its dual group then
G is the dual group of P . Thus it, makes sense
to identify the maximal ideal space of L^(p) with-G.
G is compact then P  is discrete [?,' p. 91.

Thus if G is compact, L^( P ) has an identity.
Furthermore, L^( p ) is regular and semi-simple J^Tr P*30^
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so that v;e can examine spectral synthesis in L^( f ) •
In Iî ( p ) the two definitions of spectral synthesis 
are equivalent (̂ 7» p.l6l] .

In our attempt, to prove Malliavin's Theorem, we 
will consider an algehra which is isomotrically iso­
morphic to L^( r ), namely A(G) = G(G)r f = 9 for 
some F 6 r)]. A('G) will he given the norm defined by
II f I = ÜF II 2 = ^  P(u)du, rather than the norm of 
C(G), Using A(G) and some tensor algebra techniques to 
be introduced in the next chapter we will be able to 
prove Malliavin's Theorem, which can now be stated: 
Spectral synthesis fails in A(G) for every non-discrete 
compact abelian group G*
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CHAPTER III

TEHSORi ALGEBRAS

1. Definition and Elementary Properties of Tensor Algebras, 
The definition we v/ill give of a tensor algebra is 

a special case of the definition of tensor algebras for 
topological spaces in general.

Definition; Let and Xg two compact spaces, 
and set X = X^X Xg, the product space, and let C(X) be 
the space of all continuous complex-valued functions on 
X. The tensor algebra V(X) = C(X^) SI CCX^) is the set 
of all functions f in C(X) of the form:
(3»l) ̂ (^1 *^2 ̂ ~ j=l ^ ^ ^1^^3 ̂ ^  *Xg)  ̂X,

where gj € C(Xj^) and hj € C(X2 ) have sup-norm 
at most one and 
T.' = inf. IS!̂ 2  1 ah <o3,
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v/here the infimim is taken over all possible

(X>decompostipns of f such that I 8.̂ I <<» .

We can norm V(X) by setting With
this norm it is easy to verify that V(X) is a Banach alge­
bra, The subalgebra of V(X) whose elements admit a
decomposition of the form (3.1) with only a finite num­
ber of terms is denoted C(X^) S CCXg) and V(X) =
C(X^) â' OCXg) is the completion of C(X^) X  C(X2 ),

We have already seen in Chapter II that  ̂= X^
and now have the following lemma,

lemma 1 ; Xg.
Proofr A point in X, x = (x̂ ĵXg),, defines the 

homomorphism f — > f (x^, ) .  On the other hand, every
A. ^complex-valued homomorphism on C(X^) H 1 = OCX̂ )̂ which 

must be an evaluation homomorphism associated with a 
point of X^ say x^. Similarly, every complex-valued 
homomorphism on V(X) defines a homomorphism on 1 S C(X2 ) 
which must be an evaluation homomorphism of some point 
in X2 say Xg. Thus if v/ is a complex-valued homomorphism 
on V(X), then w(f) = v/(  ̂ a^w(g^. )w(h^ )

(^2 ) Hence = X,
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Lemma 2: V(X) is a regular Banach algebra.
Proof: Let D be a closed subset of X = Xg

and let x = (x^jXg) be a point: of X  such that x ( X\D.
Let N(x) be a neighborhood of x such that D 0 N(x) = 0. 
Set = [yj_:  ̂,N(x| and Ng = [ygr  ̂ •
There exists ^2.̂  ̂ (^1 ) such that :E^(x^) = 1 and f^ = 0 
off Similarly, there exists fgÇCCXg) such that
fgCxg) = 1 and fg- = 0 off. Ng, Note that f^ and fg are
such that for all X\N(x) either = 0 or
fg(tg) =- 0. Define f(t^,tg) - f^(t^)fg(tg). Then f  ̂
V(X) and f(x^,Xg) = 1 while fjjj = 0, Thus the algebra 
V(X) is regular.

2, The Linear Mappings P and M.
In case X^ = Xg = G is a compact abelian group we

simply write V(G) = C(G) X 0(G).
We define two linear mappings H  and P, M:C(G)-*^> 

G(G x G) and F:.0(G ̂  G)— ^O(G) as follows:
(3.2) I(f)(x,y) - f(x+y) for f 6 0(G), x,y € G and

F(g)(x) = Jg. g(x-y,y)dy, for giS 0(G xG), x e G 
where dy indicates integration with respect to 
normalized Haar measure on G.

Lemma 3: is the identity on 0(G).
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Proof: Choose f g C(G). FôM(f )(x) = F(M(f ) )(x) =

M(f )(x-y,y)dy = f(x)cLy = f(x).
Let P  he the dual of the comaet group G. Recall

that A{G) = If 6 C ( G) f = F for some P é P)j*. Now
P  is discrete since G is compact and so f. f A(G) implies 
f(x) = F(x) = -XCx) where Uf
We define M to he the restriction of M to A(G) and we de­
fine P to he the restriction of P to

Lemma. 4r M is continuous and norm-decreasing.
Proof : Let f 6 A(G) and write f = ^(x)

where 1 a.ĵ | < oo . Now M(f)(x,y) = a^ PC(x+y) -
^  8rv 'Xix)'7C(y) since M is linear and characters are 
homomorphi sms. Thus M(f ) é V(G) and ll M(f ) I ^ i â l =
II ^ II A(G) ' is, M is norm-decreasing.

Lemma 5 :: P is continuous and norm-decreasing.
Furthermore, P maps V(G) onto A(G).

Proof: Let f (V(G) and write f(x,y) = ^  j^Qajgj(x)hj(y)
^ /ptS

Evaluate P(f)(x) = Jg. Za^g^,.(x-y)h^(y)dy =
T  ̂  a^(g.*h.)(x). Now g. and h .. belong to Lp(G’) and j—u Ü j j j J ^

we can argue that g .*h.. 6 A(G0 with the aid of the
J J

Planoherel Theorem p.26j . Also | , t g j * h j I t <
!l gjM 2 llliy (t2  ̂U S j K ^  II hjll^ < 1, so that

Reprotjucetj with permission of the copyright owner. Further reproctuction prohibitect without permission.



33
{I P(f ) V(G)" P is continuous and is
norm-decroasing. Since P«M is the identity on A(G) P 
must map V(G) onto A(G).

Also since P^M is the identity on A(G) and llMll  ̂ 1 
and ilP/i <• 1 we see that M is an i some try. Hence v/e can 
study V(G) to deduce properties of A(G) and vice versa.
As'an example of this we have the following theorem.

Theorem 6; If a closed subset E of G is not a set
of spectral synthesis for A(G), then the closed set E* = 
[(x,y): x+yé e J is not a set of spectrsl synthesis for 
V(G).

Proof; Since E is not a set of spectral synthesis 
for A(G) there exist a real number a >0 and a function 
±6 1(E) Ç A(G) such that (|f-gH ^ for all g 6 J(E).
M(f) is then a function in I(E*). Now every neighborhood 
of E* contains a neighborhood U of the form {(x,y): x+y^ 
W, v/here W is a neighborhood of E] . Let u be a function
that vanishes on U. Then P(u)(x) = 3̂ , u(x-y,y)dy =
0 whenever x is in W, i.e., P(u) 6 Iq Ce ) whenever u t 
Iq (E*). Since |jM(f)-u|\y(g,) ^ llP^M(f )-P(u)ll =
II f-P(u) / > a, E* is not a set of spectral synthesis
for V(G).
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3. Kronecker Sets.

Definition: Let G: be a locally compact ^oup. A
subset E of G is said to be independent in case for every
choice of k distinct points in E, Xg, ... ,x^, and k
integers I n̂  ̂* ng * • * • * ^  j n^x^ — 0 implies
n.x, = 0 for all j  ̂k. A subset E of G is said to be 

J  J

a Krone eke r set in case every continuous unitary function
on E can be uniformly approximated by the characters of
G, i.e., for every unitary function f on E and for every
real number €;^0 there exists such that sup If (x)-X(x)l<

XÉ-E
6 . In groups of finite order there are no non-empty 
Kronecker sets but, the following definition provides 
analogous objects of interest. A subset E of G is said 
to be of type K^ where p is a natural prime if -
[f e C(E): fP = l] ,

Lemma 7: Kronecker sets and sets of type K^ are
independent.

Proof; Let E be a Kronecker set. Choose x^, Xg^ ... 
in E and any integers n^, ng, ... , n^. Suppose

^  ?C.(x.)^j . Now every function f on E which can^  J—J- J
be uniformly approximated on E by the characters of G 
must satisfy f(x. )^j = 1. Since E is a Kronecker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35
set, ^  a = 1 for arbitrary complex numbers a.

J —-L J  J

Of modulus 1, Hence n̂  ̂= 0 for all 1  ̂j ^k.
If S is of type K then f (x. = 1 must be

P  J '—J - J

satisfied by every continuous function f  on K of modulus 
1. Thus n . = O(mod p) for 1 i j 6 k .

J

Let E be a subset of an LCA group and set A(E) = 
^f|gr f ̂ A(Gr)/. Endow A(E) with the quotient norm, i.e.,
U f = inf I Ill’ll a(G)* ^ = f on e} ► Then A(E) can
be canonically identified with A(G-)/ 1(E) and = E.
If E is a compact Kronecker set, it can be shown that 
A(E) and 0(E) are isometric p.lllj .

I

Theorem 8 ; Let G  be a compact group. If and Kg 
are closed subsets of G such that K^/l Kg = and K^U Kg 
is a Kronecker set: (or type set), then A(K^+Kg) is 
isometrically isomorphic to C(K2_) E C(Kg).

Proof: K^UKg is Kronecker and hence is independent.
Thus we have the canonical map K = K^X Kg— >K-ĵ +Kg = E 
v/hich permits us to identify A(E) with a subalgebra A'(K) 
of 0(K) endowed with the norm of A(E). That is, A'(K) = 
|'p€C(K): PCk^fkg) = f (k^+kg) where f 6 A(E) and (k^,kg) & 
zjf and ) ̂ ^ ̂  ̂A* (K) ~ ^^^^'a(E)* remainder of this
proof is broken into two parts. Pirst, A*(K)G V(K) - 
C(Kjl) E. C(Kg) and the injection map is norm-decreasing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36
If P 6 A* (K), then for every real number £>0 there exists 
a function g = in A(G-) such that =
e d ^ l+ k j)  and | lg |) j i (G )  = • ^ e r  * ^ A.(E) +  ̂ *

NowP(k^,j,2) = ■Itr ^  X(ki) ̂ ICg)
so th a t  E i  V (E ) and i  la ^ l i  I IP U ^ ,(g )  + 6 .

Henoe -  1'^ I ' a ' ( E ) '

Second, V(K) 6 A' (K) and the injection map is norm- 
decreasing. If P€V(IC) for every real number 6>0, P can 
be written P(k^,k2 ) = * ^ ^ 1  where (t&jl ) é

1, c(E^)- ^ ^ ^ 1  I ̂ jl -
KiUKg is Kronecker (or of type K^) so are K̂ , and Kg. 
Consequently, A(K.) and C(K.) are isometric for 1 = 1 ,  2,
Thus there exist for each positive integer j two functions 
in A(G), g" . and h' ., equal respectively to g. on K-, andJ J J **>
hj on Kg such that S* b^ %.(k]_) and h'^(kg) =

i“vl ^
l+€ .. P('k^,kg) is thus written: P(k^,kg) =
4(.xtr %(ki)Y(k2) '»hore t ^
j\ E y (l+ 2  *  + e ) .  Set ' X j j i f )  eq.ua! to  the  continuous

function on K = K^X Kg that is equal to X. on K^ and Y 
on Kg. Now % U  y  (^i*kg) = %(k^) Y(kg) so that IC U 
is unitary. Since K^^UKg is Kronecker there exists a 
character 0 of G such that UX^Ui^ -0||< , for every
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real number V\> 0. Also || %(k^) y(k2)-9(k^)G(kg)|| <
2lq. Thus if we set- f ^  yeT
then f^ e A»(K), [If^li < ll Fll t and
Uï'~f^U v(K)~  ̂''I Fil y ̂ĵ ^(1+26 + e^). If we choose a 
sequence of real numbers tending toward zero we see
that F is the sum of a series of. functions converging in 
A'(K), i.e., llF-f^U v(E)— ^ 0 as -> 0. Thus F be­
longs to A'(K). Finally, (lf,̂ l\-------4 F U^^jr)(l+26 +6^)
implies that 1\a "(k ) ' VV^Uy^jr).

.4, Perfect Sets and Canijor Sets.
Definition: A set. is said to be perfect in case

it is non-empty, compact, and has no isolated points,
A topological space is said to be totally disconnected 
in case every open set is also closed. A Cantor set is 
a perfect metric totally disconnected set.

All Cantor sets are homeomorphic to the Cantor set
■ I I 00of the real line. The group D<^ = | | ^_q (%2 )* the 

product of countably many times of the group of two elements 
is a Cantor set. Our interest in Cantor sets and in D 
is explained by the fact that every locally compact 
abelian group contains a Cantor set which is a Kronecker 
set or a type K set [̂ 7, p . io o ]
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CHAPTEH m  

■ MALLIAV,m»S meOKEM

1. Introduction.
V/e are now nearly ready to prove Malliavin's 

Theorem that if. G is a non-discrete compact abelian 
group, then spectral synthesis fails in A(G'). We have 
already seen that if G is an infinite compact group 
then G contains a compact. Cantor set K which is also 
a Kronecker set or a type set. K can be partitioned 
into K^ and Kg both Cantor sets such that K^A Kg =
If we set E = K^ + Kg, then a (E) is isomorphic to V(D^ ) = 
G(D^ ) S C(Doo ) since K^and Kg are Cantor seta. If a 
closed subset P of E is not a set of spectral synthesis 
for A(E), a fortiori P is not. a set of spectral synthesis 
for A(G'). Hence to prove Malliavin's Theorem all v/e must
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shov/ is that spectral synthesis fails in A(E). Since 
A(e ) is isomorphic to V(Dco) v/e can make one final re­
duction; Malliavin's Theorem is proved if spectral syn­
thesis fails in V('D'«>). To prove this wo need the 
counterexample of Schwartz.

2. The Counterexample of Schwartz,
Let E he the additive group of real numbers and 

let E^ = E Evs E, three-dimensional Euclidean space with
dual group E^. Let E = ^ze E^r [z\ = = l}.
The counterexample of Schwartz [9 ] states that E is not 
a set of spectral synthesis f.br A(E^).

Theorem 1: Spectral synthesis fails in A(E^),
In particular E is not a set of spectral synthesis for 
A(h 2).

Proof; V/e have already mentioned in Chapter II 
that in I<i(Gr) which is isometrically isomorphic to A(G) 
the two definitions of spectral synthesis are equivalent.
In our case G = E^ and to prove the theorem we will show
that E is not a set of spectral synthesis in the second
sense for L^(R^).

Let V/ be the set of all complex-valued infinitely 
differentiable functions on E^. Then V/ is a subset of
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[7, P.I65] . If ë( W, X = (x^,X2,x^), y =

Cyi»y2>y'3) é then g(y) = f(y) = 1̂ 3 f(x)e“^^'^dx
v/here f 6 L^(R^) and x-y = x^y^ + x^y^ + x^y^. By 
Leibnitz' Rule, ïig/'^y^ (y) = J^3 -ix^f(x)e"^^'^dx.

Let J be the set of all f éL^(R^) such that f 6 W
and f(y) = 0 on E. Let I be the set of all f € J such
that h f/^y^ = O' on E. Let T and ?  be the closures of
I and J respectively. Now Z(T) = Z(T) = E. V/e will
show T 4= J by constructing a bounded linear functional 
S on L^(R^) such that 8 = 0 and S jj. 4= 0, i.e., S'
annihilates I but not J* Let u be the unit; mass, uni­
formly distributed over E and set u(x) = e^^ ^du(y).
Fix X 6 R^ and let r be the Euclidean distance from x to
0 . Then u(x) = I/4 S q = (sin r)/r,
by changing to spherical coordinates. Thus I x^u(x)| i 1 
for all X = (xg^fXg,pc^) in R^. Let S be defined by 
8(f) = f(x)x^u(-x)dx so that 8 is a bounded linear
functional on L^(R^). If f é W then x^f 6L^(R^). 80

8(f) = Jjj3 f(x)x^u(-x)dx
“ -̂ R̂  %]_f (x) e”^^'^du(y) dx
- Jg x^f(x)e“^^'^ dx du(y)
= J g  3 f/ ̂  ŷ  ̂du.

Thus 8(f) = 0 for all f Cl. However it is obvious that
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there are fimotiors in J on which S does not vanish. 
Hence T  ? and spectral synthesis fails in A(R^),

Actually to prove Malliavin's Theorem we need the 
fact that spectral synthesis fails in A(T^) where T^ is 
the three-dimensional torus. Since T.̂  is locally iso­
morphic to R^, the above proof can he modified to show 
that spectral synthesis fails in A(Tĵ ) [lO, pp.9$ff] .

3. Malliavin"s Theorem.
Malliavin's Theorem will be proved when we establish 

the following result.
Theorem 2; Spectral synthesis fails inV(Doo)»
Proof; V/e have just seen in the proceeding section 

that spectral synthesis fails in A(T^). In view of 
Theorem 3*6 spectral synthesis must also fail in V(T ).

V/e now define a mapping d from onto T^ as the 
composite d = d"od' where d'rX)̂ -— > = [o,]J ̂  is defined
by d' ( ( a^^ja2 > » ». • ) ) — (O.a^^a^ay. • • » 0.a^a^ag... * O.a^a^ag,.. ) 
here the elements of are written in their binary
expansions and d":I^-- * T^ is defined by d" ( (x^,Xg,x^ ) ) =
(e^ ̂ ^^l,,e^ ^^^3). The mapping d is sur jeotive
since both d* and d" are. Also d is continuous and it 
preserves normalized Haar measure. That is, if E is a
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subset of and if m represents normalized Haar mea­
sure on Dgg, and if m' represents normalized Haar mea­
sure on then m(E) = m'(d(E)). The mapping d is also 
injective if we remove from Deo & set of null measure,
i.e., a countable set. The mapping d thus permits us to 
identify canonically L q^Cd q̂ ) and Loo(T^) and hence to 
define a’ canonical isometric mapping from C(T^) onto 
C(Dco). That is, if f ( C(Dqg, ) then f = g»d for some 
gdC(T^). Thus we can write:
O(I^) H C(3;^)-2->.C(Da5) H C(Doo (D„ ) £ L u,(D») =
1 ,^ (3 ^ )  £  1 ,^ (1 ^ )  o r

V(T^)-2-»v (Do, ) E L „ ( D ^  ) = i
where s 'os  is  th e  oanonioal In je c t io n  o f V(T^) in to  V'.
We will consider elements of V ’ as being in I»ca>(Do> ) M (D*o )
or as being in L^^CT^) E (T^) as is appropriate.
Because of the definition of tensor products both s and
s' have operator norm at most one.

V/e want to show now that s' is an i some try. C(D^ )
contains an approximating identity, i.e., a sequence of
functions ^p^j in OCDqo ) such that each p^ is positive,
J t, P^(y)<îy = l for each j and the support of p^ tends -̂ oo 3 J
to {o ] as j  tends to infinity. Thus there exists a 
sequence of mappings p^ defined by p^(f) = p^*f, each 
mapping Loo(Dcto) into C(D'ôo) such that p^(f)—?f for
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all f€C(Dap), Similarly there exists a seq.uence of 
mappings defined by p^ S p^(f S g) = ]^(f) S p^(g)
each mapping V  = Lco(Doo) 0 L o„(D ôo) into V(Doo)- 
Î ÏO W  if s' were not an i  some try there would exist a 
function P in V(Dôo ) such that 11 p^0 p^ s? (P) ) ‘
li s' (P) M y , (|p(j y (2)^ When n goes to infinity

S p^os"(P)— >P and we obtainlt P(l ^ [ls"(P) U y , 4
ilPlty(jj^)t which is clearly impossible. Thus s' 
must be an isometry.

If we utilize an approximating identity in
C(T^) and the mappings

P^:L^ (T^)— >C(T^) defined by P^(f ) = P^*f, f ̂ L«(T^) 
^n ^ ̂ n'‘ V" — >V(T^) defined by P^ S P^(f m g) =
P^(f) a F^(s), f S g é V  

we can apply the same argument mut at is mutandis to show 
that s'os is an isometry. Hence so is s.

To help prevent confusion the following diagram 
is presented:

p" p
V  -----   !L>7(T^)

V V  .
Both s and s' are isometrics and both F iS P and p S ̂n n ^n •*=̂n
have operator norm at most one.
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Corresponding tn s there is a continuous bijective 

mapping s from ^oo onto X
defined by s(x,^(f) = s(f )(x,y) for (x,y) ̂  I^and
f 6 V(T^). Now spectral synthesis fails in V(T^) so there 
exist a closed subset E of T^x. a real num­
ber a >0 and a function f in 1(E) SV/(f^) such that 
!\ f-hl 1 > a, for each he J(E), Consider E* = “s "^(E),
a closed subset of y  We will show
that E*is not. a set of spectral synthesis for V(D^^).
If f € 1(E) then s(f )€.!(£*)• Let g be any function in 
J(E*). Since s* is an i some try (i®(̂  Y(D c« ) “ 
i\s*os(f )-s'(g) U y , . Thus
I i (P^ B P^)(s'os)(f) - (P^ a Fj^)os"(g)U Y(fp3y i \is(f )-g1ly(̂ )̂  ̂
since P^ S P^ has operator norm at most one. Set 

f^ = (F^ a P^)(s*b s)(f ) and

S n  =  (Fn ®
Note that both and ^  are In V(ï^). Now \ly^^3)
tends to 0 as n tends to infinity so that if we choose 
m sufficiently large |If^-f lly^^3^ £ a/2. We can also 
require that m be sufficiently large so that be close 
to 0 in a neighborhood of E, i.e., (If-g^il y ̂^̂ 3 ̂ > a. 
fathering our inequalities we have

s(f )-glly(j5̂  )> V(T^)^^^^m‘̂ ^"^’"^^W(T^) -
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v (t 3) - llv,(j3)?a-a/2 = a/2 > 0.

Hence E* is not., a set of spectral synthesis for V(Do© ) 
and spectral synthesis fails in V(Doo).

This concludes the proof of Malliavin's Theorem.
For completeness we will restate Malliavin's Theorem and 
summarize the reductions made to accomplish the proof.

Theorem 3: (Malliavin) Let G? be a non-discrete
compact abelian group. Then spectral synthesis fails in 
A(G).

Proof : If G is a noni-discrete compact: abelian
group, G contains a Cantor set K that is also a Kronecker 
set or a type set. K can be decomposed into and Kg, 
both Cantor sets, such that Kg = K and K̂ _n Kg = 0. 
Then A(K^+Kg) 0(K^) E C(Kg) =C(Do>) â C(Dco ) =V(Dco). 
How V(Doo) is not of spectral synthesis, so that A(K^+K^ 
is not of spectral synthesis and hence spectral synthesis 
fails in A(G),
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