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Riddering, James P. Ph D. May 2004 Forestry

DEVELOPING A  SATELLITE-BASED METHOD OF LANDSCAPE DROUGHT ASSESSMENT

Director: Dr. LLoyd P. Queen

This dissertation describes the m^or research components involved in the ingilementation, modiScation, 
and testing of a method for assessing surface moisture status with NOAA-AVHRR data, known as the 
Surface Moisture Index (SMI). Chapter two presents the initial landscape-scale development of the SMI 
model vdiich is predicated on previous large-scale studies reviewed in chapter one. The initial landscape 
model relies on a moving neighborhood analysis that exploits the relationship between radiant surface 
temperature (TJ and a spectral vegetation index, namely the Normalized Difference Vegetation Index 
(NDVI), to elucidate surface moisture status.

Chapter three describes the Water Deficit Index (WDI), another large-scale technique, the logic of which 
was adapted and used to modify the original SMI model. The WDI logic dictates the incorporation of near 
surface air temperature (TJ as an input for the model. Since T , is a critical conçionent, a method for 
estimating this variable was necessary. Chapter four discusses the implementation and testing of the T, 
technique used in subsequent model development. Three methods of estimating T , were tested. These 
methods differed only in the manner that earth-sun-sensor geometry was used to impose constraints in the 
model calculations. The most rigorous method, which had the most sophisticated geometry constraints, 
resulted in the fewest actual predictions, but also showed the best results (R = 0.742, MAE = 6.09 °C).

The ûAh chapter treats the final version of the SMI model. That model incorporates four significant 
revisions from the original model. Those are: (1) adaptation of the W DI logic for landscape-scale 
implementation, (2) inclusion of geometric constraints, (3) near-surface air temperature estimates, and (4) 
specification of a new landscape reporting unit Validation exercises rehed on a ten year comparison of 
SMI to the Palmer Z index, a popular index for tracking drought that relies on data 6om meteorological 
stations. The ability to predict Palmer Z &om SMI values was assessed using the Autoregressive Integrated 
Moving Average (ARIMA) technique and resulted in excellent predictability with all coefficients being 
significant at the a = 0.05 level.
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PREFACE

The objective of this research is to develop a method of assessing surface moisture status/drought at 

landscape scales with satellite imagery. It is organized into five chapters, and begins with a brief review of 

the background and logic of the methods, which includes a review of the pertinent literature. Chapter two 

will discuss the original implementation of the Surface Moisture Index (SMI) which was based

on the work of Nemani et al. (1989) and Nemani and Running (1993). While engaged in the research 

presented in chapter two, a number of shortcomings were identifred and discussed. To mitigate these 

problems, I chose to adopt some of the logic from the Water Deficit Index (W DI, Moran et al., 1994a) 

which will be explained in chapter three. One of the critical inputs fbr the W DI technique and the 

subsequently modified SMI method is drat of near surface air tenq^erature estimates (T,). Chapter fbur will 

discuss the satellite-based techniques I developed to derive these air temperature estimates. Finally, 

chapter five will discuss the implementation and validation of the final satellite based landscape drought 

technique. A discussion is included therein that considers the perfbrmance of the final implementation and 

provides suggestions fbr future research.
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CHAPTER 1

INTRODUCTIO N AND THEORY

BACKGROUND

The relationship between radiant surface temperature (T,) and spectral vegetation indices (e.g. Normalized 

Difference Vegetation Index) has often been used to investigate surface energy fluxes and as a surrogate fbr 

detecting vegetation water stress (Nemani and Running, 1989; Carlson et al., 1990; Smith and Choudhury, 

1991; Nemani et al., 1993; Carlson et al.; 1994; Kustas et al., 1994; Vidal et al., 1994; Vidal and Devaux- 

Ros, 1995; Moran et al., 1996; Laguette et al., 1998; Duchemin et al.; 1999). The logic of coupling radiant 

surface temperature with vegetation indices to deduce surface moisture status relies on the covariance of 

these two parameters with changing surface moisture conditions. Two of the primary drivers of surface 

temperature (whether that surface is sod, vegetation or a mix) are net radiation (RJ and the amount of 

water available fbr evaporation and/or transpiration (ET) (Jones, 1992; Moran et al., 1994b). For a given 

amount of radiant flux density incident at the surface and assuming consistent meteorological parameter 

(e.g. VPD, wind speed), the amount of available water dictates the partitioning of energy to sensible or 

latent heat flux. I f  the surface has water available, the primary partition will be to latent heat flux (Jones, 

1992; Moran et al., 1994b; Nemani et al., 1993). The result is a comparatively "cool" radiant surface 

temperature. This relationship, however, varies with the fractional vegetation cover (Carlson et al., 1994; 

Moran et al., 1994b; Nemani et al., 1993; Smith and Choudhury, 1991).

Figure 1 diplays a scatterplot of surface tenperature minus air terrperature (T,-TJ and Normalized 

Difference Vegetation Index (N D VI) for both moist and dry conditions. For an area with an adequate 

range of vegetation cover and plentiful water the slope of the line frt to the scatterplot will be nearly flat 

due to absorbed energy causing surface soil moisture evaporation in bare soil areas (Nemani et al., 1993). 

The result is a surface temperature near that of actively transpiring vegetation. The converse is also true 

where lack of surface moisture causes the slope of the line to become more negative. The bare areas will 

divert the energy to sensible heat flux resulting in surface tenperatures above that of vegetationu This is

2
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not to say that surface ten^iature of fiill vegetation does not change with water availability, rather, 

vegetation has access to sub-surface water and is better able to regulate water loss below that of bare soil 

(Jones, 1992). The resulting assungition is that in areas with diverse vegetation cover, the relationship 

between surface temperature and vegetation cover will change with water availability and this relationship 

can be exploited in the development of operational methods fbr monitoring surface moisture status and 

drought.

Figure 1 : Theoretical scatterplot illustrating water stress and non-stressed pixels.

15 # Stressed

#  Non Stressed

u

0

N D V I

Most studies utilizing the T/spectral vegetation index (T /V I) logic have focused on large-scale (small 

geographic extent), low temporal resolution assessments of surface energy budgets (e.g. (Carlson et al., 

1995; Nemani and Running, 1989; Saha, 1995; Smith and Choudhury, 1991; Vidal andDevaux-Ros, 1995). 

Though many o f these studies have been concerned specifically with solving surface energy parameters, the

utility of this logic fbr monitoring drought and fire potential has been suggested (Moran et al., 1994a;

3
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Nemani et al., 1993; Vidal and Devaux-Ros, 1995). Since both drought and vegetation Gre potential can be 

modeled as a function of surface energy status (decreases of ET below potential ET is indicative of 

vegetation water stress), the use of these methods for drought and Gre potential monitoring logically 

follows. In spite of this, there is, historically, a noGceable lack in the use of these techniques fbr surface 

moisture and drought monitoring applicaGons. A notable excepGon being Vidal and Devaux-Ros (1995) 

who showed that large Gre activity was correlated with a derivaGve of the T/spectral vegetaGon index 

(T /V l) logic.

LITERATURE REVIEW

One of the earliest studies combining surface terrqrerature with a vegetaGon index to infer surface energy 

budget parameters was that of NemarG and Running (1989). They used the Advanced Very High 

ResoluGon Radiometer (AVHRR) to calculate the N D VI and surface tenqrerature via a split window 

techrGque over the Lubrecht Experimental Forest in Montana. They tested how this relaGonship corrqrared 

with modeled surface resistance fbr eight composite periods throughout the growing season. Forest-BGC 

and local meteorological data were used to simulate canopy resistance. A sGong correlaGon between the 

slope of T /N D V I and simulated resistance was observed throughout the season. InteresGngly, the 

T /N D V l slope was able to track a penod of drought in June and July and drought recovery that came with 

August rains. The authors conclude by suggesting that since surface resistance is the pGmary control on 

latent heat Gux, the T /N D V I relaGonship may be useful in regional studies of evapotranspiraGon by 

providing qualitaGve informaGon on surface resistance.

Carlson and others (1990) attenqited to derive GacGonal vegetaGon cover, surface energy Guxes, and root 

zone soil surface moisture in areas with parGal vegetaGon cover. They coinbined a boundary layer model 

that contained vegetaGon and substrate parameters with two image products: T /N D V I and standard 

deviaGon of T, versus T,. Imagery was obtained from an airborne sensor with spaGal resoluGon of 

approximately 4 mat nadir. It was assumed the T /N D V I relaGonship was controlled by fracGonal
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vegetaGon cover. The informaGon of T , versus standard deviaGon o fT , was used to deGne the endpoints of 

full canopy coverage and complete bare soil. The boundary layer model was then used to calculate root 

zone and soil surface water content by forcing a soluGon for these parameters that resulted in a match 

between simulated and observed surface temperatures. The authors stated that the method required testing 

against various types of soil and vegetaGon and suggest that AVHRR might be useful in this endeavor.

They also merrGon, however, that low spatial resoluGon sensors such as AVHRR may not be able to 

produce the conqrlete range of N D VI and T, values needed for this type of applicaGon.

Smith and Choudhury (1991) explored the relaGonship between surface terrqrerature and spectral 

reGectance in Australia using a single Landsat ThemaGc Mapper (TM ) image. They found overall negaGve 

relaGonships between a vegetaGon index and T, in agricultural areas, but not in evergreen forests. Using a 

two-layer (soil and vegetaGon) energy balance model to explore the T /V I logic, they found GacGonal 

vegetaGon cover to be the major conGol on T,. Residual variability in the relaGonship was attnbuted to 

differences in ambient air temperature, soil water availability, and stomatal resistance as corrtrolled by 

phonological development. It was suggested that biome should be accounted fbr when modeling surface 

moisture parameters and that the SMI response is sensiGve to soil and vegetaGon contribuGons. Overall, 

the authors were not conGdent about the ability of T /V I relaGonships to predict surface moisture status.

Building on their previous work, NemarG and others (1993) revisited the T /N D V I relaGonship and 

explored: 1) the effect of biome on T /N D V I, 2) automated methods of defining the T /N D V I relaGonship,

3) opGmal window size, and 4) conGnental-scale comparisons of T /N D V I changes to moisture status. 

Several AVHRR images were obtained throughout the growing season fbr an area of 300x300 km fbr use 

in this study. The Grst conclusion drawn from this study was that the T /N D V I relaGonship is primanly 

conGoUed by vegetaGon fracGon viewed by the sensor. Surface moisture status, however, was idenGGed as 

being an important corrqxrnent of the T /N D V I response. It was fbund that date of imagery had no effect on 

optimum neighborhood size, while biome type did. A related conclusion was the idea that topographic 

effects must either be held constant or e?q)licitly accounted for when inqilementing the T /N D V I logic in
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complex terrain. The conçaiisons of T /N D V I with landscape scale moisture status assessments proved 

encouraging. The crop moisture index (CMI), which measures short-term soil moisture variaGons in the 

top Gve feet, was used fbr conqaanson and T /N D V I was found to track GuctuaGons in CMI. The authors 

conclude this paper with the statement that T /N D V I, upon further development, would be useful in 

monitonng Gre danger.

SUMMARY

From the literature discussed above, fbur cnGcal points can be identiGed when considenng the 

inçlementaGon of a model fbr deducing surface moisture status based on the surface temperature and 

spectral vegetaGon index relaGonship. These are summarized as buUet points below.

« A diversity of vegetaGon cover, as measured by NDVI, is required to assess moisture status at the

surface.

# The T /N D V I relaGonship has been shown to change with water availability.

« The T /N D V l relaGonship has been used or suggested fbr use in monitonng drought,

evapotranspiraGon and surface resistance, surface moisture status, and Gre danger. AG of these are 

related insofar as water availability impacts vegetaGon.

» The basic logic of surface temperature and spectral vegetaGon indices can be applied over many 

biomes, however a control must be provided fbr biome.

Based on this fbundaGon, the fbUowing chapters of this dissertaGon wGl describe the process fbUowed in 

the development of a new method fbr assessing surface moisture status at landsca^ scales. Chapter 2 will 

discuss the onginal landsc^)e implementaGon of the T /N D V l technique and wiU include an assessment of 

the model perfbrmance. Chapter 3 wiU inGoduce the Water DeGcit Index which serves as a foundaGon fbr 

subsequent developmental work. Chapter 4 describes a technique of esGmaGng near surface air 

temperatures which is a cnGcal coir^nent in elucidaGng sur&ce moisture condiGon. FinaUy, chuter 5 

will illustrate the Gnal landscape technique for modeling surface moisture status.
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CHAPTER2

DEVELOPMENT OF A  LANDSCAPE SURFACE MOISTURE DfDEX________________________

ABSTRACT

A new method fbr modeling surface moisture status at conGnental scales utilizing the Moderate Resolution 

Imaging Spectroradiometer (MODIS) surface resistance logic is under development fbr use in Gre science. 

A preliminary inplementadon of the algorithm, using NOAA Advanced Very High Resolution Radiometer 

(AVHRR) data, has been conpleted. The surface moisture index (SMI) uses the Normalized Difference 

VegetaGon Index (NDVI) and radiant surface temperature (T«) to assess surface moisture status. The 

results of a validaGon effort designed to address algonthm perfbrmance issues, potenGal shortcomings in 

the current inplementaGon, and areas where the logic and implementaGon perform in an adequate manner 

are presented. Fire potenGal validaGon efforts were made using an histonc database of fire occurrence 

obtained from the U.S. Bureau of Land Management (BLM). The area of interest was constrained to Idaho 

and Montana fbr the summer of 1994 due to prevailing dry condiGons across the landscape and high Gre 

acGvity. Preliminary Gndings Gom this study are presented and potenGal users are introduced to the logic 

and applicaGons of the MODIS surface moisture products.

INTRODUCTION

Heat Gux at the earth's surface is driven pnmarily by incident solar radiaGon and water availability. Dry 

suHaces are dominated by sensible heat Gux, which manifests itself by increasing radiant surface 

temperatures (T,). Generally, as water availability increases, more energy is parGGoned to latent heat Gux 

resulGng in a relaGve reducGon in T, (Monteith, 1981). The parGGoning of energy between latent and 

sensible heat is also inGuenced by several other biophysical vanables including vapor pressure deGcit, 

boundary layer conductance, canopy surface resistance, wind speed, and surface roughness (Jones, 1992; 

Whitehead, 1998). Despite these potenGaUy confounding effects, recent studies have shown that when 

thermal inGared measurements of T , are coiq)led with spectral vegetaGon indices, surface wetness can be
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inferred (Nemani and Running, 1989; Carlson et al., 1990; Nemani et al., 1993; CaHson et al., 1994). 

Nemani et al. (1993) demonstrated that the slope of a T/Normalizcd Difference VegetaGon Index (NDVI) 

line is sGongly correlated with surface moisture status.

We believe this logic may be signiGcant fbr regional-scale Gre potenGal monitonng and have adopted it as 

the basis fbr development of an Earth Observing System (EOS) fire potenGal product. Using NOAA's 

Advanced Very High ResoluGon Radiometer (AVHRR), T /N D V I scores are calculated at continental 

scales to invesGgate its suitability fbr this applicaGon. By inqilemenGng the logic now, we are better 

prepared to adapt it to the upcoming EOS Moderate ResoluGon Imaging Spectroradiometer (MODIS) data 

stream. A surface moisture status product based on the woGc described here will become a post-launch 

product of MODIS in 2001.

Following, preliminary results Gom development of the Gre potenGal index based on the Nemani et al.'s 

(1993) previously described logic are presented. The goal is to explore the perfbrmance of a 

computaGonaUy efficient version of the T /N D V I algonthm in Montana and Idaho during the 1994 Gre 

season. Although the current inçlementaGon of T /N D V I logic is run fbr the conterminous United States, 

Idaho and Montana were selected as the iniGal test bed fbr assessing its performance as a fire potenGal 

index. The study area was selected fbr several reasons: it is diverse in terms of landcover and terrain, it is 

data nch, it has representaGon by mulGplc agencies, and has frequent Gres. The area also is well known by 

the authors Gom previous Geldwork. The 1994 Gre season was chosen because it was one of the busiest on 

record. In Idaho and Montana, 4,436 Gres burned 899,818 acres on USFS and BLM land alone.

In this paper the fbUowing quesGons will be addressed: (1) what factors determine the perfbrmance of 

T/NDVI? (2) How can the algonthm be mn efGciently while sGll accounGng fbr subpixel cloud, water, 

and shaded slope contaniinaGon? (3) Can T /N D V I be eGecGvely related to measures of actual Gre 

potenGal?

10
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THE SURFACE M OISTURE IND EX M ODEL

The major control on surface teng)erature, excepting incident energy, is the amount of water available for 

diverting incident radiaGon Gom sensible heat Gux to latent heat Gux (Monteith, 1981; Shuttleworth, 1991). 

By attempting to assess moisture status without expliciGy accounting fbr the role of vegetaGon in 

parGGoning energy to latent heat, early studies of latent heat Gux (e.g., Priestley and Taylor, 1972) missed 

the fundamental conGol limiting evaporaGve loss below the potenGal (where potenGal is deGned by the 

physical environment only). This method of assessing moisture status relies on the previously discussed 

means of monitoring vegetaGon status and measuring surface temperature. By incorporaGng remote 

measures of vegetaGon condiGon coipled with tenperature data, landscape moisture changes in the 

soil/vegetaGon surface can be more effecGvely monitored. The method relies on the sGong negaGve 

relaGonship between radiometric surface temperature and fracGonal vegetaGon cover.

The logic behind the surface moisture index has been extensively descnbed elsewhere (see Nemani and 

Running, 1989). BneGy, it relies on calculaGng the relaGonship between N D VI and T,. GeneraUy, fbr a 

given landscape, as N D VI increases, T, will decrease. This is due to vegetaGon's ability to regulate T, by 

parGGoning absorbed radiaGon to latent heat Gux (via evapotranpiraGon) rather than sensible heat Gux. 

Absorbed radiaGon and water availability are Gie two primary controls on T, fbr a given surface. As water 

becomes limited at that surface, whether vegetated or not, the absorbed energy wiU be parGGoned to 

sensible heat Gux and the radiant temperature of that surface will increase. The core of the SMI logic relies 

on these biophysical principals fbr monitonng surface moisture status. I f  a surface is wet, T, will be low. 

However, as that surface dries, the T, will increase accordingly. The relaGve increase in T, is more 

signiGcant in low N D VI areas, corresponding to bare soil or sparse vegetaGon. In high NDVI areas the 

relaGve change in T , is not as noGceable due to the aforemeuGoned ability of vegetaGon to regulate water 

relaGons. This is parGcularly true of fbrested areas that have access to sub-surface water. The result is a 

negaGve relaGonship between NDVI and T,. As a given area dries, one would expect the relaGonship 

between NDVI and T„ as measured by the slope of a line Gt to the T /N D V I scaGerplot, to become

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



increasingly negaGve due to an increased T, fbr the low N D VI areas. It is Giis relaGonship that is the 

logical basis fbr the Gre potenGal index.

Algorithm Function

Previous studies have explored local moisture status utilizing the relaGonship between T, and ND VI in a 

fashion similar to this implementaGon (Nemani and Running, 1989; Nemani et aL, 1993; Carlson et al., 

1981; Carlson et al., 1990; Cadson et al., 1994). A primary point of departure, however, is that these 

studies were concerned with large-scale (small geographic extent) assessment whereas this logic has been 

inplemented at continental scales. Regardless of the scale used, a neighborhood ofN D VI values and their 

associated T, is required to Gt the line used to estimate stress. At large scales, this neighborhood would 

likely be deGned sinply to the boundaries of the watershed or forest of interest. At small scales, however, 

the neighborhood used must be explicitly defined and needs to account fbr landcover heterogeneity while 

sGll collecting a sample large enough fbr defining the T /N D V I relationship.

The current version of the SMI algorithm uses a 21 x 21 pixel neighborhood that moves across the images 

one pixel at a Gme. A neighborhood size of 21 was chosen based partly on the work of Nemani et al., 

(1993) and an assessment of sensiGvity done with an early version of the SMI algonthm. It was discovered 

that this neighborhood size iniGally provided the best sensiGvity while still conferring computaGonal 

efficiency. In addiGon, the quesGon of Type I and Type I I  errors was considered. It is preferable to 

overestimate "dryness" rather than underesGmate it fbr Gre applicaGons. By sliding the window one pixel 

between calculaGons, it was hoped to address moisture status in a spaGally explicit manner and to allow fbr 

landcover variaGons to inGuence the SMI gradually.

Similar to that of Nemani et aL (1993), channel 4 and channel 5 data are read by the algonthm and 

converted to T, fbUowing the method of Price (1984). NDVI, Gom composite data, is then ingested and 

used to assign an NDVI value and T, value to each pixel in the image. Next, neighborhoods are subset
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beginning at pixel (1,1) and sorted such that the maximum T, fbr each unique N D VI score greater than 0.2 

in the neighborhood is retained fbr regression analysis. By sorting and retaining maximum T, fbr each 

N DVI value, cloud contaminaGon is minimized, near nadir pixels are preferenGally selected, and shading is 

minimized (see Nemani et a l, 1993 fbr full discussion). Constraining N D VI to values greater than 0.2 

assures that only vegetated areas are used in the analysis and eliminates problems of sub-pixel water 

contaminaGon. The value of 0.2 was empirically denved, but is similar to that of Carlson et al. (1994) who 

chose an N D VI score of 0.17 fbr uncontaminated bare ̂ ground pixels.

Upon compleGon of the sorting funcGon, a least squares regression is Gt to the retained pixels and the slope 

of the line is assigned to the center pixel of the neighborhood for use in the SMI. Other staGsGcs such as 

and the Y  intercept are also saved in separate Gles. The neighborhood window then shiAs one pixel and 

begins again. It is worth noting that for each composite penod, greater than 10 bz/fion calculaGons are 

performed in the generaGon of SMI. Enough conyutaGonal efGciency was met for conGnental runs such 

that total run Gme is approximately 2.5 hours with the current compute inGastructure (IBM  43P-240T 

U N IX  workstaGon). These benchmarks are signiGcant as the launch ofMODIS-PM approaches and the 

desire fbr increased tenqxnal resoluGon (daily) and tandem (MODIS and AVHRR) calculaGon of SMI 

products increases.

SURFACE MOISTURE INDEX PERFORMANCE

During each composite penod of the 1994 Gre season, the highest T /N D V I values consistently appear in 

valley bottoms and in the rolling high plains of eastern Montana (Figure 1). The mountain forests of 

central Idaho and the northern Rockies exhibit litde stress throughout the growing season, despite the fact 

that this was one of the most acGve Gre seasons on record. This observaGon suggests that estimates of 

T /N D V I are sensiGve to landscape or biome type. Although Nemani et al. (1993) note that vegetaGon type 

and topography are important consideraGons in selecGon of window size for model execuGon, the effect of 

landscape heterogeneity remains untested at a regional scale.
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A factor analysis was performed to explore the interdependence of landscape parameters that are relevant to 

T /N D V I derived estimates of surface moisture (Table 1). The primary process-based drivers of variability 

are meteorology, topography, biome-type, and viewing geometry. The variables used in the factor analysis 

are slope, aspect, elevaGon, percent evergreen needleleaf forest (ENF), percent deciduous broadleaf forest 

(DBF), percent grass, percent agnculture (AG), date and satellite zenith angle (SATZ). The variables were 

chosen based upon their expected uGlity and upon availability; and do not include system-based effects 

such as data scaling, calibraGon, or signal/noise raGos. Meteorological vanables are conspicuously absent 

Gom the analysis because qiaGally conGnuous data are not presently available.

Table 1: Factor loadings for landcover, topography, and viewing geometry variables. Factor 1 
accounts for 22 percent of variance, factor 2,19 percent, and factor 3, 8 percent._____________

Rotated Factor Matrix®

Factor
1 2 3

SOI -1.6E-02 -.301 1.90E-02
ENF 4.80E-02 .795 -.138
GRASS -6.4E-02 -360 -1.7E-02
SLOPE 6.59E-02 .707 -7.7E-03
ASPECT 1.51E-04 -2.3E-03 1.66E-02
ELEV 8.47E-02 .563 .204
SATZ -.993 -.112 -2. IE-02
SOLZ ^72 .131 .195
DATE .174 .126 .784
Extraction Method: Maximum Likelihood. 
Rotation Method: Varimax with Kaiser 
Normalization.

a. Rotation converged in 4 iterations.

A maximum likelihood extracGon was uGlized and an orthogonal varimax rotaGon enqiloyed. Three 

factors with eigenvalues greater than one emerged, accounGng fbr fbrty-nine percent of vanance 

cumulaGvely. While the percent of variaGon explained by the factor analysis is low; the factors showed a 

consistent, logical set of relaGonships between landscape variability and T /N D V I perfbrmance. The Grst 

Gctor is clearly physiographic, represenGng rugged, mountainous terrain with coniferous forest. Percent 

evergreen needle leaf fbrest, slope, and elevaGon strongly load on this factor. SMI loads negaGvely, 

confirming the earlier observaGon that T /N D V I does not currently discriminate spaGal or tenqmral 

differences in surface wetness in mountainous coiGfer fbrests.
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Figure 1: Map of SM I values for the study area, composite Period 13. Tan areas indicated no 
detectable stress. Stressed areas increase from yellow to dark red.

1
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The second factor is a landcover factor represented by grass and agriculture. Although the vegetation 

dataset does not distinguish irrigated from dryland agriculture, the fact that grass and agriculture load 

oppositely on factor two suggests a biome sensitivity that is significantly different 6om variation observed 

in mountainous conifer forests.

The Aird factor is a viewing geometry factor. Date, elevation, slope, and satellite look angle load on factor 

three. Because Ae current model implementation uses composited data (Eidenshink et aL, 1992), image 

sanqiles are derived from multiple target/sensor/sun geometries. Given Ae range m elevation, slope, and 

aspect values m mountamous terrain, this third factor is interpreted as being consistent with observed 

difBculties in validating SMI scores for pooled landcover/biome type seAngs. Based on Ae observed 

Afferences in SMI scores and Ae factor analysis, how the model actually derived SMI scores were re

examined. This mvolved decomposmg Ae scatterplots of T, versus ND VI for pooled samples (all 

landcover classes) as well as for specific biome types.

The purpose of analyzing selected scatterplots was to examine Ae effect of date/geometry, biome type, and 

contamination of retained pixels on the slope and mtercept of Ae regression Ime. Furthermore, when 

scatterplots derived 6om image conqwsites generated at times of high apparent fire danger are analyzed,

Ae current model implemenAtion fits a Ime that may have a low slope, m spite of the fact Aat portions of 

Ae scatterplot clearly indicate stress.

Figure 2 shows a T /N D V I scatterplot derived A r a portion of Ae Bighorn Mountains (souA of Hardin,

M T) A r Ae con^siA  Period 13 (22 July -  4 August). The plot exhibits typical overall shape and 

dimensionality. Within Ae plot, however, Ae retamed pixels were coded accordmg to Ae daA Aom within 

the period A r which the pixel was retamed. The legend clearly shows that samples from AfArent daAs 

occupy significantly Afferent portions of Ae variable space. A  a standard model run, all pixels occurring 

at Ae envelope or boundary of Ae plot (maximum T, for each unique NDVI) would be used to At Ae 

regression line. Yet that sample envelope is almost exclusively popAated by pixels imaged on 31 JAy. I f  a 

regression line were At A  just a plot of 22 July or just to a plot of 28 JAy, one can see that each wo Ad have
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approximately the same slope, but a different y-intercept. Pixels retained from other dates within the 

period (25 or 29 July) show a pattern quite dilïerent from other dates, with low ranges in N D VI but higher 

variability in T,. This begs the question whether the effect is an artifact of scene geometry or possibly due 

to differences in illumination or setting/landcover. The fact remains that there are strong positional biases 

for pixel samples within the scatterplots. Pixels from any given date consistently occur in clusters within 

the area of interest

Figures 2 and 3: T./N D VI scatterplots showing date (left) and water (right) contamination problems.
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To examine the effect of biome type within the scatterplots, the landcover labels were identified for each 

pixel within each scatterplot. Figure 3 shows a plot for Period 13 (22 July- 4 August) for an area northwest 

of Boise, Idaho. Water pixels show low N D VI scores and cluster along the T, axis, as expected. The 

landcover classihcation scheme (an AVHRR based global landcover classification developed by the 

University of Maryland, publication pending) does not allow for "water" to be mixed with other cover 

types. Yet when the mixed forest pixels are identified, a cloud of mixed forest (and other class) samples 

aĉ acent to the "water" pixels is observed. The hypothesis is that this portion of the plot shows 

contamination of the "forest" pixels by water, similar to what Neman! et al. (1993) noted for their study 

area. Figure 4 shows a portion of an image map resulting from a T /N D V I model run for Period 13 (22 

July- 4 August). The area shown is Fort Peck Reservoir in northeastern Montana. The upper image shows 

an "alley" or edge effect around the reservoir, where the model derives a low slope (stress) score. This lack
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of detectable stress occurs around virtually every water body in each composite period. The lower figure 

depicts the same area for the same composite period, with higher T^NOVI scores assigned to the areas 

immediately adjacent to the reservoir. Apparently, when the window used to sample T /N D V I scores 

includes sangles that may be contaminated by water (mixed samples) this has the effect of flattening the 

slope of the regression line assigned to the window. The modification made to the model was to adopt a 

minimum ND VI threshold, below which the T /N D V I pair would not be used to estimate the regression 

line. Based on a review of scatterplots over the entire season, a threshold at a scaled value of 120 was set. 

Beyond the effect of water on the retained pixel samples, clouds and snow may also affect the size, shape, 

and distribution of points within the scatterplot. By establishing an N D VI threshold, these contaminated 

pixels can be removed from the estimation of moisture stress.
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Figure 4: Map of Surface Moisture Index showing the edge effect around Fort Peck Reservoir in 
northeast Montana (top). Bottom map shows same area after N D V I thresholding at 0.2.

- r

■
A closer look at the effect of biome type on T /N D V I performance can be gained by considering Figures 5 

and 6. Shown for a grassland cover type sang)le south of Fort Peck Reservoir for Period 9 (27 May -  9
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June), Figure 5 demonstrates the consistent variability in scatterplot samples according to imaging date. As 

noted above, there are strong tengxiral biases within any given sanqale. Regression line slopes fit to all 

sançiles (normal implementation), to 27 May or to the lower cluster would yield a similar slope value 

(stress level) but significantly dif&rent y-intercepts. Notable, this type of temporal bias has not appeared in 

any "forest" samples for the 1994 dataset; but it appears with some consistency in grassland settings.

Figures 5 and 6: Scatterplots illustrating date bias (left) and influence of lower left-edge pixels on 
SM I calculations (right).
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The primary biome bias that this data shows occurs in ENF cover types. As the factor analysis suggested, 

this particular setting is quite complicated and more difficult to interpret (perhaps due at least in part to 

terrain). Figure 6 shows a scatterplot for ENF (Period 13, 22 July- 4 August). The scatterplot has a 

"trapezoidal" shape that is consistent with most ENF plots. The difficulty presented in fitting a regression 

line to this type of scattergram is the shape of the envelope of retained pixels. If  a model were to retain all 

unique T /N D V I pairs (the upper boundary of the plot) the regression line would be very shallow to nearly 

flat. Yet closer examination of that boundary condition shows a series of T /N D V I samples at the upper 

right-hand edge of the cluster that are indicative of high-stress conditions. The effect of a model retaining 

all unique Tg/NDVl samples would then be to underestimate the potential stress indicated by the raw 

scatterplot. This may in part explain the low efficacy of the SMI model in ENF cover types in initial model 

runs. Unlike the grassland setting, however, establishing a minimum NDVI threshold of 118-120 w ill not
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change model performance. ENF settings have expectedly higher N D VI scores; perhaps a higher N D VI or 

minimum T, threshold could be set. Yet because it is not clear whether or not this lower-left edge effect is 

driven by contamination (clouds), illumination, poor surface/atmosphere coupling, geometry (ENF tends to 

occur in complex terrain), or the date bias shown in Figure 5, it is not clear at this time how the model 

needs to be adjusted.

Since ENF occurs across such large elevational gradients, a scatterplot of T /N D V I values may actually be 

composed of several individual clusters corresponding to elevation zones. Neroani et al. (1993) 

demonstrated the influence of elevation on the T /N D V I relationship suggesting that lower surface 

temperatures at high elevations are a function of adiabatic lapse rates and higher surface moisture 

associated with orographic precipitation. Given the results of Nemani et al. (1993), it may be possible to fit 

a unique T /N D V I regression line to each elevation zone that can be discriminated in a scatterplot. In 

exceptionally complex terrain, however, elevation zone clusters may not be distinct. In such cases, the 

single large clusters characteristic of ENF may actually represent a continuum of T /N D V I slopes each 

req)onding to an elevation zone. It is suggested that stratification by elevation zone or modihcation of 

window sizes in conplex terrain may at least partially solve the lower-left edge problem described 

previously.

PERFORMANCE OF SM I AS A  FIRE PO TENTIAL INDEX

Fire danger across a landscape is a function of weather, topography, and fuels. Measurements of surface 

wetness provided by T /N D V I are only one part of the equation that defines fire danger. Con^lex 

interactions between teng)erature, relative humidity, wind, slope, aspect, fuel types, loadings, and 

arrangements largely determine how fires will actually behave. Consequently, it is important to note that 

the T /N D V l is not a fire danger rating index, but rather is an index of the potential for fire activity given 

the appropriate topographic, meteorological, and fuels variables.
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Although several problems with the current implementation of T /N D V I (outlined above) have been 

identified, the algorithm performs well enough, at least in some landscapes, to perform a preliminary 

conparison with actual fire potential. At the outset, it was noted that establishing a measure of actual fire 

potential is an iirprecise endeavor. Certainly, actual fire potential should be linked in some way to 

occurrence and behavior of fires. However, because one is unable to isolate the surface moisture 

conponent hom the weather-topography-fiiels triangle and cannot identify a human intervention factor, the 

abihty of variables like fire size to approximate fire potential must be rehed upon. The assumption being 

that given a large enough sample (3,504 fires), fire potential can be generally represented by fire size.

The widely available fire occurrence data from U.S. Forest Service and Bureau of Land Management 

sources was used to estimate fire potential, recognizing the shortcomings of these datasets in terms of both 

accuracy and attribute diversity. Fires for both agencies are stored as points in similar format Arclnfb 

coverages. However, the attribute tables assembled by each agency are quite different in terms of the type, 

number, and arrangement of Helds. In general, the ELM maintains more detailed records than does the 

USFS. The BLM dataset includes attribute fields for resource commitments, cost-codes, ownership, fuels, 

weather, and topography. Attribute fields common between agencies include fire location 

(latitude/longitude and UTM ) detection and control dates, fire size, fire id number, and administrative unit.

Fire coverages were overlaid on projected raster layers of T /N D V I and each fire point was assigned to its 

nearest neighbor pixel. I f  a fire point was within 500 meters of a pixel centroid, it was assigned to that 

raster and labeled as a fire. I f  the Euclidean distance between a pixel centroid and a fire exceeded 500 

meters, the fire was flagged as possibly belonging to that pixel. Seventy-nine percent of the assignments 

were labeled fires and 21 percent were labeled possible fires, as expected based on raster geometry. 

T /N D V I values were extracted for each fire pixel. For the purpose of this paper, possible fire pixels were 

excluded ffom further analysis (3,504 of 4,436 fires are included).
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We chose Hre size at time of control as an indicator of actual Hre potential, recognizing the complex 

interactions of factors that govern the growth of a fire. Logic dictates that fire danger must be high if  a fire 

becomes large, but may or may not be high if  a fire remains small. Further, surface moisture status must be 

appropriately low for a fire to grow regardless of the other factors that govern fire behavior.

We divided fire pixels into two groups based on size class in order to facilitate chi-square analyses. All 

fires one acre in size or smaller formed the first group and those larger than one acre formed a second 

group. The one acre threshold was selected for two reasons. First, it was attempted to roughly balance the 

number of fires in each groiq). Second, anecdotal Held experience suggests that fire potential is reasonably 

high if  a Hre grows beyond one acre. This latter point is recognized as fairly subjective and probably more 

true in forested landscapes than in grasslands. Readers should note that fire sizes reported by both the 

USFS and the BLM are usually estimated by Held personnel either by eye or by pacing. Actual area burned 

is only measured on the very large fires, typically using airborne infrared line scanners. Our experience 

suggests that small Hres are usually estimated at .10, .50, or 1.0 acres. As Hres grow beyond one acre. Held 

personnel are more likely to pace the perimeter and to calculate rough acreage using 

perimeter/shape/acreage tables. Finally, many of the very large Hres burned for weeks or months.

However, only those T /N D V I values for pixels that a Hre was detected in and for the composite period 

during which it was detected, were used. Presently, daily or weekly fire growth and perimeter data is 

lacking, so the ability to track the movement of Hres through space and time was not possible.

A two-sample chi-square test was used to compare Hre size with T /N D V I. Four categories of T /N D V l 

were selected. Positive or zero-slope T^^NDVI values were classiHed as "no stress." A slope o f-1 

indicated "stress", a slope of -2 indicated higher stress, and so on. Again, the attenqat was to roughly 

balance the number of observations in each T /N D V l class.

A signiHcant relationship between T /N D V I and Hre size was observed for grasslands, although the 

relationship was not strong (Table 2). Large Hres occurred in areas of T/NDVl-derived moisture stress
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more frequently than one would expect due to chance alone. This result confirms earlier observations that 

Tg/NDVI scores discriminate between surface moisture variations in non-forested areas during the peak of 

the 1994 Hre season. As the Hre season began to peak (AVHRR composite Period 13,22 July -  4 August)

114 Hres occurred in grassland/ shrubland. Twenty of these Hres occurred in areas of no detectable stress; 

of these, nine were less than Hve acres in size. Although 82.5 percent of Hres occurred in areas exhibiting 

moisture stress, only 18 percent of the study area showed moderate to extreme stress (Figure 7.) As 

expected from earlier observations, no relationship was observed between T /N D V I and Hre size in forested 

areas or when all Hre pixels were included in the analysis (Table 2).

Table 2: T /N D V I-F ire  size chi-square statistics for three landscapes (18 March -  IS September,
1994).____________________________________________________________________________

Chi-square df Significance

Ts/NDVI (Grassland Fires) 4.374 3 .20
Ts/NDVI (Forest Fires) 1.885 3 -----
Ts/NDVI (All Fires) 2.446 3

A second set of chi-square statistics was generated, this time comparing Hre size class to N D VI and to 

Burgan et al.'s (1996) Relative Greenness and Departure Horn Average Greenness (Table 3). A 

hypothetical maximum range of positive N D VI scores (0.0 to 1.0) was divided into Hve equal classes and 

each class was populated with the NDVI scores of Hre pixels. Both Relative Greenness and Departure 

Hom Average Greenness were split into six equal area classes.

Table 3: Chi-square statistics for 'greenness' variables (18 March -  15 September, 1994)

Chi-square df_____ Significance

NDVI (All Fires) 4.490 4 .25
Relative Greenness (All Fires) 8.846 5 .25
Departure (All Fires) 10.8445 5 .10
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SigniHcant relationships were observed between Hre size class and each of Hie three 'greenness' variables. 

Again, large Hres occurred more HequenHy than expected in areas of low NDVI/larger negative departures 

Hom normal. The strongest relationship was found in the Departure Hom Normal N D VI product.

We draw two signiHcant conclusions Hom these results. First, NDVI and its surrogates appear to 

characterize Hre potential better than the current implementation of T /N D V l. The N D VI conqxment of the 

T /N D V I index is probably also the primary driver of the observed relationship between T /N D V I and Hre 

size in grassland environments. Given the scatterplot results described previously, these findings are not 

surprising. Our second conclusion concerns the "Departure Hom Normal". Measures of departure may 

provide more meaningHil characterizations of Hre potential. Given the results Hom this exploratory analysis 

of the T /N D V I scatterplots, the comparatively low performance of SMI is not surprising. The hypothesis, 

however, is that the T /N D V I relationship can be more rigorously modeled using corrections or adjustments 

described above. Theoretically, one would expect that the T /N D V I relationship would perform better than 

raw NDVI scores or derivatives. Results to-date are strongly suggestive of just such an increased 

sensitivity; although statistical signiHcance at the present time is low.

Departure and cumulative indices are attractive alternatives to daily or weekly synoptic measurements 

because they provide an environmental context for each score. Given a relative level of inexperience with 

Tg/NDVI, it is difficult to interpret the response of Hre potential to surface moisture measurements without 

such context. Departures and cumulative indices also expand the timeHames in which the environment is 

monitored. This is an especially important consideration in Hre potential monitoring because a moisture 

index ideally must capture variations in moisture contents of different fuel size classes to be fully effective 

as an indicator of Hre potential. To do so, an index must reHect surface wetness at several time scales. The 

Palmer Drought Index (PDl) is an example of a relatively long-term drought index that measures moisture 

status over periods of several months. The Palmer Index calculates a normalized water-balance by 

opposing precipitation and stored soil moisture with évapotranspiration, runoff and soil recharge. As a 

long-term index, the Palmer is useful for regional assessments of moisture status and helps Hre managers to
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identify areas that may experience severe fire seasons. A shorter-term drought index, the Crop Moisture 

Index (CMI), is perhaps better suited for estimation of within-hre-season fire potential because it operates 

at a weekly timescale. The CM I utilizes mean weekly ten^erature and precipitation to credit or debit soil 

moisture in the crop/soil system from the previous week's values.

Figure 7: Land area within each stress category for composite Period 13. O f 114 Gres on BLM  
lands, 82.5 percent occurred in stressed areas as mapped using SM I.
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A significant shortcoming of both the PDI and the CM I is that they measure moisture status only at discrete 

locations. In fact, all drought indices that rely on meteorological variables as input are limited by the 

spatial discontinuity of reliable weather stations. Spatially continuous measurements of moisture status 

across the landscape would be far more useful to fire managers wishing to discriminate differences in Gré 

potential between sub-regions or watersheds. As a result, satellite-based observaGons of such variables as 

vegetaGon condiGon are increasingly being looked to as surrogates for meteorological observaGons. The 

Tg/NDVI presented here is a new biophysical model that incorporates satellite observaGons of surface 

temperature and vegetaGon status to calculate surface wetness.
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CONCLUSIONS

The goal of this research was to idenGfy sources of performance sensiGvity, maximize responsiveness to 

surface condiGon/status, and to achieve conq)utaGonal consistency and efficiency. Although empirical 

validaGon of model performance is intractable at best, the results from assessing the performance of this 

model for the 1994 fire season in Montana and Idaho revealed several issues related to model performance 

and sensiGvity. In this paper three primary effects that must be considered in further research and 

development of the method have been reported.

Compositing Method: Date and Geometry Effects

Recent studies have suggested that the maximum ND VI composiGng method may not be the most ngorous 

for altemaGve uses o f AVHRR data. While it generally results in relaGvely cloud free images, recent work 

shows that compositing may cause preferenGal selecGon of off-nadir pixels (Stoms et al., 1997). As look 

angles increase, thermal signals associated with that pixel will be attenuated simply because of the 

increased atmospheric path that signal must travel through. By using maximum NDVI composites, SMI 

algonthm performance may suffer &om attenuated thermal signals, parGcularly over the two-week 

congmsiting penod. These quesGons will be addressed by obtaining mulGple daily data and invesGgatmg 

the range in model output vanability due to corcpositing methods. Perhaps a better method of calculaGng 

SMI would be to inplement a daily protocol (that also restricted sanples to near-nadir locaGons) and 

conposite SMI outputs via a maximum value rule at an appropnate Gme step.

StraGGcation: Landcover and Terrain Effects

The ability to consider the effect of biome type or landcover on SMI values is ulGmately dependent on the 

availability and quality of a suitable cover type map. Our applicaGon of the M D Landcover map, denved 

6 om AVHRR data, allowed us to uncover a consistent and systemaGc performance difference in grassland
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and ENF cover classes, as well as to document the effect of water contaminaGon within a given sample 

window. Biome straGGcaGon and terrain correcGons pnor to SMI estimaGon are worthy of addiGonal 

tesGng. The tension between capturing process at appropnate geographic (within biome or terrain strata) or 

tenporal scales may ulGmately depend more on the use and interpretaGon of the SMI and less on achieving 

a standard normal model form that is applicable in all condiGons. That is, if  the analyst or decision-maker 

is more concerned with conservaGve esGmates of Gne fuel condiGon and less interested in high elevaGon 

large fuels, a different model may need to be applied than for the reverse case.

OperaGons: ComputaGonal Efficiency and Window Size

Given model sensiGvity, several adjustments to the iniGal model have been made (e.g., water adjacency 

effects) and addiGonal changes are strongly suggested. There is, however, a need to maintain efGciency if  

pracGcal applicaGon of the model is to be achieved. Window size, shape and iteraGon method could all be 

actuated to Gt unique condiGons encountered during data processing. For exanple, to minimize the 

difGculGes in esGmates over ENF setGngs, higher elevaGon setGngs may simply be excluded Gom the 

analysis using an elevaGon threshold. Gradients along as well as across elevaGon zones may need to be 

considered.

AddiGonally, the desire to Gt more than one regression line to an ENF scatterplot that does not show unique 

clusters within a scatterplot may place a real burden on the analyst. Based on a careful review of large 

numbers of scatterplots several unique and correctable sources of variaGon in SMI esGmates were 

idenGGed. These are driven by internal effects caused by the model implementaGon and data protocols and 

not by real-world variaGon in surface moisture condiGon. It is desirable to isolate, quanGfy, and wherever 

possible, miGgate these effects. A senous consideraGon in terms of model implementaGon is to allow 

analysts to explore each scaGerplot to look for internal sources of vanaGon that may not be related to actual 

ground condiGon.
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Suggestions for Further Research

Perhaps the most pressing needs are for inclusion of surface meteorology and long-term climate ^ ta  sets in 

any strategy designed to validate the SMI technique. The near-term availability of higher-quality, 

calibrated remote sensing data streams (e.g., MODIS) may reduce the occurrence of internal errors or 

inconsistencies. Yet this does not diminish the value of pathfinder SMI data. While researchers condnue 

to acÿust the model based on the effects noted above, one must recognize that a conqarehensive validaGon 

strategy is difficult to achieve given that the parameter of interest caimot be pracGcally (empincally) 

esGmated at regional scales. Results to date suggest that analysts should adapt an ND VI threshold to 

eliminate contaminated pixels (compositing does not remove all cloud effects), should examine for 

temporal biases within composite data scatterplots, and may need to consider biome type and terrain 

straGGcaGon. Although not examined here, further decomposGons of the T /N D V I scaGerplot and analysis 

of y-intercept scores may prove useful as well.

Another area worthy of addiGonal work is the need to develop departure/deviaGon indices. As the Chi 

Square results of Burgan's N D VI and Departure Index suggest, ND VI alone exhibits discnminaGng power; 

exactly what increase in efGcacy is gained via adding T, data is not a single quesGon to address. While 

theoreGcally robust, temporal and geographic vanability make it hard to implement a run-time model and 

suggest that inter- and intra-annual traces of stress (Ts/NDVI slope) versus time will be criGcal for 

responding to Gre manager and decision maker needs. As menGoned above, different fuels behave on 

signiGcantly different time scales. In some cases (e.g., Gne fuels) short interval snapshots are needed, 

while large fuel condiGon would be more likely to respond to a longer-Gme scale assessment of moisture 

sGess (e.g., cumulaGve T /N D V l curves or departures Gom long-term "normals"). Baselines for estimaGng 

short and long-term departures are needed, and may become cnGcal to adding context to new data streams 

that will denve Gom NASA's EOS program.
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CHAPTERS

D ERIVATIO N OF THE W ATER D E FIC IT  INDEX

INTRODUCTION

As mentioned in the previous chapter, there are a number of shortcomings associated with the SMI 

inq)lementaGon illustrated in Chapter 2. Though that method shows some promise, particularly when 

considering the landscape scale at which it was implemented, the decision was made to incorporate 

alternative techniques in the attempt to improve model performance. One of the most promising uses of the 

generalized T /N D V I relahonship was shown by Moran et al. (1994a). They developed the Water DeGcit 

Index (W DI) Miich includes in its calculaGon an assessment of near surface air temperature. The 

incorporation of air temperature allows for increased discriminating power in surface moisture status due to 

the reconciliadon of ambient air tenyerature ing)acts on radiant surface temperature. By being able to 

assess how much warmer the canopy surface temperature is in comparison to ambient air tenperatures (i.e. 

surface tenperature -  air tenperature), one can more robustly assess the sensible heat parGGoning that is 

occurring. A canopy exhibiGng a 10° C tenperature above the anibient tenperature is more likely to be 

suffenng water sGess than a canopy showing a 2° C increase, regardless of what the actual surface 

temperatures may be. The incorporaGon of surface meteorology in the W DI logic leads to an improved 

ability to assess surface moisture conditions.

Since the W DI logic shows great promise, the choice of modifying the onginal SMI iirplementaGon and 

incorporate much of the W DI technique into a new algonthm, was made. As the W DI logic is integral to 

the forthcoming SMI technique, a Grll treatment of its denvaGon is appropnate. This chapter will discuss 

the logic and denvaGon associated with the W DI. It will include a discussion of the Crop Water Stress 

Index (CWSI) vdiich provides the predicate for the WDI.
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THE WATER DEFICIT INDEX

Moran et al. (1994a) developed the water deGcit index (W DI) Gar use in parGally vegetated sites. The logic 

Gar this index comes from the Crop Water Stress Index (CWSI) (Jackson et al., 1981). The W DI is related, 

by deGniGon, to the raGo of actual to potenGal evapotranspiraGon. The W DI can be computed based on 

remotely sensed informaGon of red and near inGared reGectance and surface temperature, with a minimum 

of on-site meteorological data. The following begins wth brief reviews of the surface energy budget, 

moves to the CWSI logic and conclude with the denvaGon of the W DI. The equaGons and concepts 

presented come directly Gom Moran et al. (1994a), but may be found in vanous other publicaGons 

(Campbell and Norman, 1998; Jones, 1992).

The net radiaGon reaching the Earth's surface is conserved according to the following equaGon:

Rg = H + G + XEf + e (1)

where Rg is net radiant heat Gux density, H is the sensible heat Gux density, G is the soil heat Gux density, 

kEp is the latent heat Gux density (the product of evapotranspiraGon rate, Ê , and the latent heat of 

vaporizaGon, X), and e is an error term associated with minor components of the surface energy balance 

such as photosynthesis. AU terms are in W m"̂  and are considered posiGve when directed away Gom the 

surface. The terms H and AÊ  can be expressed, respecGvely as:

=  (2)

(3)
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where is the volumetric heat capacity of air, is the crop foliage temperature, T , is the air temperature, 

VPD is vapor pressure deScit, y is the psychrometric constant, and r, and r̂  are aerodynamic and canopy 

resistances to vapor transport, respectively. The G term in Equation (1) is generally expressed as a linear 

function of Gactional vegetaGon cover and net radiaGon. (Clothier et al., 1986) descnbed G as 0.3 Rg for 

bare soil and 0.1 Rg for full vegetaGon cover. Assuming a full canopy cover and ignonng the usually minor 

impact of e (from EquaGon 1), equaGons (1), (2), and (3), can be rearranged such that:

{A + X l + % ) } ]  {A + X l + % )}
- ] (4)

where A equals the slope of the saturated vapor pressure-tenperature relaGonship.

Crop Water Stress Index

The Crop Water Stress Index (CWSI) is commonly used for detecting plant moisture stress based on 

differences between air and vegetaGon temperature. It has been correlated with numerous surface water 

parameters such as soil moisture content, plant water potenGal, photosynthesis, and crop yield (Idso et al., 

1986; Jackson et al., 1987; Moran et al., 1994a). The development of the CWSI by (Jackson et al., 1981) 

was made by combining equaGons 1-3 such that:

A /^ -h Q (F P D ),

A - h / ( l+  ^
(5)
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EquaGon 5 is the Penman — Monteith equaGon for calculating evapoGanspiraGon (Monteith, 1973b). By 

taking a raGo of actual to potential ET (actual ET for any r, and r̂  = r̂ , for potenGal ET) the following can 

be denved:

rp

A -f y ( l +

(6)

where r ,̂ is canopy resistance at potenGal ET (AE,,). The range of the crop water stress index ranges from 

zero (anple water) to one (maximum stress), such that:

1 -

rp.

/  a _
-

/  a

/  a _

(7)

EquaGon 7 is solved for a value of ryr, by rearranging equaGon 4:

- [ K - î : , K A + r ) ] - y ™ |

(8)

Then, r, /  r, is subsGtuted in equaGon 7 to obtain the CWSI.
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AltemaGvely, equaGon 7 can be solved by measunng — T, and combining Giat with theoreGcal limits of 

T( -  T , (using equaGon 4) to calculate the CWSI as follows:

CH%T =  1 - i £ , . /
[X -TX - iT , -TX \

(9)

where the subscripts m, x, and r refer to minimum, maximum, and measured values, respecGvely. For well- 

watered fuH-canopy vegetaGon,

I  q.
(10)

where rgg = r—. For Gdl-canopy water-limited vegetaGon:

X - tX  =
A + / i + r ^ l

\  /

(11)
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where r̂  ̂is the maximum canopy resistance resulting from complete stomatal closure ( 7^ —> co ). Values 

of r^ and ran can be obtained from measurements of stomatal resistance ( r j and leaf area index (LAI):

( 12)

for LA I values greater than zero. Values of maximum and minimum stomatal resistance can be found in 

the literature for a variety of atmopheric condiGons and vegetaGon types. In lieu of published values,

estimates of r^, = 25-100 s m"' and r^ = 1000-1500 s m ' are reasonable and will not result in significant 

error (Moran et al., 1994a).

Though the CWSI, by definition, can not be applied to bare soil, the theory behind CWSI can. The result is 

a Water Deficit Index (W DI) introduced by Moran, et al. (1994a). Using equaGon 9 to determine the actual 

to potenGal soil evaporaGon (not ET) results in:

where T  ̂equals the surfiice temperature of the soil and AÊ  and AEq, refer to actual and potenGal soil 

evaporaGon rates, respecGvely. Soil tenperature may be determined in an equivalent manner as vegetaGon 

tenperature using equaGon 4. In the applicaGon to bare soil, G is not negligible. In fact, G may reach

0.5Rg for dry soils (Idso et al., 1975; Moran et al., 1994b). Therefore, G must be incorporated into equaGon 

4 and a(̂ ustments made to the r̂  term such that it is appropnate for soil values. For well-watered bare soil 

(ro=0):
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X - tX ' r  %  -  G) C. (A + y) l A  +  y ) (14)

For dry bare soil, where r̂  = «  (the soil analogue o f conplete stomatal closure):

te C„ (15)

Equation 13 provides an index equivalent to the CWSI for bare soil depicting the ratio of actual to potential 

evaporaGon. The values, like those of CWSI, range Gom 0 -1 , where 0 descnbes a condiGon of abundant 

water availability (AE, = AE^J and 1 depicts a large water deficit.

The VegetaGon Index/Temperature Trapezoid

Moran et al. (1994a) hypothesized that a trapezoid shape would appear in a plot of GacGonal vegetaGon 

cover versus (T ,-T J . The verGces of this trapezoid would correspond to fiiU vegetaGon cover and bare

soil, both at moisture extremes (maximum water stress and maximum water availability). Figure 1 

illustrates this concept (denved fiom Moran et al., 1994a). The value for the G)ur verGces can be calculated 

as G)Uows: for vertex 1 (well watered vegetaGon):

te-rj,= X K - g ),
r 1 + ^

/'t
A + y 1+ y  

\

(16)
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where the subscript 1 refers to vertex 1 in figure 1, and each additional numeric subscript in the (T,-TJn 

will refer the respected vertex. For water stressed full cover vegetation (vertex 2):

X K - g I
1 +  '

A  +  yf 1 +  ^ A + 1 1 1+
//:z

(17)

where r^ is the canopy resistance resulting firom stomatal closure. Vertex 3 is calculated as:

te
r  ( j; ,  -  c y  1 r FPZ)"

A . _(A +  y)_ _A +  y_
(18)

The dry bare soil vertex (vertex 4) is calculated as:

t e , - r J 3  = t e . - t e
C„

(19)

Based on this theory, it is possible to measure the fractional vegetation cover and temperature relationship 

for an area that should fit within the theoretical limits of the trapezoid. Then, the ratio of CB/AB would be 

equivalent to AE/AEq,. Given knowledge of meteorological conditions, AEq, could be computed and actual 

ET rates derived. Since CB/AB is equal to AE/AEq,, the Water Deficit Index (W DI) is related to CB/AB as 

such (from equation 13):
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Figure 1: Water DeGcit Index trapezoid.
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As a proof of concept, Moran, et al., (1994a) conducted an experiment in an alfalfa Geld located in Arizona. 

Eighteen plots of alfalfa (2 replicates) were differentially irrigated to induce variable degrees of water stress 

at different times. Micrometeorological data were collected and evaporation rates measured consistently 

throughout the experiment. Additionally, a ground based mulGspectral radiometer (Altered to match TM  

band passes) collected red and near-infraied reGectance, and thermal emittance. From the radiometer data, 

the SoG Adjusted VegetaGon Index (SAVI) (Huete, 1988) and surface temperature were calculated. SAVI 

was chosen based on the premise that the vegetaGon index needs to track variaGons of vegetaGon cover 

without being affected by soG background variabGity (parGcularly for areas with lower GacGonal
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vegetaGon cover). Using the remotely sensed products and the meteorological data, the trapezoid for the 

expenmental plots was realized and the W DI was tested against measurements of A.E/XEip, and CWSI.

Overall, the W DI matched the calculated CWSI quite well, though W DI values were consistently higher. 

Based on lysimeter measurements and calculaGons of W DI performed well in the Grst half of the

growth cycle. Towards the end of the growing season, discrepancies began to appear. The authors, 

however, attribute these discrepancies to plant access to soG moisture below that which the lysimeters 

could measure. In concluding, it was suggested that the V IT  concept and W DI were promising techniques 

for assessing ET rates and plant water stress.

Vidal and Devaux-Ros (1995) used the W DI method to develop spaGally explicit maps of Gre potenGal for 

an 888 km  ̂area of Mediterranean forest in France. Their invesGgaGon was centered on two issues: Grst, 

the overaU usefiGness of the W DI in predicting Gre starts, and second, testing the ability to create the 

trapezoid shape Gom remote sensor data with litde ancillary informaGon. To this end, Landsat ThemaGc 

Mapper data were acquired Gom three scenes from two different years (9 August, 1990,29 July, 1992, and 

14 August, 1992). These dates were chosen because they had litGe cloud cover and coincided with dry 

penods in the study area. InformaGon on fire starts was obtained Gom a French database of locaGon, areal 

extent, and miscellaneous ancillary data for use in congyaraGve analysis with the W DI.

The verGces of the trapezoid were esGmated two ways. The Grst method used was theoreGcal calculaGons 

of the trapezoid limits using sateGite denved surface temperature, N DVI, and meteorological data. The 

second method relied on the satellite data and air tengrerature to deGne the verGces. The satelhte-denved 

trapezoid was deGned according to the following rules for a scatterplot of T, and NDVI:

1. VerGces 1 and 3 correspond to the minimum value of T, — T , Gom the image and meteorological data.

2. VerGces 1 and 2 are the maximum values of ND VI observed within the image.

3. Line 2-4 follows the nght limit of the scatterplot.

4. Line 3-4 is deGned by an NDVI value of 0.09, idenGGed as the bare soil maximum N DVI score.
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For the August scenes of 1990 and 1992, overall correspondence between the theoretical method and the 

scatterplot method was high. For July 1992, however, image derived trapezoid limits were not highly 

correlated. The authors suggest this was caused by above average rainfall for the month resulting in a 

decreased estimation of the "warm edge" (the area of maximum T,-T , for each N DVI, line 2-4). The result 

illustrates an assun^tion that the image will contain all possible degrees of water stress for given fractional 

vegetation cover. This assumption was clearly not met in July 1992, while in August of 1990 and 1992 it 

may very well have been met. The CWSI was also calculated for these periods and used in comparison 

with W DI values. It was found that for low N D VI values, both CWSI and W DI are very similar while high 

ND VI values cause CWSI to underestimate the stress level. This underestimation, according to the authors, 

grows stronger as stress increases.

Regardless of the poor showing in July 1992, the authors were interested in developing an index rather than 

absolute estimates of latent heat flux. Therefore, they tested the value of W DI in estimating fire potential. 

For 9 August, 1990 CWiSI and W DI were calculated from meteorological and TM  data, respectively. Fire 

starts occurring after the TM  overpass and greater than 1 ha were also extracted from the government Are 

database for comparisons.

The authors report that both CWSI and W DI performed well at predicting fire events in the study area. For 

the W DI, areas with values greater than 0.6 were coincident with all fires greater than 1 ha. This 

performance was met while only classifying 19-20 percent of the landscape as greater than 0.6 W DI. The 

CWSI showed very similar results. The benefit of using an image-derived W DI in fire danger predictions 

comes from the fact that conprehensive meteorological data is not required. Rather, estimates of air 

tenperature extrapolated across the landscape are the only non-remote sensor data input. This method still 

relies on the assumption that complete categories of water stress are contained within the image.
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SUMMARY

As shown in the preceding pages, W DI is logically related to the ratio of actual to potential ET. Since 

actual ET is limited below that of potential ET in water limited conditions, the W DI is a rational method for 

assessing surface moisture status. One of the primary benefits of W DI is the rational theoretical basis from 

which it was derived. Additionally, as discussed above, Vidal and Devaux-Ros (1995) showed the WDI 

technique functioned well as a Ere danger indicator in Mediterranean forest types. All of these combined 

form the basis for my inclusion of the W DI logic in the re-formulation of the SMI algorithm (chapter 5).

The W DI logic requires the inclusion of near surface air temperatures in its calculation. Since landscape 

assessment of moisture status was the primary concern, it was not possible to use meteorological station 

data in the W DI formulation. By attempting to include actual station measurements of air tenperature, the 

conplexity of the SMI model would have increased to such a degree that the one of the stated goals of 

maintaining computational efEciency would likely have been lost. The result was the requirement that a 

robust and logical technique for estimating near surface air temperatures be developed that provided 

adequate results while maintaining computational efficiency. Chapter 3 is concerned with this issue and 

will discuss the methods used for the critical air temperature estimates.
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CHAPTER 4

ESTIMATING NEAR-SURFACE AIR TEMPERATURE

INTRODUCTION

Gridded near surface air tenyerature (T,) has been a much sought after variable in the realm of earth 

system science because of the importance T, plays in regulating many terrestrial processes. Approaches to 

deriving these surfaces have resulted in varying techniques, ranging from spatial interpolations of 

meteorological station data to satellite and aircraft remote sensing methods of predicting T,. The various

station-based interpolation techniques suffer from an arbitrary location of weather stations that often lack 

near real time data access ability. This has driven many researchers to look for satellite-based methods of 

Elling the gaps.

The relationship between vegetation indices and surface temperature (T,) has been well established and 

exploited for a variety of means. Examples include surface resistance and vegetation water balance 

(Carlson et al., 1994; Nemani et al., 1993; Nemani and Running, 1989), atmospheric water vapor (Prince et 

al., 1998), and predictive Ere danger (Vidal and Devaux-Ros, 1995). However, one of the more interesEng 

appEcaEons of the T, and vegetaEon index (Ts/VI) relaEonship has been the derivaEon of T, (Czajkowski 

et al., 2000; Goward et al., 1994; Prihodko and Goward, 1997).

The more common sateUite based techniques for esEmaEng T , rely on the negaEve relaEonship between a 

vegetaEon index (V I), often the Normalized Difference VegetaEon Index (N DVI), and a calculated T, Eom 

thermal channel data. A relaEonship is deEned through regression analysis and extrapolaEons occur to 

some theoreEcal V I value that represents a full canopy as viewed by the sensor. The theoreEcal full canopy 

is important due to the low thermal mass of the canopy and thé noEon that this canopy T, will likely be near 

the local T,. Indeed, microclimate studies have shown this to be the case (Aston and van Bavel, 1972; 

Gates, 1980; Geiger, 1965). Most examples of satelEte based T , esEmaEon follow this concept and rely on 

a neighborhood analysis for defining the T /V I relaEonship. Goward et al. (1994), Prihoko and Goward
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(1997), Prince et al. (1998), and Lakshmi et al. (2001) ail use a neighborhood of Advanced Very High 

Resolution Radiometer (AVHRR) pixels to deEne the relaEonship and extrapolate accordingly.

Coirqrarisons are typicaDy made with weather staEon data (Goward et al., 1994; Prihoko and Goward,

1997; Prince et al., 1998) or with other remote sensing derived air temperature esEmates (Lakshmi et al., 

2001).

This chapter will test a method of estimating near surface air temperature using NOAA AVHRR comparée 

data in an area of con^lex terrain. Composite data was chosen because it is readüy available and efEcient 

with which to work. Since composite data are being used, a non-neighborhood technique wiE be presented. 

The goals are to achieve provide robust estimates of air temperature Eom satellite data whEe maintaining 

computaEonal efEciency. This study was conducted over one complete growing season and uElizes 

independent gridded air tengierature surfaces for direct Eme of satellite overpass comparisons.

METHODS

Site Description:

This study was conducted in the Bitterroot VaUey of Western Montana, USA (Figure 1). It was chosen 

because it is representaEve of both the conqplex terrain and vegetaEon cover found in the Northwestern 

United States. The geographic extent was deEned by the 1:100,000 scale 11 digit 4*'' Hydrologie Unit Code 

(HUC) developed by the USDA Natural Resources ConservaEon Service, Montana State ofEce. The 4 * 

HUC defines major drainage basins and in this case delineates the Bitterroot River and major tributaries. 

The Bitterroot Valley is characterized by a m^or mountain range on its' western border and a lesser range 

on the eastern border. VegetaEon is typically agriculture and grasslands with nparian vegetaEon along 

river corridors at low elevaEons and mixed conifers at mid to high elevaEons. The mixed conifers 

transiEon Eom Pmuj f onEeroWAguciom/ga menzfgjü through contorta and into f i c c a / v f m i x e s

at higher elevaEons. The highest peaks are characterized by alpine vegetaEon on the Western edge of the
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study area. ElevaEons range Eom approximately 976 meters where the Bitterroot River joins the Clark 

Fork of the Columbia River to 3098 meters at Trapper peak. The Bitterroot HUC stretches approximately 

157 km north-south, approximately 58 km east-west, and contains approximately 743,000 Hectares.

Figure 1: Study site, Bitterroot Valley, western Montana, USA.

Am #
K g *
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Satellite Data

Since 1987, the U.S. Geological Survey's EROS Data Center (EDC) has been receiving, processing, and 

archiving AVHRR data. For this study biweekly maximum N D VI composites denved Eom aAemoon 

overpasses ofNOAA-14 were obtained. The maximum N D VI compositing technique relies upon 14 daily 

calculaEons ofN DVI. The maximum N D V I observed per pixel in that period is retained and all individual 

channel data (channels 1-5) Eom the day of maximum ND VI observaEon are also retained in the data set. 

AddiEonally, there are three geometry El es included: satellite zenith, solar zenith, and relaEve zenith angles 

as well as a date Ele referencing the day of data retenEon within the composite period. The channel data 

are converted to percent reEectance (channels 1 and 2) and brightness tençerature (channels 3-5). The 

maximum NDVI conq)osite technique is used to minimize cloud contanhnaEon (Holben, 1986), however, 

recent studies indicate a preferenEal selecEon of ofEnadir pixels (Stoms et al., 1997). In addiEon to 

calibraEon and conqx)siting, aU data are registered and projected at EDC into Lambert's Azimuthal Equal 

Area projection to facilitate expeditious use in geographic studies. 1997 composite periods PIO through 

P19 (9 May -  25 September) where used in this study. No radiometric or geometric post processing of the 

EDC data was done.

Processing SEeam

Figure 2 describes a conceptual layout of the processing stream used to esEmate am temperature. This 

Eowchart will be referenced in the explanaEon of the methods. Part one refers to the calculaEon of surface 

tenqxrature and emissivity estimates. Part two discusses the site mask imposed on the analysis, and part 

three explains the central processing loop. The core process relies on inputs Eom parts one and two and 

produces speciEc output Eom the composite data for all pixels not removed by the masking criteria.
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Figure 2: Flowchart showing processing stream.
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Surface Temperature (Part 1)

The split window technique of Ulivieri et aL (1994) was used in this study to calculate surface temperature. 

The primary reason for using this technique is its simple formulaEon, accurate results (Vazquez et al.,

1997; Ouaidraii et al., 2002), applicability across mulEple AVHRR sensors (Ouaidrari et al., 2002; Ulivieri 

et al., 1994) and its relative resistance to emissivity errors (Vazquez et al., 1997). The surface temperature 

(T;) fbrmulaEon is as follows:

7; =  7; +1.8(7;-7;) +  48(1 -  g) -  ?5(g, -  g,) (eq. 1)

where T4 and T5 are brightness ten^)eratures of AVHRR channels 4 and 5, respectively, 64 and e, are 

emissivity estimates for channels 4 and 5, and e is mean emissivity of channels 4 and 5.

The choice was made to estimate emissivity in an attempt to reduce the associated error in T, calculaEon, 

which can be quite large. The methods of van de Griend and Owe (1994) for estimating E4 (equaEon 2) and 

the Thornton method (Thornton, 1998), which was developed over a region that includes this study area, 

where used to estimate the difference in channel 4 and 5 emissiviEes (Ae). Average emissivity (e) and E; 

were then calculated from the esEmated parameters. EquaEons two and three are empincal relaEonships 

while four and Eve are simply algebraic expressions. FormulaEons are as follows:
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= 0.99 -  0.09^̂ '̂  (eq. 2)
0.6

Ag = -0.02938 +0.04957 (eq. 3)

g; = ĝ  -  Ag (eq. 4)

g =  (eq. 5)

Site Mask (Part 2)

There were a series of constraints imposed upon the esEmaEon of T  ̂to remove pixels that contained cloud 

contaminaEon, undesirable landcover classes, extreme satellite zenith angles, or relaEve azimuth angles 

that would likely lead to poor predicEons of air temperature. Any pixel in the data that failed to meet the 

listed cntena was removed from further analysis. Cloud contaminaEon, undesirable landcover classes, and

satellite zenith angles will be discussed below. The addition of the relative azimuth constraint will be 

discussed in the results secEon.

The methods of deEning cloud-contaminated pixels were based on the methods of Fiasse and Ceccato

(1996), Thornton (1998), and Seielstad et al. (2002).

Pixels were considered cloud contaminated if  they met any of the fbUowing criteria:

1. Channel 1 reEectance > 0.2 (eq. 6)

2. Q < 1.20(Q = NIR/red) (eq. 7)

3. AT43>4.5(K)0RdT45<-1.5 (K) (eq. 8)

4. AT34>15(K) (eq.9)

I f  the pixel was shown to be cloud-contaminated in a given composite period, that pixel was Eagged and 

removed from subsequent analysis.
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The land cover constraint was based on die U.S. Geological Survey's North America Land Cover 

Characteristics Data Base (2000). This is a generalized landcover map showing such classes as shrubland, 

irrigated cropland, evergreen needleleaf forest, etc. The primary goal was to remove pixels that contained 

potentially confounding landcover practices such as %riculturc, water, or urban/developed or those that 

were potentially mislabeled (evergreen broadleaf forest in Montana, for exançle). The resulting mask 

retained only those pixels from the following landcover classes:

» Grassland

• Shrubland

« Deciduous Broadleaf Forest

» Evergreen Needleleaf Forest

# Mixed Forest

A simple satellite zenith angle truncaEon was included to remove exEeme look angles Eom the dataset. As 

suggested by Pnhodko and Goward (1997), a zenith angle greater than 40 degrees was removed in the

initial implementation to minimize the thermal attenuation caused by long atmospheric path lengths. 

Subsequent examination of the estimates, however, resulted in the satellite zenith angle constraint being 

changed to 30 degrees. The impacts of zenith angles are discussed in greater detail below.

Warm Edge Extraction - Ta technique (Part 3)

Many implementaEons of the T /V I technique for esEmating T, rely on a contextual approach where a

neighborhood of pixels is used for the regression analysis. The "window" is then shifted (usually one row

or column) and the calculaEon is repeated. This technique relies on spaEal autocoirelaEon of adjacent

pixels for the soluEon of T,. Unfortunately, it results in an effecEve reducEon in the spaEal respluEon of

the soluEon itself (Prince et al., 1998). Other studies have exploited the T /V I relaEonship in a different

manner. While not used explicitly for T , esEmaEon, some authors chose coinbinaEons of contextual
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analysis with a data reduction technique. For exanyle, Nemani and Running (1993) and Carlson et al. 

(1995) limited their analysis to only those NDVFT, pairs that showed maximum T, for each unique N DVI, 

the so-called warm edge extraction. The logic behind this selection suggests that those pixels are most 

likely well illuminated, near nadir, and in thermal equilibrium at Eme of satellite overpass.

Since one of the primary interests is in a relaEvely simple and computaEonally efficient technique of 

estimating air temperature at landscape scales, a method was chosen that combines both contextual and 

non-contextual elements. A  stepwise explanaEon of the process follows.

First, a digital elevaEon model (DEM) was used to build a mask of the lowest 1000 feet of the Bitterroot 

HUC (Egure 3). The assumpEon here is that an estimate of mean valley temperature could be used with a 

simple adiabatic lapse rate to calculate temperatures at higher elevations. The bottom 1000 feet was chosen 

because it gave an adequate number ofTs and N D VI values for use in the air temperature estimates and 

provided enough of the required diversity in landcover (hence N D VI scores, see Riddenng et al., 1999) to 

define the NDVI/Ts relaEonship. For this bottom 1000 feet, the data where then straEEed into individual 

year-day bins so that only data Eom the same day was used in the individual iniEal air temperature esEmate 

for the valley Eoor.
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Figure 3: Bitterroot Valley 4"* Hydrologie Unit Code and bottomlOOO feet shown in green (in green) 
used in initial daily air temperature estimates.

Once sorted by day, N DVI scores of 0.24 and below (and the associated Ts) were removed from the 

analysis. This minimum value was based on empirical observaEon ofN D VI/T , pairs and reported 

minimum ND VI values for vegetated surfaces (Carlson et al., 1994), efIecEvely removing confounding 

pixels while reducing the size of the dataset. Next, the "warm edge" was extracted, resulEng in more data 

reducEon. Then a least squares line was Et to the data. Regression constraints were inposed on the data 

such that any line composed of less than 5 pixels (n=5) or exhibiting a coefScient of determinaEon (r^) less 

than 0.5 were removed Eom further consideraEon. This has the effect of maintaining a minimal quahty 

conEol standard in the data. Finally, the equaEon describing this line was extrapolated to NDVI = 0.86 to
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estimate the associated full canopy T, i^ c h  was used as a surrogate for the mean valley tenperature. A 

value of 0.86 as the full canopy N D VI was chosen, following the reports of Prihodko (1997) and based on 

long-term maximum NDVI scores (Buigan and Chase, 1998) for known full canopy vegetation typical of 

Western Montana Forests. The extrapolated value of T, (which is the iniEal T , value) was assumed to be 

the mean value of the bottom 1000 feet and was therefore assigned to the mean elevaEon of the bottom 

1000 feet (minimum + 500 feet, therefore, 3700 feet for the Bitterroot Valley). Finally, a simple 

environmental lapse rate of 1.98 K/1000 feet (Barry and Chorley, 1998) was used to adjust temperatures 

according to DEM denved elevaEons. The result is pixel-based T, estimates that are unique for each day of 

data within the conposite penod.

DAYM ET

Most studies have used point weather staEon data for comparisons to satellite esEmates of T , with varying 

degrees of success. Our goal, however, was to test the T , logic across a gridded topographically complex 

landscape. Therefore, it was desirable to test the T , estimates against an independent gridded surface of air 

tenperature. As a result, the DAYMET model was chosen to derive the independent air tenperature grids 

for model conparison.

Daymct has been described in detail elsewhere (Thornton et al., 1997). BrieEy, Daymet is a conputer 

program that produces daily gridded meteorological variables (maximum and minimum temperature, 

precipitaEon, radiaEon, and humidity) over conplex terrain from weather staEon observaEons. It uElizes a 

weighted Gaussian Alter and iteraEve processes to first predict known staEon values (sequenEally removed 

Eom the analysis) and subsequent extrapolated values. A DEM is requEed to account for the verEcal 

variaEon in the landscape and to calculate the horizontal relaEonships of temperature in conplex terrain in 

a spaEally explicit maimer. Daymet has been shown to be a robust method of generating meteorological 

surfaces in conplex terrain with reported Mean Absolute Errors (MAE) in yearly tenperature predicEon 

between 0.7 C and 1.2 C for maximum temperature (Tm«) and minimum tenperature ITn*,). respecEvely.
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Daily errors in tenperature are reported at 1.8 C and 2.0 C, repectively for Tmax and Tmin. The paEal 

resoluEon of DAYMET grids used in this study was 1 km, matching conposite AVHRR resoluEon.

Syncbronizadon of DAYM ET and T,Esdmate

For this study, Tg^ and T^m for each pixel in the study area from the DAYMET record was extracted. 

Tenperature at Eme of satellite ovepass, discussed below, was calculated and this served as "ground truth" 

for conparison to satellite esEmates of near sur6ce air tenperature.

Time of satellite overpass was estimated following the methods of Thornton (1998), which uses solar 

zenith angle and the equaEon defining earth-sun geometry used in the DAYMET model for incoming

radiation calculations. Hour angle (h, where 0 degrees = local solar noon) is then converted to local solar 

time with the following equations:

tfgc/ = -23.45 + 11.25)0.9863] (eq. 11)

= 1 2 .0  +  (eq. 12)

where z is solar zenith angle, / equals laEtude of each pixel, 7^ is Eme of satellite ovepass, and dec/ is the 

Earth's rotaEonal axis declinaEon relaEve to the pnncipal plane.

With Eme of satellite ovepass known, Tg x̂ and Tggg Eom Daymet and the equaEons of Campbell and 

Norman (1998) were used to calculate a Daymet derived temperature coincident with satellite ovepass. 

Daymet tenperature was calculated in the following manner
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— 0.44 —0.46siii(Ay + 0.9)+ 0.1 lsin(2&f + 0.9) (eq. 13)

where m = n/12 and I is Eme o f day (hours, 12 at solar noon). Then, this funcEon can be used to calculate 

temperature at any time of day ((I;

4 ) = : ^ . / - , m + 7 ; , [ i - r ( 0 ]  o < t < 5

7|,) = 7; ,r(t)+ 7;,[i -  r(t)] 5 < t ̂  w (eq. 14)

7 ; r j = 7 ; . w r ( t ) + 7 ; , , , [ i - r ( t ) ]  i4 < t^ 2 4

%here T% and Tg are daily maximum and minimum tenperature, respecEvely, i is present day, i-7 is 

previous day, and i+7 is the next day. Tenperatures were then conpared with a series of hourly Remote 

Automated Weather StaEon (RAWS) observaEons over mulEple days in 1997 to check correspondence 

(data not shown).

Validation Strategy

The validaEon strategy relies on conparisons of co-located grids of DAYMET tenperature at Eme of 

satelEte ovepass and the AVHRR based T , esEmate. As menEoned above, the AVHRR based T, esEmate 

is day speciEc. The DAYMET sur&ce was developed to match that day at the Eme of satelEte ovepass 

and is Eeated as the ground truth. For example, the conposite period date raster was used as a mask in the 

DAYMET surfaces so that the individual DAYMET pixels match the day of satelEte acquisiEon. The 

result is day-speciEc conparisons between pixels in the two rasters. Results are reported primarily as 

pooled results (entire record) except when speciEc interests warrant otherwise. Reported staEsEcs include
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Mean Absolute Error (MAE) defined as the average of the absolute difference between DAYMET Tg and 

satellite T , estimates, Pearson's correlaEon coefBcient, and regression coefEcients.

RESULTS

The results will be presented in three parts. The first reports the original implementaEon with no relaEve 

azimuth constraint and a satellite zenith maximum of 40 degrees (called vl-Goward below). The second 

set of results was a consequence of increased scruEny of the satellite zenith angles where a 30 degree limit 

was imposed (v2-SATZ30). Finally the third set of results show the impact of relaEve azimuth constraints 

added to the esEmaEon of T, (v3-SATZ30 &  REL AZ). The addiEon of relaEve azimuth constraints was 

due to the observed inpact that westerly look direcEons had on the error structure of T , esEmates.

v l- Goward

With the iniEal implementaEon, an attempt was made to use all composite periods (plO—pl9) coupled 

with cloud screenuig and satellite zenith angle constraints (40 degrees as per Prihodko and Goward, 1997). 

Due to these constraints and the regression requirements listed above, the algonthm was unable to calculate 

any air temperatures for conposite periods 1 0 - 13 (9 May — 3 July). The resulting period of assessment is 

4 July — 25 September, conposed of conposite periods 14 —19.

Plots of estimated Ta versus Daymet Ta are shown in Figure 4 and staEsEcal summaries of regression 

analysis and correlaEon assessment are shown in Table 1. AddiEonally, mean absolute error (average 

absolute difference between Tgg and Daymet TJ was derived. Air tenperature estimates and Daymet 

actual air tenperatures showed a Pearson's CorrelaEon coefficient of 0.576 (Table 2) and an MAE of 

6.96° C for all days and a total of 28 unique day-based predicEons (n = 28).
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Figure 4: Scatterplot of Satellite air temperature estimates versus DAYM ET air temperature 
estimates for the original implementation (satellite zenith angle constraint ^ 0 ° ). M AE = 6.96, R  
0.576.

1:1 line
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Table 1: Regression coefficients for the three implementations of satellite T ,. Dependant variable 
(Y ) is satellite T , and independent variable (X ) is DAYM ET derived T , with equations taking the 
form of Y  = mX + B.

Regression Parameters

n m B Correlation
CoefRcient

(R)

Std. Error of 
the Estimate

Original
Implementation

33065 0.634 1.403 0.576 3.69

Satellite Zenith 
30

28498 .449 6.109 .410 3.38

Satellite Zenith 
30 and Relative 

Azimuth

7460 .818 -2.149 .742 2.73

Table 2: Mean Absolute Error (M AE), Correlation Coefficients, number of days, and membership in 
each M AE difference class (0 ^Hass 1 ^ .0 °C ; 2.0 C < Class 2 aS.O C; 5.0 C < Class 3 ^ .0 °C ).

MAE
Correlation

(R)
Number
of days Class 1 (n) % Class 1 Class 2 (n) % Class 2 Class 3 (n) % Class 3

Total
pixels

Original
Implementation 6.96 0.576 28 3336 0.10 7261 0.22 9423 0.28 33065

Satellite Zenith 30 6.47 0.410 20 3430 0.12 6671 0.23 8270 0.29 28498

Satellite Zenith 30 
and Relative 

Azimuth 6.09 0.742 12 463 0.06 2226 0.30 3024 0.41 7460

V2-SATZ30

When conpaiing satellite zenith angles to predicted tenperature poor predictive ability was observed when 

zenith angles were greater than 30 degrees (data not shown). The code was modihed to change the satellite
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zenith angle constraint from 40 degrees to 30 degrees and the model was re-run for all composite periods. 

The enhanced zenith angle constraint had the effect of removing even more days from the total analysis (n 

= 20). The MAE improved to 6.47 degrees C, but the correlation coefficient dropped to 0.410 (see Table 1 

and Figure 5).

Figure 5: Satellite Zenith angle ^ 0 ° . M AE = 6.47, R  = 0.413.

1:1 line

mo -r,
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With the satellite zenith angle informaEon, look direcEons were calculate and the analysis was split 

accordingly. Satellite zenith angle of 90 degrees denote nadir views while anything greater than 90 degrees 

are westerly looks and less than 90 degrees are easterly looks. As shown in Figure 6, when the satellite is 

recording infonnaEon with a westerly look, the predicEve ability appears to suffer. Westerly looks give an 

MAE of 6.75° C and an R of 0.163 while easterly looks have an MAE of 5.74° C and an R of 0.766, a 

remarkable difference.

it is worth noEng that the above look direcEon assessments where made on the Enal air tenperature 

predicEon product. There was no masking based on look direcEon in the onginal estimaEon of valley air 

tenperature or subsequent temperatures based on lapse rates. Rather, they were used to straEfy pixels from 

the analysis after the lapse rates were applied. While it appears an incorporaEon of look angle will 

dramaEcally improve the correlaEon in the final product, there was no attenpt to constrain pixels used in 

the above analysis by look direcEon. The result is a likely decrease in the predictability of the overall air 

tenperature esEmate due to the undesirable look direcEons. Based on this Ending, the relaEve azimuth 

infbrmaEon was included as an initial masking constraint in the third version discussed below.

v3 -  SATZ30 &  REL AZ

RelaEve azimuth is typically provided in the AVHRR dataset for atmophenc correcEon algonthms. It is 

deEned as the absolute difference between the solar azimuth and the satellite azimuth angles and it ranges 

from zero to 180 degrees. Satellite and solar azimuth are the actual true a z i m u t h s a  given pixel to 

both the satellite and the sun, respecEvely. Therefore, relaEve azimuths of 180 degrees deEne a sun- 

surface-sensor geometry where the satellite is looking directly into the solar plane.

Due to the direcEonal impacts discussed above, the relaEve azimuth data was categorized in order to 

provide an iniEal assessment of the impact that look direcEon has on air temperature esEmates. Classes 

were deEned at 30 degree increments of relaEve azimuth such that class one contained zero to 30 degrees,
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class two contained 31 to 60 degrees, and so on up to 180 degrees. The result is 6 categories of relaEve 

azimuth. Figure 6 shows the previous predicted versus obprved air tenperatures using the 30 degree 

satellite zenith constraint and are marked by relaEve azimuth class.

Figure 6: DAYMET T , versus Satellite T , (30° satellite zenith angle constraint). Markers denote 
relative azimuth classes. Classes are 0°-30° for class one, 31°-60° for class two, etc. up to 180°.

1:1 Lme

Relative
Azimuth

Class

91"-U0° 

*  61°-90"

^  31"-5Q'

^  (T-30°

40

Satellite T . (=C)

Based on Egure 6, relaEve azimuth classes Eve and six were included in the mask and the algorithm was 

re-run. By incorporaEng this relaEve azimuth constraint, the extreme westerly looks in the iruEal valley 

bottom air tenperature predicEon were removed. Subsequent lapse rate calculaEons were made as before. 

Adding the relaEve azimuth mask resulted in further reducEon of the data set. For the composite periods
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1 4 -19 , there were 12 individual days of data. Interestingly, the MAE dropped to 6.09 degrees C and the 

correlaEon coefBcient rose to 0.742 (Table 1) when using the satellite zenith constraint of 30 degrees and 

the relaEve azimuth mask. Figure 7 shows estimate air temperature versus DAYMET denved temperature 

straEBed by day.

Figure 7: Scatterplot of satellite predicted T , versus DAYM ET T .. Satellite Zenith angle <30 
degrees and Relative Azimuth ^ 2 0  degrees. M AE = 6.09, R = 0.742.
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Summary

Table I lists the three methods of predicting air temperature and the landscape membership of difference 

classes. Class one was defined as the absolute difference in T^t and Daymet T , of 0 — 2 C, class two of 2.1 

-  5 C, and class three of 5.1 -  8.0 C. As discussed earlier, the addiEon of relaEve azimuth and 30 degree 

satellite zenith constraints reduced the total number of available pixels while inproving the overall 

performance of the technique. The greatest inprovement came in difference class two while a reducEon in 

class one was observed. Overall, approximately 60 % of all Ten pixels fell within 8 C of Daymet surfaces. 

However, the more stnngent analysis provided increased correlaEon and decreased MAE for the entire 

record. Regression analysis for all implementaEons is shown in table 2.

DISCUSSION AND CONCLUSIONS 

Sources of Error

There are numerous sources of potenEal error in this study, both in air temperature estimaEon, and the 

Daymet denved reference source. Surface temperature errors, including water vapor inpacts and 

emissivity errors, residual cloud contaminaEon, and choice of staEc environmental lapse rates all inpact 

the esEmated air tenperature. Conversely, there is a known error structure associated with Daymet denved 

surfaces that were used as "ground truth" and some error in interpolated air tenperature at Eme of satellite 

overpass.

Perhaps the largest potenEal error in this study comes from surface temperature calculaEons. The Ulivien 

(1994) method was chosen because of its applicability to vanous NOAA AVHRR sensors and its reported 

resistance to errors in land surface emissivity calculaEons (Ulivien et al., 1994; Vazquez et al., 1997). 

However, there is still a large potenEal error in the Ts calculaEon when atmophenc water vapor is not 

considered in the model. Ouaidrari, et al. (2002) report possible errors inTs due to water vapor ranging 

from a minimum of-7.73 K  to a maximum of 3.08 K when using a low water vapor fbrmulaEon oftheTs
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equaEon in Eie presence of high acEial aEnophenc water vapor content. These authors state that analysis 

of data from NASA's Data AssimilaEon OfEce (DAO) show that the base assumpEon of low atmophenc 

water content while Earmulating many p lit window techniques may not be valid. The presence of higher 

water vapor content than onginaUy assumed is Eiirly common. While the confounding effect of 

atmophenc water vpor was not peciEcally studied, it is reasonable to assume that there is a potenEal 

inEuence in the study site, parEcularly in 1997, which was an atypically rainy year in Western Montana.

Emissivity is a cnEcal component is calculating Ts. While the Ulivien (1994) method has shown great 

resistance to errors in emissivity, the potenEal for miscalculaEon of Ts does exist. Our choice in estimating 

emissivity foEowing the techniques of van de Gnend and Owe (1994) and Thornton (1998) was based on 

the desire to develop a robust yet efEcient means of esEmaEng Ta at landscape scales. Ouaidran et al. 

(2002) calculated potenEal errors in Ts Eom faulty emissivity calculaEons and showed that great vanaEon 

may occur when emissivity is not adequately estimated. The rported potenEal RMS errors with the 

UEvien (1994) Ts method range Eom 1.10 K  to 3.91 K  depending on the magnitude of emissivity error.

Another possible source of error is the choice of a staEc environmental lapse rate used throughout the 

season in this study. Again, due to the desEe to keep the teclmique sinple a single lapse rate was chosen 

for aĉ usEng temperatures as a funcEon of DEM elevaEon. While it is acknowledged that this is probably 

not the most robust means of ac^usting temperatures throughout the season, and is likely a source of error, 

there is no way of calculating a lapse rate for each conposite period and subsequent day. InfbrmaEon does 

exist fbr seasonal Eends in lapse rates fbr the ac^acent BiEerroot-Selway Wilderness area (Finklin, 1983) 

and future work will invesEgate the uElity of incorporaEng these seasonal adjustments.

Finally, the gridded Daymet denved Tmax and Tmin surfaces to intepolate tenperatures at Eme of sateEite 

ovepass were used. Daymet, however, has its own set of possible errors associated with it. Thornton et al. 

(1997) report a daily MAE fbr Tmax and Tmin of 1.8 C and 2.0 C, repecEvely. Since an absolute value of 

the differences between predicted and observed is what the MAE assessment give, one does not know the
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direction of this reported error. However, adding and subtracting 1.9 C to the Daymet temperatures and 

recalculating the MAE's and correlations show interesting results. Correlations stay constant, but 

subtracting results in a new MAE in predicted air temperature and Daymet air temperature of 4.3 C for die 

final implementation of the model (data not shown).

The numerous constraints m^osed on the estimation of Tg warrant some discussion, primarily the NDVI 

limits and the minimum regression parameters used in the initial valley bottom estimation of air 

temperature. There is ample opportunity to adjust many of the constraints made in this project and future 

work will examine the impact these choices have in the performance of the air temperature estimation.

The minimum N D VI value of 0.24 was empirically derived and is similar to values reported by other 

authors of uncontaminated bare ground pixels (Carlson et al., 1994; Riddering et al., 1999). The inclusion 

of low NDVI values (less than 0.24) results in a decreased ability to derive a good T /N D V I relationship. 

Similarly, the choice of 0.86 as the extrapolation value was based on other published values and the Act 

that this number corresponds with known full canopy vegetation in western Montana, as shown in the long 

term NDVI records (Burgan and Chase, 1998). Though other studies have used different values of NDVI, 

the absolute difference in air tenperature estimates as a function of N D VI score is minor. Prihodko et al.

(1997) report changes in NDVI from 0.86 to 0.873 resulted in air temperature changes of only 0.15° C.

Since this technique uses composite data, neighborhood functions could not be used to derive an estimate 

of air tenperature. Therefore, constraints were placed on the regression component of the central air 

tenperature estimation loop. Since the site mask removes a great number of valley bottom pixels, 

regression parameters were kept fairly non-restrictive (n ^  and r̂  >0.5) to allow for a larger number of air 

tenperatures to be calculated. Additionally, there were many occasions in the data where a significant 

number of pixels occurred on a given date, but only a few pixels from that date occurred in the valley 

bottom The low number of required pixels allowed us to perform estimates of T . in this situation. 

Interestingly, while there were few dates that had a low number of valley bottom pixels (5-10), when this
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occurred the correlations between satellite estimate and DAYMET temperature where similar to dates with 

a larger n (data not shown).

EfBciency

Developing a sinple, efRcient, and robust method of estimating air temperature was the primary goal of 

this study. Through the use of conposite satellite data, a robust surface temperature algorithm, and basic 

assumptions on tenperature variations with elevation, this goal was achieved. These results are similar to 

those reported in previous studies. With continued investigation, these techniques can be improved even 

further. To inprove future performance of the algorithm, some suggestions can be made. First, through 

the use of weekly composites, it is likely the total number o fT , estimates throughout the growing season 

can be inproved, thereby giving a more complete assessment of air terrperature. Though biweekly 

composites encompass 14 days of data, it is more typical to see only four to five days of retained data 

within an area defined by a 4 * HUC. The increased temporal resolution of weekly composites would likely 

provide a more distributed and complete coverage of air temperature estimates throughout the growing 

season.

Second, seasonal variations in lapse rate need to be studied further. These data exist in the Selway- 

Bitterroot Wilderness ofWestem Montana and North Idaho (Finklin, 1983). Further studies should 

investigate the utility of this record for application to the Bitterroot valley and the applicability to typical 

complex terrain in this region. It is highly unlikely that a single environmental lapse rate is sufficient to 

describe the complex atmospheric relationships between elevation and temperature throughout the year. 

Such simple components as increased atmospheric water vapor or inversions can seriously impact the 

assessment of air temperature as a function of elevation.

Finally, a more complete assessment of sun-surface-sehsor geometry needs to be made as evidenced by the 

results in the relative azimuth mask. The precise reasons why large relative azimuths tend to result in poor
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agreement in estimated versus observed air temperatures are not known as that was beyond the scope of 

this study. However, it is hypothesized that by looking into the solar plane, the sensor is suffering 6om 

solar contamination, either through increased path radiance or other means. A look direction constraint 

based on the differentiation of fore and/or backscatter would likely benefit future research in satellite based 

air temperature estimates.

Overall, the algorithm described in this paper performed remarkably well considering the list of potential 

confounding issues discussed above. It is expected that improved capability may be achieved with more 

site-specific corrections to the algorithm, such as improved lapse rates, and better understanding of the 

geometric issues presented. Additionally, the logic presented here can be applied to more advanced sensors 

and data currently available such as the Moderate Resolution Imaging Spectroradiometer (MODIS). With 

the inproved calibration and radiometry of MODIS and the efficiency of this T, technique, relatively 

simple estimates o fT , may be computed with high degrees of confidence.

With the ability to predict near surface air temperatures as described above, one of the most critical 

components of the W DI logic has been met. As described, a robust model was formulated that produced 

air temperature estimates of sufficient accuracy to include in the continued adaptation of the SMI model for 

the assessment surface moisture status. Chapter 5 will describe the development and implementation of the 

final SMI algorithm. While the algorithm described in the following chapter borrows from the W DI logic 

discussed in Chapter 3, it also includes descriptions of the adaptations necessary to convert &om a large- 

scale (small area) model to the desired small-scale (large area) algorithm for landscape assessment.
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CHAPTERS

IM PLEM ENTATIO N OF THE TRAPEZOH)-BASED SURFACE M OISTURE INDEX___________

INTRODUCTION

The Crop Water Stress Index (CWSI) and the derived WaAr Deficit Index (W DI, see ChapAr 3) was 

originally designed for and implemenAd at large-scales (small areas). The primary goal of this dissertation 

is the development of landscape-scale techniques for moniAring drought/surface moisture status. To that 

end, this section will be primarily concerned with the adapAtion of the W DI logic for landscape 

inplemenAtion and assessment of its performance. In order to diSerentiaA between the original 

CWSI/WDI logic and the landscape techniques presented here, the new index will be referred to as the 

Surface Moisture Index (SMI). The use of SMI in this chapter will reAr A  the methods discussed in this 

chapAr and will supersede the SMI techniques discussed in ChapAr 2. O f paramount concern during the 

development of SMI was the desire to keep the model responsive A  both Anporal and spatial resolution 

while providing for mbust estimation o f surface moisture sAtus. Therefore, this chapAr will present the 

landscape uniA of SMI inplemenAtion and assessment, Amporal issues involved with the calculations, and 

the methods used in validating the index.

Chapter 4 showed that adequate estimation of near-surface air temperature is possible; and these techniques 

were incorporated directly into the development of trapezoids and the subsequent calculation of SMI. The 

estimation of air Amperature occurs early in the algorithm (Figure 1). The result is that any constraint 

imposed within the air tenperature module (e.g. geometry) is carried throughout the entire algorithm, both 

during trapezoid development and actual SMI calculations. These constraints resulted in a significant daA 

truncation, thus forcing development of an alternative approach A  landscape aggregation.
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Figure 1: SM I processing stream OowcharL See Chapter 4 for detailed discussion of air temperature 
estimation.
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Perhaps the most important component of the development of SMI was a robust method of comparing SMI 

to current methods of mapping drought for validation purposes. The Palmer drought severity indices were 

chosen as the preferred standard of comparison. The methods of analysis come from the field of 

Econometrics, specifically Time Series Analysis. Palmer was chosen because of its long history and 

common ingilementation across the landscape both in this country and others. While there may be some 

criticisms of the Palmer methods, there is no single technique for mapping drought that presents itself as 

significantly more favorable (e.g. Standardized Precipitation Index, Surface Water Srqpply Index). The 

exploitation of time series analysis provides enhanced ability to assess the parallel performance of two 

independently derived drought-monitoring techniques.

Finally, some of the issues encountered during the development of SMI will be discussed and suggestions 

for future exploration will be made. The intent of this part of Chapter 5 is to describe the development and 

initial testing of the SMI logic. It is not intended for these equations to be inçlemented as predictions. 

Rather, the intent is to propose a method utilizing satellite remote sensing alone to assess surface moisture 

status. The equations and analysis are presented to afhrm the relationships and validity of the logic and 

guide future studies of SMI as a means of mapping drought. That said, SMI shows great promise in spite 

of the data-dependent issues discussed, and deserves a critical consideration for satellite-based assessment 

of surface moisture status.

M ATERIALS AND METHODS

Trapezoid Development

The initial stage of implementation of SMI was the development of historic trapezoids required by the SMI 

logic. Appropriate spatial and tengwral extents had to be identified in order to maintain adequate spatial 

diversity and a temporal period that would not cause a loss of responsiveness. For the trapezoid
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elucidation, afternoon AVHRR data from the years 1991-2000 were used. The period 1991-1998 is 

composed of biweekly composites, 1999 contained duplicates of weekly and biweekly data, while 2000 had 

only weekly data. The spatial grain at which SMI was inplemented was at the 4*'' Hydrologie Unit Code 

(HUC), which is simply major river drainage basins (see Figure 2) obtained horn the USDA Natural 

Resource Conservation Service via the Montana Natural Resource Information System 

(http://nris.state.mt.us/) GIS data service. The d"' HUC's allow an adequate level of spatial discrimination 

while still providing enough data to meet the requirements of the logic itself. The air temperature 

estimation removes a significant fraction of available pixels and by constraining the inqilementation to 

m^or drainage basins, the algorithm was able to maintain enough pixels to estimate the trapezoid 

parameters for SMI inqilementation.

The first step in the trapezoid derivation was to run the eleven-year record of AVHRR data through the new 

SMI algorithm in a marmer similar to the original SMI irrçlementation (Chapter 2) and output least squares 

regression lines for N D VI versus surface terrqierature minus air temperature (T.-TJ. The primary 

difference between the original SMI method (Chapter 2) and the trapezoid development (excluding the air 

tenperature estimation, which used the 30° satellite zenith angle umf relative azimuth mask) was the 

incorporation of constraints based on regression parameters. I f  a warm edge line was calculated from fewer 

than five points or the coefficient of determination (r )̂ was less than 0.5, those lines were removed from 

further analysis. Additionally, a phenology component (White et al., 1997) was added to define growing 

season and ensure that lines maintained were within the growing season. As imposed, this constraint 

confined the candidate conposite periods to a year-specific growing season (as deSned by the half-on, half- 

off endpoints) extended by two corrposite periods (one month). Any line derived outside this tenporal 

period was removed from further consideration.

The result of these calculations is the extraction of warm edge lines (similar to Chapter 2) for each 4*

HUC, for each corrposite period in the record. It is inportant to note that the trapezoid parameters are 

calculated from the warm edge only. Lines from each 4 * HUC were then manually sorted for the
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maximum and minimum trapezoid boundaries. Finally, the equations describing these lines were 

incorporated into the algorithm as HUC specific trapezoids to be used in the SMI calculations.

Montana has 106 4"̂  HUC's (Figure 2), of which only four failed to result in usable trapezoids. O f those 

four, one was purposefully removed because it straddled the Montana/Idaho border and had such small area 

as to be in^propriate for calculation (HUC 2). Final trapezoid parameters denoting slope and intercept of 

the maximum and minimum line are shown in the appendix (table A. 1).

Figure 2: Montana d*"" Hydrologie Unit Codes. Polygons in red denote no trapezoid data.

Once the trapezoids were developed and line equations added to the algorithm, the SMI model was run for 

aU years, initially stratihed by day HUC (for the air temperature module), then on a pixel-by-pixel 

basis to calculate the SMI as a function of the HUC trapezoid. The result was SMI values from retained 

pixels within each HUC. There were a number of instances where individual HUC's failed to produce any
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SMI output This was most likely due to the significant constraints inqaosed in the air temperature 

estimation, though the cloud detection and landcover mask likely influenced the output as well. As a result 

of this data gap, SMI was re-aggregated to the state climate zone level through a simple mean calculation 

for each zone (which is discussed below). Montana is composed of seven state climate zones as shown in 

figure 3. The resultant re-aggregation actually simplified the comparisons to common drought indices as 

the National Climate Data Center (NCDC), the source of historic indices, coimnonly reports drought data at 

the state climate zone level.

Figure 3: Montana climate divisions and counties (from Montana Natural Resource Information 
System).
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Palmer Drought Indices

In 1965, Palmer published a drought monitoring technique that incorporates precipitation, moisture supply, 

and moisture demand (as evapotranspirational losses based on Thomthwaite's techniques) (Palmer, 1965;
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Thomthwaite, 1931)mtoasystemthatefIectively serves asawater balance model. Thismethodrequires 

daily precipitation and temperature and is converted to a drought index that is reported monthly. The so- 

called "Palmer Index" actually refers to three related congwnents known as the Palmer Z Index (Palmer Z 

or PZ), the Palmer Hydrologie Drought Index (PHDI), and the Palmer Drought Severity Index (PDSI). 

Singly stated, the PDSI is a long-term meteorological drought index where drought is dictated by the 

prevailing weather conditions. The PHDI refers to the long-term hydrologie condition of an area where the 

changes in meteorological conditions may take a certain time to manifest as either a hydrologie drought or 

a non-drought event. That is to say that a period of extreme precipitation bringing an end to drought may 

not be manifest as an increase in water availability for some time after the precipitation occurs. The PahiKr 

Z index is simply a measure of short-term moisture anomaly for a given month and may or may not 

significantly intact the drought conditions as measured by the PDSI or PHSI (Heim, 2002 drought 

review).

There have been numerous publications exploring the shortcomings of Palmer's techniques (e.g. Alley, 

1984; Hu and Willson, 2000; Karl, 1986) and many subsequent developments in drought monitoring (e.g. 

(Doesken et al., 1991; Keetch and Byram, 1968; McKee et al., 1993; Shear and Stella, 1974). However, 

Palmer is arguably the most popular method of drought monitoring and no single method of drought 

monitoring/mapping has proven superior enough to cause abandonment of Palmer's model (Heim, 2002). 

To this end, the Palmer Z Index was chosen as the index of choice for cong)arison with SMI.

The Palmer Z score measures the deviation from "normal" moisture for a given month as deGned by a 30- 

year calibration time series. Quite simply. Palmer Z measures the moisture anomaly (either wet or dry) and 

is used as the primary input for the other long-term compounding Palmer indices (e.g. PDSI, PHSI). The 

beneGt of Palmer Z is that it does not rely on values from the previous months in its derivation (Quiring 

and Papakryiakou, 2003). This means that the Z index simply measures the short-term moisture anomaly, 

if  any, present in the area being assessed and w ill likely track SMI since both indices provide "snapshots" 

of current moisture status without previous or future month's values infracting the current values.
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AU Palmer index values can be either negative or positive. Negative values indicate a drought while 

positive scores indicate moisture surplus. As the deviation from zero increases, the drought or surplus 

becomes more extreme. Palmer Z values o f-2.75 and below are typically categorized as extreme drought, 

while values of 3.5 and above indicate extreme moisture surplus (Heim, 2002) though these are simply 

guidelines, AU Palmer drought products were obtained from the National Climate Data Center and are 

delivered as month-averaged values for each Montana Climate Division.

The SMI logic dictates moisture status is measured at the time of satellite overpass with no compounding 

function that turns these measures into long-term drought products. Rather, it is a technique that illustrates 

current moisture status of the area being observed. Because vegetation moisture status is an integrator of 

moisture condition in the observed area, any moisture stress shown by vegetation should be somewhat 

tenqrorally coincident with the Palmer Z anomaUes. However, it is not Ukely that a direct temporal 

coincidence between Palmer Z and SMI simply because Palmer Z can be viewed as an immediate 

calculation Wiereas vegetation moisture stress, as measured by SMI, will take a certain amount of time to 

manifest itself. However, the use of Palmer Z scores is the most appropriate choice for comparative 

analysis with SMI because they both effectively measure the same process. Additionally, the ability to 

predict Palmer Z Gom SMI provides the opportunity for future exploration of the conversion to long-term 

drought products (e.g. PDSI).

Data Structure

The Palmer Drought Indices were obtained Gom the NaGonal Climate Data Center and are reported as 

mean monthly values aggregated to Montana Climate Zones. There is no sub-monthly information 

provided. As a result it is impossible to assess what the daily or weekly variaGons in precipitaGon are on 

monthly Palmer Values. Related is the fact that the monthly delineaGons are "hard-wired" in that a three- 

day storm that occurs at the transiGon between months is Geated as an individual discreet event That is to
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say two days of rain at the end of June with one day of rain on the Grst day of July are essenhally Geated as 

discrete events and are assigned to the appropriate monthly category, in spite of the true continuous nature 

of the event

Since SMI was based on either biweekly or weekly composites and these composites rarely coincide with 

the categorical variable of month, an assignment technique was necessary to map SMI to monthly 

categories for use in conqrarison with Palmer. Values are iniGally averaged by HUC and assigned to each 

of the fourteen days in the corrfrosite period. With the discovery of a lack o f spaGal and tengroral coverage 

in each year, a manual re-aggregadon was made to state climate zones where every non-zero pixel 

contained by the climate zone was used in a calculation of the arithmetic mean. To aggregate SMI to 

monthly values that match the terrporal range of the Palmer indices, a simqrle yearday-to-month assigmnent 

was made where the number of days in a confposite contained by that month received die SMI value for 

each of those days. For example, one fourteen day SMI conqiosite may contribute Gve days of SMI to June 

and nine days to July. Finally, SMI was averaged by month. Despite the fact the AVHRR congxisite data 

contain information on daily membership of individual pixels (and resultant SMI values), this information 

was not used in the assignment of SMI to monthly categories. To do so would inGoduce a temporal 

speciGcity in the confiarisons that the Palmer data is unable to match since these data contain no 

information on what individual days contributed the most to total monthly Palmer Z values. Therefore, the 

resultant SMI dataset contains monthly values that have an inherent temporal lag structure associated with 

it.

Time Series Analysis - Background

Time series analysis is the Geld of study, borne out of econometrics, where time is an essential conçonent 

of the data to be analyzed. These data are typically temporally ordered and time is viewed as an 

independent vanable. While the temporal ordering is cndcal, time may not always be explicitly Geated as a 

predictor in modeling exercises. In paired variable time series regression analysis, the ordenng of the
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variables has as much importance as the pairs themselves, even if  time is not used as an independent 

variable in the analysis.

Early in its development, time series analysis referred to a method developed by Box and Jenkins (1970) 

known as awrorggressh/g iniegra W  moving avgragg; (ARIMA). This technique relied primarily on a given 

variables past behavior as a means of predicting the variables future behavior, hence autoregression.

The ARJMA method has fairly modest theoretical requirements. Primary of which is the data exhibit 

stadonanty. A variable is stationary if  the mean and variance do not change over the time of analysis. Box 

and Jenkins (1970) recommended a casual means of testing stationarity and proposed a sinq)le 

transformation to correct for non-stationary data. Simple plots of the time ordered variable and its 

correlogram are used for stationarity assessment. I f  the correlogram, which is a lag ordered plot of 

autocorrelation, shows a dramatic decrease in autocorrelation coefficients after lags of one or two and 

single sequence plots of the variable show random Guctuations around the mean (with constant variance), 

the data are assumed to be stationary. I f  the data exhibit non-stationarity, the recommended transformation 

is a sinçle differencing. That is to say that the first variable is subtracted from the second, the second is 

subtracted 6om the third, and so on. Occasionally, second differencing, which is a difference of the 

differences, is used to modify data that exhibit extreme non-stationary behavior. It is not typical to do more 

than a second differencing (Kennedy, 2003).

The ARIMA model description typically takes the form: ARIMA (p, (f, gr) as suggested by Box and Jenkins 

(1970). The autoregressive parameter is denoted as p, the order of the differencing is and the magnitude 

of the moving average is The autoregressive parameter, as mentioned above, refers to the number of 

previous values used in the prediction of the current value. The difference parameter, d, is simply the order 

of differencing (typically no more than two). The moving average is the number of previous values and 

weighting used in the moving average calculation. Moving averages are incorporated in the ARIMA  

technique to ensure that nonsystematic variations in the data are removed. It relies on the notion that
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systematic congwnents display autocorreladon and by removing the nonsystemabc components through 

moving average calculation, one can more effectively model the variable. The ARIM A models take the 

form of:

+ (^ 2  *  + . . .  +

(Equation 5-1)

Where Y ' is the differenced variable of interest, (|) and 0 are coefBcients to be determined, and G is the error 

term (Kennedy, 2003). The subscripts p and q are the same as mentioned above and t is the time ordering 

subscript.

Originally, the ARIMA method was developed as an autoregressive technique where one variable was used 

to predict itself as a function of the past behavior. However, it is possible to use the ARIMA technique in a 

two-variable modeling exercise. I f  two variables exhibit stationarity and signiGcant cross-correlaGon, as 

measured by the cross-correlaGon coefGcient (equivalent to Pearson's R), cross regression modeling may 

be used to predict a dependent variable Gom an independent variable (McCuen, 2003). It is this latter 

approach that will be discussed in the analysis. The functional form in this situadon is:

= A * +A * ̂ ',-2 +- + * ̂ 'f-p + ̂ 2̂ (-2 + -  +
(EquaGon 5-2)

Where T" is the dependant variable (Palmer Z in this exan^le) and jT' is the independent variable (SMI). 

The other variables are the same as above.
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RESULTS

Time Series -  Implementation

Sequence plots for Palmer Z and SMI are show in Ggure A.1 in the appendix. The Grst plot (a.) in each 

Ggure shows the raw data as a time sequence. 1999 and 1999_Mc are replicates of the year 1999 as 

discussed above. The second sequence in each Ggure shows the same plot after a Grst differencing. Both 

Ggures show an increase in the stationarity, as indicated by a stable mean and consistent variance, thus 

satisfying the first assunqhion of ARIM A analysis.

The second conqxment of ARIMA analysis for two varioles is to show a meaningful cross-correlation as a 

function of the lag. Cross-correlation for all years combined, stratiGed by climate division, are shown in 

Ggure A.2 in the *q)pendix and summarized in table 1. Cross-correlaGons stratiGed by climate division and 

year, are shown in Ggure A.3 in the appendix. Because drought condiGons manifest themselves as 

negaGve Palmer Z values and high (greater than 0.6) (Vidal and Devaux-Ros, 1995) SMI values, a negaGve 

cross-correlaGon would be expected. That is to say that as an area suffers from drought, Palmer Z scores 

will be driven down while SMI scores will continue to increase.

Table 1: Total cross-correlation for differenced Palmer Z  and SM I for all years. Data are straGGed 
by climate division.

Cross-correlation Lag
Division 1 -0.009 0

Division 2 No negative correlation

Division 3 -0.108 1

Division 4 -0.086 0

Division 5 -0.168 0

Division 6 -0.041 -1

Division 7 -0.141 0
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As discussed above, the Palmer Z data simply show monthly averages. The tenqmral resolution does not 

allow for the investigation of when the daily changes occurred within that month. For exanqrle, consider a 

month that is very dry up until the last week. Then, perhaps, significant precipitaGon occurs that drives the 

monthly Z score toward zero. The only conclusion to be made, based on the resultant monthly Palmer Z 

infbrmaGon is that the month expenenced "typical" moisture, when the reality is that the month was, for the 

most part, very dry. Also, consider that thete is an expected Gme lag between actual precipitaGon and 

vegetaGon response dnven sirrqrly by the physics of water transfer through the soil-vegetaGon-atmosphenc 

continuum. Combine these issues with the biweekly SMI data structure and it becomes apparent how 

terrqroral correlaGons between SMI and Palmer Z can be confounded with no clear indicaGon of lag 

dffgcGon. Finally, Geat the entire 11-year Gme series together and the expectaGon of high cross-correlaGon 

coefficients between Palmer Z and SMI is problemaGc (Table 1).

Due to the apparent low cross-correlaGon between monthly Palmer and biweekly SMI composites (Table 

1), adjustments were made to the data so that a more meaningful analysis could be performed. However, 

these a<̂ ustments were constrained to lag of either zero, one, or negaGve one as suggested by year straGGed 

cross-correlaGons (appendix Figures A.3) and summarized in Table 2 which shows the highest observed 

cross-correlaGon and its associated lag. The lack of terrqroral precision in weather condiGon, in the case of 

Palmer Z, and the biweekly composite issue for SMI, dictates that a legitimate lag ac^ustment of the data, in 

either direcGon, may occur.
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Table 2: Cross-correladon (CC) and lag for differenced Palmer Z  and SML Data stratiGed by 
climate division and year. No correlaGons were observed for Div 3 or 6 in 1992 and 1993, 
respecGvely.

Division 1 Division 2 Division 3 Division 4 Division 5 Division 6 Division 7
YEAR CC lag CC lag CC lag CC lag CC lag CC lag CC lag
1991 -0.525 1 -0.102 -1 -0.917 1 -0.654 1 -0.594 0 -0.890 1 -0.201 1
1992 -0.626 0 -0.350 0 — — -0.290 -1 -0.750 2 -0.594 1 -0.874 0
1993 -0.576 2 -0.129 -1 -0.254 -1 -0.769 2 -0.375 2 -- -0.127 0
1994 -0.695 -1 -0.709 1 -0.620 -1 -0.707 1 -0.283 1 -0.323 0 -0.521 0
1995 -0.367 -1 -0.238 -1 -0.898 1 -0.914 0 -0.627 -2 -0.575 0 -0.527 0
1996 -0.221 -1 -0.154 -1 -0.522 0 :0.764 0 -0.673 0 -0.717 1 -0.677 0
1997 -0.683 0 0.083 0 -0.566 -1 -0.582 0 -0.298 0 -0.012 -1 -0.386 -1
1998 -0.219 0 -0.533 1 -0.414 -1 -0.565 0 -0.931 0 -0.416 -1 -0.173 -1
1999 -0.817 0 -0.113 0 -0.410 0 -0.722 2 -0.875 2 -0.296 0 -0.324 1

1999_wk -0.622 -1 -0.153 0 -0.521 0 -0.184 0 0.609 2 -0.769 2 -0.277 1
2000 -0.485 0 -0.418 0 -0.963 0 -0.806 0 -0.810 0 -0.572 0 -0.347 -1

All data were manually adjusted such that the new series was set to a lag of zero for each year, with a few 

excepGons. As table 2 describes, some years show very high correlaGon when a lag of 2 is considered. As 

previously menGoned a lag of one, in either direcGon (or zero), is logical by virtue of the tenqroral 

categorizaGon of SMI and Palmer Z. In the reconstrucGon, all lags of greater than one or less than negaGve 

one were leA intact. The result is a synchronized dataset for each division that contains high cross- 

correlaGons for lag zero and some extraneous data with an optimum lag outside of the lag constraints 

imposed. It is acknowledge that these long lag consGtuents will likely confound the comparisons, however, 

it is illogical to adjust the Gme senes to account for a lag of two months or more and those years exhibiting 

longer lags were leA intact. The cross-correlaGons for the a^usted data are shown in Table 3.
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Table 3: Lag adjusted cross-correlaGon for differenced Palmer Z  and SMI. Data stratified by 
climate division and grouped for all years.

Cross-correlaGon lag
Division 1 -0.296 0
Division 2 -0.183 0
Division 3 -0.384 0
Division 4 -0.350 0
Division 5 -0.214 0
Division 6 -0^274 0
Division 7 -0.278 0

To summarize, table 3 shows cross-correlaGons for the manually accosted data by climate division. I f  a 

given year had an optimum (as deGned by the highest cross-correlaGon) lag o f-1 or 1 (see Table 2), the 

data were synchronized so that the year in quesGon now had an optimum cross-correlaGon at lag zero. To 

do this, each years data was displayed in columns. I f  the opGmum lag was 1, the appropnate column was 

shifted down one row so that the resultant opGmum cross-correlaGon would show a lag of zero. The 

converse is true if  the opGmum lag was -1. For those individual years where opGmum lags were anything 

else (e.g. zero, two, etc.) no adjustment was made. Cross-correlaGons for all years pooled were re

calculated and the results are shown in Table 3. As expected, optimum lags for aU climate divisions are 

zero due to the manual ac^ustments, though if  stratiGed by individual year, any year showing a lag of 

greater than I or less than -1 in Table 2 will still show that same optimum lag. All others would now 

display optimum lags at zero. The primary reason for this manual ac^ustment is so one model for each 

individual climate zone can be built to predict Palmer Z Gom SMI.

Autoregressive Integrated Moving Average

Given the noGon that a yearly lag of zero or one (in either direcGon) is acceptable and expected, the data 

were manually adjusted so that a synchronized dataset for each climate zone with an opGmum lag of zero 

was created (Table 3). With the cross-correlaGons showing adequate values, it was possible to proceed 

with the time-senes analysis and build an ARIMA model to relate SMI to Palmer Z.
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When implementing a two-variable ARIMA^ A is possible to incorporate an autoregressive term (p) on the 

dependant variable. The function of the autoregressive term is to use the dependant variables' previous 

values in combinaGon with the independent variable to predict the current dependent variable. That is to 

say that T is a funcGon of % and previous T. Because the goal of this study was to assess the potenGal 

relaGonship of Palmer Z to SMI, the autoregressive term was set to zero thereby assuring that only SMI 

was used in the analysis to denve Palmer Z. The moving average term (^) was also set to zero so no 

averaging occurred and the order of the differencing (d) was set to one, which is a single differencing of the 

values to assure staGonanty in the data. The ARIMA technique also allows for constants to be included in 

the model fbrmulaGon. Constants were excluded Gom the equaGon in order to simpli^ the analysis.

Results Gom the lag adjusted ARIMA for each climate division, where all years are used in the calculaGon, 

are shown in table 4. SPSS was used to denve the model parameters. Outputs Gom SPSS include the 

ARIMA coefficient (B), T-raGo (basically a t score), and approximate probability (approximate because the 

ARIMA relies on a user-deGned iteraGve-convergent technique).

Table 4: Auto-Regressive Integrated Moving Average (ARIMA) parameters for lag adjusted Palmer 
Z  and SMI for all years.

B t-ratio Probability
Division 1 -3.3243 -2.9401 0.0044
Division 2 -3.4362 -1.8812 0.0644
Division 3 -7.2298 -3.3078 0.0015
Division 4 -5.2731 -3.2589 0.0017
Division 5 -2.753 -1.8691 0.0656
Division 6 -5.3434 -2.504 0.0151
Division 7 -5.8158 -2.5746 0.0124

When adjusGng the data to account for the lag, any years that fell outside of the logical lag (-1 to 1) were 

not adjusted. In order to better test the ability of SMI to predict Palmer Z, years from each climate division 

that showed lags outside of the one-month constraint were deleted. AddiGonally, 1993 was removed Gom 

analysis for all years because of its low correlaGon and/or high lag values for aU climate divisions (see 

Table 2). The ARJMA models were recalculated in the same fashion as the Grst exercise, with the
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questionable years removed. ARIMA parameters are summarized in table 5. Figure A.4 in the ^ e n d ix  

shows the Gme sequence plots of Palmer Z versus the Palmer Z predicted Gom SMI, by climate division.

Table 5: Auto-Regressive Integrated Moving Average (ARIM A) parameters for lag adjusted Palmer 
Z  and S M I Listed years were not included in the analysis due to low correlations or extreme lags 
(summarized in Table 2).

B t-ratio Probability years removed
Division 1 -3.3417 -3.2943 0.0016 93
Division 2 -3.447 -2.1394 0.0364 93
Division 3 -6.0367 -3.6613 0.0006 92, 93
Division 4 -5.2098 -3.7454 0.0004 93, 99
Division 5 -7.3818 -3.918 0.0003 92, 93, 95,99, 99_WK
Division 6 -6.2997 -4.0324 0.0002 93, 99_WK
Division 7 -5.4504 -2.6254 0.0111 93

UGlizing the above parameters, the Gnal Gnm of the equaGon would be:

P z , = [ ( W / , - S M / , _ , ) » S ]  +  Pz,_,
(Equation 5-3)

Where Pz is Palmer Z index, B is the regression coefGcient, the subscript r denotes current Gme (current Pz 

for example), r-I is previous Gme penod, and SMI is self explanatory. Note, the differencing of SMI and 

the Gnal addiGon term of Palmer Z to account for the Grst differencing of the onginal data.

To summarize, Table 5 shows ARIMA parameters for the manually actuated data discussed above where 

opGmum cross-correlaGons occur at lag zero. AddiGonally, any year showing optimum lags of greater than 

1 or less than -1 were deleted. The years removed column in table 5 corresponds to these unacceptable lags 

shown in Table 2. It is also worth noGng the probability values in Table 4 and Table 5. In all cases, the 

probability improved when the quesGonable years were removed, parGcularly in climate division 5.
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AR IM A  Residual Analysis

As with any modeling exercise, one must investigate the residuals to test for normal distiibuGon and 

heteroskedastic behavior. Residual analysis was done on the lag adjusted ARIMA models (summarized in 

Table 5). Probability plot (P-P in SPSS) were created to test for normal distribution. The P-P function 

allows you choose a test distribution (normal in this case) to conqiare the residuals against. I f  the points 

appear along the diagonal line, it is assumed the distribution matches the test distribution. To test 

heteroskedasGcity, residuals were plotted against the independent vanable in a scatter plot. In this 

example, a random distribuGon around zero with no discernable pattern indicates the lack of 

heteroskedasGcity. The P-P and scatter plots by climate division are shown in Ggures A.5 and A.6 in the 

appendix.

DISCUSSION

As evidenced by the data shown in Table 5 and the Gme sequence plots in the appendix (Figure A.4), SMI 

tracks the Palmer Z index. When problemaGc years are removed (summarized in Table 5), all coefficients 

are signiGcant at the CF=0.05 level and most show signiGcance at much higher standards. O f special 

consideraGon is the fact that SMI was able to track Palmer Z in climate zones 1 and 2, which contain the 

most conçlex terrain in the state, and arguably are the regions which one might expect to derive the lowest 

correlaGons. This expectaGon is home pnmarily of the difGculty in esGmaGng air temperatures in conqrlex 

terrain, though also includes the problems associated with more continuous snow cover and higher cloud 

cover during early and late growing season. In fact, the opposite is true parGcularly when one considers 

that only 1993 was removed Gom the second ARIM A analysis for these climate zones.

As alluded to in the introducGon, air temperature estimaGon plays a cnGcal role in SMI calcuIaGons. In 

order to achieve robust air temperature esGmates, severe constraints were imposed in the algonthm, which 

resulted in signiGcant data reducGon. Once a pixel is removed Gom the analysis in the air temperature
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package, it remains absent Gom any subsequent consideraGon G)r that composite period. The result is a 

dataset composed of dramaGcally fewer pixels than the onginal AVHRR scenes. The distribuGon of these 

pixels is not consistent for each conqiosite period for each 4''' HUC. That is to say that there is no way to 

predict which pixels will be retained Gom each 4 * HUC, though one must remember that there are pixels 

consistently excluded as a funcGon of the landcover mask. While the relaGve locaGon of each pixel used in 

the analysis may change, it sGU mimics, conceptually at least, the meteorologically based Palmer 

calculaGons. Palmer relies on averaged monthly values Gom distributed weather staGons (at Gxed 

locaGons) aggregated by climate division. The SMI protocol may in fact provide a more robust sampling 

technique by virtue of a larger sançle size that is more evenly distnbuted over each state climate zone.

One of the pnmaiy issues with SMI in its current form is the fact that the AVHRR composites tend to 

inhibit a more robust assessment. First is the issue of composite period straddling months. The assessment 

could be improved by collecGng coincident weekly or biweekly Palmer Z data for comparisons, thou^ 

these datasets do not exist in the current NCDC archive. The second major confounding factor with 

AVHRR composite data is the preferenGal selecGon of ofT-nadn pixels by the composiGng algonthm 

(Stoms et al., 1997). This off-nadir selecGon leads to data removal in the an temperature calculaGon 

caused by the satellite zenith angle constraints (see Chapter 4). I f  a real-Gme monitoring of drought were to 

be inqrlemented using the SMI logic, iirplementaGon of the code earlier in the AVHRR processing sGeam 

would be advised to remove the inqract of the maximum N D VI conqrositing protocol. A possible soluGon 

would be to calculate SMI on a daily Gme step and allow the cloud detecGon and angle constraints to 

remove quesGonable pixels as currently implemented. A composite of maximum SMI value at the most 

desirable Gme step (weekly, biweekly, monthly) could then be producedx. The result would likely be a 

more tenqxrrally precise assessment of surface moisture status and a method certainly worth explonng in 

greater detail.

The year 1993 was removed Gom the second ARIM A analysis for all climate divisions. Table 2 shows that 

1993 produced either low cross-correlations or unacceptable lags for each state climate division (as
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discussed above). While these cross-correlations and lags may not be out of line with other years when 

considering climate zones individually, the fact that 1993 was a consistent poor performer for all divisions 

is worthy of further investigation. While qradally explicit meteorological analysis is beyond the scope of 

this paper, anecdotal evidence suggests interesting reasons for statewide poor performance of SMI in 1993. 

According to NCDC climate records (data not shown), 1993 was an exceptionally wet year in Montana. 

Considering the period of record (1895-2004,109 years) and the state as a whole, June, July, and August 

1993 rank as the 25* 1", and 11* wettest of those speciGc months on record, respecGvely. With this 

increased precipitaGon comes an increase in cloud cover. This alone may explain poor correspondence 

between SMI and Palmer Z in 1993 by one of two mechanisms. Either the number of available 

observaGons was decreased due to cloud obscuraGon or the sub-pixel cloud detecGon technique in the air 

tenqrerature module excluded a large enough number of pixels to prohibit sufGcient sampling of the surface 

thereby causing a loss of relaGonship between SMI and Palmer Z.

An alternate explanaGon for the poor SMI performance in 1993 may lie within the logic of SMI itself. 

Inherent in the technique is the noGon that moisture stress must be present in order for the secondary 

response (elevated surface temperature) to be detected by the satellite. It is feasible in 1993 that there was 

such a surplus of available moisture for the vegetaGon that the signal was simply below the detecGon limits 

of the algonthm, or that it did not exist at all. Either explanaGon is certainly reasonable considering the 

excess precipitaGon experienced in Montana that year.

The aggregaGon strategy enqiloyed in this exercise also deserves further attenGon. There was a desire to 

maintain a moderate spaGal resoluGon within the model, yet provide adequate spaGal extent for robust 

trapezoid estimaGon. AddiGonally, there was a desire to keep the landscape delineaGon logical in that it 

corresponded to ecological or hydrological process boundanes rather than rely on arbitrary borders (e.g. 

poliGcal boundaries). The 4 * HUC's were chosen because they pmvide moderate spaGal resoluGon and 

define actual hydrologie units associated with water processes. The result is the logical ability to
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difkrentiale, with the current ingilementation, between the surface moisture/drought status of meaningful, 

that is to say, hydrologically based landscape units.

Although the trapezoids are dehned at the 4''' HUC level, the final output of SMI failed to give consistent 

results for each 4*'' HUC across the landscape. This was primarily caused by the stringent masking in the 

air temperature estimation module. This lack of coverage resulted in the re-aggregation to state climate 

zones, as discussed above. By leaving the original assessment at the HUC level rather than recalculating 

climate zone speciûc trapezoids, the spatial resolution provided by the 4''' HUC delineation and the 

physical basis for the landscape units are maintained in the best way possible. It is logically more 

appropriate to maintain a delineation based on physical principles (insomuch as the m^or drainages 

integrate watershed processes) in the initial assessment of SMI and incorporate a subsequent re-aggregation 

to the pseudo-physical climate zones (since climate zones incorporate political boundaries) than it is to 

accept the rather arbitrary demarcation of climate zones which have little relationship to ecological or 

hydrological process boundaries. Though it is acknowledged that the state boundary does truncate those 

HUC's that extend beyond its confines. By maintaining the HUC boundaries in the algorithm, SMI 

performance can be better assessed in future large scale (small area) studies. Such studies might include 

the use of gauging stations and localized meteorological data for comparison with SMI to more fully 

understand exactly what SMI is responding to.

As previously mentioned, the date of satellite acquisition information was not used in temporal assignment 

of SMI values to month categories. The reasoning for this decision is two-fold and rather sinqile. First, 

Palmer Z is a calculated index that does not incorporate any physical process, ae, in the derivation of 

the numbers, whereas SMI is an observed process that will likely show a response that is some function of 

time after a rain event. For example, precipitation that falls on a given day is immediately used in the 

running calculation of Palmer Z. Conversely, SMI may not respond immediately to a precipitation event, 

especially if  one considers the fact that SMI relies on secondary responses to water transfer through the 

soil-vegetation-atmospheric (SVAT) continuum. One can envision a certain time lag requirement for water
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movement through all the SVAT components before a satellite is able to detect the subsequent surface 

tenyerature responses.

The second reason for not utilizing the date information contained in the AVHRR record is the idea that is 

better to degrade one dataset than it is to imply a false resolution in another dataset. By accepting the 

inherent time lag between SMI and Palmer Z, it was possible to assess the ability of SMI to track Palmer Z. 

I f  the date information were to be used in the assignment of SMI values to month, the implication would be 

that an ability to resolve the behavior of SMI and Palmer Z at daily time steps was possible. Because of the 

way the Palmer indices are calculated and archived, this daily time step sinqily does not exist. Rather than 

inq)ly a false temporal resolution, an inherent time lag structure was accepted, which in the final estimation, 

did not hinder the analysis.

In spite of the issues discussed above, it is worth exploring the overall relationship observed between SMI 

and the Palmer Z index in greater detail. Appendix Figure A.4 (sequence plots) shows the time sequence of 

observed Palmer Z scores with the predicted Palmer Z (from SMI) for the years calculated in the final 

assessment (the parameters of which are summarized in Table 5). Again, these are the observed versus 

predicted for the final assessment where some years (summarized in Table 5) were removed from analysis. 

Observed Palmer Z scores are plotted for all years while the predicted Palmer Z scores are only for those 

years maintained in the Gnal ARIMA analysis. It is also worth reiterating that the predictions were not for 

whole years. Rather, the algorithm was only run on the phenologically appropriate period (growing season 

± month) within each year.

The sequence plots (appendix Figure A.4) show some interesting results. For all climate divisions, except 

division Gve (due to the removal of 1995 in this division), there exists an initial gross underestimation of 

Palmer Z in 1995. This is most apparent in climate division three and six, though the others also show this 

tendency. In spite of the initial underestimation of Palmer Z, all divisions show a rapid re-synchronization 

with actual Palmer Z scores. In fact, if  climate divisions one is considered as an exanqile, the predicted
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values rapidly parallel the observed and continue along the same trajectory throughout the year. The 

reasons for this dramatic failure of prediction at the beginning of the year are not known. However, it is 

possible to qxculate that this is a function of early season vegetation growth coupled with a lingering 

drought 6om the previous year that is transitioning to a year which ogerienced more normal precipitation. 

For all divisions, 1994 was a dry year while 1995 showed a moderate recovery. One hypothesis would be 

that as the vegetation begins to come out of dormancy early in (he growing season and use the available 

moisture, that vegetation will show a certain amount of water stress due to (he moisture deficit left from the 

previous year. This is confirmed by the early season PDSI scores for 1995 (not shown). However, as 1995 

progressed, all climate divisions showed recovery from (he drought. Considering the expected SMI 

response (and therefore (he predicted Palmer Z scores) It is suggested (hat the initial under-prediction of 

Palmer Z was simply an early season measurement of the lingering drought followed by a recovery. The 

sequence plots actually confirm this when one considers the observed Palmer Z from 1994. The 

subsequent predicted Palmer Z scores for early 1995 are not out of line with the observed values at the end 

of the growing season in 1994. Overall, it is suggested that this initial prediction discrepancy in 1995 is 

simply the SMI technique (therefore predicted Palmer Z) capturing an early season moisture stress. The 

predicted Palmer Z scores (hen quickly re-synchronize and continue to track the observed Palmer Z.

As previously discussed, both weekly and bi-weekly conqxisite data for 1999 were used in this analysis.

For those climate divisions where both years were maintained in (he final assessment (divisions 1, 2, 3, and 

7) there is evidence (hat the weekly composites show a higher tenqwial resolution, particularly in climate 

division one. I f  the biweekly composites are conq)ared to the weekly composites in division one, there is a 

much higher fidelity in the predicted values tracking the observed values. Bearing in mind (hat (he 

observed Palmer Z plots do not change, one can see the predicted values better capturing the fluctuations of 

(he observed values in the weekly conqwsite data. While perhaps not surprising, it is certainly encouraging 

to see the finer tenqwral resolution data providing a better and more conq)lete assessment of the actual 

changes in the observed data. The implications of this observation are two-fbld. First, the data suggests 

that it should be possible to c^ture drought variations at finer time steps. The benefits of the finer time
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scale are apparent if  one hopes to track slight variations in moisture status as a function of time. 

Additionally, there will always be some composites that fail to produce SMI values for a given HUC (or 

climate division) due to the masking functions enployed in the algorithm. With weekly composites, it is 

less likely long periods of time will pass without deriving SMI values for that HUC due to the increased 

sampling ability the weekly data provide (52 composites per year versus 26 for the biweekly).

The second implication of the finer temporal resolution has to do with suggested inplementation of the 

SMI technique in the future. In order to obtain a more robust assessment of surface moisture status, a daily 

time step for the calculations of SMI would be suggested. Granted, the masking of clouds and undesirable 

earth-sun-sensor geometries will undoubtedly remove a great number of pixels at a daily time-step. 

However, if  this logic were to be implemented for drought monitoring, the increased sampling ability the 

daily time-step provides may outweigh the loss of data caused by the masking. In a given one week 

composite, there are approximately seven chances for a given pixel to be viewed (perhaps more depending 

on orbital mechanics). O f those seven observations, only one is maintained in the final weekly composite. 

Some of the literature suggests (ASPRS paper) that off-nadir pixels are preferentially selected by the 

maximum NDVI compositing technique. I f  these pixels are far enough off nadir, they will be removed by 

the geometry mask imposed in the air temperature module of the algorithm. The result is one actual 

observation lost and at least six other potential observations of this pixel that are also lost. O f those six, it 

is likely a certain haction w ill contain clouds or undesirable geometries as well. However, if  daily data are 

used, the opportunity may exist for the sensor to observe this given pixel more than one time in a given one 

week composite period. Given that the data suggests hner temporal resolution results in an increased 

ability of SMI to track Palmer Z, it appears reasonable to assume that one may increase the temporal 

resolution and increase our overall ability to assess surface moisture status. Future studies should 

investigate this assertion more fully.

Finally, climate division five did not result in very much ouput through the years of this study. Five of the 

eleven possible years were removed. This removal is undoubtedly a function of the air temperature module
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in the algorithm. In p ite of the failure to derive SMI scores for so many years, when data were produced, 

the results were quite good. Table 2 shows that four of the five removed years had high cross correlations 

at a lag of two. O f those years, some of the correlations are quite high. Regardless of why the extreme lags 

show such quality cross-correlations, if  the probabilities in table 5 are considered, after the removal of the 

questionable years, the results are exceptional. The probability of the coefficients are much less than 0.001. 

Consider this value and the time sequence plots (figure A.4 appendix) and a remarkable abihty of the 

predicted to track the observed results is evident, especially in 1996 which showed very corrplex 

fluctuations throughout the year. In spite of the loss of nearly half of the available years, the abihty of SMI 

derived Palmer Z to track the observed Palmer Z is still remadcable. Again, this may be irrproved through 

the use of higher temporal resolution data.

CONCLUSIONS

The results of this study indicate that the SMI technique shows great potential in its abihty to map drought 

at landscape scales. SMI and Palmer Z show coincident trajectories throughout all years of this 

experiment. While it is desirous to provide actual equations for the derivation of Palmer indices horn SMI, 

the tme nature of (his study is a proof of concept. Therefore, it can he legitimately argued that the 

significance of the coefficients is not the issue. Instead, it is the correlation between SMI and Palmer Z that 

is paramount in this study. The fact that the derived time series coefficients are significant at acceptable 

levels adds credence to the entire exercise, thus showing the promise for landscape assessment of drought 

status that SMI holds and indicating the utility of further exploration.

Regardless of the shortcomings of (he current implementation, (he SMI technique provides a clear method 

of predicting a familiar drought index. Since Palmer Z is well modeled, and Palmer Z is a precursor to the 

long-term Palmer indices, it would be relatively simple to convert to an SMI based calculation of the other 

Palmer indices (e.g. PDSI). With an increased understanding of the behavior of SMI, and an increased data 

richness by virtue of higher temporal calculations, it is likely SMI could be used (o calculate drought and
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surface moisture status in areas where weather station do not exist, or their placement may be cost 

prohibitive. While it is unlikely this logic will replace the current method of calculating Palmer indices in 

North America, it may be an appropriate technology for locations such as A&ica or the Boreal regions of 

Asia. SMI would prove a cost effective method for providing spatially explicit information on surface 

moisture status. Additionally, the techniques can be applied to other platforms, such as AQUA MODIS, 

where the stperior design of the sensor and its derived terrestrial products (surface tenperature, vegetation, 

etc.) will likely result in higher fidelity drought products.

EPILOGUE

The research presented in this document illustrates the progression I  followed in develtping a method for 

assessing drought at landscpe scales using NOAA-AVHRR data. I began by utilizing promising large- 

scale techniques (T /N D V I models) and modifying those techniques for application at smaller (landscape) 

scales. Upon testing the original SMI model performance (chapter 2), certain shortcomings were 

discovered. These issues were addressed by the incorporation of the W DI logic into a second generation 

SMI model. In order to fully exploit the logic presented in the W DI derivation, it was necessary to develop 

a technique to estimate the critical near surface air temperatures at the equivalent landscape scale.

Although constraints imposed in the air temperature module removed a large number of pixels 6om the 

analysis, it proved a robust estimator and was incorporated in the development of the final SMI model. 

Finally, the trapezoid-based W DI logic was implemented and tested at the landscape scale (chapter 5). As 

was shown, the final SMI model closely matched, in pace and time, a popular meteorological station based 

drought index (Palmer Z). Furthermore, the SMI model requires only AVHRR satellite data as inputs.
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APPENDIX A
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Table A.1: Trapezoid parameters for each 4*"" HUC. Note, there is no HUC 1, HUC 2 was removed,
and algorithm failed to derive values for HUC's 5,16, and 46.

HUC Max Slope Max Intercept Min slope Min Intercept HUC Max Slope Max Intercept Min slope Min intercept

3 -70.8089 63.17464 -23.734 12.63884 36 -65.5648 57.1752 -26.6496 21.01836
4 -68.9293 63.01224 -20.8428 10.38902 39 -89.7355 81.1443 -31.9218 19.76161
5 40 -75.5647 68.8905 -15.8424 9.652939
6 -109.334 96.34461 -24.2087 . 15.01582 41 -113.937 106.659 -23.3469 12.38569
7 -57.3067 55.31637 -15.9701 11.53213 42 -117.228 104.9839 -16.3666 10.03849
8 -31.6643 26.18764 -30.125 22.98639 43 -94.676 84.08698 -17.6916 8.434703
9 -112.278 108.0502 -19.9738 12J241 44 -147.758 136.9017 -18.6106 10.57146
10 -75.5289 78.53613 -23.6431 15.66226 45 -81.6142 76.46227 -25.9848 14.80378
11 -110.805 100.1336 -16.6343 12.1223 46 — — — —
12 -80.6202 71.8128 -27.8882 20.55269 47 -98.6618 88.62082 -20.4666 11.66403
13 -27.9222 24.06089 -23.9185 18.986 48 -137.016 125.8258 -23.4312 11.423
14 -82.1029 77.52799 -19.1212 8.534692 49 -133.774 127.799 -38.0053 17.3766
15 -123.866 110.6927 -24.6883 14.79226 50 -100.251 89.33881 -21.8378 16.31468
16 — — — . . . 51 -138.938 121.3947 -22.1371 13.78183
17 -120.07 112.1213 -24.286 14.32551 52 -75.8667 72.36227 -28.6152 14.89059
18 -105.677 98.46101 -21.9924 16.75848 53 -105.329 99.74573 -21.4049 12.08971
19 -95.9914 88.85017 -20.7761 13.96107 54 -87.6215 77.7939 -23.5126 16.97307
20 -110.571 96.25177 -13.1761 7.576127 55 -114.209 102.5654 -25.6098 12.58638
21 -125.845 113.8652 -31.9357 24.32874 56 -64.0228 68.71739 -30.5944 15.53726
22 -87.1887 76.35423 -19.1037 13.63949 57 -102.24 97.6588 -22.3737 15.67505
23 -68.0305 58.61748 -13.6886 9.276328 56 -114.421 98.39673 -22.2077 8.043068
24 -119.386 104.4509 -27.7956 16.52829 59 -99.9207 92.26113 -33.6823 24.047
25 -82.1411 73.55742 -22.2223 17.34402 60 -87.3888 85.59878 -29.7786 17.94122
26 -101.755 88.54659 -23.4002 13.53459 81 -86.1079 79.85793 -17.3154 10.79869
27 -101.539 93.21545 -20.7844 15.36065 62 -91.7669 82.38452 -19.1375 13.98486
28 -84.6283 76.79299 -25.9328 23.06884 63 -127.033 116.0022 -22.0848 15.15276
29 -93.0632 86.76849 -24.3584 15.48007 64 -67.1474 63.81761 -26.21 10.61784
30 -78.4823 68.96512 -30.52 24.57468 65 -141.282 123.3685 -21.2997 14.70431
31 -42.388 42.13838 -15.5998 11.50151 66 -102.743 94.07105 -25.6204 15.52244
32 -66.2237 60.12592 -33.9358 20.0904 67 -144.675 125.5357 -16.3552 11.84752
33 -89.8917 84.97411 -14.3644 8.259284 68 -66.5304 64.97958 -23.2717 17.12092
34 -49.4083 47.816 -13.989 11.48881 69 -84.9551 79.12882 -18.5831 13.96585
35 -74.7089 77.94342 -26.0179 14.56844 70 -126.776 116.1008 -21.9168 13.95415
36 -124.388 110.331 -26.2151 19.94451 71 -117.274 109.0863 -24.6569 16.66908
37 -83.6296 75.30048 -18.2115 11.33283 72 -147.788 132.6343 -22.8093 14.00995
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Table A.1: Trapezoid parameters for each 4"* BUC. Note, there Is no HUC 1, HUC 2 was removed,
and algorithm failed to derive vaines for HUC's 5,16, and 46 (CONTINUED).

HUC Max Slope Max Intercept Mln slope Mln Interce;

73 -128.802 116.0596 -17.7936 11.70019
74 -97.6126 90.19289 -22.555 15.02623
75 -107.186 94.85503 -28.2956 16.83603
76 -101.687 92.3931 -25.4946 14.69887
77 -117.042 106.3887 -22.8682 10.09385

78 -98.3506 89.35116 -25.745 16.14591
79 -80.5626 84.9748 -20.6968 12.69503
80 -91.1379 80.34972 -23.0672 13.56649

81 -111.032 99.22098 -21.4224 14.41016
82 -84.6942 73.70065 -20.1506 13.60071

83 -78.0668 74.48007 -22.868 11.66611
84 -90.6994 84.M56 -26.3714 15.42855
85 -60.9486 50.38476 -15.941 10.80814
86 -52.0768 49.50488 -22.3193 15.36054

87 -30.5659 27.85468 -26.6554 13.58566
88 -41.6866 35.22319 -29.4142 17.40933
89 -79.0744 71.6012 -24.1015 13.88018
90 -51.834 53.71454 -26.7835 15.18693
91 -29.4083 27.26549 -16.7108 13.08145
92 -31.3861 28.32819 -14.5912 9.103303
93 -48.744 51.89315 -16.1959 9.753709
94 -83.0551 75.5079 -22.214 12.13247
95 -50.4635 45.028 -24.1436 17.0158
96 -19.7538 21.38082 -20.7654 13.71834

97 -40.9716 38.93089 -14.8265 9.892314
98 -28.3496 24.51251 -20.1594 14.46347
99 -40.1602 31.63116 -23.2317 16.4275
100 -43.3228 39.48298 -38.5218 31.4767
101 -19.141 16.85452 -17.0688 14.51533
102 -47.6482 44.31785 -27.5448 16.7301
103 -16.8765 16.87073 -8.25228 7.34927
104 -32.0545 29.27614 -25.2744 20.87415
105 -45.4674 46.12521 -26.4903 15.26349

108 -18.3443 16.37878 -16.9566 13.47344
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Figure A.1: Time sequence of SMI and Palmer Z for all climate divisions, a) is SMI raw data, b) shows SMI 
first differencing; c) Is Palmer Z raw data, d) shows Palmer Z Brst differencing. Colors denote climate divisions.
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c) Palmer Z  raw sequence by climate diviaion.
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d) Palmer Z  first differencing, by climate division.
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Figure A.2: Cross-correlation by climate division. Figures are for all years combined. All data have 
been transformed (first difference).
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Figure A.2: Cross-correlation by climate division (CONTINUED).
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Figure A.2: Cross-correlation by climate division (CONTINUED).
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Figure AJl: Cross-correladon by climate division (CONTINUED).
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Figure A3.a: Climate Division 1 cross-correlogram of Palmer Z  and SM I, by year.
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Figure A.3.a: Climate Division 1 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)

PALIVIZ D1 with SD1 AVG

YEAR: 1993

LLo
U  -1.0

2 - 1 0 1  2

Lag Number

Transforms; difference (1 )

Confidence Limits

ICoefficient

PALIVIZ D1 with SD1 AVG

YEAR: 1994
1.0

o  -1.0

Lag Number

Transforms; difference (1)

Confidence Limits

Coefficient

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure AJ.a: Climate Diviaion 1 crosa-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.a: Climate Division 1 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure AJ.a: Climate Division 1 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A3.a: Climate Division 1 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z  and SM I, by year.
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED).
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z  and SM I, by year.
(CONTDfUED).
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Figure A J.b: Climate Division 2 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED).

PALIVIZ D2 with SD2 AVG

YEAR: 1997
1.0

Ü  -1.0
- 3 ^ 2

Lag Number

Transforms: difference (1)

Confidence Limits

I  Coefficient

PALIVIZ D2 with SD2 AVG

YEAR: 1998
1.0

0.0

-.5

LLo
u  -1.0

Confidence Limits

Coefficient

Lag Number

Transforms: difference (1)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



igure A^.b: Climate Division 2 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED).
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Figure A.3.b: Climate Division 2 cross-correlogram of Palmer Z and SM I, by year.
(CONTINUED).
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Figure AJ3.C: Climate Division 3 cross-correlogram of Palmer Z  and S M I, by year.
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Figure A.3.C: Climate Division 3 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A3.c: Climate Division 3 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A3.c: Climate Division 3 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.C: Climate Division 3 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A j.c : Climate Division 3 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINCED)
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Figure AJ.d: Climate Division 4 cross-correlogram of Palmer Z  and SM I, by year.

PALIVIZ D4 with SD4 AVG

YEAR: 1991
1.0

.5

0.0

-.5

LL
o
u  -1.0

Lag Number

Transforms: difference (1)

PALIVIZ_D4 with SD4_AVG 

YEAR: 1992
1.0

.5-

-..5-

IL
U
U  -10

0.0----

-3

Lag Number

Transforms: difference (1)

Confidence Limits

iCoefficient

Confidence Limits

Coefficient

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.3.d: Climate Divimon 4 croas-correlogram of Palmer Z  and SM I, by year.
(CONTINUED).
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Figure AJ.d: Climate Division 4 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED).
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Figure A.3.d: Climate Division 4 crow-correlogram of Palmer Z  and SM I, by year.
(CONTINUED).
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Figure A.3.d: Climate Division 4 cross-correlogram of Palmer Z and SM I, by year.
(CONTINUED).
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Figure A j.d : Climate Division 4 cross-correlogram of Palmer Z  and SM I, by year.
(CONTEfUED).
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Figure A.3.e: Climate Division 5 cross-correlogram of Palmer Z  and SM I, by year.
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Figure AJ3.e: Climate Division 5 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure AJ3.e: Climate Division 5 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A3.e: Climate Division S cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure AJ.e: Climate Division 5 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A^.e: Climate Division 5 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.f: Climate Division 6 cross-correlogram of Palmer Z  and SM I, by year.
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Figure A 3.f: Climate Division 6 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)

PALMZ D6 with SD6 AVG

YEAR: 1993

o
u  -1.0

-3 -1 0 1

Lag Number

Transforms; difference (1 )

.2 3

Confidence Limits

I  Coefficient

PALIVIZ D6 with SD6 AVG

YEAR: 1994
1.0

Ü
u

0.0

-.5

-1.0

Lag Number

Transforms: difference (1)

Confidence Limits

Coefficient
0

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A 3.f: Climate Division 6 cross-correiogram of Paimer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.f: Climate Division 6 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.f: Climate Division 6 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A J.f: Climate Division 6 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z  and SM I, by year.
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)

PALIVIZ D7 with SD7 AVG

YEAR: 1995
1.0

0.0

u_ .
Ü
u  -10

Confidence Limits

Coefficient
-3

Lag Number

Transforms: difference (1)

PALMZ D7 with SD7 AVG

YEAR: 1996

u  -1.0 I'.' ' I ' ""i" I >

4 / - 3  - 2 - 1 0  1 2 3 ^ 4  5

Lag Number

Transforms: difference (1)

Confidence Limits

Coefficient

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A.3.g: Climate Division 7 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure AJ.g: Climate Division 7 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure AJ.g: Climate Division 7 cross-correlogram of Palmer Z  and SM I, by year.
(CONTINUED)
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Figure A.4: Palmer Z  and predicted Palmer Z  (&om SM I) for all divisions. Gaps in predicted 
sequences denote removed years. Line breaks denote year steps.___________
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Figure A.4: (CON l iNUED)
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Fienre A.4: (CONTINUED)
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Figure A.4: (CONTINUED)
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Figure A.5: P-P plots of A R IM A  residuals by state climate division.
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Figure A.5: P-P plots of A R IM A  residuals by state climate division (CONTINUED).
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Figure A.5: P-P plots of A R IM A  residuals by state climate division (CONTINUED).
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Figure A.5: P-P plots of AR IM A  residuals by state climate division (CONTINUED).
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Figure A.6: Palmer Z  residuals versus SM I residuals, by climate division.
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Figure A.6: Palmer Z residuals versus SMI residuals, by climate division (CONTINUED).
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Figure A.6: Palmer Z  reaiduala versus SM I residuals, by climate division (CONTINUED).
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Figure A.6: Palmer Z  residuals versus SM I residuals, by climate division (CONTINUED).
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