University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

1997

Impacts by acidic metals-rich groundwater on the hyporheic zone of an intermontane stream

Sonia A. Nagorski The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Nagorski, Sonia A., "Impacts by acidic metals-rich groundwater on the hyporheic zone of an intermontane stream" (1997). *Graduate Student Theses, Dissertations, & Professional Papers*. 4697. https://scholarworks.umt.edu/etd/4697

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Maureen and Mike MANSFIELD LIBRARY

The University of MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission No, I do not grant permission	<u>× </u>
Author's Signature	
Date $\frac{5/1/97}{}$	

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

Impacts by acidic, metals-rich groundwater on the hyporheic zone of an intermontane stream

by

Sonia A. Nagorski

B.A., Amherst College, 1994

Presented in partial fulfillment of the requirements

for the degree of

Master of Science

University of Montana

1997

Approxed by: Chairperson, Board of Examiners Dean, Graduate School

5-1-97

Date

UMI Number: EP40161

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP40161

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Nagorski, Sonia A., M.S., 1997

Geology

Impacts by acidic, metals-rich groundwater on the hyporheic zone of an intermontane stream.

Director: Johnnie N. Moore

The hyporheic zone has been gaining ecological recognition as an important site of nutrient cycling and habitat, but very little is known about metal behavior within the zone. This understanding is important for assessing the environmental imacts of mining and for designing remediation strategies for riparian systems. Metal behavior in the hyporheic zone was studied at Silver Bow Creek, MT, where anoxic and acidic (pH=3-5) groundwater with high dissolved metal concentrations travels through a floodplain heavily contaminated with mining wastes and comes into contact with neutral (pH=7-8), oxic, and relatively low metal concentration surface water. A shallow hyporheic zone underlies the streambed where physical mixing and chemical transformation of these waters was found to occur.

Sampling the dissolved ($<0.45 \mu$ m) metal and As concentrations in surface water, hyporheic zone water (<30 cm below and lateral to the streambed), and adjacent groundwater was conducted along a 1 Km stretch of the creek at three sites with variable surface water to groundwater flow direction relationships. Results of water analyses indicated that water in the shallow subsurface had a mean pH of 6, and mean concentrations of most metals were generally inbetween mean surface and groundwater concentrations. The highest levels of dissolved As at the site were found in the shallow hyporheic zone, indicating that the hyporheic zone is a distinct geochemical environment. Conservative elements (Ca and Mg) allowed for the calculation of physical mixing ratios, which indicated that 50% of the hyporheic zone samples contained >20% groundwater. All other metals were found to be acting non-conservatively in the hyporheic zone.

The solid phase was examined by setting into the streambed a series of slotted plastic columns filled with 2mm aluminosilicate beads which collected metal precipitates over the course of 52 days. Upon removal, dense bands of iron oxide precipitates were found on many of the bead columns at the surface water- substrate boundary. These precipitation zones, commonly only 1-5 cm thick, are interpreted to be products of metals in the groundwater coming out of solution upon mixing with higher pH and more oxic surface water. The thickness of the mixing zone appeared to be controlled by the the relationship of general groundwater and surface water flow directions, as well as by small scale variability in the permeability of streambed and floodplain sediments. The implication of these processes is that metals transported in solution by the groundwater precipitate onto the hyporheic zone and streambed sediments, thereby contaminating the hyporheic zone and contributing to the surface water metal load.

Acknowledgements

Funding for this research was provided by the Western Mineland Reclamation Center, the Geological Society of America, and the University of Montana. I thank William Woessner and Johnnie Moore for acquisition of the majority of the funding. I thank Devin Shay, Adam Nagorski, David Tallmon, and Steve Helgen for assistance in the field. My project partner Devin Shay provided the enthusiasm and friendship that made working at Silver Bow Creek a truly enjoyable experience. Derek Sjostrom aided me tremendously in making figures and slides. Many thanks to William Woessner for excellent teaching of hydrogeology and for valuable input into this project, and to Tom DeLuca for his many helpful comments and recommendations. I am most indebted to Johnnie Moore whose tremendous energy, time, insight, and enthusiasm guided me through every step of this project.

Table of Contents

Abstract	ii
Acknowledgements	iii
Table of Contents	iv
List of Tables	vi
List of Figures	vii
Introduction	1
Site description	6
Methods	8
Water sampling	8
Solid phase sampling.	11
Sediment sampling	12
Quality Assurance/Quality Control.	13
Results and Discussion	17
Physical setting	17
Streamhed sediments	18
Flow rate in the creek	18
Hyporbaic zone chemistry: dissolved (~0.45 µm) fraction	10
Site I	17
Site II	21
Sile III	25
Low surface samples	25
Surface water: physical and chemical results	20
Solid phases	
Site specific trends: Bead columns	
Physical mixing in the hyporheic zone	40
Site specific trends with mixing ratio results.	46
Chemical transition in the hyporheic zone	48
Surface water infiltration versus groundwater upwelling.	
Spatial and temporal controls on mixing	55
Ground water impacts on the surface water	59
Conclusions	62
- 4	
References	64
Appendix	70
Water levels	70
ICAPES water data:	
ICAPES data from water sample analysis of 7/5/95	71
ICAPES data from water sample analysis on 7/23/95 and 7/24/95	72
ICAPES data from water sample analysis of 8/30/95	74
ICAPES data from water sample analysis of 9/25/95	75
Water quality assurance/ quality control on water samples:	
June/July 1995 laboratory duplicates: calculations worksheet	76
Aug./Sept. 1995 laboratory duplicates: calculations worksheet	77
Compilation of all laboratory duplicates statistics	77
June/July 1995 field duplicates: calculations worksheet	78
Aug/Sent. 1995 field duplicates: calculations worksheet.	79

Compilation of all field duplicates (statistics)	79
Summary of laboratory and field blanks for bead and water samples	80
Fe QA/QC High vs. low concentrations	80
Water chemistry at each transect (figures)	81
Site I	81
Site II.	90
Site III	
Mixing ratios at Site I	101
Mixing ratios at Sites II and III	102
Concentrations versus dissolved oxygen levels.	103
Full list of hyporheic zone samples with dissolved oxygen, nitrate-N, sulfat	e.
and alkalinity concentrations in hyporheic zone samples with most	,
concentrations lower than surface water and groundwater samples.	104
Fransect-scale trends in surface water chemistry.	105
Bead ICAPES data (Digest concentration analysis)	
ICAPES data of 1/26/96	106
ICAPES data of 2/6/96	108
ICAPES data of 2/15/96	109
ICAPES data of 3/7/96	110
Bead Analysis quality assurance/ quality control	
Laboratory duplicates: calculations worksheet	111
Compilation of all laboratory duplicates (statistics)	111
Bead sample duplicates- calculations worksheet.	112
Compilation of all bead sample duplicates (statistics)	112
Concentrations along bead columns (adjusted to ug/g bead)	113
Bead column concentration profiles (figures)	117
Site I	117
Site II	124
Site III	129
Comparison of solid and dissolved phase metal ratios in the surface water	137

List of Tables:

1. USGS Standards Summary table	14
2. Summary of 95% confidence intervals applied to water and bead	
samples for construction of error/variability bars	16
3. The chemical characteristics of six selected hyporheic zone samples,	
two from each site	20
4. Mean and standard deviations of concentrations of metals and other	
measured constituents at Site III	25
5. Dissolved oxygen, nitrate-N, sulfate, and alkalinity concentrations in	
hyporheic zone samples with most concentrations lower than surface	
water and ground water samples	27
6 Summary of surface water chemistry (concentrations in mg/l)	28
7. Comparison of concentrations of selected parameters during low and	
high flows in the surface water	30
8. Concentrations of metals and As $(ug/g bead)$ along the lengths of 7	
of the 27 bead columns	33

List of Figures:

1. Schematic illustration of the location of the hyporheic zone	2
2. Location map and site map	5
3. Instrumentation map	9
4. Flow rate in Silver Bow Creek.	19
5. Example of spatial trends of metal concentrations found at Site I	22
6. Example of spatial trends of metal concentrations found at Site II	24
7. Example of spatial trends of metal concentrations found at Site III	26
8. Sulfate vs. alkalinity in the surface water, groundwater, and	
hyporheic zone	27
9. Concentrations of Ca Mg Mn Na Cl NO ₂ -N SO ₄ ² - and specific	
conductance vs. flow rate in Silver Bow Creek	29
10. Concentrations of pH. Cu. Fe. Si, and Zn vs. cfs in Silver Bow Creek	
11. Photos: Bead Columns IIIA-2 and II-3	
12. Photos: Bead Columns IIA-2 and IA-2	
13. Mean Fe concentrations (ug/g bead) on bead color zones	
14. Bead column IA-1 concentration profile	
15. Bead column IIC-3 concentration profile	
16. Bead column IIIC-1 concentration profile	
17. Ca vs. Mg (dissolved) concentrations (mg/l) in water samples	
18. Site I: Percent ground water in subsurface water samples	43
19. Site II: Percent ground water in subsurface water samples	44
20. Site III: Percent ground water in subsurface water samples	45
21: Concentrations of elements [mg/l] versus pH levels	
22: Bead column IIC-2 concentration profile.	
23 Bead column IB-1 concentration profile	54
· · · · · · · · · · · · · · ·	

Introduction

The hyporheic zone has been defined broadly in the literature as the saturated subsurface area connected to a stream channel which shares with it some biological, chemical, or physical characteristics [*Williams and Hynes*, 1974; *Triska et al.*, 1989; *Valett et al.*, 1990; *Hendricks and White*, 1991; *Valett et al.*, 1993] (Figure 1). A more detailed and universal definition does not exist, because researchers have not used interdisciplinary criteria when proposing definitions of the hyporheic zone [see White, 1993]. Nonetheless, this loosely-defined zone has rapidly been gaining recognition as both a key ecological zone crucial to the health of stream biota, as well as a major site of exchange, metabolism, and storage of particulates and solutes [*Grimm and Fisher*, 1984; *Bencala*, 1984; *Stanford and Ward*, 1988; *Triska et al.*, 1989; *Valett*, 1993]. Much progress has been made in the last couple of decades on characterizing many of the biological processes in this zone, yet relatively little has been made in the understanding of the physical and chemical dynamics of hyporheic zones where surface waters and adjacent groundwaters mix [*Bencala*, 1993.] In particular, there is a marked lack of understanding about contaminant storage and exchange through hyporheic zones.

Most studies on the physical and chemical dynamics of the hyporheic zone have concentrated on its connectivity with surface water, and they have generally concluded that the two interact extensively and that hyporheic zones play a major role in storage of stream solutes [*Bencala et al.*, 1984; *Munn and Meyer*, 1988; *Triska et al.*, 1989; *Valett et al.*, 1990; *Castro and Hornberger*, 1991]. The exchange of nitrogen, oxygen, and organic material between surface water and hyporheic zones has been documented, and many authors contend that hyporheic zones are important sites for nutrient cycling [*Grimm and Fisher*, 1984; *Jacobs et al.*, 1988; *Hendricks and White*, 1991; *Findlay et al.*, 1993;

Figure 1: Schematic illustration of the location of the hyporheic zone

Holmes et al., 1994; Findlay and Sobczak, 1996; Pusch, 1996]. In addition, studies of biologic communities in the hyporheic zones have shown they are important habitats for many macroinvertebrates [Williams and Hynes, 1974; Coleman and Hynes, 1980; Stanford and Ward, 1988; Williams, 1989] and are sought by fish for spawning [Wickett, 1954; Hansen, 1975; Johnson, 1980]. A widely-accepted notion that has emerged from this research is that hyporheic animals, organic matter, and solutes are capable of extensive lateral and vertical movement and transport constrained by specific physical and chemical characteristics of each hyporheic environment.

Less is known about the interaction between groundwater and hyporheic zones. Some studies have documented the release of nitrogen and organic matter from groundwater into hyporheic and surface waters [*Coats et al.*, 1976; *Wallis et al.*, 1981; *Rutherford and Hynes*, 1987; Valett et al., 1990;*Triska et al.*, 1993;*Wondzell and Swanson*, 1996]. Other studies have illustrated the volumetric importance of groundwater contributions to streamflow generation during storms [*Freeze*, 1972; *Sklash and Farvolden*, 1979; *Gillham*, 1984; *Blowes and Gillham*, 1988; *Novakowski and Gillham*, 1988; *Squillace*, 1996]. They found that groundwater contributes a much larger component of storm runoff than commonly acknowledged, suggesting that groundwater, surface water, and hyporheic zone interactions are dynamic and transient.

Many rivers and adjacent aquifers are contaminated with heavy metals from mining wastes, and the transport of these contaminants through hyporheic zones needs to be explored and understood. This understanding is crucial for accurately defining routes of contaminant transport targeted in riparian remediation designs. To date, there has been no published research on the geochemistry of metals and arsenic in groundwater entering the hyporheic zone and surface water from groundwater. Instead, most studies on metal contamination have concentrated on transport of metals either through groundwater, surface water, or stream sediments, and not on interrelating these components in the

hyporheic zone. Benner et al. [1995] discussed the behavior of metals in the hyporheic zone at one transect across Silver Bow Creek, MT, the site of this study (Figure 2). Yet their study focussed only on surface water infiltration into the hyporheic zone and was spatially and temporally limited.

The goal of this research was to determine how metals-contaminated groundwater affects the geochemistry of the hyporheic zone and surface water in an intermontane stream. In this paper, the hyporheic zone is defined as the shallow area surrounding the streambed (typically <30 cm below the streambed surface) where the surface water and groundwater physically interact to form a chemically defined transition zone. The examination of both the physical controls on mixing together with the resultant chemical reactions was conducted using geochemical analyses of dissolved and solid phases along a representative reach of the stream during variably sized flow events. This research proposes that a dynamic and spatially complex hyporheic zone exists where dissolved metals from adjacent groundwater are transferred into the solid phase, continually contributing to the streambed's metal load and contaminating the hyporheic zone upon which many aquatic organisms depend in healthy streams.

Figure 2: Location map of study area. Map of study area shows the three research sites, with the locations of transects A,B, and C at each site. Potentiometric lines on study area map are from Shay [1997].

Site description:

Silver Bow Creek, at the headwaters of the Clark Fork River in western Montana, was chosen to study metal transport through the hyporheic zone due to the large chemical differences between the acidic, anoxic, and metal-rich groundwater and the relatively dilute, oxic, and neutral-pH surface water [*Benner et al.*, 1995]. The abrupt boundaries between these waters in many portions of this system provide optimal conditions for detecting the small-scale processes occuring on either side of the surface watergroundwater interface. Also, the stream exhibits strong morphological variations, producing a variety of physical relationships between surface water and groundwater flow directions, which are thought to influence the extent of mixing. In addition, the large extent of metal contamination in Silver Bow Creek and its floodplain makes it a useful site for comparison to other systems heavily impacted by mining wastes.

The source of contamination at Silver Bow Creek is over a century of large scale mining in Butte, MT, located 18 km upstream from the study site. The mining resulted in the release of over 100 million metric tons of mining wastes into the creek [*Andrews*, 1987], much of which was carried downstream by major floods at the turn of the century and became deposited in wide stretches of the floodplain [*CH2M Hill Inc.*, 1989; *Nimick and Moore*, 1991]. Along the study site portion of the creek, an up to 2 m thick and several hundred meter wide sequence of metal-rich mine tailings intermixed with sediments make up the top portion of the river's floodplain [*Benner et al.*, 1995; *Lucy*, 1996; *Shay*, 1997]. These tailings have highly elevated levels of arsenic, cadmium, copper, iron, lead, manganese, and zinc, which have been mobilized through time and have contaminated the underlying pre-mining floodplain sediments as well [*Shay*, 1997].

The groundwater is acidic and contaminated with dissolved metals due to oxidation of metal-sulfide minerals in the floodplain aquifer and vadose zone [*Nordstom*, 1982; *Moore and Luoma*, 1990; *Lucy*, 1996]. Benner et al. [1995] found the groundwater to

have on average a pH of 4.2-4.9, an alkalinity of 0 meq/l, dissolved oxygen levels less than 1 mg/l, sulfate levels of 1500 mg/l, and metal concentrations of about 30 mg/l Al, 140 mg/l Ca, 20 mg/l, 0.55 mg/l Cd, Cu, 370 mg/l Fe, 35 mg/l Mg, and 54 mg/l Zn. Shay [1997] described in more detail the geochemistry of the aquifer and the relationship of groundwater contamination to the stratigraphy of the floodplain sediments. He found the groundwater chemistry to be extremely spatially heterogeneous, both laterally and with depth, and that zones of highly contaminated groundwater generally correlated with areas within the floodplain where contaminated sediments are continually or seasonally saturated by the groundwater or capillary fringe.

The water table has been found to lie between 0 to 1.5 m below land surface, depending on location and temporal variability, and is hydrologically connected with the creek [*Shay*, 1997]. Water level measurements taken across the site indicate that general groundwater movement is from east to west [*Smart*, 1995; *Shay*, 1997]. Although the surface water is significantly less contaminated than the groundwater, it is devoid of aquatic life with the exception of certain microorganisms [*Wielinga et al.*, 1994], algae, and an extremely depauperate aquatic insect population. During major precipitation events, it becomes particularly contaminated due to input from the floodplain [*Lucy*, 1996].

Methods

Three sites along the 1 km study area were selected following preliminary measurements of temperature, pH, and specific conductance used to approximate locations of groundwater inflow versus surface water infiltration [*Sillman et al.*, 1995; *White et al.*, 1987; *Jones et al.*, 1994] (Figure 2). Two of the sites were located where groundwater flowed approximately perpendicular to the surface water, thereby presumably forming a flow-through system like that caracterized by Benner et al. [1995]. The third site was located in an area where the surface water and groundwater flow directions were approximately parallel. Each site was divided into three transects, each about 5 m apart. Detailed streambed topographic maps were constructed at each site. These maps were used to correlate the chemistry of the subsurface water with streambed topography and grain size.

Two shallow piezometers were installed several meters away from the creek banks. Water levels were measured in wells during every sampling session using an electric tape. Concurrent collection of floodplain piezometric data by Shay [1997] futher aided in the making of potentiometric maps of the area. These surveyed instruments enabled the measurement and comparison of water levels on both sides of the stream relative to each other and to surface water stage.

Water sampling:

Each transect was instrumented with 5 subsurface water access tubes (1 cm OD polyethelene tubing), which were used for sampling the pore water below the streambed surface and in the adjacent banks and floodplain (Figure 3). Small diameter, flexible tubing was used instead of open PVC wells so that sample exposure to air was minimized. The lower 10 cm of the tubes were perforated and covered with a fine nylon screen. Two of the tubes were placed into the floodplain approximately 1 m away from the stream bank,

another two were submerged and set into the banks of the stream, and one tube was placed into the streambed at the center of the transects. Transects at Site I had two additional tubes, which were installed for purposes of sampling water away from the creek bed during high flow, when all five tubes became submerged. The tubes were installed by driving a steel rod into the sediment and upon its removal immediately inserting the plastic tubing. Wooden stakes attached to the tubes were inserted to stabilize the shallow tubes. The tubes penetrated between 15-25 cm into the streambed.

Each subsurface water sample was taken using an acid washed 60 cc syringe after purging at least one tube and one syringe volume. Small sample volumes were used in order to avoid integrating water from areas far from the tubes. The subsurface water access tubes were filled with water and tightly sealed after each sampling event. Three depth-integrated surface water samples were taken across each transect, one near each bank and one in the center.

Syringe collected samples were immediately pushed through a 0.45 μ m filter set in an acid washed filter housing and into an acid washed 30 ml bottle. Approximately 10 ml of sample was used to purge the filter and bottle before taking the sample. Each cation sample was acidified with three drops of concentrated trace-metal grade HNO₃ immediately following collection. Anion samples were unacidified. All samples were immediately placed on ice in the field and kept chilled until analysis. Field blanks and duplicates were collected during every sampling session. In the laboratory, the acidified samples were analyzed using a Thermo Jarrel-Ash Inductively Coupled Argon Plasma Emission Spectrometer (ICAPES) for As, Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, Ti, and Zn. Unacidified samples were run on a Dionex Ion Chromatograph (IC) for chloride, nitrate, and sulfate analysis within 48 hours of sampling.

Dissolved oxygen, pH, and specific conductance were measured in the field on small sub-samples. Alkalinity was measured in the field by titrating HCl in the sub-sample until the pH dropped to 4.5. Temperature was measured for all the sample sites at one point in time in order to minimize temperature fluctuations which occur during the course of the day of sampling. A thermometer probe was inserted about 10 cm into the sediment as close as possible to the subsurface water access tubes, and direct readings were taken.

Solid phase sampling:

upstream), respectively.

Using artificial substrates to sample the solid phase by-passed the problems encountered when trying to core coarse-grained stream sediments and delineating coating history on the variably sized sediments [Benner et al., 1995]. Twenty-seven bead columns were constructed using 40 cm long polycarbonate tubing (1 cm OD., 0.6 cm ID) which were slotted (1 mm width) with a band saw on two sides in 3 mm intervals. Aluminosilicate beads (2 mm average diameter) were inserted into the columns, with plastic dividers separating every 10 cm of tube. The dividers were used to minimize vertical integration of the water flowing through the columns. The assembled columns were soaked in 20% reagent-grade HCl for 2 hours and rinsed repeatedly with deionized water until the ambient pH of deionized water was reached. In the field, each tube was carefully inserted into the substrate so that 30 cm of the column was below the channel bed surface and 10 cm was exposed in the surface water. Three bead columns were placed in each of the 9 transects, with each column placed as close as possible to the three subsurface water sampling tubes in each transect (Figure 3). The bead columns were identified by the transect in which they were placed (e.g. "IA" = Site I, Transect A) followed by 1, 2, or 3, depending on whether they were in the left bank, center, or right bank of the creek (looking

After 52 days, the bead columns were removed. With the removal of each column, the location of the water-substrate boundary was marked with a rubber band, and each column was quickly rinsed in the stream to wash off excess sediment and algal growths.

Each column was labeled, photographed, wrapped in plastic wrap, and stored. In the laboratory, the columns were oven-dried at 70°C and then carefully sectioned into 4-7 segments, depending on the amount of visible coating variation on the columns. The beads within the surface water portions of the columns were carefully chosen by using only those with no visible algal coatings. (Only two bead sections (Bead IIC-3, section 0-8.5 cm, and Bead IIIA-3, section 0-7.5 cm) were analyzed using beads with some algal coatings that could not be avoided). This was done because analysis of beads with algal coatings demonstrated that the algae themselves contained highly elevated metal concentrations (200-300% the concentrations of precipitates on the beads. Approximately one gram of bead from each section was measured out. The weighed beads were placed into an acid-washed centrifuge tube, to which 10 mL of 40% trace metal grade HCl was added. The columns were then shaken for 1 hour and centrifuged for 10 minutes. The solutions were analyzed for major metals using the ICAPES.

Sediment sampling

Three sediment samples were taken from along each bank of each of the three study sites. The samples were taken from the top 1-2 cm of stream sediment and wet sieved through a 63 μ m mesh, using ambient stream water. The samples were stored on ice for transport to the laboratory, where they were immediately centrifuged and dried in a 70°C oven. The dried sediment then underwent a microwave aqua-regia digest, and metal concentrations were determined with use of the ICAPES.

Quality Assurance/Quality Control

Accuracy and precision were measured separately for the water samples and for the bead digest samples. Field duplicates, lab duplicates, lab standards (internal and external), and blanks were used to find the % error (or variability) associated with each element in each water and bead sample.

Accuracy was measured by comparison to USGS standards T107 and T117, which were measured during every use of the ICAPES for cation analysis (Table 1). Almost all of the mean measured values were less than 10% different from the reported mean values. For those measured during water analysis, exceptions for USGS T107 were Cd (19.6%), Cu (12%), Mn (12.9%), and Si (12.7%) and for USGS T117 were Ca (12.7%), Mn (10.9%), Si (13.7%), and Zn (13.3%). For the standards measured during bead analysis, the accuracy was not as good, likely due to carry-over from the high concentrations of metals in the bead digests into the relatively dilute standards. All elements were no more than 15% different from the reported values. Exceptions for USGS T107 were Ca (17.1%), Cd (28.4%), Fe (22.4%), Mn (20.4%), Si (20.8%), and Zn (26%), and the exceptions for USGS T117 were Si (15.7%) and Zn (18.8%). Accuracy was less important on the bead digests than was precision, due to the use of the beads for establishing relative concentrations only.

Γ	<u>USGS T107</u>					
	Reported Meas. values % Diff. Me			Meas. values	%Diff.	
	values	(run with water	from	(run with bead	from	
	mean (std.dev)	samples) (n=29)	Reported	samples) (n=20)	Reported	
AI	0.22 (0.045)	0.24 (0.022)	9.94	0.24 (0.020)	7.57	
Ca	11.7 (0.7)	12.8 (0.4)	8.98	13.9 (0.7)	17.1	
Cd	0.0143 (0.002)	0.0174 (0.001)	19.6	0.0190 (0.001)	28.4	
Cu	0.030 (0.0023)	0.027 (0.012)	12.0	0.03 (0.002)	7.34	
Fe	0.052 (0.007)	0.056 (0.015)	7.23	0.065 (0.0007)	22.4	
Мg	2.1 (0.13)	2.2 (0.091)	4.65	2.36 (0.10)	11.5	
Mn	0.045 (0.006)	0.051 (0.002)	12.9	0.055 (0.002)	20.4	
Мo	0.015 (0.002)	0.016 (0.002)	7.69	0.017 (0.0024)	14	
Na	20.7 (1.1)	22.8 (0.44)	9.66	23.6 (1.1)	12.9	
S i	3.6 (2.3)	4.1 (0.14)	12.70	4.4 (0.22)	20.8	
Sr	0.061 (0.004)	0.063 (0.002)	3.23	0.067 (0.003)	22.9	
Zn	0.076 (0.01)	0.08 (0.03)	5.39	0.098 (0.006)	26	
		USGS	<u>T117</u>			
	Reported	Meas. values	% Diff.	Meas. values	% Diff.	
1	values	(run with water	from	(run with bead	from	
	mean (std.dev)	samples) (n=12)	Reported	samples) (n=11)	Reported	
AI	0.079 (0.019)	0.084 (0.022)	5.84	0.090 (0.017)	13.3	
Ca	20.9 (1.2)	23.7 (0.4)	12.7	24.2 (0.9)	14.6	
Fe	0.47 (0.018)	0.51 (0.015)	7.87	0.52 (0.019)	9. 78	
Мg	10.05 (0.44)	10.99 (0.091)	8.92	11.03 (0.32)	9. 27	
Min	0.22 (0.003)	0.25 (0.002)	10.9	0.25 (0.009)	12.8	
Мo	0.012 (0.002)	0.013 (0.002)	11.1	0.013 (0.002)	8.70	
Na	20.0 (1.26)	22.0 (0.436)	9.6 7	22.3 (0.89)	10.9	
Si	5.54 (0.3)	6.35 (0.1)	13.7	6.48 (0.22)	15.7	
Sr	0.265 (0.011)	0.277 (0.002)	4.42	0.277 (0.007)	4.48	
Zn	0.176 (0.009)	0.201 (0.025)	13.3	0.212 (0.010)	18.8	

Table 1: Results of analyses of Standards USGS T107 and T117 water standards run with water and bead digest samples.

Eighteen field blanks were collected during the water sampling, and all concentrations were below detection, with the exception of Zn, whose average concentration was 0.018 mg/l. Twenty three lab blanks were also run during the course of the water analysis, and again all concentrations were below detection. Lab blanks run during bead digest analyses showed all elements to fall below the detection limit. However, bead blanks, which were digests run on the aluminosilicate beads not installed in the creek bed, showed significant levels of Al and Si, likely resulting from the composition of the beads themselves. For these reasons, Al and Si values had to be discarded for the bead concentration results. Bead blanks also resulted in mean concentrations of Ca with 5.6 μ g/ g bead; Mg with 1.3 μ g/ g bead; Na with 0.96 μ g/ g bead; and Ti with 0.09 μ g/g bead. The highest levels found in the bead blanks during each analysis were used toestablish the boundary of minimally significant bead concentration values in the samples.

Precision was measured through analysis of both lab and field duplicates. Field precision of the water samples was measured by analysis of eleven duplicate samples collected in the field (about one from each sampling event). Precision of the bead samples was measured by taking 17 duplicate samples of beads from randomly selected sections of the tubes. Lab precision was measured by running the same samples (whether water or bead digest) at least once and calculating the variability in the readings by the ICAPES and IC, whichever pertained. Twenty-two lab duplicates were run during the water sample analysis, and twenty were run during the bead digest analysis.

Each sample was compared with its field and/or lab duplicate and the percent difference between the duplicates was calculated for each element. For purposes of calculations, a value of one-half the detection limit was applied to each metal whose concentration fell below the detection limit. The 95% confidence interval of the mean of all the compiled percent difference values was calculated (Table 2). The variability in the lab duplicates was significantly smaller than that of the field duplicates (for the water samples) and bead coating variability (for the beads); therefore, the latter were used for construction of error/variability bars. Thus, the concentration of each element in each sample had an error bar applied to it which represents the 95% confidence interval of the mean field variability for the specific element. The appendix contains all of the field and lab duplicate samples with the individual percent changes as well as the compilation of percent changes from which the 95% confidence intervals were calculated.

Parameter	Water	Bead
and the second	samples	samples
pН	1.3 %	NA
Diss. oxygen	23 %	NA
Spec. Cond.	3.4 %	NA
Alkalinity	19 %	NA
Cl	4.2 %	NA
NO3-N	22 %	NA
\$04 ²⁻	9.7 %	NA
Al	28 %	37 %
As	22 %	18 %
Ca	1.3 %	15 %
Ċd	21 %	NA
Cu	21 %	14 %
Fe	8.4 % ^(a)	11 %
	31% (b)	
Mg	2.5 %	24 %
Mn	2.3 %	10 %
Мо	8.3 %	13 %
Na	1.6 %	18 %
Pb	39 %	9.2 %
Si	1.2 %	18 %
Sr	1.7 %	13 %
Ti	NA	20 %
Zn	16 %	12 %

(a): For concentrations > 20 mg/l
(b): For concentrations <1 mg/l

Table 2: Summary of 95 % confidence intervals applied to water and bead samples for construction of error/variability bars. the 95% confidence intervals for water reflect field variability, and those for the beads reflect the coating concentration variability.

Results and Discussion

Physical setting

According to the potentiometric map of the study area, surface water and groundwater had variable flow direction relationships (Figure 2). At Site I, surface water flows approximately perpendicular to the groundwater. There, head measured on the east bank was an average of 9.5 + - 1.6 cm higher than the head measured in the west bank during all sampling periods. Water levels in the stream fell inbetween the measurements taken on either bank. Furthermore, temperature, assumed to be conservative, indicates that water in the west bank (11.7° C on 6/20/95) was of intermediate composition between east bank water (10.5° C) and surface water (14.8° C). This suggests that at Site I, the stream functioned as a flow-through system, with groundwater moving into it from the east bank and surface water recharging the west bank.

At Site II, the potentiometric maps indicate that groundwater and surface water flow approximately parallel to each other. Water level differences in the north and south banks and in the surface water were small enough to fall within the measurement and surveying error of 3.0 cm. Temperature measurements of the shallow subsurface produced a highly variable pattern of temperature zones which appeared to be controlled by grain size. Generally, there was no spatial regularity to the patterns.

Although the flow relationships at Site III appear to be analogous to those at Site I according to the potentiometric maps, the only discernable head difference was that the east bank generally showed slightly higher (3.9 + - 0.30 cm) water levels than in the surface water. The difference between the surface water level and head in the west bank was within the measurement and surveying error. Thus, the creek was found to gain water from the east bank, while its potentiometric differences with the west bank are small

enough that flow directions could not be determined. Temperature measurements from across the site show that the subsurface water, both in the banks and below the creek bed were commonly 2-4°C colder than the surface water.

Streambed sediments:

All sites were generally characterized as having sand and gravel stream bottoms with more fine grained sediments (fine sands and silts) forming the banks. At Site I, the streambed ranged in size from coarse sands to medium gravels. The sediments along its banks were mostly fine to medium silts and sands. At Site II, an unstable gravel bar covered most of the stream bottom during the course of the sampling period. Along the banks, the sediments were mostly silty, with only some fine to coarse grained sands. At Site III, the streambed sediments ranged in size from sands to large cobbles, although the sediments along the banks were silts so fine grained that it was usually difficult and sometimes impossible to extract water samples from them.

Flow rate in the creek:

Water sampling took place over the course of four months, during which the flow rate in the creek varied from about 800 to 6100 liters per second (l/s) (USGS, 1996) (Figure 4). Water was sampled from all the transects in two general episodes of flow rate in the creek. One sample set was collected in late June to mid July, when the flow in the creek ranged from 2800 L/s to 6100 l/s. The second set was taken in late August to early September, when the flow rate was considerably lower, ranging from 800 to 1200 l/s. During the lower flow period the bead columns were installed in the creek bed.

Figure 4: Flow volume rate (l/s) in Silver Bow Creek at the time of water sampling and of bead tube installation in the creek bed. Data from USGS [1996].

The head in the groundwater fluctuated about 0.8 m in the aquifer over the course of the sampling period (Shay, 1997).

Hyporheic Zone Chemistry: Dissolved (<0.45 µm) fraction:

Water highly elevated in metal concentrations compared to the surface water was collected in the shallow hyporheic zone at depths less than 30 cm beneath the creek bed during both low and high flow episodes at all the sites. The chemistry of the hyporheic zone was highly variable both spatially and temporally. Every water sample had a unique chemical composition. Table 3 shows an example of hyporheic zone water chemistry found in two samples from each site. (The appendix shows the entire dataset.)

The pH of water collected from the hyporheic zone commonly measured about 6, which is an intermediate value between typical groundwater ($\approx 3 - 5$) and surface water ($\approx 7-8$) at the site. Dissolved As in the hyporheic zone samples were found above the detection limit of 0.07 mg/l in 65% of the samples, with an average of 0.28 mg/l. None

Sample	Site I IB-GW1 6/26/95	IA-GW2 8/24/95	Site II IIA-GW5 7/6/95	IIA-GW2 8/31/95	Site III IIIB- GW4 7/11/95	111A-GW2 8/28/95
pН	6.8	6.7	6.8	7.0	6.3	6.3
d.O ₂	0.5	1.5	1.3	0.6	1.7	1.7
Cond.	1.20	0.851	2.27	0.755	1.15	1.58
Alkal.	7.6E+02	3.7E+02	1.7E+03	3.8E+02	8.4E+01	9.6E+01
Cl	30	15	26	18	27	38
$NO_3 - N$	BDL	0.13	BDL	BDL	BDL	BDL
SO4 ²	15.3	36.4	188	17.8	7.5E+02	6.9E+02
Al	0.39	BDL	0.64	BDL	0.14	0.09
As	1.6	0.11	2.6	0.21	0.11	BDL
Ca	110	88	330	77	150	166
Cd	BDL	BDL	BDL	BDL	BDL	BDL
Cu	0.175	BDL	0.954	<u>0.015</u>	BDL	BDL
Fe	71	51	2.1E+02	22	73	60
Mg	21	16	54	11	36	38
Mn	20.0	8.61	45.5	7.79	12.9	10.0
Na	31	32	65	27	78	103
Ni	BDL	BDL	0.023	BDL	BDL	BDL
Pb	BDL.	BDL	0.14	BDL	BDL	BDL
Si	21	17	17	20	23	20
Sr	0.618	0.673	1.12	0.450	1.34	1.63
Ti	0.016	BDL	0.023	BDL	BDL.	BDL
Zn	0.384	0.042	2.04	0.166	6.4	12.7

Table 3: The chemical characteristics of six selected hyporheic zone samples, two from each site. Concentrations are in mg/l. Error/variability bars are listed in Table 2.

of the 24 groundwater samples collected by Shay [1997] at the same study site had any measurable As, and it was below detection in the surface water. Aluminum, Cd, Co, Cu, Ni, Pb, and Ti were below detection in some samples and above in others. The rest of the measured metals were always at detectable levels, although the concentration ranges for most of them were variable within one to three orders of magnitude. Iron and Zn concentrations had the highest variability, with sample concentrations ranging over three orders of magnitude; dissolved Fe concentrations in the hyporheic zone varied from 0.15 to 350 mg/l, and dissolved Zn concentrations ranged from 0.042 mg/l to 26 mg/l. Dissolved Ca, Cl, Mg, Mn, Na, and Si concentrations had much smaller ranges of variability in the hyporheic zone, generally within one order of magnitude.

Despite the large chemical variation, distinct patterns were found in the distribution of dissolved chemical constituents in the hyporheic zone samples of each of the three sites.

Site I:

At Site I, the water samples taken from the upgradient east bank, interpreted from the piezometric data and from research by Benner et al. [1995] to be the local groundwater, typically contained higher concentrations of metals and SO_4^{2-} and had lower pH levels than did the samples taken from the downgradient west bank, interpreted to be the hyporheic zone. The pH levels averaged 4.3 (standard deviaton = 1.2) in the east bank, in contrast with samples from the west bank, where pH levels averaged 6.5 (standard deviation = 0.4). In addition, mean concentrations of SO_4^{2-} , Ca, Mg, Cu, Fe, Mn, and Zn were lower in the west bank than in the east bank, although the standard deviation for these concentrations overlapped due to the temporal and small scale spatial variability.

The general trends observed at the Site is exemplified in the Figure 5, which depicts the results of sampling transect B at Site I on one particular day (6/20/95). The concentration patterns of Fe and Mg show highest concentrations in the east bank, lowest were below the creek bed, and intermediate concentrations were in the west bank. The concentration patterns of Ca, Na, and specific conductance were the same as those of Fe and Mg. Sulfate, Al, Cd, and Zn had the same spatial trends as did Cu (shown in the figure), with high concentrations in the east bank samples, and concentrations close to or below detection in all other subsurface water samples. Two of the three sampling sites in the center of the creek bed usually contained water which chemically resembled the surface water. The third of these, sample site GW-3 at Transect A, was found to contain metal concentrations similar to those found in the east bank all four times it was sampled. (The appendix contains the results of the chemical profiles of the water samples taken along each transect during all the sampling events at Site I.)

Figure 5: Example of spatial trends of metal concentrations and pH and dissolved oxygen (D.O.) levels found across one transect at Site I. Points on the graph correlate with locations along the transect, shown below the graph.

Site II:

The chemical differences across the transects at Site II were not nearly as clear as those at Site I. Figure 6 exemplifies the general spatial trends found across the site. The trends did not show a relationship of metal concentration and acidity favoring either bank. Although average concentrations of Ca, Fe, Mg, Mn, and Na, and specific conductance were commonly slightly higher on the south bank, average Cu and Zn tended to be slightly higher on the north bank. Chloride, $SO_4^{2^2}$, and Si concentrations varied as well, but their concentrations did not were not different in either stream bank. Samples taken from beneath the gravelly center of the streambed (wells IIA-GW3, IIB-GW3, and IIC-GW3) very closely resembled the chemistry of the surface water. In addition, the mean metal concentrations at the Site were low compared to those found in water samples from Sites I and III. It thus appeared that most of the samples were more heavily dominated by the surface water than at Site I. (The appendix illustrates the results of the chemical profiles of the water collected along transects at Site II.)

Site III:

At Site III, yet another spatial profile was identifiable across the transects. The east and west banks of the creek exhibited almost identical subsurface water chemical compositions (Table 4). The samples were characterized by almost neutral pH and relatively high concentrations of dissolved metals.

The chemistry of the water collected from the subsurface of the central portion of the creek had higher dissolved O_2 and NO_3^--N , and lower specific conductance, alkalinity, and concentrations of all the constituents measured than did the water collected from within the banks. Still, most of these concentrations were significantly higher than in the surface water.

Figure 6: Example of spatial trends of metal concentrations and pH and dissolved oxygen (D.O.) levels found across one transect at Site II. Points on the graph correlate with locations along the transect shown below the graph.

Site III West Bank		Below creek	East Bank	
e V. S. Barrell, B. Barrell, S. B. Barrell, S. B. Barrell, S. Barrell, S. Barrell, S. Barrell, S. Barrell, S. B Barrell, S. Barrell, S. Barr	Mean (Std.	center Mean	Mean (Std.	
	dev.)	(Std.dev.)	dev.)	
	(n=9)	(n=5)	(n=10)	
рН	6.6 (0.24)	6.6 (0.11)	6.6 (0.37)	
D.O.	1.4 (0.9)	3.5 (0.9)	1.8 (0.7)	
Cond.	1.27 (0.47)	0.650 (0.23)	1.80 (0.30)	
Alkal.	458 (371)	122 (45)	306 (210)	
Cl	25.3 (6.3)	15.8 (4.9)	58.1 (13)	
NO3 ⁻ -N	(<0.15)	0.75 (0.38)	(<0.15)	
SO4 ²⁻	364 (291)	236 (127)	553 (340)	
Al	0.12 (0.10)	0.07 (0.04)	0.11 (0.05)	
As	0.25 (0.12)	(<0.07)	0.22 (0.13)	
Ca	133 (39)	63 (24)	172 (46)	
Cu	0.03 (0.04)	0.08 (0.07)	0.03 (0.02)	
Fe	155 (139)	10.3 (6.9)	57.8 (40)	
Mg	33.2 (12)	14.4 (5.8)	41.7 (12)	
Min	19.0 (8.9)	3.38 (2.2)	9.30 (4.8)	
Mo	0.23 (0.20)	0.019 (0.01)	0.10 (0.05)	
Na	72.7 (23.5)	33.2 (13.6)	141 (41.2)	
Si	21.9 (2.8)	14.4 (0.55)	20.2 (4.1)	
Sr	0.929 (0.42)	0.473 (0.22)	1.51 (0.45)	
Zn	1.85 (2.6)	4.73 (5.1)	3.16 (5.7)	

Table 4: Mean and standard deviations of concentrations of metals and other measured constituents at Site III. Mean Cd, Ni, Pb, and Ti are not included because their means were below detection.

Figure 7, which depicts the concentrations of some metals found at Transect IIIB on 7/17/95, exemplifies these trends found at Site III. The profiles of Mg, Fe, and Cu show the pattern of increasing concentrations of metals with distance away from the creek center, both in the east and west banks.

Low sulfate samples:

Some samples from the hyporheic zone were found to contain SO_4^{2-} concentrations that were significantly lower than in the groundwater and in the surface water (Table 5). These samples were usually depleted or almost depleted in NO₃--N and dissolved O₂, and they contained relatively high alkalinity concentrations (Figure 8). In addition, they came from locations where the surface water is thought to be infiltrating the hyporheic zone based on potentiometric data, such as at Site II and in many of the west bank (downgradient) samples at Site I. Only one sample (IIIC-GW4 (8/31/95)) from

Figure 7: Example of spatial trends of metal concentrations and pH and dissolved oxygen (D.O.) levels found across one transect at Site III. Points on the graph correlate with locations along the transect, shown below the graph.

Figure 8: Sulfate vs. Alkalinity concentrations in the three water groups.

Site III (where piezometric data indicate the stream to be gaining from at least one side) had a sulfate concentration lower than that in the surface water.

Hyporheic zone	H.Z.	H.Z.	H.Z.	H.Z.	Surface	Surface	Surface	Surface
(H.Z.) Sample	Diss. O,	NO, -N		Alk.	water Diss. O ₂	water NOj -N	water SO4 ²⁻	water Alk
Site 1								
IB-GW1 (6/26/95)	0.5	BDL	15.3	7.6E+02	6	0.9-1.0	54-55	1.0E+02
IA-GW2 (7/19/95)	1.2	BDL	28.9	5.7E+02	6	1.1	73	1.7E+02
IA-GW2 (8/24/95)	1.5	BDL	36.4	3.7E+02	7-8	1.6-1.7	90-96	1.3E+02
IA-GW2 (9/27/95)	1.6	0.14	51.4	3.4E+02	7	1.9	108	1.3E+02
Site II								
IIA-GW4 (7/6/95)	1.3	BDL	25.8	3.4E+02	6	0.7-0.9	60-63	1.3E+02
IIB-GW4 (7/6/95)	1.1	BDL	9.25	2.7E+02	6-7	1.2	62-67	1.4E+02
IIA-GW2 (8/31/95)	0.6	BDL	17.8	3.8E+02	8	1.6-1.7	102-104	1.2E+02
IIA-GW4 (8/31/95)	0.9	BDL	55.9	2.6E+02	8	1.6-1.7	102-104	1.2E+02
Site III							•	
IIIC-GW4(8/31/95)	2.1	0.73	79.1	2.3E+02	8-9	1.5-1.6	97-102	1.2E+02

Table 5: Dissolved oxygen, nitrate-N, sulfate, and alkalinity concentrations in some hyporheic zone samples with most concentrations lower (and alkalinity higher) than surface water and groundwater samples. The surface water chemistry for each given sampling date is listed alongside the hyporheic zone samples for purposes of comparison.

Surface water: physical and chemical results

The surface water chemistry was far less spatially and temporally variable than that of the hyporheic zone water or the groundwater. Generally, it was near neutral in pH, had moderate to high dissolved oxygen levels, and was relatively low in dissolved metal concentrations (Table 6).

an a	Mean (Sid.dev.)	Eliph Glob /s	Low (800 L/s)	
pН	7.7 (0.35)	8.2	6.6	
D.O.	7.2 (1.3)	11	3.9	
Cond.	0.424 (0.09)	0.545	0.304	
Alk.	1.3E+02 (25)	2.0E+02	80	
Cl	14 (4.2)	28	7.4	
NO3 ⁻ -N	1.30 (0.53)	1.94	0.304	
SO4 ²⁻	78.4 (23.7)	109	46.8	
Al	(<0.07)	0.34	(<0.07)	-
As	(<0.07)	(<0.07)	(<0.07)	
Ca	47 (8.8)	58	35	
Cd	(<0.01)	(<0.01)	(<0.01)	
Cu	0.136 (0.04)	0.262	0.06	14
Fe	0.22 (0.11)	0.46	0.05	
Mg	10.4 (2.17)	13.2	7.54	
Mn	0.90 (0.29)	1.33	0.44	
Мо	(<0.01)	(<0.01)	(<0.01)	
Na	23 (4.7)	29	16	
Ni	(<0.02)	(<0.02)	(<0.02)	
Pb	(<0.1)	(<0.1)	(<0.1)	1.270
Si .	13 (0.77)	16	12	
Sr	0.265 (0.05)	0.330	0.198	1921 - C
Ti	0.003 (0.002)	0.010	0.003	
Zn	0.645 (0.255)	1.31	0.323	

Surface water chemistry varied at all sites with flow volume. Generally,

concentrations of cations and anions decreased with increasing flow rate. Such

relationships were particularly clear for Ca, Mg, Mn, Na, Cl, NO₃⁻-N, SO₄² and specific

conductance (Figure 9). Relationships of Cu, Zn, Fe, Si, and pH with flow rate were not

as clear (Figure 10).

Figure 9: Concentrations of Ca, Mg, Mn, Na, Cl, NO_3^{-3} , $SO4^{2-}$, and specific conducatnce vs. flow rate (L/s) in Silver Bow Creek.

Figure 10: Concentrations of pH, Cu, Fe, Si, and Zn vs. flow rate (L/s) in Silver Bow Creek.

Although the flow rate varied over a 7.5-fold difference over the course of the study period (from 800 to 6100 L/s), the concentrations of the elements did not vary accordingly (Table 7).

Parameter	Conc. at 800 L/s	Conc. at 6100 L/s	Conc. at 800 L/s/			
dina. Na katalah karatar		en de la companya de La companya de la comp	Conc. at 6100 L/s			
Mn	1.1 mg/l	0.45 mg/1	2.4			
Cl	17 mg/l	7.5 mg/l	2.3			
SO_4^{2-}	100 mg/1	45 mg/l	2.2			
Ca	53 mg/l	35 mg/l	1.5			
Mg	13 mg/1	7.6 mg/l	1.6			
Na	28 mg/l	17 mg/l	1.6			
spec. cond.	0.50	0.31	1.6			
Zn	0.5-1.1 mg/l	0.38 mg/l	1.3 - 2.9			
Cu	0.12-0.18 mg/l	0.10 mg/l	1.2 - 1.8			

Table 7: Comparison of concentrations of selected parameters during low and high flows in the surface water

<u>Solid phases</u>

The bead columns provided a finer resolution scale of the chemical characteristics of the hyporheic zone. When the three bead columns in each of the nine transects were removed from the streambed, each exhibited two to three distinct color zones. The top section (about 10 cm in the length) that projected out into the surface water was green due to algal coatings on all of the bead columns. Most subsurface portions (the remaining approximately 30 cm in length) of the columns remained white in color. Yet 22 of the 27 bead columns exhibited some amount of precipitation by reddish iron oxides along their lengths, usually right at the surface water - substrate boundary. On some bead columns, this coloration was a thick, dark red, and other columns had much thinner and lighter red coatings. Bead Column IIIA-2 is an example of a bead column that exhibits the three main color zonations (Figure 11).

The red precipitation zones generally spanned no more than about 5 cm of the bead column lengths, although considerable variability existed. Some bead columns exhibited much thicker zones of precipitation (up to 30 cm, in the case of IA-2 (Figure 12) and others showed two separate zones of precipitation (IC-1, IIC-3 (Figure 11), IIB-1, and IIIC-2).

Figure 11: Photographs of bead columns IIIA-2 and IIC-3. Rubber bands mark the surface water - streambed boundary.

Figure 12: Photographs of bead columns IIA-2 and IA-2. Rubber bands mark the surface water - streambed boundary.

The five columns with no precipitation zones are IIA-2 (Figure 12), IIB-2, IIC-2, all of which were located in the center of the creek at Site II, IB-2, in the center of the creek at Site I, and IIA-1, located along the north bank of Site II. The concentrations of metals and As along the lengths of the columns mentioned above are listed in the Table 8.

CONCENT	RATI	ONS ON	BEA	DS	(jug	/ g	BE	AD)								
	SW/												í –				
(Ocm=top)	Subs.	Colors on												t			
Sample Name	bound.	bead tube	As	Ca	Cd	Cu	Fe	Mg	Mn	Mo	Na	NI	P	РЬ	Sr	Ti	Zn
IA-2 0-12cm	13 cm	0-13 green	0.44	13	0.05	17.8	39	6.4	7.05	0.05	7.6	BDL	9.0	0.97	0.128	0.304	13.3
IA-2 12-15cm		13-15 light red	1.2	11	0.08	31.2	140	3.0	3.36	0.20	4.1	BDL	10	1.2	0.108	0.142	15.8
IA-2 15-23cm		15-42 red	0.42	9.6	0.05	18.2	210	3.6	3.77	0.31	4.8	BDL	6.4	3.0	0.085	0.161	12.9
IA-2 23-33.5cm	**********		0.21	22	BDL	10.9	140	3.6	3.25	0.21	5.4	BDL	3.6	1.6	0.117	0.164	6.38
IA-2 33.5-42cm			0.22	9.0	BDL	10.7	190	3.8	3.41	0.30	5.6	BDL	3.1	1.6	0.071	0.164	6.13
																	
IC-1 0-8cm	8 cm	0-8 green w/	0.48	9.1	BDL	5.55	18	2.6	1.98	BDL	2.0	0.25	3.6	0.71	0.075	0.238	6.79
IC-1 8-11 cm		red streak	0.58	11	BDL	2.65	30	4.2	4.81	BDI.	3.7	0.73	5.0	1.1	0.094	0.174	8.04
IC-1 11-30 cm		8-11 v.1. red	BDL	8.0	BDL	4.49	7.6	4.1	3.52	BDL.	4.9	0.34	2.3	0.48	0.060	0.137	9.84
IC-1 30-42cm		11-30 white	2.3	13	0.12	18.0	300	3.8	6.46	0.43	4.4	1.6	40	1.2	0.268	0.179	21.9
		30-42 med. red				-											
										-							
IIA-1 0-10.5cm	15.5 cm	0-10 drk green	BDL	BDL	BDL	4.22	10	BDL	1.30	BDL	BDL	BDL	3.0	BDL	BDL	BDL	3.61
IIA-1 10.5-15.5cm	ļ.	10-15.5 green	BDL.	BDI.	BDI.	2.91	9.2	BDL	0.880	BDI.	BDL	BDL	2.9	BDI.	BDL	BDL	2.12
IIA-1 15.5-22cm		15.5-20.5	BDL	BDL	BDL	3:11	6.3	BDL	0.612	BDL	BDI.	BDL	2.4	BDL	BDL	BDL	1.79
IIA-1 22.5-33cm		l.green	BDL	BDL	BDL	2.98	5.5	BDL.	0.616	BDL.	BDL	BDL	2.5	BDL	BDL.	BDL	4.46
HA-1 33-42cm		20.5-42 white	BDL	BDL	BDL	1.12	3.4	BDL	0.410	BDL	BDL	BDL	2.3	BDL	BDL	BDL	2.17
IIA-2 0-10.5cm	13.5 cm	0-13.5 green	BDL	BDL	BDL	4.75	17	BDL	1.82	BDI.	BDL	BDL	5.0	BDL	BDL	BDL	4.12
IIA-2 11-13.5cm		13.5-42 white	BDL	BDL	BDL	2.35	9.9	BDL	0.780	BDL	BDL	BDL	3.4	BDL	BDL	BDL	2.54
IIA-2 13.5-21.5 cr	n		BDL	BDI.	BDL	1.82	7.6	BDL	0.648	BDL	BDL	BDL	2.8	BDL.	BDI.	BDL	1.98
IIA-2 22-32 cm			BDL	BDL	BDL	0.85	3.7	BDI.	0.365	BDL	BDL	BDL	2.1	BDL	BDL	BDL	1.08
IIA-2 32-42cm			BDL	BDI.	BDL	0.77	4.4	BDL	0.340	BDL	BDL.	BDL	2.0	BDL	BDL	BDL	0.96
IIB-1 0-8cm	8cm	0-8 green	BDL	10	BDL	4.85	16	1.9	1.62	BDL	1.6	0.19	4.1	0.66	0.083	0.192	5.13
IIB-1 8-14cm		8-14 v.light red	0.75	9.4	BDL	4.01	28	1.68	1.27	BDL	1.37	BDL	4.9	1.62	0.098	0.253	7.49
11B-1 14-26cm		14-26 white	0.6	7.8	BDL	2.65	11	1.71	0.58	BDL	1.51	BDL	1.9	0.85	0.067	0.203	5.79
IIB-1 26-35cm		26-41 light red	1.41	10	BDL	4.10	36	2.14	1.19	BDL	1.56	BDL	5.2	1.87	0.105	0.296	4.65
11B-1 35-41cm			1.77	12	BDL	2.98	31	2.30	1.17	BDL	2.0	BDL	4.6	1.24	0.117	0.296	5.03
	~~~~~																
IIB-20-7cm	/ cm	0-6 green	BDL	BDL	BDL	5.23	16	BDL	1.75	RDL	BDL	BDL	4.4	BDL	BDL	BDL	4.79
IIB-2 7-12cm		6-8 light green	BDL	BDL	BDL	5.50	21	BDL	1.83	BDL	BDL	0.68	4.6	BDL	BDL	BDL	4.51
IIB-2 12-19.5cm		8-40.5 White	BDL	BDL	BDL	3.85	$\frac{21}{10}$	BDL	1.34	BDL	BDL	1.30	3.7	BUL	BDL	BDL	3.33
HB-2 20-30Cm			BDL	BDL	BDL	2.13	$\frac{10}{21}$	BDL	0.923	BDL	BUL	1.35	<u>.</u> .,	BUL	BDL	BDL	2.29
11n-2 30-40.3cm		*****	DIJL	BDL	BUL	0.92	. <u></u>	BUL	0.334	BUL	BDL	BUL	1.0	BDL	BUL	BDL	1.20
11C 2 0 1 Sam		·····	0.22		DDI	5 90	10		210	BDI	1 0		2.0	0.52	0.002	0.162	5.10
11C 2 4 4 9 4 mm			0.32	12	BDL	1 71	10	2 2	2.10 1.91	BDL	2.4	BDL	2.7	0.32	0.093	0.102	3.49
IIC-2 8 5 11om	85.0-	0-85 areen	RDT	÷	BDL	2 55	1.) 1 1	1 7	1.01	BDL	2.6	BDL	20	0.40 BDI	0.070	0.172	3 20
11C-2 11,21cm	0.5 CH	8 5.40 white	BDL	00	BUI	3.55 	77	1 5	0 8.12	BDI	2.0	RDI	1 5	BDI	0.070	0.120	2.30
11C-2 21-30cm		0.1. TO WILL	RDI	60	BDI	1 20	4 0	0.0	0.300	BDI	BDI	RDI	BDI	BDL	BDI	BDI	1 40
IIC-2 30-40cm			BDL	6.5	BDL	1.01	3.1	1.1	0.37	BDL	1.4	BDL	BDI	BDL	0.14	0.090	1.3

Table 8: Concentrations of metals and As ( $\mu g/g$  bead) along the lengths of 7 of the 27 bead columns.

(A full listing of the concentrations on all the bead columns are in the appendix.)

Analysis of the bead column sections revealed that the white sections generally contained the lowest metal concentrations, the red sections contained the highest concentrations, and the green zones contained concentrations inbetween the two, although closer to the low concentrations on the white beads. The element for which this was most clearly apparent was Fe (Figure 13).



Error bars are the standard deviation of the mean concentrations of the samples.



The standard deviations of the means for Fe concentrations shown in the figure are so large because the figure uses data from all the columns, which come from different portions of the creek, which overly a very chemically heterogeneous groundwater system. Examination of columns on an individual or site specific scale reveal significantly smaller variability bars among the different color zones. The concentrations of metals on the surface water beads were far less variable than those found on white or red beads, likely due to the relatively homogeneous chemical nature of the surface water across the site. The comparison of ratios of dissolved metals in the surface water to ratios of metals on bead columns (surface water sections) shows the following sequence of preferential precipiation in the surface water: Fe > Cu > Zn > Mn > Na > Mg > Ca. (i.e., of these metals, Fe is most unstable in the dissolved phase of the surface water, and Ca is most stable).

Figures 14-16 illustrate the concentrations of various metals and As along the lengths of a few of the bead columns, one from each site. Note the correlation of concentration with coloration on the columns, and that many metals peak in concentration at the same places along the columns. Metals which typically do not exhibit clear trends along the lengths of column are Ca, Mg, Na, and Ti. The appendix contains the concentrations of the metals and As for each section along all the bead columns.

#### Site-specific trends: Bead columns

Eight of the nine bead columns from Site I had red precipitation zones on them. The six bead columns within the banks (one in each bank for each transect) had the precipitation zones located right along the interface between the surface water and the streambank sediments, with concentrations of Fe≈100-300  $\mu$ g/g bead; Mn≈3-5  $\mu$ g/g bead; Zn≈6-20  $\mu$ g/g bead. Two of the three bead columns set into the center of the creek bed revealed precipitation zones. That of Transect A had the longest accumulation of precipitates found on any of the columns; the precipitation spanned the entire 30 cm length of its subsurface portion. The bead column in the center of Transect B was the only column at the site without any detectable precipitation on it.

At Site II, none of the three bead columns in the center of each transect had any detectable precipitation zones, yet those along the banks (except for IIA-1) did. However, the precipitation zones on four of the six were very light red in color and had metal concentrations significantly lower (Fe $\approx$ 30-40 µg/g bead; Mn $\approx$ 1.0-1.5 µg/g bead; Zn $\approx$ 3-7 µg/g bead) than on those in the darker red precipitation zones common to bead columns at the other sites.

**Bead Column IA-1** 



ug per g bead

BDL/ No significant trends: Al, Ca, Cd, Mg, Na, Si, Ti

Figure 14: Bead column IA-1 concentration profile

Bead Column IIC-3



BDL/ No siginificant trend: Al, Ca, Cd, Na, P, Pb, Si, Sr, Ti

Figure 15: Bead column IIC-3 concentration profile

# **Bead Column IIIC-1**



ug per g bead

BDL/ No significant trends: Al, Ca, Cd, Mg, Na, Si, Ti



At Site III, every bead column, including the three in the center of the creek bed, had a zone of precipitation on it. The precipitation zones were all relatively dense, with high metal concentrations (Fe $\approx$ 100-700 µg/g bead; Mn $\approx$ 0.5-3 µg/g bead; Zn $\approx$ 5-18 µg/g bead), and occurred right at the surface water - substrate boundary. A few (e.g. IB-1, IIIA-1 and IIIB-3) had metal concentrations on their surface water portions which were significantly elevated (about 2-5 times more concentrated) than the more typical concentrations found on other surface water beads.

#### Physical mixing in the hyporheic zone:

The results of the examination of the physical relationships of groundwater and . surface water flow directions, as well as the temperature patterns found beneath the creek bed at the three sites indicated that the waters were physically mixing. The solute chemical composition of the hyporheic zone samples being distinct from that of both the surface water and local groundwater is more evidence that physical mixing of the waters was likely taking place. The component of physical mixing in the hyporheic zone can be identified through the use of conservative ions, or natural tracers that do not make a transition between the solid and aqueous phases across the groundwater- surface water interface. In addition to not reacting, conservative metals concentrations should form a linear relationship when plotted against each other, indicating that they may be a product of mixing of chemically different waters [*Faure*, 1991]. The mixing ratios calculated from concentrations of conservative elements in the hyporheic zone indicate the proportion of groundwater to surface water present in each subsurface water sample.

Benner et al. [1995] used Cl and Mn as conservative elements in their study at Silver Bow Creek. Chloride is typically thought to be one of the least reactive solutes in aquatic systems and has been used in many tracer studies [*Feth*, 1981; *Legrand-Marcq and Laudelot*, 1985; *Triska et al.*, 1989; *Stollenwerk*, 1994], and Mn has been used in other studies as a conservative tracer as well [*Bencala et al.*, 1987]. However, other than in the surface water, Cl and Mn do not form a linear relationship according to the data collected for this study. Na has been found to act conservatively in aquatic systems together with Cl [*Theobald et al.*, 1963; *Chapman*, 1982]. However, these two do not form a neatly linear relationship either, likely indicating an unidentifiable measurement problem with Cl. A small range of Cl concentrations (16-22 mg/l) are connected with a wider range of Na concentrations (approximately 20-120 mg/l). Most importantly, the very small differences between the surface water Cl concentrations and the groundwater Cl concentrations (all but the ones collected near Site III) made it a poor choice for calculations of mixing ratios.

Ca and Mg appear to be acting conservatively at the site, and their concentrations in the surface water and the groundwater are relatively large. Ca and Mg follow linear conservative mixing relationships [*Faure*, 1991] (Figure 17).



Figure 17: Dissolved Cavs. Mg concentrations [mg/l] in water samples.

In addition, the solid phase sampling results support the conservative behavior of Ca and Mg. On 20 of the 27 bead columns, Ca and Mg did not exhibit any statistically significant trends along the length of the bead columns, suggesting that they generally undergo very small to insignificant chemical changes across the surface water - groundwater interface as reflected in the solid phase. The comparison of dissolved vs. solid phase ratios in the surface water further confirm the observed conservative nature of Mg and Ca, since they were shown to be most stable in the surface water's dissolved phase compared to the other metals. Other researchers have found one or both of these elements to behave conservatively in aqueous systems as well [*Stauffer*, 1985; *McKnight and Bencala*, 1990; *Wetherbee and Kimball*, 1991]. Thus, Ca and Mg were used to calculate mixing ratios in the hyporheic zone.

By using the mixing equation:

the percent of groundwater in the hyporheic zone water samples could be calculated using Ca and Mg concentrations (Figures 18-20). Because each sample was unique, a separate mixing ratio was calculated for each.

Calcium and Mg (and Na at Site II) yielded nearly identical values of mixing ratios for most of the subsurface water samples, usually within +/- 10%. Variabilities exist due to possible sampling errors, analysis errors, and inaccurate concentrations used to represent the local groundwater chemistry.

Finding the endmember groundwater concentration ([GW]) proved difficult. Due to the variability of the metals concentrations in the groundwater generally existing on scales smaller than the size of any of the three sites used in this study [*Shay*, 1997], it was not feasible to make a generalization of the groundwater chemistry across the study area for calculating mixing equations. Instead, values for the groundwater concentrations were assigned according to the chemistry of the closest high-metal, upgradient sample at each transect. Although some of these samples may have been influenced by the surface water due to their close proximity (within 3 meters) to the creek, they likely represent the local groundwater interacting with the creek better than would samples taken from piezometers further away on the floodplain which commonly contain water of greatly different chemical composition. If these samples have some surface water component within them, the mixing ratios may be an overestimation of the amount of groundwater calculated per sample. However, there is no way to draw the line between "pure" groundwater and



Figure 18

# SITE II

Percent groundwater in subsurface water samples at various flow rates

Map view with cross-sections of transects





Figure 19

# SITE III Percent groundwater in subsurface water samples at various flow volumes Map view with cross-sections of transects



Figure 20

groundwater partially diluted by inflowing surface water, given the heterogeneity of the groundwater system itself.

At Site I, the groundwater Ca and Mg concentrations used were taken from east bank (upgradient) samples with the highest concentrations of these elements. For transect IA, water sample IA-GW4 (9/27/95) was used as the groundwater end member; for Transect IB, sample IB-GW5 (8/27/95) was used; and for Transect C, sample IC-GW6 (6/28/95) was used. At Site II, the values used were derived from IIA-GW5 (7/6/95), a sample collected from the stream bank about 0.5 m south of the creek at the site. It contained significantly higher concentrations of Ca, Mg, and Na than did the two closest (10 and 20 m away) floodplain piezometers. The mixing ratios for Site II indicate that Na is acting conservatively together with Ca and Mg, and thus was included in calculating the average mixing ratios at this site. At Site III, the values were taken from the subsurface water access tube GW-1 in transect I[IA. The sampling tube was chosen because it was upgradient of the creek, and its concentrations of conservative elements were highest.

The surface water concentrations [SW] varied significantly with flow volume, and thus the end member surface water values varied with each sampling date. This variability was accounted for in the calculations; surface water values used were adjusted for the specific concentration found on the same day as the hyporheic zone water sample was collected.

### Site-specific trends with mixing ratio results

As seen in Figures 18-20, the mixing ratio results indicate that significant portions of the shallow subsurface water samples are groundwater in a the samples (> 20% groundwater in 48% of the samples). The mixing ratios also illustrate the large degree of heterogeneity seen in the samples, both in terms of spatial distribution and changes with

flow rate in the creek. Nonetheless, on a site by site analysis, general trends were discernable.

At Site I's east bank, where the highest metal concentrations were observed in the water samples, the mixing ratios further indicate that groundwater comprises a relatively large portion of the samples (mean 48%). The west bank had lower mean percentages of groundwater composition (17%), and the samples from the below the center of the creek at Transects B and C were calculated as having 0% groundwater. The samples from below the center of the creek at Transect A, which contained relatively high metal concentrations, show groundwater comprising proportions of the samples similar to those in the east bank. Thus, the west bank samples are again interpreted as representing the local hyporheic zone, where infiltrating surface water mixes with the groundwater in the west bank. The upgradient east bank samples more closely resemble the local groundwater as characterized by Shay [1997], and are interpreted to represent the groundwater moving into the creek. This general relationship was also described by Benner et al. [1995] at the same site (specifically, at this study's transect IC).

At Site II, the mixing ratios indicate that both banks contained some proportion of groundwater, although not more than about 27% at any location (other than IIA-GW5, which was used as the groundwater end member). All samples taken from beneath the center of the streambed were calculated to contain 0% groundwater. The mixing ratios suggest that this site is heavily controlled by the surface water, as compared with other sites, and groundwater is not a major component of the shallow hyporheic zone (Figure 19).

The mixing ratios at Transects A and B at Site III also complement the general trends seen in the metal concentrations across the transects. Generally, both east and west banks contained similarly high proportions of groundwater according to the mixing ratios. Each transect exhibited increasing groundwater concentrations further from the center of the creek. Yet, even those samples below the center of the creek bed contained from 1 to 27% groundwater, depending on sample time and location. Thus, the east banks samples are interpreted to represent the local inflowing groundwater, due to the high metal concentrations found in the samples and because of the higher head in the east bank piezometer. Because of the undetectable head differences between the west bank and the surface water, there does not appear to be a strong gradient moving surface water into the groundwater or vice versa. This, in conjunction with the high concentrations of metals and the calculated proportion of groundwater in the west bank samples and in the center of the creek, suggest that the creek may be gaining water from all sides at this site.

#### <u>Chemical transition in the hyporheic zone</u>

No metals other than Ca and Mg (and in places Na and Cl) form linear plots of their concentration relationships, and their mixing ratios do not match those produced using the conservative elements. This indicates that chemical reactions are taking place in the hyporheic zone in conjuction with the physical mixing of the waters.

Examination of the bead columns with precipitation bands further indicates that physical mixing is not the only factor controlling the chemistry of the hyporheic zone. The highest concentrations of metal precipitates typically occurred right at the surface water - substrate boundary. These precipitation zones are interpreted to represent the portion of the hyporheic zone where acidic, reduced, and high-dissolved metal concentration water comes into contact with large enough amounts of the neutral, oxic, and more dilute surface water to induce the precipitation of metal oxides [*Benner et al.*, 1995]. Very minimal precipitation of metals is found on the white portions of the bead tubes below the red precipitation zones. These white portions are thus interpreted to have resided in more acidic and less oxic environments which are favorable to retaining metals in solution [*Stumm and Morgan*, 1970]. Such environments are found where larger proportions of

groundwater are present. The concentrations of precipitates observed in the surface water portions of the bead columns are also relatively low. Therefore, conservative physical mixing between the two low solid-phase concentration zones cannot explain the thick bands of high metal concentration precipitates that separate the two. Instead, these zones of precipitation are products of chemical reactions which occur where the chemically distinct surface and groundwaters mix to the extent that metals in the groundwater become unstable in the dissolved phase due to the dilution by oxic and neutral surface water.

The precipitation of metals within the mixing zone agrees with chemical theories and field and laboratory observations of pH and Eh controlling the partitioning of metals into their dissolved and solid phases [*Stumm and Morgan*, 1970; *Chapman et al.*, 1983; *Nordstrom and Ball*, 1986; *Stollenwerk*, 1994]. In numerous studies on streams affected by acid mine drainage, researchers have illustrated the close correlation of dissolution/ precipitation and sorption/ desorption reactions with changing pH and redox conditions [*Theobald et al.*, 1963; *McKnight and Bencala*, 1990; *Davis et al.*, 1991; *Smith et al.*, 1992]. Generally, metals become increasingly less soluble in less acidic and more oxidizing conditions, and microbial action greatly accelerates the rate of redox reactions [*Nordstrom*, 1982]. The oxidation rate of Fe (II) to Fe (III) is pH dependent [*Nordstrom*, 1982], typically occuring between a pH of about 4.5 and 5.0, and commonly results in the formation of Fe oxides or oxyhydroxides [*McKnight and Bencala*, 1990]. At higher pH levels, metals such as Al, Cd, Cu, Mn, Pb, and Zn come out of solution and can sorb with the Fe oxides [*Johnson*, 1986; *Filipek et al*, 1987; *Rampe and Runnells*, 1989; *Callenderet al.*, 1991].

Most of the hyporheic zone water samples had near neutral pH levels, yet they commonly contained high levels of metal concentrations. This suggests that many of the metals remain in the dissolved phase (or in colloids <0.45  $\mu$ m that can pass through the filter) at least until a near- neutral pH is reached. The relationship between pH levels and

metal concentrations is seen in Figure 21. The relatively steady concentrations of metals such as Fe, Co, Mn, Mo, and Zn between pH levels of 2-6 contrast with the range of concentrations present between pH units 6 and 8, where the levels of dissolved metals concentrations drop drastically, presumably due to their precipitation or adsorption onto Fe oxides and mixing with the more dilute and oxic surface water. Constituents without clear pH- dependent dissolved phase concentrations are Ca, Mg, Na, Sr, Ti, Cl, and NO₃⁻-N, at least for the pH ranges encountered in this study.

Interestingly, the behavior of dissolved As differs from that of the metals. At near neutral pH levels, As is observed to occur in solution (Figure 21), as reflected in the appearance of As in about half of the hyporheic zone water samples and in a few of the near-stream groundwater samples. As previously mentioned, dissolved As was not found above the detection limit of 0.07 mg/l in any of the floodplain piezometers sampled by Shay [1997] nor in the surface water. Of the hyporheic zone samples with detectable As concentrations, 88% had a pH between 6 and 7. What may be occurring is that the dissolved As captured in the samples had been in a chemical environment in which As is neither stable as associated with sulfides (as it is in reduced environments) nor with iron oxides (as it is in oxidized environments). The source for the As is likely the streambed sediments in the hyporheic zone, which were found to have average concentrations of 433 ppm (stdev= 75) in the <63  $\mu$ m size fraction. Still, the bead columns show a very close correlation of solid As and Fe in precipitation zones, which is what was expected based on reports by other researchers [DeCarlo and Thomas, 1985; Rampe and Runnells, 1989; Smith et al., 1992; Moore, 1994]. On all of the bead columns with measurable levels of As, the concentration profiles along the columns exactly matched those of Fe. This indicates that the As sorbs with iron oxyhydroxides in the hyporheic zone, where conditions are oxic and neutral enough to foster the precipitation of iron oxyhydroxides and



As. Thus, the water and bead samples captured two different phases of As existing in the

Figure 21: Concentrations [mg/l] of elements versus pH levels. Note log scale. The graphs include data from all the surface, ground, and hyporheic zone water samples, in addition to 12 groundwater samples collected by Shay (1997).

# Surface water infiltration versus groundwater upwelling:

The low dissolved  $SO_4^{2-}$ ,  $NO_3^{-}-N$ , and  $O_2$  concentrations and the high alkalinity levels in many of the hyporheic zone samples (Table 5) can be explained by microbial reduction. Sulfate reduction occurs in less oxic environments than does  $NO_3^{-}$  reduction [*Brock et al.*, 1994], meaning that  $SO_4^{2-}$  reduction will not occur before  $NO_3^{-}$  reduction in an increasingly reducing environment. This may suggest that  $SO_4^{2-}$  reducing bacteria and  $NO_3^-$  reducing bacteria inhabit the zones where surface water infiltrates the hyporheic zone and supplies  $SO_4^{2-}$ ,  $NO_3^-$ , and  $O_2$ . The bacteria reduce the  $NO_3^-$  and subsequently the  $SO_4^{2-}$  as well, where the conditions become increasingly more reducing with depth. In their study of the hyporheic zone of Little Lost Man Creek in California, Triska et al. [1989] also attributed the non-conservative behavior on  $NO_3^-$ -N either to microbial uptake or dissimilatory reduction. The relatively high alkalinity levels associated with most of these samples can be attributed to the products of microbial respiration [*Brock et al.*, 1994]. These patterns are helpful in distinguishing between zones of surface water infiltration versus groundwater upwelling. These samples with the low  $SO_4^{2-}$ ,  $NO_3^-$ -N, and  $O_2$ concentrations are interpreted as having been taken from zones of surface water infiltration.

Precipitation patterns on some of the bead columns also aided in making the distinction between areas where surface water was infiltrating into the hyporheic zone versus where groundwater was upwelling. For example, bead columns with no precipitation zones (Columns IIA-1, IIA-2, IIB-2, and IIC-2 (Figure 22) exhibited a steady



Figure 22: Concentration of metals coatings on bead column IIC-2, an example of surface water infiltration along the length of the column. Metals whose concentrations are not shown were either below detection or did not exhibit any significant differences in concentrations along the length of the column.

decressing trend of metals concentrations with depth and were interpreted as having been in zones of surface water infiltration. The concentrations of metals along the subsurface portions of these bead columns decrease with depth presumably due to redox gradients and dropping pH levels in the substrate, which will increasingly drive metals to go into solution. The relatively small but detectable amounts of accumulation on the surface water portions of the bead columns are thought to be products of redox reactions precipitating metals in the oxic, neutral pH surface water. They also may be due to elevated metal algal coatings on the beads.

Metal concentration trends along bead columns IA-2, IB-1 (Figure 23), IC-3, IIIA-1, IIIA-2, IIIA-3, and IIIC-3 are interpreted as being indicators of groundwater infiltration into the stream. On these columns, Fe concentrations come to a maximum lower down (i.e. deeper in the substrate) on the bead column than do metals such as Cu, Mn, and Zn. These other metals were found to precipitate out higher on the bead column, closer to the surface water. As discussed earlier, this sequence follows redox patterns found by other researchers in which Fe precipitates out more readily in conditions less oxic and alkalinity than those required for the precipitation of metals such as Mn, Cu, and Zn. Such conditions can be met with a greater proportion of neutral pH and more oxic surface water, and it is thought that the proportion of surface water in the hyporheic zone grades upward towards the surface water boundary. Thus, this sequence of metal concentrations can be interpreted as having been formed as a result of groundwater recharging the surface water. (It is possible that more bead columns exhibited this sequence of metals precipitation, but the separation of beads columns into no less than 2 cm sections for purposes of analysis was not on a small enough scale to detect the possible trends.)

On some of the bead columns (IA-2, IB-1, IB-3, IC-3, IIIA-1, IIIB-3, and IIIC-3), Cu, Mn, and Zn have their maximum concentrations on the surface water portions of the bead columns. These concentrations are significantly higher than the typical concentrations







ug per g bead

Figure 23: Concentrations of metals along the length of bead column IB-1, an example of groundwater upwelling along the length of the column. Metals Al, Ca, not shown (Al, Ca, Ti) had no significant trends.

of these metals found on most of the other surface water beads. This implies that the source for these metals must be in the upwelling groundwater and not in the surface water. It shows that these metals may stay in solution throughout their migration through the hyporheic zone and precipitate only once in the surface water.

The implication of these processes is that groundwater is upwelling into the creek in many areas, supplying dissolved As and metals to the stream sediments and water. Many of the metals appear to precipitate right at the surface water - substrate boundary, suggesting that the bed sediments are a sink for metals loading from the groundwater. Blowes et al. [1991] reported the presence of 1-5 cm thick "hardpans" at the depth of active oxidation of sulfide-rich tailings, and attributed their formation to the precipitation of iron hydroxide and oxyhydroxide minerals upon contact with porewater of increased pH. The thickness of these precipitation zones and processes of their formation are analogous to those found at the mixing zone at Silver Bow Creek. It is likely that hardpans do not form at Silver Bow Creek because the precipitation occurs on unstable creek sediments, which are continuously being transported downstream.

# Spatial and temporal controls on mixing:

As illustrated by the mixing ratios, there appear to exist highly variable distributions of the degree of mixing on both spatial and temporal scales. The small scale heterogeneity in the groundwater chemistry across the site is likely an important chemical control on the variability of the hyporheic zone chemistry. A major physical control in the extent of mixing is thought to be the general groundwater to surface water flow direction relationships at the sites. This is seen at Site II, where surface water and groundwater flow approximately parallel to each other, and the stream subsurface was more dominated by surface water than at either of the other two sites. Sites I and III, where perpendicular relationships between groundwater and surface water exist, showed much stronger groundwater signatures in the chemistry of the water collected from their banks.

More complex spatial variability is seen in that the concentration of groundwater in each hyporheic zone water sample usually did not decrease with increasing proximity to the creek at Sites I and II. This is in contrast with the findings of Triska et al. [1989], who concluded that all well locations within 3.5 meters of the wetted channel at Little Lost Man Creek contained at least 80% stream water. An example of this variability is at sample site (IA-GW 3) below the center of the creek at Site I, which was found to consistently contain proportions of groundwater similar to or higher than those found in the east bank samples. The bead column which was set into the creek bottom a few centimeters away from the IA-3 water tube was found to have a large mixing zone as suggested by the thick and long (at least 30 cm) band of precipitation visible on the column. The solid and dissolved chemistry collected at this location show that zones of high groundwater concentrations are found 0-30 cm under the creek channel and not exclusively in the banks or at deeper levels below the creek bed. The water sampling tubes in the center of the creek at the other 2 transects (IB- and IC- GW3) at the site were set in slightly coarser-grained sediments and had concentrations nearly identical to those in the surface water, and the mixing equation showed no groundwater component in these samples. In these places, the grain size is largest and the sediments least consolidated, allowing for a less obstructed infiltration of surface water. This exemplifies the amount of spatial variability found at the sites, as well as the importance that small scale physical heterogeneities in the streambed sediments can have in controlling the degree and depth of surface water - groundwater mixing. Such physical controls by streambed topography and sediment size have been credited by other researchers as controlling the extent of surface water - groundwater interaction as well [Bencala, 1984; Savant et al., 1987; Thiobodeaux and Boyle, 1987; Valett et al., 1990;

Harvey and Bencala, 1993; White, 1993; Pusch, 1996; Henry et al., 1984; Vervier et al., 1992].

Physical factors may also complicate mixing within the banks. The sediments within the floodplain of Silver Bow Creek contain complex layers of variably sized grains due to the history of meandering and flooding of the creek. Thus, the mixing between surface water and groundwater within the banks of the creek is thought to take place in a series of complex settings which provide for variably sized and conductive flowpaths through which the waters can travel and mix. Evidence for this is seen in that a few of the bead columns exhibited two separate bands of precipitation (Figure 10) which are thought to be a product of the small scale interfingering of the chemically distinct surface and groundwaters. The importance of floodplain stratigraphy and permeability in controlling the spatial distribution of the hyporheic zone has been noted by other researchers as well [Stanford and Ward, 1993]. For instance, Ward et al. [1994] contend that the abundance of invertebrates residing within the Flathead River floodplain is largely determined by sitespecific geomorphic and hydrogeologic features, as opposed to mere distance from the Similarly, Triska et al. [1993] reported that distance from the channel river channel. accounted for only 40% of the variance in nominal travel time of a chloride tracer injected into Little Lost Man Creek in California. They credited the rest of the variance to the complex flowpaths caused by heterogeneous structure, size, and hydraulic conductivity of the floodplain sediments.

In some places, such small scale flowpaths appear to have a stronger control on the mixing zone than do the general groundwater and surface water flow direction relationships. This is seen in the downgradient west bank of Site I, where all the bead columns (IA-1, IB-1, and IC-1) emerged with zones of precipitation on them at the surface water - substrate boundary, despite physical and chemical evidence from the water suggesting that the creek is recharging this area. A reddish streak on the surface water

portion of the bead column IC-1 was noted, and the precipitation sequence on IB-1 implies that groundwater-rich water is infiltrating the surface water. Thus, groundwater flow may be strongly controlled by small scale flowpaths that defy the larger-scale flow directions and water with large groundwater compositions may be entering the creek along some portions of the downgradient banks. This means that the surface water is not uniformly dominating the chemistry in the west bank hyporheic zone, which was found by Benner et al. [1995] to be comprised almost entirely of inflowing surface water up to about 1 m in depth. Instead, the mixing zone appears to vary in width on the scale of centimeters. In some areas it may be a lot smaller and shallower than previously thought, with groundwater located much closer to the creek than indicated in the previous study.

Temporal variability in the Silver Bow Creek hyporheic zone is irregular as well. The amount of groundwater in the shallow hyporheic zone generally did not decrease with respect to increasing flow volumes in the creek. For example, transect IA was sampled four times, during which the flow rate measured 1050, 1250, 2800 and 6100 l/s in the creek. The amount of groundwater in the hyporheic zone was different at each location during each flow event, (according to the mixing ratios) and the concentrations of nonconservative elements changed as well. However, these changes did not form any particular patterns with the flow volume in the creek. The percent of groundwater calculated to be present at a rate of 6100 L/s was about 14%; at a rate of 2800 L/s, there was 58%; during a rate of 1250, there was 66%, and finally, during rate of 1050 there was 30% (Figure 18). This indicates that during high flow events, the hyporheic zone is not flushed out by the surface water, and mixing with groundwater continues. This is similar to the findings of Harvey et al. [1996], who found that hyporheic exchange occurred during both low and high base flow in St.Kevin Gulch, and in contrast to those of Legrand-Marcq and Laudelot [1985], who concluded that the influence of transient storage mechanisms are greatest during low flow. The hyporheic zone in Silver Bow Creek

appears to continue to play a significant and sometimes larger role in solute transport into the creek during high flows, at least along certain portions of the creek. This process can be explained by the close hydrologic connection between the groundwater and the creek. Shay [1997] reported that rises in the water table of the adjacent aquifer brings larger volumes of groundwater into contact with the tailings, and this process causes the upper 1 m of groundwater to become significantly more contaminated with metals. This more highly contaminated and higher elevation groundwater is thought to continue to interact with the creek during the high flow events, causing the continued-- and in places, more extensive-- contamination of hyporheic zone.

#### Groundwater impacts on the surface water:

If dilution were the only control on the change in surface water chemistry with flow rate, the expected concentration change of conservative elements would be the same as the change in flow rate (a 7.5-fold change over the course of the study period). If the same sources and sinks were working on the system during all flow rate episodes in the creek, then no change in concentration would be observed. Transition metals (e.g. Fe, Cu, and Zn) generally do not have a well defined relationship with discharge, due to the various chemical, physical, and biological factors in the stream that may influence their concentrations at a given time (Forstner and Wittmann, 1979; Wetherbee and Kimball, 1991.) However, conservative elements should not be impacted by chemical changes in the stream. Yet, the concentrations of conservative elements increased by 150% and 170% for Ca and Mg, respectively, when flow rate was only 13% of the highest flow measured (Table 7). This suggests that dilution is not the only control on the surface water chemistry during high flow events and that there exists a source which contributes to the changing chemistry with flow rate.

Thus, this portion of Silver Bow Creek is not a losing reach, rather it was gaining dissolved Ca and Mg from some source, assumed to be the groundwater. Surface runoff was not observed on any surface water sampling dates, and thus it is assumed that direct floodplain runoff during the sampling period makes up only a small to insignificant portion of the source. Calculations of baseflow estimates, based on Ca and Mg concentrations, were made using the assumption that Ca and Mg behave conservatively and are of consistent concentrations in the groundwater within the entire site area and the upstream portions of the Silver Bow Creek system.

Estimates of the groundwater component (baseflow) in the surface water were made using the following mixing equation:

%GW=[LF]-[HF]/[GW]-[HF] * 100

where
% GW= percent groundwater (baseflow) during low flow
[LF] = concentration of conservative element in surface water during low flow, when highest concentration was found
[HF]=concentration of conservative element in surface water during high flow, when lowest concentration was found
[GW]= average concentration of conservative element in groundwater (Ca = 175mg/l, Mg= 43 mg/l; Na = 65 mg/l; from Shay [1997])

As a conservative lower range estimate, the amount of Ca in the surface water high flow (35 mg/l) is assumed to not be of groundwater origin at all; thus, the equation yields 16% as a low-end estimate for the percent of groundwater in the surface water during low flow. Using Mg, the same percentage is found. For the high-end estimate, it is assumed that all the Ca and Mg come from the groundwater alone, and thus [HF]=0. In this case, the estimated percent groundwater in the surface water is calculated to be 33% according to Ca, and 30% according to Mg. Na concentrations show slightly higher percentages of baseflow, with 23% for the low end estimate and 43% for the high end estimate.

Due to the extent of contamination of the groundwater, this amount of loading into the surface water likely accounts for a significant amount of the contamination in the water and sediment of Silver Bow Creek.

### CONCLUSIONS

The quality of water in the hyporheic zone is impacted by the groundwater to a significant extent in many portions of the study area at Silver Bow Creek. High concentrations of metals were present during both low and high flows in this shallow subsurface periphery of the streambed. According to conservative element mixing calculations, half of the hyporheic zone samples (<30 cm below the creek bed) were composed of at least 20% groundwater. Many of the metals remained in their dissolved phases throughout the hyporheic zone and precipitated only once in the surface water or just a few centimeters below. The precipitation reactions appeared to be most strongly controlled by changes in pH. In some cases, Fe and associated elements were found to precipitate out deeper in the substrate than other more mobile metals such as Cu, Mn, and Zn, suggesting that groundwater is moving into the more neutral and oxic creek.

The heterogeneity of the subsurface water chemistry and the differences in precipitation on the beads illustrate the need for very detailed sampling in order to capture the small-scale flowpaths which appear to regulate the nature and magnitude of surface water and groundwater mixing. Sampling of a small area during a limited time cannot be used to adequately represent the entire system. Variations in local groundwater metal concentrations need to be considered as well as the physical controls on the extent of mixing between the surface water and the groundwater. In some locations, groundwater appears to infiltrate the creek even from downgradient locations. This indicates that small scale flowpaths on the scale of centimeters may have stronger controls on groundwater interaction with the hyporheic zone and surface water despite the larger scale flow paths in the adjacent alluvial aquifer.

Thus, the mixing of the groundwater with the surface water takes place in a series of complex physical settings which create a chemically heterogeneous hyporheic zone
underlying and lateral to the creek bed. The product of the interaction is a transfer of metals into various depths of the hyporheic zone and into the stream channel, primarily into the solid phase. This precipitation of groundwater-borne metals onto stream and hyporheic zone sediments appears to be a constant source of pollution to the creek and must be recognized in remediation designs. In addition, the geochemical environment in the hyporheic zone creates a area in which As was found to be present in solution, although it is not found in solution in either the surface water or groundwater. Therefore, the hyporheic zone is a spatially and temporally heterogeneous, geochemically distinct environment in which metals and arsenic undergo chemical transformations which significantly control contaminant cycling between surface water and groundwater in the Silver Bow Creek hydrologic system.

## **References**

- Andrews, E.D. Longitudinal dispersion of trace metals in the Clark Fork River, Montana. In Chemical Quality of Water and the Hydrologic Cycle (Eds. R.C. Averett and D.M. McKnight). Chap. 13, pp. 1-13. Lewis Publishers, 1987.
- Bencala, K.E., Interactions of solutes and streambed sediment 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport. Water Resour. Res. 20(12): 1804-1814, 1984.
- Bencala, K.E., V.C. Kennedy, G.W. Zellweger, A.P. Jackman, and R.J. Avanzino, Interactions of solutes and streambed sediment 1. An experimental analysis of cation and anion transport in a mountain stream. *Water Resour. Res.* 20(12): 1797-1803, 1984.
- Bencala, K.E., D.M. McKnight, and G.W. Zellweger, Evaluation of natural tracers in an acidic and metal-rich stream. *Water Resour. Res.* 23(5): 827-836, 1987.
- Bencala, K.E., A perspective on stream-catchment connections. J. N. Am. Benth. Soc. 12(1):44-47, 1993.
- Benner, S.G., E.Smart, and J.N. Moore, Geochemical processes in a transition zone between surface water and acidic, metal-rich groundwater. *Environ. Sci. and Tech.* 28(7): 1789-1795, 1995.
- Blowes, D.W. and R.W. Gillham, The generation and quality of streamflow on inactive uranium tailings near Elliot Lake, Ontario. J. Hydrol. 97: 1-22, 1988.
- Blowes, D.W., E.J. Reardon, J.L. Jambor, and J.A. Cherry, The formation and potential importance of cemented layers in inactive sulfide mine tailings. *Geochim.* et Cosmoch. Acta 55: 965-978, 1991.
- Brock, T.D., M.T. Madigan, J.M. Martinko, and J. Parker, *Biology of Microorganisms*, New Jersey: Prentice-Hall, Inc. pp. 598-603, 1994.
- Callender, E., B.A. Kimball, and E.V. Axtmann, Transition Metal Geochemistry of the Upper Arkansas River, Colorado, in Mallard, G.E. and Aronson, D.A., eds., U.S.Geological Survey Toxic Substances Hydrology Program--Proceedings of the technical meeting, Monterey, CA., March 11-15, 1991. U.S. Geological Survey -Water Resources Investigators Report 91-4034, p. 392-397, 1991.
- Castro, N.M., and G.M. Hornberger, Surface-subsurface water interactions in an alluviated mountain stream channel. *Water Resour. Res.* 27 (7) 1613-1621, 1991.
- CH2M Hill, Inc., Silver Bow Creek flood modeling study: Report prepared for Montana Department of Health and Environmental Sciences, 1989.
- Chapman, B.M., Numerical simulation of the transport and speciation of nonconservative chemical reactants in rivers. *WaterResour. Res.* 18 (1): 155-167, 1982.

- Chapman, B.M., D.R. Jones, and R.F. Jung, Processes controlling metal ion attenuation in acid mine drainage streams. *Geochim.et Cosmoch. Acta* 47: 1957-1973, 1983.
- Coleman, M.J. and H.B.N. Hynes, The vertical distribution of the invertebrate fauna in the bed of a stream. *Limnol. Ocean.* 15: 31-40, 1980.
- Davis, A., R.L. Olsen, and D.R. Walker, Distribution of metals between water and entrained sediment in streams impacted by acid mine discharge, Clear Creek, Colorado, U.S.A, Appl. Geochem. 6: 333-348, 1991.
- DeCarlo, E.H., and D.M. Thomas, Removal of As from geothermal fluids by adsoprtive bubble flotation with colloidal ferric hydroxide. *Environ. Sci. and Tech.* 19: 538-544, 1985.
- Faure, G., Principles and Applications of Inorganic Geochemistry, p.371, Macmillan Publishing Company, New York, 1991.
- Feth, J.H., Chloride in natural continental water-- a review. U.S. Geological Survey Water Supply Paper, 2176, 2, 1985.
- Filipek, L.H., D.K. Nordstrom, and W.H. Ficklin, Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California. *Environ. Sci. and Technol.* 21: 388-396, 1987.
- Findlay, S., D. Strayer, C. Goumbala, and K. Gould, Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. *Limnol. Oceanogr.*, 38(7): 1493-1499, 1993.
- Findlay, S., and W.V. Sobczak, Variability in removal of dissolved organic carbon in hyporheic sediements. J. N. Am. Benthol. Soc., 15(1): 35-41, 1996.
- Forstner, U., and G.T. W. Wittmann, *Metal Pollution in the Aquatic Environment*, New York, Springer-Verlag, 486 p, 1979.
- Freeze, A.R., Role of subsurface flow in generating surface runoff 1. Base flow contributions to channel flow. *Water Resour. Res.* 8(3): 609-623, 1972.
- Gillham, R.W., The capillary fringe and its effects on water-table response. J. Hydrol. 67: 307-324, 1984.
- Grimm, N.B., and S.G. Fisher, Exchange between interstitial and surface water: Implications for stream metabolism and nutrient cycling. *Hydrobiol.* 111: 219-228, 1984.
- Hansen, E.A., Some effects of groundwater on brown trout reds. Trans. Amer. Fish. Soc., 104: 100-110, 1975.
- Harvey, J.W., and K.E. Bencala, The effect of streambed topography on surfacesubsurface water exchange in mountain catchments. *Water Resour. Res.* 29 (1): 89-98, 1993.

- Harvey, JW., B.J. Wagner, and K.E. Bencala, Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. Water Resour. Res. 32(8): 2441-2451, 1996.
- Hendricks, S.P., and D.S. White, Physiochemical patterns within a hyporheic zone of a northern Michigan river, with comments on surface water patterns. Can. J. Fish. Aqat. Sci., 48: 1645-1654, 1991.
- Henry K.S., H.M. Valett, J.A. Morrice, C.N. Dahm, G.J. Wroblicky, M.A. Santistevan, and M.E. Campana, Ground water-surface water exchange in two headwater streams. In Second International Conference on Ground Water Ecology. pp.319-328. American Water Resources Association, 1994.
- Holmes, R.M., S.G. Fisher, and N.B. Grimm, Parafluvial nitrogen dynamics in a desert stream ecosystem. J. N. Am. Benthol. Soc., 13(4): 468-478, 1994.
- Jacobs, L.A., H.R. von Gunten, R. Keil, and M. Kuslys, Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. et Cosmochim. Acta. 52, 2693-2706, 1988.
- Johnson, C.A., The regulation of trace element concentrations in river and estuarine waters contaminated with acid mine drainage: The adsorption of Cu and Zn on amorphous Fe oxyhydroxides. *Geochim. et Cosmochim. Acta* 50: 2433-2438, 1986.
- Johnson, R.A., Oxygen transport in salmon spawning gravels. Can. J. Fish. Aquat. Sci., 37: 155-162, 1980.
- Jones, J. B. Jr., R.M. Holmes, S.G. Fisher, and N.B. Grimm, Chemoautotrophic Production and Respiration in the Hyporheic Zone of a Sonoran Desert Stream. in Second International Conference on Ground Water Ecology. American Water Resources Association, 1994.
- Kimball, B.A., Physical, chemical, and biological processes in waters affected by acid mine drainage: from headwater streams to downstream reservoirs, *in* Mallard, G.E. and Aronson, D.A., eds., U.S.Geological Survey Toxic Substances Hydrology Program--Proceedings of the technical meeting, Monterey, CA., March 11-15, 1991. U.S. Geological Survey -Water Resources Investigators Report 91-4034, p. 365-370, 1991.
- Lucy, J.K., Hydrologic and geochemical controls on metals partitioning in the vadose zone and shallow ground water zone of a highly-contaminated floodplain near Butte, Montana. M.S. Thesis, University of Montana, 1996.
- Legrand-Marcq, K. and H. Laudelout, Longitudinal dispersion in a forest stream. J. Hydrol. 78: 317-324, 1985.
- McKnight, D.M. and K.E. Bencala, The chemistry of iron, aluminum, and dissolved organic material in three acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes. *Water Resour. Res.* 26 (12): 3087-3100, 1990.

- Moore, J.N., Contaminant mobilization resulting from redox pumping in a metalcontaminated river-reservoir system, in *Environmental Chemistry of Lakes and Reservoirs*, edited by L.A. Baker, 1994.
- Moore, J.N. and S.N. Luoma, Hazardous wastes from large-scale metal extraction. Envir. Sci. and Technol. 24, p. 1279-1284, 1990.
- Munn, N.L., and J.L. Meyer, Rapid flow through the sediments of a headwater stream in the southern Appalachians. *Freshwat. Biol.* 20, 235-240, 1988.
- Nimick, D.A., and J.N. Moore, Prediction of water-soluble metal concentrations in fluvially deposited tailings sediments, Upper Clark Fork Valley, Montana, U.S.A. *Appl. Geochem.* 6: 635-646, 1991.
- Nordstrom, D.K., Aqueous pyrite oxidation and the consequent formation of secondary iron minerals, in *Acid Sulfate Weathering*, Soil Science Society of America Special Publication No. 10; edited by J.A. Kittrick, D.S. Fanning, and L.R. Hossner, 1982.
- Nordstrom, D.K. and J.W. Ball, The geochemical behavior of aluminum in acidified surface waters. *Science* 232: 54-56, 1986.
- Novakowski, K.S. and R.W. Gillham, Field investigations of the nature of water-table response to precipitation in shallow water-table environments. J. Hydrol. 97: 23-32, 1988.
- Pusch, M., The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. *Hydrobiol.* 323: 107-118, 1996.
- Rampe, J.J., and D.D. Runnells, Contamination of water and sediment in a desert stream by metals from an abandoned gold mine and mill, Eureka District, Arizone, U.S.A. Appl. Geochem. 4: 445-454, 1989.
- Rutherford, J.E., and H.B.N. Hynes, Dissolved organic carbon in strams and groundwater. *Hydrobiol.* 153: 33-48, 1987.
- Savant, S.A., D.D. Reible, and L.J. Thibodeaux, Convective Transport Within Stable River Sediments. *Water Resour. Res.* 23 (9), 1763-1768, 1987.
- Shay, D.T. An investigation of the hydrogeology and geochemistry of a floodplainaquifer system impacted by mine tailings, Silver Bow Creek, Montana. University of Montana M.S. thesis, 1997.
- Sillman, S.E., J. Ramirez, and R.L. McCabe, Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J. Hydrol. 167, 99-119, 1995.
- Sklash, M.G. and R.N. Farvolden, The role of groundwater in storm runoff. J. Hydrol. 43: 45-65, 1979.

- Smart, E., Surface water and groundwater interaction in a shallow unconfined alluvial aquifer and a small mountain stream, Silver Bow Creek, Montana. M.S. thesis, University of Montana, 1995.
- Smith, K.S., W.H. Ficklin, G.S. Plumlee, and A.L. Meier, Metal and arsenic partitioning between water and suspendd sediment at mine-drainage sites in diverse geologic settings. In *Water - Rock Interaction*, edited by Y.K. Kharaka and A.S. Maest, Proceedings of the Seventh International Symposium on Water-Rock Interaction -WRI-7, Park City, UT, July 13-18, 1992: Rotterdam, A.A. Balkema, p. 443-447, 1992.
- Squillace, P. J., Observed and simulated movement of bank-storage water. Ground Water 34(1): 121-134, 1996.
- Stanford, J.A. and J.V. Ward, The hyporheic habitat of river ecosystems. *Nature* 335: 64-66, 1988.
- Stauffer, R.E., Use of solute tracers released by weathering to estimate ground water inflow to see page lakes. *Environ. Sci. and Tech.*, 19: 405-411, 1985.
- Stollenwerk, K.G., Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona. *Appl. Geochem.* 9: 353-369, 1994.
- Stumm, W. and J.J. Morgan, Aquatic Chemistry. New York: John Wiley and Sons, 1970.
- Theobald, P.K. Jr., H.W. Larkin, and D.B. Hawkins, The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado. *Geochim. et Cosmoch. Acta* 27 (2): 121-132, 1963.
- Thiobodeaux, L.J. and J.D. Boyle, Bedform-generated convective transport in bottom sediment. *Nature* 325: 341-343, 1987.
- Triska, F.J., J.H. Duff, and R.J. Avanzino, Patters of hydrological exhcange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: examining terrestrial-aquatic linkages. *Freshwat. Biol.* 29: 259-274, 1993.
- Triska, F.J., V.C. Kennedy, R.J. Avanzino, G.W. Zellweger, and K.E. Bencala, Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. *Ecology* 70:1893-1905, 1989.
- United States Geological Survey, Water Resources Information: Streamflow conditions in Montana. Web site: www.h20.usgs/swr/MT, 1996.
- Valett, H.M., Surface-hyporheic interactions in a Sonoran Desert stream: hydrologic exchange and diel periodicity. *Hydrobiol.* 259: 133-144, 1993.
- Valett, H.M., S.G. Fisher, and E.H. Stanley, Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. J. N. Am. Benthol. Soc., 9(3): 201-205, 1990.

- Valett, H.M., C.C. Hakenkamp, and A.J. Boulton, Prespectives on the hyporheic zone: integrating hydrology and biology. Introduction. J. N. Am. Benthol. Soc., 12(1): 40-43.
- Vervier, P., J. Gibert, P. Marmonier, and M. Dole-Olivier, A perspective on the permeability of the surface freshwater- groundwater ecotone. J. N. Am. Benthol. Soc., 11(1): 93-102, 1992.
- Wallis, P.M., H.B.N. Hynes, and S.A. Telang, The importance of groundwater in the transportation of allochthonous dissolved organic matter to the streams draining a small mountain basin. *Hydrobiol.* 79: 77-90, 1981.
- Ward, J.V., J.A. Stanford, and N.J. Voelz, Spatial distribution patterns of Crustacea in the floodplain aquifer of an alluvial river. *Hydrobiol.* 287: 11-17, 1994.
- Wetherbee, G.A., and B.A. Kimball, Use of enviornmental variables to estimate metal loads in streams, upper Arkansas River basin, Colorado. in U.S.Geol. Surv. Toxic Substances Hydrology Program--Proceedings of the technical meeting, Monterey, CA., March 11-15, 1991, edited by G.E. Mallard and D.A. Aronson, U.S. Geological Survey -Water Resources Investigators Report 91-4034, p. 398-406, 1991.
- White, D.S., C.H. Ezinga, and S.P. Hendricks, Temperature patterns within the hyporheic zone of a northern Michigan river. J. N. Am. Benth.Soc. 6(2):85-91, 1987.
- White, D.S., Perspectives on defining and delineating hyporheic zones. J.N. Am. Benth. Soc. 12(1): 61-69, 1993.
- Wickett, W.P., The oxygen supply to salmon eggs in spawning beds. J. Fish. Res. Bd. Canada, 11(6): 933-953, 1954.
- Wielinga B., S. Benner, C. Brick, J. Moore, and J. Gannon, Geomicrobial profile through the hyporheic zone of a historic mining floodplain. In Second International Conference on Ground Water Ecology. pp.267-276. American Water Resources Association, 1994.
- Williams, D.D., Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. *Freshwat.Biol.* 22: 189-208, 1989.
- Williams, D.D. and H.B.N. Hynes, The occurrence of benthos deep in the substratum of a stream. *Freshwat. Biol.* 4: 233-256, 1974.
- Wondzell, S.M., and F.J. Swanson, Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. II: Nitrogen cycling. J. N. Am. Benthol. Soc. 15(1): 20-34, 1996.

<u>SITE 1</u>	(measurements	in meters ab	ove sea level)								
<u>DATE</u>	Top of casing	<u>5995</u>	<u>5/15/95</u>	<u>5/22/95</u>	<u>5/30/95</u>	<u>6/12/95</u>	<u>6/20/95</u>	<u>6/23/95</u>	<u>6/28/95</u>	<u>7/6/95</u>	<u>7/12/95</u>
<u>P-44 (E bank)</u>	1602.952	1602.038	1602.075	1601.986	1601.895	1602.151	1602.038	1602.007	1601.953		1602.05
Staff Gaugel P-38 (W bank)	1603.083	1601 916	1601.908	1601 895	1601.806	1602 081	1601 947	1601 916	1601 855	1601 767	
Lis in creek	1002.2037	5437	5465	5295	4701	8297	6088 P38inSBC	5295	4842	2888	5465
<u>DATE</u> <u>P-44</u>		<u>7/19/95</u> 1601.910	<u>8/15/95</u>	<u>8/24/95</u>	<u>8/27/95</u> 1601.669	<u>8/31/95</u>	<u>9/27/95</u>	<u>10/1/95</u> 1601.709	<u>10'20/95</u>	<u>11/3/95</u>	<u>11:4/95</u> 1601.69
Staff Gauge 1		1601.901	1601.663	1601.663	1601.657.	1601.642	1601.666	1601.706	1601.706	1601.703	1601.38
<u>P-38</u>		1601.843	1601.617	1601.593	1601. <b>58</b> 1	1601. <b>56</b> 9	•	1601.596	1601.611	1601.587	1601.58
Lls in creek		2803	1218	1048		793	1246	2577	2747	2605	2662
<u>SITE II</u>											]
DATE	Top of casing	<u>7/6/95</u>	<u>7/12/95</u>	<u>8/15/95</u>	<u>8/24/95</u>	<u>8/31/95</u>	<u>9/4/95</u>	<u>10/20/95</u>	<u>11/3/95</u>	<u>11/4/95</u>	
D-18 (S bank)	1603.278	1602.815	1602.980	1602.657	1602.654		1602.635	1602.687	1602.678	1602.675	
Staff Gauge 8	1603.617			1602.675	1602.660	1602.648	1602.648	1602.699	1602.687	1602.702	
<u>D-19 (N bank)</u>	1603.778	1602.882					1602.666	1602.718	1602.693	1602.693	
L/s in creek		2888	5465	1218	1048	793	793	2747	2605	2662	7
<u>SITE III</u>											]
<u>DATE</u>	Top of casing	<u>7/11/95</u>	<u>7/12/95</u>	<u>8/15/95</u>	<u>8/24/95</u>	<u>8/28/95</u>	<u>8/31/95</u>	10/20/95	<u>11/3/95</u>	<u>11/4/95</u>	
D-30 (W bank)	1604.269	1603.714	1603.708	1603.397	1603.388	1603.379	1603.379	1603.440	1603.419	1603.422	
Staff gauge 10	1604.391			1603.385	1603.361	1603.355	1603.355	1603.413	1603.397	1603.391	
<u>D-31 (E bank)</u>	1604.3 <i>5</i> 7	1603.742			1603.400	1603.397	1603.388	1603.452	1603.437	1603.431	1
L/s in creek		5182	5465	1218	1048		793	2747	2605	2662	1

	Ţ		8			2		8 J 3	( a	5	8	8	gis		8	E	3		in	8	5	8	1	⊒	g	8	3 2		Ð	<u>ی</u> ا و	g g	E	5	si s	4	2	2		8	- ;	2 3	19	16	ي اي	
-	2	5 0.0	E E	-	$\left  \right $	0.0	8 8		0	80	0	010		10	03	03			0	6.0	20	200	9 4	9	0.5	50 30		0	00		0 4	0.15	13		0	8	2	\$ 2	0	50	18	80	0.13	<u> i</u> i	1
	F	0.0198		2000		0.002	0003		600	0.00	0000	1000	8000		1000	•	1000		52000	0000	0000	0000		0.0014	0	0 0014		0.0014	0 0018	1000	2000 O	0.00.29	0000	0000	0 00 25	4100	0.01 53		0 002	0000	1000	0 0164	0.0122	000	7 m n
	5	0.02171	11.217			0000	8	11170	1000	0 2001	0 2161	0 2105	0.2021	1012 0	0 1981	0.2149	0.0638		61610	0 21 22	0.2081	0 2140	1.00.0	0 205	0.1992	9:61 0	120	ŝ	0.2449	8.90	10000	0 2733	0.4461	0.907	0.42	8106.0	3957	1262.0	0.0014	50000	10870	0.6179	1.453	1500.0	0.000
T	1	00495		2.0843		60	1	88	017	43	37	37	4 8	8 8	39	35	1417		1	ž	×	35	म् उ	3 5	51	4	<u>د</u> ا	6	8	13	3 2	0.628	8	8 8	R	505	8	2 3	600		11	8	8	<b>A</b> =	
1		867.80	15271			8	80	ŝlě			013	1012	610	700	101	ð	20		200	8	5	910	200	5	101	8		8	8	015	8 8	906	56	8 6	8	033	=	CZD PCU	014	810	017	5	8	8	78
1	Ť	0 6160	90	80.0		5	5	3 0		2	8	2			2	2				9	-		2 2	10	2	8	8 =	8	2	-		11 0	0		0	Ŷ	2			4		5	0	- 4	
┥		0 1228		56		00	32		00	02	8	8		5 6	02 0.2	0	37		100	0 60	0	8		8	05 0.2	0	9 0	0	0	2	8	14 0.4	0		05	3	0		0	10	9 10	10	38	99 0.2	3
┥	Ī	376 0.00				900	8		900	00	00	8	8		00	00	8			00	00			38	0	-		00	0	80		00	8		00	00	e.		0	200	38	10	00	8	5
+	ź	60 00		8		500	ลี่สี่		5 013	6 165	5 17.6		165	12	6 163	1 173	4 225	20.0	991	7 17.4	9	2	0 1/3	12	5 16.8	164	4	2 186	2	225	16.8	8 218	638	8 365 8 17 5	172 6	7 40.5	140	4 4	010	1 0.00		i E	4	<u>8</u>	2
+	3	2 0.000	5	2413		4 0.003	0 018		000	000	8000	8	600	000	000	10004	0.015			000	0000	88		000	0.013	8000	600	0.047	0.042	0.017		0 01 2	8		0.187	0.046	0.167	2.0	0 01 5	0000	0024	010	629	800	
4	3	0000	2 1333			80.0	0.0522	200	0000	0 4449	0 5197	0.555	44	1220	0 4705	0.4874	0.0513	200	0.52	0.4689	0 5493	161-0	0.650	0.545	1.422	0.447		4 206	38.6	0000		0 2402	35.36	7 332	1537	29.72	2567	2 3	0.0605	0 01 27	0 0516	661	Ē	1069	6007
	Ň		3.9875			80	7	100	6100	7.68	75	7		8	7 5		123	100	102	10 8	791		2	3	766	5	18/	80	8	22	10	10.7	225	181	9	255	28.8	289	0.064	000	231	20.7	215	10.5	272
		0.00295				-0.015	0.042	500	0.012	0 331	0 279	550	0.338	6.69	0 352	0 249	60	10.0	199	0 275	0332	8610		9810	518	0.395	9.9	8	254	1800	0.455	0.487	<u>×</u>	180	888.6	36	3	18	0.099	0018	0045	13	2	3	10
	5	0.00095	LMC62.1			0.014	0.0347	66000	0.0015	0.09666	0.1069	8	0.0962	0.11.21	0.0925	11800	0.0317	96000	0 1213	0.0859	0.1066	0.0852	0 6017	95900	0.0361	8710	0.0184	65000	0.0015	0000	96110	0 0074	-0.017	2000	0.0258	18.22	1367	2037	0.0428	0 01 47	0000	0.1748	0.0413		7 17
T		1213171		00252		6800	0.0451		16100	0274	16200	6220	0036	0.263	0.022	0217	0.0055	9100	00276	0 00 2	0.022	0.068	2000	1900	0 024	0.0016	0.0244	0.0075	0 03 84	100	51800	0.0374	0.1835	1200	0 0762	0 126	1328	41	5600 0	0003	10.09	91300	6260	00039	2
1		60	8233			8100	64-10		88	800 S	50	80	200	8100	8000	2012	0132		8100	600	500	10	800	8	8025	80	6 6	5700	0012	0142	100	0021	8	6 10 00	580	07.55	8	8	600	0003	2125	0.73	808	60.7	
		0047 0	90695 2	1		0017 0			800	018	0 1200	600	100		0027	0 1200	<u>88</u>			0032 0	8200	82.00		200	0026 0	8024	8100	023		212		0 M	8		0932	1022 0	522		000	100	2 2 2	0033 0	6		
┨		0114 0	0062			62 0		10		9	9	01			5	6	<u> </u>			0	5	4		1	4	4	0 0	8	8			0	0	4 6	0	0			67 0		10				
x		045 0(	7	16		00	- 	313	500	2 35	38	81) 	500	1 2	34	31	2 12	0 0 0 0	2 35	37	2 37	6 38	19	2 5	9 37	7	5 96 5	4	8	2 2 2	리성	5	3	R   7	2	1 16:	9	8 8	6	61	3	Ē	6	1 62	
on 7/5/	2	47 00		2		00	00		000	000	80	8			00	0.0	8			100	00	00		00	1 003	8	0110	8 013	010			000	8		0	8	000	30	7 00	0	200	10	10	8 6	
		ŝ		<u></u>		8	ลเล			3	8	8	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		4	100	212			4	7 005				8	500		4 0.03	0 00		010	000	50		6 0.05	9 29.4	8 12		1 0.08	4	024	4 0.39	8 0 18	1 3 7	
			6 21	1.6	6	76	8 6	7 0	6	9 55	88	001		2	ē	101	<u> </u>		0	3	103	3		5	õ	3		11.0	=			112	=		=		=	=	115	=	12	12	12		+++
Icr sar			7/5/95	26/5/L	7/5/95	7/5/95	7/5/95	20/2/2	7/5/95	715.95	715.95	Sever	7/5/95	15.95	715/95	26/512	7/5/95	2012	7/5/95	715/95	26/5/2	7/5/95	201212	75/95	7/5/95	7/5/95	26217	7/5/95	7/5:45	56/2/1	26/2/	7/5/95	5,5/2	50.51	7/5/95	7/5/95	26/2/2	26/21	7/5:95	7/5/95	26.51	26/2/1	7/5/95	26/21:	
w mo			-	;		Ì		1000	62895	6/20/95	62695	6/28-95	6/20/95	6/28/95	6,00.95	6.26.95	i	6/B/19	60095	6/26/95	6/28/95	6/26/95	50009	67695	6/26/95	56029	676/92	6/28/95	668.09	-	6/20/95		600.9	6/28/95	6/20/95	6/38/95	602/9	6/28.95			-	6/26/95	6/28/95	62092	
dula fi	Neme	Blank		1			110		×		:   :=:	 =1;	=			_	- 	  -	>	  2	≥				(3	212	22)	2	12(2)	1011	40	T117	- 	1 7	5	112		19	 	×	7107		1	 s =	
n I	1	15	83	3:2	E Z	NV.	3	3 2	Ň	BS.	S.	š	S.	i S	ŝ	S	S	Z, J	S N S	NS.	ΣW	3	8, <b>2</b>	3	5	5	513	B	3	6	S S	:8	5	513	15	3	5	5:8	Z	NA	3 3	3	5	5 3	

NPLSS data from water sample abalyses on 7/24/95 and 7/24/95 Sample Sample Amatric Ambrid Number And Ambrid Ambrid	a from water sample abalyses on 7/2495 and 7/2495 Sumpt Analytic A	water sample analyses on 7/23/95 and 7/24/95 Analytic Analytic 11, 24, 25 Co.	Ambrid at a provident of the provident o	alyses on 7/23/95 and 7/24/95	on 7/23/95 and 7/24/95	3/95 and 7/24/95	d 7/24/95	Se e		HT,		4			N.	2	2						$\prod_{i}$
IA.SWI12) 7/19/95 7/23/95 16/36 0051 0022 46/4 00034 0	7/19/95 7/23/95 16:46 0.051 0.022 46:4 0.0034 0.	7/23/95 16/46 10 051 10 022 146/4 10 0034 10	1646 0 051 0 022 46.4 0 0034 0	0.051 0.022 46.4 0.0034 0.	0 022 46.4 0 0034 0	46.4 0.0034 0	0 0034 0	λõ	8	0.0062	1262	145		0.8257	0.0056	21.6	0.006	80	100	7	0 2598	0.0026	Ę
LA SWII 7/19/95 7/24/95 14:30 0.059 0.011 45 0.0026 0.00	7/19/95 7/24/95 14:30 0.059 0.011 45 0.0026 0.00	7/24/95 14:30 0.059 0.011 45 0.0026 0.00	14.30 0.059 0.011 45 0.0026 0.00	0 059 0 011 45 0 0026 0 00	0.011 45 0.0026 0.00	45 0 0026 0.00	0 0026 0 00	8	ē	10.0	1299	0.163	996	08158	0.0049	20.7	100	1.0	0.012	135	0.2489	0013	7249
1A.5WII // 19/95 /124/95 15(9 0003 0014 45 4 00024 0002 0000 14.5WII 7/ 19/95 7724/95 15(99 0073 0014 46 4 00024 0002	7/19/95 7/124/95 15/19 10.069 0073 0014 46 4 0.0028 0.001	7/24-95 15:19 0003 0014 45 4 00024 0000 7/24-95 16:09 0073 0014 46 4 00024 0000			0014 45 0.0024 0.000	45 4 0.0024 0.000	0.0024 0.000	88	4	0.0102	1342	0.17	996 896	0.8438	0.0072	21.5	000	0.19	800.0	5	0.2558	18	7418
IA-SWII 7/19/95 7/24/95 16:53 0.079 0.007 46.6 0.0027 0.00	7/19/95 7/24/95 16.53 0.079 0.007 46.6 0.0027 0.001	7/24/95 16.53 0.079 0.007 46.6 0.0027 0.00	16 53 0 079 0 007 46 6 0 0027 0 001	0 079 0 007 46 6 0 0027 0 001	0 007 46 6 0 0027 0 00	46.6 0.0027 0.001	0 00 27 0 00	8		0.012 (	0.1363	0.172	9.6	0.85	0.0061	21.5	0.004	0.21	0.013	138	0.2551	0013	7403
1A5W11 7/19/95 7/24/95 18:24 0.084 0.016 45 2 0.003 0.00	7/19/95 7/24/95 18:24 0.084 0.016 45.2 0.003 0.00	7/24/95 18:24 0.084 0.016 45.2 0.003 0.000	18:24 0.064 0.016 45.2 0.003 0.000	0.064 0.016 45.2 0.003 0.000	0016 45 2 0 003 0 000	45 2 0 003 0 000	0 00 0	800	515	0.0141 0	8111 1313	017	9.12	0.8235	0.0059	21	0.00	0.26	0.002	133	0.2456	9100	7145
1A-SWII 7/19/95 7/24/95 19 05 0 091 0 011 457 0 0026 0 0	7/19/95 7/24/95 19 05 0 091 0 011 45 7 0 0026 0 0	7/24/95 19 05 0 091 0 011 45 7 0 0026 0 0	19 05 0 091 0 011 45 7 0 0026 0 0	0 091 0 011 457 0 0026 0 0	0 011 457 0 0026 0 0	45 7 0 0026 0 0	0 0026 0 0	0	ē	0.0136 (	0  335	0.186	9.19	0.8346	0.0056	21.3	0.003	0 27	0.004	134	0.2481	0.0013	7214
1.4-SWTI 7/19/95 7/24/95 19/40 0.088 0.007 45.4 0.0027 0	7/19/95 7/24/95 19 40 0.068 0.007 45 4 0.0027 0	772495 1940 0088 0007 454 00027 0	19 40 0 088 0 007 45 4 0 0027 0	0 068 0 007 45 4 0 0027 0	0 007 45 4 0 0027 0	45.4 0.0027 0	0.0027	010	5100	0.0181	0.1313	6.187	502	0.8308	0.0034	21.1	100	0.31	0004	133	0.2453	0.002	1144
0 1000 600 100 600 900 90 90 90 90 50 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10						0 000 0 000		ייוכ	5000	70000			0114	1000	00000	0.057	1000	000	1000	0.005	100000	0 0000	0352
BLANK C 7/17/95 7/23/95 16.09 0023 0017 011 0001 0	7/17/95 7/23/95 16:09 0023 0017 011 0001 0	7/23/95 16:09 0.023 0.017 0.11 0.001 0	16.09 0 023 0 017 0 11 0 001 0	0 023 0 017 0 11 0 001 0	0 017 0 11 0 001 0	0 100 0 11 0	1000	10	9200 0	0.0051	1900	0.018	0.034	0 0062	0 0014	0.044	100 0	0	0.012	1100	0.0002	0.0011	0427
1A-GW1 7/19/95 7/24/95 18/01 0 069 0 26 68 1 0 0008 0	7/19/95 7/24/95 18:01 0 069 0 26 68 1 0 0008 0	7/24/95 18:01 0 069 0 26 68 1 0 0008 0	18.01 0 069 0 26 68 1 0 0008 0	0 069 0 26 68 1 0 0008 0	0 26 68 1 0 0008 0	68.1 0 0008 0	0 0008	91	600	0.0437	600	1.4	11.7	8373	0.1176	162	0 002	0.76	0.011	1 62	0.4956	91000	0636
1A-GW2 7/19/95 7/24/95 16:35 0.06 0.355 86 4 0.0014 0	7/19/95 7/24/95 16/35 006 0.355 86 4 0 0014 0	7/24/95 16:35 0.06 0.355 86 4 0 0014 0	16.35 0 06 0.355 86 4 0 0014 0	0 06 0 355 86 4 0 0014 0	0.355 86 4 0 0014 0	86 4 0 0014 0	0 0014 0	0.	1600	0.0479		1.5	14.6	96	0.1143	29.8	600	860	0 022	21	0.652	000	20
								210	700	1000	000		C C7		6780.0	200			250	10.0	C/CC/D		0.00
14.0.WE 7/10/06 7/2/2016 117-52 30.6 0.112 853 0.0076 0			17.52 20.6 0.112 BS 3 0.0076 0	20.6 0 112 853 0 0076 0	0 112 85 3 0 0076 0	85.3 0.0076 0		jį C	1	0 00 0	2000	174	31	1010	0 1764	1 1	0.062	18	0055	44	1686.0	0012	69
IA-GWE 7/19/95 7/24/95 19:37 19:9 0 097 184.4 0.0076 0 0		7/24/95 19:37 19.9 0 097 184.4 0 0076 0 0	19.37 19.9 0 097 184.4 0 0076 10 0	19.9 0 097 84.4 0.0076 0.0	0 097 844 0 0076 00	84.4 0.0076 0.0	0.0076 0.0		3	1660 0	0.0042	1	23	20 89	0.1743	64.5	0 062	0.2	0 035	4.32	0.3823	9100 0	46.9
1A.GW6 7/19/95 7/24/95 1833 21.6 0.041 140 0 2694 0.0	7/19/95 7/24/95 18/33 21 6 0 041 140 0 2694 0 0	7/24/95 1833 21.6 0 041 140 0 2694 0 0	1833 216 0 041 140 0 2694 0 0	216 0 041 140 0 2694 0 0	0 041 140 0 2694 0 0	140 0 2694 0 0	0 2694 0 0	10	80	0 1484	15.42	112	37.3	37.01	0.1587	8	0 079	12	0 0 2 4	5.37	0 469	0 01 53	3.7
IA-SWI 7/19/95 7/24/95 19 14 0.081 0 006 46 4 0 0027 0	7/19/95 7/24/95 19 14 0.081 0 006 46 4 0.0027 0	7/24/95 19 14 0.081 0.006 46 4 0.0027 0	19 14 0 081 0 006 464 0 0027 0	0.081 0.006 464 0.0027 0	0 006 464 0 0027 0	46 4 0.0027 0	0 0027 0	0		0.0154	0.1261	0.201	9.31	0 8237	0.0053	21.4	0.003	0 29	0.004	1.36	0.2518	0.002	128
IA.5WI 7/19/95 7/23/95 17/10 0.052 0.02 46.7 0.0032 0.0	7/19/95 7723/95 17 10 0.052 0.02 46 7 0.0032 0.0	7/23/95 17 10 0 052 0 02 46 7 0 0032 0 0	17.10 0.052 0.02 46.7 0.0032 0.0	0 052 0 02 46 7 0 0032 0 0	0 02 46 7 0 0032 0 0	46.7 0.0032 0.0	0 0032 0 0	8	8	0.001	0 1322	0.193	10.1	0.8324	0.0058	21.4	100	0.14	0.004	8	0.259	1000	5012
IIB-GWI 7/19/95 7/24/95 15.47 0.723 1.88 139 0.0056 0.0	7/19/95 7/24/95 15:47 0 723 1.88 139 0 0056 0	7/24/95 15:47 0 723 1.88 139 0 0056 0 0	15.47 0 723 1.88 139 0 0056 0 0	0 723 1 88 1 39 0 0056 0 0	1.88 139 0 0056 0 0	139 0 0056 0 0	0 0056 0	3	8	0.1082	0.3308	129	23.9	23.54	0.2593	39.9	200	0.36	0.123	ភ្ល	0 %19	0 0385	3675
<b>IB-GW2</b> 7/19/95 7/24/95 16:33 00.667 00.988 42.9 00.0009 00		7/24/95 16:33 0.067 0.098 42.9 0.0009 0.0		0.067 0.098 42.9 0.0009 0.0	0.098 42.9 0.0009 0.0	42.9 0.0009 000	6000.0		010	0.0180	0.0214	10.7	8.47	2.322	0.0218	21.4		0.21	100.0	65.1	51520	9100	2/02
0 6700 0 878 70.0 500 0.11 66071 560711 F 6661711 F 6665111		0 6700 975 900 000 975 900 000 0000 0000 00	0 6700 878 700 001 100 001 001 000 00 00 00 00 00 00	0 6700 878 700 200	0.015 42.8 0.0029 0	47.8 0.0029	6700.0	510		2710.0	100		8.8	2011	00000	21.1		212	1000	3	0167.0		1110
0 1100 0 200 500 0 700 0 2011 5547 36471 564711 54471 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 111 514 1000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 110000 1100000 1100000 1100000 1100000 1100000 11000000								<b>21 C</b>		0.144.0	8 5	17	14.3	87 V	0 4467	2 2		120	1700	8 4	20100		
IR-SW1 7/19/95 7/24/95 13:58 0.054 0.024 45.7 0.0025 0	7/19/95 7/24/95 13:58 0.054 0.024 45.7 0.0025 0	7/24/95 13:58 0.054 0.024 45.7 0.0025 0	13.58 0.054 0.024 45.7 0.0025 0	0.054 0.024 45.7 0.0025 0	0 024 45.7 0.0025 0	45.7 0.0025 0	0.0025 0	20	9000	16000	1229	0.215	9.92	EM62 0	0.0075	9.02	100 0	0.13	0.019	36	0.2559	100	6293
A.SWIII 7/1995 7/2495 14.24 0 073 0 019 45.4 0 0029 0	7/19/95 7/24/95 14:24 0 073 0 019 45.4 0 0029 0	7/2495 14:24 0 073 0 019 45.4 0 0029 0	14:24 0 073 0 019 45.4 0 0029 0	0 073 0 019 45 4 0 0029 0	0 019 45.4 0 0029 0	45.4 0 0029 0	0 0029 0	0	500	0.0098	0.1447	962 0	9.74	0 8669	0.0086	21.1	000	0.17	0.019	137	0.251	100 0	8968
IA.SWII(2) 7/19/95 7/23/95 16 52 0 056 0 022 45 3 0 003 0	7/19/95 7/23/95 16 52 0 056 0 022 45 3 0 003 0	7/23/95 16 52 0 056 0 022 45 3 0 003 0	16 52 0 056 0 022 45 3 0 003 0	0 056 0 022 45 3 0 003 0	0 022 45 3 0 003 0	45 3 0 003 0	0 003	0	8000	0.0034	0.1382	820	9.77	0 6251	0 0048	21	900	0.14	0.012	86.1	0.2512	1000	7492
IA-SWI(3) 7/19/95 7/24/95 13 55 0 058 0 015 45.7 0 003	7/19/95 7/124/95 13.55 0.058 0.015 45.7 0.003	7/24/95 13 55 0 058 0 015 45.7 0 003		0 058 0 015 45.7 0 003	0.015 45.7 0.003	45.7 0.003	600		0.0006	1600.0	132	0.245	9.88	0.8235	0.0058	808		0.14	0.003	1.38	0.253	2002	1476
U 9000 0 5.00 0100 200 0 11.01 5012/1 501/1/1 100- 10 10 10 10 10 10 10 10 10 10 10 10 10			161/ 0.042 0.016 46.3 0.0036 0 1602 0.03 0.006 0.001 0.0003 7	0.032 0.006 46.3 0.0036 0	0.000 0.00 0.000 0.000	0.000 0.000 0		5 5	-		500	5610	101		10000	1.12	R o		710.0		10000	003	0000
BLANK 7/17/95 7/23/95 14-55 0 013 0 005 0 032 0 0008 0		7/23/95 14 55 0 013 0 005 0 032 0 0008 0		0 011 0 005 0 003 0 0008 0	0.005 0.032 0.0008 0	0.032 0.008 0	8000	10		00209	10500	100.0-	0.014	0.000	0.0023	0000		1	0012	0.002	1100 0	00035	0212
BI.ANK 7/19/95 7/23/95 15.05 0.024 0.009 0.029 0.0015	7/19/95 7/23/95 15.05 0.024 0.009 0.029 0.0015	7/23/95 15.05 0 024 0 009 0 029 0 0015	15 05 0 024 0 009 0 029 0 0015 0	0 024 0 009 0 029 0 0015	0 009 0 029 0 0015	0 029 0 0015	0.0015		6000 0	0 0195	0.0476	800.0	0.002	0.0004	0 0005	1400	0.004	0.16	0.007	0.001	8	0 0035	0128
BLANK 7/17/95 7/23/95 15.08 0.021 0.003 0.006 0.0002	7/17/95 7/23/95 15.08 0.021 -0.003 0.006 0.0002	7/23/95 15.08 0.021 0.003 0.006 0.0002	15.08 0.021 0.003 0.006 0.0002	0 021 0 003 0 006 0 0002	0.003 0.006 0.0002	0.006 0.0002	0.0002		0.0003	8610.0	000	0	-0.024	0.0015	6000 0	0031	100	0.13	0.005	000	6000 0	0032	1800
111A.GWI 7/10/95 7/24/95 15.37 0 21 0 152 245 0 000	7/10/95 7/24/95 15.37 0.21 0.152 245 0.000	7/24/35 15.37 0 21 0 152 245 0 0008	15.37 0.21 0.152 245 0.000	0 21 0 152 245 0 000	0 152 245 0 000	245 0 0008		_	0.0113	50.0	800	35.1	563	5.04	0.0538	210	0.016	0.22	8000		2 176	800	3
					100 0 11 1/0 0 000	100 0 121	000	-	79000	1000	5700	3	424	100		2	700.0	2	10.0	212	812-1	2000	*
								+		600.0	5			111	51/10		5	-	200	***	9		
111A-GW2 7/10/05 7/224/05 16:50 0 143 0 09 173 0 0009		7/24/95 16:50 0 143 0 09 173 0 0009	16.50 0 143 0 09 173 0 0009	0 143 0 09 173 0 000	6000 0 621 60 0	60000	6000 0	-	15500	89500	1000	14	11	65.01	0.0862	211	9000	0.16	0000	18	1 667	002	4 80
1118-GW2 7/17/95 7/24/95 16.02 0.055 0.012 96.7 0.0008	7/17/95 7/24/95 16.02 0.055 0.012 96.7 0.0008	7/24/95 16.02 0.055 0.012 96.7 0.0008	16.02 0.055 0.012 96.7 0.0008	0.055 0.012 96.7 0.0008	0.012 96.7 0.0008	96.7 0.0008	8000 0		0 00 12	0.0197	0.0232	3.55 -	ุล	264	0 0075	79.2	100 0	0.21	0.005	8	0 8377	9100 (	4111
111A.GW2(2)7/10/95 7/24/95 16:39 0.129 0.097 170 0.009	07/10/95 7/24/95 16:39 0 129 0 097 170 0 0009	7/24/95 16:39 0 129 0 997 170 0 0009	16.39 0.129 0.097 170 0.0009	0 129 0 097 170 0 0009	0 047 170 0 0009	170 0 0009	6000 0		0 0534	0.0564	0.0077	59.8	37	10.33	0 0923	111	0 023	0.13	0.024	8	1.653	0015	4.5
111A-GW3 7/10/95 7724/95 16.06 0.059 0.011 46.3 0.0023	7/10/95 7/24/95 16:06 0.059 0.011 46.3 0.0023	7/24/95 16.06 0.059 0.011 46.3 0.0023	16.06 0.059 0.011 46.3 0.0023	0 059 0 011 46 3 0 0023	0 011 46 3 0 0023	46.3 0 0023	5000		0 0084	0.0197	1740.0	6.83	9.88	1.737	0.0167	24.2	0 002	0.18	0.013	135	0.3225	000	869
111B-GW3 7/11/95 7/24/95 16:24 0.088 0.026 56.2 0.0016	7/11/95 7/24/95 16:24 0.088 0.026 56.2 0.0016	7/24/95 16:24 0.088 0.026 56.2 0.0016	16.24 0.088 0.026 56.2 0.0016	0.088 0.026 56.2 0.0016	0 026 56 2 0 0016	56.2 0.0016	000		0 01 17	0.02%	540	174	13.4	4 401	0.0278	29.7	900	0.14	0 016	2	0 426	8	2
111B-GW3 7/17/95 7/24-95 16:21 0.07 0.027 46.4 0.0016	7/17/95 7/24/95 16/21 0 07 0 027 46 4 0 0016	7/24:95 16:21 0 07 0 027 46 4 0 0016	16.21 0.07 0.027 46.4 0.0016	0 07 0 027 46 4 0 0016	0 027 46 4 0 0016	46.4 0.0016	900		0.0036	0.0144	0.0513	0.903	10.2	109	6000	8	8	0.16	800	8	0 2887	8	8178
111A-GW4 7/10/95 7/24/95 1934 0 327 0 26 154 0 001 0	7/10/95 7/24/95 19:34 0.327 0.26 154 0.001 0	7/24/95 19:34 0.327 0.26 154 0.001 0	1934 0 327 0 26 154 0 001 0	0 327 0 26 154 0 001 0	0 26 154 0 001 0	12 000	8	9	0045	0.0779	1371	117	36.3	15 04	0.1742	81.5	60	045	0.064	236	381	<u>810</u>	228
111A GW4 7/10/95 7/24/95 17 20 0 276 0 259 158 0 001 0	7/10/95 7/24/95 17 20 0 276 0 259 158 0 001 0	7/24/95 17 20 0 276 0 259 158 0 001 0	17 20 0 276 0 259 158 0 001 0	0 276 0 259 158 0 001 0	0 259 158 0 001 0	158 0 001 0	100	O١	0053	0.0758	1356	171	379	15.39	0 1823	82.7	100	1	0 074	241	141	0125 0	2315
111B GW4 7/11/95 7/2495 16:30 0 138 0 111 147 0 0001 0	7/11/95 7/24/95 16:30 0 138 0 111 147 0 0001 0	7/2495 16:30 0 138 0 111 147 0 0001 0	16.30 0 138 0 111 147 0 0001 0	0 138 0 111 1147 0 0000 0	0 111 147 0 0001 0	0 1000 0	0 1000 0	0	Ŧ	0 865	0.0039	126	35 5	12 91	89010	18/	0 016	13	0.018	234	1.338	0021	39
111B-GW4 7/17/95 7/24/95 17/25 0156 0117 152 0 0003 0	7/17/95 7/24/95 17/25 0 156 0 117 152 0 0003 0	7/24/95 17/25 0156 0117 152 0.0003 0	17 25 0 156 0 117 152 0 0003 0	0 156 0 117 152 0 0003 0	0 117 152 0 0003 0	152 0 0003 0	0 0000	0	ł	0.0676	0.0105	10.4	36.2	13.11	0.1149	80.6	0 021	4	0.017	236	1391	80	347
111A-GW\$ 7/10/95 7/24:95 18:04 0 055 0 416 156 0 0003 0	7/10/95 7/24-95 18:04 0 055 0 416 156 0 0003 0	7/24:95 18:04 0 055 0 416 156 0 0003 0	18:04 0 055 0 416 156 0 0003 0	0 055 0 416 156 0 0003 0	0416 156 0003 0	156 0 0003 0	0 0003 0	0	0224	0.1344	0.0214	318	45.6	23.25	0.4579	81.9	0004	0.35	0.051	2.17	8669 0	9100	3936
111B-GWS 7/11/95 7/24/95 18/10 0 077 0 328 159 0 001 0	7/11/95 7/24/95 18:10 0 077 0 328 159 0 001 0	7/2495 18:10 0 077 0 328 159 0 001 0	18:10 0 077 0 328 159 0 001 0	0 077 0 328 159 0 001 0	0 328 159 0 001 0	159 0 001 0	0 001	-	0142	0 1607	0.0267	350	42	34 55	0.5082	93	0	0.63	0.042	2.2	0.7599	002	0482
1118-GWS 7/17/95 7/24/95 17.58 0 173 0 299 152 0 0005	7/17/95 7/24/95 17 58 0 173 0 299 152 0 0005	7/24/95 17 58 0 173 0 299 152 0 0005	17-58 0 173 0 299 152 0 0005	0 173 0 299 152 0 0005	0 299 152 0 0005	152 0 0005	0 0005		0 0126	0.1524	0.0386	339	39.7	31 45	0.4919	93.1	100 0-	0.02	0.065	2.19	0 7932	0 0049 0	1977
1B-GW8 7/19/95 7/24/95 17:55 11.5 0.078 105 0.0599	7/19/95 7/24/95 17.55 11.5 0.078 105 0.0599	7/24/95 17:55 11.5 0.078 105 0.0599	17:55 11.5 0.078 105 0.0599	11.5 0.078 105 0.0599	0.078 105 0.0599	105 0.0599	0.0599	-	0 0456	0.0995	6466.0	148	276	20.66	0.2082	72.5	0.045	0.2	1600	3.5	0.4378	800	2.72
IB-SWII 7/19/95 7/23/95 17:06 0.076 0.011 45.9 0.0025	7/19/95 7/23/95 17:06 0 076 0 011 45.9 0 0025	7/23/95 17:06 0 076 0 011 45.9 0 0025	17.06 0.076 0.011 45.9 0.0025	0 076 0 011 45 9 0 0025	0 011 45.9 0 0025	45.9 0 0025	0 0025		-0.0014	0.0065	1481	0.428	86.6	0.8178	0.0062	21.5	0.006	0.12	0.005	141	0 2585	0.0011 0	6634
111B-SW1 7/17/95 7/24/95 19:29 0.106 0.018 45 0.0025	7/17/95 7/24/95 19.29 0.106 0.018 45 0.0025	7/24/95 19.29 0.106 0.018 45 0.0025	19.29 0.106 0.018 45 0.0025	0 106 0 018 45 0 0025	0 018 45 0:0025	45 0.0025	0.0025		0	0.0168	117	0.312	9.0	0.8348	0.0059	20.1	100.0	0.3	000	36	0.2467	100	6469
IB-SWIII 7/19/95 7/24/95 14:21 0.08 0.028 45.1 0.0025	7/19/35 7/24/95 14.21 0 08 0 028 45.1 0 0025	7/24/95 14.21 0.08 0.028 45.1 0.0025	14.21 0.08 0.028 45.1 0.0025	0 08 0 028 45 1 0 0025	0 0 28 45 1 0 0025	45 1 0 0025	0 0025	_	0 0021	0.0124	671.0	0.276	9.66	0.8058	0.007	20.3	0	0.17	0.014	1.35	0.2493	002	6299
118-SWIII 7/19/95 7/24/95 14.26 0.069 0.013 45.4 0.0026	7/19/95 7/24/95 14.26 0.069 0.013 45.4 0.0026	7/24/95 14 26 0 069 0 013 45 4 0 0026	14 26 0 069 0 013 45 4 0 0026	0.069 0013 45.4 0.0026	0 013 45 4 0 0026	45.4 0 0026	0 0026	-	0 0006	0.0126	691	0 299	9.72	0.8665	0.0074	20.9	600	1	0.017	137	0.2496	002	8074
11115-3WI 7/17/95 7/23/95 16:55 10 057 0 008 45 5 10 0031	1/1/1/95 7/24/95 16/55 10/057 10/008 45 5 10/0031	7/2//92 16:55 0 057 0 008 45 5 0 0031	16:35 0 057 0 008 45 5 0 0031	0 057 0 008 45 5 0 0031	0 008 45 5 0 0031	45 5 0.0031	1000		0000	000	1233	6.0	9.88	0 6428	0.0079	20.4	100 0	0.13	6000	5	0.2564	8000	6157
1111B-SW1  7/11/95  7/23/95  16.57  0.34  0.027  36.5  0.0032  0	7/11/95 7/23/95 16 57 0.34 0 027 36.5 0 0032 0	7/23/95 16 57 0.34 0.027 36.5 0.0032 0	16 57 0.34 0.027 36.5 0.0032 0	0.34 0.027 36.5 0.0032 0	0 027 36.5 0 0032 0	36.5 0 0032 0	0 0032 0	0	100	0.0031	0.2177	0.432	7 898	0.7243	0.0056	21.1	0.003	0.21	0.011	134	0.2086	0092 0	-S286

377	365	351	5	210	2	SIN S	257		11	i i	197	2	3	5	8 i	2		ļ	182	1-1-0	376	ž	3		Ξıš		174	258	129	218		90	t it	Ē	174	5	2S2	1	255	8	A IY	18	Ē	253	<u></u>	18	Ē	268	5	2	ž i	18	F	1
BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	BLANK	R ANK	BLANK	BLANK	USUS 117		USCS THT	USCS T117	USCS TIOT	1ISOS TIO	LISCS TIOT			USGS 1 IFT	LISGS TIOT	USCS TIM	USCS TIP7	USGS TIOT	USCS TIOT	LISCS TIOT	1343 1197	USUS BED 1	SLSD \$	STD4	STIM	SLDM	Eq.15	STD	STD1	STD2	871)2	57 Di-Blank	of Di-Duna	STD 2	Sud 1-(blank)	IIIB-SWIII	IA-SW-II	HIB-SWO	IIIMS AIII	IIIB-SWII	Name	Sample
									ĺ																																							7/11/95	7/19/95	26/11/2	2011/2	7,17/95	Ante	Sample
7/24:95	7/24/95	56/12/12	712495	26/12/12	7/24/95	7/24/95	712495	7/23/95	7123495	26/57/1	7/23/95	Severil	SeiEcit	Solution	26/15/1	201511	112495	CAICTIL	7/23/95	7/23/95	7/24/95	712495	7/24/95	7174.95	7174-05	CETCL	7124.95	712495	7123/95	7/23/95	7/23/95	7/23/95	Sole CIL	7/2 1/95	7/23/95	7/24/95	712495	7/23/95	7/24/95	7/23/95	Shirel	7127/95	7/23/95	712495	20101	7/23/95	7/23/95	7/24/95	7/24/95	7/23/95	26/12/17	7/24/95	Date	Amiyde
19:47	11-61	18.30	17:46	17:01	15 24	14:37	13:42	17:13	16 38	5 8	15 33	15.28	15 17	51	1	1.1.1	1.4	5 5	14.42	12 58	19.43	19 08	18 27	17.43	1012	13:22	14.32	13.45	17:16	16.41	15:53	15.36	12 ¥	14 27	14-18	13 39	32	1247	13.36	15 44	13-43	1541	12:38	2 2	1621	13 01	12:50	14.15	13:52	16 20	14 01	14 09	The	Amalysis
0 08	0073	850 0	0 065	0055	004	810.0	0.005	0 025	004	0012		0.0	0 0 38	0.007	0.20		200	0.080	0.099	0079	0 266	0.275	0 261	0 267	3	0.256	0 241	0.246	0.248	0.244	0254			¥.	189 189		1		2.0258	2 00785	3 10057	1		0 03 952	004/10	0.112	0 009	0 245	0 051	155		0 282	λ	
-0.005	003	8	8000	0.003	2000	0009	0 007	0 002	8	004	800	0017	0013	2016		0.001			0.007	0.014	003	0 017	0014	0.0	0014	0016	0.017	0 025	0014	0 0 17	9100			15	0419	1 92857	1 89828	174714			-			000	00023	800 0	0.002	0 021	6100	2	0 024	0 037	<b>N:</b>	
0.012 0	0.01	000	0014			0 019	0.003	0 007	8	000		000					22.8		14	237 0	12 5 0	127 0	12.5			127	124	127 0	12.7 0	129 0	129			161	\$ 1		•				24 1922	23 1393	22 4 44	00115	11100		0.011	36.7	458 0	313	2.5	366	2	
0008 0	0009	2000	0.001	0002	0004	0006	0001 0	0011	0000	8	0006				0	0 0004 0	0 6200	0043	0042 0	0025 0	0168 0	0174 0	0164 0	162 0	010/010	0164 0	0169 0	0172 0	0168 0	0164 0	0174			0834 0	0114 0		-	-			62476 3	52742 3	39352 3	00042 0	00017 0	0.06	001	0027 0	0033 0	0034	20034	0026 0	34 0	
0004 0.	0004 0.	0003	0004	0001 0		0001 0	0001 0.0	0001	8	814		0009	0009		0			0048	0047 0.	0041 0	0116 0	0129 0	012		114	0132 0	0117 0	0144 0	0126 0	012 0	-		0126	090	1612 0	9	9 4	9			61607	09214	0168	00071 0		0	0017 0	8	0 6 00	Bis		0019 0	°	
0-0 2010	0.0	0037 0.0	0.0		0054	0034 0 0	0.0	0119 00	0116 00	0011 0.0	0027 0 0	5	0053 0.0				00 1810	04	0.17	-0	0.0	0226 0.0	001100	no 14 10 0		0246 0.0	0.0 810	0244 0.0	0024 0.0	0067 0.0	0 22 00	0 2112	0374 0	2052 11	18 0.4	38	85652	56995					-	31895 0.0		01 1950	0067 0.0	0091 0.1	0.1	0039 0 2	0023	0146 01	0	
0014 0.0	007 0.0	09	014 0.0	012 010	0.0	042 0.0	018 -0.0	0.0	003	8	8	0	052 0	184 0.0		1361 0.0	100		0.5	0424 0.5	1295 0.0	302 0.0	281 0.0			299 0.0	288 0.0	316 0.0	321 00	118 0.0	1338 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		17 205	571 370		-	+	17	1.7	17	3628	7804	0 0 0 10133		12 00	101 0.0	968 0.3	335 0.1	624 0 2	332 0.2	654 0.3	3	
0.0	0.00	000	000	0.00	0.0	-0.0	0.0-100	01 0.03	00	02	00	0	200		2 2			13		E	58, 2.03	61 2.0	59 2.0			211	55 2 1	57 2.2	55 2.2	57 2.2	3	3 2 2 2	1 1 1	421	¥			+	4652	9738	<u>x</u>	4.0	4	0047		98	03 -0.0	72 78	68 9.9	2 1 2	100	6 78	M	
00 0 20	× 0.00	2	8			8	18 -0.0	0	0	8		-000	00	0.00	200		023	0.24	025	02	0.05	0.05	0	2 2		0.05	0.04	004	0.05	7 0.05	0	000	0.03	1	5 7.17		+	+	+		39 2 28	9552 2.28	9557 2 19	0.00		10.1	15 -0.0	0.89	0 82			1 0.67	M	r
04 .0 00	02 0 80	-0.00	8	0.00	200	0 00	006 0.00	0.00		002 0 00	0.00	0.0					62 0.01	10.0	0.0	36 0.01	01 0.01	15 0.01	00			001	97 0.01	10.0	14 0.01	16 0.01	12 0 01	27 0.01	0.0	3 0.32	7 0.64	-	+		2 87	276	222	752	423	028 0		1 0.00	013 0.00	62 0.00	67 0 00		816	800	X.	
0 21	12 -0.00	12 0.01	13 0.00	300	08 0.01	-0.00	12 0.025	000	00	10 0 20	-0.00		0.0	2			SI 21 4	1 21.7	3 22 5	47 21.8	5 22.6	68 22.8	225	3 2 2	30	1 22 4	57 22 1	7 22.4	75 23.1	56 23 1	59 22 4	21 22 2		28 1.11	61 2 09			+	038 10.0	342 11.2	5	+		0.09		28 0.02	12 0.04	49  9 5	77 20.8	41 21.2	67 20.3	(19 19 19	7	
-0.00	8 0.002	-0.00	B	000	-000	2 -0.00	0	0	7 0 00 2	0.00	0.006		-0.00				100	0 01	0.01	0.01	600 0	0.035	0 029			30	0 026	0.032	08	0 03 5	0 033	0.00	0.028	0 09	0.383			+	2 26	997 2 319		╞		761 0 002		0 004	0 6	0 003	0 00	000		0.002	Z	-
0.18	0 17			5 0	0.06	0.04	0 01	002	-001	-	-			-			022	023	0.37	0.3	0 18	0.16	016	200	25	0.08	0 05	0.03	-0.03	0.01	0	0 0	0.06	1.7	11	2	1092	1001	00	51	2	+			3/10/2C		0.03	0.24	0 16		10	0 29	9	-
0 001	-0.005	0.001	0.004		0.001	0 007	0.002	0.008	0.026	0006	0.01			200			0.028	-0.007	0.002	0.002	0.026	003	0.029			0.033	0 036	0 048	0 021	810.0	0 005	0.025	0.03	3	0893	8	<u>a</u>   8	1	$\left  \right $		10.5/0	9 23 5	9481	04 0 015	10.02/1	10	-0.003	0 02	0012	0004	2000	002	3	
-0.002	-0.002	0 002	0.003	0.002	0002	-0.001	0.012	0 00 1	000	000	0	0.00	0.00	3		0.002	0.611	0.03	0.644	0.64	0.388	0 395	90.	5		0.402	0.3%	0.406	0413	0.418	0416	0414	0.429	0.2%	0.938	13 36	13.180	12 76			5		<u>6</u>	0.004	55 U.U.S.	0.014	0 016	1 29	1.38		-	. 13	2	-
0.0003	0 0002	0.0001	0 0003	0 000	0 00 12	0.0012	0.0006	0.000	0.000	000	-0.000	0.000	0.000				0.2707	0 2732	0.2848	0 2792	0.0607	0 0618	0.061	0.040		0.0624	0.0615	0.0629	0.0627	0.0635	0.0635	0.0439	0.0655	0.4505	1 049		8 3	12	$\left  \right $		1/80	19 175	18 7 24	0.0278	12 0 0 2 1	10.05	0.0004	0 2039	0.2519	0 1995	0 2306	0 2051	\$	-
0.001	0.0007	0.0007	0.0003		0	0	0 0023	5 .0.003	0.0031	0 0002	0 000	0 000	-0.000		33		0.0023	0.0008	0.0051	0.0051	0 0013	100 0	£100.0		0.001	002	0.001	0.0026	-0.002	-0.002	•	0000	1000	3 743	7 622		+	+	2 9211	2 97 12	198	Ë	Ē	5 0.0241	4 0.0194	0 0029	0.001	0.0079	0 0021	6100 0	-0.001	6600 0	3	
0.0013	0 001	0.0037	0.0051		0.0004	0.0024	-0.0008	0.002	0001	0.0014	0.0006	0.0013	0 0007	0.0017			0.1964	0.204	0.1965	0.1874	0 0822	0.0842	0080	1000	0.000	0.0846	0.0827	0.0861	0.0868	0.0681	0 0917	0.000	0.0736	14.35	1.986		+	+	-		1 3.02/3.	3 3244	3 30736	4 0.00161		10.07	0.0012	0.5997	0.7361	0 6107	07142	0.4851	2.	

ICAPES data fro	om water sa	inple analysis	on 8/30/9																
Sample	Sample	Ambut	V - IV	ŭ	3	ి	5	ð	<b>°4</b>	Me	Me	2	Ī	•	£	35	Şr.	1	7
BLANK		8/30-95		30 8001	000	1100 0 10	6100.0	0.0047	0.003	1000	0 11000	2002	000	100	0012	10037	100010		1000
1'SGS TIOT		8/30.95	0 227 0	019	100	75 00153	0 0046	0.0128	10.054	23	0.0525 0.	0168 23	0.031	0.07	005	047	0 0651	0045	0.0497
11565 7117	1	8/10 95	0 065 0	012 23	000	15 0.0059	0.0269	1610.0-	0.513	11.2	0.2443 0.	0135 22	001	0.26	\$100	0.651	0 THES	100	0672
ILSUS THE		8.10.95	0.228	500	100	75 00125	0 0 206	0.0313	0 057	2.29	0.0519 0.	0164 22	5 003	100	0 021	0.415	0 0637	0 0016	180
BLANK		8/10:95	1000	8	001 000	000 0 900	0 0005	100.0	•	8000	0 0000	000	90	8	0 003	0.002	•		100
LIELD BLANK I	877/95	56.06.82		014	012	100	0 0045	0.002	0.002	0017	0.0015	1000	2000		8000	000	500	1000	600
THE PART OF	50/7/0			200	200		0000	5100.0						100		1000		2000	
RI ANK 7	201121	20.02		101			00001	1000	1000										61700
1.1A.5W1	8,24/95	8, 10, 95	0 020	50	8	24 0 000	00104	0 1616	100	12 4	1 141	36		00	5000	17	0 1012	1000	12010
B-IA-SWI	K 24/95	8/10:95	500	1014 55	12 000	32 0.000	3 00126	0 1657	0102	124	146	0051 251	000	600	0.001	127	1000	6100 0	0.9802
8-1A-SWILLCI	8.24/95	8/30.95	0023	100	13 0.00	10 00 0	0 0006	01455	0.067	124		25	000	60	100	1 26	0 301 5	1100 0	0.65%
IIIWS-ALI	8.24.95	86-01/R	8000	1014 55	12 0.00	32 0.000	9 0008	01708	9000	123	1163	26	000	600	000	1 26	03	8000 0	
B IB SWI	827.95	8/30-95	000	1005	7 0.00	21 0.00	4 0 0099	0.1468	0.00	13	14	0048 26i	000	80	1005	133	0 3224	100 0	0.5314
8-18-5W11	N. 27.95	8/40-95	0025	002 56	1000	35 0.000	0 0076	0 1478	0.000	128	1.15	0054 26	000	500	0012	1 32	03191	10000	06589
a la swill	K, 77,05	8/10-04		12		0000			1111	11		2			2000	111	1114	i uu	0 Kitte
	10.11																		
	SOLC'N	10.019						1000									10200		
- 1- E		6.0.0			8		80000	10000	0.181	125		97 O		5				7000	
	Chillin	66.05.0	1000	2012		10000	0 0122	0.1616	10130					6		21	87750		9
	C6//7/9	56.06.20		2019		10000	0 0002	01267	0 00	13	611	2047	000		0.021	132	1220		A N
	8 28/95	8730/95	800	2013 2013	8	28 0000	00008	0120	0 067	13 2	8	0056 27	000	8	0013	133	03301	0 0002	2003
IIMS VIII 8	8/28/95	56-06/8	6000	200	8	18	2 00002	610	900	13.1	1.128	22	000	6	600	132	0377	8000	5148
IIIM S VIII	8 28/95	8730:95	0.035	201 57	4 000	23 0 0003	0 0085	01532	0 135	13	1.181	0055 27	000	10	6003	132	0322	1000	11/1
1418-8111-8	8,28/95	8/40-95	0 037	58	11 000	0000 62	6 00125	0.1183	0 212	[]	1.27	0074 26	0.000	00	0.00	133	03224	1000	0.6065
IMS-VI-8	8 24/95	8/10-95	8200	800	13	31 0000	10000	1910	0 103	126	1152	26	000	10	0.012	128	03076	11000	0.8057
8-IIIB-SWII	8, 28/95	8/30/95	1200	0012 56	13 000	26 0 001	0.001	0.1737	0.143	127	1.199	0041 265	0.000	0.08	0016	131	03143	1000	5199
B-IIIB-SWIII	8/28/95	8/30-95	0.032	53	9.00	35 0 1002	0.0095	0.168	0.125	E1	1.257 0	0049 27	000	4 000	000	133	03192	1000	1021
1M: TV1-8	8/24/95	86/06/8	0 8100	089 53	1.2 0.00	000 0 0003	00161	0.0097	26.2	11.6	3863	0422 27.1	00.0	280	0.01	1.58	0 3626	E100.0	10784
8-IA-CWIREP	8/24/95	8730795	0000	016 57	0.00	0000	3 0.0156	-0.0013	153	11.7	4.189	0275 271	0	100	0000	151	0 3659	0 0002	8561 0
8-1A-CW2	8.24/95	8/30-95	0 000	106 80	800	12 0 0013	0 0369	0.0047	506	15.8	1 100	32	00.0	1000	100 0	17	0.6734	100 0	0415
B-IA-CW2REP	82495	8/30/95	0 100.0	10	00	100 0 110	6/20 0	0.0017	183	16.2	8.614 0.	031 33.	000	0	10 0	147	0 6741	0.0003	9/60 0
BLANK		8/30/95	100 0	2025 01	000	0000 200	0.0024	0 0003	0.001	0.019	0.0004	0008 01	14 0.00	200	00	100-	0	0 0006	0000
8-IA-SWI	8,24/95	8/30-95	120.0	2 007 57	000	0 0	0.0114	0.1657	0.103	127	1.164 0.	26.	000	0.06	0018	1.29	03106	11000	08162
8-IA-(;WJ	82495	8/30-95	104	11 200	11 011	65 0 0452	00778	2.833	93.2	29.9	20 22 0	1296 65	10.044	60:00	0.367	3.3	0 5427	0.0013	665
8-IA-CW3KEP	8/24/95	8/30/95	4 98	2012 16	¥ 015	81400 98	1 00753	17.1	688	28.1	19.21 0.	1243. 61	0 0 0 0	5 0.33	9402	3 02	0 5111	61000	17.41
B-IA-CW3(2)	8/24/95	8/30/95	963	1014	1 0 14	06 0.0432	800	6.706	1 68	29.9	20 23 0.	1238 651	8 0.042	600	0.37	325	0.543	10054	17.12
8-IA-CW3(2)REP	8/24/95	8/30:95	611	9000	77 013	71 0 0431	00783	61.7.19	90.2	28.8	19.62	1772 63	1 0.05	032	1260	307	0.5221	0024	17.01
B-IA-LW4 wnRL	8/24/95	8/30/95	0 268 0	530	13 000	1000 62	0.0737	0.2527	102	149	154 0	2957 49.	0.0	2 07	89 0	207	0 2023	1900 0	0.2403
S.IA.C.WAKEP	8.24/95	8/30-95	0.002	000 43	16 000	14 0.004	8900	-00188	3	14.5	14.79	2434 471	•	110	0.021	181	63810		6600
8-1A-C:W4	8/27/95	8/30-95	0 001	516 48	000	19 0 0021	0.074	-0.0074	8	159	16-63	2909 51.1	0.00	0	0.035	201	0 2152	8000 0	3810
8-IA-CWS	8/24/95	86.06/8	23.6	000	000	36 0 0526	0 1051	0.0141	146	30.8	25.37	2036 71	000	600	1000	6.8	0 463	0 0021	0.0
8-1B-C;W2	& 27:95	8/30/95	0.029	135 51		1000 0	00154	0.0578	6.38	116	2.603	0155 251	000	0 26	8000	131	0 2872	0.0029	0.1603
8-18-CW3	8/27/95	\$6:06/8	0.002	2007	000 60	25 0.000	0 00066	0.0494	101-0	112	0 668 0	0071 25	000	000	0016	1 26	0 2728	8000 0	0.2961
B-IB-CW4	K 27/95	8/.10-95	0 000	025 61	0	0 0027	0 0 0 0 0	0 0342	50.0	156	6712 0	0762 36.	000	11.0	0.00	155	91260	90000	0.288
8-18-(;WS	\$ 27/95	8/30-95	25 0	088	10 011	86 005	91.00 0	10100	319	37	26.76	4447 81	1500	Ģ	0.057	3 62	0 4846	00016	0161
8-18-C:W5(2)	\$612.9	80.003	3	112	100	76 0.0525	1110	0.0057	312	37.6	27.21 0	1356 84	0.044	0 15	0.041	3 66	0.4637	0019	IQ.71
B-IA-SWI	S015.8	8/30-95	200	3006	800	25 0000	66000 5	0.1606	0.11	124	1.18	0047 25	000	50	-0013	1 26	03	1000	0.7919
B-1C-C-W2	8 27/95	8,10.95	0 000	13	15000	00000 10	0 0323	0.0004	20	127	7.498 0	0621 261	000	071	5000	161	04777	61000	10001
8-IC-4:W3	8-27/95	8/10.95	6000	<u>8</u>	5	000	0 0138	0023	101	11.6	3.788 0.	0208 26	800	1 023	1100	145	0 2955	9000	0169
11 202 1100		8/10.95	022	00 - 12	8 001	1100 65	0019	0.0316	0.06	2.28	0.0506	017 22	0.03	100-	0.034	04	0.063	90016	0802
BLANK		8.30.35	0015	2013 - 200	00	1000	0000	0 0003	0000	0	0 0000	0018 0	80	80.	100	10.0	1000 0	5000	5000
115(35 110)		\$6.0678	0219	000	1001	65 0 0114	0015	0.0306	80	2.26	005	0154 22	002	80.	1100	0.395	0 0622	1100 0	662.01
B-IC-CW4	8 27 195	8/30/95	0.06	3	000	00 001	8/100	10034	942	144	324	0188 27	000	02	•	\$	03568	15000	2604
8-IC-4;WS	8/2/1/95	8/10-95	978	2016	14 001	32 0 0503	0 0646	8.381	2	20.2	16	111 374	0 046	02	000	384	0316	0022	869
9-IIIA-CWI	8/28/95	8, 10.95	100	110	200	01 0 0045	0 0156	9	166	61.1	4.832 0.	0254 193	10.0	100	0.011	18	22	0001	3286
8-IIIA-GW2	6, 29,95	8/10.95	9890	946	90	100 0.054	002	0.0054	866	37.5	10 00	0885 103	0016	800	0.005	8	1 628	0022	27
B-IIIA-GW3	8.28/95	8/30/95	9 600 0	003 62	17 000	00 00103	00128	0.0366	9.69	145	2,469	34.	0.00	0	0.012	137	04716	001	.499
B-IIIA-GW4	8, 28/95	\$6-06/8	0 00	11 50	8 00	5100 0 800	60073	0.0672	162	363	11.00	721	8000	0.00	0011	12	124	00039	12673
B-IIIB-GWI	8.28/95	8/30-95	0.079	171 16	000	05 0.0024	0 0513	0.0397	608	46.6	1071 0	120	0	10	6200	133	1672	9900	135
\$-IIIB-GW2	8/28/95	8/30/95	0 1100	11	0 00	100 0	0 0329	0.0037	139	26.5	0 000	211 112	0000	0.29	0.005	247	1 163	0013	0728
0-III8-CW3	8,28,95	8/30/95	0.711 0	011 88	000	36 0.0246	0 0.19	0.4395	111	21.5	9.462	114 650	0000	012	0.052	167	66230	0035	306
B-IIIB-GW4	8/28/95	8/30-95	0.056	11	0	HCO O	1/2000	0.0047	564	361	1211 01	1914 76	0013	10	0000	236	126	0032	14134
B-IA-SWI	8 24/95	8/30-95	0 019	200	13 0.00	25 0.000	1 0 0007	0.1576	0.103	122	1.102 0.1	52	0.000	0.05	0016	124	0.2962	8100.0	786

Sample	Sample	Analysis	Analysia	1	1		<u> </u>		t	†		<u> </u>	1		<u>├</u>					1		1
ampic	Data	Duto	Anarysis			0-			0-	0	F-	1.4-	1.4-	14-		NT:	D	DL	<b>c</b> ;	e-		7-
Vanie	Date	Date	1100	0.25	AS		0.01(0	0010	Ur 0.0050	0.0001	re	Mg	MIN	MO	193.9	0.02	P	PO	31	31	0.000	0.007
0505 1107	•••	000000	13:39	0.25	-0.003	12.4	0.0108	0.012	0.0052	0.0321	0.07	2.13	0.0506	0.0137	23.8	0.03	0.02	0.025	4.04	1.005.01	-0.002	0.007
BLANK		9123195	1.5:44	0.03	-0.018	0.005	0.0006	-0.001	-0.01	-0.0024	0.008	-0.014	-0.0002	-0.001	-0.023	-0.003	0.02	0		-4.002-04	-0.003	0.002
USGS T107		9/25/95	13:47	0.25	-0.004	12.3	0.0164	0.0127	0.0068	0.0303	0.06	2.11	0.0492	0.0131	23.3	0.033	0.04	0.022	3.98	0.0607	-0.002	0.083
TELD BLANK 1	8/31/95	9/25/95	13:56	0.03	-0.022	0.013	0.0008	-0.0002	-0.0139	-0.0017	0.044	-0.033	0.0009	-0.0039	0.031	-0.001	0.04	-0.003	0.008	-4.00E-04	-0.003	0.028
8-11A-SW1	8'31/95	9/25/95	13:59	0.11	-0.006	54.4	0.0026	0.0009	-0.0022	0.1669	0.409	12	1.104	0.0012	28.3	-0.001	0.15	-0.015	12.9	0.306	0.003	0.747
3-11A-SW11	8/31/95	9/25/95	14:02	0.07	-0.008	54.1	0.003	-0.001	-0.0013	0.1526	0.163	11.9	1.073	0.0023	28.1	0.001	0.13	-0.006	12.7	0.3037	-0.002	0.619
≮11A-SW111	8-31/95	9/25/95	14:05	0.07	0	53.4	0.0021	0.0007	-0.0022	0.139 .	0.168	11.8	1.069	0.0017	28.1	0.005	0.12	-0.009	12.6	0.3025	-0.002	0.541
8-118-SW1	9/4/95	9/25/95	14:08	0.05	0.004	54.1	0.0029	-0.0012	-0.002	0.1516	0.072	12	1.041	0.0016	28.3	-0.001	0.14	-0.027	12.8	0.3114	-0.002	0.455
⊁11B-SW11	9/4/95	9/25/95	14:10	0.06	-0.009	53.6	0.0028	-0.0002	0.0001	0.1313	0.15	11.8	1.067	0.0023	27.8	0.002	0.17	-0.003	12.8	0.3064	-0.001	0.681
HIB-SWIII	9/4/95	9/25/95	14:13	0.05	0.005	53.7	0.0027	0.0003	-0.0015	0.1195	0.164	11.9	1.063	0.003	27.8	-0.001	0.14	-0.009	12.8	0.3098	-0.002	0.544
8-11A-SW111(2)	8/31/95	9/25/95	14:16	0.06	-0.006	53.9	0.0015	0	-0.0019	0.1	0.114	11.9	1.077	-0.0007	28.5	-0.002	0.14	-0.013	12.6	0.3058	-0.002	0.378
8-111C-SW1	8/31/95	9/25/95	14:19	0.06	-0.008	52	0.0041	0.0003	0.0002	0.1732	0.19	11.4	1.108	0.0026	27.4	0	0.17	-0.017	12.3	0.2898	-0.002	1.134
8-111C-SW11	8/31/95	9/25/95	14:24	0.05	-0.009	52.9	0.0036	-0.0003	-0.0024	0.1773	0.183	11.6	1.126	0.0022	28.2	0	0.12	-0.002	12.6	0.2965	-0.003	1.109
3-IIIC-SWI CHK		9/25/95	14:27	0.07	0.015	53.1	0.0039	0.0009	0.0007	0.177	0.194	11.6	1.132	0.0003	28	-0.002	0.16	-0.017	12.5	0.2956	-0.002	1.156
-IIB-SWI DUP		9/25/95	14:30	0.05	0.004	53.6	0.0027	-0.0002	-0.002	0.1523	0.071	11.8	1.033	0.0037	28.2	0.001	0.13	0	12.8	0.3089	-0.002	0.451
ISGS T107		9/25/95	14:32	0.24	-0.003	12	0.0162	0.0113	0.0063	0.0272	0.052	2.03	0.0486	0.0116	22.9	0.032	0.06	0.008	3.9	0.0594	-0.002	0.081
IIC-SWIII	8/31/95	9/25/95	14:36	0.05	0.004	52.1	0.0033	0	0.001	0.1662	0.149	11.3	1.101	0.0011	27.3	0	0.18	-0.007	12.3	0.2887	-0.002	1.044
IIC-SWI DUP	8/31/95	9/25/95	14:39	0.06	-0.013	52	0.003	0.0002	-0.0009	0 1746	0.189	114	1.112	0.0028	27.7	0.002	0.17	0.008	12.4	0.2905	-0.002	1.138
IIC-SWILDUP	8/31/95	9/25/95	14:42	0.07	-0.005	53.3	0.0042	0.0007	0.0011	01777	0 184	115	1 132	0.0034	279	0.003	0.18	0.005	12.6	0 2952	-0.002	1.114
IA-GW2	8/31/95	9/25/95	14.45	0.06	0214	76.6	0.0004	0.0015	0.0204	0.0153	215	10.5	7 788	0.0356	268	0.002	0.28	0.004	20.3	0.4504	-0.001	0 166
LIIA.GW3	8/31/95	9/25/95	14.47	0.05	0.015	184	0,0003	-0.0012	-0.0061	0.0439	0.000	107	0.9367	0.0046	275	0.001	0.16	-0.001	13	0.1201	-0.002	0 373
RILLAGWA	8/31/95	9/25/05	14.50	0.05	0.136	61 2	45.04	0.0019	0.0214	0.007	463	11.3	6.033	0.067	27	0.002	1.2	0.003	18.5	0.4374		0115
8.11B.(1W3	0/1/05	0/25/05	14.53	0.06	0.150	57 0	0.0021	0.0003	0.0018	0.1136	0.15	11.7	0.055	0.0017	28	0.001	0.17	0.001	12.7	0.4574	0.002	0.567
2 11D CW1	0/1/05	0/25/05	14.56	0.05	0.014	516	0.0021	0.0003	0.0010	0.1130	0.13	112	1.057	0.0017	20 7	0.001	0.17	0.004	120	0.30.4	0.002	1 079
2110-011	0:4/05	0/25/05	14.50	0.00	0.724	515	35.01	0.0010	0.0001	0.11/1	162	112	1.057	0.0019	20.7	0.001	0.10	0.001	12.0	0.3142	-0.002	0 471
	0:1/05	0/25/05	14.55	0.05	0.724	202	10.04	0.0019	0.0099	0.009	13.3	11.7	5.934 £ 000	0.0297	21.1	0.002	0.10	0.001	12.4	0.3020	0.002	0.4/1
	914193	9/23/93	15.02	0.05	0.00	10.0	-16-04	0.0005	0.0197	0.0003	37.9	13.8	5.888	0.0546	33.2	0.005	0.31	0.001	10.2	0.4694	*****	0.245
5-11A-CIW3	0/31/95	9/23/95	15:04	0.00	0.019	+0.0	0.0001	0	-0.0042	0.0446		10.7	0.9408	0.0025	27.0	-0.002	0.17	0.017	13.1	0.2841	-0.002	0.375
5-11C-GW3	9/4/95	9/23/95	15:07	0.18	0.005	34.3	0.0042	0.0015	0.0021	0.2212	0.565	11.9	0.944	0.0029	28.4	0.001	0.25	-0.004	13.3	0.3102	0.004	1.235
B-IIC-GW4	9/4/95	9/23/95	15:10	0.05	0.061	53	-3E-04	0.0003	0.0047	0.0125	3.63	11.7	3.157	0.009	29	0.001	0.98	-0.009	13.9	0.3034	-0.002	0.064
S-IIIC-GW3	8/31/95	9/25/95	15:15	0.12	-0.012	104	0.0089	0.0355	0.0214	0.1996	16.6	24	6.738	0.0248	56.1	0.022	0.15	0.001	15.3	0.8486	-0.002	13.74
B-IIA-SWIDUP	8/31/95	9/25/95	15:16	0.12	-0.015	54	0.0035	0	0.003	0.1658	0.401	11.7	1.099	0.0025	27.9	0	0.18	-0.013	12.8	0.3005	0.004	0.745
8-IIA-SWIDUP	8/31/95	9/25/95	15:18	0.11	0.009	53.2	0.0037	0.0007	0.0023	0.1641	0.395	11.5	1.084	0.0012	27.6	0	0.18	-0.019	12.6	0.2968	0.004	0.735
8-111C-GW4	8/31/95	9/25/95	15:21	0.08	0.242	64.8	0.001	0.0103	0.0268	0.0425	22.8	14.5	10.15	0.0463	31.5	0.004	0.26	0	14.7	0.4184	*****	0.487
8-IIIC-GW5	8/31/95	9/25/95	15:24	0.05	0.392	63.6	-4E-04	0.023	0.0545	0.0118	38.1	12.1	18.8	0.0634	32.5	0.002	0.12	-0.014	20.6	0.38	<u>######</u>	1.75
8-111C-GW2	8/31/95	9/25/95	15:27	0.07	0.459	154	0.0006	0.0046	0.0764	0.0111	89.9	40.4	20.14	0.1353	130	0	1.9	0.021	26.2	1.217	5E-04	0.092
8-11C-GW2	9/4/95	9/25/95	15:30	2.6	0.32	76	0.0029	0.0033	0.0366	1.035	68.4	14.3	9.626	0.096	32.5	0.002	0.74	0.462	19.4	0.6133	0.119	0.830
8-IIA-SWIDUP	8/31/95	9/25/95	15:37	0.12	0.008	53.5	0.0037	0.0009	-0.0019	0.1665	0.406	11.7	1.092	0.0021	28.2	0.001	0.16	-0.003	12.7	0.301	0.004	0.742
USGS T107		9/25/95	15:40	0.25	-0.002	12.2	0.0166	0.0118	0.0057	0.0272	0.056	2.05	0.0497	0.0118	23.4	0.033	0.12	0.005	3.98	0.0601	-0.002	0.083
USGS T117		9/25/95	15:43	0.12	-0.002	22.1	0.0025	0.0039	0.0079	0.0021	0.506	9.96	0.2342	0.0085	22.3	0.008	0.31	0.002	6.02	0.2612	#######	0.195

		Lab Dupl.			Lab Dupi.		1	Lab Dupi.			Lab Dupl.			Lab Dupl.			Lab Dupi.			Lab Dupl.	
Sample Name	IIA-SWI	11A-8WI	%C110	11A-8WII	11 A-8 W11	%C110	IIIA-GW4	IIIA-GW4	%CHG	IB-SWIII	18-SWI11	% CHG	IA-GWS	IA-GWS	% CHO	IA-8WII	IA-SWII	%CHG	IA-SWII	IA-SWII	<b>%</b> (
Sample Date	7/6/95	7/6/95		7/6/95	7/6/95		1						i i								
nalysis Date	7/23/95	7/23/95		7/24/95	7/24/95		7/24/95	7/24/95		7/24/95	7/24/95		7/24/95	7/24/95		7/24/95	7/24/95		7/24/95	7/24/95	
nalysis Time	16:14	16.23		·	19:17		19:34	17:20		14:21	14:26		17:52	19:37		14 30	15:19		16:09	16 53	
1	BDL	BDL.	BDL	0.065	0.091	BDL	0.327	0 276	16.915	0.08	0.069	14.765	20.6	19.9	3.457	0.059	0.063	BDL	0.073	0.079	BI
19	BDL	BDL	BDL	0.015	0 009	BDL	0 26	0.259	0.385	0.028	0.013	BDL	0112	0.097	14.354	0 01 1	0.016	BDL	0.014	0.007	B
<b>'a</b>	42.9	42 5	0.937	41.9	41.8	0.2.39	154	158	2.564	45.1	45.4	0.663	85.3	84.4	1.061	45	459	1.980	46 4	466	0
d	BDL.	BDL	BDL	0 00 19	0 0026	BDL.	0.001	0 001	BOL	0.0025	0.0026	BDL.	0.0076	0.0076	BDL	0.0026	0.0028	BDL	0.0024	0.0027	B
0	BDL	BDL	BDL	0 0007	0	BDL	0.0045	0.0053	BDL.	0.0021	0.0006	BDL.	0 0548	0 0548	0	-0.0001	0.001	BDL	0 0004	0 001	B
	0 0905	0.0898	0.776	0 1124	0.1117	0.625	0 1377	0 1356	1.537	0.1243	0.1433 -	14.200	0.0042	0 0042	BDL	0.1299	0 1313	1.072	0 1 3 4 2	0 1.36.3	1
•	0 26	0 255	1.942	0.223	0.234	4.814	117	121	3 361	0 276	0.299	8	125	124	0 803	0 163	0.173	5.952	0 172	0 172 ·	0
lg	9.04	9 01	0 332	8 71	812	7.011	36.3	37.9	4 313	9 66	9.7 <u>2</u>	0 619	23.1	22.3	3 524	9 66	9.66	0	968	9.6	0
la 🛛	0.6746	0 6696	0.744	0 6547	0 6566	0.290	15 04	1539	2 300	0 8058	0 8665	7.259	21.07	20.89	0 858	0.8158	0 8352	2.350	0 8438	0 85	0
10	BDI.	BDL	BDL.	0.007	0.0042	BDL	0 1742	0.1823	4 544	0.007	0.0074	BDL.	0.1764	0.1743	1.198	0.0049	0.0064	BDL	0 0072	0.0061	B
8	191	19	0.525	19	19.2	1.047	81.5	82.7	1.462	20.3	20.9	2.913	65.1	64.5	0 926	20.7	21	1.439	21.5	21.5	0
1	BDL	BUL	BDL	0	-0.003	BDL	0 007	0.004	BDL	0	0.003	BDL	0 062	0 062	0	0 001	0.002	BDL	0.002	0 004	B
ь	BDL	BDL	BDL	0 002	0.005	BDL	0 064	0.074	BDL	0.014 -	0 017	BDL	0.055	0.035	BD1.	0.012	0.015	BDL	0.008	0 01.3	B
l .	1.27	1.26	0.791	1.24	1.21	2.449	2 36	2.41	2.096	1 35	1.37	1.471	44	4 32	1.835	1 35	1.37	1.471	1 38	1.38	0
r	0 229	0.2284	0.262	0 2264	0.2211	2.369	1 381	1.431	3.556	0.2493	0.2498	0.200	0 3891	0.3823	1 763	0 2489	0 2528	1.555	0.2558	0 2551	0
1	BDL.	B DL	BDL.	0 001	0.0013	BDL	0.0156	0 0125	22.064	0.002	0.002	BDL	0 0012	0.0016	BDL.	0.0013	0.002	BDL	0 001	0 0013	B
<u>n</u>	0.4606	0 4587	0.413	0 62	0.6042	2.581	0.228	0.2315	1.523	0.6629	0.8374	23.262	26.9	26.34	2.104	0.7249	0 7358	1.492	07418	0.7403	0.
		Lab Dupl.		Lab Dupl.	Lab Dupl.		Lab Dupl.	Lab Dupl.			Lab Dupl.	Lab Dupl.		_		Lab Dupl.			Lab Dupl.		
ample Name	1A-SWII	IA-SWII	%CHG	IA-SWII	IA-SWI1	%C110	IA-SWII	IA-SWIL	%CHG	1A-8W1	IA-SWI	IA-SWI	%CHG	%CHG	IIIB-GW1	IIIB-GWI	%C41G	111 <b>B-SWI</b>	111 <b>B-SWI</b>	%C]]G	
ample Date							1														
nalysis Date	7/24/95	7/24/95		7/24 95	7/24/95		7/24/95	7/24/95		7/24/95	7/23/95	7/23/95			7/24/95	7/24/95		7/24/95	7/23/95		
nalysis Time	16:09	16:53		17:40	18:24		19:05	19:40		19:14	17:10	16:17			19:23	15:27		19.29	16:55		
<b>a</b> .	0.073	0.079	BDL	0.084	0.084	0	0.091	0.088	3.352	0.081	0.052	0.042	BDL	BDL	0.13	0.107	19.409	0.106	0.057	BDL	
3	0.014	0 007	BDL.	0.011	0 016	BDL	0 01 1	0 007	BDL	0.006	0.02	0.016	BDL	BDL	0 228	0.229	0.438	0.018	0 008	BDI.	
8	46.4	45.6	0 4 3 0	45.1	45.2	0.221	45.7	45.4	0 659	46.4	46.7	46.3	0.860	0 216	174	173	0.576	45	45.5	1 105	
d	0.0024	0 0027	BDL.	0.003	0 003	BDŁ.	0.0026	0 0027	BDL	0 0027	0.0032	0.0036	BDL	BDL	0.0002	0 0009	BDL	0.0029	0 0031	BDL	
0	0 0004	0.001	BDL.	-0.0004	0.0007	BDL	0 0001	0.0013	BDL	0	0 0008	0.0009	BDL.	BDI.	0.0061	0.0052	BDI.	0	0.0003	BDJ.	
u	0 1342	0 1363	1.553	0 1306	0.1313	0.535	0 1335	0 1313	1.662	0 1 26 1	0.1322	0.1309	0 988	3.735	0 006	0 0049	BDL	01177	0 1 2 3 3	4 647	
e	0 172	0 172	0	0 169	0 177	4.624	0186	0 187	0 536	0 201	0.193	0.195	1 031	3 030	115	112	2.643	0 312	03	3 922	1
lg –	9 68	9.6	0.830	9.22	912	1.091	9 19	9.07	1 314	9.31	101	10.1	0	8.140	42.1	44.1	4.640	9.04	988	8 879	
In	0 8438	0.85	0.732	0 8221	0.8235	0.170	0 8346	0 8308	0 456	0 8237	0.8324	0.8184	1.696	0 646	9.415	9 334	0.864	0.8348	0 8428	0 954	
lo	0 0072	0 0061	BDL.	0 0057	0.0059	BDL	0 00 56	0 0034	BDL.	0.0053	0 0058	0.0067	BDL	BDL	0 1713	0.1672	2 422	0 0059	0 0079	BDL.	
	21.5	21.5	0	20.9	21	0.477	21.3	21.1	0 943	21.4	21.4	21.1	1.412	1 412	1.59	155	2.548	201	20.4	1 -481	
1	0.002	0 004	BDL	0.001	0 004	BDL	0 003	0 003	BDL.	0.003	0.004	-0 001	BDL	BDL	0.003	0.004	BDL	0 001	0 007	BDL	
ь	0.008	0 013	BDL	0 003	0 002	BDL	-0.004	0.004	BDL	-0.004	-0.004	-0.012	BDL	BDL	0 023	0.018	BDL	-0.007	0.009	BDL	
1	1 38	1 38	0	1 33	1 33	0	1.34	1 33	0.749	1.36	1.43	1.41	1.408	3 610	2 22	2 25	1.342	1.36	1 43	5 018	
r	0 2558	0 2551	0 274	0 2457	0 2456	0.041	0.2481	0.2453	1.135	0.2518	0.259	0.2554	1 400	1.420	1 26	1.271	0.869	0 2467	0 2564	3 856	
n -	0.001	0 001 3	BDL	0 0016	0.0016	BDI.	0 0013	0 002	BDL	0.002	-0.001	-0.0008	BDI.	BDI.	0.0095	0.0097	2 083	0 0044	0.0008	BDL	1
															100012						

June/July 1995 Laboratory duplicates (water samples); Calculations worksheet

Aug/Se	pt1995	Lab	oratory	duplic	coles (wi	nier san	nples): (	Calcula	tions wo	rkshee	t																	
			Lab Dup	l,		Lab Dap			Lab Dupl.			Lab Dupl.			Lab Depl		1	Lab Dupi			Lab Dupi		Γ	Lab Dup	l.	Lab Dupt	Lab Dupl.	
Sample No	ume 1A	1-9WI	IA-SWI	%CHG	IA-SWI	IA SWII	\$016	IIB-SWI	IIB-SWI	%CHG	IIIC-SWI	ILC-SWI	%CHG	IIIC-SWII	Inc-swit	SCHG	ILA-GW3	IIA-GW3	%CHG	IIA-SWI	ILA-SWI	%CHG	IA-SWI	IA-SWI	\$C11G	IA-SWI	IA-SWI	4 CHG
Sample De	Mar 9/	27/95	9/27/95		9/27/95	9/27/95		9/4/95	9/4/95		8/31:95	8/31/95		8/31/95	8/31/95					8/31.95	8/31/95		8/24/95	8/24/95		8 24/95	8/24/95	
Analysis D	hala				i								•				9/25/95	9/25/95		9/25 95	9/25/95							
Analysis T	lano																14:47	15:04		15 15	15 18							
AI	0	022	0.014	BDL	0.018	0.021	BDL.	0.05	0.054	BDL.	0.057	0 07	BDL.	0.053	0.065	BDI.	0.053	0.061	BDL	0.115	0.11	4.444	0.029	0.027	BDL	0.022	0.019	BDL
As	0	006	0.008	BDL	0 01	4.003	BDL	0 004	0.004	BDL	0.008	0.015	BDL.	0.009	-0.005	BDL	0.015	0.019	BDL	0.015	0.009	BDL	0.005	-0.007	BDL.	0.006	-0.009	BDI.
Ca	5	13	56.9	0.701	56.9	56 5	0.705	54.1	33.6	0.929	52	53. I	2 093	52.9	\$3.3	0.753	48.4	48.6	0.412	54	53.2	1.493	55.8	57	2 128	55	543	1 281
Cd	0	0034	0.0045	BDL	0.0039	0.004	BDL.	0.0029	0.0027	BDL	0 00-11	0 0039	BDL.	0.0036	0.0042	BDI.	0.0003	0.0001	BDL	0 0035	0 0037	BDL	0.0024	0.0023	BDL	0 0025	0.0025	BDL
Co	0	0007	-0.0022	BDL	0.0005	-0 0007	BDL	0 0012	0.0002	BDL.	0.0003	0.0009	BDL	0.0003	0.0007	BDL	0.0012	0	BDL	0	0.0007	BDI.	0.0002	0	BDI.	Q 0005	0 0003	вія.
Cu .	0	1788	0 1785	0 168	0.1879	0 1892	0 689	01516	0.1523	0.461	0.1732	0 177	2 170	0 1773	0.1777	0.225	0.0439	0.0446	1.582	0.1658	0.1641	1 031	0.1616	0 1657	2 505	0.1606	0.1576	1886
Fe	0.	047	0 0 5 1	8 163	0 151	0 153	1.316	0 072	0.071	1.399	0.19	0.194	2 083	0.183	0.184	0.545	0.999	1	0 100	0.401	0 395	1.508	01	0.103	2.956	0.11	0 103	6 573
Mg	13	2.6	12.5	0 797	12.5	12.6	0 797	12	118	1.681	11.4	11.6	1739	11.6	11.5	0.866	10.7	10.7	0	11.7	11.5	1 724	12.5	12.7	1 587	12.4	12 2	1 626
Min	1	326	1.318	0 605	1 324	1.319	0.375	1 041	1.033	0 771	1.108	1.132	2 143	1 126	1.132	0.531	0.9367	0.9408	0 437	1.099	1084	1.374	1.141	1.164	1.996	1.118	1 102	1.441
Mo	0	0054	0 0049	BDL	0 0058	0 0063	BDL.	0.0016	0.0037	BDI.	0.0026	0.0003	ADL	0.0022	0.0034	BDL	0 00-46	0.0025	BDL	0.0025	0.0012	BDL	0.0053	0 006	BDL	0 0047	0.0056	BDL
Na	25	2.1	29	0	28 9	29 4	1.715	28.3	28.2	0.354	27.4	28	2.166	28.2	27.9	1.070	27.5	27.6	0 363	27.9	27.6	1.081	26	26 5	1.905	25.7	25 5	0 781
N	0	002	0.002	BIN.	0	0 003	BDL	0 001	0.001	BDL	0	0 002	BDL	0	0.003	BDL	0 00 1	-0.002	BDL	0	0	BDL	0 003	0.001	BDL	0.001	0.002	BIX.
1%	0	004	0.016	BDL	0 019	- <b>0</b> .01	BDI.	0 027	0	BDL	-0 017	0 017	BDL	0 007	0.005	BDL	11.001	0.017	BDL.	0 013	.0 019	BDI,	0.005	0 0 18	BDI,	0 013	0016	вія.
SL	13	5.6	15.4	1 290	15 5	15.4	0.647	12.8	128	0	12.3	12 5	1 613	12.6	12.6	0	13	13-1	0 766	128	12 6	1.575	1 27	1 29	1 563	1 26	1 24	16
Sr	0	3303	0.3294	U 273	0 329	0 3304	0.425	0.3114	0.3089	0 806	0.2898	0.2956	1 982	0.2965	0.2952	0.439	0.2841	0 2841	0	0.3075	0.2968	1.239	0 3032	0.3106	2 411	03	0.2962	1 275
TI	0	0039	0 0035	BDL	0.0035	0.0035	BDL	0 002	0.002	BDL	0.002	-0.002	BDL.	-0.003	0.002	BDL	-0.002	-0.002	BDL	0 00 13	0.0043	BDL	0 00 11	0 00 11	BDL.	0 0014	0 0018	BDL
Za	1	203	1 184	1 592	1.308	1 293	1.153	0 455	0.4519	0.684	1.134	1.156	1.921	1.109	1.114	0.450	0.3736	0.3754	0 481	0.7 152	0.7352	1.351	0.7957	0 8162	2.544	0.7919	0.786	0 748

Compli	ation of	all lab	orator	y dupli	cates (1	water	sample	8)															STATIS	TICS .				
	JUNU	11.95												AUGASEPS	5								MEAN	STAND.	MEAN	<b>FOF</b>	STD.	95% CONF.
	<b>%C1</b>	G 4010	\$CH	1 4 CIB3	%CHG	\$(1)	6 %CHG	% Cl iG	\$ (1)	5 (3HG	9. (1K)	\$CH	5 56 CHG	9 CHG	% CHIG	% CHG	\$CHO	% CHG	%(110	\$CHO	\$ CHO	%C11G	1	DEV.	ST DEV	DATA	ERROR	OF MEAN
N.			16.92	14 77	3 46		7.89	0.00	3 35			19.41								4.44			88	7.3	16.0	8	09	10.6
<b>\</b> u			0.39		1435							0.44											5.1	8.0	13 I	3	27	10.3
Ca .	0 94	0.24	2.56	0.66	106	1.98	0.43	0.22	0.66	0.86	0.22	0.58	1.10	0.70	0.71	0.93	2.09	0.75	0.41	1.49	2.13	1.28	1.0	0.7	1.7	22	00	1.1
Cd .						,																				0		
.a					0 00																		0.0			1	00	0.0
<b>1</b> 0	0.78	0 62	1 54	14.20		1 07	1 55	0 53	1.66	0 99	3.74		4 65	0.17	0.69	0.46	2.17	0 23	1.58	1.03	2.51	1.89	21	31	52	20	02	2.4
•	1.94	4 81	3.36	8.00	0.80	5.95	0.90	4 62	0 54	1.03	3 03	2 64	3.92	8.16	1.32	1.40	2 08	0.54	0.10	1.51	2 96	6.57	3.0	25	5.4	22	01	3.2
te i	0 33	7 01	431	0.62	3 52	0.00	0 83	1 09	1.31	0.00	8 14	4.64	8 89	0.80	0.80	1.68	1.74	0.87	0.00	1.72	1.59	1.63	23	26	50	22	01	2.6
Vie	0.74	0.29	2.30	7.26	0 86	2.35	0.73	0.17	0.46	1.70	0.65	0.86	0.95	0.61	0.38	0.77	2.14	0 53	0.44	1.37	2.00	1.44	13	15	28	22	01	1.5
lo			4.54		1 20							2.42											27	1.7	44	3	06	3.8
ve.	0 52	1 05	1.46	2 91	0 93	144	0.00	0.48	0.94	1.41	141	2.55	j 48	0.00	1.72	0.35	2.17	1.07	0 36	1.08	1.90	0.78	12	0.8	2.0	22	00	1.3
NI I					0 00																		0.0			1	00	0.0
ъ																										0		
N	0 79	2.45	2 10	1.47	1 83	1.47	0 00	0.00	075	1.41	361	134	5 02	1.29	0.65	0.00	1.61	0.00	0 77	1 57	1 56	1.60	14	12	26	22	01	1.5
ir i	0 26	2.37	3 56	0 20	176	1.55	0.27	0.04	1.13	1.40	1.42	0 87	3.86	0.27	0.42	0.81	1.98	0.44	0.00	1.24	2.41	1 27	13	ii -	23	22	00	13
<b>FI</b>			22.06									2 08											12.1	14.1	26.2	2	71	25.9
Z.a	0 41	2.58	1.52	23.26	2 10	1.49	0.20	0 22	0.98	0.85	3.01	1.45	4 36	1 40	1.15	0.68	197	0.45	0.48	135	254	0.75	24	41	7 7	,,	0.2	29

		Field Dupl.				Lab Dupt.	Lab Dupl.	AVG.	Field Dupt.			AVG.	Field Dupi				Field Dupl		
Sample Namé	IC GW2	IC-GW2(2)	¶CH0		IA-SW1	IA-SWI	IA-SWI	IA-SWI	IA-SW1(2)	% CHO		IA-SWII	LA SWII(3)	<b>%</b> CHG		IIB-GW1	118 GW1(2)	\$ CHO	
iample Date	6/28/95 7/5/95	6/28/95			7/19/09	7/19/09	7/19/95		7/19/95			(of into	7/19/95			38538	33424		
Analysis Time	11:07	11.10			19.14	17:10	16.17		16:46			Ceb: 3)	13:55			15:41	1/24/55		
N	0.038	0 026	37 50	BDL	0.081	0.052	0 042	0 0583	0.051	13.41	BDL	0.0728	0 058	22.63	BDL	0.067	0.063	615	DL
4	013	0108	18.49		0 006	0.02	0016	0.014	9.022	44.44	BDL	0 0128	0 0 1 5	15.83	BDL	0.04	0 039	2.53	BDL.
<b>`a</b>	44 8	41.8	6.93		46.4	46.7	46.3	46.467	46.4	0.14		45.64	45.7	0.13		42.6	43.1	1.17	
24	0.0023	0	200	BDI.	0.0027	0.0032	0 0036	0.0032	0.0034	7.11	BDL	0 00281	0 003	6.54	BDL	0.0042	0.0051	1935	BDL
	Q 0023	0 0012	70.27	BDL	0	0 0008	0 0009	0.0006	0 0009	45.45	BDL.	0.00067	-0.0006	3628 57	BDL	0.0018	0.001	57.14	BDI.
	29	254	13.24	BUL	0 201	0 1322	01309	01297	0.145	10.05		0.13301	0.1332	1.63		0 741	0.1434	8.33	
Mg.	88	8 09	8 41		9.31	10.1	101	9.8367	10 1	2.64		9 487	988	4 06		8.48	8 24	2.87	
Ma	4 206	3 966	5 87		0 8237	0.8324	0.8184	0 8248	0.8257	0 11		0 83076	0 8235	0.88		0 9934	0 9379	5.75	
Ma	0 0472	0 042	11.66		0 0053	0 0058	0 0067	0.0059	9.0056	5 78	BDL	0 00577	0 0058	0.52	BDI.	0 00 72	0 004	57.14	BDI.
Na	18 6	18	3 28		21.4	21.4	21.1	21.3	21.6	1.40		21.04	20.8	1.34		19.1	19.4	1 56	
Ni	0 003	0.003	0 00	BDL	0.003	0.004	0 001	0.002	0.006	100 00	BDL	0 002 7	0	200.00	BDL	0.002	0 001	600 00	BDI.
P10	0 009	0.003	100	BDL.	-0.004	-0.004	0012	-0 007	-0.01	-40.00	BOL	0 0031	-0.003	12200 00	BDL	0 017	0.003	140 00	BDi.
31 C-	1 8/	1 /9 0 1449	4.37		1.30	1.43	1.41	14	1.4[	0./1		1 357	1 38	1.68		1 26	1 24	160	
 Ti	0 00 14	0.0018	25.00	BDI.	0.007	-0.001	0.0008	0.000	-0 0076	210.53	RDI	0 00132	0.002	40.94	BDI	0 007	0 0017	50.00	BDI.
Za	0 0 381	0 0415	8 54		1		0 7346	0.7346	0.7043	4.21		0 72945	0 7476	2.46		0 8734	1 069	20 14	
D.G.	14	28	66 67									11	6	24.82					
PH	6 73	6 82	1 33		1							7.58	7 58	0.00					
Cand.	0 425	0 443	4 15									1	0 402						
Aik.	164	228	32.65									144	176	20.00					
												11 689	12.264	4 80					
POAP	0.15	0 2 95	200.00	PL BDI	I							1.094	1.136	3 40					
504	19.179	30.548	45.73	OUL	{				•			77 702	77 6 <b>88</b>	0.02		·			
		Field Dupl			1	Field Dupl			1						1				
Sample Name	IIIA-GW2	IIIA GW2(2)	SCHO		IIA-SWII	I IIA SWIII(2)	SCHG		IIIA-GW1	IIIA-OWI(2)	S CHG	IIIB-GW3	IIIB-G₩3(2)	% CHG					
Sample Date	7/10/95	7/10/95			7/6/95	7/6/95			7/10/96	7/10/96		7/11/95	7/11/95						
Analyzis Date	7/24/95	7/24/95			7/24/95	7/24/95			7/24/95	7/24/95		7/24/95	7/24/95						
Assiyus Tane	16.50	0 693 /5	10.30		14:40	14:47		80/	15:37	15:37		ł			4				
~u A.	0.09	0.097	749		0.037	0.033	3.37	BDL BDI							1				
Ca	173	170	1 75		41.8	41.7	024	DDL				1							
Cd	0 0009	0.0009	0 00	BDL	0 0021	0.0019	10.00	BDL				1							
Co	0.0557	8 0534	4.22		0.0004	0 0012	100.00	BDL				1			1				
Cu	0 007	-0.0077	-9 52	BDL	0.1061	0 0913	14 99		1			1			1				
Fe	57 4	59.8	4.10		0 302	0.176	52.72					1			1				
MB MB	37.4	3/	1.08		6.73	8.08 0.6948	0.57		1			1			1				
Mo	0 0867	0 0923	6.83		0.0054	0.0056	13.33	RDI	1			1			1				
Na	112	111	0.90		19	18.9	0.53	000				1			1				
N	0.026	0 023	12.24		0.002	0 001	66 67	BDL	1			1							
Pb	0 003	0 024	155.56	BDL	0.009	0 0 1 5	50 00	BDL	ł			l			1				
Si	1 98	1 98	0 00		1.22	1.21	0.82					1			1				
Ser .	1 667	1 653	0.84		0 2244	0 2239	0 2 2		ł						1				
T1 7-	0 0021	0.0015	33 33	BDL	0.001	0.001	000	BDI.	1						1				
18 D ()	14.89	14.3	102		0 3/47	0.5249	A 06		}						1				
H					1										1				
Cond					1				1						1				
Alk.					l										ł				
ci									72.96	78.76	7.65	13.89	11.95	15.02	1				
NO3-N									BDL	BDL		0.262	0.405	42.88	1				
PO4 I2					1				BDL	BDL		1			ł				
															•				

Aug/Sept 1	995 Fleid	duplicate	s (wate	r samples)	): Calcua	illons v	vorkshe	et										
		Field Dupl.		Field Dupl.				Field Dupl.			Field Dup	1.	1	Field Dupl.			Field Dupl.	
Sample Name	IB-GWS	18-GW5(2)	%CHG	IA-SWIII(2)	IA-SWIII	%CHG	IA-GW3	IA-GW3(2)	%CHG	IA-GWS	GW1(2)	%CHG	IIA-SWIII	HA-5WIII(2)	%CHG	M.Xing	M. Xing (2)	%CHG
Sample Date	8/27/95	8/27/95		8/24/95	8/24/95		B/24/95	8/24/95		8/24/95	8/24/95		8/31/95	8/31/95		11/3/95	11/3/95	
Aunitoria Date	8/30/96	8/30/96	_	8/30/96	8/30/96		8/30/96	8/30/96		8/30/96	8/30/96							
AJ	2.5	1.54	47.525	0.028	0.023	BDL	10.4	9.63	7.688	23.8			0.07	0.062	BDL.	0.006	0 01 5	BDL
Aa	0.068	0112	24	0	0	BDL	0.005	0.014	BDL	0.069			0	-0.006	BDL.	-0.001	0.016	BDL
Ca	124	123	0.810	553	55.2	0.181	111	m	0	108			53.4	53 9	0.932	541	54.5	0 737
Cd	0.0196	0.0176	5 525	0 00 32	0.0031	BDI.	0 1165	0.1406	18748	BDI.			0 0021	0.0015	BDL	0.0023	0 0027	BDL.
C•	0 05	0.0529	5.637	0.0006	0.0005	BDL.	0 04 52	0.0432	4.525	0 0526			0.0007	0	BDL	0 0002	0 0024	BDL
C.	0 01 01	0.0057	BDL	0 1455	0.1798	21.088	2.833	6.706	81.203	0 01 41			0 139	01	32 636	0 0874	0.0867	0 804
Fe	319	312	2.219	0.087	0.0%6	9836	93.2	891	4.498	146			0 168	0.114	38.298	0.051	0.044	14737
Alg.	37	37.6	1 609	124	123	0 81 0	29.9	29.9	0	30.8			11.8	11.9	0.844	124	12.2	1 626
la l	26.76	27 21	1.668	1.117	1.163	4 03 5	20.52	20 23	1.423	2537			1 069	1.077	0.746	0 163	0.873	1   52
Me	0.4447	0 43 58	2 02 2	0 007	0 0068	BDI.	0.1296	0.1238	4 578	0.2036			0 0017	-7.00E 04	BDI.	0.0059	0.0061	BDI.
Na	81.8	847	3.483	256	26	1.550	65.7	658	0.152	71.7			281	28 5	1.413	24.6	24 3	1 227
NI	0 052	0 044	16.667	0 004	0 001	BDL	0.044	0.045	2.247	0.058			0.005	-0 002	BDL	0.001	0.001	BDI.
Pb	0.057	0.041	32.653	0.006	0.011	BDI.	0 367	0.37	0.814	BDL			-0.009	0.013	BD1.	001	0.009	BDL.
51	3 62	3 66	1.099	1.26	1.26	0	33	3 25	1 527	49			126	126	0	138	13.7	0 727
Sr	0 48-16	0 48.37	0 186	0.3015	0.3	0 499	0 5427	0.543	0 055	0.463			0.3025	0.3058	1.085	0.2835	0.284	0 176
n	0 0016	0.0019	BDL.	0.0008	0.0011	BDL	0 0013	0.0054	BDL.	BDL			0.002	0.002	BDI.	0 0035	0 0035	BDL
Zo	9 <b>9</b> 33	10.71	7.528	0 6584	1	41.196	1665	17.12	2.784	27.17			0.5414	0.3782	35.494	0 9635	0.8556	11840
pH	5 35	5.38	0 559	6.84	6.64	2.967	4.45	4.39	1.357	3.98	4.09	2.726	8 16	8 19	0.367	27 72	7.72	0
D.O.	27	4	38.806	7.3	7	4 196	1.7	21	21.053	4.6	4.5	2 198		8.3		75	7.5	0
Cond.	1.95	1.94	0.514	0.489	0 492	0 61 2	1.36	1.35	0.738	1.79	1.63	9.357	0 504	0.511	1.379	0.501	0 482	3866
Ą <b>n</b> i.	36	36	0.000	192	148	25.882	NA	NA		NA	NA		124	28	3.175	172	152	12346
C1	<b>29</b> 033	28.816	0.750	16.908	17.124	1.269	19 501	19.697	1.000	22.17			17.5	17.8	1.700	15.22	15.28	0 393
NO3-N	BDL	BDL.	BDL	1 673	1615	3.528	BDL.	BDL.	BDL	BDL			1.68	1.74	3.509	1.401	1.469	4.739
PO4-P	0.5	0.55	9.524	BDL	BDL	BDL	BDL	BDL	BDL.	BDL			1					
SC4	1257 03	127641	1.530	97.2	94.2	3.135	820.1	8281	0.971	723.02		•	102.7	1046	1.833	85.86	86.93	1.238

Compli	ation of a	II field d	luplica	tes (wat	er sampl	es)						STATIS	TICS		
	JUNE/J	ULY 1995						AUGUST	SEPTEM	BER 1995			STD.	#OF	95% CONF
	%CIIG	¶CHG	%CHG	%CHG	%CHG	%CHG	%CHG	%CHQ	%CHO	%CHO	%CH0	MEAN	DEV.	DATA	OF MEAN
pH	13							0.559	1.357	2.726	0.367	1.2	1.2	8	13
D.O.	66.667							38.806	21.053	2 198	BDL.	187	21 5	7	22.9
Cond.	4 1 47							0.514	0.738	9.357	1.379	2.8	2.9	7	3.4
Alla.	32653							0.000			3.175	169	10.9	6	19.3
CI						7.646	15.015	0.750	1 000		1.700	3.5	43	9	4.2
NO3-N	76.289					BDL	42.879	BDL	BDL		3.509	162	26.0	6	21.9
PO4-P	200					BDL	BDL	9.524	BDL		BDL	104.8	134.7	2	236.8
504	45.726					3 242	27.627	1.530	0.971		1.833	7.7	13.6	10	9.7
AJ .	BDI.	BDL	6.154	10 294	BDL			47.525	7 688		BDL	17.9	198	4	27.6
As	18 487	BDL.	BDL.	7.487	BDL.			24.000	BDL		BDL	167	8.4	3	22.2
Ca	6 928	0   44	1.167	1 749	0.2			0.810	0.000		0 932	1.0	1.8	11	1.3
Cd	BDL.	BDL	BDL.	BDL	BDI.			5.525	18.748		BDL	121	9.3	2	21.9
Ce	BDI.	BDL	BDL	4 22	BDL			5.637	4.525		BDL.	4.8	07	3	\$3
C	BDL	2.761	8.534	BDL	14.995			BDL.	81.203		32,636	170	23.8	8	21.3
Fe	13.235	30.078	11.111	4.096	52.72			2 219	4.498		38.298	19.0	14.0	11	21.1
Mg	84	2.642	2 87	1.08	0.574			1.609	0.000		0.844	2.2	22	11	2.5
Me	5 874	01	5.7	06	0.00			1.668	1 423		0.746	2.0	2.0	11	2.3
Me	11.659	BDL	BDL	6.83	BDL			2.022	4.578		BDL	6.3	4.1	4	8.3
Nat	33	1.40	1.558	0 90	0.528			3.483	0 152		1.413	1.5	0.9	п	1.6
NI	BDL	BDL.	BDL.	12245	BDL			16.667	2.247		BDL.	10.4	7.4	3	18.2
Pb	BDL	BDL.	BDL	BDL.	BDL			32653	0.814		BDL	167	22.5	2	38.8
SL	4.372	0 71 2	1.6	0	0.8			1.099	1.527		0.000	1.1	1.1	П	1.3
Sr	10 852	1.708	0.045	0.843	0 223			0.186	0.055		1.085	1.3	2.8	11	1.7
n	BDL	BDL	BDL	BDL.	BDL			BDL	BDL		BDL	#DIV/0/	#DIV/0f	0	DIVAL
Zm	8 54	42	20.14	2.654	9.058			7.528	2.784		35.494	14.4	144	11	164

Summary	of	mean (+).	. standard	deviation)	blank	concentrations	for	water
Summary	IJ	mean ( )/	stuntuunu	acriation	Diana	concentrations	<i>JUI</i>	water
and bead	ana	lyses .						

Element	Water field blanks (mg/L)	Milli-Q lab blanks run with water samples	Bead Digest Blanks (ug/ g_bead)	Bead Digest Blanks without beads	Milli-Q lab blanks run with bead samples
8 - C		n = 23		n=11	n=32
Al	(<0.07)	(<0.07)	32.13 +/- 29.4	(<0.07)	(<0.07)
As	(<0.07)	(<0.07)	(<0.07)	(<0.07)	(<0.07)
Ca	(<0.1)	(<0.1)	5.55 +/- 4.11	(<0.1)	(<0.1)
Cd	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)
Co	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)
Cu	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)
Fe	(<0.03)	(<0.03)	0.24 +/- 0.25	(<0.03)	(<0.03)
Mg	(<0.1)	(<0.1)	1.32 +/- 0.94	(<0.1)	(<0.1)
Mn	(<0.005)	(<0.005)	0.06 +/- 0.04	(<0.005)	(<0.005)
Мо	(<0.01)	(<0.01)	(<0.01)	(<0.01)	(<0.01)
Na	(<0.1)	(<0.1)	0.96 +/- 0.74	(<0.1)	(<0.1)
Ni	(<0.02)	(<0.02)	(<0.02)	(<0.02)	(<0.02)
Р	(<0.2)	(<0.2)	(<0.2)	(<0.2)	(<0.2)
Pb	(<0.1)	(<0.1)	(<0.1)	(<0.1)	(<0.1)
Si	(<0.1)	(<0.1)	6.47 +/- 3.93	(<0.1)	(<0.1)
Sr	(<0.005)	(<0.005)	0.03 +/- 0.02	(<0.005)	(<0.005)
Ti	(<0.005)	(<0.005)	0.09 +/- 0.06	(<0.005)	(<0.005)
Zn	0.018 +/- 0.017	(<0.005)	(<0.005)	(<0.005)	(<0.005)

n= number of samples; numbers in parentheses are the detection limits of the ICAPES.

Fe QA/QC: low vs. high concentrations					
		% change			
Conc. range	btw. duplicates	Conc. range	btw. duplicates		
319-312	2.2	0.087096	9.8		
93.2-89.1	4.5	0.168-0.114	38.3		
29-25.4	4.1	0.051-0.044	14.7		
57.4-59.8	13.2	0.196-0.145	30.1		
		0.181-0.245	30.3		
		0.741-0.663	11.11		
		0.302-0.176	52		
avg	6.0	avg	26.6		
std dev.	4.9	stdev	14.5		
# of data	4	# of data	7		
std.error	1.2	std.error	2.1		
95% conf. mean	8.4	95% conf. mean	30.7		



	11.000		
	1A- QW2	18- 984	14- 698
	hu e-2	per e.s	per 4.5
	LO. 5.9	0.0.45	D.O. 3.8
	Canal. 6.490	Coul. 1.41	Coud. 0.967
	AB.	AR.	Alk.
	Temp. 11.0	Temp. 10.5	Tomp. 10.5
	CI 10	a	Q 98
	NO3-N 0.54	NO3-N BOL	NOS-N 0.32
	904 172	804 93.0	SCH 4.95+02
	AI 0.17	AI BDL	AL 3.7
	As BDL	As 0.7	As BOL
	Ca 51	Ca 85	Ca 63
	C# 0 025	CI BDL	CA BDL
	Co BDL	Co 0.044	Ca 0.051
	Ca 6.602	Ch BDL	Ca 0.045
	Fo 7.1	Fe 4.0E+03	Fi 54
	Ma 12	Mg 23	Mg 15
	Ma 4.43	Ma 35.4	Ma 10.6
	No 0.014	Ma 0.86	Ma 0.079
	No 28	Na 64	Na 35
Meter	NI BOL	Ni BDL	NE G 039
	Ph 801.	Ph BDL	Ph BDL
	W 16	81 21	<b>31 23</b>
	\$ 0.277	8 0.446	8 0.305
	TI MAN	TI BDL.	TI BOX.

IA- GW1/2	IA- GWI	14- GW2
pH 5.9	aft 6.9	pH 7.0
D.O. 60	D.O. 14	DO 10
Cond. 0.474	Cond. 1.040	Cond. 0.262
AK.	AN	Alt
Temp. 13.4	Tems. 11.7	Temp. 11.7
CI 7.5	0.5	0 7.5
NO3-N BDL	NOLN BOIL	OLN 8 45
SO4 144	SCH 1.SEE+CE	\$04 47.1
AI 0.14	AT BDL	AL D.OR
As BDL	An DIO	As BDL
Ca 41	0.79	C H
C4 0 00	CAL BACK	CA BDL
Co BDL	Co NDL	Co BDL
Ci 0.190	CH 0.006	0.0.01
Fe 3.6	Fa 80	B- 0.40
Me 73	Me IA	Ma 74
Ma 8.15	Ma 164	Ma 0.447
Ma BDE.	Ma 0.19	
No 11	No. 14	No 16
NI BOX.	NA BOT	
Ph 804	TH PC-L	
94.14		
5-0.189	39 18	ari 14 9. 6 108
TI BUN	ar 0.94	ar 0.190
70.13		
	<b>ZB</b> 0 (3)	<b>44 9.5</b> 70

 IT
 AI 20

 ADL
 As BDL

 SDL
 Ca 807

 BDL
 C4 0.173

 BDL
 C4 0.173

 BDL
 C4 0.173

 BDL
 C4 0.173

 BDL
 C6 0.167

 BDL
 C9 0.167

 BDL
 BBL

 BDL
 Mg 29

 BDL
 Mg 27

 BDL
 Mg 27

 BDL
 Mg 0.17

 BDL
 Mg 0.16

 BDL
 Mg 0.06

 BDL
 Mg 0.15

 BDL
 S1

 BDL
 S1

 BDL
 S1

 BDL
 S1

 BDL
 S1

 BDL
 T1 0.015

 LLS
 Z2 324

IA- GW6 pH 2.7 D.C. 54 Coul. 2.32 Alk. Temp. 10.8 Cl 21.12

NOS-N BOL

804 3 EE+02

.

8



•





<u>2</u>



• • Appendix

. 62



:

18- SWIII (D- 6791 10- SW1 **SILVER BOW CREEK** pH 7.9 D.O. 7.9 pH &d pH 7.8 D.Q. 6.9 D.O. 7.2 **TRANSECT IB** Cond. 0.505 Coul. 0.498 Cond. 0.493 AR 1.18+01 Alk. 1.28+02 8/27/95 AB. 1.28+02 Temp. 182 Temp. 18.2 Cl 28 Temp. IB3 Q 17 CI 17 NOS-N LAS NO3-N 1.86 NO3-N LBI PO4-P BDL POLP BOL PO4P BDL 904 104 804 102 504 100 AI BOL AI BOL AI BOL As BDL As BDL As BDL Ca 57 Ca 57 0.5 CI BDL CI BDL OF BDL Co BDL Ce BDL Co BDL Ca 0.163 Ct 0.147 Ci 0.148 Fi 0.08 Fe 0.09 Fe 0.10 Mg 13 Mg 13 Mg 13 Ms 1.15 Ma 1.16 Ma 1.14 Me BDL No BDL No BDL No 27 Na 27 Ne 26 NI BDL NI BDL NI BOL Po BOL N BOL N BDL N 13 **SL 13** \$1 13 \$ 0.326 Sr 0.322 \$1 0.319 TI BOL TI BDL TI BOL cfs = 30Za 0.575 Za 0.531 24 0.659 . 9 **SWIII** GWS 8W11 GW2 🥌 8Wi G₩4 GW3 IB- GW4 IB- GW3 D- GWS IB- GW3 pH 6.7 pH 6.4 pH 5.4 pH 6.8 DO 11 D.O. 2.2 D.O. 34 DO 13 Cond. 0.802 Cond. 0.457 Cond. 1.95 Cond. 0.492 AR. 9.62+01 AB. 1.98+02 AR. 3.68+01 AR. 1.46+02 Temp. 14.1 Cl 18 Temp. 163 Temp. 142 Temp. 140 . CI 18 CI 29 G 19 NO3-N 1.21 NO3-N 0.86 NOS-N BDL N00-N 0.76 PO4-P BDL PO4-P BDL PO4-P 0.6 POLP BOL 304 1% 104 96.2 804 138+05 504 63.2 A) BDL AI BDL AI 2.0 AI BDL As BDL As BDL A# 0.10 As 0.14 Ca 62 Ca 134 Ca 51 Ca 51 OI BDL Cé BDL Cd 0.018 CI BDL Co BDL Co BDL Ca 0.05 Co BDL Co BDL Ca 0.024 Ca 0.049 Ca 0.058 Fe St Fe 0.40 Fo 3.2E+02 Fo 6.4 Mg 37 Mg 27.0 Mg II Mg 16 Mg 12 Ma 2.00 Ma 0.90 Ma 6.71 Mo 0.076 Ma 0.44 Me BDL Mo 0.016 Na 36 Na 25 Na 83 No 26 1 Meter NI BOL NI BOL NI 0.05 NI BDL Ph BDL Ph BDL Po BDL Ph BDL 31 16 84 13 81 36 \$1.13 8 0.484 Se 0.273 Se 0.322 \$ 0.287 TI BDL TI BOL TI BDL TI BDL Za 8.388 Za 0.296 Za 10.3

Za 0.160

Appendix

.



















.



SILVER BOW CREEK TRANSECT IIIA 7/10/95



Appendix

95





) X





.


\$



100

Itxing :	ratios fo	er Er	ansects	at Site 1													
		Π									İ						Awrenge % GW
L'AMPER	Date	-	.s	CI-CI	N N	NR-GW	2	10 1	9 0	Ca-OW	Sample	Subsurface	VALUES A	E & OW)			from Ca
T		SV	M		SW .		SW.		SW		a d	Me 10	C BET R	Mentre		Camir re.	and Mg
	6/20/95	8		28	3	36	16.5	9	52	8	560033	IA-GW 17	24	113	589	5.32	58
	56/6/1/	B	=	2	3	8	21 -	0	20	8	66/02/9				1	22.2	202
	C(1)-C10	3	•	28	12.4	99	2		525	8	56/02/9	IA GW 2	2.4	\$ 9	110	0.78	50
	1 26126	2	9	26	5	2	50	릐	5	8	\$20.95	IA-DW3	14	15.02	11.87	13.43	1422
											6/20/95	1A-GW4		52.40	50.59	43.07	47 73
	6/26/95 4	949	6	29	91	37	17	8	38.2	ę	620.95	IA GW 5	13	25 25	62 61	23.80	24.52
	7/19/95 2	008	Ξ	29	9.85	37	20.8	3	45.6	9	6/10/95	1A-GW6	67	75.32	62.57	62.51	16 89
	8/27/95	20	17	29	13	37	266	3	57.6	ŧ							
											\$6/61/2	I MO-VI	8.6	7.81	800	21.40	1461
	4 26/8/19	1440	•	38	-	56	114	4	14.7	8	70/01/2	C M U		18.ED	20	88	28.80
		6				   				8							
		3				5				8							
	1	-												RA	17.00	2	
1	ļ							ļ			56/61/2	IN GWS	176	51.06	49 49	37.91	44
i	:	1	1								\$6/61/2	9 ND VI	100.0	6.0	88.75	9 90 94	17.10
1											8/1/96	I MD VI	83	3.39	2 14	8	80
											804 PD	A GW 2	1	1441	726	N.N.	24.29
	1										A A A A		10.	74 15	47.76	23	2
							-						101		14.94	101	
		Γ			-	-			$\downarrow$				2	31			
	1		Ī								2	C MAY	200	19 2/	2	RR	0/19
	1	Ţ									I		****				
		T									561206	I NO VI	1.1	1.1	247	8	2
											56/2/06	IA-GW2	-6.7	13	2	30.11	67.1
											2617.09	IA GW3	19.2	2.2	28.40	15.81	30.29
											2617.09	A-GW4	100.0	100.001	00.00	8 80	100.00
							   				50/2/06	A C A S	115	M.26	44.56	8	67.63
	ĺ																
											60.6.95	B-GW 10	45	0.69	159	7.07	319
	i	Ì									20,20,3	I MU B	105.0	46	AN OC	22 82	8
											10000	C A D		2	10 0	9.4	0.01
		Ì			-		-				SPARA S			216	100	80	157
	i	ſ		-							50,503		14.0	10 10	2012		
		Ī									10000	30					
	1				ļ	1	-										
		T	T								6726/95	B CM 6	0.02	19 20	6.99	BX	24.65
	1	Ī															
	1	Í									56/61/2	BGWI	26.1	51.75	30.71	28	25.35
1											26/61/2	18-GW 2	17.8	4.97	860	17	386
											56/61/2	IB-OW 3	6.8	3.87	048	2.7	1.1
											26/61/2	IB GW 4	20.6	16.39	24.76	16.31	16.35
											56/61/2	IB-GW S	ŧ	56.85	83.12	2,23	68 19
											\$6/61/2	B.GW6	77.8	66.05	95.18	56.57	61.71
											80.7.05	B-GW 2	16.7	4.17	8	8.01	89
											807.08	B CW 3	8.3	433	2.84	8.01	8.17
-											ANT ON	P D W		5	16.67	7.5	88
	Ì				1												
		Ī					-									2.00	
												0.000					
		ì			1									57 13	27.06	10.10	ED 258
1		I									50903	IC GW I	66.3	11.9	92.19	15.09	62 31
		1		1							60.8/95	IC.GW2	16	3.35	4 69	\$	8
											6/28/95	IC-GW 3	22 6	2.11	2.34	0.56	81
											608.95	+ MO U	36.8	3.85	0.39	247	315
											SO NOS	C.CWS	19	3	117	605	
											SOLACA	V AU U		in a	8	8.81	100.001
		Γ															
	Ì	ſ									20.7.04	C MO U		Go	10	5	
											10.04				5		
1		Ī												617	2011	R	
	-	T									GU100	t in	2.8	6.83	10	<u></u>	6.30
		1									807.08	IC GW 5	-2.8	10	52 10	13.08	28.59

	ratios f	or tra	nsecte	at Site	t1	1		1				l		1		1	
		<u> </u>						· · · ·									Average
Transect	Data	LA	CI - in	Q in	Mg in	Mg in	Na-in	Ne in	Ca-in	Ca-tn	Sample	Subsurface					S GWInam
		In SW	SW	IIA GWS	SW	IIA-GW5	SW	ILA GWS	SW	ILA GWS	Date	water ID	CI mix rat	Mg mix rat.	Na mix, rat.	Camix rat.	Ca, Mg, Na
ILA	7/6/95	2890	10.3	26	8.7	54	19	65	41.9	330	7/6/95	ILA-GW2	43.3	17.4	27.4	17.4	20.8
HA.	8/31/95	790	17.5		11.9		28 3	1	54		7/6/95	IIA-GW3	0.0	-02-	04	-1.1	-0.6
						[					7/6/95	ILA GW4	40.8	7.1	13 5	7.5	9.4
IIB	7/6/95	2890	12		91		19.6		43.3		7/6/95	ILA-GW5	100.0	100.0	100.0	100.0	100.0
118	9/4/95	790	15.9		11.9		28		59.8								
								1			8/31/95	ILA GW2	0.0	-3.3	41	8.2	0.3
íЮ	9/4/95	790	15.9		11.9		28		53.8		8/31/95	HA GW 3	14.1	29	22	-20	-24
	l	[]									8/31/95	ILA-GW4	12.9	-14	35	2.6	-0.8
		I	I													I	
			L		I			I	T		7/6/95	IIB GW 1	80 0	13	11	02	09
		1	L		1						7/6/95	IIB GW 2	257	16	09	11	0.6
		L	I								7/6/95	IIB-GW 3	-3.6	1.8	-0.4	09	-10
		I	L				l				7/6/95	IIB GW 4	30.0	22.0	36.3	19.8	26.1
		1									7/6/95	IIB GW 5	64 3	8.7	44 9	26.1	26.6
		L	I														
		L									9/4/95	IIB GW 1	99	0.2	27	04	11
						1					9/4/95	118 GW 2	5.9	02	00	8.4	0.2
											9/4/95	IIB-GW 3	2.0	02	0.0	0.3	<u>ao</u>
		1					1	1			9/4/95	IIB GW 4	20	50	13.5	5.5	80
							I							[	1		
		I									9/4/95	IIC GW2	-30	57	12.2	80	8.6
			T								9/4/95	IIC GW 3	0.0	00	11	02	84
			1					-			9/4/95	IIC GW 4	40	-0.5	2.7	-0.3	06
				1		·								1	1	T	
Mixing	ration (	or tra	neerte	at Site	111	<u> </u>		1	1			<u> </u>		1		1	1
	Lanos I		1 Sector	at site				+	+	}		}		ł	l		
Tana	Date		1		140 -			No. In	0.5	C. 10	6	C. dan dan	L			ļ	Average & Gr
I Tambeci		1	ew .	CU · IN	CW III	CW	CW III	CW	CIP III	CW	Data	Succurrac			Ala undu and	Comtra anti-	Manution
	┣───	maw	24	2	134		34	100	134	101	Lines	WERE ID	Cimpt. rat.	Wag mark rade	na naz rac	Latinix rand	Mig ration
						1				1746						1	
III A	8/28/06	960	177	<i>n</i>		61	27.4	210	67 7	245	8/28/05	IIIA CINI	57.8		00 7	06.3	64.0
IIIA	8/28/95	850	17.7	/0 ·	131	61 	27.4	210	57.7	245	8/28/95	ILA GW1	878	95.8	90.7	963	96.0
	8/28/95	850	17.7	/0 ·	131	61	27.4	210	57.7	245	8/28/95 8/28/95	HIA GW1	878 34.5	95.8 50.9	90.7	96.3 57.8	96.0 54.4
	8/28/95	850 5180	9	//o 	13 I 7.8	61 	27.4	210	57.7 36.5	245	8/28/95 8/28/95 8/28/95	IIIA GW1 IIIA GW2 IIIA GW3	878 34.5 2.4	95.8 50.9 2.9	90.7	963 57.8 2.7	96.0 54.4 2.8
	8/28/95 7/11/95 7/17/95	850 5180 3230	17.7 9 10	/0 	131 7.8 9.7		27.4 20.6 20		57.7 36.5 45	245	8/28/95 8/28/95 8/28/95 8/28/95	IIIA GW1 IIIA GW2 IIIA GW3 IIIA GW4	878 34.5 2.4 13.7	95.8 50.9 2.9 48.2	90.7 41.4 3.8 24.9	96.3 57.8 2.7 32.2	96.0 54.4 2.8 40.2
IILA IIIB IIIB IIIB	8/28/95 7/11/95 7/17/95 8/28/95	850 5180 3230 850	17.7 9 10 17.6	<i>™</i>	13 I 7.8 9.7 12.9		27.4 20.6 20 27		57.7 36.5 45 57.3	245	8/28/95 8/28/95 8/28/95 8/28/95	IIIA GW1 IIIA GW2 IIIA GW3 IIIA GW4	878 34.5 2.4 13.7	95.8 50.9 2.9 48.2	90.7 41.4 38 24.9	96.3 57.8 2.7 32.2	96.0 54.4 2.8 40.2
11LA 11TB 11TB 11TB 11TB	8/28/95 7/11/95 7/17/95 8/28/95	850 5180 3230 850	17.7 9 10 17.6		13 I 7.8 9.7 12.9		27.4 20.6 20 27		57.7 36.5 45 57.3		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95	IIIA GW1 IIIA GW2 IIIA GW3 IIIA GW4 IIIB GW1	878 34.5 2.4 13.7 866	95.8 50.9 2.9 48.2	90.7 41.4 3.8 24.9 73.1	96.3 57.8 2.7 32.2 64.0	960 54.4 2.8 40.2 65.0
111A 111B 111B 111B 111B	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27 27 8		57.7 36.5 45 57.3 52.6	245	8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95	IIIA GW1 IIIA GW2 IIIA GW3 IIIA GW4 IIIB GW1 IIIB GW3	87 8 34.5 2.4 13.7 86 6 7.5	95.8 50.9 2.9 48.2 66.0 10.5	90.7 41.4 38 24.9 731 48	96.3 57.8 2.7 32.2 64.0 9.4	96.0 54.4 28 40.2 65.0 100
111A 111B 111B 111B 111B 111B	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27 27 8		57.7 36.5 45 57.3 52.6	245	8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95	HIA GW1 IIIA GW2 IIIA GW3 IIIA GW4 IIIB GW4 IIIB GW3 IIIB GW4	878 34.5 2.4 13.7 866 7.5 26.9 	95.8 50.9 2.9 48.2 64.0 10.5 52.1	90.7 41.4 3.8 24.9 73.1 44 33.4 33.4	963 57.8 2.7 322 64.0 9.4 53.0	96.0 54.4 28 40.2 65.0 100 52.5
111A 111B 111B 111B 111B 111C	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27 27 8		57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95	HIA GW1 IIIA GW2 IIIA GW3 IIIA GW3 IIIB GW4 IIIB GW3 IIIB GW5	878 34.5 2.4 13.7 866 7.5 26.9 43.3	95.8 50.9 2.9 48.2 660 10.5 52.1 64.3	90.7 41.4 3.8 24.9 73.1 4.8 30.4 38.2	963 578 27 322 640 9.4 530 588	96.0 54.4 28 40.2 100 52.5 61.5
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27 27 8		57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95	HIA GW 1 HIA GW 2 HIA GW 3 HIA GW 3 HIA GW 4 HIB GW 1 HIB GW 4 HIB GW 5	878 345 24 137 866 75 269 433	95.8 50.9 2.9 46.2 66.0 10.5 52.1 64.3 52.1	90.7 41.4 3.8 24.9 73.1 4.8 33.4 33.4 33.4 33.2	963 578 27 322 640 9.4 530 568	96.0 54.4 2.8 40.2 65.0 100 52.5 61.5
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27.8		57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95 7/11/95	IIIA GW 1 IIIA GW 2 IIIA GW 3 IIIA GW 3 IIIA GW 4 IIIB GW 1 IIIB GW 4 IIIB GW 1 IIIB GW 1	87 8 34.5 2.4 13.7 86 6 7.5 26.9 43 3	95.8 50.9 2.9 48.2 66.0 10.5 52.1 64.3 63.2	90.7 41.4 3.8 24.9 73.1 4.8 33.4 33.4 38.2 73.2	963 578 27 322 640 9.4 530 588 64.5 558	960 544 28 402 650 100 525 615 638
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27.8	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95	IIIA GW 1 IIIA GW 2 IIIA GW 3 IIIA GW 4 IIIB GW 3 IIIB GW 4 IIIB GW 5 IIIB GW 1 IIIB GW 1 IIIB GW 1	878 34.5 24 13.7 866 7.5 26.9 43.3 45.5	95.8 50.9 2.9 48.2 66.0 10.5 52.1 64.3 64.3 64.3	907 414 38 249 731 48 384 384 384 384 732 732 732 512	963 578 27 322 640 9.4 530 5588 568 568 559	940 544 28 402 650 100 525 615 638 259
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27 27 8	(10 	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95	IIIA GW 1           IIIA GW 2           IIIA GW 3           IIIA GW 3           IIIA GW 4           IIIB GW 3           IIIB GW 4	878 34.5 2.4 13.7 866 7.5 26.9 43.3 45.5 3.5 2.0 9	95.8 95.9 2.9 48.2 66.0 10.5 52.1 64.3 65.2 25.9 1.0 55.7	907 414 38 249 731 48 304 382 73.2 512 512	963 578 27 322 640 9.4 530 568 568 568 558 558 559 07 259	960 544 28 402 650 100 525 615 618 259 08
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27 27 8		57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW3           IIIB GW4	878 34.5 2.4 13.7 86.6 7.5 26.9 43.3 45.5 3.5 23.0 23.7 23.0 23.7 24.5 24.5 24.5 25.5 23.0 23.7 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	95.8 95.9 2.9 48.2 66.0 10.5 52.1 64.3 64.3 64.3 64.3 64.3 65.2 25.9 1.0 51.7 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55	907 41 4 38 24 9 73 1 48 30 4 38 2 73 2 31 2 11 31 9 96 5	963 97.8 2.7 322 44.0 9.4 53.0 54.8 64.5 25.9 0.7 53.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5	960 544 2.8 402 100 525 615 615 638 259 0.8 259 0.8 526 526
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27.8	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIB GW3           IIIB GW3           IIIB GW3           IIIB GW3           IIIB GW3           IIIB GW4           IIIB GW3           IIIB GW4	878 34.5 24 13.7 86.6 7.5 26.9 43.3 45.5 3.5 23.0 22.7	95.8         95.9           2.9         48.2           66.0         10.5           52.1         66.3           64.3	90.7         41.4           3.8         24.9           73.1         4.8           330.4         38.2           73.2         51.2           11         31.9           38.5         5	963 57.8 27 322 640 9.4 530 568 568 64.5 259 64.5 259 64.5 7535 5335	960 544 28 402 650 00 525 615 638 259 638 259 638 5560
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 	17.7 9 10 17.6 17.5		13 1 7.8 9.7 12.9 11.5		27.4 20.6 20 27 27.8 27.8	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 7/17/95	IIIA GW 1 IIIA GW 2 IIIA GW 2 IIIA GW 3 IIIA GW 4 IIIB GW 4 IIIB GW 4 IIIB GW 4 IIIB GW 3 IIIB GW 3 IIIB GW 3 IIIB GW 3 IIIB GW 4 IIIB GW 3 IIIB G	878 34.5 2.4 13.7 866 7.5 2.6 9 43 3 45 5 3.5 23.0 22.7 95 4	95.8         55.9           2.9         48.2           66.0         10.5           52.1         64.3           63.2         25.9           1.0         55.7           51.7         58.5           70.1         58.5	9(17 4)14 38 24.9 731 49 30.4 38.2 732 512 512 512 512 512 512 512 512 512 51	96.3           57.8           2.7           32.2           64.0           9.4           53.0           54.8           25.9           0.7           53.5           53.5           53.5	960 544 2.8 402 650 100 525 615 615 618 259 0.0 8 526 526 526
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4 20.6 20 27 27.8		57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 7/17/95 7/17/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW3           IIIB GW3	878 34.5 2.4 13.7 86.6 7.5 28.9 43.3 45.5 3.5 23.0 22.7 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4	95.8       55.9       2.9       48.2       66.0       10.5       52.1       64.3       25.9       1.0       51.7       58.5       70.1	9() 7 41 4 38 24 9 73 1 44 38 2 73 2 31 4 38 2 73 2 31 2 31 3 39 5 67 2 4 4 4 38 5 5 5 5 5 5 5 5 5 5 5 5 5 5	963 578 27 322 640 9.4 530 538 645 259 0.7 535 535 535 535 535 535	960 544 28 402 650 100 525 615 615 638 255 615 638 255 615 638 255 645 526 560 560
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		13 1 7.8 9.7 12.9 11.5		27.4 20.6 20 27 27.8	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 8/28/95 8/28/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW3           IIIB GW3	878 34.5 2.4 13.7 86.6 7.5 26.9 43.3 45.5 3.5 23.0 22.7 85.4 75.5 24.4 25.5 23.0 22.7 23.0 22.7 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	95.8         55.9           2.9         48.2           66.0         10.5           52.1         64.3           64.3         25.9           1.0         51.7           58.5         70.1           72.1         28.3	9() 7 4) 4 38 24,9 73 1 44 30 4 30 4 30 4 73 2 73 2 31 2 11 31,9 38 5 5 67 2 46 4	963           57.8           27           322           640           84           535           535           641           333           641	960           544           2.8           402           650           100           525           615           618           259           676           560           676
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790 	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 8/28/95 8/28/95 8/28/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW3           IIIA GW3           IIIB GW4           IIIB GW3	878 34.5 2.4 13.7 866 7.5 26.9 43.3 45.5 3.5 23.0 22.7 85.4 75.5 3.6 7.5 3.6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	95.8         95.9           2.9         48.2           66.0         10.5           52.1         66.3           64.3	90.7       41.4       38       24.9       73.1       44       30.4       30.2       73.2       31.2       11       31.9       38.5       67.2       46.4       80       73	963           57.8           27           322           640           9.4           53.0           58.8           64.5           25.9           0.7           53.5           69.1           31.3           16.4	960         544           2.8         40.2           40.2         65.0           100         52.5           61.5         61.8           25.9         58.0           69.6         29.8           17.1         17.1
	8/28/95 7/11/95 7/17/95 8/28/95 8/21/95 8/31/95	850 3180 3230 850 790 	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 7/17/95 7/17/95 8/28/95 8/28/95 8/28/95	IIIA GW 1           IIIA GW 2           IIIA GW 3           IIIA GW 3           IIIA GW 4           IIIB GW 3           IIIB GW 4           IIIB GW 3           IIIB GW 3           IIIB GW 4           IIIB GW 4           IIIB GW 3           IIIB GW 4           IIIB GW 3           IIIB GW 3           IIIB GW 4	878 34.5 24 137 866 75 269 433 455 35 230 227 227 255 36 125	95.8       55.0       2.9       48.2       66.0       10.5       52.1       64.3       63.2       25.9       1.0       51.7       58.5       70.1       22.3       17.9       48.2	9() 7 4) 4 38 24 9 73 1 73 1 44 38 2 73 2 51 2 11 31 9 55 2 67 2 66 4 80 27 2	963           57.8           27           32.2           640           9.4           53.0           56.8           44.5           25.9           47           53.5           53.5           53.5           53.6           44.5           25.9           47           53.5           53.6           44.5           25.9           47           53.5           53.6           13.3           16.4	960           54.4           2.8           40.2           650           100           525           615           638           259           0.8           526           5360           696           298           171           46.1
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790 	17.7 9 10 17.6 17.5		13 I 7.8 9.7 12.9 11 5		27.4		57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW3           IIIB GW3	878 34.5 2.4 13.7 866 7.5 26.9 43.3 45.5 3.5 23.0 22.7 85.4 75.5 3.6 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7 1	95.8         95.9           55.9         2.9           48.2         10.5           55.1         56.1           55.2         1.0           51.7         58.5           70.1         28.3           77.9         48.2	9(17 4) 4 38 73 73 4 4 9 73 4 8 30 4 30 4 30 4 30 4 31 2 73 2 31 2 31 2 31 2 31 2 32 5 72 46 4 4 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	963 578 27 322 640 84 84 530 538 535 535 535 535 535 535 535 535 535	960           54.4           2.8           40.2           650           100           525           615           615           615           638           526           526           526           526           560           696           29.8           1771           44.1
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790	17.7 9 10 17.6 17.5		131 7.8 9.7 12.9 11.5		27.4	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW4           IIIB GW3           IIIB GW4           IIIB GW3           IIIB GW4           IIIB GW3           IIIB GW4           IIIB GW4	878 34.5 2.4 13.7 86.6 7.5 20.9 43.3 45.5 3.5 23.0 22.7 85.4 75.5 3.6 12.5 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9	95.8         95.8           55.9         2.9           46.2         10.5           52.1         64.3           64.3         25.9           1.0         51.7           58.6         52.1           70.1         22.3           77.9         48.2           58.4         52.4	907 414 38 249 731 44 3314 3314 3314 3314 3313 312 312 312 312 312 313 365 5 5 5 5 5 5 7 2 7 2 7 2 7 2 7 2 7 2 7	963           57.8           27           322           640           94.4           530           58.8           64.5           25.9           67.5           53.5           53.5           53.5           64.1           52.7           52.7	960         544           2.8         40.2           40.2         650           100         52.5           615         61.8           25.9         61.5           63.8         25.9           550         69.6           69.6         29.8           17.1         44.1           55.5         55.5
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95	850 5180 3230 850 790 790	17.7 9 10 17.6 17.5		131 78 97 129 115		27.4 20.6 20 27 27 27 8	· · · · · · · · · · · · · · · · · · ·	57.7 36.5 45 57.3 52.6		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 8/28/95 8/28/95 8/28/95 8/31/95 8/31/95	IIIA GW1           IIIA GW2           IIIA GW3           IIIA GW3           IIIA GW3           IIIA GW3           IIIB GW4           IIIC GW2           IIIC GW3	878 34.5 24 137 866 7.5 28.9 433 455 35 230 227 854 755 36 125 49.6 7.5 24 49.6 7.5 24.7 25 26 27 27 27 27 27 27 27 27 27 27	95.8         55.9           2.9         48.2           66.0         10.5           52.1         66.3           64.3         3           63.2         25.9           1.0         51.7           58.5         3           70.1         28.3           17.9         48.2           58.4         25.3	907 414 38 249 731 44 48 382 731 731 44 582 732 732 732 732 732 732 732 73	96.3           57.8           2.7           32.2           64.0           9.4           53.0           56.8           64.5           25.9           64.5           25.9           67           53.5           69.1           31.3           16.4           44.1           22.7           26.7           24.4	960 544 2.8 402 650 100 525 615 615 618 259 638 526 560 696 298 171 441 555 260
	8/28/95 7/11/95 7/17/95 8/28/95 8/31/95 8/31/95	850 5180 3230 850 790 	17.7 9 10 17.6 17.5		131 78 97 129 115		27.4 20.6 20 27 27 27 27 8 		57.7 365 573 526		8/28/95 8/28/95 8/28/95 8/28/95 7/11/95 7/11/95 7/11/95 7/11/95 7/17/95 7/17/95 7/17/95 7/17/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95 8/28/95	IIIA GW 1           IIIA GW 2           IIIA GW 3           IIIA GW 3           IIIA GW 4           IIIB GW 3           IIIB GW 4           IIIB GW 3           IIIB GW 4           IIIB GW 4           IIIB GW 4           IIIC GW 2           IIIC GW 4           IIIC GW 4	878 34.5 24 137 866 7.5 28.9 43.3 45.5 3.5 23.0 22.7 85.4 75.5 3.6 12.5 49.6 7.5 2.4 49.6 7.5 2.4 49.6 7.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	95.8           55.0 9           2.9           48.2           66.0           10.5           52.1           66.3           25.9           1.0           51.7           55.5           70.1           28.3           17.9           48.2	9(17 414 38 249 731 44 382 732 314 382 732 314 384 382 732 315 55 20 	963 57.8 27 32.2 640 9.4 53.0 53.6 53.5 53.5 53.5 64.5 7 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 53.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54	960           53.4           2.8           40.2           650           100           525           615           638           526           560           696           696           771           461           555           260           62

## Concentrations vs. Dissolved oxygen [mg/L]







D.O.

1000

100

10 -

ò



2





D.O.

D.O.



Ì03

•

Full listing of hyporheic zone samples with dissolved oxygen, nitrogen-N, and sulfate concentrations lower than (and alkalinity levels higher than) surface water and groundwater samples:

Elyporheic zone	H.Z.	[H.Z.	H.Z.	HZ.	Surface	Surface	Surface	Surface
(H.Z.)	Diss.	NO.	SO.	AIK.	water	water	water	touter
Sample	0 <u>,</u>	-N		State State Stranger	Diss. O ₁	NO, -N	SO,	Alk.
Site I	L'	<u> </u>			L'			
IB-GW1 (6/26/95)	0.5	BDL	15.3	7.6E+02	6	0.9-1.0	54-55	1.0E+02
IC-GW1 (6/28/95)	1.9	BDL	1.88	NA	6-7	0.9	51-52	1.5E+02
IC-GW2 (6/28/95)	2.1	BDL	24.9	2.0E+02	6-7	0.9	51-52	1.5E+02
IA-GW1 (7/19/95)	1.3	0.1	37.8	3.4E+02	6	1.1	73	1.7E+02
IA-GW2 (7/19/95)	1.2	BDL	28.9	5.7E+02	6	1.1	73	1.7E+02
IB-GW1 (7/19/95)	0.8	BDL	21.9	NA	6	1.1	73	1.7E+02
LA-GW1 (8/24/95)	1.8	BDL	69.2	1.8E+02	7-8	1.6-1.7	90-96	1.3E+02
IA-GW2 (8/24/95)	1.5	BDL	36.4	3.7E+02	7-8	1.6-1.7	90-96	1.3E+02
IB-GW2 (8/27/95)	1.3	0.76	63.2	1.4E+02	7-8	1.9	100-104	1.2E+02
IC-GW2 (8/27/95)	NA	0.14	31.9	3.4E+02	NA	1.9	101-103	1.2E+02
IC-GW3 (8/27/95)	NA	0.08	62.1	1.4E+02	NA	1.9	101-103	1.2E+02
IA-GW1 (9/27/95)	1.8	BDL	68.1	2.1E+02	7	1.9	108	1.3E+02
IA-GW2 (9/27/95)	1.6	0.14	51.4	3.4E+02	7	1.9	108	1.3E+02
Site II								
IIA-GW2 (7/6/95)	2.0	0.09	7.61	NA	6	0.7-0.9	60-63	1.3E+02
IIA-GW4 (7/6/95)	1.3	BDL	25.8	3.4E+02	6	0.7-0.9	60-63	1.3E+02
IIB-GW2 (7/6/95)	1.3	0.60	56.4	1.5E+02	6-7	1.2	62-67	1.4E+02
IIB-GW4 (7/6/95)	1.1	BDL	9.25	2.7E+02	6-7	1.2	62-67	1.4E+02
IIA-GW2 (8/31/95)	0.6	BDL	17.8	3.8E+02	8	1.6-1.7	102-104	1.2E+02
IIA-GW4 (8/31/95)	0.9	BDL	55.9	2.6E+02	8	1.6-1.7	102-104	1.2E+02
IIB-GW1 (9/4/95)	NA	1.38	87.1	1.2E+02	NA	1.9	101	1.1E+02
IIB-GW2 (9/4/95)	NA	1.27	83.3	1.6E+02	NA	1.9	101	1.1E+02
IIB-GW4 (9/4/95)	NA	BDL	16.4	3.8E+02	NA	1.9	101	1.1E+02
IIC-GW4 (9/4/95)	NA	BDL	27.3	NA	NA	1.9	101	1.1E+02
Site III		· · · · ·			· · · · ·			
IIIC-GW4(8/31/95)	2.1	0.73	79.1	2.3E+02	8-9	1.5-1.6	97-102	1.2E+02

,

#### Transect-scale trends in surface water chemistry:

A simple and quick measurement of groundwater infiltration into the surface water was measured directly with the specific conductance meter. When the meter was placed directly against (but not into) the stream bank, significantly higher specific conductance was measured where water data indicated that ground water was infiltrating.

Transect	Spec. Cond. (m8/cm) in SW center	Spee. Cond. (m8/cm) in SW, against creek bank	Spec. Cond. (mS/cm) in gound water ≤1m from creek
IA (2/26/95)	0.220	0.290	0.950
IA (5/15/95)	0.200	0.220	1.20
IB (5/15/95)	0.210	0.290	1.50
IC (5/15/95)	0.210	0.220	0.370
IB (8/27/95)	0.498	0.625	1.95
IIIA (8/28/95)	0.510	0.640 (E bank)	2.23
IIIA (8/28/95)	0.510	0.599 (W bank)	1.24

Table 6: Examples of specific conductance measurements of water along the creek banks, as compared to those of the surface water in the central portion of the creek channel and to nearby groundwater.

This was found primarily on the east bank of Site I, where piezometeric data indicate groundwater is flowing into the creek from the east side. When the specific conductance meter was placed in the surface water, right up against the east bank, higher measurements were recorded. The most striking example was measured on 8/27/95, when the specific conductance in the central portion of the stream channel measured at 0.498 mS/cm, whereas along the east bank it was measured 0.625 mS/cm. The suspected source for this elevated level, the groundwater within the east bank, was measured to have a specific conductance of 1.95 mS/cm. The 95% confidence interval for the mean error associated with specific conductance measurements was calculated to be 3.4%, and thus these differences observed in the surface water are significant. Such measurements indicate that it is possible to directly detect the high-conductivity groundwater infiltrating the creek, at least along those portions of the creek where the differences between the surface water and ground water specific conductance values are large. Although the measurements are not useful in indicating the type and concentrations of the specific ions are moving into the surface water system, they are useful in detecting locations of ground water movement into the creek.

ICAPES data from bead digests run on 1/24/96 and 1/25/96

Name	Date	Time	AJ	As	Ca	Cđ	Co	Cr	Cu	Fe	Mg	Ma	Mo	Na	Ni	Р	РЪ	Si	Sr	τi	Z.
BLANK	1/24/96	8 45	0.003	-0 021	0.001	0.0011	0 0004	0.0005	0 002 3	0.003	0.01	0	-0.0011	0.009	-0 004	0.02	0.014	0 034	0.0003	-0.0002	0.0012
8-STR.BLANKI	1/24/96	8:48	0.023	-0.011	0	0.0006	0.0046	0.0086	0.0027	0.013	0.03	5E-04	0.0034	-0.013	0.005	0.08	-0.005	0.029	0.0002	0	0.0071
8-STR.BLANK2	1/24/96	8:50	0 01 3	0 018	0	0 0006	0.0016	0.0077	0.0012	10.0	0.02	0	0.0005	-0 009	-0.001	80.0	0:005	0 028	0	-0 0004	0.0051
8-BEADBLNK1:1.0022g	1/24/96	8:54	4.05	0.016	0.211	0.0001	0.002	0.0067	0.0019	0.024	0.157	0.003	0.0006	0 03 1	0.001	0.11	0 005	0.417	0.0012	0.0065	0.0049
8 BEADBLNK2;0.9939g	1/24/96	8.57	2.27	0 03	0.249	0.0007	0.0005	0.0147	0.0008	0.017	0 116	0.005	-0.0003	0.043	-0.001	0.09	0.002	0.377	0.0015	0.0066	0.0022
BLANK	1/24/96	9:09	0.02	0.003	0.006	0	0.001	0.0011	0.0027	0.001	0.014	0	-0.0011	0.006	-0.003	0.09	-0.026	-0.007	0.0003	0	0.0035
USGS T107	1/24/96	9:13	0.25	0	13	0.0183	0.0123	0.0263	0.0329	0.061	2.27	0.052	0.0159	22.9	0.027	0.14	0 033	4.16	0.0649	0.0025	0.0906
USGS TI17	1/24/96	9.17	0.106	-0.005	23.3	0.003.3	35 04	0.0234	0.0077	0.52	11	0.243	0.00194	22	0.014	0.37	-0.006	6.21	0.2779	0.0027	0.2034
USCE TIM	1/20/90	9:00	0.004	-0.009	17.0	0.0173	0.0147	0.0019	0.001	-0.004	2.78	0.057	0.0019	22 7	-0.003	0.02	0.003	4 14	0.0002	0,0001	0.0002
USOS T117	1/26/96	9:12	0.092	0.01	23.2	0.0032	0.0055	0.0274	0.0053	0.517	11	0.241	0.0132	21.9	0.006	0.27	-0.006	6.24	0 278	0.0025	0.000/
USGS T-91	1/26/96	9:15	0.413	-0.01	27.8	0.0397	0.0131	0.0196	0.997	0.313	11.1	2.551	0.0014	6.23	0.018	0.08	0.009	7.37	0.123	0.0018	6.276
USGS AMW-2	1/26/96	9:18	20.5	-0.028	339	0.1393	0.1458	0.3491	4.939	102	116	92.03	0.1445	25.2	0.247	0.51	0.037	23	1.424	0.0148	47.61
8-BLANK	1/26/96	9:28	0.006	-0.012	0.006	1E-04	0.0009	0.0357	-0.002	-0.003	0.007	0.002	0.0021	0.07	-0.004	0.14	0.002	-0.004	0.0015	0.006	0.0009
8-STR.BLANKI	1/26/96	9:31	0.017	-0.005	0.053	-2E-04	D.0011	0.028	-0.001	0.032	0.06	0.001	-0.0009	0.052	-0.004	0.14	0	0.071	0.0008	0.0022	0.0038
8-STR.BLANK2	1/2 <b>6/96</b>	9 34	0.065	-0.017	0.084	-1E-04	0.0017	0.036	0.001	0.041	0.366	0.001	-0.0004	0.125	-0.002	0.17	-0 006	0.206	0.0014	0.0065	0.0022
8-STR.BLANK3	1/26/96	9:37	0.011	0.013	0.065	0.0003	0.0009	0.0289	-7E-04	0.032	0.057	5E-04	0.0012	0.12	0.017	0.14	-0.01	0.079	0.001	0.004	0.0162
8-BLANK	1/26/96	9:40	-0.003	0.005	0.006	-6E-04	0.0009	0.0389	-7E-04	-0.004	0.01	7E-04	0.0024	0.08	-0.001	0.18	-0.001	0.002	0.0017	0.0076	0.0007
8-BEADBLANKS	1/20/90	9:43	3	-0.015	0.6/6	0.0008	0.0017	0.0344	-0.001	0.036	0.169	0.009	-0.0011	0.173	-0.000	0.17	0.002	0.777	0.0042	0.0143	0.0028
B-IC-1 0-0cm	1/20/90	9.40	4.1	0.093	1.01	0.0057	0.0017	0.0306	0.5775	5.51	0.32	0.393	0.0031	0.374	0.049	0.72	0.141	1.06	0.013	0.04/4	1.355
A-IC-1 11-30 cm	1/26/96	9.53	3.65	0.022	1.61	0.0031	0.0015	0.037	0.9004	1.53	0.83	0.706	0.0006	0.991	0.069	0.46	0.097	0.873	0.012	0.0275	1.973
8-1C-3 0-9.5cm	1/26/96	9.56	5 06	0.063	2	0.0057	0.0008	0.0371	1.512	3.93	0.536	0.504	0.0066	0.667	0.103	0.75	0.188	1.87	0.0162	0.0419	1.599
8-IC-39.5-21cm	1/26/96	10.00	4.56	0.016	1.42	0.0021	0.0008	0.0403	0.9113	2.81	0.426	0.262	0.003	0.45	0.041	0.45	0.065	1.23	0.0101	0.0358	0.5246
USGS T107	1/26/96	10:03	0.226	0.002	13.6	0.0187	0.0157	0.0776	0.0294	0.063	2.28	0.054	0.0132	22.3	0.034	0.28	0.039	4.34	0.0644	0.0116	0.0969
USGS TI 17	1/26/96	10:06	0.07	-0.01	23.8	0.0027	0.0047	0.0688	0.0035	0.513	10.7	0.243	0.0115	20.8	0.009	0.49	0	6.32	0.2654	0.0112	0.2086
8-1C-3 21-32cm	1/26/96	10:09	11.3	0.027	1.25	0.0044	0.0011	0.0422	1.108	13.2	0.555	0.207	0.02	0.386	0.059	0.47	0.065	3.01	0.0095	0.0506	0.7684
8-IC-3 32-42cm	1/26/96	10.12	5.96	0.014	1.22	0.0025	0.0004	0.0386	0.951	5.41	0.529	0.327	0.0052	0.543	0.065	0.37	0.063	1.46	0.0084	0.0344	0.6865
8-IC-1 30-42cm	1/26/96	10:15	4.63	0.468	2.65	0.0245	0.0034	0.0556	3.598	00.4	0.752	1.29	0.0861	0.879	0.317	8.7	0.244	3.61	0.0535	0.0358	4.367
8-1C-2 0-14cm	1/26/96	10:18	3.13	0.055	2.43	0.00066	0.0017	0.0432	1.424	3.63 5.47	0.575	0.609	0.0041	0.397	0.1079	0.19	0.156	1.850 2.40	0.0196	0.0456	2.093
8-1C-2 14-18Cm	1/26/96	10.21	10 6	0.85	∠.08 3.35	0.0098	0.002/	0.0429	2	53.8	1.03	0.71	0.006/	0.894	0.043	59 59	0.329	4.09 4.77	0.0233	0.001/	4 512
8-IC-2 18-32cm (2)	1/26/96	10.24	5 86	0 758	2.8	0.0202	0.0017	0.0522	2	48.6	1.03	1 478	0.0647	0.934	0.03	54	0.241	3.95	0.0432	0.0358	3945
8-IC-2 32-41 cm	1/26/96	10:31	2.73	0	1.37	0.0042	0.0009	0.0431	0.552	1.4	0.431	0.34	0.0028	0.57	0.199	0.49	0.047	0.762	0.0097	0.0239	0.6602
8-18-1 0-8cm	1/26/96	10:38	6.97	0.034	1.76	0.0147	0.0051	0.0476	2.842	2 61	2.95	3.352	0.0037	2.93	0.005	0.87	0 093	1.61	0.015	0.0331	5.522
8-18-1 0-8cm (2)	1/26/96	10:41	3.36	0.014	1.96	0.0153	0.0051	0.0527	2.91	3.05	2.81	3.353	0.0041	3.05	0.007	0.98	0.105	1.38	0.0169	0.0297	5.593
8-18-1 0-8cm DUP	1/26/96	10:43	37.1	0.023	1.95	0.0137	0.0055	0.0528	2.829	2.87	3.79	3.359	0.0053	3.01	0.008	0.9	0.086	4.39	0.0163	0.0803	5.526
8-18-1 8-12 cm	1/26/96	10:47	5.45	0.158	1.9	0.0093	0.0025	0.0437	1.366	10.1	0.821	1.3	0.011	0.796	0.003	2.1	0.201	1.63	0.0236	0.0347	2.476
8-BLANK	1/26/96	10.50	0.012	-0 023	0.01	0.0008	D.0006	0.0562	-0.002	-0.002	0.02	5E-04	-0.0024	0.13	-0.003	0.3	-0.004	0	0.0023	0.0094	0.0025
8-18-1 12-16cm	1/26/96	10:53	2.61	0.004	1.44	0.0028	0.0015	0.038	0.291	0.757	0.396	0.252	-0.0008	0.504	-0.003	0.43	0.053	0.895	0.0109	0.0249	0.7794
B-BLANK	1/20/90	10:56	0.015	-0.02	12.6	-36-04	0.0009	0.0333	-/12-04	-0.004	0.004	28-04	-0.001	0.112	0.001	0.32	0.006	4 76	0.0023	0.009	0.0024
USOS TUT	1/26/96	11:07	0.094	0.007	74	0.00332	0.0051	0.0256	0.027	0.571	10.6	0.248	0.0137	21.3	0.01	0.56	-0.002	6 39	0.007	0.0120	0.2131
8-18-1 16-21cm	1/26/96	11:05	3.31	-0.032	1.01	0.0011	0	0.0405	0.1947	0.358	0.275	0.128	0.0003	0.321	-0.003	0.37	0.036	0.819	0.0076	0.0206	0.4695
8-18-22-32cm	1/26/96	11:08	8.85	0.008	1.51	0.0019	0.0021	0.0427	0.4582	0.517	0.494	0.205	0.0001	0.455	0.002	0.41	0.047	1.33	0.0099	0.034	0.6558
8-118-1 32-41.5	1/26/96	11:11	5.86	0.004	1.74	0.0022	0.0021	0.0409	0.6104	1.44	0.606	0.364	0.0007	0.687	0.001	0.46	0.069	1.38	0.0132	0.0372	0.6588
8-18-1 8-12cm DUP	1/26/96	11:14	21.1	0.123	2.24	0.0107	0.0017	0.0489	1.339	10.1	1.24	1.296	0.0138	0.872	0.007	2.2	0.207	3.59	0.0254	0.0692	2.451
8-LA-3 0-10cm	1/26/96	11:17	4.43	0.098	2.18	0.0122	0.0027	D.0458	3.566	6.93	1.33	1.641	0.0066	1.94	0.013	1.5	0.217	2.53	0.0225	0.0474	3.596
8-1A-3 10-20cm	1/26/96	11:20	5.42	0.13	1.7	0.0126	0.0021	0.0432	2.655	15.1	1.35	1.543	0.0178	2.02	0.131	0.87	0.222	3.02	0.0144	0.032	2.692
0-1A-3 20-31cm	1/20/90	11:25	5.7	0.001	1.44	0.0132	0.0025	0.0426	1.463	1.13	, 1 <b>7</b>	1.907	0.0005	1.77	0.010	0.6	0.055	1.61	0.0127	0.0276	1 77
A-IA-2 0-12cm	1/26/96	11.20	37	0.074	2.47	0.0084	0.0025	0.0455	3 386	7 07	1.08	1 333	0.0097	1.45	0.045	1.5	0.203	2 31	0.0241	0.0481	2.471
8-IA-2 0-12cm(2)	1/26/96	11:33	5.92	0.096	2.67	0.0091	0.0015	0.0481	3.688	8	1.27	1.461	0.0091	1.55	0.001	1.7	0.196	2.91	0.0261	0.0557	2.778
8-IA-2 12-15cm	1/26/96	11.36	12 1	0.232	2.12	0.0162	-2E 04	0.0448	6.275	28.8	0.601	0.674	0.0396	0.833	-0.003	2.4	0.239	8.26	0.0216	0.0286	3.171
8-LA-2 15-23cm	1/26/96	11:39	20.8	0.085	1.94	0 0088	0.0013	0.0516	3.66	42.1	0.732	0.76	0.0627	0 962	0	1.3	0.601	11.8	0.0171	0.0324	2.601
8 BLANK	1/26/96	11:44	0.007	0.032	0.012	0.0014	-2E-04	0.0484	-0.002	-0.003	0.012	2E-04	-0.0022	0.107	0.001	0.31	0.035	-0.005	0.0021	0.0087	0.0027
8-IA-2 23-33_5cm	1/26/96	11:47	10.6	0.043	4.74	0 006	0.0011	0.0482	2.198	28.3	0.786	0.709	0.0417	1.19	0.006	0.71	0.338	4 87	0.025	0.0354	1.345
8-1A-2 0-12cm(2) DUP	1/26/96	11.50	12.7	0.093	2.89	0.0092	0.0019	0.0556	3 645	8.2	1.48	1.454	0.0078	1.58	-0 005	1.7	0.187	4.47	0.0272	0.0796	2.751
8-1A-2 23 33 Sem (2)	1/26/96	11:53	10.2	0.039	4.10	0.005	0.0006	0.05	2.189	27.7	0.632	0.591	0.044	1 13	0.003	0.73	0.301	4.84	0.0219	0.0304	1.212
115CS T117	1/26/96	11.50	9.39 0.087	0.007	25.6	0.0043	0.0047	0.0024	0.0035	0.558	117	0.063	0.0391	72.6	0.003	0.65	.0.016	5.15	0.0143	0.0329	023
USGS T107	1/26/96	12:02	0.219	-0.009	13.5	0.0183	0.0118	0.0832	0.0287	0.066	2.2	0.053	0.012	22.4	0.036	0.38	0.012	4.26	0.0637	0.013	0.0972
8-IIA-3 0-8.5cm	1/26/96	12:05	20.7	0 053	2.19	0 0029	0 0009	0 0448	1.32	4.62	0 812	0.289	0 005	0 33	0.006	0 95	0.138	4 01	0.0189	0.0734	1.123
8-11A-3 8.5-13.5cm	1/26/96	12:08	7.15	0.432	3.94	0.0074	0.0006	0.056	0.9751	54.5	0.45	0.364	0.0763	0.301	0.001	4.7	0.172	4.15	0.0552	0.0358	1.045
8-11A-3 13.5-21.5cm	1/26/96	12:11	7.78	0.031	1.47	0.0013	0.0002	0.0426	0.2464	2.74	0.348	0 089	0.0034	0.28	-0.007	0 89	0.065	1.26	0.0134	0.0316	0.2547
8-IIA-3 13.5-21.5(2)	1/26/96	12:14	7.19	0 019	1.72	0.0012	0.0002	0.042	0.217	2.26	0.35	0.084	0.0003	0.346	0	0.77	0.039	1.38	0.0141	0.0315	0.2668
8-11A-3 21_5 29.5cm	1/26/96	12.17	6 15	0 006	1.3	0 0004	0.0017	0.0379	0.1884	0.769	0.306	0.059	-0.0012	0.307	-0.002	0.43	0 046	1.11	0.0096	0 0278	0.3845
8-EA-3 30-41cm	1/26/96	12:20	4.87	0 008	1.34	0.0004	-0.001	0.043	0.2673	0.743	0.261	0.065	0.0001	0.291	0.001	0.48	0.05	1.13	0.0101	0.0293	0.3044
8-11B-1 0-8cm	1/26/96	12:23	3.18	0.035	2.02	0.0035	0.0011	0.0409	0.9687	3.12	0.381	0.325	0.0016	0.314	0.038	0.82	0.132	1.68	0.0165	0.0383	1.026
USUS (10/	1/26/90	12.20	دين ب 4 35	-0,001	21	0.00034	0.0127	0.0920	0.0312	0.000 2 #7	4.49	0.000	0.0178	د ب ۵۵۹۵	0.001	0.84	0.009	1.97	0.0120	0.0143	0.1038
8.11B-3 7.15cm	1/26/96	12:37	4.63	0 169	2.41	0.0044	0.0004	0.0438	0.8211	4.17	0 448	0.207	0.0041	0.525	0.007	0.82	0.247	2.02	0.0205	0.0546	2,829
8-UB-3 15-25cm	1/26/96	12:35	3.25	0.038	1.57	0.0012	6E-04	0.0432	0.2882	1.4	0.294	0.077	0.0023	0.422	0.001	0.58	0.077	1.21	0.0116	0.034	0.5612
8-11B-3 25-41cm	1/26/96	12:37	8.25	0.004	2.24	0 0019	-0.002	0.045	0.2478	1.4	0 472	0.092	-0.0036	0.469	0.005	0.46	0.082	1.81	0.0144	0.047	0.2702
8-IIB-3 25-41cm (2)	1/26/96	12:40	2.57	0.02.5	1.48	0.0011	0.0017	0.0395	0.2223	1.14	0.231	0.077	0.0005	0333	-0.002	0.41	0.07	1.09	0.0103	0.0293	0.2377
8-11C-1 0-11cm	1/26/96	12.43	8.01	0.044	2.44	0.0034	0.0004	0.038	0 946	3.1	0.521	0.347	0.0013	0.478	-0.002	0.81	0.137	2.53	0.0185	0.0485	1.043
8-11C-10-11cma (2)	1/26/96	12:45	5 08	0.047	2.55	0.0031	-6E-04	0.0439	1.008 -	3.18	0.473	0.377	0.0048	0.482	-0.002	0.84	0.14	2.06	0.0194	0.0448	1.168
8-tiC-10-11cm DUP	1/26/96	12.48	17.2	0 07	2.57	0.0038	0 0013	0.0406	0.9503	3.24	0.782	0.353	0.0061	0.515	0.003	0.83	0.127	3.84	0.0192	0.0723	1.055
8-11C-1 11-20cm	1/26/96	12:50	5.92	02	2.44	0.0039	0.0011	0.038	1.169	12.7	0.504	0.454	0.0185	0.384	0.005	13	0.433	3.03	0.0212	0.0752	0.8982
8-11C-1 20-30cm	1/26/96	12:55	7 13	0 1 75	2.5	0.0019	0.0008	0.0413	0.3286	20	0.388	0.2.56	0.0264	0.354	-0.004	2.5	0.122	2.49	0.0265	0.0423	0.7616
8-11C-1 20-30cm (2)	1/26/96	12:58	14.1	0186	3.02	0.0023	0.0013	0.0363	0.5473	18.8	0.030	0.204	0.024	0.433	100.001	4.0 0.2e	0.12	3.1 1.94	0.029/	0.03/5	0.6752
8-0C-1 30-42cm	1/20/90	13.01	3 D 3 7 5	0.002	1.01	0.0002	0.001	0.0363	0.1714	0.71	0.201	0.082	-0.0007	0.411	0.001	0.38 0.47	0.022	1.20	0.0109	0.0289	0.0221
USGS T107	1/26/96	13.05	0 2.34	-0.011	14.8	0.021	0.0142	0.095	0.0319	0.07	2.39	0.059	0.01.59	24.4	0.036	0.45	0.019	4.68	0.069	0.0154	0.1049
A BLANK	1/26/96	13:10	0.016	0074	0.057	5E-04	-0.001	0.0447	-0 003	0.002	0.057	0.001	0.0031	0.414	0.008	0.41	-0 032	0.006	0.0023	0.0087	0.0042
8-BLANK	1/26/96	13.17	0 018	0 009	0	-1E-04	0.0025	0 049	-0.003	-0.006	-0.002	-2E-04	0.0026	0.108	0	0.19	0.017	0.002	0.0021	0.0116	-0.001
USGS T107	1/26/96	13 20	021	0 015	13.7	0 0173	0.0174	0.0793	0.029	0.066	2.3	0.053	0.0197	20.9	0.034	0.24	0.055	4.26	0.064	0.0137	0.098
				-		0.0475	0.0157	0.0766	0.9616	0.32	11.1	2.586	0.005	573	0.023	0.25	0.039	7.58	0.1184	0.013	6.921
USGS T91	1/26/96	13.25	0.384	0	29.4	0.0420	0.0101														

Appendix																					107	1
Sample Name	Date	Time	AI	As	Ca	Cd	Co	Cr	C	Fe	Mg	Ma	Mo	Na	Na	Р	РЪ	Si	Sr	Ti	Z.	-
USGS T107	1/26/96	13:56	0.225	0.008	12.9	0 0177	0.0129	0.0179	0.0326	0.067	2.28	0.052	0.0182	22.9	0.03	0.02	0.041	4.18	0.0644	0.0007	0.0898	-
USGS T117	1/26/96	13:59	0.081	0.001	23.5	0 0038	0.0037	0.0225	0.0078	0.513	11.1	0.244	0.0166	21.9	0.009	0.26	0.001	6.32	0.2788	0.0022	0.2025	
USGS T91	1/26/96	14:02	0.408	0.031	28.5	0 0401	0. <b>01 12</b>	0.0193	1:005	0.317	0.1	2.587	0.0041	6.19	0.025	0.1	0.029	7.52	0.1237	0.0015	6.422	
8-BLANK	1/26/96	14:05	-0.001	-0.01	0.004	0.0003	0.0006	-0.0048	0.0004	-0.002	0.001	0	0.002	-0.017	0.005	-0.01	-0.007	0.002	-1E-04	-0.0022	0.0012	
USOS T-91	1/26/96	14:08	0.399	0.027	28.4	0 0414	0.0105	0.02	0.9996	0.31	11	2.572	0.0073	6.2	0.022	0.12	0.019	7.48	0.1231	0.0015	6.4	
8-111B-3 30-41cm	1/26/96	14:13	4 43	0.019	1 97	0 0007	0.0007	-0.0095	0.3302	1.11	0.333	0.071	0.0039	0.336	0.002	0.21	0.117	1.54	0.0155	0.0274	0.4533	
8-111B-3 21-30cm	1/26/96	14:16	5.5	0.004	2.15	0.0019	-9E-04	-0.0065	0.6094	1.13	0.35	0.053	0.0053	0.337	0.002	0.28	0.118	1.82	0.0157	0.0345	0.6875	
8-111B-3 9-21cm	1/26/96	14:19	3.88	0	2.08	0.0025	0.0004	-0.005	0.3828	1.11	0.272	0.071	0.0033	0.407	0.004	0.3	0.091	1.54	0.0154	0.0255	0.921	
8-IIIB-3 0-4cm	1/26/96	14:21	5.46	0.283	3.65	0.008	-0.001	-0.0038	1.739	23.9	0.433	0.28	0.0368	0.5	0.006	2.9	0.222	3.37	0.0485	0.0345	1.644	
8-IIIB-2 0-8cm	1/26/96	14:25	6.7	0.533	4.54	0 0071	0.0004	0.0244	2.818	141	0.369	0.166	0.2101	0.55	0.061	3.5	0.083	12.8	0.0604	0.0304	3.701	
8-111B-2 8-18cm	1/26/96	14:28	5.09	-0.013	2.29	0.0001	-0.002	-0.0073	0.1385	0.971	0.318	0.033	0.0037	0.358	0.055	0.1	0.028	1.79	0.0121	0.0296	0.2256	
8-1IIB-2 18-29cm	1/26/96	14:31	3.3	0	1.69	0.0008	-9E-04	-0.0083	0.1499	0.694	0.236	0.029	0.004	0.342	0.179	0.06	0.018	1.06	0.0094	0.0176	0.2154	
8-111B-2 18-29cm(2)	1/26/96	14:33	4.29	-0.02	1.96	0.0004	-7E-04	-0.0031	0.0574	0.612	0.275	0.032	0.0032	0.308	0.046	0.09	0.029	1.52	0.0107	0.0236	0.1605	
8-111B-3 4-9cm	1/26/96	14:36	4.86	-0.008	2.3	0.0022	-0.002	-0.0044	0.6053	1.41	0.334	0.077	0.0039	0.471	-0.004	0.3	0.112	1.8	0.018	0.0334	0.8537	
USGS T107	1/26/96	14:39	0.229	0.01	14.1	0.0201	0.0137	0.0428	0.0333	0.072	2.45	0.057	0.0205	24.7	0.035	0.15	0.035	4.54	0.0695	0.0049	0.0989	
USGS T107	1/26/96	14:42	0.23	-0.011	13.7	0.0194	0.0129	0.0422	0.0344	0.072	2.36	0.055	0.018	23.6	0.033	0.1	0.036	4.37	0.0672	0.0041	0.0948	
USOS T107	1/26/96	14:43	0.219	0.005	13.7	0.0188	0.0133	0.0395	0.0337	0.07	2.34	0.055	0.0209	23.6	0.032	0.09	0.025	4.34	0.067	0.0037	0.0952	
8-111C-1 0-8cm	1/26/96	14:46	6.1	0.026	3.16	0 0042	-4E-04	-0.003	0.7179	2.57	0.664	0.319	0.0066	3.44	0.002	0.38	0.094	2.57	0.0216	0.039	0.9871	
8-BLANK	1/26/96	14:49	-0.015	-0.025	0.004	0.0014	-7E-04	0.0035	0	-0.001	-0.015	0	0.0027	0.02	0.001	0.06	0.009	0.003	0.0002	-0.0004	0	
8-1HC-1 8-11cm	1/26/96	14:52	4.89	0.375	3.93	0.0029	-4E-04	0.0079	0.9178	39.7	0.418	0.493	0.0614	0.595	0.002	3.6	0.161	4.25	0.0544	0.033	2.016	
8-IIIC-1 11-28cm	1/26/96	14:55	4.5	-0.004	2.25	0.0011	-9E-04	-0.0098	0.1807	0.68	0.326	0.078	0.0051	0.925	0.007	0.22	0.066	1.63	0.0139	0.0234	0.6266	
8-IIIC-1 11-28cm (2)	1/26/96	14:58	3.7	0.02	2.03	0.0025	-0.001	-0.0089	0.1684	0.57	0.286	0.072	0.0013	0.93	0.001	0.21	0.054	1.37	0.0124	0.0191	0.4939	
8-IIIC-1 28-42cm	1/26/96	15:01	3.45	-0 009	2.09	0.0022	-7E-04	-0.005	0.1462	0.452	0.294	0.095	0.0029	1.31	0.001	0.17	0.041	1.35	0.0127	0.021	0.3694	
8-111C-3 0-11cm	1/26/96	15:04	6.3	0.048	3.45	0.004	-7E-04	-0.0066	1.188	4.62	0.519	0.312.	0.0074	0.476	0.003	0.63	0.111	2.86	0.0238	0.0469	1.117	
8-HIC-3 11-17cm	1/26/96	15:08	4.33	0.095	2.34	0.003	-0.002	-0.0049	0.6212	6.95	0.296	0.107	0.0122	0.413	0.002	0.53	0.134	2.27	0.0163	0.0289	0.6445	
8-IIIC-3 17-31cm	1/26/96	15:11	4.4	-0.014	2.02	0.0009	-7E-04	-0.0068	0.2118	0.674	0.265	0.058	0.003	0.33	0.036	0.18	0.063	1.67	0.0122	0.0276	0.7046	
8-filC-3 31-42cm	1/26/96	15:14	6	0.022	2.26	0.001	-0.002	-0.0126	0.1274	0.52	0.345	0.048	0.003	0.413	0.026	0.14	0.056	1.83	0.0137	0.0296	0.5837	
8-BLANK	1/26/96	15:16	-0.013	-0.014	0.007	0.001	-0.002	0.0105	0	0.001	-0.013	0	0.002	0.035	0.001	0.12	-0.003	0.003	0.0006	0.0007	0.0015	
USGS T107	1/26/96	15:19	0.231	0.008	14	0.019	0.0118	0.0422	0.0344	0.071	2.42	0.056	0.0182	24.3	0.039	0.14	0.024	4.48	0.0687	0.0045	0.0979	
8-IILA-3 0-7.5cm	1/26/96	15:22	3.76	0.038	2.38	0.0052	-4E-04	-0.0059	1.121	3.22	0.436	0.304	0.0084	0.309	0.003	0.63	0.121	2.03	0.0175	0.0339	1.042	
8-111A-3 7.5-11cm	1/26/96	15:25	4.09	0.005	2.38	0 0042	-0.002	-0.0023	0.8208	2.16	0.353	0.173	0.0069	0.548	0.721	0.42	0.083	1.91	0.0151	0.0285	0.9478	
8-111A-1 0-5.5cm	1/26/96	15:28	4.78	0.063	2.92	0.006	-0.002	-0.001	1.534	6.88	0.474	0.456	0.0135	0.445	0.005	0.67	0.151	2.84	0.0233	0.0427	1.812	
8-IILA-1 5.5-8.5cm	1/26/96	15:31	5.45	0.412	3.62	0.0047	-4E-04	0.0092	1.026	65.3	0.354	0.21	0.0996	0.389	0.001	1.3	0.2	6.19	0.0416	0.0345	2.424	
8-IIIA-1 0-5.5cm DUP	1/26/96	15:34	6.12	0.052	3.06	0.0069	-2E-04	0.0016	1.534	6.99	0.517	0.461	0.0141	0.472	0.005	0.7	0.155	3.12	0.024	0.0476	1.828	
8-IILA-1 8-14cm	1/26/96	15:37	6.71	0.001	2.25	0.0008	-0.001	-0.0062	0.1973	0.729	0.326	0.042	0.0025	0.462	0.006	0.13	0.059	1.94	0.0143	0.0264	0.4793	
8-ULA-1 14-25cm	1/26/96	15:40	4.4	0.018	2.02	0.0018	-0.002	-0.0071	0.1899	0.702	0.274	0.039	0.0033	0.393	0.001	0.14	0.067	1.71	0.0132	0.0236	0.4772	
8-IILA-1 25-42cm	1/26/96	15:43	4.68	-0.019	2.13	0.002	-0,001	-0.0033	0.1377	0.631	0.273	0.04Z	0	0.41	0.004	0.15	0.057	1.73	0.0136	0.0242	0.427	
8-1118-3 30-41cm DUP	1/26/96	15:45	42.3	-0.007	2.69	0.0022	-0.002	-0.0041	0.3524	1.39	1.36	0.096	0.003	0.502	0.003	0.26	0.108	4.27	0.0202	0.0612	0.482.4	
8-111B-2 0-8cm DUP	1/26/96	15:51	15	0.53	5.08	0.0065	0.0007	0.0337	2.807	142	0.62	0.176	0.213	0.64	0.066	3.6	0.118	13.6	0.063	0.0444	3.761	
8-BLANK	1/26/96	15:55	-0.003	-0.019	0.008	0.0008	0.0011	0.0096	0.0004	0.018	-0.005	5E-04	0.0023	0.021	0.002	0.11	-0.001	0.005	0.0004	0.0007	0.0017	
8-STR.BLANK1	1/26/96	15:58	0.024	-0.017	0.053	0.0006	-0.001	-0.0056	0.0019	0.024	0.046	0	0.0023	-0.018	-0.001	0.08	800.0	0.061	-SE-04	-0.0037	0.0063	
8-STR.BLANK2	1/26/96	16:00	0.072	0.017	0.078	0.0006	-0.001	-0.0052	0.0011	0.047	0.34	0	0.0039	0.04	-0.001	0.07	0.003	0.194	-2E-04	-0.0015	0.0022	
8-STR.BLANK3	1/26/96	16:04	0.017	-0.008	0.06	0.0013	-0.002	-0.0077	0.0019	0.038	0.049	8E-04	0.0007	0.029	0.019	0.09	0	0.067	-6E-04	-0.0041	0.0163	
8-USGST107	1/26/96	16:06	0.243	0.002	14.6	0.0204	0.0142	0.0576	0.0352	0.077	2.47	0.059	0.0202	24.9	0.035	0.21	0.036	4.62	0.0705	0.0075	0.1044	
a-USOST107	1/26/96	16:08	0.236	0.013	14	0.0188	0.0139	0.0478	0.0337	0.073	2.4	0.056	0.0189	23.9	0.038	0.17	0.014	4.43	0.0682	0.006	0.1001	
USOS T117	1/26/96	16:11	0.077	0.003	24.9	0.0029	0.0037	0.04	0.0078	0.542	11.5	0.257	0.0151	22.8	0.01	0.4	0.004	6.65	0.2886	0.0056	0.2172	
USOS T91	1/26/96	16:14	0.406	-0.036	30.1	0.0431	0.0114	0.0354	1.037	0.329	11.4	2.722	0.0046	6.45	0.03	0.22	0.009	7.87	0.128	0.0045	6.871	

•	nno	ndi	~
~	111110	нин	x
	~~~		

•	-	\sim
L		ັ
	٩.	n
л.	· •	~

ICAPES data of	of bead	digest	s anal	vsis o	(2/6/9	6												_		
Sample	Analysis			~	C 4	C •	~	~	E.	Ma	M-	M-	Na	N/I	ъ	D .	6 1	6	-	a _
S STO DI ANIL A	2/6/06	AI	.0.028	0.054	75.04	.0.002	0.0074	0.0007	0.093	0.02	0.0017	.0.002	.0.037	0.018	0.13	0.042	0.035	5F (4	0.0044	2.8
8-STR.BLANK B	2/6/96	-0.068	0.024	0.037	3E-04	0	0.0264	-0.001	0.033	-0.006	0.0007	0.002	0.054	0.004	0.15	-0.006	0.024	0.0014	0.0039	0.0028
RINSE HCL	2/6/96	0.07	0.017	0.043	8E-04	-4E-04	0.0176	-7E-04	0.037	0.095	0.0012	0.002	0.008	0.002	0.2	0.018	0.073	0.0004	0.0007	0.2679
RINSE HCL	2/6/96	0.079	-0.027	0.044	2E-04	0	U 01 51	-0.001	0.038	0:106	0.0012	0.001	0.008	0.002	0.24	-0.027	0.074	0.0004	0.0007	0.2693
RINSE HCL	2/6/96	0.038	-0.005	0.071	0	0.002	0.0173	-0.001	0.012	0.006	0.0002	0.002	0.002	-0.001	0.24	-0.019	0.019	0.0001	-0.0011	0.0039
RINSE HCL	2/6/96	0 043	-0.027	0.07	0.002	-6E-04	0.0152	-0.001	0.012	0.017	0.0007	-0.002	0.003	0.002	0.2	-0.028	0.016	0.0001	-0.0015	0.0039
SOG HO	2/6/96	0.043	-0.051	0.064	96-04	-85-04	0.0153	-0.001 -7E.04	0.095	0.022	0.0027	-0.002 -SE-04	-0.015	0.013	0.18	-0.041	0.035	-15-04	-0.0026	0.0059
NEW 50%HCL	2/6/96	0.025	-0.008	0.013	0.001	-0.002	0.0016	0.0007	0.025	0.026	0.001	-0.004	-0.038	-0.006	0.18	0.043	0.02	-5E-04	-0.0037	0.0583
NEW 50%HCL	2/6/96	0.028	-0.01	0.013	3E-04	-0.001	0.0101	-0.001	0.035	0.036	0.0007	-0.004	-0.023	-0.005	0.25	-0.04	0.012	-3E-04	-0.0026	0.06
NEW SO%HCL	2/6/96	0.008	-0.017	0.019	1E-04	-6E-04	0.0043	-0.002	0.017	0.04	-0.0002	0.001	-0.031	-0.003	0.13	0.037	0.011	-3E-04	-0.0026	0.0569
8-STR.BLANK X	2/6/96	0.005	0.002	0.059	· 5E-04	-0.001	0.006	-0.004	0.034	0 .015	0.0002	-0.004	0.008	0.005	0.14	-0.039	0.03	0.0002	-0.0015	0.0035
8-STR.BLANK X	2/6/96	0.006	0.003	0.059	0	-0.001	0.0063	-0.003	0.036	0.029	0.0007	-8E-04	0.003	-0.004	0.16	-0.053	0.027	0.0002	0.0015	0.0035
8-STR BLANKY	2/6/96	0.008	-0.002	0.061	0 35 M	0.002	0.0124	-0.003	0.037	0.015	0.001	-0.003	0.009	-0.005	0.2	-0.065	0.025	0.0003	-0.0007	0.0031
8-BEADBLANKA	2/6/96	11.6	-0.002	0.97	0	0.003	0.0124	-4E-04	0.133	0.477	0.0163	-0.002	0.198	0.007	0.14	-0.05	1 37	0.0001	0.0015	0.0012
8-BEADBLANKS	2/6/96	9	0	0.911	2E-04	-0.002	0.0109	-0.003	0.08	0.324	0.016	0.003	0.173	-0.005	0.16	0.038	1.11	0.0047	0.0198	0.005
8-BEADBLANK6	2/6/96	20.3	-0.025	1.62	2E-04	-0.002	0.0116	0	0.138	0.709	0.0244	-0.001	0.313	-0.001	0.17	-0.03	2.13	0.0086	0.0411	0.0075
8-BEADBLANK7	2/6/96	5.77	0.003	1.11	- 5E-04	-0.002	0.0132	0.002	0.14	0.25	0.0133	-0.005	0.215	0.011	0.16	0.054	1.11	0.0057	0.0158	0.0076
50%HCL	2/6/96	0	-0.004	0.022	-6E-04	-0.005	0.0071	-0.003	0.056	0.04	0.0002	-0.003	-0.012	-0.009	0.12	-0.048	0.016	0	-0.0015	0.0569
SUMHCL	2/6/96	-0.008	-0.00/	2.022	0.004	-0.003	0.005/	-0.003	2.032	0.031	0 5973	-0.004	-0.013	-0.008	0.12	.0.037	0.013	-1E-04	-0.0022	0.0573
8-1A-10-13cm(2)	2/6/96	6.39	0.045	1.65	0.004	-0.001	0.015	0.9246	2.02	0.575	0.5975	9E-04	0.511	0.004	0.54	0.053	1.71	0.0131	0.0268	1.155
8-1A-1 13-21cm	2/6/96	3.18	0.201	1.46	0.007	-0.003	0.0168	2.152	15.6	0.484	0.4532	0.0204	0.483	0.006	2	0.28	1.82	0.0165	0.0305	1.324
8-1A-121-31cm	2/6/96	3.68	0.04	1.54	0.004	-0.002	0.0215	1.325	3.06	0.782	0.737	0.001	0.947	0.002	0.89	0.093	1.11	0.0135	0.0264	1.472
8-IA-131-41cm	2/6/96	2.55	0.022	1.19	0.003	-0.001	0.017	0.8738	1.53	0.665	0.5971	0.0009	0.892	0.005	0.34	0.018	0.842	0.01	0.0224	0.9862
8-1B-2 0-7.5cm	2/6/96	3.75	0.106	2.28	0.005	-0.003	0.0168	2.427	5.B2	0.656	0.7476	0.0065	0.57	0.001	0.98	0 142	2.35	0.0214	0.0397	2.425
8-18-2 7.5-1.2cm	2/6/96	3.69	0.111	19	0.005	-0.001	0.0161	2.396	0.52	0./05	0.7673	.0.007	0.3950	0.009	1.2	0.187	2.486	0.0242	0.0487	2.14
USOS T107	2/6/96	0.252	0.003	14.8	0.019	0.0111	0.0661	0.0323	0.064	2.46	0.0581	0.018	26	0.032	0.34	0.007	47	0.0129	0.0092	0.1053
USGS T107	2/6/96	0.238	0.026	14.2	0.019	0.0113	0.058	0.0316	0.062	2.37	0.0552	0.0131	25.2	0.033	0.29	-0.017	4.52	0.0678	0.0073	0.101
USGS T117	2/6/96	0.08	-0.005	25.2	0.003	0.0008	0.0541	0.0051	0.529	11.2	0.2596	0.0088	23.7	0.007	0.53	-0.045	6.69	0.2847	0.0077	0.222
USGS T117	2/6/96	0.094	-0.002	25.1	0.003	0.0019	0.0561	0.0051	0.53	11.1	0.2584	0.0082	23.5	0.006	0.53	-0.04	6.66	0.2831	0.00777	0.2204
FLUSHING HCL	2/6/96	0.06	0.002	0.055	4E-04	-0.002	0.0182	0.002	0.038	0.1	0.0012	-0.002	0.023	-0.003	0.23	-0.05	0.075	0.0008	0.0018	0.2665
DI ANK STDI	2/6/96	0.00	-0.01	0.077	56-04	-0.002	0.0068	- 75-04	0.01	0.022	0.0007	-0.004	-0.004	-0.005	0.19	-0.051	0.024	0.0001	-0.0018	0.0039
8-18-2 16-21.5cm	2/6/96	3.61	-0.007	1.82	0.002	-8E-04	0.0123	0.6719	0.656	0.6	0.6392	-0.003	0.787	0.006	0.33	-0.029	1.21	0.0109	0.0246	0.9586
8-18-2 22-32cm	2/6/96	4.73	0.007	2.07	0.002	-2E-04	0.0076	0.3953	0.467	0.573	0.3993	-0.002	0.732	0.008	0.24	-0.047	1.45	0.0118	0.0294	0.7007
8-IB-2 32-42cm	2/6/96	6.22	0.002	2.19	0.002	-0.001	0.0151	0.5772	1.3	0. 696	0.3741	0.0011	0.786	0.004	0.34	0.011	1.56	0.0144	0.0296	0.6686
8-IB-3 0-8cm	2/6/96	5.99	0.038	2.2	0.006	-0.001	0.0208	1.589	3.83	1.31	1.462	0.0016	1.64	0.01	0.75	0.033	2.04	0.0152	0.0312	2.478
8-18-3 8-11cm	2/6/96	4.24	0.052	1.97	0.007	0.0011	0.0159	1.33	6.7	1.5	1.644	0.0059	2.12	0.011	0.58	0.072	1.72	0.0129	0.0231	2.808
8-10-3 11-21cm	2/6/96	4.03	-0.000	1.52	0.011	-8E-04	0.0225	1.1/4	0.95	1.86	1 238	-110-044	1.78	0.001	0.41	-0.021	1.16	0.0119	0.0.405	3.233
8-IB-3 21-31cm DUP	2/6/96	3.65	-0.001	1.44	0.005	-85-04	0.0195	1.015	0.939	1.18	1.221	0.0003	1.78	0.008	0.38	-0.023	1.11	0.0095	0.0184	1.906
8-113-3 11-21 can DUP	2/6/96	51	-0. 001	2.32	0.009	-0.001	0.0209	1.179	1.24	2.98	2.024	-0.002	2.53	0.012	0.5	0.034	3.54	0.0136	0.0745	3.203
8-18-3 31-41 cm	2/6/96	5.03	0.007	1.45	0.006	-0.002	0.0173	0.7979	0.986	1.02	0.9862	-0.001	1.07	0.006	0.43	0.001	1.2	0.0095	0.0217	1.552
8-18-3 31-41cm DUP	2/6/96	4.85	-0.009	1.49	0.007	-86-04	0.018	0.7957	0.981	0.994	0.9759	-0.003	1.09	0.009	0.45	-0.002	1.22	0.0097	0.0217	1.537
8-11B-20-/cm	2/6/96	3.49	0.056	2.54	0.002	-0.002	0.0138	1.041	4 17	0.428	0.346	0.0022	0.312	0.001	0.66	0.047	1.96	0.0177	0.0354	0.9346
BLANK-STDI	2/6/96	0.013	-0.015	0.028	- 1E-04	0.001	0.0241	-0.003	0.003	0.02	0.0005	-0.004	0.074	0.006	0.26	0.049	-0.002	0.0012	0.0029	0.0049
8-11B-2 12-19.5cm	2/6/96	4.16	0.037	2.4	0.001	-0.001	0.1533	0.7743	4.22	0.398	0.2685	0.0055	0.494	0.273	0.74	0.042	1.95	0.0164	0.036	0.7093
8-11B-2 20-30cm	2/6/96	4.62	0.017	2.01	0.001	-4E-04	0.2281	0.4255	3.13	0.365	0.185	0.0044	0.441	0.271	0.56	0 0 1 5	1.68	0.0129	0.0292	0.4571
8-11B-2 20-30cm DU	2/6/96	3.87	0.019	2	0.002	0	0.2244	0.4265	3.13	0.352	0.184	0.0058	0.441	0.268	0.51	0.01	1.61	0.0128	0.0279	0.4567
8-11B-2.30-40. Sem	2/6/96	4/3	-0.013	2.04	16-04	-0.003	0.0135	0.1848	0.03	0.328	0.067	0.002	759	0.001	0.32	-0.021	1.5	0.0122	0.0263	0.2521
USGS T117	2/6/96	0.094	0.001	25.4	0.021	0.0036	0.0765	0.0033	0.531	11 1	0.2626	0.0104	23.8	0.004	0.57	-0.044	6.76	0.2837	0.0092	0.1055
8-IIA-1 0-10.5cm	2/6/96	3 31	0.05	1.86	0.003	-0.003	0.0159	0.8375	2.08	0.319	0.2589	0.0004	0.299	0.017	0.6	0.062	1.49	0.0137	0.0275	0.7167
8-11A-1 10.5-15.5cm	2/6/96	2.85	0.037	1.65	0.001	-0.003	0.0192	0.5834	1.85	0.287	0.1766	-0.002	0.3	- 0. 007	0.59	0.095	1.31	0.0136	0.0261	0.4248
8-IIA-1 15.5-22cm	2/6/96	3.29	0.033	1.87	6E-04	-0.002	0.012	0.6222	1.26	0.306	0.1224	6E-04	0.393	0.001	0.48	0.083	1.41	0.0144	0.0297	0.3585
8-IIA-1 22.5-33cm	2/6/96	3.83	0.025	1.83	0.002	-0.003	0.0123	0.5957	1.1	0.315	0.1232	0.0011	0.353	-0.005	0.5	0.117	1.41	0.0149	0.0327	0.8926
BLANK.STDI	2/6/96	0.009	-0.001	0.025	5E-04	-0.002	0.0152	-0.003	0.0001	0.015	-0.0002	-0.003	0.071	-0.00/	0.40	-0.045	.0.007	0.0012	0.0033	0.0037
8-11A-2 0-10.5cm	2/6/96	3.57	0.052	2.42	0.003	0.002	0.0181	0.9467	3.31	0.431	0.3633	0.0022	0.314	0.006	0.99	0.058	1.89	0.0179	0.0338	0.8218
8-11A-2 11-13.5cm	2/6/96	3.22	0.015	1.97	8E-04	-0.003	0.0209	0.469	1.97	0.365	0.1559	-4E-04	0.305	0.002	0.68	0.02	1.46	0.0134	0.0275	0.5081
8-IIA-2 13.5-21.5cm	2/6/96	5.29	-0.001	1.98	5E-04	-0.003	0.0162	0.3489	1.48	0.676	0.1271	-0.004	0.344	0.006	0.53	0.007	1.78	0.0129	0.0301	0.3773
8-ILA 2 13.5 21.5(2)	2/6/96	3,99	0.011	2.01	6E 04	0.003	0.015	0.3804	1.59	0.313	0.1328	-1E-04	0.318	0.009	0.58	0.001	1.56	0.0132	0.0297	0.4179
8-11A-2 22-32cm	2/6/96	4.03	0.003	1.82	7E-04	-0.002	0.0188	0.171	0736	0.311	0.0727	0.002	0.36	0.005	0.42	-0.02	1.36	0.0111	0.0239	0.221
R.IIA.2 22.320m DU	2/6/96	4.32	-0.005	1.05 2.16	- 2F-04	-0.003	0.0134	0.1666	0.749	0.344	0.0724	-0.002	0.404	0.007	0.39	-0.025	1.41	0.0127	0.0272	0.2107
8-fLA-2 32-42cm	2/6/96	4.27	0.017	1.86	1E-04	0.002	0.0181	0.1521	0.865	0.278	0.0675	0.004	0.318	0.008	0.39	-0.028	1.48	0.0113	0.0253	0.1905
BLANK-STDI	2/6/96	0.022	0015	0.028	1E-04	0.003	0.0304	-0.001	0.002	0.037	0.0007	0.002	0.078	0.006	0.33	-0.036	0.003	0.0013	0.0039	0.0057
8-STR.BLANK Y DU	2/6/96	0.025	0.006	0.061	0	0.004	0.0066	-0.003	0.006	0.026	0.001	0.005	0.004	-0.007	0.25	0.056	0.017	0.0001	-0.002	0.0031
8-STR BLANK Z	2/6/96	0:027	0.001	0.063	-2E-04	-0.002	0.0128	-0.001	0.01	0.024	0.001	0.005	0.025	-0.004	0.29	-0.046	0 019	0.0003	0.0009	0.0047
8-STR.BLANK B	2/6/96	0.023	-0.015	0.073	3E-04	-0.002	0.0291	-0.003	0.103	0.037	0.0017	0.006	0.032	0.016	0.3	0.049	0.031	0.0004	-0.0004	0.0065
R BEADBLANK6D	2/6/96	16.8	0.009	∠.>%o >0~7	- 3E-04	-0.002	0.0154	-0.002	0.118	0.504	0 0 2 3 9	-0.004	0.505	0.004	0.28	-0.044	2.25	0.0135	0.0301	0.0083
8-BEADBLANK	2/6/96	16.8	-0.004	2.07	0.001	-0.002	0.0214	0.002	0.139	0.598	0.0259	0.005	0.383	0.004	0.31	-0.043	2.54	0.0111	0.033	0.0076
USGS T107	2/6/96	0.262	0.01	14.3	0.02	0.0119	0.0659	0.0312	0.062	2.36	0.0564	0 0144	25.6	0.037	0.43	0.015	4.59	0.068	0.0088	0.1035
USGS T117	2/6/96	0.098	-0.008	25.3	0.003	0.0023	0.0657	0.0047	0.528	11	0.2611	0.0113	23.7	0.008	0.7	-0 042	6.71	0.2818	0.0092	0.2263
USOS THT	2/6/96	0.095	0.009	24.1	0.003	0.0002	0.054	0.0025	0.506	10.5	0.2505	0.0088	22.9	0.005	0.63	-0.055	6.42	0.2715	0.0073	0.2153
USGS T107	2/6/96	0.253	0.014	13.3	0.018	0.0088	0.0557	0.0305	0.058	2.17	0.0539	0.0139	23.8	0.029	0.37	0.033	4.25	0.0639	0.0066	0.0966
IRI ANK	17/6/96	0.039	0.006	0.018	9E-04	-0.002	0.023	0.001	0.002	0.035	0.0005	-0.003	0.047	0.01	0.36	-0.05	0.001	0.0009	0.002	0.0051

ICAPES data of	bead	digest a	natysi	s of 2	15/90																
Sumple	Analysis	Anleysia		A-	r •	C4	Ce	<u>0</u>	<u>(</u> ,	Fe	м-	м-	M	N-	NI	P	рь.	55	5-		,]
STDI-Biast	21596	9.51	0.066	-0.01	0.002	0.001	0.002	0.189	0.001	96-05	718 2E-04	7E-04	-3E-04	0.052	0.0052	0.083	0.045	0.003	0.015	0.015	0.00185
STD9	2/15/96	9.55	2.088							1.557			1.655	11.04	1.7486					2.861	
STD4	2/15/96	9:58		0.975		• • -		8.133								0.664		11.89			
STD2	2/15/96	10:04			18.77	2.05	2.585		1.493		4.0214	2.044					7. 285		19.26		7.25
STDI	2/15/96	10:06	0.014	-0.01	0.006	0.002	0.003	0.006	0.002	0.001	0.011	9E-04	6E-04	0.002	0.007	0.11	0.014	0.01	75-04	-2E-04	0.0015
USG8 T107	2/15/96	10:09	0.254	0. 6 87	12.9	0.018	0.013	0.083	0.082	0.056	2.26	0.052	0.016	23	0.638	0.15	0.098	423	0.063	0.002	0.0898
USGS T117	2/1 5/96	10.12	0.102	0.025	23.1	0.004	0.007	0.08	0.006	0.507	11	0.239	0.013	21.9	0.015	0.35	0.008	6.33	0.272	0.003	6.2001
A STR BLANKL	2/15/96	1019	0.023	.0	0.024	0.001	0.001	0.015	35-04	0.002	0.013	95-04	0.002	-0.02	0.006	0.14	0.021	0.052	.u 0	-0.002	0.0013
8-STR.BLANKN	2/15/96	10.22	0.018	0.006	0.006	0.002	0.003	0.013	Æ-04	0.003	0.002	95-04	0.001	-0.92	0.001	0.15	0.023	0.038	-0	-0.001	0.0023
9-BEADBLANKS	2/15/96	10.25	1.06	-0	0.242	75-04	45-04	0.011	0	0.01	0.05	0.003	0.001	0.024	800.0	0.14	0.006	0.478	0.001	0.002	0.0002
8-BEADBLANK9	2/15/96	10:27	1.06	-0 -0	0.2252	36-04	96-04	0.016	-6E-04	0.01	0.06	0.004	0 8.001	0.033	0.006	0.16	0.011	0.5%6	0.001	0.003	0.0014
8-8C-3 8.5-10cm	2/15/96	10.35	0.937	0.018	0.527	6E-04	0.001	0.016	0.218	0.729	0.095	0.082	8E-04	0.084	0.007	0.28	0.05	0.457	0.004	0.006	0.2064
8-IIC-3 0-8.5cm	2/15/96	10:38	22.2	0.083	2.59	0.007	0.002	0.024	1.621	5	1.13	0.614	0.008	0.317	0.003	1	0.198	5.47	0.023	0.072	1.875
8-IIC-3 20-30cm	2/15/96	10.41	0.934	0.063	0.525	0.002	0.003	0.015	0.113	1.48	0.067	0.037	0.002	0.074	0.006	0.36	0.028	0.446	0.004	0.006	0.1625
8-IIIA-3 15-21.5cm	2/15/96	10:47	3.57	0.015	1.07	0.003	0.002	0.027	0.33	0.944	0.236	0.042	6E-04	0.282	0.005	0.45	0.069	0.883	0.009	0.02	0.9985
STD.1-BLANK	2/15/96	10:50	0.025	-0.01	0.001	0.001	4E-04	0.021	6E-04	0	0.002	7E-04	-6E-04	0.02\$	0.002	0.23	0.01 1	0.01	7E-04	0.002	0.0023
8-IIC-3 30-34cm DUP	2/15/96	10:52	2.28	0.023	0.739	0.001	96-04	0.012	0.082	2.04	0.132	0.04	0.005	0.09	0.002	0.69	0.063	0.62	0.007	0.008	0.2797
USGS T107	2/15/96	10:57	0.276	0.019	151	0.021	0.016	0.059	0.083	0.067	2.52	0.059	0.018	249	0.043	0.31	0.04	4.89	0.07	0.007	0.1076
USOS TIO7	2/15/96	10:59	0.276	0.003	142	0.021	0.017	0.05	0.033	0.062	2.41	0.056	0.019	243	0.045	0.29	0.049	4.02	0.067	0.005	0.1006
8-STRBLANKL DUP	2/15/96	11:02	0.033	-0.01	0.014	\$E-04	85-04	0.013	-6E-04	0.002	0.009	26-04	0.002	-0.08	0.005	0.22	0.008	0.0B	-0	-0.001	0.0015
USGS TH7	2/15/96	11:10	0.124	0.005	251	0.005	0.007	0.045	0.007	0.543	11.4	0.259	0.015	23.4	0.016	0.56	0.028	6.78	0.286	0.005	0.2179
8-0C-3 30-34cm DUP	2/15/96	11:16	6.65	8.011	0.923	0.003	0.001	0.009	0.084	2.08	0.266	0.044	0.003	0.111	0.005	0.73	0.045	1.02	0.008	0.014	0.22801
8-IIC-3 20-30cm DUP	2/15/96	11:19	2.17	0.05	0.607	0.003	6E-04	0.014	0.115	1.44	0.118	0.089	0.001	0.091	0.001	0.44	0.048	0.562	0.005	0.007	0.1624
COMP1-4	2/15/96	11:39 11:44	0.144	-0.08 2.99	0.005	0.005	0.007	0.067 3.001	0.003	0.053 2.96	0.017	0.003	0.002	0.094	0.017 2.99	0.53 3.6	0.687 3.09	0.248 291	0.002	0.012	0.0106
COMP 1-4	2/15/96	12:10	2.68	2.96	31	3.012	3	2.949	2.658	2.92	26.6	2.942	2.982	25.6	2.98	3.7	2.98	28.9	2.596	2.762	3.09
COMP1-4	2/1.5/96	12.21	2.68	2.99	31.4	3.089	3.027	2.978	2.646	2.92	26.6	2.962	2.956	25.2	3.02	3.7	3.02	29	2.584	2.761	3.12
COMP14	2/13/96	12.35	2.67 2.69	2.97	31.2	3.018	3.04 3.004	2.96 2.944	2.647	· 2.9 2.91	26.4 26.5	2,947	2.989 2.981	25.7 25.0	3,01 3,01	3.7	3.01. 2.90	28.8 29.9	2.584	2.747	3.097 3.002
COMP1-4	2/15/96	12-18	2.66	2.97	31.2	3.016	3.002	2.95	2.632	2.9	26.3	2.938	2.938	25.5	3.01	3.6	2.98	28.6	2.568	2.731	3.091
COMP1-4	2/15/96	13:00	2.66	3.02	31	3.004	2.987	2.938	2.63?	2.88	26.2	2.99	2.921	25.5	3.02	3.7	2.97	28.6	2571	2.725	3.081
COMP14	2/15/96	13:08	2.65	2.98	31	2.999	2.978	2.99	2.646	2.88	26.2	2.926	2.919	25.8	3	3.7	2.95	28.6	2.58	2.727	3.072
COMP14	2/15/96	13:27	2.64	2.99	31.5	3.008	2.978	2.936	2.622	2.87	25.9	2,925	2,926	25.5	3.02	3.8	2.95	28.4	2.557	2.706	3.077
STD1-Binak	2/15/96	13:44	0.091	-0.01	0.003	0.002	0.004	0.244	0.002	0.005	0.0005	0.001	2E-04	0.062	0.0009	0.115	0.087	0.021	0.019	0.018	0.00342
STDB	2/15/96	13:47	2.143							1.741			1.928	10.55	1.9563			1.2.00		3.053	
STDA	2/15/96	13:50		1.1/9	22.57	2.321	2.996	9.400	1.52		4.2017	2.307				U.BL3	8.451	13.02	19.86		2.6519
STD.1-BLANK	2/15/96	13:58	-0.01	-0.02	0.001	9E-04			0.001	-0.001	0.001	26-04	56-04	Ð	-0.003		-0.01	0.02	SE-04	-96-04	0.0013
STD.1-BLANK	2/15/96	14:00	-0	0	0	65-04			0	-0.001	-0.009	-65-04	7E-04	0.017	-0.003		0.01	0.015	3E-04	-Æ-04	0
STD LBLANK	2/13/96	14:07	2.54	2.30	26.3	35.04			2,50	2.6	25.6	Z.604	2.399	23.9	2.61		Z.645	26.1	35.04	23/4	2.6/
8-IIC-3 8.5-10cm	2/15/96	14:09	1.28	0.012	0.699	7E-04			0.21	0.72	0.094	0.078	0.005	0.123	4.001		0.024	0.517	0.004	0.006	0.1926
8-81A-214.5-32cm	2/15/96	1413	1.29	0.009	0.633	0.001			0.043	6.465	0.139	0.017	0.001	0.175	-0.001		-0.01	0.42	0.004	0.005	0.0946
8-BC-3 20-30cm	2/13/96	14:16	3.6Z	0.055	1.02	0.001			0.113	0.392	0.259	0.041	0.000	0.133	-0.004 A		0.022	0.912	0.006	0.01	0.1339
COMP1-4	2/1576	1423	2.58	2.61	26.9	2.745			2.633	2.64	26.1	2.653	2.647	267	269		2.67	26.7	2.583	2.612	2.738
COMP1-4	2/1.5%	1427	2.57	26	26.9	2.733			2.694	2.64	259	2.672	2.649	26.6	2.69		2.67	26.6	2.524	2.606	2.731
B-ULA-331.5-42cm	21.5%	14:30	3.35	0.015	1.36	-0 45-04			0.1777	0.366	0.1385	0.026	SE-04	0.214	-4.007 -0.001		0.02877	1.13	0.009	0.015 0.004	0.2954
8-IIIA-214 532cm	21.5%	1437	2.26	0.007	0.765	-0			0.044	0.482	0.158	0.019	0.002	0.221	0.001		-0	0.575	0.005	0.008	0.0969
8-IIIA-20-9.5cm	2/15/96	1442	1.47	0.027	1.05	0.002			0.692	- 2.54	0.18	0.15	0.005	9.187	-0.003		0.053	0.91	0.009	6.014	0.5502
8-BC-3 10-20cm	2/15/96	14:44	3.51	1.35	2.9	0.016			1.054	413	0.24	0.263	0.059	0.244	-0.002		0.113	4.16	0.028	0.02	1.389
8-0C3 10-20(2)	2/15/96	14:49	1.4	0.87	1.48	0.01			0.597	243	0.108	0.145	0.086	0.096	0		0.04	2.18	0.015	0.006	0.7584
8-IIC-3 34-41cm	2/15/96	14.52	1.27	0.32	2.63	0.007			0.176	20.9	0.159	0.193	0.081	0.089	-0.001		0.083	0.978	0.041	0.006	1.454
8-IIC-3 34-41cm (2)	2/15/96	1455	1.4	0.291	2.61	0.006			0.16	20.2	0.151	0.187	0.08	0.097	-0.005		0.083	1.02	0.04	0.006	1.401
COMP14	2/15/96	1501	2.61	2.74	27.9	2.876			2.677	2.73	26.5	2.734	2.744	27	2.79		2.76	27.5	2.567	2.663	2.849
8-UIA-29.5-14.5cm	2/15/96	15:04	13	0.059	0.97	0.004			0.367	193	0.164	0.059	0.03	0.166	0		0.038	2.4	0.011	0.009	0 5728
8-IIIA-311-15cm	2/15/96	1510	2.42	0.143	1.55	0.004			0.953	11.9	0.171	0.06	0.017	0.206	-0.002		0.109	1.73	0.017	0.014	0.8522
STDI-Blank	2/15/96	15.16	0.091	-0.01	0.002	0.002	0.003	0.249	0.002	0.005	0	0.001	-2E-04	0.064	0.0088	0.123	0.07	0.022	0.019	0.018	0.00361
STD3	2/15/96	15 20	2.188							1.822			2.04	10.97	2.0957					3.144	
STD4	2/15/96	15:23		1.233	28 2	2.437	3.004	9.706	1.564		4,2718	2,371				0.841	1.676	13.27	20 3		2 74942
STD.1-BLANK	2/15/96	15:29	0.002	-0.01	0.023	0.003	0.004	-4E-04	0.011	-0.001	0.028	0.003	7E-04	0.01	0.007	0	0.004	0.053	0.002	-9E-04	0.0059
STD.1-BLANK	2/15/96	1531	0.009	0.026	0.004	0.001	0.002	0.002	0.003	0.001	0.02	46-04	26-04	-0.01	-0.002	0.08	0.002	0.014	46-04	-0.002	0.0026
COMP1-4	2/15/96	1534	2.49	2.52	26	2.623	2.593	2.469	2.554	2.52	25.3	2.577	2.519	26	2.54	2.6	2.62	26	2.469	2.514	2.643
8-1008-1 20.5-30.5cm	2/1596	1546	17	0.065	3.11	0.006	0.002	46-04	1.651	5.86	1	0.521	0.009	0.309	0.003	0.97	0.16	5	0.024	0.083	1.33
8-IIIB-1 20.5-30.5cm	2/15/96	1548	17.6	0.072	3.1	0.005	0.001	1E-04	1.648	5.86	1.08	0.519	0.01	0.3	0.081	0.99	0.17	5.11	0.024	0.085	1.327
8-01C-210-21cm (2)	2/1596	1551	5.15	0.173	3.96	0.01	0.001	46-04	3.38	151	0.728	0.55	9.023	0.338	0	L.9	0.332	4.02	0.085	0.075	2374
8-IIC-2 4.5-8.5cm	2/15/96	15.59	5.52	0.018	2.45	0.004	86-04	0.004	0.941	2.9	0.436	0.36	0.005	0.47	0.002	0.56	0.091	2.08	0.017	0.034	0.8045
8-EC-2 21 30cm	2/15/96	16:01	1.17	0.016	0.686	0.001	SE-04	-0.006	0.129	0.399	0.09	0.089	0.002	0.084	-0 001	0.08	0.009	0.482	0.004	0.005	0.1487
COMP1-4	2/15/96	16:04	2.59	2.67	27.8	2.256	2.751	2.638	2.639	2.65	26.4	2726	2.681	26.2	272	2.9	279	27.6	2.583	2.615	2.853
8-000-131-41cm	2/1596	16.00	1.35	2.64	27.2	0.003	2.094	4.38 -0.00#	2.609	2.0 0.758	23.9 0.138	2.673	0.004	0.095	-0.00I	0.16	2.7Z 0.073	0.643	0.008	0.012	0,1956
8-008-1 0-9cm	2/15/96	1613	135	0.045	1.04	0.004	65-04	-0.001	0.57	2.08	0.194	0.165	0.006	0.137	0.003	0.29	0.07	0.955	0.009	0.012	0.6774
8-IIC-2 30-40cm	2/1 5/96	1616	7.37	0.033	2.39	0.002	€ €-04	0.004	0.207	0.627	0.398	0.08	0.001	0.397	0.002	0.17	0.017	1.99	0.014	0.029	0.2688
8-0C-20-45cm	2/15/96	16:18	3.76	0.064	2.42	0,004	0.001	-0.007	1.148	3,59 6 21	0.426	0.416 0.04	0.007 0.011	0.356	-0.003 .g.nni	0.77	0.103	Z 1.61	0.018 0.01	0.082 0.01.±	1.088
8-IIIC-2 32-39	21596	16 24	3.86	0.007	1.92	0.002	SE-04	-0.002	0.266	4.21	0.247	0.058	0.004	0.292	-0.005	0.29	0.042	1.77	0.012	0.019	0.4577
8-IIC-2 8.5-11cm	2/1596	16.77	2.9	0.015	1.57	0.007	-6E-04	-0.007	0.527	1.59	0.257	0.223	0.002	0.391	-0.005	0.29	0.046	1.36	0.01	0.019	0.5028
8-00C-2 10-21 ALGAE	2/15/96	1631	9.16	0.38	8.43	0 02.5	0.003	0.016	7.612	26.3	1.81	1.61.8	0.041	0.544	0.001	4	0.735	7,95	0.075	0.183	5.986
8-IIIC-2 21-32em	2/15/96	16:37	1.0 5.24	0.03 0.073	2.9	0.003	-3C-04	-a.004 0.005	0.3/4 2.483	42.1	0.346	0.157	0.063	0.33	0	0.89	0.151	6.04	0.025	0.082	2.32
8-IIIC 2 21 32cm (2)	2/15/96	16:40	1.66	0.042	1.37	0.006	6E-04	0.004	1.454	233	0.153	0.086	0.037	0.103	-0.003	0.5	0.079	3.09	0.012	0.013	1.282
8-008-1 9-12cm	2/15/96	₩43	5.55	0.632	6.14	0.009	0.002	0.011	1.949	48.5	0.611	0.812	0.07	0.48	0	6.4	0.239	4.16	0.123	0.052	1.446
S-STR.BLANKM DUP	2/15/96	16:48 16:51	-0.04	0.005 2.77	U.012 28 I	1E-04 2,907	0 2.77	-1.006 2.64	U 2.652	U.013 2.6%	0.011 26.5	-0.001 2.747	U 2,734	-1).45 26.4	-1.00E3 2.77	0.08 2.9	-0.01 2.82	-0.11 278	.U 2,536	-0.005 2.631	-0.0024 2.9
STDI-BLANK	2/1 5/96	16.55	0.03	-0	0.017	0.002	0.001	0.008	0.002	0.019	0.01	0	0.002	0.007	0	0.04	0.01	-0.1	96-04	9E-04	-0.0003
COMP1-4	2/1.5996	16:57	2.52	2.65	26.8	2737	2.657	2.541	2.589	2.57	216	2.639	2.625	26.1	2.64	2.8	2.66	26.6	2.488	2.552	2.752
COMP1-4	2/15/96	17:02	2.56	2.7	27.1	2.753	2.701	2.591	2.642	2.62	25.9	2.681	2.671	267	2. 69	2.8	2.68	<u>r</u>	2.549	2.606	2.771

ICAPES data fo	or bea	d sam	ples ana	lyzed or	3/7/96		<u> </u>	1	· · · · ·	<u> </u>	<u> </u>		<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	I .	<u> </u>	
Sample Name	Date	Time	Al	As	Ca	Cd	Co	G	Cu	Fe	Mg	Mn	Mo	Na	NI	P	Pb	SI	Sr	TI	Zn
STDI-Black	3/7/96	13:17	0.06738	-0.00733	0.00128	0.00109	0.00171	0.21623	0.00109	0.00342	-4E-05	0.00057	0.00023	0.06052	0.00409	0.10566	0.04228	0.00704	0.01814	0.01714	0.0018
STD2	3/7/96	13:20			22.308	2.38004	2.87047	1	1.57228		4.36314	2.20128		[8.64423		19.3695		3.13347
STD3	3/7/96	13:23	2.20152							1.75166			2.4709	11.0166	1.95971					3.03971	
STD4	3/7/96	13:26		1.61195				8.9989								0.925		12.9843			
STD8	3/7/96	13:29																			
BLANK-STD 1	3/7/96	13:31	0	0.012	0.003	0.0003	0.0008	0.0062	0.0006	-0.007	0.008	0	-0.0002	0.022	0.001	0.02	-0.007	0.022	0.0003	0.0001	0.0006
USGS T 107	3/7/96	13:34	0.225	0.003	12.8	0.0166	0.0139	0.0252	0.0318	0.046	2.29	0.0517	0.0165	22.7	0.031	0.03	0.009	4.13	0.0641	0.0014	0.0888
U9GS T117	3/7/96	13:37	0.068	0.002	23.4	0.0022	0.0038	0.0256	0.0064	0.496	11.2	0.2428	0.0129	21.9	0.007	0.26	-0.013	6.31	0.2792	0.0024	0.2028
8-STR.BLANK	3/7/96	13:40	0.033	0.008	0.032	0.0005	0.0003	0.0056	-0.0003	-0.003	0.019	0.0006	-0.0017	0.011	0.003	0.01	-0.019	0.021	0.0002	-0.0022	0
8-STR.BLANK2	3/7/96	13:43	-0.004	0.014	0.013	0.0005	0	0.0071	0.0003	-0.002	0.013	0.0002	0.0013	-0.012	0.004	0.04	-0.019	0.012	0	-0.0014	0.0006
8-STR.BLANK3	3/7/96	13:45	-0.016	-0.004	0.005	0.0006	-0.0002	0.0113	-0.0012	-0.005	0.009	-0.0002	-0.0027	-0.001	0.001	0.03	-0.016	0.001	0	-0.0011	-0.0005
8-BEADBLANK11	3/7/96	13:47	2.72	-0.002	0.732	0.001	0.0007	0.0137	0.0009	0.013	0.146	0.0078	0.0002	0.133	-0.001	0.07	-0.005	0.726	0.0041	0.0118	0.0013
8-BEADBLANK12	3/7/96	13:50	1.54	0	0.459	-0.0002	0	0.0115	-0.0003	0.011	0.079	0.0045	-0.0013	0.074	-0.001	0.03	-0.031	0.474	0.0026	0.0055	0.0006
8-BEADBLANK13	3/7/96	13:53	1.76	0.004	0.508	-0.0006	-0.0002	0.012	0.0009	0.01	0.088	0.0054	-0.0017	0.083	-0.004	0.07	-0.004	0.532	0.0029	0.0068	0.0012
8-BEADBLANK14	3/7/96	13:55	1.59	0.005	0.451	-0.0002	0.001	0.0153	0.0003	0.005	0.079	0.0039	-0.0011	0.082	0.001	0.08	-0.005	0.499	0.0027	0.0068	-0.0001
8-11B-1 8-14cm	3/7/96	13:58	1.69	0.075	0.941	0.0028	0.0008	0.0139	0.3992	2.75	0.167	0.1261	0.0028	0.137	0.001	0.49	0.161	0.83	0.0098	0.0252	0.7463
8-11B-1 14-26cm	3/7/96	14:00	1.54	0.061	0.781	0.0005	-0.0002	0.0126	0.2649	1.13	0.171	0.0578	0.0007	0.151	-0.002	0.19	0.085	0.667	0.0067	0.0203	0.5797
8-11B-1 26-35cm	3/7/96	14:03	1.61	0.142	1.02	0.0019	0.0012	0.0189	0.4125	3.62	0.215	0.1197	0.0054	0.157	-0.001	0.52	0.188	0.988	0.0106	0.0298	0.4673
8-11B-1 35-41cm	3/7/96	14:06	2.12	0.176	1.17	0.0032	0.0005	0.0175	0.2964	3.1	0.229	0.1164	0.0041	0.196	0.004	0.46	0.123	0.959	0.0116	0.0295	0.5005
8-11C-2 30-40cm	3/7/96	14:09	1.58	0.015	0.65	0.0013	0.0002	0.0133	0.1015	0.314	0.109	0.037	0.0024	0.14	0.001	0.1	0.01	0.546	0.0042	0.0093	0.1354
8-111C-2 0-10cm	3/7/96	14:12	2.35	0.062	1.72	0.0033	-0.0007	0.0211	1.077	3.7	0.352	0.3179	0.0044	0.182	-0.001	0.75	0.114	1.59	0.0143	0.0343	0.9279
8-11B-GW5 7/6/95	3/7/96	14:14	0.158	0.991	141	0.0044	0.01	0.1625	0.0249	229	15.6	23.09	0.3262	43.5	0.004	1.8	0.036	31.3	0.5723	0.0216	0.095
8-11A-GW5 7/6/95	3/7/96	14:18	1.88	2.79	367	0.0118	0.0525	0.2291	1.061	223	63.2	48.6	0.3428	68.8	0.025	0.88	0.217	34.4	1.208	0.0863	2.373
8-STR.BLANK1	3/7/96	14:21	-0.012	0.028	0.102	-0.0008	-0.0013	0.0119	0	0.583	0.022	0.0132	0.0003	0.033	-0.002	-0.05	-0.029	0.017	0.0006	0.0005	-0.0002
FLUSH 40%11CL	3/7/96	14:23	-0.179	-0.003	0.038	-0.0052	-0.01-44	0.1113	0.0045	0.526	-0.105	-0.0026	0.007	0.231	0	0.17	0.041	0.03	0.0046	0.0213	-0.0052
FLUSH 40% HCL	3/7/96	14:28	0.034	0.005	0.015	0.0002	0.001	0.0106	0.0003	0.0.59	0.012	0.0009	0.0005	0	0.003	0.04	-0.014	-0.001	0	-0.0011	0.0012
FLUSH 40%HCL	3/7/96	14:30	-0.004	0.021	0.008	-0.0008	-0.0007	0.0149	0.0006	0.072	0.014	0.0002	-0.0014	0.007	0.002	0.07	-0.01	-0.002	0.0002	0.0003	0.0018
USGS T107	3/7/96	14:33	0.238	0.029	14.8	0.019	0.0143	0.0527	0.0339	0.055	2.52	0.0584	0.0157	24.9	0.038	0.13	0.023	4.7	0.0708	0.006	0.1034

Laboratory	duplicates (bead samples	s): Cal	culations w	orksheet			••																
Sample Name	1B-1 8-Sem	Lab Dupl. 18-1 0-8em	\$ CHO	13-1 8-13em	Lab Dupl. 18-1 8-12em	5 CHG	IA-2 8-12mm(2)	Lab Dupl. IA-3 0-12cm(2)	S CHG	11C-1 0-11em	Lab Dupi. IRC-1 0-11cm	% CHQ	11C-1 30-42em	Lob Dupi. IIC-1 30-42cm	s cha	1118-3 30-41 cm	Lab Dupt. EIB 3 30-41 cm	\$CHG	11(B-2 8-8em	Lab Dupi IUB-2 0-Bean	% CHG	111A-1 8-5.5cm	Lab Dupl. 111A -1 9-5_5em	\$010
Azəlyalı timə	10:38	10:43		10:47	11:14		11:33	1/20190		12:43	12:46	•	13:01	13:03		1/2040	1/20/90		14:25	15:51		1/2090	15:34	- 1
A1	349	196	137	271	105	118	29.5	63.2	72.8	39.9	\$5.7	72.9	17.9	16.7	7.2	22.1	211	162.1	33.7	75.4	76.5	23.9	30.6	246
As C-	BDI.	BDIL.	BDL	0 78	0.61	24.9	0.46	Q.46	3.2	BIDL	035	BDL	BDL.	BOL	BDL	BDI.	BDL		268	2.66	0.6	BLX	BDL	
Call	0074	98	10.2	9.4	11.1	16.4 BLDJ	13.3	144	7.9 N	12.2	12.8	52	8.02	7.97	0.6 BEM	9.8	13.4	30.9	22.8	25.5 PD4	11.2	14.6	15 3 BCN	47
G	BDL	BDL	BDL	BOL	BDL	BOL	BOL	BDL	BDL	BD1.	BOL	BOL BOL	BDL.	BDI.	BDL	BDL	BDI.	BDL	BOL	BDI.	BDL	BDI	801	801
Cr	BDL.	BDL.	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL.	BOL	NOL	BDL ·	BOL	BDL	BOL.	BOL	BDL.	BDL	BDI.	BDL	BDI.	BDI.	BDL
Ca	14 2	142	0.5	6.8	6.6	2.0	18.4	18.1	1.2	47	47	0.5	0.9	0.8	1.7	1.6	1.8	6.5	14.2	14.1	0.4	7.7	7.7	00
Fe	13.1	14.4	9.5	50.2	50	0.0	39.8	40.8	25	15.4	16.1	4.4	3 54	3.46	23	5.54	6.93	22.4	700	700	00	34.5	35 0	16
Ma	14.8	190	24.9	41	64	40.7	71	7.4	15.5	17	3.9	40.1	1.4	1.4	17	166	6.78	121.3	1.9	31	50.8	24	16	10
Mo	BDL.	BDL.	BDL	0.05	0.07	22.6	0.05	BOL	BDI.	BDL.	BDL.	BOL	BDL	BDL	BDL.	BDL	BOL	BDL.	1.06	1.07	1.4	0 07	0 07	43
* la	14.7	15.1	2.7	4.0	43	89	7.7	7.9	1.9	2.4	2.6	7.5	2.0	2.0	3.5	1.7	2.5	39.6	2.8	32	15.1	2.2	2.4	59
Ni	BDL.	BD1.	BDL	BDL	BDL.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL.	BOL	BDL	BDL	BDL.	BIDIL.	0.31	0.33	7.9	BDI.	BDI	BDI
r Ph	RDC	5 RIX	3.4 BDI	10	10.9	4.7	10	85	0.0	40	4.1	2.4	1.9	21 B()	10.0 Refer	1.0	13	21.3	17.6 BDI	16.1	2.8 B/11	34	35	
Si	11	22.0	927	11	17.8	75.1	145	22.3	42.3	12.6	19.1	41.1	6.28	6.2	16	7.7	21	94.0	643	68	61	14.2	16	. .
Sr	0.08	0.08	83	0 12	0.13	73	0.13	0.14	4.1	0 09	0.10	3.7	0.1	0.1	0.9	0.06	0.10	26.3	0.30	0.32	4.2	0 12	0.12	30
Ti	0 17	0.40	83.2	0.17	0.34	66.4	0.28	0.40	35.3	0 24	0.36	39.4	0.14	0.14	00	0.14	0.40	99.1	0.15	0.22	37.4	0 21	0 24	10.9
<u>/</u>	27.7	27.7	0.1	123	12.2	1.0	13.8	13.7	1.0	5.2	53	1.1	4.10	4.07	0.7	23	2.4	6.2	18.6	18.9	16	9.1	9.2	
Sample Name	18-3 21-31 mm	18-321-31eas	\$ CHG	18-3 11-21em	1.00 ovpr. 18-3 11-31em	\$CH0	18-3 31-41em	(3)-3 31-41 cm	S CHO	118-2 28-38-	1.00 mpt. [13]-2 28-38em	% CHG	IIA-2 21-32	1.00 Augst. 11A-2 22-32cm	% CHO	110-3 8.5-10-	1.00 Dept. 11C-3 8.5-10cm	\$CH0	110-3 20-30-	EIC-3 29-36-	% CHG	1114 - 146-32-	1 ao 1997. 111A -2 14.5-32em	scuo
Auslynia date	2/6/96	2/6/96		2/6/96	2/6/96		2/6/96	2/6/96		2/6/96	2696		2/696	2/6/96		2/15/96	2/15/96		2/15/96	2/15/96		2/15/96	2/15/96	
An alysis time	15:17	15:19		15:14	15:21		15:24	15:26	• · ·	15:41	15:43		16:23	16:25		10:35	14:09		11:19	14:16		14.13	14:37	
A1	3.72	3.85	190	4.00	0.001	170.71 B/M	13.03	4.85	3.64	402	3.87	17.67 BIN	4.03	4.32	6.95 BDV	0.937	1.28	30.9	2.17	3.62	50.1 BIN	1 29	2 26	546 Bru
Ca	1 52	1,44	5.41	2.02	2.32	13.82	1.45	1.49	2.72	2 01	2	0.50	1.82	1.88	3.24	0.527	0.699	21.1	0.607	1.02	50.8	0.633	0 765	189
Cđ	0.0066	0.0051	BDL	0.0107	0.0089	BDL	0.0055	0.0065	BDL.	0 001	0.0016	BDL	0.0007	0.0005	BDL	0.0006	9.0007	BDL.	0.0026	0.0006	BDI.	0.0014	0.0001	BDI.
Co	0.0008	-0.0008	BDL	0 00 1 1	-0.0013	BDL	-0.0015 ·	-0.0006	BDL.	-0.0004	0	BDL	-0.0023	-0.0029	BDL.	l i								- 1
Cr C-	0.0217	0 0195	BDL	0.0225	0.0209	BOL	0.0173	0.018	BDL.	0.2281	0.2244	1.64	0.0188	0.0169	BDL									
Fe	1.022	0.939	1 16	1 05	1.179	0.42	0.7979	0.7957	0.28	3 13	3.13	0.23	0.171	0.1/21	0.41	0.2177	0.2102	3.3	0.1149	0.1129	00	0.465	0.0439	16
Mg	1 19	1.18	0.84	1.88	296	45.27	1.02	0 994	2.58	0 365	0.352	3.63	0311	0.313	0.64	0.095	0.094	DL	0.118	0139	BDL	0.139	0.158	12.8
Ma	1.238	1.221	1 38	2 017	2.024	0.35	0 9862	0.9759	1.05	0.185	0.184	0.54	0.0727	0.0724	0.41	0.0616	0.0783	4.1	0.0387	0.0405	45	0.0171	0.0194	12.6
Mo	0.0013	0 0003	BDI.	-0.0001	-0.002	BDL	40.0013	0.0029	BDI.	0 0044	0.0058	BDL	-0.0019	-0.0022	BDL	0.0008	0.0053	BDL.	0 00 13	0 0056	BDI.	0 0012	0,0015	BDI
Nill Nil	1.78	1.78	0 Mirst	2.49	2.53	3.21	1.07	1.09	1.65	0 441	0.441	0.00	0.36	0.361	0.28 BCV	0.064	0.123	BDL.	0.091	0.133	BDL .	0 175	0 22 1	23.2
P	0.41	0.38	7.59	0.46	0.5	408	0 43	0.45	4.55	0 56	0.51	9.35	0.42	0.43	2 35	0.28	-0.001	BUIL.	0.44	47.004	200.0	0.001	UKM	
РЪ	0.021	0.023	BDL.	0.006	0.034	BDL	0 001	-0.002	BDL	0 015	0.01	BOL	0.02	-0.025	BOL	0 05	0.024	BDL.	0.048	0 02	BDI.	0.009	0.004	BDL
Si	1.16	1.11	4 41	1.18	3.54	100	12	1.22	1.65	168	1.61	4.26	1.36	1.41	3.61	0.457	0.517	12.3	0.562	0 912	475	0.42	0 575	31.2
Sir	0.01	0.0095	5 13	0.0119	0 0136	13.33	0.0095	0.0097	2.08	0 0129	0.0128	0.78	0.0111	0.0114	2.67	0 0041	0.0044	BDL	0.0046	0 0064	BDI.	0.0036	0 0045	вя
7.	1 03	1906	1.25	1 2 1 3	3 203	112-22	1 557	1 537	0.00	0 4571	0.0519	4.33	0.02.99	0.024	0.42	0.0064	0.0063	1.6	0.0074	0.0104	33.7 K A	0.0046	0.0075	
		Lab Dural			Lab Deal			Lab Davi			Lab David	I als Danal	1	T			Statistics an	competit	tion of all i	horstory d	luntice	tes thend some	nies)	
Sample Name	110-3 18-30(2)	EIC-3 18-20(2)	S CHG	1118-1 20.5-30.	6 11DB-1 20.5-30.	1 %CHO	1113-1 0-9em	1118-1 0-9em	5010	IIC-3 38-34	11C-3 30-34mm	HCJ 334	SCHO	1			Sumatur on	compil			-opin o			
Analysis date	2/15/96	2/15/96		2/15/96	2/15/96		2/15/96	2/15/96		2/15/96	2/15/96	2/15/96		1				STD.	MEAN+	# OF	STD.	95% CONF.		l
Aasiyais time Al	14.44	14: 49 1.4	7.4	15:46	15:46 17.6	14	16:13	16:34	16.0	10:44	10:52 3 78	10:54	İ 06	1			MEAN	DEV.	STD.DEV.	DATA	ERB.	OF MEAN		1
As .	0 881	0 87	13	0.065	0.072	DL	0045	0.03	BDI.	0 029	0.023	0.026	BDL.	l		1 2	7.46	11.68	19 15	4	3.89	15.10		
Ca	1.48	1.48	0.0	3 11	31	0.3	104	1.11	6.5	0 691	0.739	0.757	81			Ċ	11.33	12 75	24.07	29	0.67	12 64		
Cđ	0.0089	0 0102	BDI.	0.0050	0.005	BDI.	0.0036	0.0025	BDL	0 0023	0.0014	0.0017	BDL.			C4	7.04	NA	NA	1	NA	NA		Į
Ce				1													144	NA	NA	0	MA	-		
C.	0 5405	0 5374	06	1 651	1 648	02	0 5701	0.5741	07	0.083	0.0423	0.0623	08				1.23	1.51	2.74	20	0.08	1.39		1
Fe	21.4	24.3	04	5.86	5 86	0.0	2.03	2.04	0.5	2.08	2.04	2.08	1.9	1		Fe	3.45	6.00	9.44	20	0 32	407		- 1
Mg	0.108	0 108	0.0	1	1.03	3.0	0 194	0.204	5.0	0 103	0.132	0.122	24.7			M	22.32	30.09	52.42	18	177	25.79		1
Ma	0.1454	0 446	0.6	0 5207	0 5 1 94	0.2	0.1646	0.1654	0.5	0.0396	0.0396	0.0396	0.0			M	3.32	7.00	10.32	20	0.37	404		I
Na	0.09	0.096	A.A	0.309	0.3	3.0	0 137	0.15	9.1	0.085	0.09	0.0014	BOL.				7.63	10.05 M. AR	17.68	4	5 35 0 70	14 19 9 22		
Ni	0.004	0	BDI.	0.003	0.001.	BDL	0.003	-0.003	BDL	0.004	0.002	0.005	NDL.			N	4.49	4.78	9.27	2	4.78	13.86		
P	l			0.97	0.99	2.0	0 29	03	3.4	0 69	0.69	0.75	8			7	17.10	47.38	64.48	17	2.96	22.90		1
Pb	0 035	004	BDL	0.16	0.17	6.1	0.07	0.058	BDL	0.05	0.063	0.066	BDL.	1		Pb	5.32 .	2.29	7.60	6	0 46	6.21		
54 C-	2.18	2.18	0.0	00711	5.11	2.2	0.955	1	4.6	0 529	0.62	0.63	17.4			Si	29.56	3173	64 31	20	183	33.15		
Ti I	0.006	0.0063	49	0.0826	0 085	2.8	0 012	0.0134	110	0 0067	0.008	0,0067	26.0			<u>У</u> Т	5.43	0.3/ 3491	11.00	20	184	34 80		
Za	0.7654	0.7584	0.9	1.33	1327	0.2	0 6774	0.6814	06	0.2901	0.2797	0.289	3.7			Z	1.80	207	3.87	20	0 11	2 02		- 1
												_	the second second second second second second second second second second second second second second second s	4				-		i			_	

.

Sample dapitcates (bead samples): Calculations worksheet]									
Sumate Name	ICA MARK	Sample dupt	\$ (18G	IB-I BArm	Sample dayi. S.III.3 S.Sen (2)	s.CHG	14.3 B.12cm	Sample dagt. 14.3 8.12cm(2)	5.(BG	LA I DAMAS	Sample dapt.	8.CBG		Sample dupi.	S.CHG		Sample dupl. ITBL3 254 Jam (2)	5.040	1			
A antre dass	1/26/96	1/26/96		1/26/96	1/26/96	••••••	1/26/96	1/26/96		1/26/96	1/26/96	1000	1/26/96	1/2596		1/26/96	1/26/96	••••				
AI	23.8	29.4	21.4	34.9	168	69.9	11.50	29.5	46.2	53:0	50.8	4.4	30.9	36.1	78	41.5	12.8	105.4				
	43 168	3.8 14.1	112	BOL	BDL 9.8	BDI. 10.7	0.4	0.5	260 7.9	BDL 217	BDL 20.7	BDL 145	BDL 7.3	BDI. Rá	BDI 17.4	BDL.	BDL 7.4	8DL 414	1			
Cđ	BCI.	0.10	BCIL	0,1	0.1	4.0	BDL.	pl.	BDI.	BCI.	BCL	BOL	BDL.	901	BCI.	BOL	BCI.	BDI.				
Co Cr	BCI.	BCL BCL	BDL	BDI.	BEDL BUXL	BDI BDL	BDL BDL	BDL BDI	BDL BDL	BDI. BDI.	BCL BCL	BDL BDL	BDL BDL	BCL. RCL	BCIL BCIL	BOL. BOL	BDL BDL	BIDL. BIDL				
C.	10.0	100	02	142	146	23	16.8	18.4	8.6	110	10.9	0.9	12	11	13.2	12	LI .	11.5				
Pe Ma	270	244 5.2	99 67	13.1	153 141	15.5 4.9	35.2	398 63	12.4	142	136	2.6 21.1	13.7	113	20.8 09	70	5.7 1.1540	211				
Ma	7.9	7.4	56	16.8	16.8	0.0	66	13	93	33	2.9	20.5	04	04	65	05	04	18.6				
Na	43	8LA. 4.7	46	14.7	15 J	8DI. 4.0	72	7.7	63	60	4.9	21.6	1.4	BLA. 1.7	BLA. 24.0	2.4	BUL 1.7	343				
NI P	0.3 284	02	53.4 8.6	BDL.	B11.	BCDL.	0	BCAL.	BDI.	BDL.	BDL	BDL	BDL.	BDL.	BUL	BDE.	BDL.	BDI.	1			
Pb	14	12	17.2	BDI.	03	BOL	10	10	3.4	17	13	12.8	BDL:	BDL	BDI.	BOL	BOL	BDL.				
SI	21.2	19.8	6.4	8.1	69	15.4	11.5	14.5	23.1	24.4	24.1	1.1	6.3	6.9	99 14	9.1	5.4	50.2				
Ti	0.2	02	86	02	01	10.9	02	0.5	14.7	02	61	17.0	02	0.2	0.0	02	01	47.0				
Za	22.6	198 Family days	13.2	27.7	28.0	12	12.3	13.8	11.8	6.7	60	11.5	13	13	4.9	14	12	13.4	ļ	Frankle And		1
Santalo Name	EC-10-1km	SC-18-11mm (2)	% (*HG	8C-128-30em	BC-1 24-39cm (2)	%CHG	019-1 18-29cm	2018-2 18-29cm(2)	% CRG	BIC-I LI-Men	EIC-1 11-30cm (3)	% CHG	IA-18-then	IA-1 0- Dem(2)	ъсж	0.4 135-21.5	BA-2 (3.8-21.5(2)	S CHO	EA-2 22-33km	EA-2 22-32-#	I SCHG	
Annively date	1/26/96 12:43	1/36/96		1/36/96	1/26/96		1/26/96	1/26/96 14:33		1/26/96	1/26/96 14:58		2/6/96	2/6/96 14:17		2/6/96	2/6/96 16:20		26/96	2/6/96 16:27		1
AI	39.9	23.5	43.9	35.6	70.8	66.2	163	21.5	26.5	22.4	18.4		32.4	31.7	23	26.5	19.8	28.9	20.0	26.6	28 5	1
Č.	12.2	BCN. 12.8	81DC. 5.4	12.5	0.9 15 2	6.7 19.4	801. 8.4	90L. 98	BCX 13.2	112	9674. 10.1		023	0.22 8.2	BDL 28.7	9.9	10.0	80L 06	90	0.0502 10.0	BR.N. 186	1
Cđ	BOL	BCI.	BDL.	BOL	BOL	BOL	BCA	BDL.	90L	BDL	BDL.	10.1	0.020	0.020	BOL	0.0025	0.0030	BDL.	0.0035	0.0010	BOL.	
Cr	BOL BOL	BCIL BCIL	BOX.	BDL BDL	BCIL BCIL	BOL BOL	BOL.	BDL BDL	BDL BDL	BCL.	BCI.	BDL BDL	0.092	-0.005 0.074	BIDIL 21.6	0.0170	0.01.54 0.0744	86 86	0.099	0.0136	BDR. 306	
C.	4.7	5.1	73	1.6	1.7	61	0.7	03	88.9	0.9	0.8	BCIL.	4.49	4.39	2.1	1.747	1.897	78	0547	0830	11	
Ma	2.6	2.4	87	1.9	32	49.0	12	14	12.1	16	28 1.4	17.4	361	9.92	23.3	3.38	7.55	6.3 74.2	1341	3.706 1.731	116	1
Ma	1.7	19	93	13	13	3.8	0.1	02	10.4	04	0.4	12.9	2.97	2.49	17.4	0.636	0659	53	0.3602	03753	4.1 804	1
Na	2.4	2.4	1.8	1.8	2.2	20.7	1.7	13	10.0	46	4.6	BOL	3.498	2.536	31. 5	1.722	1.578	PUL 8.7	1.7836	2.0326	13.1	
NI	BDI.	BDL	BDL.	BOL	BDI.	BDI.	0.9	02	1179	BOL	BDL -	0.7	0.040	0.020	BDL.	0.030	0045	BDL.	0.0248	00352	BDL.	1
РЬ	0.7	07	31	0.6	0.6	•	BDI.	BOL	BDL	BOL	BDL	45	0.305	0.263	BCI.	003	0.005	BDL	-0.099	0.141	BDI.	
Si Si	12.6	10.4	19.5	12.4	15.6	22.4	5.3	7.6	36.1	8.1	44	BDL.	8.496	8.100	3.7	8 91	7.74	14.1	6738	8.301	208	
TI	0.2	0.2	7.0	02	03	51.0	01	0.1	29.6	0.1	8.1	112	0.169	0 133	24.1	0.1507	0.1474	22	011	0.137	144	
Z.	52	5.9	12:3	3.8	3.4 Samuel And	114	1.1	0.8 Sanda dad	24.8	3.1	23	20.1	5.938	6.110	3.0	1.5960	2.0735	95	1.0949	10601	32	1
Sample Name	EA-3 23-33cm	EA-2 22-32em (2)	SCHG	8C-3 18-28cm	BC-3 18-20(2)	S CHO	BC-334-48m	30044 (mp. 1911-3 34-4 (cm. (2)	%CHG	UIC-3 18-33cm	UIC-1 18-3 icm (t)	% CING	DIC-1 21-38cm	50000 cmp.	5C#4	1	Statistics on o	ompili	tion of all se	mple duplic	ates (beads)	
A substantia deste	2/6/96	2/6/96		2/15/96	2/15/96		2/15/96	2/15/96		2/15/96	2/15/96		2/15/96	2/15/96					STD.	MEAN +	#0F	STD. 98% CONF.
AI	20.0	26.6	28.5	17.46	14 06	21 53	12.80	13.07	8 06	20.30	25.48	23.43	26.19	16.69	44.34		AI	33.42	17.12	MAN .	17	140 34.95
Au Co	0.0149	0.0302	BDL.	6.71	8 74	26.22	5.22	2.84	11.17	0.81	0.86	595	036	0.42	BDI.		~	14.54	8.22 ·	23.78	•	1.54 17.35
C.	0.0015	0.0010	BDL	0.00	0.10	28.27	0.07	0.06	2.44 BOL	904	0.05	903) 901.	0.05	0.06	BDL	I		14.00	NA NA	34.48 NA	17	NA NA
Co Co	-0.0114	0.0136	BDL.		-					1					BD1.	[C •	MA	NA	NA		NA NA
Cu	0.847	0.838	1.1	5.24	5.40	2 94	1.78	139	11.38	14.33	16.86	16.10	12.41	14 62	BDL. 146.31		а С	28.24	11.47	31.31 31.46	3 17	5.49 2".40 1.2 1 14.33
Pe	3.646	5.768	33	205.41	244.12	17.22	210.62	200.18	5.08	66.33	75.30	12.68	210.44	234.22	10 70		Fo	18.43	6.47	(6.8)	17	8.30 11.10
Ma	0.3602	0.3753	4.1	1.19	1.45	9,54 10.36	1.90	150	6.84 4.42	2.84	3.43	24.35 18 01	0.70	1.54 0.06	11.72 BDL		Mag Ma	21.5 8.43	21.76 6.83	43.34 j£.45	17	128 24.09
Me	0.0094	0.0111	BDL.	0.29	0.36	19.66	140	0.30	4.53	0.09	0.11	25 10	160	0.37	15.41	1	146	11.07	8.42	19.40	,	120 13.42
NI	1.7836 0.0248	2.0326 0.0352	13.1 BDC	0.01	0.00	22.95 BDL	090	0.96	6.95 BCIL	151	1.#	25.33 MDL	0.00	1.04 -0.05	45.75 BDL		N	14.44	12.98	27.63 131.29	17 2	8.76 JR.15 22.8 J30
2	2.081	1.962	5.9			_	1			1			4.0	5.03	12.19		Ŀ	8.47	4.78	13.17	13	8.4 8.8
рь 51	40.099 6.738	-0.141 8.301	BDL 20.8	20.69	040 21.90	9101. 5.69	936	0 .82 10.11	1.68	1.18	. 146	53.80 21.79	0.75	0.79 31.06	BDL 2.84		8	8,77	11.20 [3.0]	21.84 29.85	8 17	141 1243 8.77 17.54
Sr	0.055	0.064	130	0.14	0.15	7.84	041	0.40	3.89	0.15	9.18	u.e	0.12	0.12	131		*	13.00	8.14	19.82	17	848 1248
2.	0.118	0 137 1 0601	144 32	6.91	0.06 7. <u>5</u> 2	44,115 9.78	0.06	0.06 13-88	1.60 5.39	0.32	838 1184	15.14 16.26	0.16	0.15 12.89	22.90 30.54		20 ·	11.14	13.84 7.10	32.15 18.34	17 17	6.8.) 19.96 8.42 11.96
																•	· · · ·					

.

•

,

Appendix

5

CONCENTRAT	IONS ALC	ONG BEAD	COLUM	NS (adjus	ted to ug/ g BEA	()	1.	T	T	T		T	1	1	T		T		1	1		1
	Date	Mass	Dilution	SW/Subs.	Colors on	1	1	1	1	<u>† </u>	1	1	+	1	<u>†</u>		1				<u> </u>	1
Sample Name	Analyzed	analyzed (g)	factor	boundary	bead tube	AI	As	Ca	Cd	Cu	Fe	Mg	Mn	Mo	Na	Ni	P	РЪ	Si	Sr	Ti	Zn
BEADBLNK1	1/26/96	1.0022	5		(0cm=top);	20	BDL	1.1	BDL	BDL.	BDL	0.78	BDI.	BDL	BDL	BD1,	BDI.	BDL	2.1	BDI.	0.0324	0.024
BEADBLNK2	1/26/96	0.9939	5		v=very;l=light	11	BDL	1.3	BDL	BDI.	BDL	0.58	BDL	BDL	BDL	BDL	BDL	BDL	1.9	BDL	0.0332	BDL
BEADBLANK3	1/26/96	0.9999	5			15	BDL	3.4	BDL	BDL	0.18	0.85	BDL	BDL	0.88	BDL	BDL	BDL	3.9	BDL	0.0715	BDL.
BEADBLANK6	2/6/96	1.0076	5			83	BDL	15	BDL	BDL	0.59	3.2	0.160	BDL	2.5	BDL	1.4	BDL	14	0.077	0.213	BDL.
BEADBLANK7	2/6/96	1.0012	5			81	BDL	10	BDL	BDI.	0.76	2.5	0.119	BDL.	1.9	BD1.	1.3	BDL	11	0.053	0.150	BD1.
BEADBLANK4	2/6/96	1.0023	5			84	BDL	11	BDI,	BDI.	0.69	3.0	0.129	BDI.	1.9	BDL	1.5	BDL	13	0.055	0.165	BD1.
BEADBLANKS	2/15/96	0.9%1	10			11	BDL	2.4	BDL	BDI.	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	4.8	BDL	BDL.	0.0020
BEADBLANK9	2/15/96	1.0071	10			11	BDL	2.8	BDL	BDL	BDL	BDI.	BDL	BDL	BDL	BDL	BDL	BDL	5.9	BDI.	BDL	0.0139
BEADBLANK10	2/15/96	1.0016	5			25	BDL	3.9	BDL	BD1.	BDL	1.2	0.057	BDL	0.58	BDL	BDL	BDL	4.6	BDL	0.080	0.0120
BEADBLANK 11	3/7/96	0.9861	10			28	BDL	7.4	BDL	BDI.	BDL.	1.5	0.079	BDL	1.35	BDL	BDI.	BDL	7.4	BDL.	0.120	BDI.
BEADBLANK 12	3/7/96	1.0065	10			15	BDL	4.6	BDI.	BD1.	BDL	BDL	BDL	BDL	BDI.	BDL	BDL	BDL	4.7	BDL	0.055	BD1,
BEADBLANK 13	3/7/96	1.0062	10			17	BDL	5.1	BDI.	BDL	BDI.	BDL	0.054	BDL	BDL	BDL	BDL	BDL	5.3	BDL	0.068	BD1.
BEADBLANK 14	3/7/96	0.9742	10	+		16	BDL	4.6	BDL	BDL	BDL	BDI.	BDL	BDL	BDL	BDL	BDL	BDL	5.1	BDI.	0.070	BDL
IA-1 0-13 cm	2/6/96	1.0076	5	13cm	0-7 green	32	BDL	BDL	BDL	4.54	10	BDI.	2.73	BDL	3.0	BDL	2.6	BDL	BDL.	BDL	BDL	6.03
[A-1 13-2]cm	2/6/96	1.0055	5		7-13 white	16	1.0	BDL	BDL	10.7	78	BDL	2.25	0.10	2.4	BDL	9.9	1.4	BDL	0.082	BDL	6.58
[A-1 21-31cm	2/6/96	1.0047	5		13-21 med. red	18	BDL	BDL	BDL	6.59	15	BD1.	3.67	BDI.	4.7	BDL	4.4	BDL	BDL.	BDL	BDI.	7.33
IA-1 31-41cm	2/6/96	1.0009	5		21-31 white,1.red	13	BDL	BDI.	BDL	4.37	7.6	BDL	2.98	BD1.	4.5	BDL	1.7	BDL	BDL	BDL	BDL	4.93
					31-41 white															I		
		l				L		· · · ·		L				l		l					1	L
IA-2 0-12cm	1/26/96	1.0052	5	13 cm	0-13 green	37	0.44	13	0.045	17.8	39	6.4	7.05	0.05	7.6	BDL	9.0	0.97	16	0.128	0.304	13.3
IA-2 12-15cm	1/26/96	1.0042	5	ļ	13-15 light red	60	1.2	11	0.081	31.2	140	3.0	3.36	0.20	4.1	BDL	10	1.2	41	0.108	0.142	15.8
IA-2 15-23cm	1/26/96	1.0081	5	ļ	15-42 red	103	0.42	9.6	0.054	18.2	210	3.6	3.77	0.31	4.8	BDL	6.4	3.0	59	0.085	0.161	12.9
IA-2 23-33.5cm	1/26/96	0.9994	5			52	0.21	22	BDL	10.9	140	3.6	3.25	0.21	5.4	BDL	3.6	1.6	24	0.117	0.164	6.38
IA-2 33.5-42cm	1/26/96	1.0009	5	+		48	0.22	9.0	BDL	10.7	190	3.8	3.41	0.30	5.6	BDL	3.1	1.6	16	0.071	0.164	6.13
IA-3 0-10cm	1/26/96	1.0033	5	14 cm	0-10 green	22	0.49	11	0.061	17.8	35	6.6	8.18	BDL.	9.7	BDL	10	1.1	13	0.112	0.236	17.9
IA-3 10-20cm	1/26/96	1.0057	5		10-19 light red	27	0.65	8.5	0.063	13.2	75	6.7	7.67	0.09	10	0.65	4.3	1.1	15	0.072	0.159	13.4
[A-3 20-3]cm	1/26/96	0.9986	5		19-42 white	29	BDL	8.8	0.066	7.43	5.7	10	9.85	BD1.	10	BDL	3.0	BDL	6.2	0.064	0.139	15.5
IA-3 31-42cm	1/26/96	0.9%7	5			29	BDL	17	BDL	5.40	5.6	6.6	5.43	BD1.	6.1	0.70	2.2	BDL	8.1	0.076	0.189	8.89
18-1 (l-8 cm	1/26/96	0 9972	5			79	BIN	95	0.073	143	14	16	16.8	BDI	15	BDI	4.6	111 1		0.081	0.239	27.8
IB-16-12 cm	1/26/96	1.0068	5	12 cm	0-5 green	66	0 70	10	0.053	6 72	50	51	6 45	0.05	4 1	BDI	10	10	13	0 122	0.258	12.2
IB-112-16cm	1/26/96	1.0025	5		5-9 v lieht ereen	13	BDL	7.2	BDL	1 45	38	20	1 25	BDI	2 5	BDI	21	BDI	4.5	0.054	0 124	3.89
IB-1 16-21cm	1/26/96	0.9926	5		9-11.5 light red	17	BDL	5.1	BDL	0.981	1.8	1.4	0.645	BDL	1.6	BDL	1.9	BDL	4.1	0.038	0 104	2.37
IB-1 22-32cm	1/26/96	0.9977	5	1 .	11.5-41.5 white	44	BDL.	7.6	BDL	2.30	26	2.5	1.03	BDI	23	BDL	2.1	BDI	6.7	0.050	0.170	3.29
1B-1 32-41.5	1/26/96	1.0037	5			29	BDL	8.7	BIDL	3.04	7.2	3.0	1.82	BD1.	3.4	BDL	2.3	BDL	6.9	0.066	0.185	3.28
IB.20.75cm	2/6/06	1.0016		12 cm	0.12.0000		0.52		BDI	121	20		12 72		20		4.0	0.71		0.107	0.109	121
IR.175.12cm	216196	0.9965	5	1- <u>2</u>	12.42 white	BDL	0.55	BDL	BDL	12.1	27	BDI	3.75	BDI	2.0	BDL	4.0	0.71	BDL	0.10/	0.170	10.7
IR.717.16cm	2/6/96	1 0054	5		12 12 WINE	RDI	BDI	BDI	BDL	4 37	67	BDI	1 20	RDI	4.2	BDI	10	RD1	BDL	BDI	8DI	5.64
IB-2 16-21.5cm	2/6/96	0 9948	5	+		BDI	BDI	BDI	BDI	3 38	33	BDI	3 21	BDI	40	BDL	1.7	BDI	BDI	BDI	BDI	4 82
IB-2 22-32cm	2/6/96	1.0039	5	t		BDI	BDL	BDI	BDI	1 97	23	BDI	1 99	BDI	36	BDI	112	BDI	BDI	BDI	RDI	349

	Date	Mass	Dilution	SW/Subs.	Colors on		T		<u> </u>										[`			
Sample Name	Analyzed	analyzed (g)	factor	boundary	bead tube	AL	A	Ca	Cd	Cn	Fe	Mg	Mn	Mo	Na	Ni	P	Pb	Si	Sr	Ti	Zn
IB-2 32-42cm	2/6/96	0.9956	5			BDL	BDL	BDL	BDL	2.90	6.5	BDL	1.88	BDL	3.9	BDL	1.7	BDL	BDL	BDL	BDL	3.36
								1					1							•		
1B-3 0-8cm	2/6/96	1.0073	5	11 cm	0-8 green	BDL	BDL	BDL	BDL	7.89	19	6.5	7.26	BDL	8.1	BDI.	3.7	BDL	BDL	BDL	BDL	12.3
1B-38-11cm	2/6/96	1.0068	5		8-10 light red	BDL	BDL	BDL	BDL	6.61	33	7.4	8.16	BDL	11	BDL	2.9	BDL	BDL	BDL	BDL	13.9
IB-311-21 cm	2/6/96	1.0000	5		10-41 white	BDL	BDL	BDL	BDL	5.88	5.7	12	10.1	BDL	12	BDL	2.5	BDL	BDL	BDL	0.238	16.1
1 B -3 21-31cm	2/6/96	0.9944	5	1		BDL	BDL	BDL	BDL	5.12	4.7	6.0	6.18	BDL	9.0	BDL	2.0	BDL	BDL	BDL	BDL	9.64
IB-3 31-41cm	2/6/96	0.9%6	5	T		BDL	BDL	BDL	BDL	4.00	4.9	5.1	4.92	BDL	5.4	BDL	2.2	BDL	BDL	BDL	BDL	7.75
		1																1		1		
IC-1 0-8cm	1/26/96	0.9973	5	8 cm	0-8 green with red	21	0.48	9.1	BDL	5.55	18	2.6	1.98	BDL	2.0	0.25	3.6	0.71	8.4	0.075	0.238	6.79
IC-1 8-11 cm	1/26/96	0.9958	5		streak on tube	21	0.58	11	BDL	2.65	30	4.2	4.81	BDL	3.7	0.73	5.0	1.1	7.4	0.094	0.174	8.04
IC-1 11-30 cm	1/26/96	1.0028	5		8-11 v.light red	18	BDL	8.0	BDL	4.49	7.6	4.1	3.52	BDL	4.9	0.34	2.3	0.48	4.4	0.060	0.137	9.84
IC-1 30-42cm	1/26/96	0.9982	5	T	11-30 white	23	2.3	13	0.123	18.0	300	3.8	6.46	0.43	4.4	1.6	40	1.2	18.1	0.268	0.179	21.9
			1		30-42 med. red													1	1	1		1
IC-2 0-14cm	1/26/96	0.9999	5	14 cm	0-14 green	16	0.32	12	BDL	7.12	19	2.9	3.04	BDL	2.0	0.55	4.0	0.78	9.3	0.098	0.228	10.5
1C-2 14-18cm	1/26/96	0.9973	5	1	14-18 l.green/ white	54	0.62	13	0.049	8.89	27	5.2	3.56	BDL	3.8	0.23	4.3	1.6	13	0.117	0.309	8.11
IC-2 18-32 cm	1/26/96	0.9976	5		18-32 med. red	27	4.0	15	0.108	10.0	260	5.0	7.64	0.35	4.6	0.21	30	1.3	20	0.230	0.188	21.22
IC-2 32-41cm	1/26/96	1.0031	5	1	32-40 white / v.l.red	14	BDL	6.8	BDL	2.75	7.0	2.1	1.69	BDL	2.8	0.99	2.4	BDL	3.8	0.048	0.119	3.29
			1	1	·····		1	1	<u> </u>		<u> </u>	1			<u> </u>	<u> </u>	1	1	1			
IC-3 0-9.5cm	1/26/96	0.9964	5	9.5 cm	0-9.5 green	25	0.315	10	BDL	7.59	20	2.7	2.53	BDL	3.3	0.52	3.8	0.94	9.4	0.081	0.210	8.02
IC-3 9.5-21cm	1/26/96	1.0043	5		9.5-21 v. l.red	23	BDL	7.1	BDL	4.54	14	2.1	1.30	BDL	2.2	0.20	2.2	BDL	6.1	0.050	0.178	2.61
IC-3 21-32cm	1/26/96	1.0002	5	1	21-32 med.red	56	BDL	6.2	BDL	5.54	66	2.8	1.03	0.1	1.9	0.29	2.3	BDL	15	0.047	0.253	3.84
IC-3 32-42cm	1/26/96	1.0083	5		32-42 light red	30	BDL	6.0	BDL	4.72	27	2.6	1.62	BDL	2.7	0.32	1.8	BDL.	7.2	0.042	0.171	3.40
			1	1			1	1					1				1	1				1
IIA-1 0-10.5cm	2/6/96	0.9928	5	15.5 cm	0-10 dark green	BDL	BDL	BDL	BDL	4.22	10	BDL	1.30	BDL	BDL	BDL	3.0	BDL	BDL	BDL	BDL	3.61
IIA-1 10.5-15.5cm	2/6/96	1.0030	5	1	10-15.5 green	BDL	BDL	BDL	BDL	2.91	9.2	BDL	0.880	BDL	BDL	BDL	2.9	BDL	BDL	BDL	BDL	2.12
IIA-1 15.5-22cm	2/6/96	1.0004	5		15.3-20.5 I. green	BDL	BDL	BDL	BDL	3.11	6.3	BDL	0.612	BDL	BDL	BDL	2.4	BDL	BDL	BDL	BDL	1.79
IIA-1 22.5-33cm	2/6/96	0.9999	5	1	20.5-42 white	BDL	BDL	BDL	BDL	2.98	5.5	BDL	0.616	BDL	BDL	BDL	2.5	BDL	BDL	BDL	BDL	4.46
IIA-1 33-42cm	2/6/96	0.9983	5			BDL	BDL	BDL	BDL	1.12	3.4	BDL	0.410	BDL	BDL	BDL	2.3	BDL	BDL	BDL	BDL	2.17
				1																1	t	1
IJA-2 0-10.5cm	2/6/96	0.9974	5	13.5 cm	0-13.5 green	BDL	BDL	BDL	BDL	4.75	17	BDL	1.82	BDL	BDL	BDI.	5.0	BDL	BDL	BUL	BDL	4.12
IIA-2 11-13.5cm	2/6/96	0.9997	5		13.5-42 white	BDL	BDL	BDL	BDL	2.35	9.9	BDL	0.780	BDL	BDL	BDL	3.4	BDL	BDL	BDL	BDL	2.54
IIA-2 13.5-21.5 cm	2/6/96	0.9988	5			BDL	BDL	BDL	BDL	1.82	7.6	BDL	0.648	BDL	BDL	BDL	2.8	BDL	BUL	BDL	BDL	1.98
IIA-2 22-32 cm	2/6/96	1.0092	5		ta ne a contra contra contra de servicio de ser	BDL	BDL	BDL	BDL	0.846	3.7	BDL	0.365	BDL	BDL	BDL	2.1	BDL	BDL	BDL	BDL	1.08
IIA-2 32-42cm	2/6/96	0.9929	5			BDL	BDL	BOL	BDL	0.766	4.4	BDL	0.340	BDL	BDL	BDL	2.0	BDL	BDL	BDL	BDL	0.96
							1	1										1		1		
11A-3 0-8.5cm	1/26/96	1.0013	5	8.5 cm	0-8.5 green	103	0.27	11	BDL	6.59	23	4.1	1.44	BDL	1.6	BDL	4.7	0.69	20	0.094	0.367	5.61
IIA-3 8.5-13.5cm	1/26/96	1.0083	5		8.5-13.5 red	35	2.1	20	BDL	4.84	270	2.2	1.81	0.38	1.5	BDL	20	0.85	21	0.274	0.178	5.18
IIA-3 13.5-21.5cm	1/26/96	1.0005	5	1	13.5-41 white	37	BDL	8.0	BDL	1.16	13	1.7	0.432	BDL	1.6	BDL	4.2	BDL	6.6	0.069	0.158	1.31
IIA-3 21.5-29.5cm	1/26/96	1.0009	5	T	1	31	BDL	6.5	BDL	0.941	3.8	1.5	0.295	BDL	1.5	BDL	2.1	BDL	5.5	0.048	0.139	1.92
[IA-3 30-41cm	1/26/96	1.0043	5	1		24	BDL	6.7	BDL	1.33	3.7	1.3	0.325	BDL	1.4	BDL	2.4	BDL	5.6	0.050	0.146	1.52
		1	1	1			1					1							t	· · · · ·		1
11B-1 0-8cm	1/26/96	0.9996	5	8cm	0-8 green	16	BDL	10	BDL	4.85	16	1.9	1.62	BDL	1.6	0.19	4.1	0.66	8.4	0.083	0.192	5.13
[IB-1 8-14cm	3/7/96	0.9967	5	1	8-14 v.light red	17	0.75	9.4	BDL	4.01	27.59	1.68	1.27	BDL	1.37	BDL	4.92	1.62	8.3	0.098	0.253	7.49
11B-1 14-26cm	3/7/96	1 0014	5		14-26 white	18	106	170		265	11 28	1 71	0 80	IPDI	1 51	PDI	1 00	0.05	67	0.067	0 203	5 79

IB-1 26-35cm	3/7/96		26-41 light red	16	1.41	10.14	BDL	4.10	35.98	2.14	1.19	BOL	1.56	BOL	3.17	1.87	9.8	0.105	0.296	4.65
	Date	SW/Sube.	Colors on																	
Sample Name	Analyzed	boundary	bead tube	AL	Ae	G	CI	Cu	Fe	Mg	Ma	Mo	Na	Ni	2	Ph	Si	Sc	Ti	Z
IB-1 35-41cm	3/7/96			21	1.77	11.76	BOL	2.98	31.15	2.30	1.17	BDL	2.0	BDL	4.62	1.24	9.6	0.117	0.296	5.03
					1									1				<u> </u>		1
1B-2 0-7cm	2/6/96	7 con	0-6 green	BDI.	BOL	BDL	BDL.	5.23	16	BDL	1.75	BDL	BDL	BDL	4.4	BDL	BDL	BDL	BDL	4.79
IB-2 7-12cm	2/6/96		6.6 light green	BDL	BDI.	BDL	BOL	15.50	21	BDL	1.81	BDL	BDI.	0.68	4.6	BDI.	IDR	BDI.	BDL	4.51
IB-7 17-10 5-m	2/6/96	<u> </u>	R.40 E white	BDI	BDI	BDI		2.85	21	BUI	1 24	RDI	BUL	1 36	127	BDI	BDI	BOI	BOL	3 53
IR.2 20.30-m	2/6/96		0-10.5 Million	ani	BOI	BOL	ROL	2 13	16	BDL	0 923	RDI	RDI	1 35	27	BDI	BDI	RDI	BOI	2 29
118-2 20-50Cm	2/6/96			RDI	BDI		BDI	0.022	21	BDL	0.324	BDI	BOI	ROI	16	RDI	BDI	BOI	RDI	126
ill'a su susciti			<u> </u>	DUL	DDL.	INCL.	BUL	0.724	1.1	DDL	0.001		1000	-		-	100	-		
18 2 A 7	1/26/06	10 8	0.7	122	0.20	10	BDI	2 04	1.	27	1 40	BDI	24	RDI	12	0.82	0.0	0.070	0 100	4 26
IB-3 0-7CM	1/20/70	10.5 Cm	7 Ou tight and	22	0.27	10	BDL	3.90	21	2.7	1.37	BDI	2.4	BDL	4 1	1 2	10	10.100	0.170	14 1
10-3 7-13Cm	1/20/70	<u> </u>	0 Al ushin	14	0.01	14	BDL	2.07	20	1.4	1.01	PDI	2.0	PDL	2.1	1.2	10	0.102	0.272	12 90
110-3 13-23Cm	1/20/70		7-91 WINE	10	BUL	1.0	DUL	1.49		1.5	0.302	DUL	2.1	DUL TOT	2.7	DUL	0.0	0.050	0.170	1.00
110-5 25-61Cm	1/20/90			<u> </u>	BLU	9.3	BUL	1.18	0.4	1.0	0.423	PUL	2.0	DUL	11	PUL	1.3	0.062	0.191	1.2
10 1 0 11	1/26/06	18	0.11		0.00				-		1.00		2.6	BIN	1	0.07		0.008	0.274	1.4
	1/20/90	15 cm	U-11 green	50	0.2/	13	BUL	4.84	10	3.0	1.79	BOL	2.5	BUL	4.1	0.0/	114	0.095	0.270	3.94
IIC-1 11-20Cm	1/20/90		11-30 light red	29	1.0	12	BUL	5.82	03	2.5	2.20	0.09	1.9	DUL	0.0	11	113	0.100	0.3/5	12.9/
IIC-1 20-30cm	1/26/96	 	30-42 white	53	0.90	14	BOL	1.69	197	2.0	1.30	0.13	2.0	BUL	10	0.01	14	0.141	0.250	3.60
IIC-1 30-42cm	1/20/90			10	BUL	8.9	BOL	0.85	3.5	1.4	0.407	BOL	2.0	BUL	2	BUL	0.2	0.054	0.144	14.00
						1						<u> </u>				-	<u> </u>			1
11C-2 0-4.5cm	2/15/96	ļ		19	0.32	12	BOL	5.80	18	2.2	2.10	BDL	1.8	BOL	3.9	0.52	10	0.093	0.162	5.49
IC-2 4.5-8.5cm	2/15/96	l		28	0.24	12	BDL	4.74	15	2.2	1.81	BOL	2.4	BDL	2.8	0.46	10	0.068	0.172	4.06
IIC-2 8.5-11cm	2/15/96	8.5 cm	0-8.5 green	20	BDL	11	BOL	3.55	11	1.7	1.50	BOL	2.6	BDL	2.0	BDL	9.2	0.870	0.126	3.38
11C-2 11-21cm	2/15/96	ļ	8.5-40 white	20	BDL	9.9	BOL	2.46	7.7	1.5	0.843	BDL	2.4	BDL	1.5	BDL	7.9	0.062	0.122	2.41
IIC-2 21-30cm	2/15/96		ļ	12	BDL	6.9	BDL	1.29	4.0	0.90	0.390	BDL	BDL	BDL	BOL	BDL	4.8	BDL	BDL	1.49
IIC-2 30-40cm	3/7/%			16	BDL	6.5	BOL	1.01	3.1	1.1	0.37	BDL	1.4	BDL	BOL	BDL	5.4	0.14	0.090	1.34
IIC-3 0-8.5cm	2/15/96	8.5cm	0-8.5 cm green	111	0.42	13	BOL	8.12	25	5.7	3.07	BDL	1.6	BDL	5.0	0.99	27	0.115	0.362	9.39
IIC-3 8.5-10cm	2/15/96		8.5-10 cm white	14	BDL	7.5	BOL	2.62	8.9	1.2	0.980	BOL	1.3	BDL	3.4	BDL	6.0	BDL	0.08	2.45
IC-3 10-20 cm	2/15/96	L	10-20 cm med.red	13	8.1	15 ·	BOL	5.36	230	1.1	1.41	0.34	1.0	BOL		BDL	21	BOL	0.07	7.41
IC-8 20-30cm	2/15/96		20-30 cm l.red	23	BDL,	73	BDL	1.13	14	1.1	0.388	BDL	BOL	BDL	3.6	BDL	6.8	0.150	0.08	1.58
IC-3 30-34 cm	2/15/96		30-34 cm white	18	BDL	7.3	BDL	0.825	21	1.2	0.396	BDL	BDL	BDL	7.1	BDL	5.9	0.053	0.06	2.86
IC-3 34-41cm	2/15/96		34-41 cm red	13	3.1	26	BDL	1.68	210	1.5	1.90	0.30	BDL	BDL		BDL	10	0.410	0.06	14.3
-																				
IIIA-1 0-5.5 cm	1/26/96	8 cm	0-5.5 green	27	BDL	15	BDL	7.68	35	2.5	2.29	0.07	2.3	BDL	3.4	0.77	15	0.118	0.226	9.11
IIA-1 5.5-8.5cm	1/26/96	•	5.5-8 bright red	27	2.1 .	18	BOL	5.16	339	1.8	1.06	0.50	2.0	BDL	6.5	1.0	31	0.209	0.173	12.2
IIA-1 8-14cm	1/26/96	· ·	8-42 white	33	BDL	11	BDL	0.983	3.6	1.6	0.209	BDL	2.3	BOL	BDL	BDL	9.7	0.071	0.132	2.39
IIIA-1 14-25cm	1/26/96			22	BDL	10	BDL	0.948	3.5	1.4	0.196	BDL	2.0	BOL	BOL	BDL	8.5	0.066	0.118	2.38
IIIA-1 25-42cm	1/26/96			23	BDL	11	BOL	0.687	3.1	1.4	0.207	BDL	2.0	BDL	BDL	BDL	8.6	0.068	0.121	2.13
	1				1	1		1										1		
111A-2 0-9.5cm	2/15/96	9.5cm	0-9.5 green	115	BOL	10	BDL	6.30	25	1.8	1.50	BDI.	1.9	BDL	<u> </u>	BDL	9.1	0.087	0.138	5.49
IIA-2 9.5-14.5cm	2/15/96	1	9.5-14.5 bright red	13	0.59	9.7	BOL	3.68	190	1.6	0.593	0.30	1.7	BDL		BDI	24	0.110	0.09	5.74
IIA-2 14.5-32 cm	2/15/96	 	14.5-42 white	18	BOL	7.0	BDL	0.437	4.8	1.5	0.183	BDI	2.0	BDL	t	BDL	5.0	BDL	0.06	0.963
IIA-2 32-42cm	2/15/96			10	BOL	4.8.	BDI	0.269	21	14	0.153	BDI	2.1	BOI	<u> </u>	BDI	114	RDI.	BDI.	0.724
	+= == ==	f	ł	ť	1	1	1	1	l		1	1000		1 m	J	LUL L		1000		V-/ 41

•

	Date	Mass	Dilation	SW/Subs.	Colors on		1															
Sample Name	Analyzed	analyzed (g)	factor	boundary	bead tube	AL	A	C	Çđ	C	Fe	Mg	Ma	Mo	Na	Ni	<u>r</u>	РЬ	<u>\$i</u>	Sr	Ti	Zn
11]A-3 0-7.5cm	1/26/96	0.9990	5	11 cm	0-7 dark green	19	BDL	12	BDL	5.61	16	2.2	1.52	BDL	1.5	BDL	3.2	0.61	10	0.088	0.170	5.22
111A-3 7.5-11cm	1/26/96	1.0014	5		7-11 light green	20	BDL	12	BDL	4.10	11	1.8	0.865	BDL	2.7	3.60	2.1	BDL	9.5	0.075	0.142	4.73
111A-3 11-15cm	2/15/96	0.9996	5		11-15 red	12	0.72	7.8	BDL	4.77	60	0.66	0.401	0.09	1.0	BDL		0.55	8.7	0.084	0. 0 7	4.26
111A-3 15-21.5cm	2/15/96	1.0016	5		15-42 white	18	BDL	5.3	BDL	1.65	4.7	1.2	0.211	BDL	1.4	BDL	2.2	BDL	4.2	0.043	0.100	4.98
IIIA-3 22-31.5cm	2/15/96	1.0074	5			21	BDL	8.2	BDL	1.13	1.9	1.3	0.218	BDL	1.6	BDL		BDL	6.3	0.054	0.109	3.04
1IIA-3 31.5-42cm	2/15/96	1.0016	5			17	BDL	6,8	BDL	0.882	1.8	0.92	0.129	BDL	1.1	BDL		BDL	5.6	0.046	0.08	1.47
111B-1 0-9 cm	2/15/96	0.9965	10	12.5 cm	0-9.5 green	15	BDL	11	BDĹ	5.74	20	2.0	1.66	BDL	1.4	BDL	3	BDL	9.8	0.086	0.127	6.82
111B-1 9-12cm	2/15/96	1.0021	5		9.5-11 red	28	3.2	31	BDL	9.72	240	3.0	4.05	0.35	2.4	BDL	30	1.2	21	0.616	0.258	7.21
IIIB-1 12-20cm	2/15/96	0.9946	5		11-41 white	22	BDL	9.4	BDL	1.23	3.0	1.5	0.324	BDL	2.4	BDL	BDL	0.25	7.5	0.070	0.108	1.10
111B-1 20.5-30.5 cm	2/15/96	1.0041	10			170	0.68	31	BDL	16.4	58	10	5.18	BDL	3.0	BDL	10	1.6	50	0.237	0.835	13.2
IIIB-1 31-41cm	2/15/96	1.0004	10			13	BDL	7.3	BDL	2.64	7.6	1.4	0.547	BDL	0.95	BDL	2	BDL	6.4	0.084	0.119	1.96
				T																		
111B-2 0-8cm	1/26/96	0.9948	5	0 cm	0-8 bright red	55	2.7	24	BDL	14.1	700	2.5	0.860	1.1	3.0	0.32	20	0.42	66	0.310	0.188	18.8
IIIB-2 8-18cm	1/26/96	0.9992	5	(top 12 cm	8-29 white	25	BDL	11	BDL	0. 69 3	4.9	1.6	0.165	BDL	1.8	0.28	BDL	BDL	9.0	0.061	0.148	1.13
I11B-2 18-29cm	1/26/96	1.0012	5	chopped o	ff;	19	BDL	9.1	BDL	0.518	3.3	1.3	0.152	BDL	1.6	0.56	BDL	BDL	6.5	0.050	0.103	0.940
				all subsurf	ace)																	
]																				
I11B-3 0-4cm	1/26/96	1.0077	5	9 cm	0-2.5 red	27	1.4	18	BDL	8.63	120	2.1	1.39	0.18	2.5	BDL	10	1.1	17	0.241	0.171	8.16
111B-3 4-9cm	1/26/96	1.0013	5		2.5-41 white	24	BDL	11	BDL	3.02	7.0	1.7	0.382	BDL	2.4	BDL	1.5	0.56	9.0	0.090	0.167	4.26
IIIB-3 9-21cm	1/26/96	0.9926	5			20	BDL	10	BDL	1.93	5.6	1.4	0.355	BDL	2.1	BDL	1.5	0.46	7.8	0.078	0.128	4.64
IIIB-3 21-30cm	1/26/96	0.9982	5			28	BDL	11	BDL	3.05	5.7	1.8	0.264	BDL	1.7	BDL	1.4	0.59	9.1	0.079	0.173	3.44
IIIB-3 30-41cm	1/26/96	1.0026	5			117	BDL	12	BDL	1.70	6.2	4.2	0.417	BDL	2.1	BDL	1.2	0.56	14	0.089	0.271	2.33
•							1	<u> </u>				l		L		_	I	I	I	I		<u> </u>
IIIC-1 0-8cm	1/26/96	1.0014	5	9.5 cm	0-8 green w/ red	30	BDL	16	BDL	3.58	13	3.3	1.59	BDL	7.2	BDL	1.9	0.47	13	0.108	0.195	4.93
111C-1 8-11cm	1/26/96	0.9977	5		streak on tube	25	1.9	20	BDL	4.60	200	2.1	2.47	0.31	3.0	BDL	20	0.81	21	0.273	0.165	10.1
IIIC-1 11-28cm	1/26/96	1.0051	5		8-11 red	20	BDL	11	BDL	0.869	3.1	1.5	0.372	BDL	4.6	BDL	1.1	BDL	7.5	0.065	0.106	2.79
IllC-1 28-42cm	1/26/96	1.0056	5		11-42 white	17	BDL	10	BDL	0.727	2.2	1.5	0.470	BDL	6.5	BDL	0.8	BDL	6.7	0.063	0.104	1.84
																L			l			
111C-2 0-10	3/7/96	1.0016	10	30 cm	0-21 green	23	BDL	17	BDL	10.8	3.7	3.5	3.17	BDL	1.8	BDL	7.5	1.14	16	0.140	0.340	9.26
111C-2 10-21 cm	2/15/96	1.0026	5		21-32 bright red	23	0.84	18	BDL	15.6	71	3.2	2.52	0.10	1.5	BDL	9.5	1.4	18	0.160	0.349	10.9
IIIC-2 21-32 cm	2/15/96	1.0003	5		39-42 v.light red	21	BDL	14	BDL	13.5	220	1.6	0.824	0.34	1.3	BDL	4.7	BDL	31	0.122	0.145	12.2
IIIC-2 32-39cm	2/15/96	0.9977	5			19	BDL	9.6	BDL	1.33	21	1.2	0.289	BDL	1.5	BDL	1.5	BDL	8.9	0.060	0.096	2.29
111C-2 39-42cm	2/15/96	0.8606	5			17	BDL	9.0	BDL	1.29	36	1.0	0.290	0.07	1.1	BDL	1.6	BDL	9.4	0.060	0.080	2.24
							1								1			L	I	L		<u> </u>
111C-3 0-11cm	1/26/96	1.0027	5	14 cm	0-11 green	31	0.24	17	BDL	5.92	23	2.6	1.55	BDL	2.4	BDL	3.1	0.55	14	0.119	0.234	5.57
111C-3 11-17cm	1/26/96	0.9989	5		11-17 light red	22	0.48	12	BDL	3.11	35	1.5	0.537	0.06	2.1	BDL	2.7	0.67	11	0.082	0.145	3.23
111C-3 17-31cm	1/26/96	1.0038	5		17-42 white	22	BÐL	10	BDL	1.05	3.4	1.3	0.286	BDL	1.6	0.18	0.9	BDL	8.3	0.061	0.137	3.51
111C-3 31-42cm	1/26/96	1.0021	5			30	BDL	11	BDL	0.636	2.6	1.7	0.239	BDI.	2.1	0.13	BDL	BDL	9.1	0.068	0.148	2.91
		1				1	1			ļ			ļ	 	L	 	I	ļ	I	I	 	ļ
	1						I	1	-	<u> </u>		ļ	ļ	I	I	·	Į	<u> </u>	I	I	I	I
IIIC-2 10-21 ALGAE COATING		S	1		32-39 white	46	1.9	42	0.122	37.9	130	9.0	8.05	0.20	2.7	BDL	20	3.7	40	0.372	0.909	29.8

Bead Column IA-2

BDL/ No significant trends: Al, Si, Sr

Fe Ρ As Mo Cu 10 -10 -10. 10-10-Fф4 ф łфł Column length 0 0. 0 0-0 F¢ł -10 -10--10 --10 -10--20 -20--20 --20 -20 0.00000 8.76.54 25 0.08 5 S.

ug per g bead

BDL or insignificant trend: Al, Ca, Mg, Si, Ti

15-

Bead Column IA-3

Bead Column IB-2

BDL/ Insignificant trends: Al, Ca, Cd, Mg, Mo, Na, Si **Bead Column IB-3**

ug per g bead

BDL/ No significant trends: Al, Ca, Cd, Mo, Pb, Si, Sr, Ti

Bead Column IC-1

ug per g bead

ug per g head

BDL/ No significant trend: Al, Ca, Mg, Na, Si, Ti

Bead column IC-2

ug per g bead

BDL/ No siginificant trend: Al, Ca, Mo, Na, Si, Ti. Mo **Bead column IC-3**

ug per g bead

ug per g bead

BDL/ No significant trend: Al, Ca, Cd, Mg, Mo, Na, Si, Ti

ug per g bead BDL/ No siginificant trend: Al, As, Ca, Cd, Mg, Mo, Na, P, Pb, Si, Sr, Ti

ug per g bead

BDL/ No significant trend: Al, As, Ca, Cd, Mg, Mo, Pb, Si, Sr, Ti

Bead column IIA-3

ug per g bead

BDL/ No significant trend: Al, Cd, Mg, Si, Ti

Bead column IIB-1

BDL/ No significant trend: Al, Ca, Cd, Mg, Na, Si, Ti

ug per g bead BDL/ No siginificant trend: Al, As, Ca, Cd, Mg, Mo, Na, P, Pb, Si, Sr, Ti

Bead Column IIC-1

ug per g bead

BDL/ No siginificant trend: Al, Cd, Mo, Na, Si, Ti

Bead column IIIA-1

BDL/ No siginificant trend: Al, Ca, Cd, Mg, Na, Si, Ti

Bead column IIIA-2

ug per g bead

BDL/ No significant trends: Al, Ca, Cd, Mg, Na, P, Pb, Ti

Bead column IIIA-3

ug per g bead

BDL/ No significant trend: Al, Ca, Cd, Mg, P, Pb, Si, Ti

Bead Column IIIB-1

ug per g bead

ug per g bead

BDL/ No significant trends: Al, Cd

Bead Column IIIB-2

BDL/ No significant trend: Al, Cd, Mg, Pb, Ti

Bead Column IIIB-3

BDL/ No significant trend: Al, Ca, Cd, Mg, Na, Si, Ti
Bead Column IIIC-2 As Pb Mo Mn Fe 30 30 30 30 30 20 20 20 20 -**2**0 Column length ŀф 10 10 10 10 10 0-0 0 0 0 -10 -10 -10 -10 -10 神。 饵 0.57 4.0 0.6 1 1 1 1.5-1 0.021 117 117 ----

BDL/ No significant trend: Al, Ca, Cd, Mg, Na, Si, Ti

Bead Column IIIC-3

ug per g bead

BDL/ No significant trends: Al, Ca, Mg, Na, Si, Ti

Appendix

(mean values)								
		IN SURFACE				ON SURFACE WATER		
		WATER (mg/L)				BEADS (ug/g bead)		
		(Dissolved phase)				(Solid phase)		
- 	SITE I	SITE	SITE	ALL	SITE I	SITE II	SITE	ALL
		II	III	SITES			III	SITES
Ca/Cu	352	392	337	358	1.2	2.2	2	1.8
Ca/Fe	293	288	313	296	0.46	0.65	0.7	0.58
Ca/Mg	4.6	4.6	4.6	4.6	2.5	4.1	5.81	4.3
Ca/Mn	61	55	54	58	2.7	6.4	8.13	6
Ca/Na	4.8	2	2	3.6	3	5.5	6.9	5.3
Ca/Zn	74	82	84	78	1.02	2.2	2.1	1.8
Fe/Cu	1.92	1.5	1.6	1.7	2.4	3.2	3.4	2.94
Fe/Mg	0.02	0.02	0.02	0.02	5.2	5.7	10.2	7.06
Fe/Mn	0.36	0.21	0.29	0.31	5.8	9.9	13.3	9.44
Fe/Na	0.01	0.01	0.01	0.01	6.2	8.2	8.7	7.4
Fe/Zn	0.43	0.29	0.41	0.39	2.2	3.5	3.4	2.99
Cu/Mg	0.01	0.01	0.01	0.01	2.1	1.8	2.9	2.3
Mg/Mn	13	12	12	13	1	1.7	1.5	1.4
Zn/Mn	0.83	0.67	0.63	0.71	2.5	2.9	3.8	2.99
Na/Cu	164	196	155	170	0.5	0.44	0.31	0.41
Na/Zn	37	41	39	39	0.4	0.44	0.31	0.39
Cu/Zn	0.21	0.20	0.22	0.21	0.9	1.1	1.02	1.01
Zn/Mg	0.06	0.06	0.06	0.06	2.4	1.8	2.8	2.4
Cu/Mn	0.17	0.14	0.17	0.16	2.3	3.2	3.9	3.1
Na/Mg	2.11	2.30	2.10	2.2	1.1	0.8	0.8	0.9
Mn/Na	0.19	0.04	0.04	0.12	1.1	1.0	0.96	1.01

This table was used to find the sequence of preferential precipitation in the surface water, which is found to be Fe>Cu>Zn>Mn>Na>Mg>Ca.