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Frazar, Christian D. MS., May 2002 Microbiology

Measurement of Heavy Metal Tolerance and Biomass Production in Sediment Microbial 
Communities

Director: Dr. James E. Gannon

With the aid of four large floods in the late 1800’s and early 1900’s, mining wastes from 
the Butte -  Anaconda region of Montana established a heavy metal gradient from the 
headwaters of the Clark Fork River down stream over 200 Ion. Over time microbial 
communities have been exposed to different metal concentrations dependant upon their 
place in the gradient. Microbial secondary productivity and biomass were measured 
seasonally and were not impaired relative to the metal concentrations in the sediment. 
Productivity levels were similar to those reported by other researchers in uncontaminated 
systems. These broad measures of community parameters suggest that microbial 
communities have adapted to the heavy metal concentrations.

One mechanism for microbial adaptation to heavy metals is increased tolerance. Mine 
tailings and other mining wastes are routinely washed into the Clark Fork River from the 
floodplain and interact with the microbial communities. Four sites along the Clark Fork 
River and one uncontaminated tributary were stressed using increasing volumes of mine 
tailings and microbial productivity was measured using ['^C]leucine incorporation. The 
sites with the greatest previous metal exposure exhibited the greatest tolerance to the 
mine tailings. Microbial metal tolerance followed the metals gradient with sites furthest 
from the source exhibiting the lowest tolerance. These data suggest that the use of mine 
tailings to stress microbial communities may be a more realistic way to measure 
microbial tolerance to heavy metals than using conventional metal salt assays. In 
addition community productivity is still influenced by bank tailings that wash into river 
sediments.
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CHAPTER 1

GENERAL INTRODUCTION TO HEAVY METAL EFFECTS ON MICROBIAL 
COMMUNITIES: BACTERIAL PRODUCnVHY

Over a century of mining activities have left a legacy o f hazardous waste 

throughout many rivers and lakes in the United States. There are an estimated 550,000 

abandoned hardrock mines nationwide and 12,000 miles of rivers polluted with heavy 

metals (38).

Mining in the Butte, Montana region began in the mid-1860’s. By the 1890’s 

over 4,500 metric tons of sulfide ores were being mined daily from Butte Hill. Soon after 

mining reached these levels one of the world’s largest smelters was built in nearby 

Anaconda, MT. Early mining and smelting activities in the Butte - Anaconda region 

resulted in the accumulation of large volumes of mining wastes. Over 100 million metric 

tons of tailings and other mining wastes were routinely discarded directly to the land 

surface or to the headwaters of Silver Bow Creek. A series of large floods in the late 

1800’s and early 1900’s helped to establish a heavy metals gradient extending over 

200km downstream. The floodplain of Silver Bow Creek currently holds vast quantities 

of mine tailings and heavy-metal laden sediment, which still enter the creek during 

rainstorms and other disturbances. Extensive fish kills have been documented as a result 

of the sudden influx o f heavy metals into the river following thunderstorms, 

demonstrating that the mining wastes still impact the river today (27). Silver Bow Creek 

becomes the Clark Fork River several miles downstream. The Clark Fork River Basin is 

now the largest superfund complex, covering an area approximately l/5 ‘̂  the size of
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Rhode Island (37). Metals of concern in this contaminated system include various 

species of arsenic, cadmium, copper, iron, lead and zinc.

Several studies have explored the effects of heavy metals, including metal 

tolerance, on sediment microbial communities (13, 23, 40, 41, 23, 34, 47, 48). Research 

in the heavy metals contaminated New Bedford Harbor has concluded that the biological 

communities played a significant role in the cycUng of metals between sediment and the 

overlying water, and that the contaminated sediments can serve as a source of heavy 

metals even after the ultimate source of the heavy metals has been remedied. A study by 

Wielinga et al. (1994) examined the microbial communities with respect to the 

geochemistry o f a metals-contaminated floodplain and reported a strong correlation 

between geochemical events and communities (47).

Additional studies have examined the effects of mining wastes in the Clark Fork 

River on trout, Daphnia, and other eukaryotic organisms (9, 19, 30, 39, 49). However, 

studies on the effects of heavy metals on Clark Fork River microbial communities have 

been limited (13, 47,48). Previous studies on microbial communities in the Clark Fork 

River suggest an increased resistance to arsenic and copper in the headwaters (13). They 

have also demonstrated an increase in electron transport activity in the areas of greatest 

metal resistance (13). Other studies have characterized the microbiology and 

geochemistry of the floodplain of the Clark Fork River headwaters (47, 48). The authors 

found that the mixing of mining wastes and uncontaminated flood deposits had created a 

highly heterogeneous environment and that the distribution o f specific guilds of bacteria 

(ex. SRBs) did not readily conform to predictions.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

The impact of heavy metals to microbial communities has been well studied. 

Exposure to elevated concentrations of heavy metals has the potential to negatively 

impact many microbial community parameters including biomass, respiration, nitrogen 

fixation, composition and productivity (1, 3, 5,11, 12, 16, 17, 23, 25, 28, 29, 34,40,41). 

The natural variation in ecosystems often makes determining the particular impacts of 

heavy metals on microbial communities difficult. In addition to the heavy metals many 

other factors can influence microbial processes and often studies of this nature examine 

more than one parameter in order to isolate the heavy metal-induced response relative to 

natural variation (12).

When elevated concentrations of heavy metals are introduced to an environment 

where there has been no previous exposure many organisms will be impaired, while 

others will not (3, 6, 16, 17, 40). Susceptible organisms may not be able to compete 

effectively and many will die (16). In any given community there will be a population of 

tolerant organisms. Although this population may be impaired by the presence of heavy 

metals, it has the mechanisms necessary to survive in such an environment. Evidence 

suggests that broad measures o f microbial communities such as thymidine incorporation 

can rebound after an acute stress, while a chronic stress is more likely to leave a lasting 

change (26). Specific functional measures may be necessary to observe any lasting 

community changes if broad measures indicate community recovery. Greater species 

diversity may provide the community with increased redundancy, and thus make more 

diverse communities better equipped to handle such a stress (36).

Numerous authors have shown that microbial communities chronically exposed to 

elevated concentrations of heavy metals can develop a tolerance to these metals (4, 6, 7,
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13, 17, 29, 34), The effects of Cd, Cu, Ni, Pb, and Zn are most commonly studied. Diaz- 

Ravina and Bââth (1996) demonstrated that exposure to greater concentrations of heavy 

metals led to greater tolerance to those same metals (16). This trend held true for Cd, Cu, 

Pb and Zn. The length of time that the microbial communities were exposed to the 

metals also influenced the development of metal tolerance. Longer exposure times (up to 

14 months) led to greater tolerance in subsequent challenges with heavy metals.

Although community metal tol^ance appears to develop fairly slowly, this tolerance can 

be lost rapidly (15). In soils artificially contaminated for one year with high 

concentrations of Cd, Cu and Zn, 70% to 90% of the gained tolerance was lost within one 

week of being inoculated into uncontaminated soil. Thus, microbial community metal 

tolerance appears to require consistent metal exposure to be maintained. The exposure to 

increased levels of one heavy metal can even induce the development of tolerance to 

multiple metals (3, 6, 16, 17). For example, soils experimentally polluted with only 

copper induced tolerance to copper as well as tolerance to zinc, cadmium and nickel (17).

The development of metal tolerance in microbial communities is a sensitive 

indicator of metal stress. Communities that are exposed to greater concentrations of 

heavy metals respond with a greater degree of tolerance (3, 6,16, 17, 29). To determine 

the extent of tolerance development researchers subject microbial communities to 

elevated concentrations of heavy metals added in the laboratory and measure productivity 

(3, 6, 8, 15, 16, 17, 29, 34, 40). Productivity is frequently measured using thymidine or 

leucine incorporation rates, although other measurements have been used (3, 6, 15,16,

17, 40). Other metal tolerance studies subject microbial communities to elevated 

concentrations of metals by plating them on agar spiked with heavy metals (8, 29). The
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heavy metals added in the laboratory are generally added in a range of concentrations 

from slightly inhibitory to completely inhibitory. The metals used for these experiments 

are in the form of metal salts obtained through chemical supply companies. Do salts such 

as CdS0 4 , CUSO4, ZnS0 4 , Ni(N0 3 ) 2  or Pb(N0 3 ) 2  added in the laboratory truly represent 

what microbial systems experience in the field? Heavy metal contamination can occur 

due to direct application, atmospheric deposition, river transport, groundwater transport 

or a host of other primary, secondary, and tertiary mechanisms (37). Heavy metals can 

be distributed in the soluble form or in the particulate phase on the surface of rocks, 

sediment or mine tailings, and leach over time. In situ microbial communities are subject 

to multiple heavy metals simultaneously that are often accompanied by a change in pH. 

Méthylation can also play a significant role in determining the toxicity of a particular 

metal. While metal salt studies are well accepted, reproducible, and can elucidate the 

role o f individuals, they may not accurately reflect conditions in situ.

Many studies have looked at the effects of bioavailable metals on higher trophic 

levels in river systems. These studies generally use some accepted technique to extract 

available metals and then add them back to a test organism, such as midge larvae or trout 

(9, 19, 30, 49). Most of these studies report reduced growth and increased 

bioaccumulation with increased exposure to available metals. Although these studies 

provide much needed information on the effects of bioavailable metals on the ecosystem, 

they do not include microbial communities in their study of the effects of metal stress.

Jonas et al. (1984) conducted one o f the first studies on the ecotoxicity of heavy 

metals to microbial communities by subjecting microbial communities to various 

mercuric salts and organometals. This study used thymidine incorporation and glutamate
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metabolism as indicators of metal toxicity (28). Since then, the incorporation of 

radiolabeled thymidine or leucine into bacterial biomass has become the common 

methods for the study o f heavy metal effects on microbial communities. The point at 

which saturation of thymidine or leucine uptake and incorporation processes occurs 

(Vjnax) can be compared across data sets. V^ax is a function o f the microbial community 

and provides an estimate of in situ productivity. When the microbial community is 

thriving, the rates of both protein synthesis and nucleic acid synthesis will both increase. 

New DNA is synthesized only when the cell divides, while protein synthesis is a fairly 

continuous process, but varies with intensity due to the needs of the cell. This difference 

results in the greater sensitivity of the leucine technique (2, 15, 40). This sensitivity is 

greatest during periods of unbalanced growth (43). A study by Reichart et al. (1993) 

compared the effects of different heavy metals on sediment microbial communities using 

multiple methods of measuring the community response (40). The authors concluded 

that, in general, the leucine technique had a higher degree of sensitivity than the 

thymidine technique for metal toxicity studies.

Several studies have looked at the rate of leucine incorporation in sediment 

microbial communities (22, 35, 40, 46). Leucine incorporation is a reliable and sensitive 

measure of microbial productivity. Protein comprises a fairly consistent fraction o f cell 

biomass (-60%) and leucine comprises a fairly constant fraction of protein (-7.3%) (31). 

In addition leucine is used almost exclusively for incorporation into protein. It is seldom 

transformed into other molecules, even at saturating levels (32). Under saturating 

conditions de novo synthesis is repressed and the external pool of leucine is used almost 

exclusively (22). The point at which leucine uptake is saturated varies by ecosystem, but
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the highest reported concentration of leucine required for saturation is about 50pM (22, 

35). These factors are o f important consideration for calculating other rates such as 

bacterial carbon production.

The thymidine incorporation technique can produce results with greater 

variability because thymidine incorporation does not always follow Michaelis-Menton 

kinetics (2,44). It has been hypothesized that this is due to diffusive transport 

mechanisms that are unable to be saturated (33). Because of this, conversion factors, 

which allow for the calculation o f carbon production jfrom rates o f uptake, are generally 

less variable with the leucine technique than with the thymidine technique. Another 

disadvantage of the thymidine technique is that thymidine binds readily to sediments, and 

thus becomes unavailable to microbial communities (14). Isotope dilution can be a 

concern with the leucine incorporation technique; however it is possible to determine it 

experimentally. Isotope dilution is generally a greater concern with low concentrations 

of leucine because at higher leucine concentrations de novo synthesis is inhibited.

The first objective of this study was to compare microbial community biomass 

and productivity in sites along the Clark Fork River metals gradient with each other and 

with uncontaminated reference sites over the course of one year. It was expected that 

these broad measures of microbial communities would reveal that communities with the 

greatest chronic exposure would be inhibited in comparison to both uncontaminated 

reference sites and sites along the river that have been exposed to lower concentrations of 

heavy metals.

The second objective was to examine microbial community tolerance to heavy 

metals along the Clark Fork River metals gradient. This study examined metal tolerance
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to native metal species through the use of mine tailings or secondarily deposited tailings, 

which for simplicity, will both be referred to as tailings herein. The use of tailings 

stressed microbial communities in a manner consistent with what regularly occurs in situ 

when mining wastes from the floodplain slough off into the streambed. It was anticipated 

that microbial communities that have been exposed to the greatest concentrations of 

heavy metals would exhibit the greatest tolerance to the addition of metals. These same 

communities are routinely exposed to tailings from stream bank erosion, which would 

contribute to their metal tolerance.
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CHAPTER 2

SEASONAL MICROBIAL PRODUCTIVITY AND BIOMASS ALONG A GRADIENT 
OF MINING CONTAMINATION IN THE CLARK FORK RIVER OF WESTERN

MONTANA

Abstract

Over a century o f mining in the headwaters of the Clark Fork River has left a 

legacy of contamination that has formed the largest Superfund site. Numerous studies 

have examined the geochemistry of this system and have monitored the effects of heavy 

metals on aquatic organisms (5, 6, 8, 9, 24, 27, 28,29, 35, 36, 37). The study of 

microbial conununities in this system has been limited to this point (9, 35,36). The study 

presented here examined microbial biomass and the rate o f [’"*€] leucine incorporation 

into protein along the Clark Fork River over the course o f one year. Biomass ranged 

fi-om 10  ̂to 10* cells per gram of sediment over the course of the study, while the rate of 

leucine incorporation ranged from no incorporation to 8375pmol g'* h r '\  Comparison of 

Clark Fork River study sites with uncontaminated reference sites suggests that the 

microbial communities have adapted to the chronic metal stress and that biomass and 

productivity have rebounded to pre-exposure levels. The observed biomass and 

productivity values in this study were often similar to those values reported in the 

literature from uncontaminated systems. A seasonal pattern in biomass direct counts was 

observed, although no measures were made to correlate this pattern with stream 

conditions.
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Introduction

Early mining and smelting activities in the Butte - Anaconda region have resulted 

in the large-scale contamination of the Clark Fork River basin by heavy metals. Between 

1878 and 1925 over 10 million metric tons of mining and smelting wastes were discarded 

into the headwaters (28). During this same period four large floods occurred, 

transporting much of this waste downstream. A gradient o f heavy metal contamination 

now extends from the River’s headwaters in Butte downstream over 200km.

Ecotoxicology studies in the Clark Fork River thus far have primarily focused on 

midge larvae, benthic invertebrates and various species of trout (5, 9, 24,29, 37). Few 

studies have examined the toxicity of heavy metals to lower trophic levels in the Clark 

Fork River system (9, 35, 36). The goal of this study is to characterize the microbial 

communities along the metal gradient with respect to their biomass, as measured by 

direct counts, and their productivity, as measured by [^^C]leucine incorporation, over the 

course of one year.

Studies have shown that biomass at sites chronically contaminated with heavy 

metals are often lower than biomass at uncontaminated sites (1, 3, 7,20, 23, 30).

Elevated heavy metals can also result in reduced microbial productivity (2,4, 12,13, 22, 

30, 31). However, most microbial community productivity studies involving heavy 

metals examine the tolerance of these communities to a subsequent heavy metal 

challenge, which is the subject of Chapter 3. Comparatively few microbial productivity 

studies have looked at the effects of in situ microbial activity at heavy metal 

contaminated sites (9, 30). Burton et al. (1987) and Roane and Kellog (1996) offer 

conflicting evidence as to the effects of heavy metals on microbial activity. Burton et al.
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conducted a study in the Clark Fork River and found increases in electron transport 

activity, proteolytic activity, galactosidase activity and glucosidase activity in areas of 

higher metals, while Roane and Kellogg observed a decrease in microbial activity, as 

measured by fluorescein diacetate hydrolysis, with increasing metals (9, 30).

We expect differences in productivity and biomass between test and reference 

sites to be greatest between the site with the greatest chronic heavy metal contamination 

and it’s reference site. Biomass and productivity along the gradient should reflect the 

heavy metal content of the sediment; sites with the greatest sediment metal content 

should be the most impaired.

Materials and Methods

Study Sites. Three sites along the Clark Fork River metals gradient were chosen 

for this study so that high, intermediate and low metals sites were represented. Each site 

consisted of three subsites. Silver Bow Creek at Miles Crossing is the most contaminated 

of the sites and is located in the headwaters o f the Clark Fork River in Butte, MT 

(SBMC). The second site along the Clark Fork River is above the confluence of Gold 

Creek, west of the town of Garrison (CFGC). The final site on the Clark Fork River is 

above the confluence o f Rock Creek, east o f the town of Clinton (CFRC). This site is the 

least contaminated of the test sites. Each o f these test sites is paired with an 

uncontaminated reference site. The test and reference sites are identified in Figure 1.

Site pairs were selected based on the similarity of watershed effects ecoregions, geology, 

geomorphology and hydrology. SBMC is paired with a site on the Little Blackfoot River
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east of Garrison Junction (LBGJ). CFGC is paired with the Big Hole River near Notch 

Bottom fishing access (BHNB). Finally, CFRC is paired with Rock Creak near Ekstrom 

Station (RCES). This information is summarized in Table 1.

Table 1; Test and Reference Sites for this Study
Corresponding 
Number on Fig 1

Test Site (Abbreviation) Paired Reference Site (Abbreviation)

1 Clark Fork River @ Rock Creek Rock Creek @ Ekstrom Station (RCES)
(CFRC)

2 Clark Fork River @ Gold Creek Big Hole River @ Notch Bottom
(CFGC) (BHNB)

3 Silver Bow Creek @ Miles Crossing Little Blackfoot River @ Garrison
(SBMC) Junction (LBGJ)

Sample Collection. Baseline productivity was studied by collecting sediment 

cores fi*om each test and reference site. During the summer o f 2000, sediment was 

collected, sieved (1.7-2.36mm) and packed into acid-washed PVC cores. The cores were 

returned to their respective sites and allowed to equihbrate for one month. Over the 

course of thirteen months these cores were collected and analyzed. Column sediment 

was washed thoroughly in the field. Sediments for productivity measurements were 

transported back to the lab on wet ice and were processed within four hours. Sediment 

samples for biomass analysis were transported back to the lab on dry ice and lyophilized 

before use.

m m M

Figure 1 : Map of study sites in western Montana. ‘T’ 
indicates a test site. ‘R ’ indicates a reference site. Numbers 
correspond to the sites listed in Table 1.
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Biomass Measurements. One gram of lyophilized sediment was sonicated 

(117V, lOOW) for 10 minutes in a 0.1% Tween-80 solution. The samples were allowed 

to settle for 20min before ImL was withdrawn and diluted into 9mL of 0.1% Tween-80. 

One milliliter of each sample was incubated in the dark for 15 minutes with the 

Live/Dead Baclite® Stain in accordance to the manufacturer’s instructions (Molecular 

Probes, Eugene, OR). The stained bacteria were collected by vacuum filtration onto a 0.2 

pm-pore-size black polycarbonate filters (Millipore, Bedford, MA). The stained bacteria 

were counted using epifluorescence microscopy on a Zeiss Axioskop microscope (Carl 

Zeiss, Germany) and ImagePro Plus software (Media Cybernetics, Silver Spring, MD). 

Cells were counted until 30 fields-of-view or 400 cells were reached. One slide was 

made for each subsite.

Productivity Measurements. Sediment was diluted 9x into conical centrifuge tube 

with 50pM leucine suspension (spec, activity 125Bq/nmol). Leucine was suspended in 

filter-sterilized water from the same site as the samples and [*'‘C]leucine was diluted with 

the appropriate volume of cold leucine. All samples were then incubated at 14°C for two 

hours before the addition of formaldehyde to stop the reaction (final concentration 5%).

An additional set of samples was assayed and formaldehyde was added to the sediment 

prior to the addition of leucine in order to correct non-specific uptake and binding of 

leucine. The incorporation rates measured in this set were subtracted from the test 

samples.

Fixed samples were sonicated for 10 minutes followed by the extraction of the 

proteins by hot (95"C) trichloroacetic acid (final concentration 5%) for thirty minutes.

The samples were then placed on ice for SOmin in order to precipitate the proteins. An
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aliquot was filtered througji a 0.2ii,m-pore-size polycarbonate filter. Each filter was 

rinsed with filter-sterilized water in order to remove any unincorporated leucine. The 

filters were then placed into 6mL scintillation vials with 0.5mL of solvent and 4.5mL 

scintillation fluid (Hionic Fluor, Packard Bioscience, Downers Grove, IL). The filtrate 

was periodically collected in order to account for all radioactivity used in these assays. 

Radioactive decay was measured in a Beckman LS6500 scintillation counter (Beckman 

Coulter, Inc., Fullerton, CA). The method described here has been modified from the one 

previously described by Fischer and Pusch (17).

Isotope Dilution. Isotope dilution was measured in a manner consistent with 

other studies (26). Concentrations of cold leucine were increased, while maintaining a 

constant concentration of radioactive leucine. Initial concentrations o f [̂ ‘̂ C]leucine were 

20fiM and 50pM (specific activity 125Bq nmol'^).

Sediment Metals Analysis. The metal content of river sediments from each site 

was measured in April, July and September of 2000. Sediments and tailings were 

digested overnight in a nitric and hydrochloric acid solution, filtered and analyzed using a 

Thermo Jarrell-Ash Atom-Comp 800 ICP. The procedure was adapted from procedure 

EPA 350 B.

Statistics. Relationships between seasons and test and reference site communities 

were analyzed using JMP version 3.1.6.2 (SAS Institute, Inc, Cary, NC).

Results
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Sanq)le Collection. Samples were not collected from BHNB in November due to 

thick ice on the river. Samples were not collected CFRC in April due to high, turbid 

flows, which obscured the columns. Locating columns proved difficult in October and 

samples from BHNB, SBMC and LBGJ were kept on wet ice too long before 

productivity measurements were made. This sampling problem most likely resulted in 

underestimated productivity. Biomass measurements from the same October samples 

were most likely unaffected.

Biomass. Biomass, as measured by direct counts, was measured between 

September 2000 and October of 2001. Cell numbers varied between 10  ̂and 10* cells per 

gram of sediment (dry weight) over the course of the study (Fig 6). On average biomass 

was lowest in April and greatest in November (Figure 6). The greatest variability 

occurred in October samples.

A Student’s t-test was performed for each test and reference site pair at each time 

point. CFRC and RCES, the low metals difference pair, were significantly different 

during the months of July and October (p < 0.05), but not at any other time point (Fig 2). 

Although biomass direct counts were higher at the intermediate metals site at each 

sampling point than at it's reference site, this relationship was only significant during the 

month of September (p < 0.05). This data is presented in Figure 3. Biomass direct 

counts at the high metals site were significantly greater than it’s paired reference site in 

September (p < 0.05). They were not significantly different at any other time point (Fig 

4).
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Figure 2: Low Metals Difference Pair. Comparison of biomass direct counts 
and productivity at CFRC and it’s reference site, RCES. Columns represent 
biomass and circles (o) represent productivity. Shaded columns and filled 
circles ( • )  are CFRC, open columns and open circles represent RCES. All 
values are means with standard deviations. For biomass measurements n =
3. For productivity measurements n = 12, except in October when n = 6.

Productivity. Productivity was measured from November of 2000 through 

October of 2001. Leucine incorporation over the course of the study varied from no 

incorporation to 8375 pmol leucine hr'* (gram dry weight of sediment)'\
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Figure 3: Intermediate Metals Difference Pair. Comparison of biomass direct 
counts and productivity at CFGC and it’s reference site, BHNB. Columns 
represent biomass and circles (o) represent productivity. Shaded columns 
and filled circles (•)  are CFGC, open columns and open circles represent 
BHNB. All values are means with standard deviations. For biomass 
measurements n = 3. For productivity measurements n = 12, except in 
October where n = 6.

Productivity between test and reference sites showed very few differences. In 

November and July productivity was significantly different between CFRC, the low 

metals site, and its reference site, RCES (p < 0.05). In both April and October 

productivity was significantly greater at the intermediate metals site than at it's reference 

pair (p < 0.05). There was a significant difference in productivity between the high 

metals site and it's reference pair during the months of November, April and October (p <

0.05).

There was no evident correlation between direct counts and productivity at any of 

the sites with the exception of CFGC, the intermediate metals site, where they were 

weakly correlated (R^ = 0.72).
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Figure 4: High Metals Difference Pair. Comparison of biomass direct counts 
and productivity at SBMC and it’s reference site, LBGJ. Columns represent 
biomass and circles (o) represent productivity. Shaded columns and filled 
circles ( • )  are SBMC, open columns and open circles represent LBGJ, All 
values are means with standard deviations. For biomass measurements n = 3,
For productivity measurements n = 12, except in October where n = 6,

Metal Analysis. Background metal concentrations were measured across the 

gradient and at reference sites and are given in Table 2. Metals were highest at SBMC 

and declined along the Clark Fork River metals gradient. Metal concentrations in each 

pair were always lower at the reference site.

Table 2: Concentrations of key metals in sample sediments. Values are mean

Site As Cd Cu Pb Zn
CFRC 5 1 (1.1) 0.52 (0.08) 33 (4.00) 8.9 (1.3) 120 (17)
RCES 2.4 (0,50) 0,11 (0.00) 2.3 (1.03) 2.6 (0.29) 2.3 (1.8)
CFGC 7.5 (1.9) 0.58 (0,06) 75 (16.39) 16 (5.0) 160 (21)
BHNB 4.5 (1.6) 0,31 (0.38) 1.9 (1.39) 5.0 (2.3) 12 (7,9)
SBMC 55 (22) 1.7(0.39) 400(210) 93 (26) 440 (120)
LBGJ 5.5 (10) 0.26 (0.03) 4.2 (0.89) 8.0 (0,93) 22 (2.2)

Isotope Dilution. A linear relationship between the added leucine concentration 

and the reciprocal of radioactive decay indicates that leucine incorporation is following
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Michaelis-Menton kinetics. Figure 5 suggests that leucine incorporation into protein is 

following Michaelis-Menton kinetics at a concentration o f 50pM, but may not be at a 

concentration o f 20pM. The negative intercept with the y-axis indicates the dilution of 

the added leucine. At a concentration of 20jiM the dilution is 7.5pM. For the plot of 

50pM leucine the line passes through the y-axis with a positive intercept, therefore we 

can assume that no isotope dilution is occurring. Thus a concentration of 50fxM leucine 

was chosen for these studies and no isotope dilution was assumed.
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Figure 5. Isotope dilution plot indicating that incorporation processes are saturated at 
50|iM (B), whereas they may not be at 20pM (A).

Discussion

Biomass, With the exception of July at the low metals pair, the only significant 

relationships that exist between pairs in the biomass data indicate greater biomass at the 

contaminated sites. These significant relationships were few in number, but are contrary 

to our hypothesis. All direct counts within one log value of each other with the exception 

of CFGC, which reached 1x10* cells g'  ̂in September and LBGJ and SBMC, which were 

on the order o f 10  ̂cells g"̂  in October. Given the inherent variability associated with 

direct counts we concluded that there is no real difference in the biomass values.
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Seasonal trends in biomass measurements are shown in Figure 6. Even though an 

ANOVA indicates that these relationships are not significant, they do suggest that 

something other than heavy meals are driving direct counts. Biomass in September of 

2000 after a hot, dry summer that saw record wildfires, was variable. In general biomass 

was higher in the Clark Fork River sites in September than in the reference sites.

Biomass generally increased and became less variable in November as precipitation and 

flow returned. Organic matter firom deciduous trees and shrubs enter the rivers during 

this time and introduce nutrients. Organic matter is then diluted by the high flows of 

spring runoff and water temperatures are only slightly above fi-eezing in April. Flows 

have decreased and temperatures have increased by July. Biomass was varied widely 

between sites in October 2001 with half of the sites increasing in biomass fi*om the 

previous measurement in July and the other half declining in biomass. Mean biomass did 

not change fi“om July 2001 to October 2001.

1e+9

ie+8

SBMC

Sept

Month
Figure 6: Biomass, as measured by direct counts, followed a 
seasonal trend.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 1

This study was conducted as part of a larger study, which also studied microbial 

diversity using phospholipid fatty acid (PLFA) signatures and denaturing gradient gel 

electrophoresis (DGGE) patterns in Clark Fork River microbial communities. This study 

was not designed as a true seasonal study. If this study were to be repeated with the goal 

o f capturing seasonal variations, other measures, such as dissolved oxygen, dissolved 

organic carbon, pH, flow and water temperature would need to be recorded.

Ellis et al. (1998) found that direct cell counts, water table elevation and DOC all 

exhibited the same seasonal pattern in the Flathead River, which is a major tributary of 

the Clark Fork River below the study sites (14). The seasonal pattern in the Flathead 

River, studied in 1988 and 1989, exhibited a similar drop in biomass in April and a 

corresponding increase in mid-summer. However, too few sample points overlapped 

between our study and the study by Ellis et al. to draw any further conclusions. 

Schallenberg and Kalff (1993) suggest that microbial abundance in sediments may be 

inversely related to sediment organic matter and positively correlated with sediment 

temperature (32). The strongest correlation observed was a negative relationship with 

sediment water content. A seasonal study by Findlay et al. (1986) related both bacterial 

biomass and bacterial carbon production with sediment organic content (16).

Although the watershed effects, geomorphology and hydrology of the test and 

reference sites in this study were paired closely, land use patterns did vary and may 

explain some of the variability between test and reference sites. Direct counts presented 

here support the hypothesis that microbial biomass levels have adapted to the elevated 

heavy metal concentrations and that other factors may be more important in controlling 

biomass.
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Productivity. Although some significant relationships were observed, as a whole 

there was no clear trend as to the relationship between rates of leucine incorporation at 

Clark Fork River sites and reference sites. Rates of leucine incorporation into protein in 

the Clark Fork River was generally lower than productivity values determined by Fischer 

and Pusch (1999) in an unpolluted German river (17). Values observed by Fischer and 

Pusch ranged from approximately 500 to 1300 pmol leuc g‘* hr"\ The average grain size 

of sediment used was 0.5mm, where the average grain size in this study was 2mm. This 

would result in greater surface area in Fischer and Pusch’s sediments, which may result 

in greater microbial abundance per gram of sediment. They observed the lowest 

productivity in February, highest productivity in March and intermediary productivity in 

May. The study by Fischer and Pusch was not designed as a seasonal survey and no 

explanation was offered as to these observations.

Productivity in the Clark Fork River system was often higher than productivity in 

an unpolluted stream in Germany, where leucine incorporation averaged 75pmol g ’ hr * 

(26). The average grain size of the sediment studied was 0.5mm, which presents the 

same issues as with the study by Fischer and Pusch. Although this stream was not 

observed seasonally, productivity and sediment organic matter content were observed at 

several of the same sample sites as productivity and the two were closely related. 

Tuominen (1995) observed rates of protein synthesis in the range of 950 to 1820 pmol hr'

* L * in lake sediments (34). These values were higher than those observed here, 

however, the sediments were of a heterogeneous grain size and milliliters of sediment 

were used to correct for surface area to volume differences.
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A study by Diaz-Ravina and Bââth (2001) re-inoculated soil microbial 

communities that had been exposed to elevated concentrations of heavy metals into 

unpolluted soil (11). The highest observed rate of productivity using [*'^C]leucine 

incorporation was approximately 50 pmol leuc mL'* hr *.

The rate of leucine incorporation into protein was converted to bacterial carbon 

production (BCP) as outlined by Kirchman (1993) and is shown in Table 3 (25). No 

isotope dilution was assumed as suggested in Figure 5. BCP is readily compared 

between data sets and published values, even when different methods are used. The BCP 

values observed in the Clark Fork River study were similar and often higher than those 

reported by Marxsen (1996) where BCP in stream-bed sediments were reported 0.1 and 1 

pg C mL‘' hr ' (26). BCP values reported by Tuominen were on average slightly higher 

than those reported here and ranged from 1.5 to 5.7 pg C mL‘‘ hr"' (34). Cole et al.

(1988) observed BCP covering a wide range of values from <1 to >20 mg C m'^ hr"' in 

planktonic bacteria (10). Tomblom and Petterson (1998) examined BCP over the course 

of one and a half years. BCP values ranged from 0.2 to 2mg C m"̂  hr"' (33). Variations 

in BCP generally followed the seasonal variations in temperature with the exception of 

during a period of sedimentation by diatoms when BCP was elevated. None of these 

systems were exposed to elevated concentrations of heavy metals, suggesting that BCP in 

the Clark Fork River is not hindered by elevated metals.
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Table 3: Bacterial carbon production at study sites (pg C 
g * hr*'). Values are means with standard deviation.
Sites with asterisks had no observations.

Nov Apr Jul Oct
CFRC 9:6(Z7) * *............ 0.2 (0.1) 0.8 (0.2)
RCES 6.4 (2.8) 0.7 (0.3) 0.4 (0.4) 0.9 (0.4)
CFGC 0.6 (0.3) 0.3 (0.1) 0.6 (0.3) 1.4 (0.8)
BHNB * 0.1 (0.1) 0.5 (0.3) 0.1 (0.0)
SBMC 0.0 (0.0) 0.7 (0.4) 12 (2.0) 0.0 (0.0)
LBGJ 0.4 (0.2) 1.3 (0.1) 14 (2.8) 0.2 (0.1)

The results presented here suggest that heavy metals have not resulted in 

significant long-term change to microbial communities detectable by broad parameters 

such as direct counts or protein synthesis measurements. Numerous other studies have 

reported changes in either microbial community biomass and activity as a result of heavy 

metal stress (1,2, 3, 7, 12, 13, 20, 22, 23, 31, 30). Why were observations in the Clark 

Fork River different? Observations presented here are contrary to research by Griffiths et 

al. (2000) that suggests that microbial productivity can return to its original level after a 

transient metal stress, but a chronic stress is likely to impair the return to pre-stress levels 

(21). From this study it appears that direct counts and the rate of leucine incorporation 

into protein were not sensitive enough measures to detect the impacts of heavy metals on 

Clark Fork River microbial communities. The use of other microbial community based 

measurements could likely elucidate the effects of over a century of mining wastes on 

microbial communities. Seasonal variations and land use patterns may have obscured 

any effects of heavy metals on biomass and productivity.

Even though there was no direct correlation between biomass and heavy metals or 

productivity and heavy metals, it would not be correct to state that heavy metals are not 

interacting with microbial communities. Over time free metals from the sediment enter
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the soluble phase and interact with the microbial communities. It is possible that after 

several decades of oxidation in the river, the available metals in the sediment may be very 

limited, thus microbial exposure is limited. However, Ford et al. (1998) concluded that 

even after the source o f heavy metals contamination had been remediated that heavy 

metals in sediments could present a long term source o f additional metals (18). 

Additionally, SBMC mining wastes routinely enter the streambed presenting microbial 

communities with available heavy metals. Although these metals enter the stream and 

initially present an acute toxicity, not all of the sediments are washed downstream. The 

mining wastes that remain behind result in additional chronic heavy metal exposure.

Also, the sampling strategy for this study may have limited the heavy metals induced 

variation in the system. Diel variations are known to cause significant elevations in the 

soluble metal concentrations at night (6). This could potentially result in a decrease in 

microbial productivity at night, although a significant decrease biomass would not be 

expected in such a short exposure.

The observed results may be explained by the measurement of other community 

variables, such as metal tolerance and composition. There is plenty of evidence to 

suggest that this is possible (2, 3, 4,11, 12, 13, 23). Development of microbial tolerance 

is a slow process that has been shown to continue for up to 2 decades (12). The 

development of metal tolerance has been demonstrated on the Clark Fork River and this 

is the topic of Chapter 3. Metal tolerance development has been linked to changes in 

community composition (11, 19). Other research on the Clark Fork River has 

demonstrated that differences in microbial community composition exist both between 

test and reference sites and between test sites along the metals gradient (15). These

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 6

differences are greatest between SBMC and LBGJ, where heavy metal differences are 

also the greatest.

Conclusions

The results presented here suggest that either microbial communities in the Clark 

Fork River were able to maintain or recover to an original level of biomass and 

productivity from metal stress or that too many other variables existed for these broad 

measurements to show the impacts of over a century’s exposure to heavy metals. 

Seasonal fluctuations in biomass were observed and such factors as temperature and 

particulate organic matter may play a more important role in determining microbial 

community biomass than the concentration of heavy metals. Rates o f bacterial carbon 

production were similar or slightly lower than those reported in studies of unstressed 

systems. It is likely that microbial community structure and tolerance have been altered 

in response to elevated concentrations of heavy metals and that broad community 

measures such as biomass and productivity don’t reflect this change.
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CHAPTER 3

HEAVY METAL TOLERANCE OF SEDIMENT MICROBIAL COMMUNITIES TO
MINE TAILINGS

Abstract

Over a century of mining and smelting activities in the headwaters of the Clark 

Fork River in Western Montana has resulted in the largest Superfund complex in the 

United States. Around the turn of the century a series of large floods helped establish a 

gradient of metals extending over 200km down stream. Earlier we analyzed sediment 

community productivity across the gradient and found essentially no loss in productivity 

relative to metal concentration. We hypothesized that one possible explanation might be 

an increase in metal tolerant communities. Native sediment samples were collected from 

four sites along the metal gradient, and microbial community productivity was measured

by [l^C]leucine uptake in the presence of increasing mine tailings. The use of mine 

tailings to stress microbial communities is a change from conventtional techniques and 

was undertaken in order to stress microbial communities in a manner representative of 

how they are stressed in situ. Metal tolerance was related to the microbial community’s 

place in the gradient. Communities from areas o f highest sediment metal concentration 

demonstrated the greatest tolerance, while communities from further down the gradient, 

where sediment metal concentrations were lower, demonstrated lower tolerance. The 

results also show that the bank tailings, which still enter the creek today, interact with the 

microbial communities, select for a metal tolerant community, and reduce sediment 

productivity. To the best of our knowledge this is the first work demonstrating that
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alluvially deposited mining wastes entering the streambed not only impact sediment 

microbial communities but also continue to select for tolerant communities.

Introduction

Large-scale mining and smelting operations in the headwaters of the Clark Fork 

River in Western Montana resulted in large volumes of mining wastes. A series of floods 

in the late 1800’s and early 1900’s established a heavy metals gradient with the highest 

metal contamination in the headwaters and declining concentrations over 2 0 0 km 

downstream. The floodplain of Silver Bow Creek, which forms the headwaters of the 

Clark Fork River, contains vast quantities of heavy metal-laden mining wastes (tailings), 

which enter the streambed through erosion events. For over a century, microbial 

communities have been exposed to different concentrations of heavy metals dependent 

upon their place along the gradient.

Exposure to heavy metals exerts a selective pressure on microbial communities 

resulting in changes in community structure (2, 3, 4, 5, 12, 13, 16). This can lead to the 

selection of a more metal tolerant community (5, 16). Many studies have shown that the 

degree to which tolerance is developed is a function of the level of the community’s 

exposure to heavy metals (2, 4, 12, 20). Common methods for studying microbial heavy 

metal tolerance include labeled thymidine incorporation into DNA, labeled leucine 

incorporation into protein, or viable counts in the presence of elevated metals. These 

studies are generally conducted by subjecting microbial communities to increasing 

concentrations of heavy metal salts, such as CUSO4, ZnS0 4  and Pb(N0 3 )2. This method

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



33

uses artificial contamination but is well accepted. However, in contaminated soil and 

sediment a mixture of metals and metal complexes are often present and these metals 

vary considerably in their availability. Heavy metals reach the environment by a variety 

of means including tailings and waste rock deposition, atmospheric deposition and 

groundwater contamination amid a host o f other means (22). In situ, the bulk of the 

metals are therefore rarely free salts in soil pore spaces or dissolved in the water column, 

but sorbed to the soil or sediment surface. Mobilization o f these metals from surfaces 

over time results in soluble metals capable of affecting microbial communities. 

Biogeochemical processes results in the release of firee metal species and organometals. 

Protons are often sorbed along with metal ions to the surface of sediments associated with 

mining wastes and release of the metals into solution is associated with the release of 

these hydrogen ions and a decrease in pH. Thus, pH also plays a role in many systems 

where microbial communities are presented with heavy metal stress (9).

The authors of this study have previously measured microbial community 

biomass and productivity along the heavy metals gradient and found no correlation 

between metals exposure and community biomass or productivity. We hypothesized that 

this may be a result of development of tolerance to mine tailings or secondary deposits of 

tailings. Herein we refer to both forms as tailings. In a change fi-om conventional 

tolerance assays, we developed a tolerance assay using native metal complexes in place 

of metal salts. Our perspective being that sediment microbial communities in contact 

with tailings are exposed to the intrinsic (shape, surface properties) and extrinsic factors 

(metal complexes, pH) associated with tailings and that these factors influence sediment 

productivity in unique ways. Thus, our tolerance assay using mine tailings represents a
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means o f stressing microbial communities using a natural source of contamination as 

opposed to the commonly used artificial contamination. Previous studies in the Clark 

Fork River have shown an increase in the number of metal tolerant communities in the 

headwaters using viable counts in the presence of elevated metals (8). The use of a more 

sensitive method (leucine incorporation) combined with a natural source of 

contamination (tailings) should give us a better understanding how the Clark Fork 

microbial communities are responding to metal stress.

Sediment samples were collected from four sites along the gradient and one site 

from an unimpaired tributary of the Clark Fork River. The sediment samples were mixed 

with increasing volumes of mine tailings and microbial community productivity was 

measured by [‘"‘C]leucine uptake to study tolerance. Microbial communities that have 

been routinely exposed to elevated metal concentrations should be more tolerant of a 

subsequent challenge by heavy metals.

Materials and Methods

Field Sites. Four sites along the Clark Fork River metals gradient were chosen for 

study (Figure 1). The first site was closest to the source of contamination on Silver Bow 

Creek at Miles Crossing (SBMC). The unsaturated zone (approximately 2m thick) is 

composed of a mix of fine and coarse grain mine tailings with elevated concentrations of 

As, Cd, Cu, Fe, Pb, and Zn (26). Mixed with these tailings are uncontaminated flood 

deposits. The second site along the gradient is on Silver Bow Creek slightly upstream 

from Opportunity Ponds (SBOP). As water flows out of these ponds it is treated with
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lime and becomes the Clark Fork River. The floodplain at this site is also composed of a 

mix of fine and coarse grain mine tailings and uncontaminated flood deposits. The third 

site is situated above the confluence of Gold Creek with the Clark Fork River (CFGC). 

The river is partially channelized at this point in order to protect roads and the floodplain 

does not contain mining wastes. The final site along the gradient is the least 

contaminated and is situated on the Clark Fork River slightly upstream of its confluence 

with Rock Creek (CFRC). The unimpacted tributary, Rock Creek, flows mainly through 

wilderness and national forest before reaching the study site (RCES).

■mm

Figure 1; Map of sample sites in Western Montana. White 
indicates the Clark Fork River, which is Silver Bow Creek 
above SBOP.

Sample Collection. Sediment was sieved (1.7-2.36mm) and rinsed in the field. 

Sediments were transported back to the lab on wet ice and were processed immediately 

upon returning.

Mine tailings were collected from the Silver Bow Creek floodplain and sieved to 

the same size fraction as the fresh sediment. The “tailings” were not true fine grain mine 

tailings. They may be what are referred to as coarse jig tailings or they may be the result
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of secondary deposition of soluble metals on sediment surface. Further discussion is 

presented later. The tailings were stored at -20“C until used.

Metal Tolerance Measurements. Samples from SBOP and SBMC were mixed 

with tailings and acid washed sediment (AWS) and were assembled as outline in Table 

1 A. Fresh sediment, tailings, and AWS assemblages for RCES, CFGC and CFRC 

samples are given in Table IB. The AWS was of the same size fraction as the fresh 

sediment and were used to bring the total volume of all samples up to 5g. Tailings and 

AWS were autoclaved for 20min at 15psi and 121”C prior to mixing with fresh sediment. 

AWS was washed overnight in a 0.1% HCl solution and brought back to neutral pH by 

repeated rinsing with filter-sterilized water (FSW).

Each assemblage was mixed with a total of 20mL of filter-sterilized river water. 

The river water was from the same site as the sediment samples. All samples were then 

incubated at 18°C for twenty-four hours. At this point 5mL of leucine suspension was 

added to each sample so that the final concentration of leucine was 50fxM (specific 

activity 125Bq nmol’’). The [’"’C]leucine was diluted with the appropriate volume o f cold 

leucine before addition to the samples. The samples were incubated for two hours before 

the addition of formaldehyde to stop the reaction (final concentration 5%). An additional 

set of samples was assayed and formaldehyde was added prior to the twenty-four hour 

incubation in order to correct for non-specific uptake and binding of leucine. The 

incorporation rates measured in this set were subtracted from the test samples. Sample 

pH was monitored at Ohrs and 24hrs using a Coming pH meter (Coming, NY).
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Table 1: (A) Sample compositions for sediment samples from SBOP and SBMC. (B) 
Sample compositions for sediment samples from RCES, CFRC and CFGC.

A B
ings (g) AWS (g) Fresh 

Sediment 
......... (g)

Tailings (g) AWS (g) Fresh
Sediment

(g)
0 2.5 2.5 0 2.5 2.5

0.5 2 2.5 0.2 2.3 2.5
1 1.5 2.5 0.4 2.1 2.5

1.3 1.2 2.5 0.6 1.9 2.5
1.6 0.9 2.5 0.8 1.7 2.5
2 0.5 2.5 1 1.5 2.5

2.5 0 2.5 1.5 1 2.5

Inhibition of productivity by pH. The rate of [''‘C]Leucine incorporation into 

protein was measured in a set of samples where the pH was held constant at 6.3 using a 

0.2M phosphate buffer. In a second set of samples the pH was held constant at 7.2 and 

Ig of tailings were added. The final set of samples served as a control and was not 

amended with tailings and the pH was not adjusted.

Isotope Dilution. Isotope dilution was measured in a manner consistent with 

other studies (1,21). Concentrations of cold leucine were increased, while maintaining a 

constant concentration o f radioactive leucine. Initial concentrations o f [‘"‘Cjleucine were 

20pM and 50pM (specific activity 125Bq nmol ').

Measurement of [*'‘ClLeucine Incorporation into Protein. Fixed samples were 

sonicated for 10 minutes followed by extraction of the proteins by hot (95°C) 

trichloroacetic acid (final concentration 5%) for thirty minutes. The samples were then 

placed on ice for 30min in order to precipitate the proteins. From each sample lOmL was 

filtered through a 0.2pm-pore-size polycarbonate filter (Millipore, Bedford, MA). The 

filters were then rinsed with filter-sterilized water. The filters were placed into 

scintillation vials with solvent and scintillation fluid. The filtrate was periodically
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collected in order to account for all radioactivity used in the assays. Radioactive decay 

was measured in a Beckman LS6500 scintillation counter (Beckman Coulter, Inc, 

Fullerton, CA). The method described here has been modified from the one previously 

described by Fischer and Pusch (15).

Metals Analysis. A metal digest was carried out on sediments from each of the 

study sites in order to estimate heavy metal content of sediment surface crusts. The same 

procedure was conducted to determine the surface metal, or available, content of the 

tailings. Sediments and tailings were digested overnight in a nitric and hydrochloric acid 

solution, filtered and analyzed using a Thermo Jarrell-Ash Atom-Comp 800 ICP. The 

procedure was adapted from procedure EPA 350 B.

Statistical Analysis. Statistical analysis was carried out using JMP version 3.1.6.2 

(SAS Institute, Inc, Cary, NC). Regression lines were compared as outlined by Peterson 

et al (23).

Results

Productivity. Samples from SBMC, the site of highest previous metals exposure, 

appeared to have a threshold tolerance to the mine tailings and were not affected by 

concentrations up to 1 g (Figure 2). A stimulatory effect was noticed in SBOP samples 

after the addition of mine taihngs. Two grams of tailings were required before 

productivity at SBOP was approximately equal to the productivity of the no tailings 

sample.
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Figure 2; Mine tailings inhibit microbial productivity. Cross-hairs (+) 
represent RCES samples, circles (•)  indicate CFGC samples, 
diamonds (0) indicate CFRC samples, squares (■) indicate SBOP 
samples and triangles (A)  indicate SBMC samples. Values are means 
and error bars indicate standard error (n=4).

The decline in productivity in RCES, CFRC and CFGC samples was steeper than 

in the samples from SBOP and SBMC with the steepest decline coming from the 

microbial communities from the unimpacted tributary. A linear regression was 

conducted on the means of each point and the results are given in Figure 3. The slope of 

the line was related to the previous metals exposure. The site with the greatest previous 

exposure had the lowest slope, while the uncontaminated tributary had the steepest slope. 

The regressions resulted in two groups. The regression curves for RCES, CFRC and 

CFGC were not statistically different from each other. Likewise, the regressions of both 

SBOP and SBMC were not significantly different from each other. Each of the 

regressions for RCES, CFRC and CFGC were different from the regressions of SBOP 

and SBMC (p<0.05). The zero tailings point was omitted from linear regression for the
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SBOP samples due to stimulatory effects of the mine tailings treatment. The last two 

data points were omitted from the linear regression of RCES assuming that productivity 

had already declined to zero. There was no statistical difference between the last three 

points and this allowed the focus to remain on the linear portion of the curve.

2
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=  0.86

40
R' = 0.78

20

0
1.0 1.5 2.0 2.5 3.00.0 0.5

Mine Tailings (g)
Figure 3: Linear regression plot of mean 
productivity versus mine tailings. Error bars have 
been omitted for clarity. Cross-hairs (+) represent 
RCES samples, circles (•)  indicate CFGC samples, 
diamonds (0) indicate CFRC samples, squares (■) 
indicate SBOP samples and triangles (A)  indicate 
SBMC samples. Values are means (n=4).

Isotope Dilution. A linear relationship between the added leucine concentration 

and the reciprocal of radioactive decay indicates that leucine incorporation is following 

Michaelis-Menton kinetics. Figure 4 suggests that leucine incorporation into protein is 

following Michaelis-Menton kinetics at a concentration o f 50pM, but may not be at a 

concentration of 20pM. The negative intercept with the y-axis indicates the dilution of 

the added leucine. At a concentration of 20pM the dilution is 7.5pM. For the plot of
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50|4M leucine the line passes through the y-axis with a positive intercept, therefore we 

can assume that no isotope dilution is occurring. Thus, a concentration of 50pM leucine 

was chosen for these studies and no isotope dilution was assumed.
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Figure 4. Isotope dilution plot indicating that incorporation processes are saturated at 
50pM (B), whereas they may not be at 20pM (A).

pH. Sample pH was recorded at the beginning and at then end of the 24 hour 

incubation period. As shown in Figure 5, pH dropped initially upon addition of tailings 

and continued to decline during the 24hr incubation period. The degree to which the pH 

declined was dependent upon the volume of tailings in the sample. The reduction in 

approximately 1 pH unit (7.2 to 6.3) resulted in a drop in productivity (Fig 6 ). This 

decline in pH is approximately equal to that exhibited in samples after 24hrs when Ig of 

mine tailings was added. The addition of 1 g of mine tailings to sediment microbial 

communities while holding the pH constant at in situ pH resulted in a greater reduction in 

productivity. These declines in productivity were significant (ANOVA F = 13.7, p <

0.003).
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Figure 5; Increased mine tailings results in lowered pH. 
Error bars represent standard deviation (n=4). Lack of error 
bars indicate no deviation from the mean.

Metals Analysis. The results of the metal digests of sediment at each of the study 

sites formed a gradient (Table 2). Metal concentrations in the river sediments declined 

with increasing distance from Butte, MT. Results of the surface metal digest from the 

mine tailings used to stress the microbial communities are also shown in Table 2.
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Figure 6 : A drop in pH alone resulted in a decrease in 
productivity. The addition of metals to microbial 
communities without the influence of pH resulted in a 
greater drop in productivity relative to the unamended 
control.

Discussion

Development of Metal Tolerance. The degree of metal tolerance observed at sites 

along the Clark Fork River was positively correlated with the concentration of metals 

present in the sediment. Microbial communities have been exposed to different 

intensities of metal stress based on their place in the metal gradient and this is reflected in 

the slopes of the regression lines in Figure 3 (Figure 7). It is not possible to determine 

the exact exposure that these microbial communities have received over the last century. 

However, the communities in the Clark Fork River have been exposed to large quantities 

of metals over an extended period of time. A series of floods around the turn of the 

century were probably very influential in selecting for metal tolerant communities. The 

use of the current concentration of heavy metals in the sediment does reflect the heavy 

metal exposure at each site relative to the others.
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Table 2; Sediment and tailings metal concentrations at study sites. Values are mean 
ppm (|xg/g) with standard deviation.'    -  i  — _____________     _          _             .

Site As Cd Cu Fe Mn Pb Zn
RCES 2.4 (0.5) 0.1 (0.0) 2.3 (1.0) 4020 (660) 62(15 ) 2.6 (0.3) 2.3 (1.7)

CFRC 5.1 (1.2) 0.5 (0.08) 33 (4.0) 4030 (880) 310 (59) 8.9 (1.3) 122 (17)

CFGC 7.5 (1.9) 0.6 (0.1) 75 (16) 4850 (1150) 372 (47) 16(5) 164(21)

SBOP 41 (8.1) 0.8 (0.46) 210(43) 7240 (810) 204 (82) 68 (23) 363(100)

SBMC 55 (22) 1.7 (0.39) 400 (210) 5310(920) 470 (200) 93 (26) 440 (120)

Tailings 130 (2.0) 0.85 (0.16) 340 (46) 9670 (39) 260 (87) 220(30) 448 (51)

Sediment microbial communities from the unimpaired tributary, RCES, were less 

tolerant of the mine tailings than any of the sites along the Clark Fork River. Microbial 

communities from the low metals site, CFRC, exhibited the greatest drop in productivity 

of any of the Clark Fork River sites. This site is the furthest downstream and furthest 

from the source of the heavy metals. CFGC, the intermediate-low metals site, is closer to 

the source of the heavy metals and communities were more tolerant of the metal 

additions. Both CFRC and CFGC are below the liming station in Opportunity, MT.

Lime is added to the water as it flows from Opportunity Ponds in order to raise the pH of 

the water and keep the heavy metals in the particulate phase. There is a pronounced 

increase in the slope of the regression lines below the liming station, indicating less 

tolerance (Figure 7). Statistically, the sites cluster into two groups. Those above the 

liming station are not significantly different from each other and those below the liming 

station are not significantly different from each other. The two groups are significantly 

different from one another. The greatest metal tolerance, and the shallowest slope, was 

observed at SBOP and SBMC, where the communities have not only been exposed to the 

greatest historic selective pressure of any of the sites, but continue to be exposed to
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elevated concentrations of heavy metals. The results observed here are supported by 

numerous other findings where the degree to which microbial communities were 

previously exposed to heavy metals determined their tolerance to a second challenge by 

heavy metals (2, 4, 5, 12, 20). However, as indicated by linear regression, the sites below 

the liming station are not significantly different from each other. There is certainly a 

trend with decreasing tolerance as sites get further from the source of contamination 

(Figure 7), but we can only conclude that the communities in the headwaters. Silver Bow 

Creek, are more tolerant than communities downstream.

Liming Station

-20  -

SBMC SBOP

I(J -40 -
scCO

-60 -
CFGC

CFRC

o
s .  -8 0 -
o</)

-100  -
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-120
200 2501501000 50

River Kilometer
Figure 7: Slope of the curve from Figure 3 plotted against sample 
position in the heavy metals gradient. RCES is a tributary of the 
Clark Fork River and is plotted as an open circle to indicate that.

SBMC and SBOP, the high metals site and the high intermediate metals site, 

exhibited regression lines with the same slope. The two sites are close geographically 

and similar geologically and hydrologically, however a strong stimulatory effect was 

observed among SBOP microbial communities. Other studies have observed a 

stimulatory effect of heavy metals on microbial communities with the thymidine
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incorporation technique (24). The stimulatory effect of heavy metals observed in SBOP 

samples could be the result of the synthesis of metal resistance mechanisms (10,25).

The observed degree of heavy metal tolerance at the two sites of greatest previous 

exposure, SBOP and SBMC, indicates that the microbial communities are consistently 

exposed to heavy metals. Diaz-Ravina and Bââth (2001) observed that when metal 

tolerant microbial communities were moved to an environment where the metal stress 

was removed, almost all (70% to 90%) of metal tolerance was lost within one week (10). 

The sheer volume and availability of highly oxidized mining wastes in the Silver Bow 

Creek floodplain and the high concentrations of metals in the Silver Bow Creek bed 

sediment, supports the hypothesis that metals from the eroding stream bank are 

consistently interacting with the microbial communities at these sites. Further support 

comes from recent documented fish kills in the Clark Fork River after runoff events (19). 

These pulses o f heavy metals present an acute stress, while the heavy metal contaminated 

sediment present a chronic stress. Acute exposure to heavy metals would be expected to 

cause a sharp decrease in productivity. Once the initial pulse of metals has passed, some 

heavy metal laden sediment would be expected to be left behind, presenting a chronic 

metal stress. Diaz-Ravina and Bââth also observed that after the metal stress was 

completely removed, a degree o f tolerance was retained for at least 12 months (11). This 

suggests that even after the stress has been removed some tolerance remains. At other 

sites, where elevated concentrations of heavy metals are present, but mining wastes do 

not regularly wash in from the floodplain, other processes would be expected to dominate 

metal availability. Fuller and Davis (1980) observed that diurnal patterns in pH, due to 

photosynthetic processes, resulted in similar, but lagging pattem in trace metal
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concentrations in the surface water (17). In the Clark Fork River increases of 2 to 3-fold 

in soluble and acid-soluble fractions of trace metals have been observed at night (7 ).

These processes would be expected to influence productivity, but probably not biomass 

due to the short exposure time. We hypothesize that these brief metal exposures could 

also be responsible for selecting and maintaining metal tolerant communities.

The use of broad measurements of microbial communities, such as biomass and 

productivity, were unable to detect the impacts of over a century of mining wastes on the 

Clark Fork River microbial communities. Other studies suggest that these community 

responses can recover from an acute stress, but may not be able to recover completely 

from a chronic stress (18). Therefore, we should have observed a decline in both biomass 

and productivity in the Clark Fork River relative to metals concentrations. It is quite 

likely that these measures have been impaired by the chronic metal stress, however, 

seasonal variations and land use patterns may have obscured them. Changes in PLFA 

and DGGE patterns, coupled with tolerance measurements indicate that the communities 

have adapted to the metal stress that they are routinely exposed to (14). Community 

composition and tolerance measurements show that there has been and there continues to 

be a strong impact from mining wastes on microbial communities.

Metals Analysis. This study did not use metal salts to stress microbial 

communities as is commonly done. Instead mine tailings were used to test microbial 

tolerance to metals as they would occur in situ. As mentioned earlier the tailings were 

not true mine tailings. Mine tailings are very fine grain and present a problem, as they 

are not the same grain size as the study sediment. The “tailings” used in this study may 

have been coarse jig tailings or may have been the result of secondary deposition of
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metals. Secondary deposition occurs when weathering of sulfide minerals in the true 

tailings release soluble metals that are re-precipitated on the “tailings” as they percolate 

through the floodplain. When these “tailings” were mixed with sediment in the 

laboratory, metal cations and protons were released from the surfaces. The protons 

lowered the pH and furthered the release of soluble metals. Although this study did not 

use true mine tailings, the “tailings” did serve their purpose as a source of metals for 

stressing microbial communities in a manner similar to what occurs in situ. The tailings 

that routinely enter Silver Bow Creek are highly oxidized, thus the metals are available 

and readily interact with sediment microbial communities.

Iron and manganese oxides form a coating on the surface of sediment grains and 

cations o f copper, zinc, and other metals adsorb to this negatively charged coating.

Protons are also able to adsorb to these surface coatings. As the pH declines protons 

compete for binding on the negatively charged oxides, forcing metals and additional 

protons into solution. Arsenic is the exception since it is actually present as H2ASO4' and 

the negative charge causes it to act in a manner opposite to the other metal species. 

Therefore, pH is an important factor in the availability of these metals. As shown in 

figure 5, sample pH declines from around 7 to around 6.2 as tailings are added up to 1.5g. 

This pH range follows the sorption edge for iron hydroxides. Thus, as tailings were 

added to the samples in the laboratory, the pH declined, which affected the surface charge 

on the tailings, which influenced the concentration of metals in solution. We are studying 

the effects of natural metal contamination on microbial communities and pH is an 

inseparable part of this contamination. The inhibition of leucine incorporation rates 

shown in Figure 2 reflect both inhibition by heavy metals and by a decline in pH. As
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demonstrated in Figure 6, both the metals and the pH play a role in inhibiting microbial 

community productivity with metals probably playing a greater role. Baker et al. (1982) 

concluded that not only did pH inhibit microbial activity, but it also determined the 

toxicity of metal ions in solution (6).

Tailings as a means of measuring metal tolerance. Microbial communities from 

areas receiving mining wastes are not only subjected to multiple different metals 

simultaneously, but also are often subjected to the effects of a change in pH. The use of 

metal salts to determine community tolerance allows researchers to determine the 

contribution of individual metals, but can be misleading because communities often 

demonstrate a co-tolerance to other metals (4, 5, 13). Although the use of tailings to 

measure community tolerance does not allow for the elucidation of which metals illicit 

the greatest tolerance, they are a more natural source of contamination and they represent 

a very realistic approach to determining how microbial communities respond to metal 

stress in situ. The mining wastes studied here still enter the headwaters of the Clark Fork 

River and expose microbial communities to highly oxidized metals and to a sharp decline 

in pH.

Microbial metal tolerance studies have frequently reported a co-tolerance to 

metals that the microbial communities have not been exposed (4, 5, 13). The 

development of co-tolerance could possibly be due to similar or shared resistance 

mechanisms (2, 13). Metal exposure in the Clark Fork River has been to numerous metal 

species that go beyond those listed in Table 2. Even a well planned study using metal 

salts would have significant difficulty determining which metals were most important in 

the development of the observed tolerance.
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This work is also one of only a few studies to use the leucine incorporation 

technique for tolerance studies (11,24). The leucine incorporation technique has been 

demonstrated to be a more sensitive measure of community activity than the thymidine 

incorporation technique (11). Bacterial counts are less sensitive than the thymidine 

incorporation techmque and are limited by our ability to culture communities on agar 

plates (1).

Conclusions

Many microbial processes are reported to be impaired by the presence of heavy 

metals. In the presence o f a chronic metal stress, however, microbial communities 

develop tolerant populations due to selective pressure. Upon chronic exposure, broad 

measures of microbial activity are not likely to indicate stress or injury by the 

contaminant until some threshold level is reached. Earlier studies in the Clark Fork River 

indicated that there is essentially no loss of productivity or biomass due to the elevated 

concentrations of heavy metals. However, microbial communities from sites along the 

Clark Fork River have demonstrated a tolerance to heavy metals addition relative to 

communities from an unimpaired tributary. The degree to which tolerance was 

developed in the Clark Fork River reflected the level of chronic exposure the 

communities were subjected to.

The metal source used to test for microbial tolerance was not necessarily primary 

mining wastes (i.e. tailings), but were more likely secondary deposits of metals (metal 

complexes coating sediment surfaces). This suggests that these metal complexes (even in
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circumneutral waters) are not inert and the attached microbial communities interact and 

are therefore impacted significantly when these deposits slough off of stream banks and 

are transported downstream. It was also demonstrated that both pH and metals play a 

role in in situ inhibition of community productivity, although metals appear to play a 

greater role. Finally, this is the first evidence of alluvially deposited mining wastes 

entering the streambed, interacting with microbial communities, resulting in a prolonged 

and chronic selective pressure after mining operations have ceased.
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CHAPTER 4

GENERAL DISCUSSION

The study of chronic heavy metal contamination on sediment microbial 

commumties in the Clark Fork River was divided into two parts. The first part examined 

microbial communities with respect to chronic heavy metal exposure using direct counts 

to estimate biomass and [*^C]leucine incorporation into protein to determine microbial 

productivity. The second part aimed to deteimine if, and to what extent microbial 

communities in the Clark Fork River have developed a tolerance to heavy metals. In 

order to measure heavy metal tolerance in the most realistic manner possible, natural 

contamination (mine tailings) were used in place o f artificial contamination (metal salts).

Monitoring microbial community biomass along the metals gradient and 

comparing the observed values with those from the uncontaminated reference sites it was 

determined that there was no correlation with metal concentrations. This is contrary to 

numerous studies that have shown that biomass at sites chronically contaminated with 

heavy metals is often lower than biomass at uncontaminated sites (5, 7, 11, 25, 29,41).

A seasonal biomass pattem did emerge, suggesting other factors may be more important 

in controlhng biomass in this system than heavy metals. Current literature suggests that 

biomass may be influenced by or correlated with dissolved organic carbon, sediment 

organic matter, sediment water content or water temperature (18, 21, 42). Future studies 

may wish to monitor such parameters as pH, DO, sediment organic carbon, flow and 

temperature in order to better correlate microbial biomass in the Clark Fork River with 

seasonal changes.
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Seasonal measurements of the rate o f microbial incorporation of leucine into 

protein did not appear to be inhibited by the elevated background levels of metals in the 

sediment either. Rates of bacterial carbon production (BCP) were similar to published 

values from sediments that were not contaminated by heavy metals, supporting the idea 

that heavy metals are not the primary drivers of microbial productivity in this system. 

However, the sampling procedure may have omitted much of the heavy metals induced 

variation in microbial community productivity. If sampling had occurred immediately 

after a runoff event, productivity would be expect to decrease due to the influx of heavy 

metal-laden mine waste washed in from the floodplain at SBMC. Diel cycling of metals 

can be caused by photoreduction and pH-dependent metal desorption from sediments in 

river systems (10, 24). These processes have been shown to increase metal 

concentrations by 2 to 3-fold in the Clark Fork River at night when pH and dissolved 

oxygen also decrease as a result of the cessation of the light reactions of photosynthesis 

(10). Thus, the effects of metals on microbial communities may be more pronounced at 

night.

The observed pattem o f microbial productivity in the Clark Fork River is most 

likely driven by both seasonal changes and land use patterns although no clear pattem 

emerged. Past studies have linked microbial productivity to seasonal fluctuations such as 

water temperature and the sedimentation o f diatoms (45). However, it is widely accepted 

that elevated concentrations of heavy metal have an inhibitory effect on both microbial 

biomass and productivity (3, 5,6,1,  11, 16, 17, 25,28,29, 40, 41). It is possible that any 

reduction in biomass or productivity relative to heavy metal concentrations was masked 

by the seasonal fluctuations and land use patterns. Such broad measures of community
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response as these may not be suitable for measuring the effects of chronic metal 

contamination in the Clark Fork River. It is also likely that microbial communities in the 

Clark Fork River have adapted to the metal stress that they routinely see. One 

mechanism of adaptation to metal stress at the community level is a change in community 

structure and other studies in the Clark Fork River have shown changes in microbial 

diversity as measured by denaturing gradient gel electrophoresis (DGGE) patterns and 

phospholipid fatty acid (PLFA) patterns in response to heavy metal contamination. (20).

A change in community composition in response to heavy metal stress can result 

in a more tolerant community (7). To test this theory of increased metal tolerance we 

subjected microbial communities to mine tailings at various concentrations. Mine 

tailings continue to enter the headwaters of the Clark Fork River and thus, their use 

allows us to test metal tolerance in a manner very similar to how it occurs in situ. In this 

procedure microbial communities were exposed to not only available heavy metals, but 

also pH and intrinsic properties such as shape and surface properties. The leucine 

incorporation technique was used to measure productivity in the presence o f the tailings.

The degree to which tolerance was developed at each site was positively 

correlated with the concentration of heavy metals present in the sediment. A pronounced 

drop in metal tolerance was observed below the liming station, possibly suggesting that 

efforts to keep metals in the particulate phase have been to a degree successful. All sites 

in the Clark Fork River exhibited a greater tolerance to the introduced mine tailings than 

did the microbial communities from the unimpaired tributary. This correlation between 

increased exposure to heavy metals and increased tolerance is consistent with numerous
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studies which have employed artificial contamination (metal salts) as the means of metal 

stress (3, 6, 7, 13, 16, 29, 34).

When mining wastes enter streambeds they not only subject microbial 

communities to heavy metals, but also a change in pH. The use of natural contamination 

(tailings or secondary deposits of metals) to measure community tolerance represents a 

very realistic approach to determining how microbial communities respond to mining 

wastes and metal stress in situ. The experimentally added tailings resulted in a decrease 

in sample pH and, in all but the most tolerant samples, a decrease in community 

productivity. Both pH and the heavy metals played a role in the decrease in productivity 

with the heavy metals playing the greater role.

A study by Diaz-Ravina and Bââth (2001) showed that microbial communities 

rapidly lost their metal tolerance when the heavy metal stress was removed (15). These 

data suggest that the routine influx of heavy metals from the high volume of ruining 

wastes present in the Silver Bow Creek floodplain continually stress the microbial 

communities and select for a more metal tolerant community. We believe that this is the 

first evidence o f alluvially deposited mining wastes entering a streambed, interacting with 

microbial communities and applying a prolonged and chronic selective pressure.
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