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Cuesta Ureña, Inés, M.A., fall 2015  Interdisciplinary Studies 

 

A Review of natural and engineered enzymes involved in bioethanol production. 

 

Alternative petroleum-derived fuels, such as biofuels, is another form to decrease the 

dependence of non-renewable energy. The most promising alternative energy is cellulosic 

ethanol because of the abundance of cellulose and the overall lack of concern for the food-

versus-fuel dilemma. 

In order to produce ethanol from cellulosic materials, pretreatment is required to “open” 

the lignocellulosic matrix and make cellulose more susceptible to enzymatic degradation. 

Enzymatic hydrolysis of lignocellulose is an important area of research due to the absence 

of negative effects in downstream processes in comparison with acid hydrolysis. Both 

natural enzymes and engineered enzymes can be used in the process of ethanol production. 

Natural enzymes are found either individually or as a part of a complex known as 

cellulosome. Such complexes are the focus of many studies due to the efficiency in the 

degradation of cellulose. Research in enzymatic engineering is being done in order to 

mimic these natural systems. Engineered individual enzymes are also used to improve the 

properties of the enzymes found in nature. Enzymes can be engineered by rational design 

or directed evolution. Directed evolution is the most efficient technology, since it only 

requires the knowledge of protein sequences. However, this approach also possesses some 

limitations. A combination of both methods or a “semi-rational” approach is perhaps the 

best option to develop higher performance lignocellulolytic enzymes. 

Many advances regarding engineering of lignocellulolytic enzymes have been made in the 

last past years. Further research, however, is required in the development of enzymes 

systems and enzyme industrial testing to establish cellulosic bioethanol as main substitute 

for petroleum-derived fuel energy. 
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INTRODUCTION 

 

The interest in alternative energies has increased in the past years due to the unsustainable use of 

natural resources and their growing demand. Biofuels, which can be made from lipid-rich 

feedstocks (biodiesel) or carbohydrate-rich feedstocks (bioethanol), is one such form energy.   

Biofuels are considered renewable and, in many cases, sustainable and environmentally-friendly. 

Although bioethanol possesses numerous advantages, there are still some limitations in 

commercial production that prevent it from being cost competitive and the liquid fuel of choice. 

These limitations include: the use of land and water resources to produce corn- and sugarcane-

based bioethanol (i.e., first generation biofuels) that competes with food crop production and the 

inefficient conversion of feedstock molecular substrates to fermentable sugars in cellulosic ethanol 

(i.e., second generation bioethanol).  Current research is focused on overcoming these limitations.  

Since cellulose is the most abundant polymer on Earth and first generation bioethanol production 

creates a food-versus-fuel dilemma, cellulosic ethanol may be the most promising alternative liquid 

fuel option if production process bottlenecks can be resolved.  

 

Pretreatment of cellulosic feedstock is typically required to expand or “loosen up” the 

lignocellulosic matrix.  At the molecular level this entails: breaking hydrogen bonds between 

lignin and holocellulose; disrupting hydrogen bonding within holocellulose; lysing covalent bonds 

that stabilize lignin; and, destabilizing the crystalline of cellulose to render it more susceptible to 

degradation by sugar reducing enzymes.  Depolymerization of molecular substrates (e.g., 

cellulose) from pretreated lignocellulosic materials to generate simpler fermentable, sugars (e.g., 

monosaccharides) is often achieved by one of two different sugar reduction processes:  enzymatic 

hydrolysis; or, acid hydrolysis.  Acid hydrolysis is mainly performed via sulfuric acid; however, 

due to negative effects in downstream processes, the use of this technology is limited.  Using 

hydrolytic enzymes from microorganisms (i.e., bacteria and fungi) as a substitute for chemical 

approaches is technology continuously in development and an area of intense research.  Enzymatic 

degradation of lignocellulose is performed using a variety of enzymes in specific ratios or 

sequences so that biomass deconstruction and generation of fermentable sugar may be achieved in 

an efficient manner.  Multi-enzyme systems are designed to optimize synergistic interactions 

between different classes of enzymes during this process.  In general, enzymes used in this process 

are referred to as “lignocellulolytic enzymes”.  Most are derived from natural systems and each 

class of enzymes possesses unique features including structural-functional modularity. 

Optimization of enzyme-mediated processes is particularly important if bioethanol is to become 

economically viable.  Either enzymes found in nature or engineered enzymes can be utilized in 

industrial-scale bioethanol production processes.  Attempts to mimic the activity of naturally-

occurring extracellular macromolecular complexes called cellulosomes have been undertaken, 
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because of the efficiency by which cellulosomes degrade cellulosic biomass in nature. This has 

spawned the development of enzyme cocktails and engineered platform systems. 

 

The goal of this article is to provide a review of the enzymes found in nature as well as engineered 

enzymes that are used in the production of bioethanol with focus on their respective modes of 

action and a description of the most important multienzyme systems found in nature are discussed, 

including the cellulosome of C. thermocellum.  

 

NATURAL ENZYMES USED TO CONVERT FEEDSTOCK TO SUBSTRATE 

 

Mode of Action of Primary Lignocellulolytic Enzymes  

 

To use cellulosic material as feedstock for bioethanol production, chipped or ground biomass is 

typically pretreated to facilitate enzyme access to long chain carbohydrates (e.g., cellulose), which 

are the macromolecules that are reduced to fermentable sugar for conversion to ethanol.  Given 

the heterogeneous nature of lignocellulose, it is highly recalcitrant even with pretreatment.  

Numerous methods have been developed for degrading lignocellulose to expose polysaccharides. 

Likewise, numerous approaches have been developed to reduce these macromolecular substrates. 

Those approaches that rely on enzymes produced by microorganisms can be highly efficient.  Both 

multi-domain enzymes and enzyme complexes (e.g., mini-cellulosomes) have been applied.  One 

useful feature of many lignocellulolytic enzymes (and their complexes) is innate modularity.  In 

addition to a catalytic core region, many cellulolytic enzymes possess non-catalytic domains.  Two 

notable domains include carbohydrate-binding modules (CBMs) and dockerin domains.  CBMs 

facilitate interactions between enzymes and their respective carbohydrate substrates (Tomme et 

al., 1988; Tomme et al., 1998; Boraston et al., 1999; Gilbert et al., 2013).  Various studies have 

demonstrated CBMs enhance enzymatic activity against recalcitrant substrates (Black et al., 1996; 

Bolam et al., 1998; Carrard et al., 2000; Mello and Polikarpov, 2014).  Dockerin domains on 

cellulolytic enzymes from some species of microorganisms mediate cohesin–dockerin 

interactions, associating the enzymes with larger macromolecular complexes.  These complexes, 

or cellulosomes, are found naturally at the cell membrane-cell wall structure of many cellulolytic 

microorganisms (see Fontes and Gilbert, 2010).  Lignocellulolytic enzymes may be generally 

categorized as: cellulases, hemicellulases, ligninolytic enzymes and pectinases.  This section 

provides a review of primary lignocellulolytic enzymes and their respective functions within 

natural cellulosomes. 
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 Cellulases 

  

Cellulases are glycosyl or glycoside hydrolases (GHs) that catalyze cellulolysis, the cleaving of 

glycosidic bonds in cellulose.  The enzyme-mediated cleavage of β-1,4-glycosidic bonds in 

cellulose occurs via acid hydrolysis, using a proton donor and a nucleophile or base.  The products 

of acid hydrolysis either result in an inversion or retention (via single or double replacement, 

respectively) of the anomeric configuration of the carbon-1 (C1) at the reducing end (see Koshland, 

1953; see Vocadlo and Davies, 2008).  In macromolecular complexes, such as in a naturally-

occurring cellulosome, cellulolytic enzymes act in a synergistic manner (Wood and McCrae, 1979; 

Lamed et al., 1983b; Fierobe et al., 2001).  Synergism is a phenomenon that results in a mutual 

increase in the efficiency of action using two or more components in a system.  Cellulolytic 

enzyme synergism can be measured qualitatively and quantitatively; however, predicting 

synergistic effects of novel combinations of enzymes either free in solution or bound in an artificial 

cellulosome has proven challenging and is the subject of intense investigation.  According to 

studies on fungi (Selby and Maitland, 1967; Wood and McCrae, 1972; Berghem et al., 1976; Wood 

and McCrae, 1978; Mandels and Reese, 1999), bioconversion of polysaccharide substrates into 

simple fermentable sugars requires synergistic interactions of at least three types of enzymes: 

endoglucanases, cellobiohydrolase, and β-glucosidases.  Most of these components are 

glycoproteins and each presents isoenzymes in natural systems (Wood and McCrae, 1972; Gilkes 

et al., 1984; Mihoc and Kluepfel, 1990; Jimenéz-Zurdo et al., 1996; Igual et al., 2001; Wei et al., 

2005; Begum and Absar, 2009; Khalili et al., 2011).  Functionally, cellulases may be categorized 

into groups based on the type of reaction catalyzed: carbohydrases (including, endoglucanases, 

exoglucanases and cellobiases); oxidative cellulases (e.g., cellobiose dehydrogenase); and, 

phosphorylases (i.e., cellobiose phosphorylase and cellodextrin phosphorylase). 

 

 Carbohydrases 

 

Carbohydrases are GHs that hydrolyze the β-1,4-glycosidic bonds of cellulose or cello-

oligosaccharides, leading to the formation of short cello-oligosaccharides (cellodextrins) and 

glucose (Lombard et al., 2014; CAZy, 2015).  There are three types of carbohydrases: 

endoglucanases or endocellulases (EGs); exoglucanases or exocellulases (EXs); and cellobiases, 

β-glucosidases or β-D-glucoside glucohydrolases (βGs). 

 

EGs are 1,4-β-D-glucan-4-glucanhydrolases that disrupt bonds at random internal sites in the 

cellulose polysaccharide chain producing oligosaccharides of various lengths.  The EGs produce 
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new chain ends (see Figure 10).  EGs that do not feature CBMs hydrolyze at amorphous internal 

sites within the cellulose chain (Rabinovich et al., 1982; Stahlberg et al., 1988; Henriksson et al., 

1999; Karlsson et al., 2002).  EGs featuring CBMs can also hydrolyze cellulose chains at 

crystalline internal regions (Tilbeurgh et al., 1986; Gilkes et al., 1988; Tomme et al., 1988; Wang 

et al., 2012e).  Furthermore, EG cellulolysis generates new chain ends for cellobiohydrolase (CBH) 

activity (Wood and McCrae, 1972; Berghem and Pettersson, 1973; Henrissat et al., 1985).  When 

an enzyme does not readily release a large molecular substrate and catalyzes multiple reactions 

prior to dissociating from the substrate, it is considered to be “processive”.  Although processivity 

is typical of CBHs, some EGs also hydrolyze cellulose processively (Reverbel-Leroy et al., 1997; 

Irwin et al., 1998; Gilad et al., 2003; Cohen et al., 2005; Zverlov et al., 2005a; Zheng and Ding, 

2013).  EGs belong to GH families 5, 6, 7, 9, 12, 44, 45, 48, 51, 74 and 124 (Lombard et al., 2014; 

CAZy, 2015).  All well-studied processive EGs are part of the GH-9 family, which includes most 

plant cellulases, some animal cellulases, and many bacterial cellulases.  Surprisingly, very few 

fungal cellulases are included within the GH-9 family of EGs.  Processive EGs from GH-9 family 

feature CBMs of the family 3c.  These EG CBMs are positioned at the C terminus of the enzyme’s 

catalytic domain (Sakon et al., 1997).  They are required and responsible for processivity in this 

class of enzyme (Irwin et al., 1998; Gilad et al., 2003).  Additionally, a new kind of processive EG 

has been reported recently that belongs to the GH-5 family (Cohen et al., 2005; Watson et al., 

2009; Zheng and Ding, 2013). 

 

EXs hydrolyze 1,4-β-D-glycosidic linkages in cello-oligosaccharides.  Specifically, they cleave 

from the reducing or nonreducing ends of chains formed by EGs activity. These EXs act in a 

processive manner due to their shaped tunnel active sites (Rouvinen et al., 1990; Divne et al., 1994; 

Parsiegla et al., 1998).  Several studies indicate that select EXs, such as CBH, are also capable of 

cleaving internal glycosidic bonds (Stahlberg et al., 1993; Armand et al., 1997; Boisset et al., 

2000).  There are two main groups of EXs: cellodextrinases and cellobiohydrolases (CBHs). 

Cellodextrinases, also known as 1,4-β-D-glucan glucanohydrolases and exo-1,4-β-glucosidase, 

liberate D-glucose from cellodextrins and cellulose (Barras et al., 1969).  They belong to the GH 

families 1, 3, 5, 9 (Lombard et al., 2014; CAZy, 2015).  CBHs (1,4-β-D-glucan cellobiohydrolases) 

liberate D-cellobiose from cellulose chain ends produced by EGs and from crystalline cellulose 

(Kleman-Leyer et al., 1996; Igarashi et al., 2009; Liu et al., 2011) while CBHII additionally 

releases D-cellobiose from amorphous cellulose (Koivula et al., 1998) (see figure 10).  CBHI 

works processively from the reducing end of cellulose and CBHII works processively from the 

nonreducing end of cellulose (Fägerstam and Pettersson, 1980; Arai et al., 1989; Barr et al., 1996; 

Saharay et al., 2010).  CBHIIs are grouped into GH families 5, 6, 9, while most of CBHIs belongs 

to GH families 7 and 48 (Lombard et al., 2014; CAZy, 2015).  Due to enzyme processivity and 

large adsorption ability onto the insoluble cellulose substrates, CBH kinetics deviate from the 

Michaelis-Menten model of enzyme kinetics and exhibit fractal and “local jamming” effects (Xu 

and Ding, 2007; Igarashi et al., 2011; Kamat et al., 2013).  
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βGs hydrolyze the β-1,4-D-glycosidic bonds at the non-reducing ends of soluble cellodextrins and 

cellobiose to release monomeric β-glucose (Freer, 1993).  Unlike other carbohydrases, βGs 

generally lack distinct CBMs and are therefore not modular in nature. Unlike the majority of 

biomass degrading enzymes, Gs can be studied using traditional kinetic models primarily due to 

they act by binding to soluble substrate (Kempton and Withers, 1992; Chauve et al., 2010).  βGs 

serve an important role in the multi-enzyme system synergy by increasing glucose yield and 

minimizing inhibition of cellulases by cellobiose (Berlin et al., 2005a; Chir et al., 2011).  

Cellobiose is a strong inhibitor of CBH and EG (Holtzapple et al., 1990; Gusakov and Sinitsyn, 

1992; Zhao et al., 2004; Andrić et al., 2010; Teugjas and Valjamae, 2013).  Studies show that 

cellobiose inhibits cellulases 14 times more than glucose (Holtzapple et al., 1984).  βGs are 

classified into GHs  families 1, 3, 5, 9, 30, 116 (Lombard et al., 2014; CAZy, 2015). 

 

 

Figure 10. Schematic graphic of cellulose structure and mode of action of cellulolytic enzymes EX, EG, 

and βG leading to the formation of D-glucose. Figure adopted from (van den Brink and de Vries, 2011). 

 

Different EGs possess different mechanisms (“inverting” for GH6, 9, 45, and 48 EGs; “retaining” 

for GH5, 7, 12 EGs. This EG “plurality” may be in relation with different EGs’ side-activities on 

hemicellulose in deconstructing complex lignocellulose materials (Vlasenko et al., 2010), or 

synergism between processive and conventional EGs (Tuka et al., 1992; Qi et al., 2007).  

  

 Oxidoreductive Cellulases 

 

For decades, researchers have suggested that there exists an additional non-hydrolytic factor that 

makes biomass less recalcitrant and more susceptible to enzymatic attack (Reese et al., 1950).  This 

includes a proposed oxidative mechanism for the initiation of cellulose degradation (Eriksson et 

al., 1974).  Subsequently, it was confirmed that cellulose oxidases disrupt cellulose structure via 

oxidation thus, increasing substrate access to cellulase action (Forsberg et al., 2011; Quinlan et al., 

2011).  Although these enzymes occur in relatively low concentrations in natural systems, they 

play a central role in the cellulase systems of both aerobic fungi and bacteria, which degrade 
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cellulose (Harris et al., 2010; Forsberg et al., 2011).  Interestingly, cellulose oxidases are 

completely absent in anaerobic cellulase complexes.  

 

Oxidoreductive enzyme systems are commonly composed of cellobiose dehydrogenase (CDH), 

cellobiose quinone oxidoreductase (CBQOR), lactonase, glucose oxidase, and/or polysaccharide 

monooxygenases (PMOs) (see figure 11). 

 

CDH, also known as cellobiose oxidoreductase (CBOR) or cellobiose oxidase (CBO), was 

discovered in 1974 and originally named CBQOR (Westermark and Eriksson, 1974a; Westermark 

and Eriksson, 1974b).  The enzyme is formed by one flavin adenine dinucleotide (FAD) and one 

heme as prosthetic groups (Ayers et al., 1978; Morpeth, 1985).  CBQOR is the term now used for 

a catalytic active fragment of CDH which lacks the heme group, is produced by posttranslational 

proteolytic cleavage, and has similar catalytic properties to CDH (Henriksson et al., 1991; 

Samejima and Eriksson, 1992; Wood and Wood, 1992; Raı́ces et al., 2002).  CDH is the only 

known example of secreted flavocytochrome and is found in most wood-degrading fungi (see 

Zamocky et al., 2006).  They catalyze the reducing end oxidation of cellobiose, cellodextrins, 

lactose, and maltodextrins or other oligosaccharides to the corresponding lactones using a wide 

spectrum of electron acceptors including quinones, phenoxyradicals, Fe3+, Cu2+ and triiodide (see 

Henriksson et al., 2000).  These lactones are converted into aldonic acids by spontaneous or 

enzymatic hydrolysis with lactonase (Brodie and Lipmann, 1955; Beeson et al., 2011).  The 

biological role of CDH is not fully understood yet, but the research done over the last 50 years 

indicates its participation in the deconstruction of lignocellulose components (cellulose, 

hemicellulose and lignin) by generating hydroxyl radicals.  The enzyme has the ability to reduce 

Fe3+ to Fe2+, which together with hydrogen peroxide (H2O2), produces hydroxyl radicals via 

Fenton reaction (H2O2 + Fe2+ → Fe3+ + OH• + OH−) (Kremer and Wood, 1992a; Kremer and 

Wood, 1992b).  Also, CDH diminishes the end-product inhibition of cellulases by removal of 

cellobiose (Ayers et al., 1978; Igarashi et al., 1998). In addition, recent evidence suggests the 

participation of the enzyme in the transfer of electrons to members of the PMOs to oxidatively 

breakdown plant-biomass constituents (Phillips et al., 2011; Sygmund et al., 2012; Vu et al., 2014). 

CDH are classified into auxiliary activity family 3 (Lombard et al., 2014; CAZy, 2015) 

 

Lactonase, also known as a gluconolactonase, aldonolactonase or D-glucono-1,5-lactone 

lactonohydrolase, catalyzes the hydrolysis of different types of hexose-1,5-lactones to their 

corresponding aldonic acids (Brodie and Lipmann, 1955; Beeson et al., 2011).  It is present in 

Novozyme 188, a commercial preparation based on enzymes from Trichoderma reesei and 

Aspergillus niger (Bruchmann et al., 1987).  It can also promote cellulolysis by removing lactones, 

which are inhibitors of cellulases (Bruchmann et al., 1987; Verma et al., 2011; Rouyi et al., 2014).  
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Glucose oxidase, also known as notatin, is an oxido-reductase that mainly catalyzes the oxidation 

of glucose to H2O2 and D-glucono-δ-lactone which hydrolyses spontaneously to gluconic acid 

(Müller, 1928; Bentley and Neuberger, 1949).  It is also considered integral components of 

cellulase, as it relieves inhibition of cellulases by glucose (Holtzapple et al., 1984; Stutzenberger, 

1986; Holtzapple et al., 1990; Xiao et al., 2004; see Andrić et al., 2010; Hsieh et al., 2014).  

Glucose oxidase belongs to auxiliary activity 3 (Lombard et al., 2014; CAZy, 2015). 

 

PMOs were first discovered in 2010 by G.  Vaaje-Kolstad (Vaaje-Kolstad et al., 2010).  They are 

copper-dependent metalloenzymes that oxidatively cleave glycosidic bonds at the surface of 

recalcitrant cellulose structures (Forsberg et al., 2011; Phillips et al., 2011; Quinlan et al., 2011). 

For efficiency, PMOs require molecular oxygen (O2) and an electron donor, such as CDH (Phillips 

et al., 2011; Sygmund et al., 2012; Vu et al., 2014).  PMOs introduce O2 to C−H bonds adjacent 

to the glycosidic linkage, which leads to the removal of the adjacent carbohydrate moiety (Phillips 

et al., 2011; Beeson et al., 2012).  PMOs can be subdivided into at least three types based on 

structure and substrate specificity.  Type 1 PMOs generate products that are oxidized at C1.  Type 

2 PMOs generate products oxidized at the non-reducing end of C4.  Type 3 PMOs exhibit weaker 

specificity and release oxidized products from both reducing and non-reducing ends (Beeson et 

al., 2012; Li et al., 2012).  PMOs are classified into auxiliary activity families 9 and 10 (Lombard 

et al., 2014; CAZy, 2015). 

 

 

Figure 11. Schematic representation of the enzymatic degradation of cellulose, involving CΒH, G, EG, 

Type 1 PMOs (PMO1), Type 2 PMOs (PMO2), and CDH. Figure adopted and modified from (Dimarogona 

et al., 2012).   
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 Phosphorylases 

 

Phosphorylases reduce cellobiose and cellodextrins to glucose using phosphates instead of water 

(Ayers, 1959; Alexander, 1961; Sheth and Alexander, 1967).  Recall that cellobiose and 

cellodextrin are formed during the enzymatic degradation of cellulose by EGs and EXs.  Since 

phosphorolytic enzymes are located inside cells, organisms transport substrate saccharides from 

the extracellular matrix across the cell membrane.  For example, the thermophile Clostridium 

thermocellum employs ATP-driven transport mechanisms to intake not only glucose, but also 

cellobiose and cellodextrin (Strobel et al., 1995).  Phosphorolysis can then take place on these 

products of hydrolysis to assist cellulose breakdown.  Although phosphorylases are not directly 

part of the cellulolytic pathway, phosphorolysis may accelerate the rate of overall cellulosic 

degradation when acting in concert with hydrolytic enzymes by removing inhibitory intermediary 

products such as cellobiose (Holtzapple et al., 1990; Gusakov and Sinitsyn, 1992; Zhao et al., 

2004; see Andrić et al., 2010; Teugjas and Valjamae, 2013).  Phosphorylysis is energetically 

advantageous.  Phosphorolysis results in conservation of a portion of the energy from the cleaved 

glycosyl bond.  Glucose-1-phosphate (G1P) leads to the formation of activated glucosyl molecules 

with the investment of only one additional ATP molecule for the uptake of either cellobiose or 

cellodextrin.  Each glucose molecule produced via hydrolytic cleavage would require two ATPs - 

one ATP for transport and another for activation (Goldberg, 1975; Strobel et al., 1995).  There are 

two general types of phosphorylases: cellodextrin phosphorylases (CDPs) and cellobiose 

phosphorylases (CBPs).  

 

CDPs phosphorylate cellodextrins released by EGs to cellodextrin (N-1), where N is the number 

of glucose units in the chain, and G1P (Sheth and Alexander, 1967).  CBPs phosphorylate 

cellobiose into glucose and G1P during the transport of cellobiose into the cell (Alexander, 1961) 

(see figure 12).  Both enzymes are classified into GH family 94 (Lombard et al., 2014; CAZy, 

2015) 

 

1) Cellodextrin + Pi ⇌ cellodextrin (N-1) + G-1P  

2) Cellobiose + Pi ⇌ glucose + G-1P 

 

Figure 12. Chemical reaction catalyzed by CDP (1) and CBP (2).  
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 Hemicellulases 

 

Hemicellulases are either GHs or carbohydrate esterases (CEs) that catalyze the hydrolysis and 

deacetylation of hemicelluloses, respectively (see table 7).  The mode of action of hemicellulases 

varies with the type of enzyme (see Vocadlo and Davies, 2008; see Biely, 2012).  The 

heterogeneity and organization of hemicellulose requires the concerted synergistic action of 

multiple enzymes for complete degradation.  The deconstruction of the hemicellulose component 

in a feedstock exposes cellulose to cellulases and converts hemicellulose into usable saccharides. 

A principal component of hemicellulose is xylan (Timell, 1967).  Therefore, xylanases are 

common enzymes used to breakdown hemicellulose. Several types of accessory enzymes also play 

important roles in degrading hemicellulose by acting on side chains of the heteropolymer to 

facilitate breakdown. 

 

 Main Xylan Degrading Enzymes 

 

Xylan is naturally heterogeneous.  Its hydrolysis requires the action of complex enzyme systems.  

Microbial enzymes act in cooperative manner to convert xylan to its constituent simple sugars.  

The main enzymes involved are hydrolytic enzymes that hydrolyze -1,4-xylosidic linkages. 

These enzymes are grouped into three classes: endo-1,4-β-xylanases (ENs), β-xylosidases (βXs), 

and exoxylanases (EXYs) (see figure 13). 

 

ENs are GHs that hydrolyze β-1,4-xylose linkages  in the interior of the heteroxylan backbone and 

generate xylooligosaccharides.  EN action on substrate is not random but instead is determined by 

the chain length, the degree of branching, or the presence of specific substituents such as 

arabinofuranosyl groups (Li et al., 2000; von Gal Milanezi et al., 2012).  ENs also play a role in 

lignin removal (Aracri and Vidal, 2011; Valenzuela et al., 2013).  They deconstruct the xylan 

closely associated with lignin, which enhance the accessibility and extractability of lignin 

(Roncero et al., 2005).  ENs are classified into families 5, 8, 10, 11, 30, 43 and 51 of  GHs based 

on amino acid sequence similarities (Lombard et al., 2014; CAZy, 2015).  The GH-10 and GH-11 

ENs differ in substrate specificity.  GH-10 ENs are capable of cleaving glycosidic linkages in the 

xylan main chain adjacent to substituents (atom or functional group in place of a hydrogen atom 

on a hydrocarbon), while GH-11 ENs preferentially cleave unsubstituted regions.  As a result, GH-

10 ENs release products that are shorter than the products of GH-11 EN action (Biely et al., 1997; 

Ustinov et al., 2008).  
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βXs release monomeric xylose from the non-reducing ends of xylooligomers and xylobiose 

produced by EN action on xylan.  βXs have molecular weights >100 kDa and typically consist of 

two or more subunits (Matsuo and Yasui, 1984; Hebraud and Fevre, 1990; Eneyskaya et al., 2003; 

Eneyskaya et al., 2007).  They have catalytic cores of the GH1, 3, 30, 39, 43, 51, 52, 54 and 116, 

120 families (Lombard et al., 2014; CAZy, 2015).  In general, βX activity on xylooligosaccharides 

decreases rapidly with increasing chain length (Van Doorslaer et al., 1985; Rasmussen et al., 

2006).  Many βXs exhibit α-L-arabinofuranosidase activity and some βXs reportedly have βG 

activity (Rodionova et al., 1983; Uziie et al., 1985; Xiong et al., 2007; Watanabe et al., 2015). 

Notably, most βXs are susceptible to xylose inhibition, which can significantly affect enzymatic 

efficiency under process conditions (Dekker, 1983; Poutanen, 1988; Herrmann et al., 1997; Saha, 

2003b; Fujii et al., 2011; Kirikyali and Connerton, 2014).  By splitting xylobiose, βXs relieve EN 

end product inhibition (see Sunna and Antranikian, 1997; Williams et al., 2000). 

 

The EXYs are the most recent enzymes to be characterized in xylan degradation.  Only a few of 

these EXYs have been reported and information on their catalytic properties is limited.  What is 

known is that EXYs act on the xylan backbone from the reducing end to release xylose and short 

xylooligomers (Ganju et al., 1989; Kubata et al., 1994; Kubata et al., 1995; Usui et al., 1999; 

Honda and Kitaoka, 2004; Fushinobu et al., 2005; Tenkanen et al., 2013; Juturu et al., 2014).  

EXYs differ from βXs in that the former are inactive on xylobiose (Kubata et al., 1994; Kubata et 

al., 1995).  EXYs can increase the rate of hydrolysis of xylan, since ENs would increase the ends 

available on the xylan backbone to the EXYs (Gasparic et al., 1995; Juturu et al., 2014).  EXYs 

belongs to GH family 8 (Lombard et al., 2014; CAZy, 2015). 

 

 Accessory Enzymes 

 

Accessory enzymes either degrade the side chains of xylans (debranching enzymes) or act on the 

backbone chains of different kinds of hemicelluloses (backbone degrading enzymes).  They are 

hydrolases or esterases. 

 

Accessory xylanolytic enzymes 

 

Accessory xylanolytic enzymes include: α-L-arabinofuranosidases (AFs); arabinoxylan 

arabinofuranohydrolases (AXAHs); endo-1,5-αarabinanases cumulatively known as arabinases 

(AR); xylan α-D-glucuronidases or xylan α-1,2-D-glucuronidase (AgluAs); mannan endo-1,4-β-
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mannosidase, 4-β-D-mannan mannanohydrolase, endo-1,4-mannanase or, simply, the β-

mannanases (MANs); β-mannosidases (MNDs); α-galactosidases (AGL) and β-galactosidases 

(LACs), or, simply, the galactosidases; βGs; endo-β-1,4-galactanases (EG); xyloglucan-β-1,4-

endoglucanases or xyloglucanase, cumulatively known as the xyloglucanendohydrolases (XGHs); 

α-D-xyloside xylohydrolase or, simpky, α-xylosidases (AXLs); α-fucosidases (AFUs);  

acetylxylan esterases (AXEs); ferulic acid esterases or feruloyl esterases, also known as, the 

cinnamoyl esterase hydrolyses (FAEs); p-coumaric acid esterases or p-coumaroyl esterase (PAE); 

glucuronyl esterases (GEs); and, acetyl mannan esterases (AME) (see figure 13). 

 

Enzyme Abbrev Mode of Action 

                                                                        Hydrolases 

α-L-arabinofuranosidase AF 

non-reducing end of α- 1,2-, α-1,3-, α-1,5-linked 
arabinofuranosyl groups from arabinans, 
arabinoxylans, and  arabinogalactans 
 

α-fucosidase AFU L-fucose residues from xyloglucan branches 

α-galactosidase AGL 
non-reducing end of α-linked D-non-reducing end 
galactose residues from xylan and galactomannans 

α-D-glucuronidase AgluA 
non-reducing end of α-1,2-linked 4-O-methyl-D-
glucuronic acid residues from glucuronoxylans 

endo-1,5-αarabinanase (arabinase) AR α(1→5) glycosidic bonds in arabinan 

arabinoxylan arabinofuranohydrolase AXAH 
non-reducing end L-arabinofuranosyl groups from β-
1,4-linked arabinoxylans 

α-D-xyloside xylohydrolase or α-xylosidase AXL 
α-linked D-xylose residues from the xyloglucan 
backbone 

β-glucosidase βG 
non-reducing end of β-D-glucosyl residues from 
glucomannan and galactoglucomannan 
oligosaccharides 

β-xylosidases 
 

βX non-reducing ends of xylooligomers and xylobiose 

endo-galactanase EG 1,4-β-linked galactose residues in arabinogalactans 

endo-1,4-β-xylanase 
EN 

 
β-1,4-xylose linkages in heteroxylan backbone 

exo-β-1,4-xylanase EXY reducing end of xylan backbone 

β-galactosidase LAC 
non-reducing end of β-linked D-galactose residues 
from xylan, xyloglucan, and galactoglucomannans 

mannan endo-1,4-β-mannosidase, 1,4-β-D-
mannan  mannanohydrolase or endo-1,4-
mannanase (β-mannanase) 

MAN β-1,4-linked bonds in mannan 

β-mannosidase MND 
β-1,4-linked mannan oligosaccharides and 
mannobiose 

xyloglucan-β-1,4-endoglucanase or 
xyloglucanase (xyloglucanendohydrolase) 

XGH 1,4-beta-D-glucosidic linkages in xyloglucan 

 

                                                                          Esterases 

acetyl mannan esterase AME acetyl groups from galactoglucomannan 

acetylxylan esterase AXE acetyl esters in xylan and xylooligomers 
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ferulic acid esterase or feruloyl esterase 
(cinnamoyl esterase hydrolases) 

FAE monomeric or dimeric ferulic acid from xylans 

glucuronyl esterase GE 
4-O-methyl-D-glucuronic acid residues of 
glucuronoxylans 

p-coumaric acid esterase or p-coumaroyl 
esterase 

PAE monomeric and dimeric p-coumaric acid 

 

Table 7. Summary of lignocellulosic enzyme classes. 

 

The AF catalytic domain belongs to the GH2, 3, 43, 51, 54, and 62 families of hydrolases (Lombard 

et al., 2014; CAZy, 2015).  AF acts by cleaving the non-reducing end of α-1,2-, α-1,3- and α-1,5-

linked L-arabinofuranosyl groups from hemicellulose, such as arabinoxylans or arabinogalactans  

(Saha and Bothast, 1998; Verbruggen et al., 1998b; Ahmed et al., 2013).  This mode of action is 

effective in hydrolyzing hemicellulose side chains and disrupting structures anchored by α-

glycosidic bonds.  AXAHs are essentially AFs from the GH51 family of enzymes (Lombard et al., 

2014; CAZy, 2015).  However, AXAHs specifically remove the terminal non-reducing 

arabinofuranosyl residues from the 1,4-β-xylan backbone of arabinoxylans (Kormelink et al., 

1991; Ferre et al., 2000; Lee et al., 2001).  AFs and AXAHs also facilitate the disruption of lignin–

carbohydrate binding at locations where arabinose residues are involved in lignin–hemicellulose 

ether bonds (Sun et al., 2005).  Other AFs that exhibit βX or xylanase activity have also been 

described (Utt et al., 1991; Matte and Forsberg, 1992; Mai et al., 2000; Lee et al., 2003a).  In 

addition to acting like other AFs, ARs with catalytic domains belonging to the GH43 family can 

also cleave internal α(1→5) glycosidic bonds in arabinan (Hong et al., 2009; Lombard et al., 2014; 

Shi et al., 2014; CAZy, 2015).  AgluAs, of the GH67 and GH115 family of hydrolases, typically 

cleave α-1,2-glycosidic bonds of the 4-O-methyl-D-glucuronic/D-glucuronic acid residues from 

the terminal, non-reducing xyloses of glucuronoxylooligosaccharides or polymeric 

glucuronoxylan (Tenkanen and Siika-aho, 2000; Nurizzo et al., 2002; Ryabova et al., 2009; Lee et 

al., 2012; Lombard et al., 2014; Rogowski et al., 2014; CAZy, 2015).  MANs cleave β-1,4-linked 

internal bonds in mannan backbone polymers producing new chain ends and releasing short β-1,4-

manno-oligosaccharides (Mandels, 1965; Stålbrand, 1993; Katrolia et al., 2013).  MANs belong 

to the GH5, GH26 and GH113 families (Lombard et al., 2014; CAZy, 2015).  MNDs cleave β-1,4-

linked manno-oligosaccharides and mannobiose from the degradation products of endomannases 

(e.g., MANs) producing mannose by acting at non-reducing terminal ends (Gübitz et al., 1996; 

Andreotti et al., 2005; Zhang et al., 2009).  MNDs are GH1, 2 and 5 enzymes (Lombard et al., 

2014; CAZy, 2015). Galactosidases are GHs which catalyze the hydrolysis of galactosides into 

monosaccharides. There are two types of galactosidases.  AGLs, which belongs to GH 4, 27, 31, 

36, 57, 97 and 110 families, release α-linked D-galactose residues from hemicellulose, eg., xylan 

or galactomannan by acting at the non-reducing terminal ends (Ademark et al., 2001; Lombard et 

al., 2014; CAZy, 2015).   LACs, belonging to the GH1, 2, 35, 42 and 59 families (Lombard et al., 

2014; CAZy, 2015), hydrolyze the non-reducing ends of β-D-galactose residues from 
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hemicellulose, eg., xylan, xyloglucan or galactoglucomannans (Sims et al., 1997).  The βGs are 

also exo-type enzymes that remove the 1,4-β-D-glucopyranose units from non-reducing ends of 

oligosaccharides arising from the breakdown of glucomannan and galactoglucomannan by MAN 

(see Moreira and Filho, 2008).  EGs, belonging to the GH53 family, also hydrolyze 1,4-β-linked 

galactose residues in arabinogalactans (Lombard et al., 2014; CAZy, 2015).  XGHs hydrolyze 

fragmented xyloglucans into oligoxyloglucans and belong to GH 5, 9, 12, 16 and 44 families 

(Lombard et al., 2014; CAZy, 2015).  AXLs release D-xylose residues with α-linkages from the 

non-reducing terminal of xylogluco-oligosaccharide (Ariza et al., 2011; Larsbrink et al., 2011).  

They belong to GH 31 family (Lombard et al., 2014; CAZy, 2015).  AFUs, belonging to the GH29 

and 95 families, release L-fucose residues from xyloglucan branches (Léonard et al., 2008; 

Lombard et al., 2014; CAZy, 2015).  These represent the major hydrolases. 

 

In addition to hydrolases acting on glycosidic linkages in hemicellulose, CEs catalyze the O-de- 

or N-deacylation of substituted saccharides. This only considers CEs in which sugars play the role 

of acid, such as in acetylated xylan.  CEs can be grouped into different enzyme classes: AXEs, 

belonging to the CE1, 2, 3, 4, 5, 6, 7, and 12 families (Lombard et al., 2014; CAZy, 2015), 

hydrolyze acetyl ester bonds at the C-2, C-3 and C-4 positions of xylose in both xylan and 

xylooligomers (removing O-acetyl groups) (see Biely, 2012).  FAEs, belonging to the CE1 family 

of esterases, hydrolyze hydroxycinnamoyl ester bonds liberating hydroxycinnamic acids, such as 

monomeric or dimeric ferulic acid (FA) (Lombard et al., 2014; CAZy, 2015).  FAE action can 

target O2 or O5 on -L-arabinoses's in xylans.  Different FAEs exhibit different specificities 

driven by the nature of cinnamoyl substitution, which may either occur via hydroxylation or 

methoxylation, and/or  the hemicellulose linkages (e.g., arabinose versus galactose ester bonds on 

xylans or on pectin) (see Benoit et al., 2008).  The PAEs hydrolyze ester linkages between 

arabinose side chain residues of phenolic acids including monomeric and dimeric p-coumaric acid 

(PA) (Borneman et al., 1991).  They are classified into the CE1 family (Lombard et al., 2014; 

CAZy, 2015).  GEs belonging to the CE15 family (Lombard et al., 2014; CAZy, 2015) hydrolyze 

methyl ester bonds between 4-O-methyl-D-glucuronic acid residues of glucuronoxylans and 

aromatic alcohols of lignin (Špániková and Biely, 2006; Ďuranová et al., 2009).  AMEs release 

acetyl groups from galactoglucomannan (see Shallom and Shoham, 2003) and belong to family 

CE16 family (Lombard et al., 2014; CAZy, 2015).  
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Figure 13. A–C Schematic representation of xylan, galacto(gluco)mannan, and xyloglucan; and mode of 

action of hemicellulolytic enzymes. Figure adopted and modified from (van den Brink and de Vries, 2011). 

 

 Ligninolytic Enzymes 

 

White rot fungi such as Phlebia spp. have the ability to effectively degrade lignin to CO2 and H2O 

so that carbohydrate polymers in plant cell walls can be used as carbon and energy sources (Fackler 

et al., 2006; Arora and Sharma, 2009).  Notably, there are multiple studies on the degradation of 

lignin by white- and brown-rot fungi; however, fewer reports are available on lignin breakdown 

by soil bacteria (Crawford et al., 1983; Mercer et al., 1996; see Kirby, 2006; see Bugg et al., 2011). 

Two major families of oxidative enzymes (oxidoreductases) are involved in ligninolysis: 

peroxidases, including lignin peroxidases, also known as ligninase and diarylpropane oxygenase 

(LiPs), manganese-dependent peroxidases (MnPs), versatile peroxidases (VPs), and dye 

decolorizing peroxidase or also known as dyP-type peroxidases (DyPs), and laccases (Lacs). These 

enzymes catalyze a single-electron oxidation of lignin (transfer of one electron in each step from 

aromatic lignin components with low reduction potential to the high redox potential active site in 

the enzyme) that generates highly reactive non-specific free radicals (small agents), such as 

reactive oxygen species, which initiate lignin depolymerization by various non-enzymatic 
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reactions (Harvey et al., 1985; Schoemaker et al., 1985; see Hammel et al., 2002).  In addition, 

some accessory enzymes, such as oxidases, are involved in the degradation of lignin by increasing 

the ligninolytic activity of principal enzymes.  Although many enzymes involved in wood lignin 

degradation cannot penetrate the compact structure of woody tissues (Srebotnik et al., 1988; 

Flournoy et al., 1993; Blanchette et al., 1997), the enzymes can act at the surface of the cell wall 

producing low molecular mass agents (see Evans et al., 1994).  These low molecular compounds 

can diffuse through the cell wall and initiate wood decay facilitating the penetration of lignin-

degrading enzymes (Galkin et al., 1998). 

 

 Peroxidases 

 

Extracellular heme peroxidases belonging to the auxiliary activity family 2 (Lombard et al., 2014; 

CAZy, 2015) exhibit high potency in oxidative degradation of lignin and require extracellular 

H2O2 as an electron acceptor.  Upon interaction with H2O2, these enzymes form highly reactive 

Fe+5- or Fe+4-oxo species (intermediates in catalytic reactions).  These oxoferryl species remove 

electrons from lignin causing oxidation or radicalization, such in the case of LiPs. Regarding 

MnPs, an oxoferryl specie oxidazes Mn2+ to Mn3+, which mediates lignin oxidation (see Wong, 

2009) (see figure 14).  The two main peroxidases LiP and MnP were discovered in the mid-1980s 

in Phanerochate. chrysosporium and exhibit high redox potential (Tien and Kirk, 1983; Kuwahara 

et al., 1984; Millis et al., 1989).  Common peroxidases found in cellulose degradation systems 

include LiPs, MnPs, as well as the VPs and DyPs (described below). 

 

 

Figure 14. General catalytic cycle of heme-containing peroxidases: First, the resting state (Fe3+) is involved 

in two-electron oxidation with H2O2 to form a Compound I oxo-ferryl intermediate (Fe4+= OP·+).  Then, 

Compound I oxidazes electron donor substrates (AH) by one-electron oxidation yielding Compound II 

(Fe4+=O) and a substrate cation radical (A·).  The last step implies another oxidation of substrate by 

Compound II subtracting one electron and consequently, returning the enzyme to the resting state (see 

Veitch, 2004).  Figure adopted from (Furukawa et al., 2014). 
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LiP was first discovered in P. chrysosporium.  LiPs catalyze the H2O2-dependent oxidative 

depolymerization of lignin (Tien and Kirk, 1983; Tien and Kirk, 1984).  In most fungi, LiP is 

present as a series of isoenzymes encoded by different genes (Glumoff et al., 1990; Johansson et 

al., 1993).  LiPs are strong oxidants with higher redox potentials (>1 V) than those found in other 

types of peroxidases (Ward et al., 2003).  This is because the porphyrin ring iron component in 

LiPs is more electron deficient than in classical peroxidases (Millis et al., 1989).  LiPs are 

considered to be the most effective (and versatile) class of peroxidases.  They can oxidize phenolic 

and non-phenolic compounds (Mester et al., 2001; Ward et al., 2001).  LiP-catalyzed reactions 

include: (1) cleavage of C-C bonds; (2) cleavage of ether (C-O-C) bonds in non-phenolic aromatic 

substrates; (3) hydroxylation of benzylic methylene groups; (4) oxidation of benzyl alcohols to 

aldehydes or ketones; (5) phenol oxidation;  and, (6) aromatic cleavage of non-phenolic lignin 

model compounds (Tien and Kirk, 1984; Hammel et al., 1985; Leisola et al., 1985; Renganathan 

et al., 1985; Renganathan et al., 1986; Umezawa et al., 1986).  Note that LiP is too large to enter a 

plant cell; thus, LiP works on exposed regions of the lumen.  

 

At the molecular level, MnPs are similar to the aforementioned LiPs.  MnPs are extracellular heme 

enzymes that use manganese as a cofactor (Glenn and Gold, 1985; Paszczyński et al., 1986).  MnPs 

were first discovered in P. chrysosporium (Kuwahara et al., 1984).  The principal function of MnP 

is to oxidize Mn2+ to Mn3+ using H2O2 (Glenn et al., 1986).  Mn2+ interacts with MnPs and H2O2 

leading to the formation of a Mn3+oxalate complexes.  However, Mn2+ must be first chelated by 

organic acid chelators to stabilize the Mn3+ product.  This process produces diffusible oxidizing 

chelates (Glenn and Gold, 1985; Glenn et al., 1986; Perez and Jeffries, 1992).  Although Mn3+ is 

a strong oxidant that can leave the active center and oxidize phenolic compounds, it cannot attack 

non-phenolic units of lignin (Popp and Kirk, 1991).  Resulting phenoxy-radicals undergo a variety 

of reactions leading to lignin depolymerization (Tuor et al., 1992).  MnP can also oxidize non-

phenolic lignin model compounds in the presence of Mn+2 via peroxidation of unsaturated lipids 

(Jensen et al., 1996; Kapich et al., 2005; Kapich et al., 2010).  It has been suggested that white-rot 

fungi, which produce MnP and laccase, but not LiP, may produce mediators to enable MnP to 

cleave non-phenolic lignin substrates (Reddy et al., 2003). 

 

VP from a white fungus (Pleurotus eryngii) was reported as a novel peroxidase possessing both 

MnP and LiP activity.  VP oxidizes both phenolic and non-phenolic aromatic compounds, 

including veratryl alcohol and p-dimethoxybenzene.  VP is also able to oxidize Mn2+ like MnPs 

(Martinez et al., 1996; Martinez et al., 1996; Camarero et al., 1999; Ruiz-Duenas et al., 1999).  

However, it possesses a high-redox potential for non-phenolic compounds similar to LiP 

(Camarero et al., 1999).  VP is a heme-containing ligninolytic peroxidase with a unique hybrid 

molecular structure consisting of different active sites that mediate oxidation (Pérez-Boada et al., 

2005; Ruiz-Duenas et al., 2009).  VP can oxidize hydroquinone without exogenous H2O2 if Mn+2 
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is available for the reaction.  Chemical oxidation of hydroquinones promoted by Mn+2 may be 

important for the initial steps of wood biodegradation, since ligninolytic enzymes cannot penetrate 

unmodified wood cell walls (Gomez-Toribio et al., 2001). 

 

DyPs were first described in fungi (Kim and Shoda, 1999).  DyPs are also heme-containing 

peroxidases, which exhibit no primary sequence or structural similarities to other plant, bacterial, 

and fungal peroxidases, and perform better than other peroxidases in lower pH (Sugano et al., 

1999; Sugano et al., 2007; Sugano, 2009).  DyPs possess broad substrate specificity and oxidize 

all of the typical peroxidase substrates.  DyPs can also oxidize high-redox potential synthetic dyes 

(i.e., anthraquinones), which are not converted by the other peroxidases (Kim et al., 1995; Kim 

and Shoda, 1999; Sugano et al., 2000; Liers et al., 2010; Santos et al., 2014).  Although ligninolytic 

activity of DyPs has been reported, the actual physiological role of these peroxidases remains 

unclear. However, evidence suggest that some could be involved in lignin degradation (see 

Sugano, 2009; Adav et al., 2010; Ahmad et al., 2011; Salvachúa et al., 2013). 

 

 Laccases 

 

Lacs are glycosylated multi-copper phenoloxidases of the auxiliary activity family 1 found in 

plants, fungi, and bacteria (see Dwivedi et al., 2011; Lombard et al., 2014; CAZy, 2015).  Lacs are 

widely distributed across the wood-degrading fungi (see Baldrian, 2006).  Lacs do not require 

manganese or H2O2.  They catalyze the single-electron oxidation of substrates through a 

concomitant four electron reduction of O2 to H2O (see Solomon et al., 1996; Messerschmidt, 1997; 

see Solomon et al., 2001).  Lacs can directly oxidize phenolic components of lignin.  Direct 

oxidation of phenolic lignin units generate phenoxy-free-radical products, which ultimately lead 

to polymer cleavage (Kawai et al., 1988).  Substrates with high redox potential are not susceptible 

to Lac activity, since the enzyme possesses a relatively low redox potential (≤0.8 V) (Reinhammar, 

1972; Schneider et al., 1999; Johnson et al., 2003; Uzan et al., 2010).  For example, non-

phenonlics, which have a redox potential above 1.3V (Zweig et al., 1964), cannot be directly 

oxidized by Lacs.  To degrade non-phenolic components, Lacs require the assistance of suitable 

mediators.  Upon oxidation by Lacs, these low molecular weight compounds are converted to 

radicals and act as redox mediators that, in turn, oxidize other compounds that are not directly Lac 

substrates (Bourbonnais and Paice, 1990; Barreca et al., 2003; Cho et al., 2008).  In bioethanol 

production, if Lacs are used directly as a biomass pretreatment, the addition of exogenous 

mediators, such as 2,29-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) (Bourbonnais and 

Paice, 1990), may not be necessary, since natural mediators will likely be generated.  For example, 

initial Lac activity on phenolic lignin units can result in the release of phenoxy radicals, which are 

natural mediators that oxidize more recalcitrant non-phenolic lignin moieties (d'Acunzo et al., 
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2006; Nousiainen et al., 2009).  It has been reported that this enzyme also possesses demethylating 

activity in lignin subunits (Trojanowski et al., 1966; Harkin and Obst, 1974; Ishihara and 

Miyaxaki, 1976; Leonowicz et al., 1979; Ander et al., 1983; Malarczyk et al., 2009) and lignin 

preparations (Ishihara and Miyaxaki, 1974; Ander and Eriksson, 1985; Crestini and Argyropoulos, 

1998; Ibrahim et al., 2011).  During demethylation, laccases act on aryl-O-alkyl C-O bonds.  

 

 Accessory Enzymes and Mediators 

 

There are some accessory enzymes and non-enzymatic components known as mediators that 

increase ligninolytic activity of principal enzymes.  Some of these enzymes are involved in the 

production of H2O2 required by peroxidases.  However, other enzymes catalyze the reduction of 

phenolic products derived from lignin degradation avoiding their posterior repolymerization. 

These enzymes include oxidases and reductases. Oxidases are grouped into: Glyoxal oxidase 

(GLOX; a copper radical enzyme) described in P. chrysosporium (Kersten and Kirk, 1987; 

Kersten, 1990; Takano et al., 2010), aryl alcohol oxidase (AAO) (or veratryl acohol oxidase, VAO) 

described in P. eryngii (Guillén et al., 1990; see Hernandez-Ortega et al., 2012), pyranose 2-

oxidase or glucose 2-oxidase (Ruelius et al., 1968; Janssen and Ruelius, 1968a; Volc et al., 1978; 

Daniel et al., 1994), glucose oxidase (or glucose 1-oxidase) (Müller, 1928; Muller, 1936; Franke 

and Lorenz, 1937; Franke and Deffner, 1939; Kelley and Reddy, 1986), and alcohol oxidase 

(AOX) or methanol oxidase (Janssen et al., 1965; Janssen and Ruelius, 1968b; Suye, 1997). In 

addition, fungi produce reductases, such as aryl-alcohol dehydrogenases (AAD) (Muheim et al., 

1991; Gutierrez et al., 1994), quinone reductases (QR) (Guillen et al., 1997; Bazzi, 2001) and CDH 

(or CBOR), CBO or CBQOR (Westermark and Eriksson, 1974a; Westermark and Eriksson, 

1974b; Temp and Eggert, 1999). 

 

 Pectinolytic Enzymes (Pectinases) 

 

Pectinases are enzymes that catalyze the cleavage of pectic substances, such as pectin. Depending 

on the cleavage sites utilized, pectinases are categorized into one of three groups: esterases, lyases, 

and hydrolases (see Sharma et al., 2013b). 
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 Main Pectinases 

 

The most studied pectinolytic enzymes are homogalacturonan-degrading enzymes: 

polygalacturonases (PG) or pectin depolymerase; polymethylgalacturonases (PMG); lyases or 

transeliminases and pectinesterases (PE), which is also known as pectin methylesterases (PME).  

 

PGs catalyze the hydrolytic cleavage of α-1,4-glycosidic linkages in polygalacturonic acid chains 

by introducing water across the oxygen bridge to form D-galacturonate.  They are classified into 

GH family 28 (Markovic and Janecek, 2001; Lombard et al., 2014; CAZy, 2015).  They are divided 

into: endo-polygalacturonases (PGA) and exo-polygalacturonases (XPG).  PGA randomly attacks 

the pectic acid (polygalacturonic acid) to produce a number of Gal A oligosaccharides.  The 

enzyme cleaves internal α-1,4-D-glycosidic linkage between two low methyl esterified or non-

methylated acid residues in pectic acid, because such enzyme can only act on glycosidic linkages 

adjacent to galacturonic acid residues with free carboxyl groups (Yuan and Boa, 1979; Mohamed 

et al., 2006).  XPG catalyzes the hydrolysis of α-1,4-glycosidic linkages of homogalacturonan 

(HG) chains from the non-reducing end releasing monogalacturonate.  The enzyme needs a non-

esterified GalpA unit at subsites -2, -1 and +1 (Kester et al., 1999a).  In addition, it is tolerant of 

xylose substitution by removal of the Gal A-Xyl dimer.  As a consequence, XGA is also an XPG 

substrate  (Beldman et al., 1996a; Kester et al., 1999b) (see figure 15a). 

 

PMG performs the hydrolysis of α-1,4-glycosidic bonds of the pectin backbone and specially 

catalyzes highly esterified pectin, forming 6-methyl-D-galacturonate bonds (Seegmiller and 

Jansen, 1952) (see figure 15a).  

 

Lyase performs the trans-eliminative reaction of the α-1,4 glycosidic bond of polygalacturonic 

acid polymer to form an Δ-4,5 unsaturated C-C bond at the non-reducing end of the cleaved pectin 

polysaccharide (Albersheim et al., 1960; Moran et al., 1968).  They are classified as pectate lyase 

(pectate transeliminases or PGL) and pectin lyase, (pectin transeliminase or PL).  PGL cleaves 

glycosidic linkages on pectin and produce unsaturated oligogalacturonates or digalacturonates. 

PGLs are usually specific for non-esterified pectin (pectate) and depend on Ca2+ (Starr and Moran, 

1962; Pickersgill et al., 1994; Mayans et al., 1997; Seyedarabi et al., 2010).  The enzyme is grouped 

into five of the polysaccharide lyase (POL) families 1, 2, 3, 9, and 10 (Lombard et al., 2014; CAZy, 

2015). It exists two types of PGLs: endo-PGL, which acts on substrates at random internal sites 

within the chain, and exo-PGL, which catalyzes the substrate cleavage from the reducing end.  PL 

catalyzes the random cleavage of high esterified pectin and produces unsaturated 
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methyloligogalacturonates.  PL does not depend on Ca2+ (Albersheim et al., 1960; Edstrom and 

Phaff, 1963; Delgado et al., 1992; Vitali et al., 1998) (see figure 15c).  PL belongs to POL family 

1 (Lombard et al., 2014; CAZy, 2015). 

 

PE or PME catalyzes the de-esterification of methyl ester linkages by removing the methoxyl 

group at O6 through catalyzing the hydrolysis of the ester linkage into pectate and methanol.  The 

enzyme preferentially targets methyl ester groups in galacturonate units that are next to non-

esterified galacturonate units (Solms and Deuel, 1955; Fries et al., 2007).  The enzyme is active 

prior to PG and PGL enzymes, which require non-esterified substrates.  After the action of PE, 

PGs and lyases, then PE catalyze the resulting pectin.  PE is a part of CE family 8 (Lombard et al., 

2014; CAZy, 2015) (see figure 15b).  
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Figure 15. Mode of action of pectinases: (a) R = H for PG and CH3 for PMG; (b) PE; and (c) R = H for PGL 

and CH3 for PL. The place where the pectinolytic enzymes react with pectin are showed by the arrows. 

Figure adopted from (Pedrolli et al., 2009). 

 

 Other Pectinases 

 

Pectinases that have not been as extensively studied are: pectin acetyl esterases (PAE); 

rhammnogalacturonase (RGase), or also known as rhamnogalacturonan hydrolases (RGH); 

rhamnogalacturonan rhamnohydrolases (RGRH); rhamnogalacturonan galacturonohydrolases 

(RGGH); rhamnogalacturonan endolyases (RGL); rhamnogalacturonan acetylesterases (RGA); 

xylogalacturonan hydrolase (XGH); and accessory enzymes (see figure 16).  They are either 

backbone degrading enzymes or debranching enzymes. 
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PAE hydrolyzes the acetyl ester group of HG and rhamnogalacturonan I (RG-I) forming pectic 

acid and acetate (Williamson et al., 1990; Williamson, 1991; Shevchik and Hugouvieux-Cotte-

Pattat, 1997; Bolvig et al., 2003; Bonnin et al., 2008).  PAE is classified into CE families 12 and 

13 (Lombard et al., 2014; CAZy, 2015).  RGase or RGH is an endo acting enzyme able to randomly 

hydrolyze the α-D-1,4-GalpA-α-L-1,2-Rhap linkage in the RG-I backbone producing 

oligogalacturonates.  The enzyme is intolerant toward acetyl esterification of the RG-I backbone 

(Schols et al., 1990; Kofod et al., 1994).  RGase is grouped into GH family 28 (Lombard et al., 

2014; CAZy, 2015).  RGRH is an exo-acting pectinase that catalyzes the hydrolytic cleavage of 

the rhamnogalacturonan chain of RG-I at the non-reducing end, which produces rhamnose (Mutter 

et al., 1994).  This enzyme belongs to GH family 28 (Lombard et al., 2014; CAZy, 2015).  RGGH 

is an exo-acting pectinase that catalyzes the hydrolytic cleavage of the rhamnogalacturonan chain 

of RG-I at the non-reducing end, which produces monogalacturonate (GalA moety) (Mutter et al., 

1998a). RGGH is classified into the GH family 28 (Lombard et al., 2014; CAZy, 2015).  RGL 

catalyzes the random transelimination (β-elimination) of the RG-I α-L-1,2-Rhap-α-D-1,4-GalpA 

backbone leaving an unsaturated galacturonate at the non-reducing end and a rhamnose at the 

reducing end (Kofod et al., 1994; Mutter et al., 1996).  The RGL activity is hindered by the 

presence of the acetyl groups in the RG-I backbone (Kofod et al., 1994; Mutter et al., 1998b).  

These enzymes are classified as polysaccharide-lyase families 4 and 11 (Lombard et al., 2014; 

CAZy, 2015).  RGA catalyzes the hydrolytic cleavage of acetyl groups from the 

rhamnogalacturonan chain in RG-I (Searle-van Leeuwen et al., 1992).  RGA is classified into CE 

family 12 (Lombard et al., 2014; CAZy, 2015).  XGH hydrolyzes the α-1,4-D linkages of xylose 

substituted galacturonan moieties in XGA producing xylose galacturonate dimers (van der Vlugt-

Bergmans et al., 2000; Zandleven et al., 2005).  XGH is grouped into GH family 28 (Lombard et 

al., 2014; CAZy, 2015).  Accessory enzymes acting on the lateral chains of RG-I and 

rhamnogalacturonan II (RG-II) include endogalactanases, exogalactanases, AGLs and LACs, AFs, 

AR, exoarabinases and FAE (see de Vries and Visser, 2001).  
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Figure 16. A-B schematic representation of HG and lateral chains of RG-II, and mode of action of 

pectinolytic enzymes involved in their degradation. Figure adopted and modified from (Lara-Márquez, 

Zavala-Páramo et al., 2011). 
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Natural Cellulosomes 

 

Since bacteria and fungi are unable to engulf particles, these organisms need to secrete cellulases 

in order to degrade plant cell walls.  The plant cell wall degrading apparatus of aerobic and 

anaerobic microorganisms differ considerably in their macromolecular organization.  Cellulases 

and hemicellulases synthesized by anaerobes frequently assemble into a large multienzyme 

complex (molecular weight >2 MDa) called cellulosome (see Bégum and Lemaire, 1996; see 

Bayer et al., 1998; see Shoham et al., 1999; see Bayer et al., 2004; see Gilbert, 2007; see Smith 

and Bayer, 2013).  Cellulases and hemicellulases produced by most aerobic microorganisms are 

free enzymes that are secreted at high concentrations and contain a CBM (Wilson, 2008). 

 

Cellulosomes are supramolecular assemblies that are usually bound to the outer surface of the 

microorganism (see Smith and Bayer, 2013) and exploit the synergistic interactions of their 

enzyme components to efficiently degrade recalcitrant crystalline lignocellulosic substrates 

(Fierobe et al., 2002; Fierobe et al., 2005).  A cellulosome from the anaerobic thermophilic 

bacterium Clostridium thermocellum was the first identified and characterized during the early 

1980s (Bayer et al., 1983; Lamed et al., 1983a; Lamed et al., 1983b).  The complex contains not 

only cellulases, but also a large array of hemicellulases (Morag et al., 1990; Kosugi et al., 2002) 

and pectinases (Tamaru and Doi, 2001). Enzyme activities include POLs, CEs, and GHs.  

Experimental evidence also demonstrates the presence of cellulosomes in anaerobic fungi that 

correspond to the genera Neocallimastix, Piromyces, and Orpinomyces (Wilson and Wood, 1992; 

Ali et al., 1995; Fanutti et al., 1995; Li et al., 1997; Fillingham et al., 1999; Steenbakkers et al., 

2001; Steenbakkers et al., 2003; Nagy et al., 2007; Haitjema et al., 2013; Wang et al., 2014).  In 

addition to the cellulosome, some anaerobic bacteria also produce free cellulases, but their function 

in cellulose degradation is still unknown (Gilad et al., 2003; Berger et al., 2007). 

 

 Cellulosome Structure 

 

The cellulosome is an extracellular protein complex on bacterial and fungal cell surfaces that 

adheres to plant materials and deconstructs plant cell wall lignocellulose (Lamed et al., 1983b).  

The cellulosome comprises several subunits, each of which displays a modular architecture.  Some 

cellulosomes are structural and others are catalytic.  The core structural components are known as 

scaffoldins, which attach all other subunits (Tokatlidis et al., 1991).  The cellulosomal catalytic 

components contain non-catalytic modules called dockerins (Hall et al., 1988), which bind to the 

cohesin modules located in the scaffoldins (Tokatlidis et al., 1991; Schaeffer et al., 2002; Carvalho 

et al., 2003).  The high affinity protein–protein interactions established between dockerins and 
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cohesins allow integration of the enzymes into the complex (Carvalho et al., 2003).  In addition, 

scaffoldins usually contain a non-catalytic module called CBM that anchors the entire complex 

onto the plant cell wall (see figure 17).  

 

 

Figure 17. Basic schematic representation of the C. thermocellum cellulosome. Figure adopted from (Stahl 

et al., 2012). 

 

Scaffoldins are large non-catalytic modular cohesin-containing proteins that are critical for 

cellulosome assembly and substrate binding through the CBM (Tokatlidis et al., 1991; Salamitou 

et al., 1992).  Scaffoldins have been identified in most cellulosome-producing bacteria, such as 

Acetivibrio cellulolyticus, Clostridium cellulolyticum, Clostridium cellulovorans and Clostridium 

josui (Shoseyov et al., 1992; Kakiuchi et al., 1998; Pagès et al., 1999; Dassa et al., 2012).  Dockerin 

contains a highly conserved duplicated segments of approximately 22 amino acids each connected 

by a peptide containing 8 to 17 amino acid residues and are usually present in a single copy at the 

C-terminus of cellulosomal enzymes (Grépinet and Béguin, 1986; Yagüe et al., 1990).  The 

reaction between dockerins and cohesins requires Ca2+ in C. thermocellum (Yaron et al., 1995; 

Choi and Ljungdahl, 1996) and C. cellulolyticum (Pagès et al., 1997).  The first 12 residues of each 

duplicated segment of dockerins resemble the calcium-binding loop in the EF-hand motif (Pagès 

et al., 1997).   Ca2+ has shown to be essential for dockerin stability, function and compression into 

its tertiary structure (Choi and Ljungdahl, 1996; Lytle et al., 2000).  These discoveries explain why 

Ca2+ is essential for the cohesin-dockerin interaction and hence the structural stability of the 

cellulosomes (Lytle et al., 1999; Lytle et al., 2000).  The cohesin–dockerin interaction is among 

the highest affinity protein–protein interaction known. For example, the type I cohesin-dockerin 

interaction is characterized by a dissociation constant of the order of 10−10 M (Fierobe et al., 1999).   

The dockerin modules are believed to bind to cohesins in two different configurations.  The dual 

binding mode would confer plasticity in dockerin-cohesin interactions and consequently, in 

cellulosome assembly, allowing the flexible incorporation of enzyme activities into the 

cellulosome.  Furthermore, the plasticity in dockerin-cohesin recognition would also provide 

alternative modes of interaction between the enzymes and substrates (Carvalho et al., 2007). 

Cohesins are approximately 150-residue modules and are usually present as tandem repeats in 
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scaffoldins (Fujino et al., 1992; Shoseyov et al., 1992; Kakiuchi et al., 1998; Ding et al., 1999). 

There is a notable degree of amino acid homology between cohesins from different species.  This 

similarity is also reflected in their structure;  however, the cohesin-dockerin interactions appear to 

be species-specific (Pagès et al., 1997).  The structure of the complex further revealed that protein-

protein recognition is mainly mediated by hydrophobic interactions of the beta-sheet cohesin 

domain and one of the helices of the dockerin protein (Spinelli et al., 2000; Lytle et al., 2001; 

Miras et al., 2002; Schaeffer et al., 2002; Carvalho et al., 2003; Carvalho et al., 2007).  In some 

cellulosome systems, including that of clostridial, the primary scaffoldin anchors the whole 

cellulosome onto the cell surface through interaction with a another type of cohesin from an 

anchoring protein (Leibovitz and Béguin, 1996).  Most of the catalytic components of the 

cellulosome are devoid of the CBMs, and they depend on the CBM present on the scaffoldin 

protein for attachment to the polysaccharide substrates.  Although, there are several reports that 

propose that CBMs disrupt crystalline structure (Knowles et al., 1987; Din et al., 1994; Wang et 

al., 2008), CBMs more likely act through targeting and proximity effect.  They bring enzymes into 

intimate contact with plant cell walls enhancing proximity of the enzymes with it and thus, 

increasing the concentration of enzymes onto the polysaccharide substrates, which in turn 

enhances the catalytic efficiency of the associated enzymes (Black et al., 1996; Bolam et al., 1998; 

Hervé et al., 2010).  They contain from 30 to approximately 200 amino acids and are located within 

the parental protein at either the C-terminal or N-terminal (Juge et al., 2002; Abe et al., 2004; 

Lunetta and Pappagianis, 2014; Peng et al., 2014).  Originally, these domains were named, 

cellulose binding modules (CBD), because the first protein domains discovered bound primarily 

crystalline cellulose (Tilbeurgh et al., 1986; Gilkes et al., 1988; Tomme et al., 1988).  Later, this 

name was replaced by CBM in order to reflect the diverse ligand specificity of these modules 

(Boraston et al., 1999).  CBMs have been grouped into 67 families based on their amino acid 

sequences according to the CAZy database (Lombard et al., 2014; CAZy, 2015).  Nevertheless, 

CBMs have also been classified into three types by Boraston based on their binding specificity 

(see Boraston et al., 2004).  Type A CBMs interact with flat surfaces of insoluble polysaccharides, 

including crystalline cellulose; type B CBMs bind to internal regions of single polysaccharides 

(glycan chains); and type C CBMs recognize small saccharides such as mono-, di-, or trisaccharide. 

The orientation and positioning of the aromatic residues in the binding sites of CBMs are the 

primary drivers of specificity and affinity in these proteins (Simpson et al., 2000), but other 

interactions, including direct hydrogen bonds (Notenboom et al., 2001; Xie et al., 2001; Pell et al., 

2003) and calcium-mediated coordination (Bolam et al., 2004; Jamal-Talabani et al., 2004), also 

play an important role in CBM ligand recognition.  Some CBMs have become primordial to the 

substrate specificity and mode of action in cognate enzymes.  For instance, family 3c CBMs may 

play a role in the processivity displayed by GH9 family ‘endo-processive’ cellulases (Sakon et al., 

1997; Irwin et al., 1998; Li et al., 2007a; Burstein et al., 2009; Oliveira et al., 2009).  Also, CBM 

22 was proved to change the specificity of a GH10 family xylanase such that it displayed primarily 

β-1,4-β-1,3-glucanase activity (Araki et al., 2004). 
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 Biological Functions of Cellulosomes  

 

It has been suggested that cellulosomes are more efficient at deconstructing plant structural 

polysaccharides than the corresponding “free” enzyme systems produced by aerobic bacteria and 

fungi.  As an example, C. thermocellum requires much less protein in order to solubilize crystalline 

cellulose substrate than T. reesei (Johnson et al., 1982).  Indeed, C. thermocellum holds one of the 

highest rates of cellulose hydrolysis (see Lynd et al., 2002).  The C. thermocellum cellulosome 

displays a specific activity against crystalline cellulose, which is 50-fold higher than the 

corresponding Tricoderma-free cellulolytic system (see Demain et al., 2005).  It has been reported 

that holding plant cell wall–degrading enzymes onto a macromolecular complex leads to a spatial 

enzyme proximity that maximizes the potential for synergy between different cellulosomal 

enzymes against recalcitrant substrates.  These enzymes are further augmented by enzyme-

substrate targeting scaffoldin-borne CBM (Fierobe et al., 2002; Fierobe et al., 2005).  Several 

studies have shown the importance of recruiting lignocellulolytic enzymes into the cellulosome to 

mediate efficient hydrolysis of the crystalline substrate.  This organization prevents non-

productive adsorption of break down products by optimizing component spacing.  Sets of enzymes 

with strong binding domains bind to a single site on the substrate, which prevents competition for 

a limited number of binding sites on the substrate.  The presence of other enzymes with different 

specificities prevents hydrolytic cessation of one structural type of cellulose.  Furthermore, it takes 

advantage of the synergistic interaction among the enzymes by the correct ratio between the 

components. 

 

 Cellulosome of Clostridium thermocellum 

 

C. thermocellum is a thermophilic and strictly anaerobic spore-forming bacterium, which 

hydrolyzes a wide range of polysaccharides from lignocellulosic biomass.  More than thirty years 

ago, the C. thermocellum cellulosome was discovered.  It was the first cellulosome discovered in 

a microorganism and is now one of the most widely studied nanomachines (Bayer et al., 1983; 

Lamed et al., 1983a; Lamed et al., 1983b; see Gilbert, 2007; see Bayer et al., 2008; see Fontes and 

Gilbert, 2010; see Kothari et al., 2011; see Akinosho et al., 2014).  Crystalline cellulose is most 

efficiently degraded by this cellulosome (see Lynd et al., 2002).  The extracellular enzyme 

complex has been shown to be > 2 MDa (Coughlan et al., 1985).  In some strains, the cellulosomes 

aggregate with larger supercomplexes called polycellulosomes.  Polycellulosomes have a 

molecular mass up to 100 MDa (Mayer et al., 1987).  The complex composition varies with the 

carbon source (Bhat et al., 1993).  Although C. thermocellum exclusively breaks down cellulose, 

the literature indicates that it has the potential to degrade a number of other polysaccharides 

(Spinnler et al., 1986; Zverlov et al., 2002b; Zverlov et al., 2005b). 
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 Structure 

 

Several cellulosome-producing microbes express more than one type of scaffoldin.  The primary 

scaffoldin of C. thermocellum is known as CipA (Lamed et al., 1983a; Gerngross et al., 1993; 

Kruus et al., 1995).  CipA contains, nine type I cohesins that recognize type I dockerins in catalytic 

subunits, and a CBMIIIa, which binds crystalline cellulose and exhibits broad binding specificity 

for different sites on cell wall (Tokatlidis et al., 1991; Gerngross et al., 1993; Tormo et al., 1996; 

Blake et al., 2006; Yaniv et al., 2013).  In addition, it contains a C-terminal type II dockerin, which 

is linked to a hydrophilic X-domain and does not recognize CipA cohesins.  Instead, it recognizes 

type II cohesins located at the amino-terminal ends of cell-surface proteins, also known as 

anchoring proteins (SdbA, Orf2P, and OlpB), leading to the anchorage of cellulosomes or free 

enzymes to the cell (Lemaire et al., 1995; Leibovitz and Béguin, 1996; Leibovitz et al., 1997; 

Adams et al., 2006; Xu and Smith, 2010) (see figure 18).  
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Figure 18. The schematic representation of the cellulosome from Clostridium thermocellum with the X-ray 

crystal structures of the individual cellulosomal components. Figure adopted from (Smith and Bayer, 2013). 

 

As it was mentioned earlier, cohesin-dockerin interactions appear to be species-specific (Pagès et 

al., 1997).  However, there are exceptions, and thus, the Xyn11A dockerin of C. thermocellum 

binds to various cohesins of C. josui with high affinities (KD of 10-8 M) (Jindou et al., 2004). 

Cohesin I domains are connected to the scaffoldin by O-glycosylated linker segments of about 20 

residues containing a majority of proline, serine, and threonine (Gerwig et al., 1989; Gerwig et al., 

1991; Gerwig et al., 1992; Gerwig et al., 1993).  Inter-cohesin linkers appear intrinsically 

disordered and display a high degree of conformational flexibility (Hammel et al., 2004; Hammel 

et al., 2005; Bomble et al., 2011; Garcia-Alvarez et al., 2011; Currie et al., 2012; Currie et al., 

2013).  The interaction of C. thermocellum type-I cohesion-dockerin complex structure is achieved 

via a binding interface with an extensive hydrogen-bonding network and supporting hydrophobic 

interactions.  These interactions primarily involve only one of the two main helices present in the 
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symmetric dockerin structure and a face of the cohesin module formed by strands 8, 3, 6, and 5 

(Carvalho et al., 2003).  Structural and mutagenesis data reveal that type I dockerins contain two 

almost identical cohesin binding interfaces.  Residues participating in cohesin recognition at the 

two binding interfaces (specifically a serine-threonine pair at positions 11 and 12 and a lysine-

arginine pair at positions 18 and 19) are highly conserved in the two segments of the majority of 

C. thermocellum dockerins.  This suggests that both binding interfaces display similar protein 

specificities (Carvalho et al., 2003; Karpol et al., 2008; Garcia-Alvarez et al., 2011).  The plasticity 

of the type-I cohesion-dockerin interaction may reduce steric constraints, which allows the 

enzymes to assume an alternative conformation for substrate degradation (Carvalho et al., 2007). 

It also facilitates dockerin alternation through recognition of unbound cohesins, which leads to a 

continuous reorganization of the cellulosome.  This provides the structural flexibility necessary to 

enhance substrate targeting and improves the synergistic interactions between additional enzymes, 

including exo- and endo-acting cellulases (Carvalho et al., 2003; Carvalho et al., 2007).  Most 

significantly, type I and type II cohesin/dockerin partners do not interact.  This ensures that there 

is a clear distinction between the mechanism for cellulosome assembly and cell-surface attachment 

(Leibovitz and Béguin, 1996).  The CBMIIIa from CipA corresponds to family 3 of CBM.  The 

crystal structure of CBM3 from C. thermocellum displays a nine-stranded β-sandwich fold and 

one β-sheet presenting a planar topology, which interacts with crystalline cellulose.  It is an internal 

domain that consists of approximately 155 residues (Tormo et al., 1996; Yaniv et al., 2013).  In 

comparison to other type A CBMs, CBM3s bind more extensively to cellulose (Blake et al., 2006). 

The absorption of the CBM to cellulose depends on the structure arrangement of the cellulosic 

substrate.  The CBM from Clostridium thermocellum possesses higher binding capacity for 

amorphous cellulose than for crystalline cellulose.  The capacity for amorphous cellulose is 20 

fold higher (Morag et al., 1995).  The X module is involved in the dockerin stability and cohesion 

recognition (Adams et al., 2006).  The CipA dockerin II module binds only to the type II cohesins 

of one cell wall binding protein or anchoring scaffolding SdbA, Orf2P, or OlpB (which carry 1, 2 

and 4 type II cohesin(s), respectively) in a highly specific and ultra-tight manner (Leibovitz et al., 

1997; Adams et al., 2006).  In addition, two type-II cohesin-containing CipA anchoring proteins 

(Cthe_0735 and Cthe_0736) have been found.  The latter comprises 7 type-II cohesin modules, 

which increases the potential to form polycellulosome structures (Raman et al., 2009; Raman et 

al., 2011).  Two type-I cohesin-containing cell-surface anchoring proteins (OlpA and OlpC) have 

also been identified, which bind individual cellulosome components (Salamitou et al., 1994; 

Pinheiro et al., 2009)  (see figure19).  
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Figure 19. Simplified representation of C. thermocellum cellulosome with cell-anchored proteins, OlpA and 

OlpC and SdbA. Figure adopted from (Pinheiro et al., 2009). 

 

While SdbA, OlpB, and Orf2 in C. thermocellum are bound to the peptidoglycan layer of the cell 

envelope, OlpA and OlpC interact with secondary cell wall polymers in the S-layer of the cell 

envelope (Lemaire et al., 1995; Zhao et al., 2006a; Zhao et al., 2006b; Pinheiro et al., 2009). 

However, the biological significance of these identified differences in cell-wall specificity remains 

unclear. 

. 

 Catalytic Subunits 

 

Several cellulosomal enzymes have been revealed in Clostridium thermocellum.  More 

specifically, the complex is comprised of numerous EGs (Shinmyo et al., 1979; Ait et al., 1979a; 

Garcia-Martinez et al., 1980; Ng and Zeikus, 1981; Petre et al., 1981; Beguin et al., 1983; Cornet 

et al., 1983; Béguin et al., 1985; Pétré et al., 1986; Schwarz et al., 1986; Joliff et al., 1986a; Joliff 

et al., 1986b; Soutschek-Bauer and Staudenbauer, 1987; Schwarz et al., 1988; Mel’nik et al., 1989; 
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Hazlewood et al., 1990; Fauth et al., 1991; Jung et al., 1992; Romaniec et al., 1992; Kobayashi et 

al., 1993; Mosolova et al., 1993; Singh and Akimenko, 1994; Bhat et al., 2001; Zverlov et al., 

2003; Zverlov et al., 2005a); four EXs or CBHs, which include CbhA (formerly Cbh3; component 

S3) (Tuka et al., 1990; Mel’nik et al., 1991; Singh and Akimenko, 1993; Zverlov et al., 1998) CelS 

(S8) (Wang et al., 1993; Wang and Wu, 1993), CelK (S5) (Kataeva et al., 1999), and CelO (Zverlov 

et al., 2002a); a CBP (Sih and McBee, 1955; Alexander, 1968); a CDP (Sheth and Alexander, 

1967; Sheth and Alexander, 1969); two βGs (bglA and bglB) (Aït et al., 1979b; Gräbnitz et al., 

1989; Gräbnitz et al., 1991); at least six ENs (XynA, XynB, XynC, XynY, XynZ and XynD) 

(Grépinet et al., 1988; Morag et al., 1990; Fontes et al., 1995; Hayashi et al., 1997; Hayashi et al., 

1999; Zverlov et al., 2005b), which comprise xylan esterase modules in XynY and XynZ to remove 

feruloyl residues from native xylan (Blum et al., 2000); one XGH (XghA) (Zverlov et al., 2005b); 

two lichenases (1,3-1,4-β-glucanases) (Schwarz et al., 1985; Schimming et al., 1991); two 

laminarinases (1,3-β-glucanases) (Tuka et al., 1990); and minor activities of βX, LAC, and MND 

(Kohring et al., 1990).  C. thermocellum has been shown to degrade pectin and probably produces 

pectin lyase, polygalacturonate hydrolase, pectin methylesterase (Spinnler et al., 1986), one 

chitinase (Chi18A) (Zverlov et al., 2002b), and one MAN (Halstead et al., 1999). 

 

 Lignocellulolytic System of Tricorderma reesei 

 

Most aerobic microorganisms, including fungi (e.g. Trichoderma reesei), the bacterium 

Thermobifida fusca, and other aerobic bacteria do not possess a cellulosome for the degradation 

of lignocellulolytic material.  Instead, they produce single enzyme components at high 

concentrations, which are connected to synergistic binding modules (Wilson, 2008).  These 

enzymes also play an important role in degrading the polysaccharide component of biomass, and 

are mostly from fungi that belong to the genus Trichoderma (Gosh and Gosh, 1992) in particular, 

Trichoderma reesei.  Trichoderma reesei (anamorph of Hypocrea jecorina) is a filamentous 

mesophilic soft-rot ascomycete fungus that is widely used in industry as a source for cellulases 

and hemicellulases in the hydrolysis of plant cell wall polysaccharides (Kuhls et al., 1996; Merino 

and Cherry, 2007).  The exceptional capacity for extracellular protein production and the ability 

to grow on a wide range of substrates make filamentous fungi the source of choice for industrial 

enzymes (Schaffner and Toledo, 1991).  T. reesei is particularly efficient at producing extracellular 

enzymes.  Certain industrial strains produce over 100 grams of extracellular proteins per liter (see 

Schuster and Schmoll, 2010).  T. reesei serves as the primary industrial source for cellulases and 

hemicellulases (Merino and Cherry, 2007), which are useful in pulp and paper industries (Buchert 

et al., 1998), textile industries (Galante et al., 1998), food and feed industries (Hjortkjaer et al., 

1986; Roldán et al., 2009), and biofuel production (Kataria and Ghosh, 2011).  The production of 

the primary T. reesei enzymes that are related to lignocellulosic biomass degradation is 

transcriptionally regulated, and the relative proportions of expressed proteins may vary widely 
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depending on the growth medium used, carbon source, and cultivation conditions (Allen and 

Roche, 1989; Foreman et al., 2003; Juhasz et al., 2005; Stricker et al., 2008; Sipos et al., 2010; 

Maurya et al., 2012; Coffman et al., 2014).  For example, the production of ENs and βX by T. 

reesei is induced very specifically by lactose and xylose, respectively (Kristufek et al., 1995; Xiong 

et al., 2004).  The genome sequence of T. reesei has helped researchers identify the diversity of 

hydrolytic enzymes secreted by this fungus (Martinez et al., 2008).  Unexpectedly, previous studies 

have indicated that T. reesei produces a relatively smaller number of cellulases, hemicellulases, 

and pectinases compared to other plant cell wall degrading fungi (Martinez et al., 2008).  Enzyme 

expression by T. ressei depends on the carbon sources (Jun et al., 2013b).  Protein engineering 

have been used in these enzymes to improve properties, such as alkali-tolerance, stability or 

activity (Wang et al., 2005a; Nakazawa et al., 2009). 

 

 Catalytic Subunits 

 

T. reesei has the smallest repertoire of genes for cellulases, hemicellulases, and pectinases 

(Martinez et al., 2008).  As a result, several enzyme families involved in polysaccharide 

degradation are reduced or absent in T. reesei.  

 

Carbohydrate Active Enzymes (CAZymes) are enzymes that degrade, modify, or create glycosidic 

bonds, which include GHs (enzymes that hydrolyze or rearrange glycosidic bonds), 

glycosyltransferases (GTs; enzymes that form glycosidic bonds), POLs (enzymes with a non-

hydrolytic cleavage mechanism for glycosidic bonds) and CEs (enzymes that hydrolyse 

carbohydrate esters).  Many of the T. reesei genes encoding CAZymes involved in polysaccharide 

degradation are not distributed randomly in the genome; instead, they are located in clusters.  In 

general, the T. reesei genome encodes a number of CAZymes that are slightly below the average 

found among Sordariomycetes (Martinez et al., 2008).  Unexpectedly, the number of genes 

encoding GHs (201) is below average for the number of GHs found in Sordariomycetes (Martinez 

et al., 2008; Hakkinen et al., 2012).  The T. reesei genome also has the smallest number of CBM-

containing proteins (36) among the Sordariomycetes (Martinez et al., 2008).  In addition, T. reesei 

contains 22 CEs and 5 POL genes (Hakkinen et al., 2012).  With respect to the content of GTs 

(99), however, T. reesei is close to average within the same lineage (Martinez et al., 2008; 

Hakkinen et al., 2012).  T. reesei lacks several protein families that are important for 

lignocellulosic degradation.  These enzymes are included in PGL, pectin esterase, tannase, and 

FAE families.  Of all possible CAZyme genes involved in pectin degradation, T. reesei possesses 

the smallest amount of pectinolytic enzymes (family GH28) among the plant cell wall–degrading 

fungi.  The enzyme invertase is also absent (family GH32) (Martinez et al., 2008). 
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The components of the T. reesei cellulolytic system include: two CBHs (CBHI/CEL6A and 

CBHII/CEL7A) (Shoemaker et al., 1983; Teeri et al., 1983; Teeri et al., 1987); ten EGs, which 

include five characterized enzymes (EGI/CEL7B, EGII/CEL5A, EGIII/CEL12A, EGIV/CEL61A 

and EGV/CEL45A) (Penttilä et al., 1986; Saloheimo et al., 1988; Saloheimo et al., 1994; 

Saloheimo et al., 1997; Okada et al., 1998) and five putative enzymes (CEL5B, CEL61B, 

CEL74A, gene ID 53731, gene ID 77284) (Foreman et al., 2003; Martinez et al., 2008; The 

Regents of the University of California, 2015); and eleven βGs, which comprise two characterized 

enzymes (BGLI/CEL3A, BGLII/CEL1A) (Barnett et al., 1991; Fowler and Brown, 1992; 

Takashima et al., 1999; Saloheimo et al., 2002)  and nine candidate enzymes (CEL3B, CEL3D, 

CEL1B, CEL3C, CEL3E, bgl3i, gene ID 66832, bgl3j and bgl3f) (Foreman et al., 2003; Ouyang 

et al., 2006; Martinez et al., 2008).  Both CBHs have been shown to act processively.  Whereas 

CEL6A cleaves the cellobiose dimers from the non-reducing end of the cellulose chain, CEL7A 

acts from the reducing end (Barr et al., 1996).  The GH5 cellulase CEL5B has a putative GPI 

(Glycophosphatidylinositol)-anchor at the C-terminus, which binds this protein to the plasma 

membrane and fungal cell wall.  CEL74A was later characterized as a putative XGH (Grishutin et 

al., 2004).  Enzymes from the GH family 61 have been shown to enhance lignocellulosic 

degradation by an oxidative mechanism (Langston et al., 2011).  In addition, several novel 

candidate cellulolytic enzymes have been identified from the genome of T. reesei (Foreman et al., 

2003). 

 

There are several hemicellulases produced by T. reesei: seven ENs, that include four characterized 

ENs from the families GH10 (XYNIII), GH11 (XYNI, XYNII) and GH30 (XYNIV) (Tenkanen 

et al., 1992; Torronen et al., 1992; Xu et al., 1998), and three candidates enzymes (gene ID 112392 

or XYNV, 41248 and 69276) (Metz et al., 2011; The Regents of the University of California, 

2015); one MAN (MANI) (Stålbrand et al., 1995); one candidate AXL (gene ID: 69944); one 

candidate β-1,3-mannanase (or gen ID 71554); six candidate MNDs (gene ID: 5836, 69245, 59689, 

57857, 62166 and  71554) (The Regents of the University of California, 2015); four AXEs, which 

comprise one characterized enzymes (AXEI) and three predicted enzymes (AXEII and gene ID: 

70021 and 54219) (Margolles-Clark et al., 1996a; Foreman et al., 2003; Herpoel-Gimbert et al., 

2008; The Regents of the University of California, 2015); a candidate cutinase (gene ID60489) 

(The Regents of the University of California, 2015); a putative XGH (CEL74A) (Grishutin et al., 

2004); two AgluAs, one characterized from the family GH67 (GLRI) (Margolles-Clark et al., 

1996b) and a candidate from the family GH115 (gene ID 79606) (Hakkinen et al., 2012); five AFs, 

that include one characterized AF (ABFI) (Margolles-Clark et al., 1996c) and four candidate AFs 

(ABFII,ABFIII and gene ID 3739 and 68064) (Foreman et al., 2003; Herpoel-Gimbert et al., 2008; 

The Regents of the University of California, 2015); nine AGLs, that consist of three characterized 

enzymes (AGLI, AGLII, AGLIII) (Zeilinger et al., 1993; Margolles-Clark et al., 1996d) and six 

candidate enzymes (gen ID: 27219, 27259, 59391, 75015, 55999 and 65986) (Metz et al., 2011; 

The Regents of the University of California, 2015); two LACs, which comprise one characterized 
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enzymes (bga1)  and a candidate enzyme (gene ID: 76852) (Seiboth et al., 2005; The Regents of 

the University of California, 2015); five βXs, that consist of one characterized enzyme (BXLI) 

(Margolles-Clark et al., 1996c) and four candidates (xyl3b and gen IDs: 73102, 3739 and 68064) 

(Ouyang et al., 2006; The Regents of the University of California, 2015); two AXEs, one 

characterized (AESI) (Li et al., 2008b) and one candidate (gene ID: 103825) (Hakkinen et al., 

2012); one characterized GE (CIPII) (Foreman et al., 2003; Li et al., 2007b; Pokkuluri et al., 2011); 

five candidate β-glucuronidases (gene ID: 76852, 71394, 106575, and 73005) (The Regents of the 

University of California, 2015); two α-glucuronidases, one characterized (GLRI) (Margolles-Clark 

et al., 1996b) and one candidate enzyme  (gen ID: 79606) (Hakkinen et al., 2012); and five 

candidate AFUs (gene ID: 69944, 72488, 5807, 111138 and 58802) (The Regents of the University 

of California, 2015). 

 

Engineered Enzymes 

 

Natural lignocellulolytic enzymes have limitations when used in industrial processes.  When 

compared to chemical catalysis, biocatalysis provides enormous advantages, including high 

efficiency, high degree of selectivity (regio-, chemo-, and enantio-), and ‘‘green’’ reaction 

conditions (see Hudlicky and Reed, 2009; see Reetz, 2009).  Thus, it is not strange that industrial 

catalysis becomes more and more dependent on enzymes.  However, most naturally occurring 

enzymes are not optimized for industrial applications.  Multiple traits need to be satisfied to create 

the ideal industrial enzyme catalyst (see Burton et al., 2002).  The search for superior enzymes has 

been the interest of many researchers over the past decade.  In order to overcome the limitations 

of naturally occurring enzymes, researchers have developed different methods to obtain 

biocatalysts with better traits.  Over the years these methods have changed.  For many years, the 

identification of better biocatalysts depended only on labor-intensive screening of microbial 

cultures to achieve the desired activities.  The basis for this process was that isolated cultures 

permit extended and reproducible growth, which in turn allow phenotypic and genotypic 

characterization (Ferrés et al., 2015).  But only a small number of microbes can successfully be 

cultivated in the laboratory.  Thus, this approach will miss the majority of the biodiversity found 

in nature.  Another strategy is the metagenome approach, which allows the sequence of entire 

genomes from environmental samples by the extraction of genomic DNA, fragmentation, and 

clonation to yield the corresponding metagenome libraries (see Handelsman et al., 1998; 

Srivastava et al., 2013).  This process allows faster access to catalytic activities from organisms 

that cannot be cultured, but screening larger libraries of DNA or microbes may not be the fastest 

or most efficient route to obtain a good catalyst.  One of the latest and most promising alternatives 

to address this problem is protein engineering, which uses molecular biological methods and/or 

computational techniques to adapt enzyme functions for applied ends.  There are two general 
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approaches for protein engineering: rational design and directed evolution.  Although there is a 

third approach for protein improvement based on statistical analysis, it is used less often. 

 

In the case of lignocellulosic biofuels, the high cost of enzymes is a major obstacle for economic 

and industrial production of cellulosic biofuels.  The high cost is attributable to the large amounts 

of cellulases that are required to breakdown cellulose into fermentable sugars (Merino and Cherry, 

2007; Klein-Marcuschamer et al., 2012).  A cost effective enzyme technology used to degrade 

polysaccharides into fermentable sugars is crucial for economically viable biofuels.  In order to 

address these issues, four primary strategies can be carried out:  (1) metagenome screening (see 

Handelsman et al., 1998; Srivastava et al., 2013); (2) genome mining in sequenced microbial 

genomes (see Ahmed, 2009; see Davidsen et al., 2010); (3) exploring the diversity of 

extremophiles (see Schiraldi and De Rosa, 2002; see Kumar et al., 2011b); and (4) developing 

superior enzymes, such as cellulases with improved characteristics, including higher catalytic 

efficiencies, increased stability at elevated temperatures, and higher tolerance to end product 

inhibition, using advanced biotechnology like enzyme engineering, which plays an important role 

in developing superior enzymes including cellulases.  Currently, protein engineering is a well-

established technology for modifying the properties of enzymes; general strategies, as well as 

numerous successful examples, have been published (Peters et al., 2003; seeKazlauskas and 

Bornscheuer, 2009; see Turner, 2009; see Bornscheuer et al., 2012; see Davids et al., 2013).  Two 

enzymatic engineering strategies have been proposed for lignocellulolytic enzymes: (1) improving 

properties of individual cellulases; (2) synergy engineering by optimizing the enzyme cocktails for 

maximized synergy or by the creation of a multi-enzyme cellulolytic complex called cellulosome 

(Zhou et al., 2009; see Mohanram et al., 2013; Ji et al., 2014; Hu et al., 2015).  So far, the most 

remarkable results in protein engineering of cellulases are improvements in thermostability and 

thus, diverse thermostable cellulases have been constructed (Heinzelman et al., 2009a; Heinzelman 

et al., 2009b; Heinzelman et al., 2010; Komor et al., 2012; Smith et al., 2012; Wu and Arnold, 

2013; Trudeau et al., 2014).  On the other hand, commercial development of hemicellulases for 

enzymatic hydrolysis of lignocellulosic material is not as advanced as cellulases, since current 

commercial enzymes mixtures have mostly been developed for the hydrolysis of biomass 

pretreated with acid, which removes the majority of  hemicellulose (Pedersen et al., 2011). 

 

 Engineered Individual Enzymes 

 

Engineering for single enzymes is achieved via rational design, which is primarily based on the 

enzymes structure knowledge and the catalytic mechanism (Johnsson et al., 1993; Pleiss, 2012); 

or directed evolution, in which the improved enzymes or ones with new properties, are selected or 
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screened after random mutagenesis, molecular recombination or focused mutagenesis  (see Packer 

and Liu, 2015) (see figure 20). 

 

Figure 20. Routes to advancement in cellulase enzyme technology. Figure adopted and modified 

from (Mohanram et al., 2013).   

 

 Rational Design 

 

Ratinal design is the oldest technique in protein engineering introduced after the invention of 

recombinant DNA methods and site-directed mutagenesis.  Rational design uses biochemical data, 

protein structures and molecular modeling data to propose mutations that would be introduced by 

site-specific mutagenesis.  This approach is dependent on enzyme structural information, function 

and mechanism.  The process of rational design involves: (1) choice of a suitable enzyme, (2) 

identification of the amino acid sites to be changed, typically based on a high resolution 

crystallographic structure, and (3) characterization of the mutants via sequencing and purification 

of the mutant enzymes following each round of mutagenesis (Johnsson et al., 1993; Pleiss, 2012). 

Assuming that structural information on the target enzyme is available, rational design may be the 

easiest and fastest approach to enzyme engineering.  Computational models (or in silico studies) 

are typically used to predict which amino acid(s) should be altered in the protein (see Tiwari et al., 

2012).  Then, targeted mutagenesis is used to change the corresponding gene.  Rational design 

requires the knowledge of the enzymatic structure of interest and/or its sequence in several related 

species.  As a result, crystallography and spectroscopic analysis has been a powerful tool for 

computer modeling.  Advances in modeling, specifically calculations of free energy perturbation 

and molecular dynamics, help predict mutations.  Techniques that help identify mutations include 
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algorithms (see Desjarlais and Clarke, 1998).  Thermostability improvement using rational design 

via molecular dynamic simulations is applied without reducing enzyme activity.  This occurs by 

taking into account protein-surface properties instead of protein-core characteristics, such as core 

packing and cavity filling (Joo et al., 2010; Joo et al., 2011).  Similarly, the integration of different 

structural prediction techniques can be applied in the rational design of enzymes.  This is also the 

case for molecular docking, fragment molecular orbital (FMO) calculation, and three-dimensional 

quantitative structure-activity relationship with comparative molecular field analysis (3D-QSAR 

CoMFA) modeling (Zhang et al., 2008).  Moreover, the creation of structural databases helps 

researchers understand the functional role of individual amino acids within the enzymatic 

structure.  Among the huge number of data analysis software, two new internet-based 

computational tools are particularly useful: (1) The HotSpot Wizard server and (2) the commercial 

3DM database.  The HotSpot Wizard server combines information from extensive sequence and 

structural database searches with functional data to create a mutability map for a target protein 

(Pavelka et al., 2009).  Likewise, the commercial 3DM database integrates protein sequence and 

structural data from GenBank and the PDB to create comprehensive alignments of protein super 

families (Kuipers et al., 2010).  A new strategy involves the use of nuclear magnetic resonance 

relaxation (NMR) dispersion experiments coupled with mutagenesis studies for enzyme catalysis.  

NMR methods provide a powerful tool to help characterize the effects of controlling long range 

networks of flexible residues that affect enzymatic function (see Doucet, 2011). Another new 

approach involves the combination of site direct mutagenesis with immobilization. This approach 

offers support to improve the activity, stability, and selectivity of the immobilization of 

biocatalysts (see Mateo et al., 2007; see Hernandez and Fernandez-Lafuente, 2011).  However, the 

application of pure rational design is still limited by some factors, such as the lack of understanding 

of structural properties and their contributions to function, or the limited knowledge of protein 

dynamics (Ruscio et al., 2009).  

 

Site-directed mutagenesis on cellulases was first reported using the T. reesei exo I gene (Chen et 

al., 1987).  The goal of this experiment was to provide information on the role of individual 

residues during catalysis.  Recently, thermostability of βGs from Trichoderma reesei and 

Penicillium piceum H16 have been improved by rational design (Lee et al., 2012; Zong et al., 

2015).  Also, Arnold and coworkers used a computational approach and site-directed mutagenesis 

to produce a thermostable fungal CBHI I (Cel7A) and achieved a 10°C increase in optimal active 

temperature (Komor et al., 2012).  Another study reported the shifting of the pH optimum of an 

EG (PvEGIII) from Penicillium verruculosum using a rational design approach (Tishkov et al., 

2013). Escovar-Kousan and his team reported an increase of 40% in the activity of the T. fusca 

EG/EX Cel9A on amorphous cellulose or soluble cellulose using the same method (Escovar-

Kousen et al., 2004). In addition, Rignall and coworkers changed significantly the mixtures of 

products released from phosphoric acid swollen cellulose by a single mutation in the active site 

cleft of the EG-I from Acidothermus cellulolyticus (Rignall et al., 2002).  On the other hand, to 
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date only a few cellulases modified by site directed mutagenesis have been reported to possess 

significantly higher activity on insoluble substrates.  One significant example used a modified EG 

Cel5A from Acidothermus cellulolyticus to report a 20% improvement in its activity against 

microcrystalline cellulose by decreasing product inhibition (Baker et al., 2005).  In some cases, 

mutant enzymes with higher activity do not increase the activity of a synergistic mixture containing 

several cellulases (Zhang et al., 2000).  Although the research on cellulase mechanisms started by 

1950, the mechanism by which cellulases catalyze the hydrolysis of crystalline cellulose is not 

entirely understood.  There is insufficient data regarding the mechanism by which a cellulase binds 

a segment of a cellulose chain from a microfibril into its active site.  Also, there is an incomplete 

understanding of the way in which certain free CBM stimulate cellulase hydrolysis (Moser et al., 

2008; Wang et al., 2008).  Finally, although the mechanism for cellulase synergism has been 

studied and documented (see Woodward, 1991; see Kostylev and Wilson, 2012), there is still much 

more to understand about this essential process: in particular, how mixtures of cellulases hydrolyze 

both crystalline and amorphous regions of bacterial cellulose, while most individual enzymes only 

seem to degrade amorphous regions (Chen et al., 2007).  Therefore, rational design is limited, since 

it requires a detailed understanding of structure–function relationships for cellulase crystalline 

cellulose activity, which is still lacking.  Other enzymes that have also been engineered by rational 

design are hemicellulases.  In this case, rational design has been used in order to shift the pH 

optimal (Pokhrel et al., 2013; Xu et al., 2013a; Xu et al., 2013b) or improve the thermostability 

(Fonseca-Maldonado et al., 2013; Satyanarayana, 2013) or the catalytic performance (Huang et 

al., 2014; Cheng et al., 2015).  On the other hand, although some studies can be found regarding 

the application of rational design on ligninolytic enzymes and pectinases in other to improve their 

properties, much less research has been published (Xiao et al., 2008; Fang et al., 2014).  Rational 

design has also been used to engineer methabolic pathways (Eriksen et al., 2014). 

 

 Directed Evolution 

 

Directed evolution is another choice for engineering individual enzymes.  It has become the most 

important tool for improving critical traits of biocatalysts, including the improvement of thermal 

(Koksharov and Ugarova, 2011; Steffler et al., 2013; Zhou et al., 2015), oxidative or activity 

stability (Stemmer, 1994a; Oh et al., 2002; Akbulut et al., 2013; Wang et al., 2015), enantio-

selectivity (Reetz et al., 1997; May et al., 2000; Kim et al., 2015b), pH range (Ness et al., 1999; 

Wang et al., 2005a; Melzer et al., 2015), substrate specificity (Glieder et al., 2002; Gupta and 

Farinas, 2010; Ng et al., 2015) and tolerance or stability towards organic solvents (Moore and 

Arnold, 1996; Reetz et al., 2010a; Yamada et al., 2015).  As rational design, directed evolution 

can also be applied to engineer metabolic pathways and even whole organisms (see Eriksen et al., 

2014; see Guenther et al., 2014).  Furthermore, directed evolution can be applied to the generation 

of individual novel enzyme functions (Raillard et al., 2001; Chen and Zhao, 2005). Applying this 
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approach to the genomes of whole organisms provides the potential to evolve whole-cell 

biocatalysts within a whole sequence process (Patnaik et al., 2002; Snoek et al., 2015). Directed 

evolution tends to be more successful than the rational approach (see Gerlt and Babbitt, 2009).  

With directed evolution, which requires only knowledge of the protein sequence, the amino acid 

sequence of an enzyme is iteratively altered until the enzyme functions in the desired manner.  The 

process involves iterative cycles of producing mutants and finding the mutant with the desired 

properties via screening or selection (see Arnold, 1998) (see figure 21).  

 

 

Figure 21. General steps of directed enzyme evolution. The gene encoding the protein of interest is 

mutated to generate a library of mutant genes. Expression of the mutant genes provides the library of 

mutant proteins. The proteins are screened or selected based on a desired property, and the variants with 

modified activity are sequenced or used for further rounds of mutagenesis and selection. Figure adopted 

from (Tao and Cornish, 2002). 

 

The idea of directed evolution for biomolecules in vitro and on a molecular level was first 

introduced by the pioneering work of Spiegleman et al. (Mills et al., 1967).  Regarding nucleic 

acids, Eigen and Kauffman (Kauffman, 1993) proposed a theory for molecular evolution.  Arnold’s 

group was among the first to apply the principles of molecular evolution for the creation of 

improved enzymatic biocatalysts.  They improved the activity of the protease subtilisin E in 

organic co-solvents (Chen and Arnold, 1993).  The greatest advantage of directed evolution 

compared to rational design is that it is independent of the knowledge of enzyme structure and the 

interactions between enzyme and substrate.  This allows scientists to engineer enzymes whose 

functions are not yet fully understood (see figure 22).  
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Figure 22. Summary of the different processes required by semirational design and directed evolution. 

Figure adopted from (Quin and Schmidt-Dannert, 2011). 

 

In general, mutations can be introduced throughout the gene via three strategies: (1) random 

mutagenesis, (2) random recombination or (3) focused mutagenesis (see Packer and Liu, 2015).  

A wide variety of methods have been developed to create a mutant library.  The most commonly 

employed techniques are: error-prone PCR (epPCR), which was first described by Goeddel and 

coworkers (Leung et al., 1989), and DNA shuffling , which was first recognized by Pim Stemmer  

(Stemmer, 1994a; Stemmer, 1994b).  The epPCR inserts random point mutations across genes due 

to the low fidelity the Taq polymerase under certain conditions, such as the increase of magnesium 

concentrations, supplementation with manganese, or the use of mutagenic dNTP analogues 

(Zaccolo et al., 1996).  The DNA shuffling method is based on mixing and subsequent joining of 

different, but related small DNA fragments, forming a complete new gene.  It is typically achieved 

by creating hybrid gene libraries via the homologous recombination of related parent genes 

(Crameri et al., 1998).  Non-homologous recombination can also be employed (Sieber et al., 2001). 

New directed evolutionary methods have been used, including Look-Through Mutagenesis 

(LTM), which was developed as a method for rapid screening of amino acid mutations in protein 

sequence selected positions that introduce favorable properties, and Combinatorial Beneficial 

Mutagenesis (CBM), which is used to identify the best ensemble of individual mutations 

(Hokanson et al., 2011).  The success of a directed evolutionary experiment depends highly on the 

method that is used to find the best mutant enzyme among a large number of mutants in the library 
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(You and Arnold, 1996).  Identifying interesting variants within large combinatorial libraries 

(generated by most directed evolution experiments) can be accomplished either by assaying all the 

members individually (screening) or applying conditions that allow only variants of interest to 

appear (selection) (see Packer and Liu, 2015).  In general, selective methods are preferred over 

screening methods, because of the higher performance (see Olsen et al., 2000; Griffiths et al., 2004; 

see Otten and Quax, 2005; Seelig, 2011).  The advantage of screening is that the difference 

between substrate and product of an enzymatic reaction can be determined directly or indirectly in 

almost every case.  The disadvantage of screening is that all individual mutants have to be tested 

in order for the desired enzymatic reaction to occur.  This even includes mutants that might not be 

active, accurately folded, or when there is a possibility of a high percentage of mutants.  

Furthermore, the development of a high-throughput screening method is not available for all 

enzyme stabilities and not all screening methods are easy to implement at the required 

scale.  Screening can be performed via facilitated screening, which distinguishes mutants on the 

basis of distinct phenotypes, including chromospheres released and halos formed.  If facilitated 

screening is not available, then random screening is utilized, which randomly chooses mutants (see 

Taylor et al., 2001).  The last screening method is often implemented using microtiter plates along 

with fluorescent substances (Yang et al., 2010; Despotovic et al., 2012; Yu et al., 2014; Zeng et 

al., 2015). It can also be achieved utilizing chromatography, mass spectrometry, capillary 

electrophoresis, or IR-thermography (see Wahler and Reymond, 2001).  Selection mimics the 

survival of the fittest strategy.  The primary advantage of selection over screening is that many 

more library members can be analyzed simultaneously, because uninteresting variants are not 

observed.  Consequently, library surveying is much faster and can be carried out with higher 

output.  In the best screening protocols available, the maximum number of library members that 

can be assayed is approximately 108.  In contrast, up to 1013 clones can be assessed with selection 

methods (see Packer and Liu, 2015).  Selection is based on the advantage that mutants with the 

desired enzyme function provide to the host cell over bacteria bearing wild type enzymes. 

Although, many enzymatic activities are not essential to the bacterium, by coupling the activity of 

interest to an essential feature of the bacterium, this can be changed.  Selection approach is often 

carried out based on the principles of resistance to cytotoxic agents (e.g., antibiotics) (Stemmer, 

1994a; Stemmer, 1994b; Siau et al., 2015) or complementation with an auxotroph (Smiley and 

Benkovic, 1994; Jürgens et al., 2000; Griffiths et al., 2004; De Groeve et al., 2009).  Despite the 

fact that directed evolution is a powerful method to overcome some of the limitations of 

biocatalysts, it possesses some limitations.  Evolutionary analysis of enzymatic families suggest 

that drastic changes in enzyme function might require significant changes in polypeptide 

backbones (Matsumura, 2000).  However, with in vitro evolution, this cannot be achieved since 

enzymes are improved only by point mutations, which have a significant bias for transitions over 

transversions. This limits access to a broader spectrum of substitutions.  Another limitation is the 

considerable time required to implement, because the number of all possible protein variants 

(including the inactive ones) in a directed evolution experiment is too large.  Thus, more recently, 

the emphasis has been on producing smaller libraries (although also including diversity) and higher 
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quality libraries. In order to reduce the large number of mutants in the library, one approach is to 

employ a more efficient screening.  Modifications in substrate specificity may be monitored with 

high-output methods, such as fluorescence-activated cell sorting (Bernath et al., 2004; Becker et 

al., 2008; Fernandez-Alvaro et al., 2011), which can screen tens of millions of variants in a short 

amount of time.  Directed evolution is also sometimes employed in conjunction with rational 

design to produce ‘smarter libraries’ (semi-rational approach) (Ba et al., 2013; Teze et al., 2015; 

Zhang et al., 2015).  The prior knowledge of either the sequence or the three-dimensional crystal 

structure of the enzyme leads to the design of a more specific set of mutations, which allows 

creation of a much smaller library with a higher proportion of mutants displaying beneficial traits.  

This approach takes advantage of rational and random protein design to produce smaller smarter 

libraries and make the directed evolution faster and more efficient (Reetz et al., 2010b).  Another 

strategy to reduce the number of mutants in libraries involves limiting the location of changes in 

the active site.  The type of changes to those known from sequence comparisons often occur at 

these sites and mutations closer to these regions seem to be more beneficial (Morley and 

Kazlauskas, 2005; Jochens and Bornscheuer, 2010; Liebgott et al., 2010).  In addition, an 

important advance that allows multiple mutations is the recognition that mutations often 

destabilize proteins (Guo et al., 2004; Drummond et al., 2005; see Tokuriki and Tawfik, 2009; 

Worth et al., 2011).  Starting with a very stable protein allows it to tolerate a greater number and 

range of changes (Bloom et al., 2007; Gupta and Tawfik, 2008).  Two more approaches involve 

the assumption that beneficial mutations are mostly additive (Wells, 1990) and that synergistic 

effects are rare with the exception of nearby changes.  Subsequently, the number of useful changes 

made during the improvement of a protein has increased considerably in the past decade and the 

size of the libraries has decreased.  The number of mutations has increased from 1–5 mutations in 

the early 2000s, to 30–40 amino-acid substitutions by 2010 (Fox et al., 2007; Savile et al., 2010). 

 

Some properties of several enzymes involved in lignocellulosic degradation have been changed 

using directed evolutionary techniques.  They are mostly EGLs (Kim et al., 2000; Murashima et 

al., 2002b; Catcheside et al., 2003; Wang et al., 2005a; Nakazawa et al., 2009; Liu et al., 2010; 

Liang et al., 2011; Vu and Kim, 2012; Liu et al., 2013a; Lehmann et al., 2014) and βGs (Arrizubieta 

and Polaina, 2000; González-Blasco et al., 2000; Lebbink et al., 2000; McCarthy et al., 2004; 

Hardiman et al., 2010; Pei et al., 2011; Drevland et al., 2014) whose activities were principally 

assayed in a high throughput manner with the help of artificial substrates, either soluble or 

chromogenic.  Only a few examples of directed evolution on EXs existed due to a lack of reliable 

screening methods (Wang et al., 2012f; Wu and Arnold, 2013).  Directed evolution has only 

achieved moderate success on improving individual cellulases.  This is primarily due to the 

difficulties in developing high throughput screening methods on activities towards the insoluble 

cellulosic substrates (see Zhang et al., 2006b).  Most of the cellulases that have been obtained by 

directed evolution were screened on artificial substrates and the enzymes have not shown 

considerable improvement in the hydrolysis of natural substrates (Lin et al., 2009; Nakazawa et 
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al., 2009; Hardiman et al., 2010).  As a result, high throughput screening on natural substrates is 

needed, although it is difficult to carry out (see Zhang et al., 2006b; Liu et al., 2010).  Recently, 

researchers tried to address these challenges during the development of various automated 

microplate platforms, which can evaluate the enzymatic hydrolysis of lignocellulose in a high 

throughput manner (Chundawat et al., 2008; Navarro et al., 2010; Song et al., 2010; Bharadwaj et 

al., 2011).  These automated high throughput systems would greatly facilitate future protein 

engineering on biomass degrading enzymes or enzyme cocktails.  Directed evolution has also been 

used to change properties of hemicellulases, such as pH optimum (Ruller et al., 2014), 

thermostability, (Singh et al., 2014; Zheng et al., 2014) or activity (Wang et al., 2013; Du et al., 

2014). In addition, directed evolution has been used for the improvement of ligninolytic enzymes 

and pectinases however, not as much work has been published about it (Solbak et al., 2005; 

Garcia‑Ruiz et al., 2012; Liu et al., 2013b; Viña-Gonzalez et al., 2015; Zhou et al., 2015). 

 

CONCLUSION 

 

The aim of this paper has been to review both seminal and current research and technologies 

regarding the use and development of enzyme systems for deconstructing lignocellulosic materials 

into simpler sugars, which can then be fermented to generate bioethanol products.  Descriptions of 

natural enzymes and explanations of the modes and action of engineered systems illustrate the 

complexity and challenges in efficiently reducing cellulose such that bioethanol may be produced 

in cost-competitive manner.   

 

The composition and structural organization of cellulolytic enzyme systems from two classes of 

microorganisms indicate that lignocellulose degradation is efficiently achieved in nature.  

However, attempts to artificially mimic natural systems in whole or in part have proven difficult. 

Indeed, the literature demonstrates large variations in efficiency and particularities in the modes 

of action of different plausible enzyme-based solutions to lignocellulose deconstruction. 

Nonetheless, advances in the selection of synergistic enzyme complements, the engineering of 

highly catalytic cellulolytic enzymes, and the development of enzyme sequestration platforms 

provide promising technological avenues to overcome current challenges.  

 

Future breakthroughs in engineered enzyme systems may soon boost process efficiency so that 

cost-competitive commercial-scale bioethanol may be produced.  Such breakthroughs may 

include: engineering enzymes based on the improvement of select structural-functional features; 

synergy engineering for enzyme cocktails; and/or the development of enzyme sequestration 
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platforms that increase enzymatic efficiency.   Enzymes can be engineered by rational design, 

based on knowledge of the enzyme’s structure and catalytic mechanism or by directed evolution. 

Given that the structure and catalytic mechanisms for many enzymes are not available, only a few 

studies using rational design have been successful in making significant improvements in overall 

sugar reduction efficiency.  Directed evolution, which possesses the advantage of only requiring 

the knowledge of the protein sequence, is a powerful emerging technology that may result in novel 

solutions to the lignocellulose deconstruction problem.  However, two limitations must be 

addressed in directed evolution.  First, only point mutations can currently be performed by this 

method, which limits the magnitude of change that can be induced with respect to enzyme function.  

If significant change in an enzyme’s sequence is required before a high performing enzyme 

evolves, then the single point mutation approach may be prohibitively time consuming.  

Furthermore, due to the large number of possible protein sequence variants, a method to narrow 

down libraries will be required.  Perhaps, a hybrid approach that combines both rational design 

and directed evolution or a “semi-rational” approach will ultimately prove to be the best method 

for generating high performance cellulolytic enzymes.  This can lead to the development of a more 

specific set of variants.  Indeed, recent work on EGs and βGs support this possibility.  However, 

advanced high throughput screening methods for assessing enzymatic activity will need to be 

developed before semi-rational design is touted as the best option for development of cellulolytic 

enzymes.   

 

In conclusion, the development of processes for enhancing the production of ethanol from natural 

feedstocks has substantially progressed over the past few decades; however, further development 

of enzyme systems and industrial scale testing of technologies is required before an environment-

friendly hazardous materials-free solution is achieved. 
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