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Foster, Michelle L. M.S., December 2005 Geology

K-Bentonites of the Middle Proterozoic Belt Supergroup, Western Montana

Chairperson; Gray Thompson

Numerous previously unrecognized K-bentonites in the Middle Proterozoic Belt 
Supergroup of western Montana may provide a Rosetta Stone for precise temporal 
correlation of those rocks with coeval stratigraphie units deposited in intracratonic basins 
now located in western North America, Siberia, and Australia that may have been 
tectonically connected during the Middle Proterozoic. Fine-grained siliciclastic and 
carbonate rocks of the Belt Supergroup cover much of western Montana and parts of 
Idaho, Washington, and British Columbia, and attain a thickness of more than 18 
kilometers at the basin depocenter. Paleogeographic reconstruction places the Belt basin 
in the center of a supercontinent consisting of Laurentia, Siberia and Australia, where the 
basin formed in response to incipient rifting. Thus, Belt-equivalent rocks are thought to 
exist in Siberia and perhaps Australia. Stratigraphie correlation has been difficult, both 
within the Belt Supergroup and among those modem continents, because of the lack of 
useful fossils in the ancient rocks. Previous research shows that K-bentonites have 
geochemical signatures that allow a single K-bentonite to be correlated over great 
distance, and that K-bentonites contain magmatic minerals useful for precise radiometric 
dating. In the present study, 32 previously unrecognized K-bentonites have been 
identified in the Belt Supergroup based on field characteristics, quantitative mineral 
analyses, illite polytype determinations, chemical analyses, TGA, and SEM imaging. 
Dissimilarities in outcrop appearance compared to familiar younger K-bentonites may be 
responsible for previous lack of recognition of Belt K-bentonites, despite more than 100 
years of intensive study of Belt rocks.
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CHAPTER 1 

INTRODUCTION

Many scientists who study the middle Proterozoic Belt Supergroup infer that it 

was deposited in an intracratonic rift environment (eg: Winston, 1986, Frost and 

Winston, 1987, Ross and Villeneuve, 2003, Sears, in review). Intracratonic rift 

environments are commonly accompanied by a bimodal suite of mafic and felsic rocks 

(Hyndman, 1985, Christiansen and Lipman, 1972, Moyer and Nealey, 1989, Pallister, 

1987) yet evidence of felsic volcanism is strikingly absent from literature describing the 

Belt Supergroup (Link et al., 2003, Winston, 1986). The only published evidence of 

felsic volcanism prior to this study is the Purcell Lava in southeastern British Columbia 

and northwestern Montana, a basalt flow that contains about 6 meters of a ‘regionally 

unique’ rhyolite or quartz latite flow (Johns, 1961 in Evans et al., 2000), and two K- 

bentonites, one in the upper Wallace Formation of the Pigean Group in Glacier National 

Park (Goldich et al., 1959, Moe et al., 1996) and the other at the contact between the 

Libby Formation and the Bonner Formation just west of Libby, Montana (Kidder, 1992, 

Evans et al., 2001).

I propose that felsic volcanism was common during deposition of the middle 

Proterozoic Belt Supergroup of western Montana and supplied considerable quantities of 

sedimentary material including bentonites to the Belt Basin, but that bentonites deposited 

by this process have gone largely unrecognized by previous workers. I also suggest that



felsic volcanism was the source of the large volume of clay minerals (now illite and 

lesser amounts of chlorite) present in the Belt Supergroup.

Goldich et al, 1959, and Moe et al, 1996, described a 20 centimeter-thick olive- 

green K-bentonite bed in the uppermost Piegan Group in a road cut at Logan Pass in 

Glacier National Park. Kidder (1992) and Evans et al. (2001) described one additional K- 

bentonite bed occurring near the contact between the Bonner Formation and the Libby 

formation, just west of Libby, Montana. These are the only bentonites that have been 

described from the Belt Supergroup prior to this paper.

The major goal of the research described in this paper is to identify and 

characterize K-bentonites throughout the Belt Supergroup, to determine their abundance 

and distribution, to evaluate their mineralogical and chemical characteristics, and to 

assess the importance of volcanogenic contributions to the Belt Supergroup.

Future analyses of these previously unrecognized and abundant volcanic beds in 

the Belt Supergroup may establish time synchronous marker beds for correlations with 

age equivalent strata throughout North America and with strata now located on other 

continents. Data obtained from these bentonites may also provide accurate time 

constraints for Belt sedimentation rates.

Bentonite and K-Bentonite 

Bentonites are clay rich relics of volcanic ash deposited in aqueous 

environments and are commonly interbedded in shale, sandstone, and carbonate rocks 

(Dennison and Textoris, 1970 in Altaner et al., 1984; Weaver, 1956; Hoffman, 1976; 

Hoffman and Hower, 1979; Weaver et al., 1980). Bentonites have a higher preservation
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potential in shale and fine-grained carbonate rock as a result of the low current velocities 

associated with such facies. Stratigraphie continuity, uniform groundmass, presence of 

quartz shards, euhedral zircon and other magmatic crystals, and clay mineral composition 

provide evidence that bentonites originate from air fall ash (Moe, et al., 1996; Kolata, et 

at., 1996; Grim, 1978). Most have a waxy, soapy or chalky appearance, range in color 

from greenish gray/blue to light grey or tan, and vary in thickness from several 

millimeters to several meters (Kolata et al., 1996).

Bentonites commonly occur as recessive layers having sharp lithologie contact 

with the underlying strata and a sharp or gradational contact with the overlying strata. 

Renewed detrital input, combined with terrigenous volcanic ash, may result in a 

transitional layer immediately above the bentonite (Hayes, 1994, Huff, personal 

communication, 2004). Slaughter and Earley (1956) described Upper Cretaceous Mowry 

bentonites in north-central Wyoming as having two outcrop appearances. Some of these 

bentonite beds have a sharp contact with bounding porcelanite beds, while other 

bentonite beds have a gradational contact with the overlying shale bed.

“Mixed” bentonites form from volcanic ash that has been reworked by physical 

processes such as waves, tides, and currents and “secondary” bentonites form from 

volcanic ash that has been eroded, transported, and re-deposited by flowing water (Huff, 

personal communication, 2005; Ver Straeten, 2004). Mixed bentonites and secondaey 

bentonites may exhibit sedimentary structures that reflect their depositional histories, and 

may be easily overlooked.

In marine environments, volcanic ash reacts with seawater resulting in a loss of 

silica, potassium, and calcium, and a gain in sodium, water, and magnesium;
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subsequently crystallizing as minerals of the smectite group (Grim and Guven, 1979, 

Kiersch and Keller, 1955, Altaner, 1985, Walker, 1983). The excess silica in the system 

may accumulate as secondary silica in the overlying beds (Rosenkrans, 1936,) and 

underlying beds (Slaughter and Earley, 1965, in Altaner, 1985) and may re-crystallize as 

cristobalite (Gruner, 1940) or quartz in the bentonite. Chertification of the underlying or 

overlying strata may develop if the host rock is a carbonate.

Under low-grade metamorphic conditions of at least 100°C, (or lower 

temperatures at longer periods of time (Ryan, 1991), and with a source of potassium, the 

potassium-poor smectite alters to potassium-rich illite as the bentonite converts to K- 

bentonite (Altaner, 1985; Walker, 1983). Thus, K-bentonites differ from bentonites in 

that they contain illite or mixed-layered illite-smectite (I/S) instead of smectite as the 

dominant mineral (Altaner et al. 1984; Hoffman, 1976, Walker, 1983). The potassium 

content of the K-bentonite is proportional to the percentage of illite layers in the I/S clay 

(Hoffman, 1976). Most Paleozoic K-bentonites contain approximately 60% to 90% illite 

layers (Altaner, 1985, Moe et al, 1996). The two previously described Precambrian K- 

bentonites in the Belt Supergroup, Montana, contain 100% illite layers (this study). 

Proposed environments of illitization of smectite and conversion of bentonite to K- 

bentonite include burial metamorphism (Weaver and Wampler, 1970, Perry and Hower, 

1972, and Hower et al., 1976) and metasomatism (Velde and Brusewitz, 1982, Elliott et 

al., 1987, McCarty, 1990). The Cretaceous K-bentonites in the disturbed belt in 

northwestern Montana (Altaner et al., 1984, Hoffman and Hower, 1979), like many other 

K-bentonites, have carbonates and shales as host rock.



Illite polytypes indicate the diagenetic and detrital history of clay rich rocks 

(Eslinger and Sellars, 1981, Ryan, 1991; Walker and Thompson, 1990). IM  is the low 

temperature polytype of illite, and is concentrated in the clay size fraction (Srodon and 

Eberl, 1984). With increasing metamorphic grade, IM  transforms to the higher 

temperature 2M i polytype, resetting the K-Ar clock. K-Ar dating of the 2M| polytype 

thus yields a younger diagenetic age, thereby distinguishing it from older detrital 2M, 

illite (Srodon and Eberl, 1984).

Some K-bentonite beds are mineralogically zoned, characterized by high K 2O 

content and percent I in I/S near the bentonite margins with decreasing values toward the 

center of the bentonite bed. This stratified characteristic is the result of slow diffusion of 

K 2O into the bentonite during the illitization process (Altaner et al., 1984, Walker, 1983, 

Velde and Brusewitz, 1982). It has been shown that minéralogie zonation may occur in 

response to different permeability of the underlying and overlying bounding sedimentary 

layers (Velde and Brusewitz, 1982, Brusewitz, 1986) and proximity to heat sources 

(Altaner et al., 1984, Ryan, 1996) such as a dike or sill.

A violent volcanic eruption commonly deposits a wide-ranging, time 

synchronous blanket of volcanic ash containing angular and euhedral quartz, zircon, 

feldspar, apatite and other magmatic crystals, which are incorporated in the air fall ash as 

it accumulates on the earth’s surface. These ash layers may be directly preserved in the 

sedimentary sequence eventually to become bentonites and K-bentonites, they may be 

reworked after initial deposition by currents, tides, or waves to become “mixed” 

bentonites and K-bentonites, or they may be eroded, transported, and eventually re

deposited to form “secondary” bentonites or K-bentonites. If  dilution by non-
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volcanogenic sediments is relatively minor, the resulting deposit can retain many of the 

characteristics of a bentonite formed directly from an air-fall ash. However, this dilution 

may mix detritally rounded grains of quartz, feldspar, mica, zircon and other minerals 

with the ash component. Zircon grains are extremely resistant to weathering and are 

commonly used for uranium-lead and lead-lead radiometric dating and stratigraphie 

correlation (Schimick, 1990, Ray et al., 2002). However, if older detrital zircons are not 

separated from zircons formed during the most recent volcanic event, the zircon ages will 

represent a weighted average of the zircons from the various crystallization times. Thus, 

SHRIMP methods have proved most useful in dating many bentonites and K-bentonites 

(Evans et al., 2000).

Individual K-bentonites have distinct chemical signatures. Bergstrom et al. 

(1995) and Kolata et al. (1996) used chemical signatures of Ordovician K-bentonites to 

correlate them within the Appalachian Basin, as well as to correlate K-bentonite beds of 

the Appalachian Basin to K-bentonite beds in Baltoscandia. Huff et al. (1997) applied 

similar techniques to a Silurian K-bentonite of the Appalachian Basin, and Seylor et al.

(in review) used similar methods to correlate K-bentonites in the late Proterozoic African 

Nama Group. Chemical analysis of Belt bentonites may provide a similar tool for basin- 

wide and inter continental correlations in the Belt Supergroup and correlative units in 

North America and on other continents.

The Belt Supergroup 

The Middle Proterozic Belt Supergroup is a thick, extensive sedimentary 

sequence that underwent several episodes of faulting and folding follow deposition. It is
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greater than 18 km thick at its depocenter, and spans western Montana, northern and 

central Idaho, eastern Washington, British Columbia, and Alberta. Although the Belt 

Supergroup has been considered an open marine deposit (Harrison, 1972), recent 

investigations favor an enclosed intracratonic rift basin (Winston et al., 1986, Frost and 

Winston, 1987, Ross and Villeneuve, 2003, Sears, 2005, in review).

The Belt Supergroup is separated into four Groups: 1) the lower Belt, the 

Ravalli Group, the Piegan Group (to be resurrected), and the Missoula Group (Winston, 

personal communication 2003). Original lithologies include coarse to fine-grained 

arenite and silt, red and green mudstone, argillaceous carbonate, and dark gray laminated 

argillite and sandstone (Winston, 1986).

The presence of voluminous mafic sills, occasional lava flows, and the K- 

bentonites discovered in this study in the Belt Supergroup support the interpretation of an 

intracontinental rift environment, and also suggest the importance of magmatic activity 

during deposition of those sediments (Zartman et al. 1982; Burwash and Wagner, 1989; 

Evans and Fischer, 1986). The large amounts of illite and chlorite in the Belt basin 

(Ryan, 1991) may have formed from the weathering of felsic volcanic materials.

Schieber (1993) suggested that weathering of volcanic rocks may be the source for the 

“discrepancies between the likely K content of the hinterland and the actual K content of 

Belt sediment”. Eslinger and Sellars (1981) also suggested a volcanic contribution to the 

Belt sediments, concluding that the ‘enigmatically’ large amount of illite in the Belt 

Supergroup may be of volcanic origin, and Bleiwas (1977) suggested a volcanic source 

for the chert beds in the upper McNamara Formation. In addition, the Southern Granite-



Rhyolite Province active during Belt time and may have been the source of K-bentonites 

in the Belt Supergroup (Sears, in review 2005).

The Belt-Purcell rift system initiated at about 1510-1485 Ma (Lydon, 2000). 

Diabase dikes (Zartman et al. 1982; Burwash and Wagner, 1989), the Purcell lava (Evans 

et al., 2000) and the Alderson Lake sill (R.A. Burwash, personal comm., in Moe et al., 

1996) were emplaced within the basin at 1430-1450 Ma and 1307 Ma, respectively. The 

Windermere group represents the first rifting sequence during latest Neoproterozoic at 

about 740 Ma to 723 Ma (Ross et al., 1995 in Colpron et al., 2002). A second 

Neoproterozoic age of 569 Ma was established by U-Pb dating of zircons from synrift 

volcanic rocks of the Hamill Group in the southeastern Cordillera indicating a latest 

rifting age for the Belt basin (Colpron et al., 2002).
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CHAPTER 2

SAMPLING METHODS

Field identification 

I  initally explored for bentonites in the Belt Supergroup by looking for 

sedimentary beds showing field characteristics similar to those of known, well-described, 

younger bentonites. Figure 1 illustrates characteristic outcrop appearances of Cretaceous 

bentonites in the Colorado Group along the Missouri River between Carters Ferry and Ft. 

Benton, Montana. Typical bentonites are regionally extensive, recessive in outcrop and 

range in thickness from several millimeters to several meters. They are white to light 

grey or tan, chalky, clay-rich and have a waxy texture when wet (Haynes, 1994, Kolata et 

al. 1996, Ross, 1928). Bentonites may not exhibit sedimentary structures if they are 

primary air fall ash beds, but may exhibit sedimentary structures if they have been 

reworked to form “mixed” bentonites, or “secondary” bentonites if they were initially 

deposited by flowing water (Huff, personal communication, 2004).

I soon discovered, however, that perhaps because of their great age, many Belt 

bentonites do not closely resemble typical younger bentonites described by previous 

workers. Thus, we began developing criteria for recognizing these ancient clay-rich beds 

in the field. These criteria are described at the beginning of Chapter 5. To date, I have 

identified and analyzed 32 K-bentonites, “mixed” K-bentonites, and “secondary” K-

9



Figure 1 : Cretaceous bentonites, 
from the Colorado Group located 
between Carters Ferry and Fort 
Benton along the Missouri River, 
are recessive clay rich beds.
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bentonites ranging in thickness from 5 cm to 35 centimeters, from 19 different localities 

and 9 formations in Belt rocks from western Montana

Sampling locations

Belt K-bentonites and the bounding siltstones, sandstones, and argillites were 

collected from the Ravalli Group, the Piegan Group and the Missoula Group for 

preliminary investigation (Figure 2). A ll sample locations are described in Table 1 on 

Pages 41 and 42. Samples of the K- bentonites and the bounding beds were collected for 

further study by the following analytical methods.

11



Figure 2: Location Map of K-bentonites in the 
middle Proterozoic Belt Supergroup, 

western Montana

IS

10

16

(*

138, 0, 10, 8. 11 Helena

12
Butte

Bozeman

Sample Locations

County Lines 

Glacier National Park

Missoula Group 

Middle Belt Carbonate

Ravalli Group 

lower Belt
210,000

] Meters

12



CHAPTER 3

ANALYTICAL METHODS

Qualitative x-ray diffraction (XRD) analysis was conducted on all tentatively- 

identified K-bentonites and the bounding beds. Pétrographie analysis was conducted on 

many of the same samples. Quantitative mineral analysis, chemical analysis, 

thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were 

conducted on selected bentonites and bounding beds. Uranium-lead radiometric dating 

was also conducted on zircons from one K-bentonite.

Qualitative X-ray Diffraction Mineral Analysis 

Because bentonites are clay-rich, qualitative mineral analysis was initially 

conducted in the x-ray diffraction laboratory at the Geology Department at the University 

of Montana on all samples to estimate clay content. Bulk random samples prepared in 

back-loaders and < 2 micron oriented glycol solvated sample mounts were prepared and 

analyzed following the methods of Moore and Reynolds, (1997). 001 oriented samples 

were heated for one hour at 550°C as needed. Samples were analyzed with a Phillips 

XRG 3100 X-ray diffraction machine using CuKq radiation and a graphite crystal 

monochrometer. The bulk samples were scanned from 5° to 65° 2 0 and the oriented 

samples were scanned from 2° to 70° 2 0 at 0.02 steps at one second per step.

13



Petrography

Thin sections were examined to identify features indicative of volcanic origin 

including euhedral and angular crystals and shards, g quartz relics, “floating” grains 

(clay matrix-supported coarser grains), and fluid inclusions (Blatt, 1980; Moe, et al., 

1996; Kolata, et at., 1996; Grim, 1978); and to identify textures indicative of detrital 

transport, including rounded grains and grain-supported textures. The K-bentonites were 

cut perpendicular to bedding for thin section preparation when possible. Thin sections 

were also examined for many detrital units bounding the K-bentonite layers.

Don Winston of the Geology Department at the University of Montana loaned 

two-dozen thin sections of siltstones and sandstones from the Belt Supergroup, Peter 

Ryan, from the Geology Department at Middlebury College, donated four thin sections 

from suspect bentonites in the Ravalli Group along highway 93. Warren Huff of the 

Geology Department at the University of Cinncinati loaned a dozen thin sections from his 

collection of Ordovician K-bentonites from the Appalachian Basin (Huff et al., 1997), 

and Beverly Seylor of the Geology Department at Massachusetts Institute of Technology 

loaned more than a dozen thin sections of K-bentonites from the Neo-Proterozoic Nama 

Group in southwestern Namibia (Seylor et al., in review).

Quantitative X-ray Diffraction Mineral Analysis 

Quantitative mineral analyses (QXRD) were conducted in the clay laboratory at 

Chevron-Texaco in Houston, Texas with the aid of Dr Douglas McCarty and his staff. 

Samples were prepared and analyzed following the methods of Srodon et al. (2001). 

Zincite was used as the internal standard due to its strong and conveniently located peaks

14



(Srodon et al., 2001). Two x-ray diffraction units were used: a Bruker Axes-D8 Advance 

equipped with a fifteen sample holder and a Siemens Diffraktometer D5000 equipped 

with a 40 sample holder, both having a theta-theta goniometer, and a Kevex Peltier 

cooled silicon solid-state detector using. CuKa radiation was used and the applied 

voltage was 30kV with a 30mA current. A ll samples were scanned from 5° to 65° 20 at 

0.02 steps at 2 seconds per step. Quantitative mineral analysis and quantitative illite 

polytype measurements were determined based on the Reitveld method and Autoquan 

(McCarty, 2002). Accuracy of Autoquan used in previous study is approximately ± 2% 

of the amount present for each mineral (McCarty, 2002). The accuracy determination 

does not apply perfectly to our analyses because the mineral structural models used in 

Autoquan do not correspond exactly to the structures in our samples (McCarty, personal 

communication, 2005).

Semi-Quantitative Interpretations of Qualitative Mineral Analysis 

A calibration curve was developed from the data obtained by the quantitative 

mineral analyses described above to estimate quartz to illite ratios from XRD analyses 

conducted in the XRD lab at The University of Montana (Figure 3). The ratio of quartz 

to illite determined by quantitative analyses for each sample was plotted against the 

relative intensities of the quartz (100) and the illite (060) QXRD peaks of each sample to 

create a semi-quantitative calibration curve. The intensity ratio of the quartz (100) peak 

to the illite (060) peak from the bulk random diffraction patterns obtained in the Clay 

Laboratory in the Geology Department at the University of Montana where then plotted 

on the calibration curve to estimate the relative proportions of quartz and illite for

15



1 0 0

90

80

70

« 60 
S
s«
^  50

%
G/ 40

30

♦  K-bentonites 

■ Transitional Beds 

A Detrital Beds

20

10

0.1 0.2 0.3 0^ 0 5 0.6
QXRD Iiilite/Iillite(060)+qtz(4.27)

0,7 0.8 0.9

Figure 3: Calibration curve for semi quantitative interpretations of qualitative mineral analysis.



samples that were not analyzed by QXRD. This approach to estimating quartz to illite 

ratios is valid for many samples because quartz and illite comprise more than 95 percent 

of the minerals in most samples.

Chemical Analyses

Major and trace element analyses of 13 bulk samples of Belt K-bentonites 

were performed by XR AL Laboratories Toronto, Canada using X-ray fluorescence 

(XRF). The analyses are listed on Table 2. Analytical precision as determined by 

XRAL Laboratories Toronto, Canada is in Table 2.

Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was conducted on three K-bentonites in the Clay 

Laboratory at Chevron Texaco following procedures of Srodon et al (1990).

Scanning Electron Microscopy (SEM)

Scanning electron microscopy was conducted at the SEM laboratory at Chevron 

Texaco via a Philips model X L -20 scanning electron microscope (SEM) equipped with 

an EDAX energy-dispersive spectrometer (EDS) on one Belt K-bentonite sample.
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CHAPTER 4 

RESULTS

Field Characteristics 

On an outcrop scale, K-bentonites in the Belt have two different characteristic 

outcrop appearances, recessive beds and non-recessive beds. The recessive beds are of 

two types: chalky beds that exhibit inclined cleavage to bedding, i.e. asymmetric 

crenulation cleavage (Figure 4a &  4b) (Sears personal communication, 2004); and chalky 

beds that do not exhibit asymmetric crenulation cleavage (Figure 5a and 5b). One chalky 

K-bentonite from the upper Bonner Formation near Libby, Montana contains contorted 

siltstone layers ripped from the adjacent beds, suggestive of internal shearing in the K- 

bentonite during Laramide deformation (Figure 6). The non-recessive beds have a 

dense, cherty appearance exhibiting concoidal fracturing in outcrop (Figure 7). These 

cherty beds are clay-rich as shown in Table 1, p. 41 and 42, and grind to a chalky powder 

that resembles the “chalky” beds when crushed in a mortar and pestle.

Most Belt argillite beds are composed of graded silt-to-clay couplets 1-3 

centimeters thick. The K-bentonite layers, including the “mixed” and “secondary” K- 

bentonite layers characteristically lack graded laminae and appear much finer grained.

Some Belt K-bentonites have a transitional contact with the overlying beds.

The transitional layers are clay rich, gradually increasing in grain size and quartz content 

as they grade from the K-bentonite into the overlying siltstone or sandstone. These units 

are termed “transitional beds”. All of the K-bentonites have a sharp contact with the

1 8



Figure 4a: McNamara Formation along Hwy 200 at Rainbow Bend containing 
approximately 9 recessive K-bentonite beds indicated by arrows.

0

Figure 4b: Inclined cleavage to bedding, i.e. crenulation 
cleavage, in a K-bentonite from the McNamara Formation
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Figure 5a: Recessive, chalky K -Bentonite without asymmetric 
crenulation cleavage in the lower Revett Formation along Hwy 93 
one mile south of Ravalli.

Figure 5b: Close-up of the recessive, chalky K-bentonite without 
asymmetric crenulation cleavage in the lower Revett Formation along 
Hwy 93 one mile south of Ravalli.
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Figure 6: “Mixed” K-bentonite in the upper Bonner Formation 
containing contorted siltstone ripped from the surrounding beds.
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Figure 7 : Non-recessive cherty K-bentonite bed located in the upper 
Bonner Formation, Libby, Montana.
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underlying bed. Some K-bentonites in the Belt contain muscovite grains visible in hand 

specimen. The K-bentonites in the upper Belt contain muscovite grains oriented parallel 

to bedding, whereas the K-bentonites in the lower Belt contain randomly oriented 

muscovite grains. A K-bentonite, MF4031, in the Wallace Formation (Piegan Group) 

along highway 93 contains 4mm thick laminations of alternating light and dark colors.

Although no K-bentonite in the Belt Supergroup has been regionally correlated 

in this study, we expect that future work will show that at least some are regionally 

continuous and that some may be correlated among the modem North American,

Siberian, and Australian fragments of the middle Proterozoic supercontinent on which the 

Belt Supergroup was deposited. The upper Wallace Formation (Piegan Group) contains a 

K-bentonite in two different geographic locations, one in Glacier National Park along 

Going-to-the-Sun-Road and one at mile 91 along highway 93 that may be the same 

stratigraphie unit.

Petrography

The Belt K-bentonites are very fine-grained, with clay matrix-supported quartz, 

feldspar, opaque minerals (possibly magnetite or ilmenite), hematite, and high relief non

opaque minerals that are most likely zircon, but are too fine-grained for conclusive 

pétrographie identification. Quartz and feldspars are angular, sub-angular, and few are 

sub-rounded; some contain fluid inclusions. Quartz grains are rarely euhedral, and are 

commonly angular and shard like or polycrystalline. Feldspars include albite and K-spar.

Photomicrographs of selected Belt K-bentonites, Nama bentonites, and 

Ordovician K-bentonites are described below. A ll “estimated” mineral compositions are
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based on pétrographie estimation; QXRD data for mineral compositions are listed in 

Table 1 on pages 41 and 42.

Garnet Range Formation:

Figure 8 is a photomicrograph of a K-bentonite, MF6031, showing fine grained 

clay rich matrix supporting rounded muscovite flakes. The estimated mineral 

composition is 80% clay, 15% mica, 3% qtz, <2% opaques and high relief minerals. The 

clay matrix has a fabric that exhibits parallel extinction. Micas are rounded with very 

high interference colors. Quartz is rare, but elongate and angular when seen.

Figure 9 is a photomicrograph of a “mixed” K-bentonite, MF7036, showing an 

angular albite grain supported in a clay rich matrix. The estimated mineral composition 

is 85% clay, 10% qtz and feldspar, 5% opaques and non-opaques,

McNamara Formation:

Figure 10 is a photomicrograph of a K-bentonite, MF9032B, showing angular 

to sub-rounded grains of quartz and feldspar. The estimated mineral composition is 80% 

clay, 20% quartz and feldspar. Hematite staining is pervasive.

Figure 11 is a photomicrograph of a K-bentonite, MF9035 showing angular, 

sub-angular and sub-rounded quartz grains and a high relief mineral, most likely zircon, 

supported in a clay-rich matrix. The estimated mineral composition is 80% clay, 18% 

quartz, and <2% high relief minerals. Hematite staining is pervasive.

Figure 12 is a photomicrograph of a K-bentonite, MF90311, showing a. angular 

and sub-angular quartz grains containing fluid inclusions (FL), and b. showing an angular
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Figure 8: Photomicrograph of MF603 Ifrom the Garnet Range Formation 
showing a fine grained clay rich matrix supporting rounded muscovite flakes. 
Scale: 16X
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Figure 9: Photomicrograph of a K-bentonite, MF7036, from the Garnet 
Range Formation showing an angular albite grain supported in a clay rich 
matrix. Scale: 40X
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Figure 10: Photomicrograph of MF9032 from the McNamara Formation 
showing angular to sub-rounded grains of quartz and feldspar. Scale: 40X
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Figure 11: Photomicrograph of a K-bentonite, MF9035, from the 
McNamara Formation showing angular, sub-angular, and sub-rounded 

quartz grains and ahigh relief mineral, most likely zircon, supported in a 
clay rich matrix. Scale: 16X
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Figure 12: Photomicrographs of M F90311 from the McNamara 
Formation a. showing angular and sub-angular quartz grains containing 
fluid inclusions (FL) and b. showing an angular albite grain supported 
by a clay matrix. Scale: 63X, 40X, respectively.
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albite grain supported by a clay matrix. The estimated mineral composition is 65% clay, 

20% quartz and feldspar, 15% opaques and heavy minerals, <1%  mica. There is no 

preferred orientation of platy minerals.

Figure 13 is a photomicrograph of a K-bentonite, MF90320, showing well- 

rounded ‘balls’ of clay indicating transport by water (Nanson et al., 1986). The estimated 

mineral composition is 85% clay, 10% quartz and feldspar, and some opaques.

Upper Bonner Formation (Missoula Group):

Figure 14 is a photomicrograph of a K-bentonite, MFBonlib, showing a fine

grained clay rich rock containing some opaques and few quartz or feldspar grains. The 

estimated mineral composition is 85% clay, <5% quartz, 10% high relief minerals and 

opaques.

Siyeh Limestone (Piegan Group):

Figure 15 is a photomicrograph of a K-bentonite, MFGoldich, showing an 

euhedral high relief non-opaque mineral, most likely zircon. The estimated mineral 

composition is 90% clay, < 2% mica, <5% quartz, <3% opaques and high relief minerals, 

most likely zircons. Quartz grains are elongate, angular to sub-angular and shard-like. 

Platy minerals are randomly oriented.
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Figure 13: Photomicrograph of MF90320 from the McNamara Formation 
showing well-rounded “balls” of clay indicating transport by water 
(Nanson et al., 1986). Scale: 40X
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Figure 14: Photomicrograph of MFBonlib from the upper Bonner 
Formation showing a fine-grained clay rich rock containing some opagues 
and few quartz or feldspar grains. Scale: lOX

32



* 1

Figure 15: Photomicrograph of MFGoldich from the Wallace Formation 
showing a euhedral high relief non-opague mineral, most likely zircon. 
Scale: 40X
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Revett Formation (Ravalli Group):

Figure 16 is a photomicrograph of M F 103 IB  showing polycrystalline quartz 

grains in a fine-grained clay rich matrix. The estimated mineral composition is 70% clay, 

15% quartz and feldspar, 15% opaques, possibly magnetite or ilmenite, and high relief 

minerals, possibly zircons. The sample is very fine grained, with lath shaped clay matrix 

showing parallel extinction. The non-polycrystalline quartz is angular to sub-angular. 

Opaques are size sorted, which may be a result of suspension settle out.

Proterozoic Nama Supergroup K-bentonite:

Figure 17a &  b are photomicrographs showing general textures of Neo- 

Proterozoic K-bentonites from the Nama Supergroup, Namibia (c/o Dr. Beverly Seylor). 

Quartz grains are angular to sub-rounded in figure 14a but are very angular in figure 14b.

Ordovician K-bentonite:

Figure 18 are photomicrographs of Ordovician K-bentonites from the 

Appalachian Basin (c/o Dr. Warren Huff). Angular to sub-angular grains are supported 

by a fine-grained clay rich matrix.

Transitional Beds:

The transitional beds are coarser grained than the underlying K-bentonites.

They contain angular, sub-angular, sub-rounded, rounded and shard-like quartz and 

feldspar grains that are not in grain to grain contact. Polycrystalline quartz was identified
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Figure 16: Photomicrograph of M F 103 IB  from the Ravalli Formation 
showing polycrystalline quartz (?) grains in a very fine-grained clay rich 
matrix. Scale: lOX
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Figure 17: Photomicrographs showing general textures of Neo- 
Proterozoic K-bentonites from the Nama Supergroup, Namibia (c/o Dr. 
Beverly Seylor). Quartz grains are angular to sub-rounded in figure 14a 
but are very angular in figure 14b. Scale: 16X
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Figure 18a &  b: Photomicrographs of Ordovician K-bentonites from the 
Appalachian Basin (c/o Dr. Warren Huff). Angular to sub-angular grains 
are supported by a fine-grained clay rich matrix. Scale: 16X
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in a transitional bed in the lower Revett Formation. Some beds contain abundant opaque 

minerals and high relief non-opaque minerals.

Figure 19 is a photomicrograph of MF1034B, a transitional bed overlying a K- 

bentonite from the lower Revett Formation. Quartz grains are shard-like, angular and 

sub-rounded. The estimated mineral composition is 50% total clay, 35% quartz, 10% 

feldspar, and 5% opaques and high relief minerals.

Detrital Beds:

The detrital beds are coarse grained and show grain-to-grain contact of angular, 

sub-angular and rounded quartz grains with some albite grains. Other detrital beds have 

equigranular suture textures. Opaque and high relief minerals are present, and are 

abundant in the bounding beds from the lower Revett Formation.

Figure 20 is a photomicrograph of M F 1035, a detrital bed from the lower Revett 

Formation, showing suture textures of quartz grains and an albite grain with little clay 

matrix. The estimated mineral composition is 90% quartz, 5% feldspar, and 5% clay.

X-Ray Diffraction Analyses 

A ll XRD patterns are presented in Appendix A. A summary of all data is 

presented in Table 1 on pages 41 and 42. A ll K-bentonite samples are dominated by illite 

and quartz. The illite is a mixture of 2M1, IM  cis-vacant, and IM  trans-vacant 

polytypes. Clastic siltstones, sandstones, and argillites above and below the K-bentonites 

are dominated by quartz and lesser proportions of illite.
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Figure 19: Photomicrograph of MF1034B, a transitional bed overlying a K- 
bentonite in the lower Revett Formation. Quartz textures are shardlike, angular 
and sub-rounded. Scale: 40X
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Figure 20: Photomicrograph of MF1035, a detrital bed from the 
lower Revett Formation, showing suture textures of quartz grains and 
an albite grain with little clay matrix. Scale: 40X
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The <2 micron glycol oriented patterns of two K-bentonites, MF5031B and 

MF4031, contain smectite peaks at approximately 16.8 angstroms that disappear upon 

heating for one hour at 550°C (Figure 21 &  Figure 22).

A multi-plot of the x-ray diffraction patterns of sample MF3031B shows 

heterogeneity within the sample bag (Figure 23). The relative intensities of the quartz 

(100) peak and the illite (060) peak vary considerably.

Chemical Analysis

Results of the Chemical analyses of 13 Belt Supergroup K-bentonites are 

presented in Table 2.
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Figure 21: Multi-plot of <2 glycol solvated and heated patterns of a K-bentonite, MF5031B, from the 
lower Revett Formation. S=smectite, l=ilite
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Figure 23: Random bulk rock multi-plot of K-bentonite, MF303IB, in the St. Regis Formation. Relative 
Intensity of the illite (060) peak to the quartz (100) peak shows heterogeniety within the sample.



Table 2 Chemical analyses of 13 Proterozoic Belt K-bentonites.
Sample lil SlO ;

(% )

A i;0 , CaO

(% )

M% 0

(% )
N a ,0

(% )

k jO

(% )

F e ,0 ,

(%)

M nO

(5',)

T iO j

(% l

P :0 ,

(% )

C r ,0 .

(% )

LO I

(%1 (% |

Rb

(ppm )

Sr

(ppm)

Y

(ppm )

Zr

(ppm )

Nb

(ppm)

Ba

(ppm)
MFt.051 53 3 25 67 0 97 188 0 19 9 241 '-O ü l 0 84 0 6 4 - 0  01 4 ! 99 22 306 21 152 707 17 667
M F 1011 bOSt. 19 73 0 34 2 i l 0 12 7 77 3 74 0 02 0 39 0 19 0 02 4 75 100 2 306 20 35 202 l6 1020
M F9035 48 77 23 04 0 48 2 82 0 13 9 38 10 37 0 0 6 0 63 0 15 - 0  01 4 55 100 5 369 16 62 542 15 775
M F 9 0 ÎU 47 5 23 45 0 26 2 68 0 03 951 10 45 0  05 0 28 0 1 - 0  01 4 25 98 53 349 8 33 285 14 775
M F90317 54 2! 23 0 27 2 76 0 42 9 13 S ! 0 06 0 43 0 11 -O O I 4 4 100 1 378 16 46 220 15 720
M F4037 45 17 I l  07 17 13 3 79 1 01 3 1 2 72 0 03 0 3 7 0 07 -0  01 15 7 100 3 132 84 38 104 9 884
\FF90314 55 3 23 19 0 65 2 75 0  15 8 93 3 18 0 0 5 0 69 0  12 -0  01 4 35 99 59 325 27 113 817 16 712
MF3031 79 95 9 92 0 08 091 2 1 2 52 2 2 0 02 0 52 - 0  01 0 03 1 2 99 65 121 51 35 915 15 546
M F403I 63 b7 1547 0 49 6 47 0 66 4 6 3 55 0 03 0 57 0 14 - 0  01 3 75 99 67 203 27 45 374 16 1520
M F 9 0 3 : 57 84 21 95 0 3 2 83 0 15 8 92 3 15 0 05 0 33 0 12 - 0  01 4.25 100 1 349 21 55 216 15 659

M F lt ’041 67 98 1597 0 16 1 49 1 98 5 25 3 3 0 02 0 86 0 02 0 02 2 75 100 1 56 32 1150 19 866
M F 5 0 3 1 60 13 20 78 0 2 1 95 1 56 6 4 4 4 67 0 19 0 63 0 02 - 0  01 3 45 100 3 265 57 76 255 17 1660
M FBonLili 55 32 24 12 0 07 1 92 0 1 9  54 4 29 - 0  01 0 47 0 05 - 0  01 4 25 100 4 365 S 80 500 14 960



Thermogravimetric Analysis 

M F6031 (Figure 24) shows two de-hydroxylation temperatures, one above 

750°C and one below 650°C, and MFBonLib (Figure 25) shows two de-hydroxylation 

temperature intervals above 700°C, both corresponding to cis-vacant polytype structures 

(Drits et al., 1995, 1998). A third K-bentonite, MF5032C, shows two de-hydroxylation 

temperature intervals, one above 650°C and one below 650'̂ C (Figure 26), corresponding 

respectively to cis-vacant and trans-vacant structures (Drits et al., 1995, 1998). 

Experimental procedures involving continuous temperature rise probably caused the de- 

hydroxylation events to appear at temperatures at least 50” above the actual temperatures 

(McCarty, personal communication, 2005).

Scanning-Electron Microscopy 

Figure 27 shows a K-bentonite, M F6031, from the lower Garnet Range 

Formation. Small illite crystals appear to have grown on the (001) surface of larger platy 

2M1 muscovite. A euhedral calcite (Figure 28) crystal is also present although rare.

U-Pb Dating

Currently, Dr. Kevin Chamberlain from the Geology Department at the 

University of Wyoming is extracting zircons from several K-bentonites identified in the 

McNamara Formation and one K-bentonite identified in the Garnet Range Formation.
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Figure 24: TGA data for MF6031 showing two de-hydroxylation temperature intervals, one 
below 750°C and one above 750°C.

Universal V 3 .3 0  TA Inslrum ents



I nn

y y -

y,- -

0.0 510 3%  Initial to 100C  
(0.0 8960m  g)

0.04739%  100C to 200C  
(0.08321 mg)

0 .04369%  200C to 400C  
JO 07670m g)

X.

\

96
0 200 800 1000

Universal V 3 .30  TA instruments

400 600

Temperature ("'C)

Figure 25: TGA data for MFBonLib showing two de-hydroxylation temperature intervals, both 
above 700°C.

LA
o



9d -

98

1 .069%  Initia Ho 1GGC 
(1 809m g)

0.1 860%  IGOCtO 20GC 
(G .3149m g)

0 .1207%  200C  to 400C  
(0.2 044 mg)

\

\

\

1000

Universal V3.3B  TA In strum entsTemperature (°C)

Figure 26: TGA results for MF5032C showing two de-hydroxylation temperature, one below 650°C 
and one above 650"̂ C.



âÆ #
Acc V Spot Magn 
20.0 kV 3.3 5000X

Det WD I------------------------
SE 12 3 Precambrian Tuff

Figure 27: SEM of MF6031 showing the fine-grained textures and showing presumably illite growing 
from the (001) surface of a muscovite grain.
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The U-Pb date obtained thus far from one K-bentonite in the Garnet Range Formation, 

MF6031, yielded an age of approximately 1600 M A (Chamberlain, personal 

communication, 2005). This age coincides with detrital zircon ages from the Belt (Sears, 

in review). SHRIMP analysis w ill be employed to analyze individually both rounded and 

euhedral zircons in hopes of obtaining accurate ages of the volcanic events that formed 

the Belt K-bentonites.
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CHAPTER 5 

DISCUSSION

Recognition and Identification of Belt K-bentonites 

Although there is no single “smoking gun” for the identification of K-bentonites 

in the Belt Supergroup, outcrop appearance, pétrographie textural characteristics, mineral 

composition, illite polytype characteristics, and SEM textural characteristics collectively 

leave little doubt that felsic volcanism contributed considerable material to the Belt 

Supergroup, both in the form of numerous recognizable K-bentonite layers and as the 

considerable quantities of illite and chlorite in Belt argillites and siltites.

Belt K-bentonites have two characteristic outcrop appearances, recessive- 

weathering chalky textured beds and non-recessive cherty textured beds that become 

chalky when crushed. Some of the chalky K-bentonites show evidence of internal 

deformation and shearing. The K-bentonites from the McNamara Formation at Rainbow 

Bend on highway 200 show asymmetric crenulation cleavage and show slickenside 

surfaces at the contact with the underlying sandstones and siltstones (Figures 4 and 5). 

One chalky K-bentonite in the Bonner-Libby transitional zone near Libby Montana 

contains contorted siltstones that were ripped from the bounding beds and deformed into 

s-shaped folds, implying that the K-bentonite absorbed considerable translation between 

the overlying and underlying strong sandstones during Laramide deformation (Figure 6).

The textural differences between the chalky and the cherty K-bentonites may 

result from a process in which the chalky K-bentonites originally formed with cherty
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textures, and developed their current chalky texture as a result of crushing and internal 

slip during Laramide deformation of Belt rocks. In this case, the cherty K-bentonites 

would simply have avoided internal slip and retained their earlier texture. An alternative 

explanation is that the chalky beds may have been deposited by flowing water or may 

have been reworked after initial deposition, whereas the cherty K-bentonites are the result 

of primary deposition of air-fall ash. However, SHRIMP analyses of zircons from the 

cherty K-bentonite in the upper Bonner Formation at Kootenai Falls shows mixing of 

both rounded zircons that yield uranium-lead ages older than the depositional age, and 

euhedral zircons that give depositional ages, indicating that this K-bentonite is a “mixed” 

or “secondary” K-bentonite (Evans et al., 2CK)0).

As mentioned earlier, bentonites and K-bentonites have three general modes of 

deposition: air-fall ash settling directly into the aqueous environment and being preserved 

as primary sedimentary beds, reworking of primary sedimentary beds in situ via waves, 

tides, or currents, and terrigenous air-fall ash that was later eroded and transported into 

the aqueous environment by flowing water (Ver Straeten, 2(304; Huff, personal 

communication, 2(X)5; Hayes, 1994). The latter two types were described earlier as a 

“mixed” K-bentonites and “secondary” K-bentonites, respectively. A photomicrograph 

of one chalky sample, MF90320, from the McNamara Formation along highway 200 at 

Rainbow Bend shows spherical balls of clay (Figure 13). Nanson et al. (1986) interpreted 

similar spherical balls of mud in samples from Cooper Creek in central Australia, to have 

originated as mud braids that were remobilized during flooding events as sand sized 

pedogenic aggregates that were transported over low-gradient surfaces and preserved in 

sedimentary beds.
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A transitional bed represented by samples M F 1032, M F 1033» and M F 1034 

overlies a K-bentonite in the lower Revett Formation, shows fine laminations and is very 

fine-grained and clay rich proximal to the K-bentonite. Up-section, away from the K- 

bentonite, the clay content decreases as the grain size and quartz content increases. This 

gradation probably resulted from decreasing input of detrital volcanic ash as erosion 

exhausted a terrigenous ash source or of air-fall ash, and a constant supply of normal 

detrital quartz-rich sands and silts (Huff, personal communication, Hayes, 1994).

Pétrographie Data

Pétrographie data are compatible with the bentonitic nature of the studied beds. 

Some of the Belt K-bentonites contain polycrystalline quartz that suggests post- 

depositional precipitation of quartz from of silica released during the illitization of 

smectite. Angular, sub-angular, sub-rounded, and euhedral grains of quartz and feldspar 

are also compatible with a volcanic ash origin for the K-bentonites. Micas are rare and 

commonly randomly oriented suggesting in-situ growth rather than a detrital origin.

Many of the high relief minerals are euhedral or angular suggesting that these grains are 

not of detrital origin.

The Belt K-bentonites texturally resemble K-bentonites from the Ordovician 

Appalachian Basin (Huff et al., 1997) and from the Neo-Proterozoic Nama Supergroup in 

Namibia (Seylor et al., in review). Nama K-bentonites contain few euhedral grains, and 

angular, sub-angular, and rounded quartz and feldspar grains, supported in a fine-grained 

clay-rich matrix (Figure 14). Ordovician K-bentonites also contain angular, sub-angular, 

and rounded quartz and feldspar grains (Figure 15).
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The transitional bed, MF1033B and MF1034B, in the lower Revett Formation 

along highway 93 contains many of the same textures seen in the K-bentonites, such as 

shard-like, angular, sub-angular and rounded quartz and feldspar grains, polycrystalline 

quartz, as well as non-opaque high relief minerals and opaque minerals. This transitional 

bed records the gradual change in mineralogy and grain size as the air-fall ash supply 

subsided and background detrital sediments began to dominate.

Mineral Compositions 

Mineralogically Belt K-bentonites are predominately composed of illite, with 

lesser amounts of chlorite, quartz, feldspar, and several other minerals including zircon, 

which is consistent with K-bentonites of other ages (Weaver, 1953; Walker, 1983; Kolata 

et al., 1996). Figure 29 shows quartz to clay ratios of Belt K-bentonites compared to 

those of Belt argillites, siltites, quartzites and carbonates (Harrison and Campbell, 1963) 

and Paleozoic shales (Srodon et al. 2001). It is clear that the Belt K-bentonites are 

mineralogically different from all other Belt lithologies in that they show substantially 

higher illite to quartz ratios. However, the Belt K-bentonites do show similar clay to 

quartz ratios to those of younger shales studied by Srodon et al. (2001). It is possible that 

these shales are also volcanic in origin (Thompson, personal communication, 2004; 

McCarty, personal communication, 2004).

58



go ^  l̂ alcozoic Shale ( Snalon et a)., 2001 )
j ^  Belt Argillite (1 Ianisun & Campbell. 1965)
! ^  Belt Siltite (Ilanisoii I&. Campbell. 1965)

70 ; A ^  ^  Belt Quart/ite (Haiiison &. Campbell. 1965 )
- 0  Belt Limestone (Hailison & Campbell. 1965)

A ^  Belt K bentonite (this stud))
60 ' *  H  Belt Transitional (this stud) )

50

N

O' 40

30

10

LASO

Belt Detrital (this study).
*  *  A

i

A

A
A A

A
A

A

A

 ______          __.................‘■à. ^  A

10 20 30 40 50 60 70 80 90 100

% Total Clay

Figure 29: Plot of %  total clay vs %  quartz of Paleozoic shales. Belt argillites, siltites, quartzites, limestone 

and K-bentonites



Illite Polytypes

As metamorphic temperature increases, the illite polytype transforms from the 

low-temperature IM d /lM  poly type to the higher temperature 2M1 polytype (Yoder and 

Eugster, 1955; Bailey et al., 1962; Walker and Thompson, 1990). Thus, the abundance of 

IM  illite polytypes in Belt K-bentonites (Table 1) implies a low-temperature origin that is 

compatible with K-bentonite in which the illite formed by relatively low-temperature 

diagenesis of smectite, but incompatible with the origin of illite by erosion from older, 

metamorphosed shales or other crystalline rocks.

Four K-bentonites from the Rainbow Bend outcrop of the McNamara 

Formation have similar ratios of IM  to 2M1 polytypes (Figure 30). The nearly constant 

polytype ratios of the four Rainbow Bend McNamara beds suggests that the four units 

were deposited as smectite that altered to illite under identical Pressure/Temperature 

conditions as the volcanic ash layers became K-bentonites,

Figure 30 also shows that the IM  to 2M1 ratios are highest for the youngest 

Belt stratigraphie units, and that the proportion of the 2M polytype increases with older, 

and presumably more deeply buried, layers. Ryan (1991) showed similar trends in Belt 

Supergroup rocks. This relationship is also compatible with initial deposition of the K- 

bentonites as smectite-rich volcanic ash that subsequently converted to K-bentonite, and 

incompatible with origin by weathering of crystalline rocks.
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Chemical Analyses 

In marine environments, felsic volcanic ash converts to smectite as it reacts 

with seawater. In the process, silica, potassium, and calcium are lost from the ash and 

sodium and magnesium are gained as the ash becomes bentonite. During later illitization 

of the smectite as the bentonite converts to K-bentonite, silica is lost and potassium is 

gained (Walker, 1983). The chemical compositions shown in Table 2 are compatible 

with a felsic volcanogenic bed that has undergone this sequence of processes to form K- 

bentonites. It is interesting to note that the St Regis Formation, the Revett Formation, the 

Bonner Formation, and the McNamara Formation were deposited on alluvial aprons and 

therefore should not have been altered to smectite by marine waters. It is unclear as to 

what mechanism converted the ash in those formations to smectite.

Winchester and Floyd (1977) noted that the ratios of the relatively immobile 

elements Zr, Ti02, Nb, and Y  are unique for different source magmas. Nb concentrations 

increase with increasing alkalinity, and, as magma differentiation progresses, 

incompatable elements, such as Zr, increasingly concentrate in the melt (Winchester and 

Floyd, 1977). Following procedures of Winchester and Floyd (1977), Huff (1997) plotted 

Zr/Ti02 against Nb/Y, and concluded that Osmondberg K-bentonites came from a 

trachyandesite source magma.

The chemical data from 13 Belt K-bentonites plot within the rhyodacite/dacite 

and rhyolite fields (Figure 31). These data are consistent with a felsic volcanic source for 

Belt K-bentonites.
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Scanning-Electron Microscopy 

SEM photographs reveal the fine-grained clay rich texture of the K-bentonite 

from the lower Garnet Range Formation. The larger platy mineral, which texturally 

resembles 2M1 illite or mica, shows surficial growth of clay, which resembles IM  illite, 

on the (001) surface.

Source of Illite and K-Bentonites in the Belt Supergroup 

Illite is an abundant clay mineral throughout the geologic record, although 

weathering of crystalline rocks does not produce a significantly large amount of illite 

(Hoffman, 1979). However, large quantities of smectite form rapidly from devitrification 

of felsic volcanic ash. Data and interpretations presented in this paper suggest that the 

volumes of illite and chlorite in K-bentonites, argillites and siltites in the Belt Supergroup 

are a result of devitrification and subsequent diagenesis of air fall ash, as well as 

incorporation of terrigenous volcanic ash and detritus from an intracratonic source.

Source of Volcanic Ash in the Belt Basin 

The volcanic ash in the Belt basin may have been derived from two source 

areas; from local sources as intracratonic rifting pulled the Belt basin apart and/or from 

the Southern Granite-Rhyolite complex and the Eastern Granite-Rhyolite complex to the 

southeast of the Belt basin that was active during Beltian time (Van Schmus and 

Bickford, 1993; Sears in review).

The Southern Granite-Rhyolite complex and the Eastern Granite-Rhyolite 

complex were active at about 1.4 to 1.34 Ga and 1.48-1.44 Ga, respectively (Van Schmus
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and Bickford, 1993). This large complex extends from the buried Grenville front in 

eastern Ohio across the Texas panhandle and into northeastern New Mexico. The 

complex is predominately composed of rhyolite, dacite and shallow granitic plutons, with 

only a few sills of basalt and gabbro (Van Schmus and Bickford, 1993). Although much 

of the complex is not exposed, ring dike complexes associated with calderas may have 

been igneous centers that ejected felsic ash into the atmosphere. Sears (personal 

communication, 2005) suggests that the Southern Granite-Rhyolite complex, which was 

active during deposition of the Belt Supergroup may have supplied volumes of felsic 

volcanic ash to the Belt Basin.

Sears (in review) proposes a rifted-pediment model for the Belt basin, 

suggesting that the Belt basin initiated as a three-armed rift system that segmented a 

northwest sloping epi-continental pediment into a southern triangular wedge that received 

sediment from southwestern Laurentia, Siberia and northeastern Australia; and a 

northeastern triangular wedge that received sediment from the recycled pediment veneer 

and local bedrock (Figure 32). The recycled pediment veneer consists of felsic volcanic 

rocks and other sediments sourced from the Granite-Rhyolite complex located to the 

southeast of the Belt basin (Sears, in review). Because the Southern Granite-Rhyolite 

complex was explosively active during Beltian time, it is likely that air fall ash, along 

with volcanic and terrain sediment from the pediment veneer, was transported into the 

Belt basin supplying the large quantities of volcanic ash that may be the source of the 

volumes of illite and lesser amounts of chlorite in the Belt.

The single U-Pb zircon age of 1600 Ma from sample MF6031, the K-bentonite 

in the lower Garnet Range Formation (Missoula Group), (Chamberlain, personal
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communication, 2005) coincides with detrital zircon ages throughout the upper Belt.

This age has been linked to the recycled pediment veneer described by Sears (in review). 

SHRIMP zircon ages from this K-bentonite may yield a non-detrital age corresponding to 

rhyolitic ash ejected during the eruptive phase of the Southern Granite-Rhyolite complex 

(Sears, in review). Goldich et al. (1959) dated a K-bentonite at Logan Pass in Glacier 

National Park at 1454 Ma and Evans et al. (2000) dated a K-bentonite at the Bonner- 

Libby contact at 1401 Ma. These ages are in agreement with the time frame in which the 

Southern Granite-Rhyolite complex was active and further supports the notion that the 

Granite-Rhyolite complex provided the volumes of volcanic ash to form the K-bentonites 

in the Belt Supergroup.
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CHAPTER 6 

CONCLUSIONS

1. Field characteristics, pétrographie textural characteristics, mineral composition, 

polytype data, chemical compositions, and SEM characteristics collectively 

support the hypotheses that K-bentonites are abundant in the middle Proterozoic 

Belt Supergroup in western Montana and that explosive felsic volcanism was 

common during deposition of the Belt Supergroup.

2. Local explosive volcanism may have accompanied felsic and mafic activity as 

intracratonic rifting ripped the Belt basin apart.

3. The Southern Granite-Rhyolite complex and the Eastern Granite-Rhyolite 

complex active during Belt time may have been the sources of the numerous K- 

bentonites now recognized in the middle Proterozoic Belt Supergroup (Sears, in 

review).
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