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Riddering, James P. Ph.D. May 2004 ‘ Forestry

DEVELOPING A SATELLITE-BASED METHOD OF LANDSCAPE DROUGHT ASSESSMENT

Director: Dr. LLoyd P. Queen

This dissertation describes the major research components involved in the implementation, modification,
and testing of a method for assessing surface moisture status with NOAA-AVHRR data, known as the
Surface Moisture Index (SMI). Chapter two presents the initial landscape-scale development of the SMI
model which is predicated on previous large-scale studies reviewed in chapter one. The initial landscape
model relies on a moving neighborhood analysis that exploits the relationship between radiant surface
temperature (T,) and a spectral vegetation index, namely the Normalized Difference Vegetation Index
(NDV1), to elucidate surface moisture status. '

Chapter three describes the Water Deficit Index (WDI), another large-scale technique, the logic of which
was adapted and used to modify the original SMI model. The WDI logic dictates the incorporation of near
surface air temperature (T,) as an input for the model. Since T, is a critical component, a method for
estimating this variable was necessary. Chapter four discusses the implementation and testing of the T,
technique used in subsequent model development. Three methods of estimating T, were tested. These
methods differed only in the manner that earth-sun-sensor geometry was used to impose constraints in the
model calculations. The most rigorous method, which had the most sophisticated geometry constraints,
resulted in the fewest actual predictions, but also showed the best results (R = 0.742, MAE = 6.09 °C).

The fifth chapter treats the final version of the SMI model. That model incorporates four significant
revisions from the original model. Those are: (1) adaptation of the WDI logic for landscape-scale
implementation, (2) inclusion of geometric constraints, {3) near-surface air temperature estimates, and (4)
specification of a new landscape reporting unit. Validation exercises relied on a ten year comparison of
SMI to the Palmer 7 index, a popular index for tracking drought that relies on data from meteorological
stations. The ability to predict Palmer Z from SMI values was assessed using the Autoregressive Integrated
Moving Average (ARIMA) technique and resulted in excellent predictability with all coefficients being
significant at the & = 0.05 level.
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PREFACE

The objective of this research is to develop a method of assessing surface moisture status/drought at
landscape scales with satellite imagery. It is organized into five chapters, and begins with a brief review of
the background and logic of the methods, which includes a review of the pertinent literature. Chapter two
will discuss the original lendscape implementation of the Surface Moisture Index (SMI) which was based
on the work of Nemani et al. (1989) and Nemani and Running (1993). While engaged in the research
presented in chapter two, a number of shortcomings were identified and discussed. To mitigate these
problems, I chose to adopt some of the logic from the Water Deficit Index (WDIL, Moran et al., 1994a)
which will be explained in chapter three. One of the critical inputs for the WDI technique and the
subsequently modified SMI method is that of near surface air temperature estimates {T,). Chapter four will
discuss the satellite-based techniques I developed to derive these air temperature estimates. Finally,
chapter five will discuss the implementation and validation of the final satellite based landscape drought
technique. A discussion is included therein that considers the performance of the final implementation and

provides suggestions for future research.
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CHAPTER 1

INTRODUCTION AND THEORY

BACKGROUND

The relationship between radiant surface temperature (T,) and spectral vegetation indices (e.g. Normalized
Difference Vegetation Index) has often been used to iq_vestigate surface energy fluxes and as a surrogate for
detecting vegetation water stress (Nemani and Running, 1989; Carlson et al., 1990; Smith and Choudhury,
1991; Nemani et al., 1993; Carlson et al.; 1994; Kustas et al., 1994; Vidal et al., 1994; Vidal and Devaux-
Ros, 1995; Moran et al., 1996; Laguette et al., 1998; Duchemin et al.; 1999). The logic of coupling radiant
surface temperature with vegetation indices to deduce surface moisture status relies on the covariance of
these two parameters with changing surface moisture conditions. Two of the primary drivers of surface
temperature (whether that surface is soil, vegetation or a2 mix) are net radiation (R,) and the amount of
water available for evaporation and/or transpiration (ET) (Jones, 1992; Moran et al,, 1994b). For a given
amount of radiant flux density incident at the surface and assurhing consistent meteorological parameter
(e.g. VPD, wind speed), the amount of available water dictates the partitioning of energy to sensible or
latent heat flux. If the surface has water available, the primary partition will be to latent heat flux (Jones,
1992; Moran et al., 1994b; Nemani et al., 1993). The result is a comparatively “cool” radiant surface
temperature. This relationship, however, varies with the fractional vegetation cover (Carlson et al., 1994;

Moran et al., 1994b; Nemani et al., 1993; Smith and Choudbury, 1991).

Figure 1 displays a scatterplot of surface temperature minus air temperature (T-T,) and Normalized
Difference Vegetation Index (NDVI) for both moist and dry conditions. For an area with an adequate
range of vegetation cover and plentiful water the slope of the line fit to the scatterplot will be nearly flat
due to absorbed energy causing surface soil moisture evaporation in bare soil areas (Nemani et al., 1993).
The result is a surface temperature near that of actively transpiring vegetation. The converse is also true
where lack of surface moisture causes the slope of the line to become more negative. The bare areas will

divert the energy to sensible heat flux resulting in surface temperatures above that of vegetation. This is

2
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not to say that surface temperature of full vegetation does not change with water availability, rather,
vegetation has access to sub-surface water and is better able to regulate water loss below that of bare soil
(Jones, 1992). The resulting assumption is that in areas with diverse vegetation cover, the relationship
between surface temperature and vegetation cover will change with water availability and this relationship
can be exploited in the development of operational methods for monitoring surface moisture status and

drought.

Figure 1: Theoretical scatterplot illustrating water stress and nen-stressed pixels.
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Most studies utilizing the T /speciral vegetation index (T/VI) logic have focused on Iarge-scale (small
geographic extent), low temporal resolution assessments of surface energy budgets (e.g. (Carlson et al.,
1995; Nemani and Running, 1989; Saha, 1995; Smith and Choudhury, 1991; Vidal and Devaux-Ros, 1995).
Though many of these studies have been concerned specifically with solving surface energy parameters, the

utility of this logic for monitoring drought and fire potential has been suggested (Moran et al., 1994a;
3
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Nemani et al., 1993; Vidal and Devaux-Ros, 1995). Since both drought and vegetation fire potential can be
modeled as a function of surface energy status {decreases of ET below potential ET is indicative of
vegetation water stress), the use of these methods for drought and fire potential monitoring logically
follows. In spite of this, there is, historically, a noticéable lack in the use of these te.chniques for surface
moisture and drought monitoring applications. A notable exception being Vidal and Devaux-Ros (1995)
who showed that large fire activity was correlated with a derivative of the T/spectral vegetation index

(T4/VD logic.
LITERATURE REVIEW

One of the earliest studies combining surface temperature with a vegetation index to infer surface energy
budget parameters was that of Nemani and Running (1989). They used the Advanced Very High
Resolution Radiometer (AVHRR) to calculate the NDVI and surface temperature via a split window
technique over the Lubrecht Experimental Forest in Montana. They tested how this relationship compared
with modeled surface resistance for eight composite periods throughout the growing season. Forest-BGC
and local meteorological data were used to simulate canopy resistance. A strong correlation between the
slope of T/NDVI and simulated resistance was observed throughout the season. Interestingly, the
T/NDVI slope was able to track a period of drought in June and July and drought recovery that came with
Awugust rains. The authors conclude by suggesting that since surface resistance is the primary control on
latent heat flux, the T/NDVI relationship may be useful in regional studies of evapotranspiration by

providing qualitative information on surface resistance.

Carlson and others (1990) attempted to derive fractional vegetation cover, surface energy fluxes, and root
zone soil surface moisture in areas with partial vegetation cover. They combined s boundary layer model
that contained vegetation and substrate parameters with two image products: T/NDVI and standard
deviation of T, versus T,. Imagery was obtained from an airborne sensor with spatial resolution of

approximately 4 m at nadir. It was assumed the T/NDVI relationship was controlled by fractional
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vegetation cover. The information of T, versus standard deviation of T; was used .to define the endpoints of
full canopy coverage and complete bare soil. The boundary layer model was then used to calculate root
zone and soil surface water content by forcing a solution for these parameters that resulted in a match
between simulated and observed surface temperatures. The authors stated that the method required testing
against various types of soil and vegetation and suggest that AVHRR might be useful in this endeavor.
They also mention, however, that low spatial resolution sensors such as AVHRR may not be able to

produce the complete range of NDVI and T, values neéded for this type of application.

Smith and Choudhury (1991) explored the relationship between surface temperature and spectral
reflectance in Australia using a single Landsat Thematic Mapper (TM) image. They found overall negative
relationships between a vegetation index and T, in agricultural areas, but not in evergreen forests. Using a
two-layer {soil and vegetation) energy balance model to explore the T/ VI logic, they found fractional
vegetation cover to be the major control on T,. Residual variability in the relationship was attributed to
differences in ambient air temperature, soil water availability, and stomatal resistance as controlled by
phenological development. It was suggested that biome should be accounted for when modeling surface
moisture parameters and that the SMI response is sensitive to soil and vegetation contributions. Overall,

the authors were not confident about the ability of T/ V1 relationships to predict surface moisture status.

Building on their previous work, Nemani and others (1993) revisited the T¢/NDV1 relationship and
explored: 1) the effect of biome on T/NDVI, 2) automated methods of defining the TJ/NDVI relationship,
3) optimal window size, and 4) continental-scale comparisons of T/NDVI changes to moisture status.
Several AVHRR images were obtained throughout the growing season for an area of 300x300 km for use
in this study. The first conclusion drawn from this study was that the T/NDVI relationship is primarily
controlled by vegetation fraction viewed by the sensor. Surface moisture status, however, was identified as
being an important component of the T/NDVI response. [t was found that date of imagery had no effect on
optimum neighborhood size, while biome type did. A related conclusion was the idea that topographic

effects must either be held constant or explicitly accounted for when implementing the T/NDVI logic in
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complex terrain. The comparisons of Ty/NDVI with landscape scale moisture status assessments proved
encouraging. The crop moisture index (CMI), which measures short-term soil moisture variations in the
top five feet, was used for comparison and T/NDVI was found to track fluctuations in CMI. The authors
conclude this paper with the statement that T/NDVL upon further development, would be useful in

monitoring fire danger.
SUMMARY

From the literature discussed above, four critical points can be identified when considering the
implementation of 2 model for deducing surface moisture status based on the surface temperature and

spectral vegetation index relationship. These are summarized as bullet points below.

e A diversity of vegetation cover, as measured by NDVL, is required to assess moisture status at the
surface. '

e The T/NDVI relationship has been shown to change with water availability.

e The T/NDVI relationship has been used or suggested for use in monitoring drought,
evapotranspiration and surface resistance, surface moisture status, and fire danger. All of these are
related insofar as water availability impacts vegetation.

e The basic logic of surface temperature and speciral vegetation indices can be applied over many

biomes, however a control must be provided for biome.

Based on this foundation, the following chapters of this dissertation will describe the process followed in
the development of a new method for assessing surface moisture status at landscape scales. Chapter 2 will
discuss the criginal landscape implementation of the T/NDVI technique and will include an assessment of
the model performance. Chapter 3 will introduce the Water Deficit index which serves as a foundation for
subsequent developmental work. Chapter 4 describes a technique of estimating near surface air
temperatures which is a critical component in elucidating surface moisture condition. Finally, chapter 5

will illustrate the final landscape technique for modeling surface moisture status,
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CHAPTER 2

DEVELOPMENT OF A LANDSCAPE SURFACE MOISTURE INDEX

ABSTRACT

A new method for modeling surface moisture status at continental scales utilizing the Moderate Resolution
Imaging Spectrofadiometer (MODIS) surface resistancfe logic is under development for use in fire science.
A preliminary implementation of the algorithm, using NOAA Advanced Very High Resolution Radiometer
{AVHRR) data, has been completed. The surface moisture index (SMI) uses the Normalized Difference
Vegetation Index (NDVI) and radiant surface temperature (T;) to assess surface moisture status. The
results of a validation effort designed to address algorithm performance issues, potential shortcomings in
the current implementation, and areas where the logic and implementation perform in an adequate manner
are presented. Fire potential validation efforts were made using an historic database of fire occurrence
obtained from the U.S. Bureau of Land Management (BLM). The area of interest was constrained to Idaho
and Montana for the summer of 1994 due to prevailing dry conditions across the landscape and high fire
activity. Preliminary findings from this study are presented and potential users are introduced to the logic

and applications of the MODIS surface moisture products.
INTRODUCTION

Heat flux at the earth’s surface is driven primarily by incident solar radiation and water availability. Dry
surfaces are dominated by sensible heat flux, which manifests itself ,be increasing radiant surface
temperatures (T,). Generally, as water availability increases, more energy is partitioned to latent heat flux
resulting in a relative reduction in T;(Monteith, 1981). The partitioning of enefgy between latent and
sensible heat is also influenced by several other biophysical variables including vapor pressure deficit,
boundary layer conductance, canopy surface resistance, wind speed, and surface roughness (Jones, 1992;
Whitehead, 1998). Despite these potentially confounding effects, recent studies have shown that when

thermal infrared measurements of T are coupled with spectral vegetation indices, surface wetness can be
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inferred (Nemani and Running, 1989; Carlson et al., 1990; Nemani et al., 1993; Carlson et al., 1994).
Nemani et al. (1993) demonstrated that the slope of a T/Normalized Difference Vegetation Index (NDVT)

line is strongly correlated with surface moisture status.

We believe this logic may be significant for regional-scale fire potential monitoring and have adopted it as
the basis for development of an Earth Observing System (EOS) fire potential product. Using NOAA’s
Advanced Very High Resolution Radiometer (AVHRR), T/NDVI scores are calculated at continental

- scales to investigate its suitability for vthis application. By implementing the logic now, we are better
prepared to adapt it to the upcoming EOS Moderate Resolution Imaging Spectroradiometer (MODIS) data
stream. A surface moisture status product based on the work described here will become a post-launch

product of MODIS in 2001.

Following, preliminary resuits from development of the fire potential index based on the Nemani et al.’s
(1993) previously described logic are presented. The goal is to explore the performance of a
computationally efficient version of the T/NDVI algorithm in Montana and Idaho during the 1994 fire
season. Although the current impiementation of T¢/NDVI logic is run for the conterminous United States,
Idaho and Montana were selected as the initial test bed for assessing its performance as a fire potential
index. The study area was selected for several reasons: it is diverse in terms of landcover and terrain, it is
data rich, it has representation by multiple agencies, and has frequent fires. The area also is well known by
the authors from previous fieldwork. The 1994 fire season was chosen because it was one of the busiest on
record. In Idaho and Montana, 4,436 fires burned 899,818 acres on USFS and BLM land alone.

In this paper the following questions will be addressed: (1) what factors determine the performance of
TS/NDVI? (2) How can the algorithm be run efficiently while still accounting for subpixel cloud, water,
and shaded siope contamination? (3) Can TyNDVIbe effectively related to measures of actual fire

potential?

10
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THE SURFACE MOISTURE INDEX MODEL

“The major control on surface temperature, excepting incident energy, is the amount of water available for
diverting incident radiation from sensible heat flux to latent heat flux (Monteith, 1981; Shuttleworth, 1991).
By attempting to assess moisture status without explicitly accounting for the role of vegetation in
partitioning energy to latent heat, early studies of latent heat flux (e.g., Priestley and Taylor, 1972) missed
the fundamental control limiting evaporative loss below the potential (where potential is defined by the
physical environment only). This method of assessing moisture status relies on the previously discussed
means of monitoring vegetation status and measuring surface temperature. By incorporating remote
measures of vegetation condition coupled with temperature data, landscape moisture changes in the
soil/vegetation surface can be more effectively monitored. The method relies on the strong negative

relationship between radiometric surface temperature and fractional vegetation cover.

The logic behind the surface moisture index ﬁas been extensively described elsewhere (see Nemani and
Running, 1989). Briefly, it relies on calculating the relationship between NDVI and T,. Generally, for a
given léndscape, as NDVI increases, T, will decrease. This is due to vegetation’s ability to regulate T, by
partitioning absorbed radiation to latent heat flux (via evapotranspiration) rather than sensible heat flux.
Absorbed radiation and water availability are the twe primary controls on T, for a given surface. As water
becomes limited at that surface, whether vegetated or not, the absorbed energy will be partitioned to
sensible heat flux and the radiant temperature of that surface will increase. The core of the SMI logic relies
on these biophysical principals for monitoring surface moisture status. If a surface is wet, T will be low.
However, as that surface dries, the T, will increase accordingly. The relative increase in T, is more
significant in low NDVI areas, corresponding to bare soil or sparse vegetation. Iﬁ high ND VI areas the
relative change in T is not as noticeable due to the aforementioned ability of vegetation to regulate water
relations. This is particularly true of forested areas that have access to sub-surface water. The resultisa
negative relationship between NDVI and T.. As a given area dries, one would expect the relationship

between NDVI and T, as measured by the slope of a line fit to the T/NDVI scatterplot, to become

11
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increasingly negative due to an increased T, for the low NDVT areas. It is this relationship that is the

fogical basis for the fire potential index.
Algorithm Function

Previous studies have explored local moisture status utilizing the relationship between T, and NDViina
fashion similar to this implementation (Nemani and Running, 1989; Nemani et al., 1993; Carlson et al.,
1981, Caﬁson et al., 1990; Carlson et al,, 1994). A primary point of departure, however, is that these
studies were concerned with large-scale (small geographic extent) assessment whereas this logic has been
implemented at continental scales. Regardless of the scale used, a neighborhood of NDVI values and their
associated T is required to fit the line used to estimate stress. At large scales, this neighborhood would
likely be defined simply to the boundaries of the watershed or forest of interest. At small scales, however,
the neighborhood used must be explicitly defined and needs to account for landcover heterogeneity while

still collecting a sample large enough for defining the T/NDVI relationship.

The current version of the SMI algorithm uses a 21 x 21 pixel neighborhood that moves across the images
one pixel at a time. A neighborhood size of 21 was chosen based partly on the work of Nemani et al,,
(1993) and an assessment of sensitivity done with an early vérsion of the SMI algorithm. It was discovered
that this neighbofhood size initially provided the best sensitivity while still conferring computational
efficiency. In addition, the question of Type I and Type II errors was considered. It is preferable to
overestimate “dryness” rather than underestimate it for fire applications. By sliding the window one pixel
between calculations, it was hoped to address moisture status in a spatially explicit manner and to allow for

landcover variations to influence the SMI gradually.

Similar to that of Nemani et al. (1993), channel 4 and channel 5 data are read by the algorithm and
converted to T, following the method of Price (1984). NDVI, from composite data, is then ingested and

used to assign an NDVI value and T value to each pixel in the image. Next, neighborhoods are subset

12
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beginning at pixel (1,1) and sorted such that the maximnm T for each unique NDVI score greater than 0.2
in the neighborhood is retained for regression analysis. ’By sorting and retaining maximum T, for each
NDVI value, cloud contamination is minimized, near nadir pixels are preferentially selected, and shading is
minimized {see Nemani et al., 1993 for full discussion}. Constraining NDVI to values greater than 0.2
assures that only vegetated areas are used in the analysis and eliminates problems. of sub-pixel water
contarmination. The value of 0.2 was empirically derived, but is similar to that of Carlson et al. (1994) who

chose an NDVI score of 0.17 for uncontaminated bare ground pixels.

Upon completion of the sorting function, a least squares regression is fit to the retained pixels and the slope
of the line is assigned to the center pixel of the neighborhood for use in the SMI. Other statistics such as R
and the Y intercept are also saved in separate files. The neighborhood window then shifts one pixel and
begins again. It is worth noting that for each composite period, greater than 10 billion calculations are
performed in the generation of SMI. Enough computational efficiency Wasn met for continental runs such
that total run time is approximately 2.5 hours with the current compute infrastructure (IBM 43P-240T
UNIX workstation). These benchmarks are significant as the launch of MODIS-PM approaches and the
desire for increased temporal resolution (daily) and tandem (MODIS and AVHRR) calculation of SMI

products increases.
SURFACE MOISTURE INDEX PERFORMANCE

During each composite period of the 1994 fire season, the highest T/NDVI values consistently appear in
valley bottoms and in the rolling high plains of eastern Montana (Figure 1). The mountain forests of
central Idaho and the northern Rockies exhibit little stress throughout the growing season, despite the fact
that this was one of the most active fire seasons on record. This observation suggests that estimates of
T/NDVI are sensitive to landscape or biome type. Although Nemani et al. (1993) note that vegetation type
and topography are important considerations in selection of window size for model execution, the effect of

landscape heterogeneity remains untested at a regional scale.
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A factor analysis was performed to explore the interdependence of landscape parameters that are relevant to
TJ/NDVI derived estimates of surfaceA moisture (Table 1). The primary process-based drivers of variability
are meteorology, topography, biome-type, and viewing geometry. The variables used in the factor analysis
are slope, aspect, elevation, percent evergreen needleleaf forest (ENF), percent deciduous broadieaf forest
{DBF), percent grass, percent agriculture (AG), date and satellite zenith angle (SATZ). The variables were
chosen based upon their expected utility and upon availability; and do not include system-based effects
such as data scaling, calibration, or signal/noise ratios. Meteorologicai variables are conspicuously absent

from the analysis because spatially continuous data are not presently available.

Table I: Factor loadings for landcover, topography, and viewing geometry variables. Factor 1
aceounts for 22 percent of variance, factor 2, 19 percent, and factor 3, 8 percent.

Rotated Facior Matrix®

Factor
1 2 3
SDI <1 6E-02 -301 | 1.90E-02
ENF 4.80E-02 795 -.138
GRASS -6.4E-02 -360 | -1.7E-02
SLOPE 6.59E-02 707 | -7.7E-03
ASPECT | 1.51E-04 | -2.3E-03 | 1.66E-02
ELEV 8.47E-02 563 204
SATZ -.993 -112 | -2.1E-02
sOLZ 972 131 195
DATE 174 126 784

Extraction Method: Maximum Likelihood.
Rotation Method: Varimax with Kaiser
Normalization.

a. Rotation converged in 4 iterations.

A maximum likelihood extraction was utilized and an orthogonal varimax rotation employed. Three
factors with eigenvalues greater than one emerged, accounting for forty-nine percent of variance
cumulatively. While the percent of variation explained by the factor analysis is low; the factors showed a
consistent, logical set of relationships between landscape variability and T/NDVI performance. The first
factor is clearly physiographic, representing rugged, mountainous terrain with coniferous forest. Percent
evergreen needle leaf forest, slope, and elevation strongly load on this factor. SMI loads negatively,
confirming the earlier observation that T/NDVI does not currently discriminate spatial or temporal

differences in surface wetness in mountainous conifer forests.
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Figure 1: Map of SMI values for the study area, composite Period 13. Tan areas indicated no
detectable stress. Stressed areas increase from yellow to dark red.
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The second factor is a landcover factor represented by grass and agriculture. Although the vegetation
dataset does not distinguish irrigated from dryland agriculture, the fact that grass and agriculture load
appositely on factor two suggests a biome sgnsitivity that is significantly different from variation observed
in mountainous conifer forests.

The third factor is a viewing geometry factor. Date, elevation, slope, and satellite look angle load on factor
three. Because the current model implementation uses composited data (Eidenshink et al., 1992), image
samples are derived from multiple target/sensor/sun geometries. Given the range in elevation, slope, and
aspect values in mountainous terrain, this third factor is interpreted as being consistent with observed
difficulties in validating SMI scores for pooled landcover/biome type settings. Based on the observed
differences in SMI scores and the factor analysis, how the model actually derived SMI scores were re-
examined. This involved decomposing the scatterplots of T, versus NDVI for pooled samples (all

landcover classes) as well as for specific biome types.

The purpose of analyzing selected scatterplots was to examine the effect of date/geometry, biome type, and
contamination of retained pixels on the slope and intercept of the regression line. Furthermore, when
scatterplots derived from image composites generated at times of high apparent fire danger are analyzed,
the current model implementation fits a line that may have a low slope, in spite of the fact that portions of

the scatterplot clearly indicate stress.

Figure 2 shows a T/NDVI scatterplot derived for a portion of the Bighorn Mountains (south of Hardin,
MT) for the composite Period 13 (22 July — 4 August). The plot exhibits typical overall shape and
dimensionality. Within the plot, however, the retained pixels were coded according to the date from within
the period for which the pixel was retained. The legend clearly shows that samples from different dates
occupy significantly different portions of the variable space. In a standard model run, all pixels occurring
at the envelope or boundary of the plot (maximum T, for each unique NDVT) would be used to fit the
regression line. Yet that sample envelope is almost exclusively populated by pixels imaged on 31 July. Ifa

regression line were fit to just a plot of 22 fuly or just to a plot of 28 July, one can see that each would have
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approximately the same slope, but a different y-intercept. Pixels retained from other dates within the
period (25 or 29 July) show a pattern quite different from other dates, with low ranges in NDVI but higher
variability in T;. This begs the question whether the effect is an artifact of scene geometry or possibly due
to differences in illumination or setting/landcover. The fact remains that there are stréng positional biases
for pixel saﬁples’ within the scatterplots. Pixels from any given date consistently occur in clusters within

the area of interest,

Figures 2 and 3: T,/NDVI scatterplots showing date (left) and water (right) contamination preblems.
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To examine the effect of biome type within the scatterplots, the landcover labels were identified for each
pixel within each scatterplot. Figure 3 shows a plot for Period 13 (22 July- 4 August) for an area northwest
of Boise, Idaho. Water pixels show low NDVI scores and cluster along the T axis, as expected. The
fandcover classification scheme (an AVHRR based global landcover classification developed by the
University of Maryland, publication pending) does not allow for "water" to be mixed with other cover
types. Yet when the mixed forest pixels are identified, a cloud of mixed forest (and other class) samples’
adjacent to the "water" pixels is observed. The hypothesis is that this portion of the plot shows
contamination of the "forest” pixels by water, similar to what Nemani et al. {1993) noted for their study
arca. Figure 4 shows a portion of an image map resulting from a T/NDVI model run for Period 13 (22
July- 4 August). The area shown 1s Fort Peck Reservoir in northeastern Montana. The upper image shows

an "alley" or edge effect around the reservoir, where the model derives a low slope (stress) score. This lack
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of detectable stress occurs around virtually every water body in each composite period. The lower figure
depicts the same area for the same composite period, with higher T¢/NIJV1 scores assigned to the areas
immediately adjacent to the reservoir. Apparently, when the window used to sample T/NDVI scores
includes samples that may be contaminated by water (mixed samples) this has the effect of flattening the
slope of the regression line assigned to the window. The modification made to the model was to adopt a
minimum NDVI threshold, below which the Ty/NDVI pair would not be used to estimate the regression
line. Based on a review of scatterplots over the entire season, a threshold at a scaled value of 120 was set.
Beyond the effect of water on the retained pixel samples, clouds and snow may also atfect the size, shape,
and distribution of points within the scatterplot. By establishing an NDV] threshold, these contaminated

pixels can be removed from the estimation of moisture stress.
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Figure 4: Map of Surface Moisture Index showing the edge effect around Fort Peck Reserveir in
northeast Montana (top). Bettom map shows same area after NDVI thresholding at 0.2,

A closer look at the effect of biome type on T/NDVI performance can be gained by considering Figures 5

and 6. Shown for a grassland cover type sample south of Fort Peck Reservoir for Period 9 {27 May — 9
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June), Figure 5 demonstrates the consistent variability in scatterplot samples according to imaging date. As
noted above, there are strong temporal biases within any given sample. Regression line slopes fit to all
samples (normal implementation), to 27 May or fo the lower cluster would yield a similar slope value
(stress level) but significantly different y-intercepts. Notable, this type of temporal bias has not appeared in

any "forest" samples for the 1994 dataset; but it appears with some consistency in grassland settings.

Figures 5 and 6: Scatterplots illustrating date bias (left) and influence of lower left-edge pixels on
SMI calculations (right).
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The primary biome bias that this data shows occurs in ENF cover types. As the factor analysis suggested,
this particular setting is quite complicated and more difficult to interpret (perhaps due at least in part to
terrain). Figure 6 shows a scatterplot for ENF (Period 13, 22 July- 4 August). The scatterplot has a
"trapezoidal” shape that is consistent with most ENF plots. The difficulty presented in fitting a regression
line to this type of scattergram is the shape of the envelope of retained pi;gels. If a model were to retain all
unique T/NDVI pairs (the upper boundary of the plot) the regression line would be very shallow to nearly
flat. Yet closer examination of that boundary condition shows a series of T/NDVI samples at the upper
right-hand edge of the cluster that are indicative of high-stress conditions. The effect of a model retaining
all unique T/NDVI samples would then be to underestimate the potential stress indicated by the raw
scatterplot. This may in part explain the low efficacy of the SMI model in ENF cover types in initial model

runs. Unlike the grassland setting, however, establishing a minimum NDVT threshold of 118-120 will not
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change model performance. ENF settings have expectedly higher NDVI scores; perhaps a higher NDVI or
minimum T, threshold could be set. Yet because it is not clear whether or not this lower-left edge effect is

driven by contamination (clouds), illumination, poor surface/atmosphere coupling, geometry (ENF tends to
occur in complex terrain), or the date bias shown in Figure 5, it is not clear at this time how the model

needs to be adjusted.

Since ENF occurs across such large elevational gradients, a scatterplot of T/NDVI values may actually be
composed of several individual clusters corresponding to elevation zones. Nemani et al. (1993)
demonstrated the influence of elevation on the T/NDVI relationship suggesting that lower surface
temperatures at high elevations are a function of adiabatic lapse rates and higher surface moisture
associated with orographic precipitation. Given the results of Nemanihet al. (1993), it may be possible to fit
a unique Ty/NDVI regression line to each elevation zone that can be discriminated in a scatterplot. In
exceptionally complex terrain, however, elevation zone élusters may not be distinct. In such cases, the
single large clusters characteristic of ENF may actually represent a continuum of T/NDVI slopes each
responding to an elevation zone, It is suggested that stratification by elevation zone or modification of
window sizes in complex terrain may at least partially solve the lower-left edge problem described

previously.

PERFORMANCE OF SM1I AS AFIRE POTENTIAL INDEX

Fire danger across a landscape is a function of weather, topography, and fuels. Measurements of surface
wetness provided by T/NDVI are only one part of the equation that defines fire danger. Complex
interactions between temperature, relative humidity, wind, slope, aspect, fuel types, loadings, and
arrangements largely determine how fires will actually behave. Consequently, it is important to note that
the T/NDV1 is not a fire danger rating index, but rather is an index of the potential for fire activity given

the appropriate topographic, meteorological, and fuels variables.
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Although several problems with the current implementation of T/NDVI (outlined above) have been
identified, the algorithm performs well encugh, at least in some landscapes, to perform a preliminary
comparison with actual fire potential. At the outset, it was noted thét establishing a measure of actual fire
potential is an imprecise endeavor. Certainly, actual fire potential should be linked in some way to
occurrence and behavior of fires. However, because one is unable to isolate the surface moisture
component from the Weather—topography-fuels triangle and cannot identify a human iutervention factor, the
ability of variables like fire size to approximate fire potential must be relied upon. The assumption being

that given a large enough sample (3,504 fires), fire potential can be generally represented by fire size.

The widely available fire occurrence data from U.S. Forest Service and Bureau of Land Management
sources was used to estimate fire potential, recognizing the shortcomings of these datasets in terms of both
accuracy and attribute diversity. Fires for both agencies are stored as points in similar format ArcInfo
coverages. However, the attribute tables assembled by each agency are quite different in terms of the type,
number, and arrangement of fields. In general, the BLM maintains more detailed records than does the
USFS. The BLM dataset includes attribute fields for resource commitments, cost-codes, ownership, fuels,
weather, and topography. Attribute fields common between agencies include fire location

(latitude/longitude and UTM) detection and control dates, fire size, fire id number, and administrative unit.

Fire coverages were overlaid on projected raster fayers of T¢/NDVI and each fire point was assigned to its
nearest neighbor pixel. If a fire point was within 500 meters of a pixel centroid, it was assigned to that
raster and labeled as a fire. If the Euclidean distance between a pixel centroid and a fire exceeded 500
meters, the fire was flagged és possibly belonging to that pixel. Seventy-nine percent of the assignments
were labeled fires and 21 percent were labeled possible fires, as expected based on raster geometry.
T/NDVI values were extracted for each fire pixel. For the purpose of this paper, possible fire pixels were

excluded from further analysis (3,504 of 4,436 fires are included).
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We chose fire size at time of control as an indicator of actual fire potential, recognizing the complex
interactions of factors that govern the growth of a fire. Logic dictates that fire danger must be high if a fire
becomes large, but may or may not be high if a fire remains small. Further, surface moisture status must be

appropriately low for a fire to grow regardless of the other factors that govern fire behavior.

We divided fire pixels into two groups based on size class in order to facilitate chi-square analyses. All
fires one acre in size or smaller formed the first group and those larger than one acre formed a second
group. The one acre threshold was selected for two reasons. First, it was attempted to roughly balance the
number of fires in each group. Second, anecdotal field experience suggests that fire potential is reasonably
high if a fire grows beyond one acre. This latter point is recognized as fairly subjective and probably more
true in forested landscapes than in grasslands. Readers should note that fire sizes reported by both the
USFS and the BLM are usually estimated by field personnel either by eye or by pacing. Actual area burned
is only measured on the very large fires, typically using airborne infrared line scanners. Our experience
suggests that small fires are usually estimated at .10, .50, or 1.0 acres. As fires grow beyond one acre, field
personnel are more likely to pace the perimeter and to calculate rough acreage using
perimeter/shape/acreage tables. Finally, many of the very large fires burned for weeks or months.
However, only those T/NDVI values for pixels that a fire was detected in and for the composite period
during which it was detected, were used. Presently, daily or weekly fire growth and perimeter data is

lacking, so the ability to track the movement of fires through space and time was not possible.

A two-sample chi-square test was used to compare fire size with T/NDVL Four categeries of T/NDVI
were selected, Positive or zero-slope T/NDVI values were classified as “no stress,” A slope of -1
indicated “stress”, a slope of -2 indicated higher stress, and so on. Again, the attempt was to roughly

balance the number of observations in each T/NDVI class.

A significant relationship between T/NDVI and fire size was observed for grasslands, although the

relationship was not strong (Table 2). Large fires occurred in areas of TyNDVi-derived moisture stress
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more frequently than one would expect due to chance alone. This resul_t confirms earlier observations that
TJ/NDVI scores discriminate between surface moisture variations in non-forested areas during the peak of
the 1994 fire season. As the fire season began to peak (AVHRR composite Period 13, 22 July — 4 August)
114 fires occurred in grassiand/shrubland. Twenty of these fires occurred in areas of no detectable stress;
of these, nine were less than five acres in size. Although 82.5 percent of fires occurred in areas exhibiting
moisture stress, only 18 percent of the study area showed moderate to extreme stress (Figure 7.) As
expected from earlier observations, ﬁo relationship was observed between Ty/NDVI and fire size in forested
areas or when all fire pixels were included in the analysis (Table 2).

Table 2: T/NDVI-Fire size chi-square statistics for three landscapes (18 March — 15 September,
1994).

Chi-square df Significance
Ts/NDVI (Grassiand Fires) 4.374 3 .20
Ts/NDV1 (Forest Fires) 1.885 3 -
Ts/NDVI (All Fires) 2.448 3 e

A second set of chi-square statistics was generated, this time comparing fire size class to NDV{ and to
Burgan et al.’s (1996) Relative Greenness and Departure from Average Greenness (Table 3). A
hypothetical maximum range of positive NDVI scores (0.0 to 1.0) was divided into five equal classes and
each class was populated with the NDVI scores of fire pixels. Both Relative Greenness and Departure

from Average Greenness were split into six equal area classes.

Table 3: Chi-square statistics for ‘greenness’ variables (18 March — 15 September, 1994)

Chi-square df Significance
NDV1 (All Fires) 4,490 4 .25
Relative Greenness (Ali Fires) 8.8486 5 .25
Departure (All Fires) 10.8445 5 10
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Significant relationships were observed between fire size class and each of the three ‘greenness’ variables.
Again, large fires occurred more frequently than expected in areas of low NDV1/larger negative departures

from normal. The strongest relationship was found in the Departure from Normal ND VI product.

We draw two significant conclusions from these results. First, NDVI and its surrogates appear to
characterize fire potential bettef than the current implementation of T/NDVL The NDVI component of the

- T/NDVI index is probably al'sé the primary driver of the observed relationship between T/NDVI and fire
size in grassland environments. Given the scatierplot results described previously, these findings are not
surprising. Our second conclusion concerns the “Departure from Normal”. Measures of departure may
provide more meaningful characterizations of fire potential. Given the results from this exploratory analysis
of the T/NDVI scatterplots, the comparatively low performance of SMI is not surprising. The hypothesis,
however, is that the T/NDVI relationship can be more rigorously modeled using corrections or adjustments
described above. Theoretically, one would expect that the T/NDVI relationship would perform better than
raw NDVI scores or derivatives. Results to-daté are strongly suggestive of just such an increased

sensitivity; although statistical significance at the present time is low.

Departure and cumulative indices are attractive alternatives to daily or weekly synoptic measurements
because they provide an environmental context for each score. Given a relative level of inexperience with
T/NDVI, it is difficult to interpret the response of fire potential to surface moisture measurements without
such context. Departures and cumulative indices also expand the timeframes in which the environment is
monitored. This is an especially important consideration in fire potential monitoring because a moisture
index ideally must capture variations in moisture contents of different fuel size classes to be fully effective
as an indicator of fire potential. To do so, an index must reflect surface wetness at several timescales. The
Palmer Drought Index (PDI) is an example of a relatively long-term drought index that measures moisture
* status over periods of several months. The Palmer Index calculates a normalized water-balance by
opposing precipitation and stored soil moisture with evapotranspiration, runoff, and soil recharge. Asa

long-term index, the Palmer is useful for regional assessments of moisture status and helps fire managers to
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identify areas that may experience severe fire seasons. A shorter-term drought index, the Crop Moisture
Index (CMI), is perhaps better suited for estimation of within-fire-season fire p'otential because it operates
at a weekly timescale. The CMI utilizes mean weekly temperature and precipitation to credit or debit soil
meisture in the crop/soil system from the previous week’s values.

Figure 7: Land area within each stress category for composite Period 13. Of 114 fives on BLM
lands, 82.5 percent occurred in stressed areas as mapped using SMI.
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A significant shortcoming of both the PDI and the CMI is that they measure moisture status only at discrete
locations. In fact, all drought indices that rely on meteorological variables as input are limited by the
spatial discontinuity of reliable weather stations. Spatially continuous measurements of moisture status
across the landscape wogld be far more useful to fire managers wishing to discriminate differences in fire
potential between sub-regions or watersheds. As a result, satellite-based observations of such variables as
vegetation condition are increasingly being looked to as surrogates for meteorological observations. The
T/NDVI presented here is a new biophysical model that incorporates satellite cbservations of surface

temperature and vegetation status to calculate surface wetness.
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CONCLUSIONS

The goal of this research was to identify sources of performance sensitivity, maximize responsiveness to
surface condition/status, and to achieve computational consistency and efficiency. Although empirical
validation of model performance is iniractable at best, the results from assessing the performance of this
model for the 1994 fire season in Montana and Idaho revealed several issues related to model performance
and sensitivity. In this paper three primary effects that must be considered in further research and

development of the method have been reported.
Compositing Method: Date and Geometry Effects

Recent studies have suggested that the maximum NDVI compositing method may not be the most rigorous
for alternative uses of AVHRR data. While it generally results in relatively cloud free images, recent work
shows that compositing may cause preferential selection of off-nadir pixels (Stoms et al., 1997). As look
angles increase, thermal signals associated with that pixel will be attenuated simply because of the
increased atmospheric path that signal must travel through. By using maximum NDVI composites, SMI
algorithm performance may suffer from attenuated thermal signals, particularly over the two-week
compositing period. These questions will be addressed by obtaining multiple daily data and investigating
the range in model output variability due to compositing methods. Perhaps a better method of calculating
SMI would be to implement a daily protocol (that also restricted samples to near-nadir locations) and

composite SMI outputs via 2 maximum value rule at an appropriate time step.
Stratification: Landcover and Terrain Effects
The ability to consider the effect of biome type or landcover on SMI values is ultimately dependent on the

availability and quality of a suitable cover type map. Our application of the MD Landcover map, derived

from AVHRR data, allowed us to uncover a consistent and systematic performance difference in grassland
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and ENF cover classes, as well as to document the effect of water contamination within a given sample
window. Biome stratification and terrain corrections prior to SMI estimation are worthy of additional
testing. The tension between capturing process at appropriate geographic (within biome or terrain strata) or
temporal scales may ultimately depend more on the use and interpretation of the SMI and less on achieving
a standard normal model form that is applicable in all conditions. That is, if the analyst or decision-maker
is more concemed with conservative estimates of fine fuel condition and less interested in high elevation

large fuels, a different model may need to be applied than for the reverse case.
Operations: Computational Efficiency and Window Size

Given model sensitivity, several adjustments to the initial model have been made {e.g., water adjacency
effects) and additional changes are strongly suggestéd. There is, however, a need to maintain efficiency if
practical application of the model i_s to be achieved: Window size, shape and iteration method could all be
adjusted to fit unique conditions encountered during data processing. For example, to minimize the
difficulties in estimates over ENF settings, higher elevation settings may simply be excluded from the
analysis using an elevation threshold. Gradients along as well as across elevation zones may need to be

considered.

Additionally, the desire to fit more than one regression line to an ENF scatterplot that does not show unique
clusters within a scatterplot may place a real burden on the analyst. Based on a careful review of large
numbers of scatterplots several unique and correctable sources of variation in SMI estimates were
identified. These are driven by internai effects caused by the model implementation and data protocols and
not by real-world variation in surface moisture condition. It is desirable to isolate, quantify, and wherever
possible, mitigate these effects. A serious consideration in terms of model implementation is to allow
analysts to explore each scatterplot to look for intemal sources of variation that may not be related to actual

ground condition.
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Suggestions for Further Research

Perhaps the most pressing needs are for inclusion of surface meteorology and long-term climate data sets in
any strategy designed to validate the SMI technique. The near-term availability of higher-quality,
calibrated remote sensing data streams (e.g., MODIS) may reduce the occurrence of internal errors or
inconsistencies. Yet this does not diminish the value of pathfinder SMI data. While researchers continue
to adjust the model based on the effects noted above, one must recognize that a comprehensive validation
strategy 1s difficult to achieve given that the parameter of interest cannot be practically (empirically)
estimated at regional scales. Results to date suggest that analysts should adapt an NDVI threshold to
eliminate contaminated pixels (compositing does not remove all cloud effects), should examine for
temporal biases within composite data scatterplots, and may need to consider biome type and terrain
stratification. Although not examined here, further decompostions of the T/NDVT scatterplot and analysis

of y-intercept scores may prove useful as well.

Another area worthy of additional work is the need to develop departure/deviation indices. As the Chi
Square results of Burgan's NDVI and Departure Index suggest, NDVI alone exhibits discriminating power;
exactly what increase in efficacy is gained via adding T, data is not a simple question to address. While
theoretically robust, temporal and geographic variability make it hard to implement a rup-time model and
suggest that inter- and intra-annual traces of stress (Ts/NDVI slope) versus time will be critical for
responding to fire manager and decision maker needs. As mentioned above, different fuels behave on
significantly different time scales. In some cases (e.g., fine fuels) short interval snapshots are needed,
while large fuel condition would be more likely to respond to a longer-time scale assessment of moisture
stress (e.g., cumulative T/NDV1 curves or departures from long-term "normals™). Baselines for estimating
shott and long-term departures are needed, and may become critical to adding context to new data streams

that wili derive from NASA's EOS program.
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CHAPTER3

DERIVATION OF THE WATER DEFICIT INDEX

INTRODUCTION

As mentioned in the previous chapter, there are a number of shortcomings associated with the SMI
implemeantation illustrated in Chapter 2. Though that method shows some promise, particularly when
cbnsidering the landscape scale at which it was implemented, the decision was made to incorporate
alternative techniques in the attempt to improve model performance. One of the most promising uses of the
generalized T/NDVI relationship was shown by Moran et al. {1994a). They developed the Water Deficit
Index (WD) which includes in its calculation an assessment of near surface air temperature. The
incorporation of air temperature allows for increased discriminating power in surface moisture status due to
the reconciliation of ambient air temperature impacts on radiant surface temperature. By being able to
assess how much warmer the canopy surface temperature is in comparison to ambient air temperatures (i.e.
surface temperature — air temperature), one can more robustly assess the sensible heat partitioning that is
occurring. A canopy exhibiting a 10° C temperature above the ambient temperature is more likely to be
suffering water stress than a canopy showing a 2° C increase, regardless of what the actual surface
temperatures may be. The incorporation of surface meteorology in the WDI logic leads to an improved

ability to assess surface moisture conditions.

Since the WDI logic shows great promise, the choice of modifying the original SMI implementation and

incorporate much of the WDI technique into a new algorithm, was made. As the WDI logic is integral to
the forthcoming SMI technique, a full treatment of its derivation is appropriate. This chapter will discuss
the logic and derivation associated with the WDI. It will include a discussion of the Crop Water Stress

Index (CWSI) which provides the predicate for the WDIL
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THE WATER DEFICIT INDEX

Moran et al. (1994a) developed the water deficit index (WDI) for use in partially vegetated sites. The logic
for this index comes from the Crop Water Stress Index (CWSI) (Jackson et al., 1981). The WDI is related,
by definition, to the ratio of actual to potential evapotranspiration. The WDI can be computed based on
remotely sensed information of red and near infrared reflectance and surface temperature, with a2 minimum
" of on-site meteorological data. The following begins with brief reviews of the surface energy budget,
moves to the CWSI logic and conclude with the derivation of the WDI. The equations and concepts
presented come directly from Moran et al. (1994a), but may be found in various other publications

(Campbell and Norman, 1998; Jones, 1952).

The net radiation reaching the Earth’s surface is conserved according to the following equation:

R,=H+G+AE, +e D
where R, is pet radiant heat flux density, H is the sensible heat ﬂux density, G is the soil heat flux density,
AE, is the latent heat flux density (the product of evapotranspiration rate, E,, and the latent heat of
vaporization, A), and ¢ is an error term associated with minor components of the surface energy balance
such as photosynthesis. All terms are in W m” and are considered positive when directed away from the

surface. The terms H and AE, can be expressed, respectively as:

- GL-T) o
r{z '
JE = C,(VPD) 3)
[y(r, + 7]
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where C, is the volumetric heat capacity of air, T is the crop foliage temperature, T, is the air temperature,
VPD is vapor pressure deficit, yis the psychrometric constant, and r, and r, are asrodynamic and canopy
resistances to vapor transpott, respectively. The G term in Equation (1) is generally expressed as a linear
function of fractional vegetation cover and net radiation. {Clothier et al., 1986) described G as 0.3 R, for
bare soil and 0.1 R, for full vegetation cover. Assuming a full canopy cover and ignoring the usually minor

impact of e (from Equation 1), equations (1), (2), and (3), can be rearranged such that:

[y(1+"s/)
(TC-JZ,>=[’”f"] / D

- ] @
: {A+y(1+%)}] {A+7<1+%)}

where A equals the slope of the saturated vapor pressure-temperature relationship.
Crop Water Stress Index

The Crop Water Stress Index (CWSI) is commonly used for detecting plant moisture stress based on
differences between air aﬁd vegetation temperature. It has been correlated with numerous surface water
parameters such as soil moisture conteﬁt, plant water potential, photosynthesis, and crop yield (Idso et al,,
1986; Jackson et al., 1987; Moran et al., 1994a). The development of the CWSI by (Jackson et al., 1981)

was made by combining eguations 1-3 such that:

AR +C,(VPD)/ }

O

,. [A T+ i+ %/)}

&)
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Equation 5 is the Pennman — Monteith equation for calculating evapotranspiration (Monteith, 1973b). By
taking a ratio of actual to potential ET (actual ET for any r, and r, = r, for potential ET) the following can

be derived:

¥ //
A+v(1+4+ */
ZE/ J 7”/1:,} o
Yo [aryas)] |

where 1, is canopy resistance at potential ET (AE;). The range of the crop water stress index ranges from

zero (ample water) to one (maximum stress), such that:

70+ ~[;f(1 A ')}

CWSI = (1 - MAE ) L _ @
» [A +y(1+ % )]

Eguation 7 is solved for a value of r./r, by rearranging equation 4:

g {[%1‘/37 C} -l@ -y a+ - VPD}

k4

rll 7{(71 “"]jl)—rﬂki/c, }
) /My

®

Then, v,/ r, is substituted in equation 7 to obtain the CWSI.
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Alternatively, equation 7 can be solved by measuring T, — T, and combining that with theoretical limits of

T~ T, (using equation 4) to calculate the CWSI as follows:

_, JE/ _T-T),-T-T)] |
oSt =11 ] ®

where the subscripts m, x, and r refer to minimum, maximum, and measured values, respectively. For well-

watered full-canopy vegetation,

)
(7.-T) __[n&/] ’{ n) | VPD (0
c alm C / .
’ {A+y(l+’"cm/ J} A+y{l+’?’m )
' yYar ar

where Iem = Ip. For full-canopy water-limited vegetation:

e . [R/} {Aa—}(l/’:ﬂ/ j} A+;/(1 A/j "
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where 1, is the maximum canopy resistance resuiting from complete stomatal closure (#,, —> o). Values

of 1., and r.,, can be obtained from measurements of stomatal resistance (r;) and leaf area index (LAI):

T T
Tom = 4,41 and 7 = /LAI (12)

for LAT values greater than zero. Values of maximum and minimum stomatal resistance can be found in
the literature for a variety of atmospheric conditions and vegetation types. In lieu of published values,
estimates of 1., =25-100 s m' and 1, = 1000-1500 s m’ are reasonable and will not result in significant

error (Moran et al., 1994a).

Though the CWSI, by definition, can not be applied to bare soil, the theory behind CWSI can. The result is
a Water Deficit Index (WDI) introduced by Moran, et al. (1994a). Using equation 9 to determine the actual

to potential soil evaporation (not ET) results in:

L AE/ _l@-1),-@-1),]
L= AErp"[(zz—Ta),,ra;—J;)x] =

where T, equals the surface temperature of the soil and AE, and kE,p refer to actual and potential soil
evaporation rates, respectiyely. Soil temperature may be determined in an equivalent manner as vegetation
temperature using equation 4. In the application to bare soil, G is not negligible. In fact, G may reach
0.5R,, for dry soils (Idso et al., 1975; Moran et al., 1994b). Therefore, G must be incorporated into equation

4 and adjustments made to the 1, term such that it is appropriate for soil values. For well-watered bare soil

(r=0):
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7, =T = [ o (%][%H 2 o) (a9

For dry bare soil, where 1, = o (the soil analogue of complete stomatal closure):

(7,-7,),= [ra &, ,_(%J (15)

Equation 13 provides an index equivalent to the CWSI for bare soil depicting the ratio of actual to potential
evaporation. The values, like those of CWSI, range from 0 — 1, where 0 describes a condition of abundant

water availability (AE, = AE,) and 1depicts a large water deficit.

The Vegetation Index/Temperature Trapezoid

Moran et al. (1994a) hypothesized that a trapezoid shape would appear in a plot of fractional vegetation
cover versus {T; - T,). The vertices of this trapezoid would correspond to full vegetation cover and bare
soil, both at moisture extremes (maximum water stress and maximum water availability). Figure 1
illustrates this concept (derived from Moran et al., 1994a). The value for the four vertices can be calculated

as follows: for vertex 1 (well watered vegetation):

-na {9 {j;gfif;}}} vy I
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where the subscript 1 refers to vertex 1 in figure 1, and each additional numeric subscript in the (T To)q

will refer the respected vertex. For water stressed full cover vegetation (vertex 2):

(R -G) y(” /) vPD
(1.-7,),= v 17
e ]{W(H /J} seA{107%]) v

where 1, is the canopy resistance resulting from stomatal closure. Vertex 3 is calculated as:

e e I

The dry bare soil vertex (vertex 4) is calculated as:

(T, -T7,), ={rg ,(g,,__—_g_)} (19)

C

v

Based on this theory, it is possible to measure the fractional vegetation cover and temperature relationship

for an area that should fit within the theoretical limits of the trapezoid. Then, the ratio of CB/AB would be
equivalent to AE/AE,,. Given knowledge of meteorological conditions, AE, could be computed and actual
ET rates derived. Since CB/AB is equal to AE/AE,,, the Water Deficit Index (WDI) is related to CB/AB as

such (from equation 13):

WDIzl—@%E’p =1-8C/ 20)
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Figure 1: Water Deficit Index trapezoid.
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As a proof of concept, Moran, et al., (1994a) conducted an experiment in an alfaifa field located in Arizona.
Eighteen piots of alfalfa (2 replicates) were differentially irrigated to induce variable degrees of water stress
at different times. Micrometeorological data were collected and evaporation rates measured consistently
throughout the experiment. Additionally, a ground based multispectral radiometer (filtered to match TM
band passes) collected red and near-infrared reflectance, and thermal emittance. From the radiometer data,
the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) and surface temperature were calculated. SAVI
was chosen based on the premise that the vegetation index needs to track variations of vegetation cover

without being affected by soil background variability (particularly for areas with lower fractional
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vegetation cover). Using the remotely sensed products and the meteorological data, the trapezoid for the

experimental plots was realized and the WDI was tested against measurements of AE/AE, and CWSI.

Overall, the WDI matched the calculated CWSI quite well, though WDI values were consistently higher.
Based on lysimeter measurements and calculations of AE/AE,,, WDI performed well in the first half of the
growth cycle. Towards the end of the growing season, discrepancies began to appear. The authors,
however, attribute these discrepancies to plant access to soil moisture below that which the lysimeters
could measure. In concluding, it was suggested that the VIT concept and WDI were promising techniques

for assessing ET rates and plant water stress.

Vidal and Devaux-Ros (1995) used the WDI method to develop spatially explicit maps of fire potential for
an 888 km?® area of Mediterranean forest in France. Their investigation was centered on two issues: first,
the overall usefulness of the WDI in predicting fire starts, and second, testing the ability to create the
trapezoid shape from remote sensor data with little ancillary information. To this end, Landsat Thematic
Mapper data were acquired from three scenes from two different years (9 August, 1990, 29 July, 1992, and
14 August, 1992). These dates were chosen because they had little cloud cover and coincided with dry
periods in the study area. Information on fire starts was obtained from a French database of location, areal

extent, and miscellaneous ancillary data for use in comparative analysis with the WDI.

The vertices of the trapezoid were estimated two ways. The first method used was theoretical calculations
of the trapezoid limits using satellite derived surface temperature, NDVI, and meteorological data. The
second method relied on the satellite data and air temperature to define the vertices. The satellite-derived
trapezoid was defined according to the following rules for a scatterplot of Ty and NDVL

1. Vertices 1 and 3 correspond to the minimum value of T, - T, from the image and meteorological data.
2. Vertices 1 and 2 are the maximum values of NDVI observed within the image.

3. Line 2-4 follows the right limit of the scatterplot.

4. Line 3-4 is defined by an NDVI value of 0.09, identified as the bare soil maximum NDVI score.
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For the August scenes of 1990 and 1992, overall correspondence between the theoretical method and the
scatterplot method was high. For July 1992, however, image derived trapezoid limits were not highly
correlated. The authors suggest this was caused by above average rainfall for the month resulting in a
decreased estimation of the “warm edge” (the area of maximum T,-T, for each NDVI, line 2-4). The result
illustrates an assumption that the image will contain all possible degrees of water stress for given fractional
vegetation cover. This assumption was clearly not met in July 1992, while in August of 1990 and 1992 it
may very well have been met. The CWSI was also calculated for these periods and used in comparison
with WDI values. It was found that for low NDVi values, both CWSI and WDI are v.ery similar while high
NDVI values cause CWSI to underestimate the stress level. This underestimation, according to the authors,

grows stronger as stress increases.

Regardless of the poor showing in July 1992, the authors were interested in developing an index rather than
absolute estimates of latent heat flux. Therefore, they tested the value of WDI in estimating fire potential.
For 9 August, 1990 CWSI and WDI were calculated from meteorological and TM data, respectively. Fire
starts occurring after the TM overpass and greater than 1 ha were also extracted from the government fire

database for comparisons.

The authors report that both CWSI and WDI performed well at predictiﬁg fire events in the study area. For
the WDI, areas with values greater than 0.6 were coincident with all fires greater than 1 ha. This
performance was met while only classifying 19-20 percent ef the landscape as greater than 0.6 WDI. The
CWSI showed very similar results. The benefit of using an image-derived WDI in fire danger predictions
comes from the fact that comprehensive meteorological data is not required. Rather, estimates of air
temperature extrapolated across the Iandscape are the only non-remote sensor data input. This method still

relies on the assumption that complete categories of water stress are contained within the image.
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SUMMARY

As shown in the preceding pages, WD is logically related to the ratio of actual to potential ET. Since
actual ET is limited below that of potential ET in water limited conditions, the WDI is a rational method for
assessing surface moisture status. One of the primary benefits of WDI is the rational theoretical basis from
which it was derived. Additionally, as discussed above, Vidal and Devaux-Ros (1995) showed the WDI
technique functioned well as a fire danger indicator in Mediterranean forest types. All of these combined

form the basis for my inclusion of the WDI logic in the re-formulation of the SMI algorithm (chapter 5).

The WDI logic requires the inclusion of near surface air temperatures in its calculation. Since landscape
assessment of moisture status was the primary concern, it was not possible to use meteorological station
data in the WDI formulation. By attempting to include actual station measurements of air temperature, the
complexity of the SMI model would have increased to such a degree that the one of the stated goals of
maintaining computational efficiency would likely have been lost. The result was the requirement that a
robust and logical technique for estimating near surface air températures be developed that provided
adequate results while maintaining computational efficiency. Chapter 3 is concerned with this issue and

will discuss the methods used for the critical air temperature estimates.
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CHAPTER 4

ESTIMATING NEAR-SURFACE AIR TEMPERATURE

INTRODUCTION

Gridded near surface air temperature (T,) has been a much sought after variable in the realm of earth
system science because of the importance T, plays in regulating many terrestrial processes. Approaches to
deriving these surfaces have resulted in varying techniques, ranging from spatial interpolations of
meteorological station data to satellite and aircraft remote sensing methods of predicting T,. The various
station-based interpolation techniques suffer from an arbitrary location of weather stations that often lack
near real time data access ability. This has ddven many researchers to look for satellite-based methods of

filling the gaps.

The relationship between vegetation indices and surface temperature (T) has been well established and
exploited for a variety of means. Examples include surface resistance and vegetation water balance
{Carlson et al., 1994; Nemani et al., 1993; Nemani and Running, 1989), atmospheric water vapor (Prince et
al., 1998), and predictive fire danger (Vidal and Devaux-Ros, 1955). However, one of the more interesting
applications of the T, and vegetation index (Ts/VI) relationship has been the derivation of T, (Czajkowski

et al., 2000; Goward et al., 1994; Prihodko and Goward, 1997).

The more common satellite based techniques for estimating T, rely on the negative relationship between a
vegetation index (VI), often the Normalized Difference Vegetation Index (NDVI), and a calculated T from
thermal channel data. A relationship is defined through regression analysis and extrapolations cccur to
some theoretical V1 value that represents a full canopy as viewed by the sensor. The theoretical full canopy
is important due to the low thermal mass of the canopy and the notion that this canopy T, will likely be near
the local T,. Indeed, microclimate studies have shown this to be the case (Aston and van Bavel, 1972;
Gates, 1980; Geiger, 1965). Most examples of satellite based T, estimation follow this concept and rely on

a neighborhood analysis for defining the Ty/V1 relationship. Goward et al. (1994), Prihoko and Goward
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(1997), Prince et al. (1998), and Lakshimi et al. (2001) all use a neighborhood of Advanced Very High
Resolution Radiometer (AVHRR) pixels to define the relationship and extrapolate accordingly.
Comparisons are typically made with weather station data (Goward et al., 1994; Prihoko and Goward,
1997; Prince et al., 1998) or with other remote sensing derived air temperature estimates (Lakshmi et al.,

2001).

This chapter will test a method of estimating near surface air temperature using NOAA AVHRR composite
data in an area of complex terrain. Composite giata was chosen because it is readily available and efficient
with which to work. Since composite data are being used, a non-neighborhood technique will be presented.
The goals are to achieve provide robust estimates of air temperature from satellite data while maintaining
computational efficiency. This study was conducted over one complete growing season and utilizes

independent gridded air temperature surfaces for direct time of satellite overpass comparisons.

METHODS

Site Description:

This study was conducted in the Bitterroot Valley of Western Montana, USA (Figure 1). It was chosen
because it is representative of both the complex terrain and vegetation cover found in the Northwestern
United States. The geographic extent was defined by the 1:100,000 scale 11 digit 4™ Hydrologic Unit Code
{(HUC) developed by the USDA Natural Resources Conservation Service, Montana State office. The 4?‘
HUC defines major drainage basins and in this case delineates the Bitterroot River and major tributaries.
The Bitterroot Valley is characterized by a major mountain range on its’ western border and a lesser range
on the eastern border. Vegetation is typically agriculture and grasslands with riparian vegetation along
river corridors at low elevations and mixed conifers at mid to high elevations. The mixed conifers
transition from Pinus Ponderosal Pseudotsuga menziesii through Pinus contorta and into Picea/Abies mixes

at higher elevations. The highest peaks are characterized by alpine vegetation on the Western edge of the
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study area. Elevations range from approximately 976 meters where the Bitterroot River joins the Clark
Fork of the Columbia River to 3098 meters at Trapper peak. The Bitterroot HUC stretches approximately

157 km north-south, approximately 58 km east-west, and contains approximately 743,000 Hectares.

Figure 1: Study site, Bitterroot Valley, western Montana, USA.
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Satellite Data

Since 1987, the U.S. Geological Survey’s EROS Data Center (EDC) has been receiving, processing, and
archiving AVHRR data. For this study biweekly maximum NDVI composites derived from afternoon
overpasses of NOAA-14 were obtained. The maximum NDVI compositing technique relies upon 14 daily
calculations of NDVI, The maximum NDVI observed per pixel in that period is retained and all individual
channel data (channels 1-5) from the day of maximum NDVI observation are also retained in the data set.
Additionally, there are three geometry files included: satellite zenith, solar zenith, and relative zenith angles
as well as a date file referencing the day of data retention within the composite period. The channel data
are converted to percent reflectance (channels 1 and 2) and brightness temperature (channels 3-5). The
maximum NDVI composite technique is used to minimize cloud contamination (Holben, 1986), however,
recent stﬁdies indicate a preferential selection of off-nadir pixels (Stoms et al., 1997). In addition to
calibration and compositing, all data are registered and projected at EDC into Lambert’s Azimuthal Equal
Area projection to facilitate expeditious use in geographic studies. 1997 composite periods P10 through
P19 (9 May — 25 September) where used in this study. No radiometric or geometric post processing of the

EDC data was done.

Processing Stream

Figure 2 describes a conceptual layout of the processing stream used to estimate air temperature. This
flowchart will be referenced in the explanation of the methods. Part one refers to the calculation of surface
temperature and emissivity estimates. Part two discusses the site mask imposed on the analysis, and part

three explains the central processing loop. The core process relies on inputs from parts one and two and

produces day specific output from the composite data for all pixels not removed by the masking criteria.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2: Flowchart showing processing stream.
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Surface Temperature (Part 1)

The split window technique of Ulivieri et al. (1994) was used in this study to calculate surface temperature.
The primary reason for using this technique is its simple formulation, accurate results (Vazquez et al.,

1997; Quaidrari et al., 2002), applicabilitjacross multiple AVHRR sensors (Oﬁaidraﬁ et al., 2002; Ulivieri
et al., 1994) and its relative resistance to emissivity errors (Vazquez et al., 1997). The surface temperature

(T,) formulation is as follows:
T =7, +1.8(7, - T)+48(1— &) - 75(&, — &) (eq. D)

where T, and T are brightness temperatures of AVHRR channels 4 and 5, respectively, £, and €5 are

emissivity estimates for channels 4 and 5, and € is mean emissivity of channels 4 and 5.

The choice was made to estimate emissivity in an attempt to reduce the associated error in T calculation,
which can be quite large. The methods of van de Griend and Owe {1994) for estimating £, (equation 2) and
the Thornton method (Thornton, 1998), which was developed over a region that includes this study area,
where used to estimate the difference in channel 4 and 5 emissivities (Ag). Average emissivity (€) and €5
were then calculated from the estimated parameters. Equations two and three are empirical relationships

while four and five are simply algebraic expressions. Formulations ate as follows:
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(0.7 - ND¥YI)

g, =099-0.09——m——= 2
: 0.6 (a-2)
Ag =-0.02938 +0.04957 * NDVI ‘ (eq. 3)
& =¢g,—A¢e (eq. 4)

£, +E,

g=4 35 .5

5 (eq. 5)
Site Mask (Part 2)

There were a series of constraints imposed upon the estimation of T, to remove pixels that contained cloud
contamination, undesirable landcover classes, extreme satellite zenith angles, or relative azimuth angles
that would iikely lead to poor predictions of air temperature. Any pixel in the data that failed to meet the
listed criteria was removed from further analysis. Cloud contamination, undesirable landcover classes, and
satellite zenith angles will be discussed below. The addition of the relative azimuth constraigt will be

discussed in the results section.

The methods of defining cloud-contaminated pixels were based on the methods of Flésse and Ceccato
(1996), Thornton (1998), and Seielstad et al. (2002).

Pixels were considered cloud contaminated if they met any of the following criteria;

1. Channel 1 reflectance > 0.2 (eq. 6)
2. Q<120(Q=NIR/red) (eq.7)
3. ATy>4.5(K)ORdT;s<-1.5 (K) ' (eq. 8)
4. ATy>15(K) (eq. 9)

If the pixel was shown to be cloud-contaminated in a given composite period, that pixel was flagged and

removed from subsequent analysis.
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The land cover constraint was based on the U.S. Geological Survey’s North America Land Cover
Characteristics Data Base (2000). This is a generalized landcover map showing such classes as shrubland,
irrigated cropland, evergreen needleleaf forest, etc. The primary goal was to rémove pixels that contained
potentially confounding landcover practices such as agriculture, water, or urbar/developed or those that
were potentially mislabeled (evergreen broadleaf forest in Montana, for example). The resulting mask

retained only those pixels from the following landcover classes:

e  Qrassland
e  Shrubland
e Deciduous Broadleaf Forest
e  Bvergreen Needleleaf Forest

e  Mixed Forest

A simple satellite zenith angle truncation was included to remove extreme look angles from the dataset. As
suggested by Prihodko and Goward (1997), a zenith angle greater than 40 degrees was removed in the
initial implementation to minimize the thermal attenuation caused by long atmospheric path lengths.
Subsequent examination of the estimates, however, resulted in the satellite zenith angle constraint being

changed to 30 degrees. The impacts of zenith angles are discussed in greater detail below.

Warm Edge Extraction - Ta technique (Part 3)

Many implementations of the Ty/ V1 technique for estimating T, rely on a contextual approach where a
neighborhood of pixels is used for the regression analysis. The “window” is then shifted (usually one row
or column) and the calculation is repeated. This technique relies on spatial autocorrelation of adjacent
pixels for the solution of T,. Unfortunately, it results in an effective reduction in the spatial resolution of
the solution itself (Prince et al., 1998). Other studies have exploited the T/ V1 relationship in a different

manner. While not used explicitly for T, estimation, some authors chose combinations of contextual
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analysis with a data reduction technique. For example, Nemani and Running (1993) and Carlson et al.
(1995) limited their analysis to only those NDVI/T, pairs that showed maximum T, for each unique NDVI,
the so-called warm edge extraction. The logic behind this selection suggests that those pixels are most

likely well illuminated, near nadir, and in thermal equilibrium at time of satellite overpass.

Since one of the primary interests is in a relatively simple and computationally efficient technique of
estimating air temperature at landscape scales, a method was chosen that combines both contextual and

non-contextual elements. A stepwise explanation of the process follows.

First, a digital elevation model (DEM) was used to build a mask of the lowest 1000 feet of the Bitterroot
HUC (figure 3). The assumption here is that an estimate of mean valley temperature could be used with a
simple adiabatic lapse rate to calculate temperatures at higher elevations. The bottom 1000 feet was chosen
because it gave an adequate number of Ts and NDVT values for use in the air temperature estimates and
provided enough of the required diversity in landcover (hence NDVI scores, see Riddering et al., 1999) to
define the NDVI/Ts relationship. For this bottom 1000 feet, the data where then stratified into individual
yea.r-day bins so that only data from the same day was used in the individual initial air temperature estimate

for the vailey floor.
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Figure 3: Bitterroot Valley 4™ Hydrologic Unit Code and bottom1000 feet shown in green (in green)
used in initial daily air temperature estimates. '

Once sorted by day, NDVI scores of 0.24 and below (and the associated Ts) were removed from the
analysis. This minimum value was based on empirical cbservation of NDVI/T| pairs and reported
minimum ND VI values for vegetated surfaces (Carlson et al., 1994), effectively removing confounding
pixels while reducing the size of the dataset. Next, the “warm edge” was extracted, resulting in more data
reduction. Then a least squares line was fit to the da‘lta; Regression constraints were imposed on the data
such that any line composed of less than 5 pixels (1=5) or exhibiting a coefficient of determination (") less
than 0.5 were removed from further consideration. This has the effect of maintaining a minimal quality

control standard in the data. Finally, the equation describing this line was extrapolated to NDVI= (.86 to
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estimate the associated full canopy T, which was used as-a surrogate for the mean valley temperature. A
value of 0.86 as the full canopy NDVI was chosen, following the reports of Prihodke (1997) and based on
long-term maximum NDVT scores (Burgan and Chase, 1998) for known full canopy vegetation typical of
Western Montana Forests. The extrapolated value of T, (which is the initial T, value) was assumed to be
the mean value of the bottom 1000 feet and was therefore assigned to the mean elevation of the bottom
1000 feet (minimum + 500 feet, therefore, 3700 feet for the Bitterroot Valley). Finally, a simple
environmental lapse rate of 1.98 K/1000 feet (Barry anid Chorley, 1998) was used to adjust temperatures
according to DEM derived elevations. The result is pixel-based T, estimates that are unique for each day of

data within the composite period.

DAYMET

Most studies have used point weather station data for comparisons to satellite estimates of T, with varying
"degrees of success. Our.goal, however, was to test the T, logic across a gridded topographically complex
landscape. Therefore, it was desirable to test the T, estimates against an independent gridded surface of air
temperature. As a result, the DAYMET model was chosen to derive the independent air temperature grids

for model comparison.

Daymet has been described in detail elsewhere (Thornton et al., 1997). Briefly, Daymet is a computer
program that produces daily gridded meteorological variables (maximum and minimum temperature,
precipitation, radiation, and humidity) over complex terrain from weather station observations. It utilizes a
weighted Gaussian filter and iterative processes to first predict known station values (sequentially removed
from the analysis) and subsequent extrapolated values. A DEM is required to account for the vertical
variation in the landscape and to calculate the horizontal relationships of temperature in complex terrain in '
a spatially explicit manner. Daymet has been shown to be a robust method of generating meteorological
surfaces in complex terrain with reported Mean Absolute Errors (MAE) in yearly" temperature prediction

between 0.7 C and 1.2 C for maximum temperature {T,,,) and minimum temperature {T,;,), respectively.
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Daily errors in temperature are reported at 1.8 C and 2.0 C, respectively for Tmax and Tmin. The spatial

resolution of DAYMET grids used in this study was 1 km, matching composite AVHRR resolution.

Synchronization of DAYMET and T,Estimate

For this study, Ty, and Ty, for each pixel in the study area from the DAYMET record was extracted.
Temperature at time of satellite overpass, discussed below, was calculated and this served as “ground truth”

for comparison to satellite estimates of near surface air temperature.

Time of satellite overpass was estimated following the methods of Thornton (1998), which uses solar
zenith angle and the equation defining earth-sun geometry used in the DAYMET model for incoming
radiation calculations. Hour angle (h, where 0 degrees = 1ocal solar noon) is then converted to local solar

© time with the following equations:

J = acosh(€0s(2) —sin{!) sin(decl %os(l) cos(decl)] (eq. 10)

decl = —23.45cos[(yearday +11.25)0.9863]  (eq. 11)
7,=12.0+ (%S)h (eq. 12)

where z is solar zenith angle, / equals latitude of each pixel, T, is time of satellite overpass, and dec/ is the

Earth’s rotational axis declination relative to the principal plane.

With time of satellite overpass known, Ty, and Ty, from Daymet and the equations of Campbell and
Norman (1998) were used to calculate a2 Daymet derived temperature coincident with satellite overpass.

Daymet temperature was calculated in the following manner:
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T, = 0.44—0.46sin(er +0.9) + 0.11sin(2ax + 0.9) (eq. 13)

where @w=1/12 and 7 is time of day (hours, 12 at solar noon). Then, this function can be used to calculate

temperature at any time of day (¥):

Ty=T T+, ,[1-1(D)] 0<t<5

Tm = T.'r,ir(l) + T;z,i[l -T'(@®)] 5<t<14 (eq. 14)
T(IJ = T;,i—lr(t) + T;Z,HI[I - F(t)] 14<t<24

where T, and T, are daily maximum and minimum temperature, respectively, i is present day, i-/ is
previous day, and i+/ is the next day. Temperatures were then compared with a series of hourly Remote
Automated Weather Station (RAWS) observations over multiple days in 1997 to check correspondence

{data not shown).

Validation Strategy

The validation strategy relies on comparisons of co-located grids of DAYMET temperature at time of
satellite overpass and the AVHRR based T, estimate. As mentioned above, the AVHRR based T, estimate
is day specific. The DAYMET surface was developed to match that day at the time of satellite overpass
and is treated as the ground truth. For example, the composite period date raster was used as a mask in the
DAYMET surfaces so that the individual DAYMET pixels match the day of satellite acquisition. The
result is day-specific comparisons between pixels in the two rasters. Results are reported primarily as

pooled results (entire record) except when specific interests warrant otherwise. Reported statistics include
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Mean Absolute Error (MAE) defined as the average of the absolute difference between DAYMET T, and

satellite T, estimates, Pearson’s correlation coefficient, and regression coefficients.

RESULTS

The results will be presented in three parts. The first reports the original implementation with no relative
azimuth constraint and a satellite zenith maximum of 40 degrees (called vi-Goward below). The second
set of results was a consequence of increased scrutiny of the satellite zenith angles where a 30 degree limit
was imposed (v2-SATZ30). Finally the third set of results show the impact of relative azimuth constraints
added to the estimation of T, (v3-SATZ30 & REL AZ). The addition of relative azimuth constraints was

due to the observed impact that westerly look directions had on the error structure of T, estimates.

vi- Goward

With the initial implementation, an attempt was made to use all composite periods (p10 —p19) coupled
with cloud screening and satellite zenith angle constraints (40 degrees as per Prihodko and Goward, 1997).
Due to these constraints and the regression requirements listed above, the algorithm was unable to calculate
any air temperatures for composite periods 10 — 13 (9 May — 3 July). The resulting period of assessment is

4 July — 25 September, composed of composite periods 14 — 19,

Plots of estimated Ta versus Daymet Ta are shown in Figure 4 and statistical suramaries of regression
analysis and correlation assessment are shown in Table 1. Additionally, mean absolute error (average
absolute difference between T, and Daymet T,) was derived. Air temperature estimates and Daymet
actual air temperatures showed a Pearson’s Correlation coefficient of 0.576 (Table 2) and an MAE of

6.96° C for all days and a total of 28 unique day-based predictions (n = 28).
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Figure 4: Scatterplot of Satellite air temperature estimates versus DAYMET air temperature
estimates for the original implementation (satellite zenith angle constraint <40°). MAE =6.96, R =

0.576. .
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Table 1: Regression coefficients for the three implementations of satellite T,. Dependant variable
(V) is satellite T, and independent variable (X) is DAYMET derived T, with equations taking the
form of ¥ = mX + B.

Regression Parameters

n m B Correlation Std. Ervor of
Coefficient the Estimate
(R)
Original 33065 0.634 1.403 0.576 3.69
Implementation ]
Sateliite Zenith 28498 449 6.109 410 3.38
30 .
Satellite Zenith 7460 .818 -2.149 742 2.73
30 and Relative
Azimuth

Table 2: Mean Absolute Error (MAE), Correlation Coefficients, number of days, and membership in
each MAE difference class (§ <Class 1 <2.0°C; 2.6°C <Class 2 s5.0°C; 5.0°C < Class 3 =8.0°C).

Correlation Number Total
MAE (R} ofdays Class 1({n} % Class 1 Class 2 {n) % Class 2 Class 3{n) % Class 3  pixels

Criginal
implementation |6.96] 0.578 28 3336 0.10 7261 0.22 9423 0.28 33085

Satellite Zenith 301647 0.410 20 3430 0.12 68671 0.23 8270 0.28 28498

Satellite Zenith 30

and Relative
Azimuth 8.09] 0.742 12 483 0.06 2226 0.30 3024 0.41 7480

v2—-8SATZ30
When comparing satellite zenith angles to predicted temperature poor predictive ability was observed when

zenith angles were greater than 30 degrees (data not shown). The code was modified to change the satellite
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zenith angle constraint from 40 degrees to 30 degrees and the model was re-run for all composite periods.
The enhanced zenith angle constraint had the effect of removing even more days from the total analysis (n
=20). The MAE improved to 6.47 degrees C, but the correlation coefficient dropped to 0.410 (see Table 1

and Figure 5).

Figure 5: Satellite Zenith angle <30°. MAE = 647, R=0.413.

35
1:1 line

Satellite T, (° C)

-5 5 15 25 35
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With the satellite zenith angle information, look directions were calculate and the analysis was split
accordingly. Satellite zenith angle of 90 degrees denote nadir views while anything greater than 90 degrees
are westerly looks and less than 90 degrees are easterly looks. As shown in Figure 6, when the satellite is
recording information with a westerly look, the predictive ability appears to suffer. Westerly looks give an
MAE of 6.75° C and an R of 0.163 while easterly looks have an MAE 0f5.74° C and an R 0f 0.766, a

remarkable difference.

It is worth not:ing that the above look direction assessments where made on the final air temperature
prediction product. There was no masking based on look direction in the original estimation of valley air
temperature or subsequent temperatures based on lapse rates. Rather, they were used to stratify pixels from
the analysis after the lapse rates were applied. While it appears an incorporation of look angle will
dramatically improve the correlation in the final product, there was no attempt to constrain pixels used in
the above analysis by look direction. The result is a likely decrease in the predictability of the overall air
temperature estimate due to the undesirable look directions. Based on this finding, the relative azimuth

information was included as an initial masking constraini in the third version discussed below.
v3 - SATZ30 & REL AZ

Relative azimuth is typically provided in the AVHRR dataset for atmospheric correction algorithms. Itis
defined as the absolute difference between the solar azimuth and the satellite azimuth angles and it ranges
from zero to 180 degrees. Satellite and solar ag:imuth are the actual true azimuths from a given pixelv to
both the satellite and the sun, respectively. Therefore, relative azimuths of 180 degrees define a sun-

surface-sensor geometry where the satellite is looking directly into the solar plane.

Due to the directional impacts discussed above, the relative azimuth data was categorized in order to
provide an initial assessment of the impact that look direction has on air temperature estimates. Classes

were defined at 30 degree increments of relative azimuth such that class one contained zero to 30 degrees,
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class two contained 31 to 60 degrees, and so on up to 180 degrees. The result is 6 categories of relative
azimuth. Figure 6 shows the previous predicted versus observed air temperatures using the 30 degree

satellite zenith constraint and are marked by relative azimuth class.

Figure 6: DAYMET T, versus Satellite T, (30° satellite zenith angle constraint). Markers denote
relative azimuth classes. Classes are §°-30° for class one, 31°-60° for class two, etc. up to 189",
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Based on figure 6, relative azimuth classes five and six were included in the mask and the algorithm was
re-run. By incorporating this relative azimuth constraint, the exireme westerly looks in the initial valley
bottom air temperature prediction were removed. Subsequent lapse rate calculations were made as before.

Adding the relative azimuth mask resulted in further reduction of the data set. For the composite periods
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14 — 19, there were 12 individual days of data. .Interestingly, the MAE dropped to 6.09 degrees C and the
correlation coefficient rose to 0.742 (Table 1) when using the satellite zenith constraint of 30 degrees and
the relative azimuth mask. Figure 7 shows estimate air temperature versus DAYMET derived temperature

stratified by day.

Figure 7: Scatterplot of satellite predicted T, versus DAYMET T, Satellite Zenith angle <30
degrees and Relative Azimuth <120 degrees. MAE =6.09, R = 8.742.
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Summary

Table 1 lists the three methods of predicting air temperature and the landscape membership of difference
classes.‘ Class one was defined as the absolute difference in Ty and Daymet T, of 0 -2 C, class two of 2.1
—5C, and class three of 5.1 — 8.0 C. As discussed earlier, the addition of relative azimuth and 30 degree
satellite zenith constraints reduced the total number of available pixels while improving the overall
performance of the technique. The greatest improvement came in difference class two while a reduction in
class one was observed. Overall, approximately 60 % of all Ty pixels fell within 8 C of Daymet surfaces.
However, the more stringent analysis provided increased correlation and decreased MAE for the entire

record. Regression analysis for all implementations is shown in table 2.

DISCUSSION AND CONCLUSIONS

Sources of Error

There are numerous sources of potential error in this study, both in air temperature estimation, and the
Daymet derived reference source. Surface temperature errors, including water vapor impacts and
emissivity errors, residual cloud éontanﬁnation, and choice of static environmental lapse rates all impact
the estimated air temperature. Conversely, there is a known error structure associated with Daymet derived
surfaces that were used as “ground truth” and some error in interpolated air temperature at time of satellite

overpass.

Perhaps the largest potential error in this study comes from surface temperature calculations. The Ulivieri
{1994) method was chosen because of its applicability to various NOAA AVHRR sensors and its reported
resistance to errors in land surface emissivity calculations (Ulivieri et al., 1994; Vazquez et al., 1997).
However, there is still a large potential error in the Ts calculation when atmospheric water vapor is not k
considered in the model. Ouaidrari, et al. (2002) report possible.errors in Ts due to water vapor ranging

from a minimum of =7.73 K to a maximum of 3.08 K when using a low water vapor formulation of the Ts
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equation in the presence of high actual atmospheric water vapor content. These authors state that analysis
of data from NASA’s Data Assimilation Office (DAO) show that the base assumption of low atmospheric
water content while fbrmulating many split window techniques may not be valid. The presence of higher
water vapor content than originally assumed is fairly common. While the confounding effect of
atmospheric water vapor was not specifically studied, it is reasonable to assume that there is a potential

influence in the study site, particularly in 1997, which was an atypically rainy year in Western Montana.

Emissivity is a critical component is calculating Ts. While the Ulivieri (1994) method has shown great
resistance to errors in emissivity, the potential for miscalculation of Ts does exist. Our choice in estimating
emissivity following the techniques of van de Griend and Owe (1994) and Thornton (1998) was based on
the desire to develop a robust yet efficient means of estimating Ta at landscape scales. Ouaidrari et al.
(2002) calculated potential errors in Ts from faulty emissivity calculations and showed that great variation
may occur when emissivity is not adéquately estimated. The reported potential RMS errors with the

Ulivieri (1994) Ts method range from 1.10 K to 3.91 K depending on the magnitude of emissivity error.

Another possible source of error is the choice of a static environmental lapse rate used throughout the
season in this study. Again, due to the desire to keep the technique simple a single lapse rate was chosen
for adjusting temperatures as a function of DEM elevation. While it is acknowledged that this is probably
not the most robust means of adjusting temperatures throughout the season, and is likely a source of error,
there is no way of calculating a lapse rate for each composite period and subsequent day. Information does
exist for seasonal trends in lapse rates for the adjacent Bitterroot-Selway Wilderness area (Finklin, 1983)

and future work will investigate the utility of incorporating these seasonal adjustments.

Finally, the gridded Daymet derived Tmax and Tmin surfaces to interpolate temperatures at time of satellite
overpass were used. Daymet, however, has its own set of possible errors associated with it. Thomton et al.
(1997) report a daily MAE for Tmax and Tmin of 1.8 C and 2.0 C, respectively. Since an absolute value of

the differences between predicted and observed is what the MAE assessment give, one does not know the
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direction of this reported error. However, adding and subtracting 1.9 C to the Daymet temperatures and
recalculating the MAE’s and correlations show interesting results, Correlations stay constant, but
subtracting results in a new MAE in predic{ed air temperature and Daymet air temperature of 4.3 C for the

final implementation of the model (data not shown).

The numerous constraints imposed on the estimation of T, warrant some discussion, primarily the NDVI
limits and the minimum regression parameters used in the initial valley bottom estimation of air
temperature. There 1s ample opportunity to adjust many of the constrainis made in this project and future

work will examine the impact these choices have in the performance of the air temperature estimation.

The minimum NDVI value of 0.24 was empirically derived and is similar to values reported by other
authors of ﬁncontaminated bare ground pixels (Carlson et al., 1994; Riddering et al., 1999). The inclusion
of low NDVI values (less than 0.24) results in a decreased ability to derive a good T/NDVI relationship.
Similarly, the choice of 0.86 as the extrapolation value was based on other published values and the fact
that this number corresponds with known full canopy vegetation in westefn Montana, as shown in the long
term ND VI records (Burgan and Chase, 1998). Though other studies have used different values of ND VI,
the absolute difference in air temperature estimates as a function of NDVI score is minor. Prihodko et al.

{1997) report changes in NDVI from 0.86 to 0.873 resulted in air temperature changes of only 0.15° C.

Since this technique uses composite data, neighborhood functions could not be used to derive an estimate
of air temperature. Therefore, constraints were placed on the regression component of the central air
temperature estimation foop. Since the site mask removes a great number of valley bottom pixels,
regression parameters were kept fairly non-restrictive (n =5 and 1> =0.5) to allow for a larger number of air
temperatures to be calculated. Additionally, there were many occasions in the data where a significant
number of pixels occurred on a given date, but only a few pixels from that date occurred in the valley
bottom. The low number of required pixels allowed us to perform estimates of T, in this si‘.tuationt

Interestingly, while there were few dates that had a low number of valley bottom pixels (5-10), when this
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occurred the correlations between satellite estimate and DAYMET temperature where similar to dates with

a larger n (data not shown).

Efficiency

Developing a simple, efficient, and robust method of estimating air temperature was the primary goal of
this study. Through the use of composite satellite data, a robust surface temperature algorithm, and basic
assumptions on temperature variations with elevation, this goal was achieved. These results are similar to
those reported in previous studies. With continued investigation, these techniques can be improved even
further. To improve future performance of the algorithm, some suggestions can be made. First, through
the use of weekly composites, it is likely the total number of T, estimates throughout the growing season
can be improved, thereby giving a more complete assessment of air temperature. Though biweekly
composites encompass 14 days of data, it is more typical to see only four to five days of retained data
within an area defined by a 4™ HUC. The increased temporal resolution of weekly composites would likely
provide a more distributed and complete coverage of air temperature estimates throughout the growing

s€ason.

Second, seasonal variations in lapse rate need to be studied further. These data exist in the Selway-
Bitterroot Wildemess of Western Moutana and North Idaho (Finklin, 1983). Further studies should
investigate the utility of this record for application to the Bitterroot valley and the applicability to typical
complex terrain in this region. It is highly unlikely that a single environmental lapse rate is sufficient to
describe the complex atmospheric relationships between elevation and temperature throughout the year.
Such simple components as increased atmospheric water vapor or inversions can seriously impact the

assessment of air temperature as a function of elevation.

Finally, a more complete assessment of sun-surface-sensor geometry needs to be made as evidenced by the

results in the relative azimuth mask. The precise reasons why large relative azimuths tend to resulf in poor
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agreement in estimated versus observed air temperatures are not known as that was beyond the scope of
this study. However, it is hypothesized that by looking into the solar plane, the sensor is suffering from
solar contamination, either through increased path fadiance or other means. A look direction constraint
based on the differentiation of fore and/or backscatter would likely benefit future research in satellite based

air temperature estimates.

Overall, the algorithm described in this paper performed remarkably well considering the list of potential
confounding issues discussed above. It is expected that improved capability may be achieved with more
site-specific coﬁections to the algorithm, such as improved lapse rates, and better understanding of the
geometric issues presented. Additionally, the logic presented here can be applied to roore advanced sensors
and data currently available such as the Moderate Resolution Imaging Spectroradiometer (MODIS). With
the improved calibration and radiometry of MODIS and the efficiency of this T, technique, relatively

simple estimates of T, may be computed with high degrees of confidence.

With the ability to predict near surface air temperatures as described above, one of the most critical
components of the WDI logic has been met. As described, a robust model was formulated that produced
air temperature estimates of sufficient accuracy to include in the continued adaptation of the SMI model for
the assessment surface moisture status. Chapter 5 will describe the development and implementation of the
final SMI algorithm. While the algorithm described in the following chapter borrows from the WDI logic
discussed in Chapter 3, it also includes descriptions of the adaptations nec;,essary to convert from a large-

scale (small area) model to the desired small-scale (large area) algerithm for landscape assessment.
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CHAPTER S

IMPLEMENTATION OF THE TRAPEZOID-BASED SURFACE MOISTURE INDEX

INTRODUCTION

The Crop Water Stress Index (CWSI) and the derived Water Deficit Index (WDI, see Chapter 3) was
originally designed for and implemented at large-scales (small areas}. The primary goal of this dissertation
is the development of landscape-scale techniques for n;onitoring drought/surface moisture status. To that
end, this section will be primarily concerned with the adaptation of the WDI logic for landscape
implementation and assessment of its performance. In order to differentiate between the original
CWSI/WDI logic and the landscape techniques presented here, the new index will be referred to as the
Surface Moisture Index (SMI). The use of SMI in this chapter will refer to the methods discussed in this
chapter and will supersede the SMI techniques discussed in Chapter 2. Of paramount concern during the
devélopment of SMI was the desire to keep the model responsive to both temporal and spatial resolution
while providing for robust estimation of surface moisture status. Therefore, this chapter will present the

landscape units of SMI implementation and assessment, temporal issues involved with the calculations, and

the methods used in validating the index.

Chapter 4 showed that adequate estimation of near-surface air temperature is possible; and these techniques
were incorporated directly into the development of trapezoids and the subsequent calculation of SMI. The
estimation of air temperature occurs garly in the algorithm (Figure 1). The result is that any constraint
imposed within the air temperature module (e.g. geometry) is carried throughout the entire algorithm, both
during trapezoid development and actual SMI calculations. These constraints resulted in a significant data

truncation, thus forcing development of an alternative approach to landscape aggregation.
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Figure 1: SMI processing stream flowchart. See Chapter 4 for detailed discussion of air temperature
estimation.
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Perhaps the most important component of the development of SMI was a robust method of comparing SM1
to current methods of mapping drc;ught for validation purposes. The Palmer drought severity indices were
chosen as the preferred standard of comparison. The methods of analysis come from the field of
Econometrics, specifically Time Series Analysis. Palmer was chosen because of its long history and
common implementation across the 1andscapé both in this country and others. While there may be some
criticisms of the Palmer methods, there is no single technique for mapping drought that presents itself as
significantly more favorable (e.g. Standardized Precipitation Index, Surface Water Supply Index). The
exploitation of time series analysis provides enhanced ability to assess the parallel performance of two

independently derived drought-monitoring techniques.

Finally, some of the issues encountered during the development of SMI will be discussed and suggestions
for future exploration will be made. The intent of this part of Chapter 5 is to describe the development and
initial testing of the SMI logic. It is not intended for these equations to be implemented as predictions.
Rather, the intent is to propose a method utilizing satellite remote sensing alone to assess surface moisture
status, The equations and analysis are presented to affirm the relationships and validity of the logic and
guide future studies of SMI as a means of mapping drought. That said, SMI shows great promise in spite
of the data-dependent issues discussed, and deserves a critical consideration for satellite-based assessment

of surface moisture status.

MATERIALS AﬁD METHODS

Trapezoid Development

The initial stage of implementation of SMI was the development of historic trapezoids required by the SMI

logic. Appropriate spatial and temporal extents had to be identified in order to maintain adequate spatial

diversity and a temporal period that would not cause a loss of responsiveness. For the trapezoid
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elucidation, afterﬁoon AVHRR data from the years 1991-2000 were used. The period I§91- 1998 1s
composed of biweekly composites, 1999 contained duplicates of weekly and biweekly data, while 2000 had
only weekly data. The spatial grain at which SMI was implemenfed was at the 4™ Hydrologic Unit Code
(HUC), which is simply major river drainage basins (see Figure 2) obtained from the USDA Natural
Resource Conservation Service via the Montana Natural Resource Information System
(http://nris.state.mt.us/) GIS data service. The 4™ HUC’s allow an adequate level of spatial discrimination
while still providing enough data to meet the requirements of the logic itself. The air temperature
estimation removes a significant fraction of available pixels and by constraining the implementation to
major drainage basins, the algorithm was able to maintain enough pixels to estimate the trapezoid

parameters for SM1 implementation.

The first step in the trapezoid derivation was to run the eleven-year record of AVHRR data through the new
SMI algorithm in a manner sirmilar to the original SMI implementation (Chapter 2) and output least squares
regression lines for NDVI versus surface temperature minus air temperature (T,-T,). The primary
difference between the original SMI method (Chapter 2) and the trapezoid development (excluding the air
temperature estimation, which used the 30° satellite zenith angle and relative azimuih mask) was the
incorporation of constraints based on regression parameters. If a warm edge line was calculated from fewer
than five points or the coefficient of determination (r*) was less than 0.5, those lines were removed from
further analysis. Additionally, a phenology component (White et al., 1997) was added to define growing
season and ensure that lines maintained were within the growing season. As imposed, this constraint
confined the candidate composite periods to a year-specific growing season (as defined by the half-on, half-
off endpoints) extended by two composite periods (one month). Any line derived outside this temporal

period was removed from further consideration.

The result of these calculations is the extraction of warm edge lines (similar to Chapter 2) for each 4™
HUC, for each composite period i the record. It is important to note that the trapezoid parameters are

calculated from the warm edge only. Lines from each 4™ HUC were then manually sorted for the
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http://nris.state.mt.us/

maximum and minimum trapezoid boundaries. Finally, the equations describing these lines were

incorporated into the algorithm as HUC specific trapezoids to be used in the SMI calculations.

Montana has 106 4™ HUC’s (Figure 2), of which only four failed to result in usable trapezoids. Of those
four, one was purposefully removed because it straddled the Montana/Idaho border and had such small area
as to be inappropriate for calculation (HUC 2). Final trapezoid parameters denoting slope and intercept of -

the maximum and minimum line are shown in the appendix (table A.1).

Figure 2: Montana 4™ Hydrologic Unit Codes. Polygons in red denote no trapezoid data.

Once the trapezoids were developed and line equations added to the algorithm, the SMI model was run for
all years, initially stratified by day and HUC (for the air temperature module), then on a pixel-by-pixel
basis to calculate the SMI as a function of the HUC trapezoid. The result was SMI values from retained

pixels within each HUC. There were a number of instances where individual HUC’s failed to produce any
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SMI ocutput. This was most likely due to the significant constraints imposed in the air temperature
estimation, though the cloud detection and landcover mask likely influenced the output as well. As a result
of this data gap, SMI was re-aggregated to the state climate zone level through a simple mean calculation
for each zone'(which is discussed below). Montana is composed of seven state climate zones as shown in
figure 3. The resultant re-aggregation actually simplified the comparisons to common drought indices as

the National Climate Data Center (NCDC), the source of historic indices, commonly reports drought data at

the state climate zone level.

Figure 3: Montana climate divisions and counties {from Montana Natural Resource Information
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Palmer Drought Indices

In 1965, Palmer published a drought monitoring technique that incorporates precipitation, moisture supply,

and moisture demand (as evapotranspirational losses based on Thornthwaite’s techniques) (Palmer, 1965;
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Thormthwaite, 1931) into a system that effectively serves as a water balance model. This method requires
daily precipitation and temperature and is converted to a drought index that is reported monthly. The so-
called “Palmer Index” actually refers to three related components known as the Palmer Z Index (Palmer Z
or PZ), the Palmer Hydrologic Drought Index (PHDI), and the Palimer Drought Severity Index (PDSI).
Simply stated, the PDSI is a long-term meteorological drought index where drought is dictated by the
prevailing weather conditions. The PHDI refers to the long-term hydrologic condition of an area where the
changes in meteorological conditions may take a certain time to manifest as either a hydrologic drought or
a non-drought event. That is to say that a period of extreme precipitation bringing an end to drought may
not be manifest as an increase in water availability for some time after the precipitation occurs. The Palmer
Z index is simply a measure of short-term moisture anomaly for a given month and may or may not
significantly impact the drought conditions as measured by the PDST or PHSI (Heim, 2002 drought

review).

There have been numerous publications exploring the shortcomings of Palmer’s techniques {(e.g. Alley,
1984; Hu and Willson, 2000; Karl, 1986) and many subsequent developments in drought monitoring (e.g.
{Doesken et al,, 1991; Keetch and Byram, 1968; McKee et al., 1993; Shear and Steila, 1974). However,
Palmer is arguably the most popular method of drought monitoring and no single methed of drought
monitoring/mapping has proven superior enough to cause abandonment of Palmer’s model (Heim, 2002).

To this end, the Palmer Z Index was chosen as the index of choice for comparison with SMIL

The Palmer Z score measures the deviation from “pormal” moisture for a given month as defined by a 30-
year calibration time series. Quite simply, Palmer Z measures the moisture anomaly (either wet or dry) and
is used as the primary input for the other long-term compounding Palmer indices (e.g. PDSI, PHSI). The
benefit of Palmer Z is that it does not rely on values from the previous months in its derivation (Quiring
and Papakryiakou, 2003j. This means that the Z index simply measures the short-term moisture anomaly,
if any, present in the area being assessed and will likely track SMI since both indices provide “snapshots”

of current moisture status without previous or future month’s values impacting the current values.
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All Palmer index values can be either negative or positive. Negative values indicate a drought while
positive scores indicate moisture surplus. As the deviation from zero increases, the drought or surplus
becomes more extreme. Palmer Z values of ~2.75 and below are typically categorized as extreme drought,
while values of 3.5 and above indicate extreme moisture surplus (Heim, 2002) though these are simply
guidelines. All Palmer drought products were obtained from the National Climate Data Center and are

delivered as month-averaged values for each Montana Climate Division.

The SMI logic dictates moisture status is measured at the time of satellite overpass with no compounding
function that turns these measures into long-term drought products. Rather, it is a technique that illustrates
current moisture status of the area being observed. Because vegetation moisture status is an integrator of
moisture condition in the observed area, any moisture stress shown by vegetation should be somewhat
temporally coincident with the Palmer Z anomalies. However, it is not likely that a direct temporal
coincidence between Palmer Z and SMI simply because Palmer Z can be viewed as an immediate
calculation whereas vegetation moisture stress, as measured by SMI, will take a certain amouni of time to
manifest itself. However, the use of Palmer Z scores is the most appropriate choice for comparative
analysis with SMI because they both effectively measure the same process. Additionaily, the ability to
predict Palmer Z from SMI provides the opportunity for future exploration of the conversion to long-term

drought products (e.g. PDSI).
Data Structure

The Palmer Drought Indices were obtained from the National Climate Data Center and are reported as
mean monthly values aggregated to Montana Climate Zones. There is no sub-monthly information
provided. As a result it is impossible to assess what the daily or weekly yan'ations in precipitation are on
monthly Palmer Values. Related is the fact that the monthly delineations are “hard-wired” in that a three-

day storm that occurs at the transition between months is treated as an individual discreet event. Thatis to
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say two days of rain at the end of June with one day of rain on the first day of July are essentially treated as
discrete events and are assigned to the appropriate monthly category, in spite of the true continuous nature

of the event.

Since SMI was based on either biweekly or weekly composites and these composites rarely coincide with
the categorical variable of month, an assignment technique was necessary to map SMI to monthly
categories for use in comparison with Palmer. Values are initially averaged by HUC and assigned to each
of the fourieen days in the composite period. With the discovery of a lack of spatial and temporal coverage
in each year, a manual re-aggregation was made to state climate zones where every non-zero pixel
contained by the climate zone was used in a calculation of the arithmetic mean. To aggregate SMI to
monthly values that match the temporal range of the Palmer indices, a simple yearday-to-month assignment
was made where the number of days in a composite contained by that month received the SMI value for
each of those days. For example, one fourteen day SMI composite may contribute five days of SMI to June
and nine days to July. Finally, SMI was averaged by month. Despite the fact the AVHRR composite data
contain information on daily membership of individual pixels (and resultant SMI values), this information
was not used in the assignment of SMI to monthly categories. To do so would introduce a temporal
specificity in the comparisons that the Palmer data is unable to match since these data contain no
information on what individual days coniributed the most to total monthly Palmer Z values. Therefore, the
resultant SMI dataset contains monthly values that have an inherent temporal lag structure associated with

it

Time Series Analysis - Background

Time series analysis is the field of study, borne out of econometrics, where time 1s an essential component
of the data to be analyzed. These data are typically temporally ordered and time is viewed as an
independent variable, While the temporal ordering is critical, time may not always be explicitly treated as a

predictor in modeling exercises. In paired variable time series regression analysis, the ordering of the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



variables has as much importance as the pairs themselves, even if time is not used as an independent

variable in the analysis.

Early in its development, time series analysis referred to a method developed by Box and Jenkins (1970}
known as quforegressive integrated moving averages (ARIMA). This technique relied primarily on a given

variables past behavior as a means of predicting the variables future behavior, hence autoregression.

The ARIMA method has fairly modest theoretical requirements. Primary of which is the data exhibit
stationarity. A variable is stationary if the mean and variance do not change over the time of analysis. Box
and Jenkins (1970) recommended a casual means of testing stationarity and proposed a simple
transformation to correct for non-stationary data. Simple plots of the time ordered variable and its
correlogram are used for stationarity assessment. If the correlogram, which isa lag ordered plot of
autocorrelation, shows a dramatic decrease in autocorrelation coefficients after lags of one or two and
simple sequence plots of the variable show random fluctuations around the mean (with constant variance),
the data are assumed to be stationary. If the data exhibit non-stationarity, the recommended transformation
is a simple differencing. That is to say that the first variable is subtracted from the second, the second is
subiracted from the third, and so on. Occasionally, second differencing, which is a difference of the
differences, is used to modify data that exhibit extreme non-stationary behavior. It is not typical to do more

than a second differencing (Kennedy, 2003).

The ARIMA model description typically takes the form: ARIMA (p, d, 9) as suggested by Box and Jenkins
(1970). The autoregressive parameter is denc;ted as p, the order of the differencing is 4, and the magnitude
of the moving average is ¢. The autoregressive parameter, as mentioned above, refers to the number of
previous values used in the prediction of the current value. The difference parameter, 4, is simply the order
of differencing (typically no more than two). The moving average is the number of previous values and
weighting vsed in the moving average calculation. Moving averages are incorporated in the ARIMA

technique to ensure that nonsystematic variations in the data are removed. It relies on the notion that
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systematic components display autocorrelation and by removing the nonsystematic components through
moving average calculation, one can more effectively model the variable. The ARIMA models take the

form of:

Y =¢ %Y _Hz)z YV o+ 9, Y, e, +OE,  +O,E ,+..+0E
(Equation 5-1)

Where Y’ is the differenced variable of interest, ¢ and 8 are coefficients to be determined, and ¢ is the error
term (Kenmnedy, 2003). The subscripts p and g are the same as mentioned above and 7 is the time ordering

subscript.

Originally, the ARIMA method was developed as an autoregressive technique where one variable was used
to predict itself as a function of the past behavior. However, it is possible to use the ARIMA technique in a
two-variable modeling exercise. If two variables exhibit stationarity and significant cross-correlation, as
measured by the cross-correlation coefficient (equivalent to Pearson’s R), cross regression modeling may
be used to predict a dependent variable from an independent variable (McCuen, 2003). It 1s this latter

approach that will be discussed in the analysis. The functional form in this situation is:

V=g *X' 4@, * X', ,+.+0,* X', +€,+6¢, 10,6 ,+..+8¢_,
(Equation 5-2)

Where Y is the dependant variable (Palmer Z in this example) and X is the independent variable (SMI).

The other variables are the same as above.
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RESULTS
Time Series — Implementation

Sequence plots for Palmer Z and SMI are show in ﬁgure A1 in the appendix. The first plot (a.) in each
figure shows the raw data as a time sequence. 1999 and 1999_wk are replicates of the year 1999 as
discussed above. The second sequence in each figure shows the same plot after a first differencing. Both
figures show an increase in the stationarity, as indicated by a stable mean and consistent variance, thus

satisfying the first assumption of ARIMA analysis.

The second component of ARIMA analysis for two variables is to show a meaningful cross-correlation as a
function of the lag. Cross-correlation for all years combined, stratified by climate division, are shown in
figure A.2 in the appendix and summarized in table 1. Cross-correlations stratified by climate division and
year, are shown in figure A.3 in the appendix . Because drought conditions manifest themselves as
negative Palmer Z values and high (greater than 0.6) (Vidal and Devaux-Ros, 1995) SMI values, a negative
cross-correlation would be expected. That is to say that as an area suffers from drought, Palmer Z scores
will be driven down while SMI scores will continue to increase.

Table 1: Total cross-correlation for differenced Palmer Z and SMI for all years. Data are stratified
by climate division.

Cross-correlation Lag

Division 1 -3.009 0
Division 2 | No negative correlation

Division 3 -0.108 1
Division 4 -0.086 0
Division 3 -0.168 0
Division & ~0.0474 -1
Division 7 0,441 0
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As discussed above, the Palmer Z data simply show monthly averages. The temporal resolution does not
allow for the investigation of when the daily changes occurred within that mogth. For example, consider a
month that is very dry up until the last week. Then, perhaps, significant precipitation occurs that drives the
monthly Z score toward zero. The only conclusion to be made, based on the resultant monthly Palmer Z
information is that the month experienced “typical” moisture, when the reality is that the month was, for the
most part, very dry. Also, consider that there is an expected time lag between actual precipitation and
vegetation response driven simply by the physics of water transfer through the soil-vegetation-atmospheric
contimuum. Combine these issues with the biweekly SMI data structure and it becomes apparent how
temporal correlations between SMI and Palmer Z can be confounded with no clear indication of lag
direction. Finally, treat the entire 11-year time series together and the expectation of high cross-correlation

coefficients between Palmer Z and SMI is problematic (Table 1).

Due to the apparent low cross-correlation between monthly Palmer and biweekly SMI composites (Table
1), adjustments were made to the data so that 2 more meaningful analysis could be performed. However,
these adjustments were constrained to lag of either zero, one, or negative one as suggested by year stratified
cross-correlations (appendix Figures A.3) and summarized in Table 2 which shows the highest observed
cross-correlation and its associated lag. The lack of temporal precision in weather condition, in the case of
Palmer Z, and the biweekly composite issue for SMI, dictates that a legitimate lag adjustment of the data, in

either direction, may oceur,
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Table 2: Cross-correlation (CC) and lag for differenced Palmer Z and SML Data stratified by

climate division and year. Mo correlations were observed for Div 3 or 6 in 1992 and 1993,

respectively.

YEAR
1991
1992
1993
1994
1995
1996
1997
1998
1999

1999wk
2000

All data were manually adjusted such that the new series was set to a lag of zero for each year, with a few

Division 1 Division 2 Division 3 Division 4 Division § Division 8 Division7

CC lag CC lag CC lag CC lag CC lag CC lag CC 1ia
-0.525 1| -0.102 -1| -0.917 1| -0.654 1| -0.594 0| -0.890 1| -0.201 1
-0.626 0| -0.350 0] == =] -0.200 -1| -0.750 2| -0.594 1| -0.874 O
-0.576 2| -0.129 -1} -0.254 -1 -0.768 2 -0.375 2| - | -0.127 O
-0.695 -1 -0.708 1| -0.620 -1| -0.707 1| -0.283 1 -0.323 0| -0.521 ©
-0.367 -1 -0.238 -1 -0.898 1) -0.914 0| -0.627 -2 -0.575 Q| -0.527 O
-0.221 -1} -0.154 -1| -0.522 0| -0.764 0| -0.673 0| -0.717 1| -0.677 O
-0.683 0| 0.083 o0 -0.566 -1 -0.582 ¢ -0.298 0| -0.012 -1} -0.386 -1
-0.219 0| -0.533 1| -0.414 -1 -0.565 O] -0.931 0 -0416 -1 -0.173 -1
-0.817 0| -0.113 0] -0.410 0| -0.722 2| -0.875 2 -0.286 0| -0.324 1
-0.622 -1 -0153 0| -0.521 0| -0.184 0] 0.609 2 -0.768 2| -0.277 1
-0.485 0| -0418 0 -0.963 0| -0806 0O -0.810 0] -0.572 0 -0.347 -1

exceptions. As table 2 describes, some years show very high correlation when a lag of 2 is considered. As

previously mentioned a lag of one, in either direction {or zero), is logical by virtue of the temporal

categorization of SMI and Palmer Z. In the reconstruction, all lags of greater than one or less than negative

one were left intact. The result is a synchronized dataset for each division that contains high cross-

correlations for lag zero and some extraneous data with an optimum lag outside of the lag constraints

imposed. It is acknowledge that these long lag constituents will likely confound the comparisons, however,

it is illogical to adjust the time series to account for a lag of two months or more and those years exhibiting

longer lags were left intact. The cross-correlations for the adjusted data are shown in Table 3.
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Table 3: Lag adjusted cross-correlation for differenced Palmer Z and SMI. Data stratified by
climate division and grouped for all years.

Cross-correlation lag
Division 1 -0.296 0
Division 2 -0.183 0
Division 3 -0.384 0
Division 4 -0.350 0
Division 5 -0.214 0
Division 8 -0.274 0
Division 7 -0.278 0

To summarize, table 3 shows cross-correlations for the manually adjusted data by climate division. Ifa
given year had an optimum (as defined by the highest cross-correlation) lag of -1 or 1 (see Table 2), the
data were synchronized so that the year in question now had an optimum cross-correlation at lag zero. To
do this, each years data was displayed in columns. If the optimum lag was 1, the appropriate column was
shifted down one row so that the resultant optimum cross-correlation would show a lag of zero. The
converse is true if the optinmum lag was -1. For those individual years where optimum lags were anything
else (e.g. zero, two, etc.) no adjustment was made. Cross-correlations for all years ijooled were re-
calculated and the results are shown in Table 3. As expected, optimum lags for all climate divisions are
zero due to the manual adjustments, though if stratified by individual year, any year showing a lag of
greater than 1 or less than -1 in Table 2 will still show that same optimum lag. All others would now
display optimum lags at zero, The primary reason for this manual adjusiment is so one model for each

individual climate zone can be built to predict Palmer Z from SMIL
Autoregressive Integrated Moving Average

Given the notion that a yearly lag of zero or one (in either direction) is acceptable and expected, the data
were manually adjusted so that a synchronized dataset for each climate zone with an optimum lag of zero
was created (Table 3). With the cross-correlations showing adequate values, it was possible to proceed

with the time-series analysis and build an ARIMA model to relate SMI to Palmer Z.
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When implementing a two-variable ARIMA,; it is possible to incorporate an autoregressive term (p) on the
dependant variable. The function of the autoregressive term is to use the dependant variables’ previous
values in combination with the independent variable to predict the current dependent variable. That is to
say that Y'is a function of X and previous Y. Because the goal of this study was to assess the potential
relationship of Palmer Z to SMI, the autoregressive term was set to zero thereby assuring that only SMI
was used in the analysis to derive Palmer Z. The moving average term (g) was also set to zero so no
averaging occurred and the order of the differencing {d) was set to one, which is 2 single differencing of the
values to assure stationarity in the data. The ARIMA technique also allows for constants to be included in
the model formulation. Constants were excluded from the equation in order to simplify the analysis.
Results from the lag adjusted ARIMA for each climate division, where all years are used in the calculation,
are shown in table 4. SPSS was used to derive the model parameters. Outputs from SPSS include the
ARIMA coefficient (B), T-ratio (basically a t score), and approximate probability (approximate because the

ARIMA relies on a user-defined iterative-convergent technique).

Table 4: Auto-Regressive Integrated Moving Average (ARIMA) parameters for lag adjusted Palmer
Z and SMI for all years. :

8 t-ratio Probability
Division 1) -3.3243 | -2.9401 0.0044
Division 2} -3.4362 | -1.8812 | 0.0644
Division 3| -7.2208 | -3.3078 | 0.0015
Division 4| -5.2731 | -3.2589 | 0.0017
Division 5| -2.753 | -1.8691 0.0656
Division 6 -5.3434 | -2.504 0.0151
Division 7| -5.8158 | -2.5746 | 0.0124

When adjusting the data to account for the lag, any years that fell outside of the logical lag (-1 to 1) were
not adjusted. In order to better test the ability of SMI to predict Pé]mer Z, years from each climate division
that showed lags outside of the one-month constraint were deleted. Additionally, 1993 was removed from
analysis for all years because of its low correlation and/ér high lag values for all climate divisions (see

Table 2). The ARIMA models were recalculated in the same fashion as the first exercise, with the
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questionable years removed. ARIMA parameters are summarized in table 5. Figure A4 in the appendix
shows the time sequence plots of Palmer Z versus the Palmer Z predicted from SMI, by climate division.
Table 5: Auto-Regressive Integrated Moving Average (ARIMA) parameters for lag adjusted Palmer

Z 2nd SMI. Listed years were not included in the analysis due to low correlations or extreme lags
{summarized in Table 2).

B t-ratioc  Probability years removed
Division 1| -3.3417 | -3.2943 0.0016 93
Division 2| -3.447 -2.1394 0.0364 93
Division 3| -6.0367 | -3.6613 0.6006 92,93
Division 4 -5.2098 | -3.7454 0.0004 93, 89
Division 5| -7.3818 -3.918 0.0003 92, 93, 95,99, 99 WK
Division 6| -6.2897 | -4.0324 0.0002 93, 99 WK
Division 7| -54504 | -2.6254 0.0111 93

Utilizing the above parameters, the final form of the equation would be:

Pz, =[(SMI, - SMI,_)* B]+ Pz, ,

(Equation 5-3)

Where Pz is Palmer Z index, B is the regression coefficient, the subscript 7 denotes current time (current Pz
for example), #-1 is previous time period, and SMI is self explanatory. Note, the differencing of SMI and

the final addition term of Palmer Z to account for the first differencing of the original data.

To summarize, Table 5 shows ARIMA parameters for the manually adjusted data discussed above where
optimum cross-correlations occur at lag zero. Addition&lly, any year showing optinum lags of greater than
1 or less than -1 were deleted. The years removed column in table 5 corresponds to these unacceptable lags
shown in Table 2. It is also worth noting the probability values in Table 4 and Table 5. In all cases, the

probability improved when the questionable years were removed, particularly in climate division 5.
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ARIMA Residual Analysis

As with any modeling exercise, one must investigate the residuals to test for normal distribution and
heteroskedastic behavior. Residual analysis was done on the lag adjusted ARIMA models (summarized in
Table 5). Probabiiity plot (P-P in SPSS) were created to test for normal distribution. The P-P function
allows you choose a test distribution (normal in this case) to compare the residuals against.‘ If the points
appear along the diagonal line, it is assumed the distribution matches the test distribution. To test
heteroskedasticity, residuals were plotted against the independent variable in a scatter plot. In this
example, a random distribution around zero with no discernable pattern indicates the lack of
heteroskedasticity. The P-P and scatter plots by climate division are shown in figures A.5 and A.6 in the

appendix.

BISCUSSION

As evidenced by the data shown in Table 5 and the time sequence plots in the appendix (Figure A.4), SMI
tracks the Palmer Z index. When problematic years are removed (summarized in Table 5), all coefficients
are significant at the &=0.05 level and most show significance at much higher standards. Of special
consideration is the fact that SMI was able to track Palmer Z in climate zones 1 and 2, which contain the
most complex terrain in the state, and arguably are the regions which one might expect to derive the lowest
correlations. This expectation is borne primarily of the difficulty in estimating air temperatures in complex
terrain, though also includes the problems associated with more continuous snow cover and higher cloud
cover during early and late growing season. In fact, the opposite is true particularly when one considers

that only 1993 was removed from the second ARIMA analysis for these climate zones.

As alluded to in the introduction, air temperature estimation plays a critical role in SMI calculations. In
order to achieve robust air temperature estimates, severe constraints were imposed in the algorithm, which

resulted in significant data reduction. Once a pixel is removed from the analysis in the air temperature
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package, it remains absent from any subsequent consideration for that composite period. The resultis a
dataset composed of dramatically fewer pixels than the original AVHRR scenes. The distribution of these
pixels is not consistent for each composite period for each 4™ HUC. That is to say that there is no way to
predict which pixels will be retained from each 4™ HUC, though one must remember that there are pixels
consistently excluded as a function of the landcover mask. While the relative location of each pixel used in
the analysis may change, it still mimics, conceptually at least, the meteorologically based Palmer
calculations. Palmer relies on averaged monthiy values from distributed weather stations (at fixed
locatioﬁs) aggregated by climate division. The SMI protocol may in fact provide a more robust sampling

technique by virtue of a larger sample size that is more evenly distributed over each state climate zone.

One of the primary issues with SMI in its current form is the fact that the AVHRR composites tend to
inhibit a more robust assessment. First is the issue of composite period straddling months. The assessment
could be imprbved by collecting coincident weekly or biweekly Palmer Z datz; for comparisons, though
these dataseté do not exist in the current NCDC archive. The second major confounding factor with
AVHRR composite data is the preferential selection of off-nadir pixels by the compositing algorithm
(Stoms et al., 1997). This off-nadir selection leads to data removal in the air temperature calculation
caused by the satellite zenith angle constraints (see Chapter 4). If a real-time monitoring of drought were to
be implemented using the SMI logic, implementation of the code earlier in the AVHRR processing stream
would be advised to remove the impact of the maximum NDVI compositing protocol. A possible solution
would be to calculate SMlona déily time step and allow the cloud detection and angle constraints to
remove questionable pixeis as currently implemented. A composite of maximum SMI value at the most
desirable time step (weekly, biweekly, monthly) could tﬁen be producedx. The result would likely be a
more temporally precise assessment of surface moisture status and a method certainly worth exploring in

greater detail.

The year 1993 was removed from the second ARIMA analysis for all climate divisions. Table 2 shows that

1993 preduced either low cross-correlations or unacceptable lags for each state climate division (as
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discussed above). While these cross-correlations and lags may not be out of line with other years when
considering climate zones individually, the fact that 1993 was a consistent poor performer for all divisions
is worthy of further investigation. While spatially explicit meteorclogical analysis is beyond the scope of
this paper, anecdotal evidence suggests interesting reasons for statewide poor performance of SMI in 1993.
According to NCDC climate records (data not shown), 1993 was an exceptionally wet year in Montana.
Considering the period of record (1895-2004, 109 years) and the state as a whole, June, July, and August
1993 rank as the 25" 1%, and 11" wettest of those specific months on record, respectively. With this
increased precipitation comes an increase in cloud cover. This alone may explain poor correspondence
between SMI and Palmer Z in 1993 by one of two mechanisms. Either the number of available
observations was decreased due to cloud obscuration or the sub-pixel cloud detection technique in the air
temperature module excluded a large enough number of pixels to prohibit sufficient sampling of the surface

thereby causing a loss of relationship between SMI and Palmer Z.

An alternate explanation for the poor SMI performance in 1993 may lie within the logic of SMI itself.
Inherent in the technique is the notion that moisture stress must be present in order for the secondary
response (elevated surface temperature) to be detected by the satellite. It is feasible in 1993 that there was
such a surplus of available moisture for the vegetation that the signal_ was simply below the detection limits
of the algorithm, or that it did not exist at all. Either explanation is certainly reasonable considering the

excess precipitation experienced in Montana that year.

The aggregation strategy employed in this exercise also deserves further attention. There was a desire to
maintain a moderate spatial resolution within the model, yet provide adequate spatial extent for robust
trapezoid estimation. Additionally, there was a desire to keep the landscape delineation logical in that it
corresponded to ecological or hydrological process boundaries rather than rely on arbitrary borders (e.g.
political boundaries). The 4™ HUC’s we& chosen because they provide moderate spatial resolution and

define actual hydrologic units associated with water processes. The result is the logical ability to
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differentiate, with the current implementation, between the surface moisture/drought status of meaningful,

that is to say, hydrologically based landscape units.

Although the trapezoids are defined at the 4™ HUC level, the final output of SMI failed to give consistent
results for each 4™ HUC across the landscape. This was primarily caused by the stringent masking in the
air temperature estimation module. This lack of coverage resultéd in the re-aggregation to state climate
zones, as discussed above. By leaving the original assessment at the HUC level rather than recalculating
climate zone specific trapezoids, the spatial resolution provided by the 4™ HUC delineation and the
physical basis for the landscape units are maintained in the best way possible. It is logically more
appropriate to maintain a delineation based on physical principles (insomuch as the major drainages
integrate watershed processes) in the initial assessment of SMI and incorpérate a subsequent re-aggregation
to the pseudo-physical climate zones (since climate zones incorporate political boundaries) than it is to
accept the rather arbitrary demarcation of climate zones which have little relationship to ecological or
hydrological process boundaries. Though it is acknowledged that the state boundary does truncate those
HUC’s that éxtend beyond its confines. By maintaining the HUC boundaries in the algorithm, SM1
performance can be better agsessed in future large scale (small area) studies. Such studies might include
the use of gauging stations and localized meteorological data fof comparison with SMI to more fully

understand exactly what SMI is responding to.

As previously mentioned, the date of satellite acquisition information was not used in temporal assignment
of SMI values to month categories. The reasoning for this decision is two-fold and rather simple. First,
Palmer Z is a calculated index that does not incorporate any physical process, per se, inthe derivation of
the numbers, whereas SMI is an observed process that will likely show a response that is some function of
time after a rain event. For example, precipitation that falls on a given day is immediately used in the
running calculation of Palmer Z. Conversely, SMI may not respond immediately to a precipitation event,
especially if one considers the fact that SMI relies on secondary responses to water transfer through the

soil-vegetation-atmospheric (SYAT) continuum. One can envision a certain time lag requirement for water
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movement through all the SVAT components before a satellite is able to detect the subsequent surface

temperature responses.

The second reason for not utilizing the date information contained in the AVHRR record is the idea that is
better to degrade one datasct than it is to imply a false resolution in another dataset. By accepting the
inherent time lag between SMI and Palmer Z, it was possible to assess the ability of SMI to track Palmer Z.
If the date information were to be used in the assignment of SMI values to month, the implication would be
that an ability to resolve the behavior of SMI and Palmer Z at daily time steps was possible. Because of the
way the Palmer indices are calculated and archived, this daily time step simply does not exist. Rather than
imply a false temporal resolution, an inherent time lag structure was accepted, which in the final estimation,

did not hinder the analysis.

In spite of the issues discussed above, it is worth exploring the overall relationship observed between SMI
and the Palmer Z index in greater.devtail. Appendix Figure A 4 (sequence plots) shows the time sequence of
observed Palmer Z scores with the predicted Palmer Z (from SMI) for the years calculated in the final
assessment (the parameters of which are su@arized in Table 5). Again, these are the observed versus
predicted for the final assessment where some years (summarized in Table 5) ‘were removed from analysis.
Observed Palmer Z scores are plotted for all years while the predicted Palmer Z scores are only for those
years maintained in the final ARIMA analysis. It is also worth reiterating that the predictions were not for
whole years. Rather, the algorithm was only run on the phenologically appropriate period (growing season

+ month) within each year.

The sequence plots (appendix Figure A.4) show some interesting results. For all climate divisions, except
division five (due to the removal of 1995 in this division), there exists an initial gross underestimation of

Palmer Z in 1995. This is most apparent in climate division three and six, though the others also show this
tendency. In spite of the initial underestimation of Palmer Z, all divisions show a rapid re-synchronization

with actual Palimer Z scores. In fact, if climate divisions one is considered as an example, the predicted
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values rapidly parallel the observed and continue along the same trajectory throughout the year. The
reasons for this dramatic failure of prediction at the beginning of the year are not known. However, it is
possible to speculate that this is a function of early season vegetation growth coupled with a lingering
drought from the previous year that is transifioning to a year which experienced more normal precipitation.
For all divisions, 1994 was a dry year while 1995 showed a moderate recovery. One hypothesis would be
that as the vegetation begins to come out of dormancy early in the growing season and use the available
moisture, that vegetation will show a certain amount of water stress due to the moisture deficit left from the
previous year. This is confirmed by the early season PDSI scores for 1995 (ﬁot shown). However, as 1995
progressed, all climate divisions showed recovery from the drought. Considering the expected SMI
response (and therefore the predicted Palmer Z scores) It is suggested that the initial under-prediction of
Palmer Z was simply an early season measurement of the lingering drought followed by a recovery. The
sequence plots actually confirm this when one considers the observed Palmer Z from 1994. The
subsequent predicted Palmer Z scores for early 1995 are not out of line with the observed values at the end
of the growing season in 1994. Overall, it is suggestéd that this initial prediction discrepancy in 1995 is
simply the SMI technigue (therefore predicted Palmer Z) capturing an early season moisture stress. The

predicted Palmer Z scores then quickly re-synchronize and continue to track the observed Palmer Z.

As previously diséussed, both weekly and bi-weekly composite data for 1999 were used in this analysis.
For those climate divisions where both years were maintained in the final assessment (divisions 1, 2, 3, and
7) there is evidence that the weekly composites show a higher temporal resolution, particularly in climate
division one. Ifthe biweekly composites are compared to the weekly composites in division one, there is a
much higher fidelity in the predicted values tracking the observed values. Bearing in mind that the
observed Palmer Z plots do not change, one can see the predicted values better capturing the fluctuations of
the observed values in the weekly composite data. While perhaps not surprising, it is certainly encouraging
to see the finer temporal resolution data providing a better and more complete assessment of the actual
changes in the observed data. The implications of this observation are two-fold. F irst, the data suggests

that it should be possible to capture drought variations at finer time steps. The benefits of the finer time
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scale are apparent if one hopes to track slight variations in moisture status as a function of time.
Additionally, there will always be some composites that fail to produce SMI values for a given HUC (or
climate division) due to the masking functions employed in the aigorithm. With weekly composites, it is
less likely long periods of time will pass without deriving SMI values for that HUC due to the increased

sampling ability the weekly data provide (52 composites per year versus 26 for the biweekly).

The second implication of the finer temporal resolution has to do with suggested implementation of the
SMI technigue in the future. In order to obtain a more robust assessment of surface moisture status, a daily
time step for the calculations of SMI would be suggested. Granted, the masking of clouds and undesirable
earth-sun-sensor geometries will undoubtedly remove a great number of pixels at a daily time-step.
However, if this logic were to be implemented for drought monitoring, the increased sampling ability the
daily time-step provides may outweigh the loss of data caused by the masking. In a given one week
composite, there are approximately seven chances for a given pixel to be viewed (perhaps more depending
on orbital mechanics). Of those seven observations, only one is maintained in the final weekly composite.
Some of the literature suggests (ASPRS paper) that off-nadir pixels are preferentially selected by the
maximum NDVI compositing technique. If these pixels are far enough off nadir, they will be removed by
the geometry mask imposed in the air temperature module of the algorithm. The result is one actual
observation lost and at least six other potential observations of this pixel that are also lost. Of those six, it
is likely a certain fraction will contain clouds or undesirable geometries as well. However, if daily data are
used, the opportunity may exist for the sensor to observe this given pixel more than one time in a given one
week composite period. Given that the data suggests finer temporal resolution results in an increased
ability of SMI to track Palmer Z, it appears reasonable to assume that one may increase the temporal
resolution and increase our overall ability té assess surface moisture status. Future studies should

investigate this assertion more fully.

Finally, climate division five did not result in very much output through the years of this study. Five of the

eleven possible years were removed. This removal is undoubtedly a function of the air temperature module
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in the algorithm. In spite of the failure to derive SMI scores for so many years, when data were produced,
the results were quite good. Table 2 shows that four of the five removed years had high cross correlations
at a lag of two; Of those years, some of the correlations are quite high. Regardless of why the extreme lags
show such quality cross-correlations, if the probabilities in table 5 are considered, after the removal of the
questionable years, the results are exceptional. The probability of the coefficients are much less than 0.001.
Consider this value and the time sequence plots (figure A.4 appendix) and a remarkable ability of the
predicted to track the observed results is evident, especially in 1996 which showed very complex
fluctuations throughout the year. In spite of the loss of nearly half of the available years, the ability of SMI
derived Palmer Z to track the observed Palmer Z is still remarkable. Again, this may be improved through

the use of higher terporal resolution data.
CONCLUSIONS

The results of this study indicate that the SMI technique shows great potential in its ability to map drought
at landscape scales. SMI and Palmer Z show coincident trajectories throughout all years of this

experiment. While it is desirous to provide actual equations for the derivation of Palmer indices from SMI,
the true nature of this study is a proof of concept. Therefore, it can be legitimately argued that the
significance of the coefficients is not the issue. Instead, it is the correlation between SMI and Palmer Z that
is paramount in this study. The fact that the derived time series coefficients are significant at acceptable
levels adds credence to the entire exercise, thus showing the promise for landscape assessment of drought

status that SMI holds and indicating the utility of further exploration.

Regardiess of the shortcomings of the current implementation, the SMI technique provides a clear method
of predicting a familiar drought index. Since Palmer Z is well modeled, and Palmer Z is a precursor to the
long-term Palmer indices, it would be relatively simple tc convert to an SMI based calculation of the other
Palmer indices (e.g. PDSI). With an increased understanding of the behavior of SMI, and an increased data

richness by virtue of higher temporal calculations, it is likely SMI could be used to calculate drought and
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surface moisture status in areas where weather station do not exist, or their placement may be cost
prohibitive. While it is unlikely this logic will replace the current method of calculating Palmer indices in
North America, it may be an appropriate technology for locations such as Africa or the Boreal regions of
Asia. SMI would prove a cost effective method for providing spatially explicit information on surface
moisture status. Additionally, the techniques can be applied to other platforms, such as AQUA MODIS,
where the superior design of the sensor and its derived terrestrial products {surface temperature, vegetation, -

etc.y will likely result in higher fidelity drought products.

EPILOGUE

The research presented in this document illustrates the progression I followed in developing a method for
assessing drought at landscape scales using NOAA-AVHRR data. [ began by utilizing promising large-
scale techniques (T¢/NDVI models) and modifying those techniques for apialication at smaller (landscape)
scales. Upon testing the original SMI model performance (chapter 2), certain shortconlings were
discovered. These issues were addressed by the incorporation of the WDI logic into a second generation
SMI model. In order to fully exploit the logic presented in the WDI derivation, it was necessary to develop
a technique to estimate the critical near surface air temperatures at the equivalent landscape scale.
Although constraints imposed in the air temperature module removed a large number of pixels from the
analysis, it proved a robust estimator and was incorporated in the development of the final SMI model.
Finally, the trapezoid-based WD logic was implemented and tested at the landscape scale (chapter 5). As
was shown, the final SMI model closely matched, in space and time, a popular meteorological station based

drought index (Palmer Z). Furthermore, the SMI model requires only AVHRR satellite data as inputs.
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APPENDIX A
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Table A.1: Trapezoid parameters for each 4™ HUC. Note, there is ne HUC 1, HUC 2 was removed,
and algorithm failed to derive values for HUC’s §, 16, and 46.

HUC Max Slope Max intercept Min slope Min intercept HUC Max Slope May intercept Min siope Min intercept

3 -70.8089  63.17464  -23.734 12.63884 38 -55.5648 57.1752 -26.6496  21.01836
4 -68.9293 63.01224 -20.8428  10.38902 39 -89.7355 81.1443 -31.9218 19.76161
8 40 -75.5647 68.8905 -15.8424  9.852839
8 -108.334  96.34461 -24.2087 . 15.01582 41 -{13.937 106.659 -23.3468  12.38569
7 5730867  55.31637 -15.9701  11.53213 42  -117.228 104.9838 -16.3666  10.03849
8 -31.6643  26.18764 -30.125  22.98639 43 -94.878 84.08698 -17.6916  8.434703
8 -112.278 108.0502 -18.8738 12.241 44 -147.758 136.8017 -18.8106  10.57146
10 -75.5289  78.53613 -23.6431  15.66226 45 -81.8142  76.46227 -25,9848  14.80378
i1 -110.805 100.1336 -16.6343 12.1223 46 - -— e —
12 -80.6202 71.8128 -27.8882  20.55269 47 -98.6618 88.62082 -20.4686  11.66403
13 -27.9222  24.06089 -23.9185 18.986 48 -137.016 125.8258 -23.4312 11.423
14 -82.1028  77.52799 -19.1212  8.534682 49 -133.774 127.769 -38.0053 17.3768
15 -123.866 110.6927 -24.6883  14.79226 80 -100.251 89.33881 -21.8378  16.31468
16 - - - - 51 -138.938 121.3047 -22.1371  13.78183
17 -120.07 112.1213 -24.286 14.32551 52 -75.8667  72.36227 -28.6152  14.B805%9
18  -105.677  98.46101 -21.9924  16.75848 53 -105.328  98.74573 -21.4049  12.08871
19 -95.9914  88.85017 -20.7761  13.96107 54 -87.6215 77.7939 -23.5126  16.97307
20 -110.571 96.25177 -13.1761  7.576127 55 -114.209 102.5654 -25.6098  12.58638
21 -125.845 113.8652 -31.9357  24.32874 56 -64.0228  68.7173% -30.5944  15.53726
22 -87.1887  76.35423 -19.1037  13.63949% 57  -102.24 97.6588 -22.3737 15.87505
23 -68.0305  58.61748 -13.6886  9.276328 58 -114.421 98.39673 -22.2077  8.043068
24 -119.386 104.4509 -27.7956  16.52829 56 -99.9207  92.26113 -33.6823 24.047
25 -82.1411 73.85742 -22.2223  17.34402 80 -87.3888  85.59878 -28.7786  17.94122
26 -101.755  8B.54659 -23.4002  13.53459 61 -88.1079  79.85793 -17.3154  10.79869
27 -101.539  93.21543 -20.7844  15.36065 62 -91.7669  82.38452 -18.41375  13.984868
28 -84.6283  76.79298 -25.0328  23.06884 83 -127.033 116.0022 -22.0848  15.15276
29  -93.0832  86.76848 -24.3584  15.48007 84 -67.1474  £83.81761 -26.21 10.61784
30 -78.4823  68.98512 -30.52 24.57488 86 -141.282 123.3685 -21.2897  14.70431
31 -42.388 42.13838 -15.5988  11.50151 66 102,743  94.07105 -25.6204  15.52244
32 -66.2237  60.12582 -33.9358  20.0904 67 -144.675 125.5357 -16.3552  11.84752
33 -89.8917  84.97411 -14.3644  8.259284 68 -06.5304  ©54.97958 ~23.2717  17.12092
34 -40.4083 47.816 -13.989 11.48881 88 -84.9551 79.12882 -18.5831  13.96585
35 747089  77.94342 -26.0179  14.56844 ¢ 126.776 116.1008 -21.9168  13.95415
38  -124.388 110.331 -26.2151  19.94451 71 -117.274 108.0863 -24.6560  16.66808
37 -83.8296  75.30048 -18.2115  11.33283 72 -147.788 132.6343 -22.8093  14.00995
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Table A.1: Trapezoid parameters for each 4" HUC. Note, there is no HUC 1, HUC 2 was removed,
and algorithm failed to derive values for HUC’s 5, 16, and 46 (CONTINUED).

HUC Max Slope Max intercept Min siope WMin intercept

73~ -128.802 116.0596 -17.7936 11.70012
74  -97.6126 90.19289 -22.555 15.02623
75 -107.186 94.85503 -28.2956 16.83603
76 -~101.687 92.3831 -25.4946 14.69887
77 -117.042 106.3887 -22.8682 10.09385
78  -98.3506 89.35116 -25.745 16.14591
7%  -80.5626 84,9748 -20.6968 12.69503
80  -91.1379 80.348572 -23.0672 13.56649
21 -111.032 99.22098 -21.4224 14.41016
82  -84.6942 73.70065 -20.1506 13.60071
83  -78.0868 74.48007 -22.868 11.66611 |
84  -90.69%4 84.6056 -26.3714 15.42855
85  -60.9486 50.38476 -15.941 10.80814
86 -52.0768 49.50488 -22.3193 15.36054
87  -30.5659 27.85468 -26.6554 13.58566
88  -41.6868 35.22319 -28.4142 17.40833
88  -79.0744 71.8012 -24.1015 13.88018
80 -51.834 53.71454 -26.7835 15.18693
21  -20.4083 27.28549 -18.7108 13.08145
92  -31.3861 28.32819 -14.5912 9.103303
93 -48.744 51.89315 -16.1959 9.753709
94  -83.0551 75.5079 -22.214 12.13247
985  -50.4635 45.028 -24.1436 17.0158
96 -19.7538 21.38082 -20.7654 13.71834
97  -40.9716 38.83089 -14.8255 9.892314
98  -28.3496 24.51251 -20.1594 14.46347
98  -40.1602 31.63116 -23.2317 16.4275-
4060 -43.3228 39.48298 -38.5218 31.4767
101 -19.141 16.85452 -17.0688 14.51533
102 -47.6482 44,31785 -27.5448 16.7301
103 -16.8765 16.87073 -8.25228 7.34927
104 -32.0545 29.27614 -25.2744 20.87415
105 -45.4674 46.12521 -26.4903 15.263489
106  -18.3443 16.37878 -16.9566 13.47344
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Figure A.1: Time sequence of SMI and Palmer Z for all climate divisions. a) is SMI raw data, b) shows SMI
first differencing, ¢} is Palmer Z raw data, d) shows Palmer Z first differencing. Colors denote climate divisions.
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¢) Palmer Z raw sequence by climate division.
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d) Palmer Z first differencing, by climate division.
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Figure A.2: Cross-correlation by climate division. Figures are for all vears combined. All data have
been transformed (first difference).
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Figure A.2: Cross-correlation by climate division (CONTINUED).
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Figure A.Z: Cross-correlation by climate division (CONTINUED).
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Figure A.2: Cross-correlation by climate division (CONTINUED).
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Figure A3.a: Climate Division 1 cross-correlogram of Palmer Z and SMI, by year.

PALMZ_D1 with SD1_AVG

YEAR:_ 1991

1.0

0.0+

Confidence Limits

CCF

-1.0

VRS S R e
Lag Number

Transforms: difference (1)

PALMZ_D1 with SD1_AVG

YEAR: 1992

1.0

0.0

Confidence Limits

-1.0

CCF

3 241 0 1>~2 3
Lag Number

Transforms: difference (1)

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.3.a: Climate Division 1 cress-correlogram of Palmer Z and SMI, by year.
(CONTINUED)
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Figure A.3.a: Climate Division 1 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED)
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Figure A.3.a: Climate Division 1 cross-correlogram of Palmer Z and SMI, by vear.
(CONTINUED)
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Figure A.3.a: Climate Division 1 cross-correlogram of Palmer Z and SMI, by vear.
(CONTINUED)
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Figure A.3.a: Climate Division 1 eross-correlogram of Palmer Z and SMI, by year.
(CONTINUED)
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SMI, by year.
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SMI, by vear.
(CONTINUED).
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SMI, by year.
{CONTINUED).
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Figure A.3.c: Climate Division 3 cross-correlogram of Palmer Z and SMI, by year.
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Figure A.3.c: Climate Division 3 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED)

PALMZ_D3 with SD3_AVG

YEAR: 1993

1.0

Confidence Limits

3 2~ 0 1>2 3
Lag Number -

Transforms: difference (1)

PALMZ_D3 with SD3_AVG
YEAR: 1994 |

1.0

Confidence Limits

CCF

-1.0

2 "0 1 2

l.ag Number

Transforms: difference (1)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.3.c: Climate Division 3 cross-correlogram of Palmer 7 and SMI, by year.
(CONTINUED)
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Figure A.3.c: Climate Division 3 cross-correlogram of Palmer 7 and SMI, by year.
{CONTINUED)
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Figure A.3.c: Climate Division 3 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED)
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Figure A.3.c: Climate Division 3 cross-correlogram of Palmer Z and SMI, by year.
{(CONTINUED)
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Figure A.3.d: Climate Division 4 eross-correlogram of Palmer Z and SMI, by vear.
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Figure A.3.d: Climate Division 4 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.3.d: Climate Division 4 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.3.d: Climate Division 4 eross-correlogram of Palmer Z and SMI, by year. -

(CONTINUED).
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Figure A.3.d: Climate Division 4 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.3.d: Climate Division 4 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED).
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Figure A.d.e: Climate Division 5 cross-correlogram of Palmer Z and SMI, by year.
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Figure A.3.e: Climate Division 5 eross-correlogram of Palmer Z and SMI, by year.
{(CONTINUED)
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Figure A.3.e: Climate Division 5 cross-correlogram of Palmer 7 and SMI, by year.
(CONTINUED)
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Figure A.3.e: Climate Division 5 cross-correlogram of Palmer Z and 8M1, by year.
(CONTINUED)
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Figure A.3.e; Climate Division 5 cross-correlogram of Palmer Z and SMI, by year.
{(CONTINUED) :
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Figure A.3.e: Climate Division 5 cross-correlogram of Palmer Z and SMI, by year.
{CONTINUED)

PALMZ_D5 with SD5_AVG

YEAR: 2000

1.0

Confidence Limits

Coefficient

4 372 4 0 1 223 4

Lag Number

Transforms: difference (1)

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.3.f: Climate Division 6 cross-correlogram of Palmer Z and SMI, by year.

PALMZ_DG6 with SD6_AVG

YEAR:_ 1991

1.0

Confidence Limits

4 372 4 0 1 23 4
l.ag Number

Transforms: difference (1)

PALMZ_D6 with SD6_AVG

YEAR: 1992
1.0

Confidence Limits

Lag Number

Transforms: difference (1)

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.3.1: Climate Division 6 cross-correlogram of Palmer Z and SMI, by vear.
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Figure A3.%: Climate Division 6 cross-correlogram of Palmer Z and SMI, by year.
{CONTINUED)
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Figure A.3.f: Climate Division 6 cross-correlogram of Palmer Z and SMI, by year.
{(CONTINUED)
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Figure A.3.f: Climate Division 6 cross-correlogram of Palmer 7 and SMI, by year.
(CONTINUED) :
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Figure A.3.f: Climate Division 6 cross-correlogram of Palmer Z and SMI, by year.
{CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z and SMI, by year.
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z and SMI, by year.
{CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z and SMI, by vear.
(CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z and SMI, by year.
(CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z and SMI, by year.
{CONTINUED)
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Figure A.4; Palmer Z and predicted Palmer Z (from SMI) for all divisions. Gaps in predicted
sequences denote removed years. Line breaks denote vear steps.
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Figure A.4: (CONTINUED)

. s 1992, 1993
Division 3 erved
10
8 4
Palmer Z observed
Predicted Palmer Z
(from SMI1)
"000 {9‘9&
e
Division 4 1993, 1999
removed
10
8 n
6 -4

Palmer Z observed

Predicted Palmer Z
-0 . {from SMl)

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.4: (CONTINUED)
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Figure A.4: (CONTINUED)
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Figure A.5: P-P plots of ARIMA residuals by state climate division.
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Figure A.S: P-P plots of ARIMA residuals by state climate division (CONTINUED).
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Figure A.5: P-P plots of ARIMA residuals by state climate division (CONTINUED).
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Figure A.5: P-P plots of ARIMA residuals by state climate division (CONTINUED).
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Figure A.6: Palmer Z residuals versus SMI residuals, by climate divisien.
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Figure A.6: Palmer Z residuals versus SMI residuals, by climate division (CONTINUED).
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Figure A.6: Palmer Z residuals versus SMI residuals, by climate division (CONTINUED).
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Figure A.6: Palmer Z residuals versus SMI residuals, by climate division (CONTINUED).
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