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ABSTRACT 
 
 
This case study documents the effectiveness of stand-scale forest restoration activities 

undertaken in the “Penny Stew” project on federal land in the central Siskiyou Mountains 

of southwest Oregon. Its dual purpose is to 1) define reference conditions and build a 

site-specific case for restoration through multi-scale analysis of historical ecology 

(Chapter III) and 2) demonstrate streamlined monitoring protocols that practitioners can 

use to adapt restoration practices over time (Chapter IV). Discussion of methodological 

efficacy in the monitoring report offers implications for FEAT-FIREMON Integration 

(FFI), a fire effects monitoring and data analysis software package currently under 

development for use by wildland fire managers. Finally, this analysis synthesizes findings 

from reference analysis and monitoring results to assess the degree to which the Penny 

Stew project meets restoration objectives, and it recommends further action including 

application of management-ignited prescribed fire and sustained monitoring in light of 

that synthesis (Chapter V). 
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I.  INTRODUCTION 

 

Ecosystem management in the western United States concentrates extensively on 

restoration of fire-adapted forests. Federal Wildland Fire Policy (USDA/USDI 2001) 

recognizes that fire suppression and logging in western forests have caused widespread 

ecological deterioration and corresponding losses of biological diversity (“biodiversity”). 

In many places, biodiversity conservation may depend on restoration of wildland 

vegetation structure and active function of natural fire disturbance processes (Hardy and 

Arno 1996). As a result, lands that exhibit significant departure from historical fire 

regimes now receive priority for active management including mechanical fuel reduction 

and wildland fire use (USGAO 2005). 

Substantial research demonstrates a need for active restoration in dry ponderosa 

pine (Pinus ponderosa) forests dominated by frequent, low-severity fire regimes in the 

American Southwest and Inland West (Allen et al. 2002, Hann et al. 1997, Moore et al. 

1999, Noss et al. 2006). Ecosystem managers commonly cite this research to justify 

intervention in other fire-adapted forest types (e.g., USDA 2005, USDI 2005). Fire 

regimes, however, vary over time and space (Agee 1993). For example, the seasonal 

timing of fire disturbance strongly influences plant and ecosystem responses to burning, 

and fire seasonality varies along latitudinal gradients (Brown 2000a). Mixed conifer 

forests in the Sierra Nevada of California mainly experience fire in the summer through 

autumn when plant growth is dormant (Caprio and Swetnam 1995), whereas similarly 

composed forests in the Sierra San Pedro Martir of Baja, Mexico, often burn in the spring 

and early summer growth seasons (Stephens et al. 2003). This latitudinal gradient of fire 
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seasonality is related to geographic variation in the onset and length of drought periods, 

which can influence the duration of time when fuels are dry enough to burn each year 

(Taylor and Skinner 2003). As a result, fire-induced vegetation responses and succession 

patterns are regionally distinct (Odion et al. 2004).  

Mixed evergreen forests of the Klamath-Siskiyou (KS) region (Figure I-1) 

historically depend on wildland fire to shape their structure, composition, nutrient flows, 

hydrology, habitat and other ecosystem qualities (Atzet and Martin 1991). Indigenous 

organisms evolved with fire to varying degrees, and the life history of many endemic 

plants requires fire to persist (Martin 1997). Fine-scale variations in geology, climate, 

topography and vegetation influence regional fire regimes and landscape pattern (Taylor 

and Skinner 2003). Indeed, the unusual environmental variability and “pyrodiversity” of 

the KS region supports temperate biodiversity of globally outstanding conservation 

importance (DellaSala et al. 1999, Martin and Sapsis 1992).  

The highly complex landscape fire regime of KS mixed evergreen forests 

precludes generalization about fire history and effects (Agee 1993). Ecosystem managers 

routinely use coarse-scale fire regime condition classification of vegetation, fuel and 

disturbance to index landscape departure from historical fire regimes and identify lands 

at-risk of uncharacteristically severe fires that may impair ecosystem function (Hann and 

Bunnell 2001). Such assessments characterize most KS forests as “condition class 3,” or 

severely altered from historical conditions (Schmidt et al. 2002). However, fire regime 

condition class poorly predicts actual wildland fire effects (Odion and Hanson 2006), and 

researchers demand convincing evidence of ecosystem departure from adapted 

disturbance regimes before ecologically unprecedented restoration interventions are 

2



 
 

Figure I-1. Klamath-Siskiyou region of northwest California and southwest Oregon.  
Source: Strittholt et al. (1999). 

 

3



undertaken (Gutsell et al. 2001).    

Given that ecosystem management based on natural disturbance regimes “will 

always be somewhat uncertain” (Landres et al. 1999), conservation biologists urge 

precaution in decision-making about ecological restoration when systems thought to be 

degraded are not well understood (Noss and Cooperrider 1994). The precautionary 

principle counsels against actions than cannot be reversed later if the decision is wrong 

(Meffe and Carroll 1997). In this view, restoration should target areas most likely to 

benefit from active intervention (Brown et al. 2004). Need for restoration depends on 

ecological scale, disturbance history, vegetation characteristics and current conditions 

(Lindenmayer and Franklin 2002).  

Large areas of the KS region remain little disturbed by human management and 

closely resemble conditions in which indigenous life evolved (Staus et al. 2003). Places 

retaining high degrees of ecological integrity generally host few if any roads (Strittholt et 

al. 1999). Those places function as reservoirs of biodiversity where passive restoration 

(i.e., halting or foregoing activities that may cause ecological damage) and active use of 

wildland fire for resource benefits may offer the most ecologically sensible management 

approaches over time (DellaSala and Frost 2001). However, legitimate needs for more 

active restoration of KS forests often exist in areas with more substantial road densities, 

particularly at lower elevations where intensive human use history overlaps drier forest 

types that are most likely to have experienced functional alteration due to cumulative 

effects of logging and fire exclusion (DellaSala et al. 2004).   

Ecologists stress the importance of defining locally specific reference conditions 

to justify restoration goals and outcomes (White and Walker 1997). Descriptions of 
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natural variation in ecosystems derived from historical ecology and their application as 

reference conditions to land management are matters of controversy (Swetnam et al. 

1999). However, it is generally accepted that understanding historical ecosystem 

dynamics, structures and functions can provide useful information to guide restoration 

efforts (Society for Ecological Restoration International Science & Policy Working 

Group [SER] 2004).  

The inherent complexity and dynamism of ecological systems render impossible 

accurate prediction of all consequences of restoration activities. Therefore, such projects 

initially should be confined to small spatial scales and accompanied by monitoring and 

evaluation sufficient to inform adaptive management (DellaSala et al. 2004). Monitoring 

facilitates impact assessment and tactical adaptation if treatments produce unintended or 

inadequate results (Lee 1993). Monitoring also empowers restoration practitioners to 

demonstrate contract compliance, educate stakeholders and elevate restoration discourse 

above “faith-based forestry” (Bey 2005). Funding, complexity, training and commitment 

can pose formidable barriers to reliable effectiveness monitoring of ecological restoration 

(Elzinga et al. 1998). Consequently, there exists a need for streamlined monitoring 

protocols that simplify and improve efficiency of the task without compromising 

defensibility.  

In 2004, the Medford District of the U.S. Bureau of Land Management (BLM) 

contracted the non-profit Lomakatsi Restoration Project (LRP) to undertake mechanical 

thinning and burning treatments to alter forest structure and composition as well as 

reduce hazardous fuel and facilitate stand-scale ecological restoration in the “Penny 

Stew” project. Penny Stew is a small and non-controversial element of a broader forest 
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management project (USDI 1999) that drew a successful legal challenge from 

conservationists concerned about the removal of old, large and fire-resilient trees in a 

timber sale. It offers an important opportunity for ecosystem managers and practitioners 

to demonstrate restoration forestry practices, and in doing so, promote social consensus 

on active restoration of fire-adapted forests on federal public land. As part of this 

demonstration effort, the LRP seeks to define reference conditions for restoration and 

monitor the effectiveness of its treatments.  

This case study documents the effectiveness of stand-scale forest restoration 

activities undertaken in the Penny Stew project. Its dual purposes are to (1) define 

reference conditions and build a site-specific case for restoration through multi-scale 

analysis of historical ecology (Chapter III), and (2) demonstrate streamlined monitoring 

protocols that practitioners can use to adapt restoration practices over time (Chapter IV). 

It synthesizes findings from reference analysis and monitoring results to determine the 

degree to which the Penny Stew project meets restoration objectives, and it recommends 

further action and monitoring in light of that synthesis (Chapter V).  
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II. STUDY AREA 

 

The study area is located in the central Siskiyou Mountains of southwest Oregon. 

The Siskiyou Mountains are part of the broader Klamath Mountains Province (Fenneman 

1931), also called the Klamath-Siskiyou (KS) region (DellaSala et al. 1999), in the 

northern portion of the California botanical province (Jepson 1966) (Figures I-1, II-1). 

The KS region holds unusual ecological interest with its old and geologically complex 

mountains and diverse floristic patterns in relation to steep climatic, edaphic and 

topographical gradients (Coleman and Kruckeberg 1999). Its central location is 

transitional to the Great Basin, Oregon and California Coast Ranges, Cascades Range, 

Sierra Nevada and California Central Valley, sharing vegetative influences from each 

(Whittaker 1961). Partly as a result, it features the richest assemblage of vascular plant 

species of any geologic province in western North America (Wagner 1997). Bedrock 

geology and soil chemistry primarily influence the spatial distribution of vegetation 

patches at a landscape scale, while soil moisture and terrain exert significant secondary 

influences (Whittaker 1960). Forest and woodland vegetation occupy mountainous 

topography associated with nutrient-rich rock forms and span abrupt gradients of 

elevation, slope, aspect and moisture (DellaSala et al. 1999).   

The KS region consists of four belts of rock that formerly were oceanic crust and 

island arcs. Around 150 to 350 million years before present (BP) the oceanic material 

scraped off and welded to the western edge of the North American continent (Coleman 

and Kruckeberg 1999). Two of those rock belts are present in the Applegate River 

watershed (Figure II-1). About 150 million years BP, the older of the two thrust-faulted  
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Figure II-1. Location of the Applegate River watershed and the Klamath Mountains Province relative 
to other physiographic provinces in the Pacific Northwest. Source: USDA/USDI (1995). 
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over the younger one for a distance of approximately 100 kilometers (km). Later, an 

uplift of up to 7,000 vertical meters (m) centered on Condrey Mountain occurred (Prchal 

n.d.), which accounts for the steepness of local mountain terrain. Glaciation affected parts 

of the high Siskiyou Mountains above 1,200 m from about three million years BP until 

about 11,000 years ago, but there is little evidence of glacial activity beyond that. Most of 

the KS region therefore functioned for millennia as a land bridge for animal and plant 

migrations between the Great Plains and the Pacific Coast (Whittaker 1961).  

 The study site is located on the slopes of Pennington Mountain, a low-elevation 

foothill of the central Siskiyous that divides Williams Creek from the Applegate River 

canyon (Figure II-2). Pennington Mountain lay in a partial rain shadow created by 

Grayback Mountain on the Siskiyou Crest. Seasonal moisture patterns currently feature 

cool, wet winters and hot, dry summers. Average annual precipitation is approximately 

90 centimeters (cm) with the driest time occurring in July, which annually averages <1 

cm of rainfall. Snow occasionally graces the area, but sites lower than 670 m above sea 

level usually do not receive significant snowfall (Roether et al. 2000, USDI 1996).   

 The specific location of the study area is in section 3 of Township 38 South, 

Range 5 West of the Willamette Meridian. It is divided into two distinct land units. Unit 1 

to the south of Pennington Mountain comprises approximately 16.2 hectares (ha) bound 

to the north by Water Gap Creek and to the south by Pennington Creek, both of which 

flow into Williams Creek, an Applegate River tributary (Figure II-3). Its elevation spans 

from 457 to 515 m above sea level. Abegg loam and Manita loam soils underlay the unit 

(USDA 1983). Each soil type is deep, well-drained and generally occurs on gentle (2-7%) 

slopes on high stream terraces and foothills adjacent to river valleys. 

9



 

 

 

Unit 1 hosts xeric valley woodland and forest vegetation typical of low elevation sites in 

the western Applegate River watershed (Atzet et al. 1996, Hickman 1995).  

 Unit 2 encompasses ~25.5 ha draining unnamed tributaries to the Applegate River 

on the north face of Pennington Mountain (Figure II-3). Its elevation ranges from 472 to 

610 m above sea level. Manita loam soil characteristic of steep (35-50%) foothill slopes 

underlays its southwest corner, though most of Unit 2 features a Cornutt-Dubakella clay 

soil complex on rolling (7-20%) slopes and alluvial fans. The latter derives from mixed 

Figure II-2. Study area location in the Applegate River watershed of the central Siskiyou Mountains 
in southwest Oregon. Source: USDA/USDI (1994a). 

  STUDY AREA 
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parent materials including ultramafic rock with high magnesium and low calcium 

contents. Cornutt soil is less influenced by ultramafics than Dubakella, and root depths in 

Cornutt (100-150 cm) exceed those in Dubakella (50-100 cm) (USDA 1983). The former 

hosts relatively productive mixed evergreen forest dominated by mature Douglas-fir 

(Pseudotsuga menzieseii var. menziesii) and the latter supports a patch of California black 

oak (Quercus kelloggii) woodland near the unit center.   
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III. REFERENCE ANALYSIS 

 

Introduction 

 Reference condition analysis facilitates goal setting in ecological restoration 

(Swetnam et al. 1999). Practitioners need to define reference conditions because they 

help to (1) determine what factors cause ecological degradation, (2) identify what needs 

to be done to restore an ecosystem, and (3) inform criteria that measure success of 

restoration treatments (SER 2004). Egan and Howell (2001) suggest historical ecology as 

a foundation for reference description recognizing that no single technique is adequate 

due to shortcomings inherent to each. This is self-evident considering the scale 

dependence of observed variations in ecosystem pattern and function (White and Walker 

1997). For example, paleoecological research on climate interactions with flora and 

disturbance offers temporal depth but operates at very coarse scales. Similarly, tree ring 

studies can demonstrate point-scale fire effects on vegetation over shorter timeframes but 

often lack modern calibration and can mislead investigators about historical fire regimes 

(Baker and Ehle 2003).  

 Understanding the spatial and temporal contexts in which ecosystems function is 

critical to framing a coherent restoration strategy (Landres et al. 1999). For this reason, 

Noss (1985) suggests using a multi-scale approach to defining reference conditions. 

Following that suggestion, Morgan and others (1994:90) advocate use of “historic range 

of variability” (HRV) to describe broad-scale and long-term ecological dynamics:  

 [HRV] can serve as a useful tool for understanding the causes and 
consequences of change in ecosystem characteristics over time. It provides a 
context for interpreting natural processes, especially disturbance, and it allows 
variability in patterns and processes to be understood in terms of a dynamic 
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system. Study of past ecosystem behavior can provide the framework for 
understanding the structure and behavior of contemporary ecosystems, and is 
the basis for predicting future conditions. 

 
HRV is particularly relevant where negative effects on ecosystem function and 

biodiversity accompany observable changes in ecological conditions over time. For 

example, fire exclusion and logging in some ponderosa pine forests of the Inland West 

may have altered ecological function such that existing systems are vulnerable to 

catastrophic loss (Hann et al. 1997). However, this idea is controversial because historical 

fire regimes are poorly understood, particularly where fire disturbance patterns vary in 

extent, timing, intensity and biological effects (Baker et al. 2006, Veblen 2003). Obvious 

departures from a clearly defined HRV may justify active restoration (Arno and Fiedler 

2005), but in some cases, passive restoration including cessation of activities that degrade 

ecosystems (e.g., fire exclusion) may be sufficient (DellaSala et al. 2004). 

Ecosystem managers in the KS region commonly use forest density, structure and 

composition that existed pre-1900 as reference conditions for restoration of fire-adapted 

forests (e.g., USDA 2003, USDI 2005). However, reliance upon this temporally limited 

and structurally focused set of reference conditions overlooks shifts in climate and fire 

regimes that occurred in the 20th century (Running 2006). Indeed, climate change in the 

Pacific Northwest may preclude forest ecosystems from sustaining conditions that existed 

concurrent with European settlement (Whitlock et al. 2003). Therefore, any discrete 

historical condition is not as useful to restoration as “a range of forest conditions that 

approximates those historically adapted to the fire regime,” not merely because they are 

historical, but because they are self-perpetuating and resilient to disturbance (Arno and 

Fiedler 2005:38-39). Understanding how forests respond to climatic changes over long 
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timescales may offer clues about their resiliency and adaptability (Millar and Woolfenden 

1999).   

 Additionally, in many areas, human activities exerted significant influences on 

historical ecosystems. People lived in southwest Oregon at least 7,000 years before 

European contact and probably much longer (Winthrop 1993). Another way to approach 

description of reference conditions in the study area is to consider how human activities 

may have affected ecosystem structure and function, and how those activities might have 

responded to climate dynamics. Williams (2000) argues that ecological crisis in western 

forests is rooted in the cessation of indigenous fire use practices. Accounts of aboriginal 

burning are found in old notes, journals and the oral tradition. Such qualitative and 

anecdotal sources are not readily accepted by scientists whose training traditionally is 

limited to interpretation of quantitative data (Kimmerer and Lake 2001). Nevertheless, 

Anderson (1997) argues for better rapprochement between the social, historical and 

biological sciences in learning about wild plant production and other ecological functions 

that undeniably were central to human livelihoods in the past.   

  This chapter synthesizes a multi-disciplinary investigation of historical 

vegetation surveys, fire histories, paleoecological studies of climate, anthropological and 

ethnographic data, and traditional ecological knowledge to formulate a qualitative 

description of reference conditions for the study area. It strives to account for spatial and 

temporal variations that have influenced forest ecosystem structure and function while 

offering a practical outline for stand-scale restoration activities. The cumulative weight of 

information considered permits cautious inference of reference conditions based on 

known plant characteristics, disturbance patterns, and human cultural practices.   
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Method 

Documentary research 

 We consulted watershed-scale assessments of vegetation and landscape condition 

to determine the study area’s ecological context, and we attempted to locate nearby 

reference sites featuring high ecological integrity and lack of management effects. We 

also reviewed General Land Office (GLO) maps and survey data to ascertain settlement 

era conditions in and around study site. We then examined regional fire ecology studies 

and ethnographic research to ascertain disturbance ecology and human use patterns. 

Finally, we considered paleoecological research on regional climate to inform our 

characterization of ecological variation and shifting human uses of natural resources over 

time.  

 
Site investigation 

 We sampled forest structure and vegetative composition in six randomly located 

plots located inside the study area using the protocols described in Chapter IV. We 

recorded the density and relative cover of trees, shrubs and herbs, and entered this data 

into customized database software (JFiremon). We selected the most abundant plant 

species and researched their habitat preferences and disturbance adaptations in the Fire 

Effects Information System (http://www.fs.fed.us/database/feis/). We also consulted 

Atzet and others (1996) to classify plant associations based on site-specific vegetation 

cover and frequency data, and in turn used this information to verify the applicability of 

disturbance ecology research to the study area. 

 
 
 

16



Results and discussion 

Plant composition 

 The study area straddles the Interior Valley Zone and Mixed Conifer Zone of the 

Applegate River watershed described by Hickman (1995) (Figure III-1). The former 

includes low-elevation river valleys as well as portions of surrounding foothills. Several 

distinct vegetation communities occur in the Interior Valley Zone, including grasslands, 

chaparral and oak-conifer woodlands (Hickman 1995). Common plants in this zone 

historically were important to indigenous people, furnishing dietary staples such as 

acorns and camas, a variety of seeds and abundant forage for game (Winthrop 1993). In 

contrast, the Mixed Conifer Zone is transitional between the dry oak-conifer woodland 

communities of lower elevations and moist coniferous forest zones that occur at higher 

elevations (Figure III-1). Mixed conifer forest commonly occurs on northerly aspects of 

foothills above the Applegate River (Roether et al. 2000, USDI 2000).   

Table III-1 displays common native plants in the study area. The southern half of 

the study area (Unit 1) hosts an oak-conifer woodland characteristic of hot, dry foothill 

sites in the Interior Valley Zone. Plot data indicate that vascular species richness is 25 

species per plot, and shrub and herb cover is very low (<5%). We observed the existence 

of flora representative of the Douglas-fir/California black oak/poison oak (Pseudotsuga 

menziesii/Quercus kelloggii/Toxicodendron diversiloba) plant association described by 

Atzet and others (1996). This is the warmest and driest of all plant communities in the 

Douglas-fir series of southwest Oregon. The overstory canopy is dominated by sugar pine 

(Pinus lambertiana), ponderosa pine (P. ponderosa) and Douglas-fir. Black oak and 

Pacific madrone (Arbutus menziesii) occupy the understory along with Douglas-fir.  
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Unit 1

Figure III-1. Vegetation zones of the Williams Creek watershed. Source: Hickman (1995). 
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Table III-1.  Common native plants in the study area

Species Form Common name  Dry oak-conifer   Mixed conifer

Abies concolor t white fir p p
Acer macrophyllum t big-leaf maple - p
Arbutus menziesii t Pacific madrone M m
Arctostaphylos viscida s whiteleaf manzanita p p
Alnus rubra t red alder - p
Amalancier alnifolia s western serviceberry - p
Berberis piperiana s Piper's Oregon grape p p
Brodiaea elegans f harvest brodiaea p p
Bromus carinatus g California brome p p
Calocedrus decurrens t incense cedar p p
Calochortus tolmiei f pussy ears p p
Calypso bulbosa f fairy slipper - p
Ceanothus integerrimus s deer brush p p
Claytonia lanceolata f western spring beauty p p
Cornus nuttallii t mountain dogwood - p
Dodecatheon hendersonii f shooting star p p
Elymus glaucus g blue wildrye p -
Erythronium hendersonii f fawn lilly p p
Festuca californica g California fescue p m
Goodyera oblongifolia f rattlesnake plantain p p
Hieracium albiflorum f white-leaved hawkweed p p
Holodiscus discolor s creambrush oceanspray p m
Iris tenax f slender-tubed iris p p
Lonicera hispidula s hairy honeysuckle m m
Madia madioides f woodland tarweed p p
Melica californica g California melic p p
Nasella pulchra g purple needlegrass - p
Osmorhiza chilensis f sweet cicily p p
Quercus chrysolepis t canyon live oak p m
Quercus kelloggii t California black oak M m
Pedicularis densiflora f lousewort p -
Perideridia howellii f yampah p p
Pinus ponderosa t ponderosa pine M m
Pinus lambertiana t sugar pine M m
Pseudotsuga menziesii var. menziesii t coastal Douglas fir m M
Pyrola picta f white-veined wintergreen p p
Rosa gymnocarpa s wood rose m p
Rubus ursinus s California blackberry p p
Sanicula crassicaulis f sanicula p p
Symphoricarpus albus s creeping snowberry p m
Taxus brevifolia t Pacific yew - p
Toxicodendron diversiloba s poison oak M M
Tridentalis latifolia f starflower p p
Vicia californica f vetch p p

f, forb. g, grass. s, shrub. t, tree.
M, major. m, minor. p, present.
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Poison oak, hairy honeysuckle (Lonicera hispidula), deer brush (Ceanothus integerrimus) 

and whiteleaf manzanita (Arctostaphylos viscida) are common shrubs. The presence of 

manzanita in Unit 1 is noteworthy because is representative of the northernmost 

extension of the California chaparral formation (Jepson 1966). In this portion of its range, 

chaparral frequently associates with oak, Douglas-fir and pine, and its presence indicates 

xeric climatic conditions. Moreover, chaparral does not exist in the absence of an active 

fire regime (Detling 1961).  

The north half of the study area in Unit 2 supports mixed conifer and hardwood 

forest expressive of the Mixed Conifer Zone (Hickman 1995). Plot data suggest that 

vascular species richness is 32 species per plot, and shrub and herb cover is somewhat  

greater (5-10%) than in Unit 1. Vegetation in Unit 2 is representative of a Douglas-fir/ 

ponderosa pine/poison oak association described by Atzet and others (1996). Douglas-fir 

dominates the overstory, and ponderosa pine and sugar pine also are common. 

Hardwoods including canyon live oak (Quercus chrysolepis), black oak and madrone 

frequently occur in the understory. Common shrubs including poison oak, deer brush, 

hairy honeysuckle, creeping snowberry (Symphoricarpos albus), western serviceberry 

(Amalancier alnifolia), creambrush oceanspray (Holodiscus discolor) and Piper’s 

Oregongrape (Berberis nervosa) all indicate low soil moisture. However, the presence of 

mountain dogwood (Cornus nuttalli), big leaf maple (Acer macrophyllum), red alder 

(Alnus rubra) and Pacific yew (Taxus brevifolia) in close proximity to two ephemeral 

draws demonstrate the existence of mesic riparian microclimates in portions of the unit.  

Plant composition of the study area invites application of Whittaker’s (1960:312) 

description of a “mixed forest with an upper tree stratum of needle-leaved evergreen or 
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coniferous and a lower tree stratum of broad-leaved evergreen or sclerophyllous species,” 

which forms a unique botanical formation in the Siskiyou Mountains. Mixed evergreen 

forest commonly features various hardwood trees and chaparral shrubs intermingling 

with conifers on dry sites (Sawyer et al. 1977). The mixed evergreen formation occupies 

an elevation gradient ranging from the foothills above interior valleys and transitions at 

higher elevations to montane true fir forests where hardwoods are rare (Whittaker 1960). 

Douglas-fir is ubiquitous in mixed evergreen forest, occupying all aspects and slope 

positions. Pines most frequently occur on south aspects and at upper slope positions 

(Franklin and Dyrness 1988).   

 
Disturbance ecology  

Fire profoundly influences the structure, composition, soil properties, nutrient 

cycles, wildlife habitat and other qualities of mixed evergreen forests in the Siskiyou 

Mountains (Atzet and Martin 1991). Whittaker (1960:307) observed that mixed 

evergreen forests  

may be regarded … as a fire-adapted vegetation of a summer-dry climate, in 
which fires of varying frequencies and intensities and varying sources – white 
man, Amerind, and lightning – have for a very long time been part of its 
environment. If the term “climax” is to be applied in such circumstances, it 
seems supposititious to apply it to the non-existent vegetation which might 
develop after centuries of complete fire protection. The climax may better be 
regarded as that reasonably stable and self-maintaining vegetation which 
exists in this area, in adaptation to fires and other factors of environment. It 
may be understood in this case that the climax, or fire-climax, condition 
embodies a degree of population instability and irregularity resulting from 
fires affecting different areas in a patch-wise fashion at irregular intervals. 

 
Fire is an intrinsic ecological process in mixed evergreen communities affecting plant 

evolution and succession patterns at variable spatial and temporal scales (Frost and 

Sweeney 2000). The plant association concept discussed above therefore offers limited 
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utility because it flows from the potential natural vegetation model of Kuchler (1964), 

which assumes that community succession is a unidirectional process leading to a 

“climax” steady-state condition in the absence of disturbance. In fact, plants respond 

individualistically to environmental conditions, creating irregular gradients in floristic 

communities over space and time (Gleason 1939, Whittaker 1975).  

Sources of spatial variation in fire extent include topographic breaks such as rock 

fields and moist riparian habitats that can inhibit fire spread when weather is not extreme, 

creating barriers that filter its movement across the landscape (Taylor and Skinner 2003). 

As flames encounter different terrain, weather and fuel conditions, the intensity of heat 

energy output and the severity of effects on vegetation and soil fluctuate in complex 

patterns (Miller 2000). The steep topography of the Siskiyou Mountains can facilitate 

wind-driven convection currents that drive radiant heat upward and bring flames nearer to 

adjacent, unburned vegetation, thus pre-heating fuels and amplifying fire intensity as it 

moves upslope. Partly as a result, highly severe fire effects often concentrate at upper 

slope positions and on ridges (Taylor and Skinner 1998).   

Variation in the duration of time elapsed between fires (return interval or rotation) 

reflects spatially heterogeneous landscape patterns and is scale-dependent (Taylor and 

Skinner 2003). For example, Willis and Stuart (1994) report point sample fire return 

intervals ranging from three-to-71 years over a 350-year period at three sites totaling 20 

hectares on Hotelling Ridge near Forks of Salmon, California. Taylor and Skinner (1998) 

describe point sample return intervals ranging from five-to-116 years over a similar 

period at 75 sites totaling 1,570 hectares along Thompson Ridge near the California-

Oregon border. Longer fire return intervals generally occur at mesic locations such as 
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northerly slopes and riparian areas in valley bottoms, whereas fires tend to burn more 

frequently on hotter, drier and more exposed southerly aspects, especially on upper slopes 

and ridges exposed to lightning (Agee 1993).  

The result of spatial and temporal variation in the fire regime of mixed evergreen 

forests is a patchy landscape of stands exhibiting different tree densities, ages and species 

mixtures that continuously change over space and time (Willis and Stuart 1994). Forest 

stands exhibiting structurally diverse late-successional conditions develop with recurrent 

fires of low and moderate severity, and occasionally experience severe stand-replacing 

fires (Taylor and Skinner 1998). The latter initiate early-successional communities rich 

with coarse wood that enhance the age-structure mosaic of the landscape (Lindenmayer 

and Franklin 2002, Turner et al. 1998, White 1979). Highly severe fire effects account for 

significant proportions of the total area burned in virtually all recorded fire events in the 

KS region (Frost and Sweeney 2000), and they make significant positive contributions to 

landscape pattern and biological diversity (Martin and Sapsis 1992, Smucker et al. 2005).    

 
Climatic variation 

Climatic influences compound temporal variation in the landscape fire regime of 

mixed evergreen forests. The global climate is dynamic (Figure III-2) and planetary scale 

temperature shifts affected the historical environment of southwest Oregon over 

millennia. Shortened fire frequency coincides over decadal timescales with periods of 

regional drought that encourage ignitions (Agee 1993). Over centennial and millennial 

timescales, climatic oscillations driven by shifts in solar radiation, orbital proximity of 

Earth to the sun, and the spatial distribution of polar ice caps influence continuous  
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changes in fire frequency at regional and local scales, confounding its predictability 

(Alaback et al. 2003).  

Paleoecological research conducted in the Pacific Northwest suggests a climatic 

sequence relevant to the study area (Thompson et al. 1993, Whitlock 1992). However, no 

direct evidence informs characterization of climatic influences on vegetation, fauna, 

hydrology or human use patterns in southwest Oregon. Application of the following 

general outline of climate history to the study area must be treated cautiously because 

fine-scale spatial variations mediated by local terrain can affect temperature and 

precipitation patterns (Mock and Bartlein 1995). 

Figure III-2. Global change in temperature from 18,000 years BP to the present time.  Note the 
coincidence of the “Little ice age” with the recruitment period (~300 years BP) of existing mature 
forests in the Siskiyou Mountains. Source: USDA (2004). 
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Following deglaciation ~12,000 years BP the northern hemisphere experienced an 

amplified seasonal cycle of solar radiation lasting until ~6,000 BP. During this period 

solar radiation was greater in summer and winter radiation was less than today, resulting 

in warmer temperatures and less effective annual moisture. This xeric period eventually 

moderated and cooler, wetter conditions predominated after ~4,000 years BP. The timing 

of this transition varied throughout western North America, and direct evidence for 

southwest Oregon is lacking.   

Shifting temperature and precipitation patterns throughout the Holocene may have 

affected the type and extent of dominant vegetation, stream flows, animal populations 

and human activities in southwest Oregon (Winthrop 1993). Contemporary patterns of 

climate and vegetation emerged over the past two millennia, although drought and wet 

periods continually vary in duration and intensity. Tree ring data sampled from forest 

stands in the upper Applegate River watershed hint that a severe, prolonged drought 

occurred in the middle third of the 18th century and repetitive dry climate cycles lasting 

five-to-10 years continued throughout the 19th century (LaLande 1995).   

 Fire disturbance and forest succession processes function in disequilibrium with 

climate (Allen et al. 2002). Therefore, existing plant communities with older vegetation 

may reflect recruitment responses to climatic conditions that no longer exist (Millar and 

Woolfenden 1999). Mann and colleagues (1999) show that the last decade of the 20th 

century was the warmest of the past millennium. For this reason, Mock and Brunelle-

Daines (1999) suggest that the relatively xeric climatic conditions of ~6,000 years BP 

may offer a better analogue to contemporary climate than mesic conditions that prevailed 

in the past two centuries. 
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Indigenous human activities  

The “fire-climax” Whittaker (1960) observed in mixed evergreen forests of the 

Siskiyou Mountains reflected legacies of anthropogenic burning. The Applegate River 

watershed historically was home to Dakubatede people who actively managed their 

environment for subsistence (Beckham 1971, LaLande 1995, Pullen 1996, Winthrop 

1993) (Figure III-3). Highly skilled and cyclical applications of fire technology kept 

selected locations open for hunting and gathering, stimulated berry and seed production, 

produced quality wildlife forage, reduced disease and insect infestations, and secured 

food supplies as well as fibers and medicinal plants (Kimmerer and Lake 2001).   

Indigenous fire use also maintained ecotones among different vegetation 

communities, such as those linking savannah and forest, which supported high levels of 

biological diversity and were especially productive of foods and materials used by people 

(Boag 1992). Kimmerer and Lake (2001:38) argue that applied fire practices included 

the intentional creation of a mosaic of habitat patches that promoted food security 
by ensuring a diverse and productive landscape [...] Maintaining a diversity of 
habitats buffers the impact of natural fluctuation in a single food species and 
increases overall productivity […] Indigenous people skillfully modified the fire 
regime to create a range of forest openings in many different stages of postfire 
succession, which enhanced the diversity and yield of game, berries, root crops, 
edible seeds, and medicinal plants. 

 
Indeed, food supply diversity was critical to survival of the Dakubetede because they 

routinely faced starvation in early spring before plant growth began and before the spring 

salmon run (Baumhoff 1963). The sap and inner bark of sugar pine and ponderosa pine 

were particularly important food resources during times when other foods were not 

available. California black oak acorns also were favored in good crop years due to their  
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high fat content and ease of harvest in the foothills and lower edges of conifer forests, 

especially on south-facing slopes (Pullen 1996).   

Use of fire by indigenous people helps to explain the historical dominance of 

sugar pine in certain low-elevation woodlands, which Kimmerer and Lake (2001) suggest 

could not be sustained solely by a lightning-ignited fire regime. Ethnobotanical practices 

of the Karok people in the nearby Klamath River canyon traditionally employ regular 

applications of fire to reduce competition and promote vigor in sugar pine stands (Schenk 

and Gifford 1952). The Karok seasonally shared the Siskiyou high country and 

intermarried with their Dakubatede neighbors, who led similar lifestyles (Pullen 1996) 

Figure III-3. Geographic range of indigenous Dakubatede people in southwest Oregon. These people 
spoke a coastal Athapascan dialect, which distinguished them culturally from neighboring Takelma 
and other human communities. Source: Beckham (1971).
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(Figure III-3). Therefore, it is reasonable to propose that the Dakubetede employed 

similar fire use practices as the Karok to promote sugar pine at foothill locations in the 

Applegate River watershed.   

Plot data indicate that very large (>60 cm dbh) sugar pines once were numerous 

and widespread (~20 stems/ha) throughout Unit 1 of the study area. Logging operations 

in the mid-20th century removed most of these specimens and left stumps that today are 

identifiable by their remnant bark. The unit is bound to the north and south by perennial 

creeks that would serve as effective containment lines for human-ignited prescribed fires. 

The topographic location of Unit 1 combined 

with its proximity to known historical 

settlements and its high concentration of large 

sugar pine and other nutritious plants (Table 

III-1) support the hypothesis that it may have 

been a fire-cultivated food production site. 

 Woodland tarweed (Madia madioides) 

(Figure III-4) is another important fire-

cultivated food source observed throughout 

the study area. European settler George Riddle 

(1953:46) recalled tarweed seed cultivation in 

the south Umpqua River watershed 40 km 

north of the study area:  

During the summer months the squaws would gather various kinds of seeds of 
which the tarweed seed was the most prized. The tarweed was a plant about 
thirty inches high and was very abundant on the bench lands of the valley, and 
was a great nuisance at maturity. It would be covered with globules of clear 

Figure III-4. Tarweed (Madia madioides) was 
an important fire-cultivated food source for the 
Dakubetede people of the Applegate River. 
Source: Abrams and Farris (1960). 
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tarry substance that would coat the head and legs of stock as if they had been 
coated with tar. When the seeds were ripe the country was burned off. This 
left the plant standing with the tar burned off and the seeds left in the pods. 
Immediately after the fire there would be an army of squaws armed with an 
implement made of twigs shaped like a tennis racket. With their basket swung 
in front, they would beat the seeds from the pods into the basket. This seed 
gathering would only last a few days and every squaw in the tribe seemed to 
be doing her level best to make all the noise she could, beating her racket 
against the top of her basket. 

 
People would grind harvested tarweed seeds into flour and cook them into a rich soup 

(Pullen 1996). Larger seed fragments were eaten or used to flavor manzanita cider; the 

roots also were eaten (Stevens and O’Brien 2001).   

Climatic change from a hot and dry regime favoring oak-pine woodlands and 

grasslands to a milder and wetter regime more hospitable to fir forests ~4,000 BP may 

have forced technological adaptations among indigenous people who depended on natural 

resources common to the prior climate (Winthrop 1993). For this reason, archaeologists 

and ethnographers argue that cyclical burning in portions of the landscape originated as 

an attempt to manipulate or prevent an advance of fir forests into oak-pine woodlands and 

savannas that sustained the food supply (ARWC 1994, Pullen 1996, Winthrop 1993). 

 
Settlement era condition  

Concurrent with the genocide of indigenous people that accompanied European 

settlement in southwest Oregon (Beckham 1971), surveyors contracted by the U.S. 

General Land Office (GLO) subdivided and mapped the territory in a rectangular grid. 

They recorded “the several kinds of timber and undergrowth, in the order in which they 

predominate,” in hand-written field notes and maps (White 1983). Notes from 1856-57 

surveys in T. 38 S., R. 5 W., Willamette Meridian, describe forest vegetation at the 

station dividing sections 3, 4, 9 and 10, approximately one kilometer (km) west of the 
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study area, as “pine, oak, fir & laurel.” A map appended to those notes establishes that 

the general distribution of this vegetation included the study area (GLO 1857).  

A later GLO (1916) survey produced finer-scale information about forest 

structure and composition in the study area. It describes the western (upslope) half of 

Unit 1 as “covered with scattered timber and patches of brush.” Large specimens of sugar 

pine and ponderosa pine 60-75 cm in diameter occupied the upper canopy. In contrast, 

the eastern (downslope) half of Unit 1 was “generally free from brush” and hosted “few 

scattered trees,” mostly pine.  

The same record also describes “light stands of timber and brush” on the north 

face of Pennington Mountain, where Unit 2 is located (GLO 1916). Douglas-fir was two-

to-six times more abundant in the western half of Unit 2 than sugar pine or ponderosa 

pine. However, pines dominated the forest composition on relatively flat and west-facing 

slopes in the unit’s eastern portion. Pines also were more abundant in the southern 

(upslope) portion of the unit than in its northern (downslope) portion. Trees of all conifer 

species exhibited >60 cm diameter stems.  

 
Post-settlement changes  

The displacement of indigenous people and concurrent introduction of a European 

industrial economy in the mid-19th century transformed landscape patterns in the 

Siskiyou Mountains. The changes included construction of an extensive road network, 

replacement of forests dominated by large, widely-spaced trees with dense stands of 

tightly-spaced poles and saplings, and significantly less area burned by fire (USDA/USDI 

1994a). Resulting fragmentation and compositional changes in plant communities 
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reduced landscape heterogeneity and biological diversity, particularly in low elevation 

valleys and foothills (Staus et al. 2003).   

 Forest composition and structure in the study area reflect the above described 

changes in human use and disturbance patterns. Roads fragment the area (Figure II-3), 

and high-grade logging in the mid-20th century removed many of the largest trees, 

especially pines, leaving densely packed stands of smaller trees (USDI 1996). 

Cumulative effects of logging and fire suppression promoted growth of less fire-tolerant 

species such as Pacific madrone and white fir (USDA/USDI 1994a). Continuous 

vegetation structure is now common and tree vigor is in decline as a result of 

overstocking (USDI 1999). Dense stands and accumulated surface fuel, particularly duff, 

increase the likelihood of severe fire effects relative to historical conditions (Arno and 

Fiedler 2005). Moreover, a proliferation of residential dwellings creating a rural-wildland 

interface adjacent to the study area compounds this general decline in ecological 

integrity. Elevated risk of ignitions causing catastrophic loss of values at-risk presents a 

significant challenge to ecosystem management (USDI 1996, 2000). 

 
Means to achieve reference conditions 

 Knowledge of historical conditions in the study area can facilitate restoration 

efforts, but attempts to recreate conditions that existed in the recent past would not be 

desirable or feasible for many reasons. First, the climate is different than it was before, 

and it will continue to change (Millar and Woolfenden 1999, Whitlock et al. 2003). 

Second, historical documentation offers useful perspective on large tree structure and 

composition, but it is not as reliable for small trees, herbaceous vegetation or wildlife use 
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(Harrod et al. 1999). Finally, fire regimes of the past can be estimated but are poorly 

understood, and these, too, shift over time (Agee 1998, Baker et al. 2006, Veblen 2003).   

Abundant evidence suggests that wildland fire will become more frequent and 

severe at a landscape scale as the regional climate becomes more xeric (McKenzie et al. 

2004, Pierce et al. 2004, Running 2006). Therefore, a sensible approach to stand-scale 

forest restoration in the study area would prepare the site for inevitable fire disturbance 

and attempt to facilitate, insofar as possible, self-sustaining vegetation density, structure 

and composition analogous to conditions in which ecosystem functions evolved (Arno 

and Fiedler 2005, SER 2004). Historically dominant tree species such as sugar pine, 

ponderosa pine and California black oak play important roles in the ecological function 

of forest and woodland communities in the study area (USDI 1996). Those species 

require open stand conditions and frequent disturbance to flourish (Atzet et al. 1996).   

In the long-term, reintroduction of fire is the most important action to restore 

ecological integrity because it is the only way to stimulate adapted interactions between 

ecosystem structure and process (McIver and Starr 2001). Fire disturbance plays a vital 

role in supporting a diverse complement of plant species and structure, and maintaining 

these qualities over time is essential to support terrestrial and riparian processes impacted 

by industrial uses and fire suppression (Atzet 1996). Fire restoration will be most 

effectively accomplished at landscape scales (Baker 1994), but localized restoration 

treatments may help to influence the intensity of fire behavior and severity of fire effects. 

This is especially important in the study area where rural residences and other human 

developments interface with fire-prone wildland vegetation (USDI 1996, 2000). In this 

interface, fuel reduction treatments should be coordinated with efforts to “fire-proof” 
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homes by addressing their ignitability (Cohen 2004). These initial steps are necessary 

before land managers realistically can undertake ecologically-based fire restoration 

treatments at broader spatial scales (Brown et al. 2004).   

 Thinning of small, shade-tolerant and suppressed understory trees coupled with 

management-ignited prescribed fire (MIPF) has rendered some woodlands and forests 

less susceptible to uncharacteristically severe fire effects (stand replacement) (Perry et al. 

2004, Pollett and Omi 2002). Primary variables accounting for canopy fire initiation 

include surface fuel load, live fuel moisture and canopy base height (Agee et al. 2000). 

Therefore, thinning of small trees “from below” to increase canopy base height followed 

by reduction of activity fuels (slash) and pre-existing surface fuels can reduce canopy 

ignition potential (torching) (Graham et al. 2004).  

Fire managers in the KS region often prioritize reduction of canopy bulk density 

to limit potential for active canopy fire spread (e.g., USDA 2004, USDI 2005). Canopy 

fire behavior depends on the density of canopy fuels as well as the availability of surface 

fuels to sustain convective heat transfer into the canopy (Scott and Reinhardt 2001). In 

order for active crown fire to spread independent of surface fireline intensity, it needs 

rare combinations of topography and weather, and even then, it usually affects only small 

areas before ceasing on its own (Van Wagner 1977). In Unit 1, flat terrain mitigates the 

hazard of active canopy fire. Effective fuel treatments to improve stand resilience there 

will reduce surface fuels and increase canopy base height to minimize surface fire 

intensity and diminish convective heat transfer into canopy fuels. Steeper terrain in the 

upslope portion of Unit 2 increases the chance of active canopy fire in extreme weather 

conditions, and canopy bulk density reduction there could help to alleviate it (Graham et 
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al. 2004). However, as discussed below, that portion of Unit 2 where slopes exceed 30% 

host relatively mesic conditions as well as rare and sensitive clustered lady’s slipper 

orchid (Cypripedium fasisculatum), which associates with closed canopy forest habitat on 

northerly slopes in the Applegate River watershed (USDA/USDI 1994b). Therefore, the 

BLM is not likely to undertake significant reductions of canopy bulk density at that 

location. Further, investigations of historical fire severity patterns at stand and landscape 

scales in the KS region correlate low severity fire effects with closed canopy forest 

structure and high severity fire effects with structural conditions created by crown bulk 

density reduction treatments (e.g., Odion et al. 2004, Raymond and Peterson 2005). 

 Mechanical tree cutting in any form cannot replicate many ecological functions of 

fire, and approaches that rely solely on manipulating forest structure without restoring 

fire process will not achieve ecologically beneficial outcomes (DellaSala et al. 2004). 

Nevertheless, thinning can be an appropriate initial step toward fire restoration where 

existing forest structure precludes reintroduction of fire, and where the risk of adverse 

ecological impacts posed by thinning is relatively low (Franklin and Agee 2003). Such 

places generally occur on dry sites at low elevations with flat terrain and stable soils 

(Brown et al. 2004). Roads and evidence of past logging are obvious, and forests are 

dense relative to historical conditions, as shown by site-specific evidence indicating the 

prior existence of a low-severity fire regime (DellaSala and Frost 2001).   

Unit 1 of the study area exhibits the above specified qualities that justify 

mechanical thinning to manipulate forest structure and composition as an initial step 

toward longer-term fire process restoration. A credible restoration-oriented thinning 

prescription and subsequent fuel treatments in Unit 1 would:   
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• Thin small, shade-tolerant, and suppressed trees (generally <30 cm dbh) of 
species that are relatively abundant as a result of logging and fire exclusion. 
Thinning should strive to reduce short-term hazard of stand replacing fire and 
create conditions in which fire can safely be used over longer periods of time to 
support, insofar as possible, adapted ecological processes (USDI 2002). 

 
• Protect large, old trees from removal or damage. These legacy structures 

possess fire resilient qualities, serve numerous important ecological functions, 
are difficult or impossible to replace, and are less abundant now than they were 
in the past (Brown et al. 2004, Franklin and Agee 2003).  

 
• Create relatively open stand structure below the upper canopy because this 

condition would be expected under an active fire disturbance regime at the site 
(USDI 1996). 

 
• Reduce fine woody surface fuels (<7.6 cm) and accumulated duff, the latter of 

which can sustain extended fire residence times causing more severe fire effects 
on vegetation and soil compared to reference conditions (Harrington 2000). Fine 
woody fuels are likely to increase substantially after thinning operations as tree 
stems are severed and relocated to the ground. Therefore, post-thinning slash 
treatment is critical to achieve management goals (Table IV-1). 

 
• Monitor the site immediately after restoration activities and periodically 

thereafter to determine treatment effectiveness and any need for additional 
follow-up treatments. 

 
 
Large (>60 cm dbh) trees generally should not be removed from the study area, in part, 

because a distinguishing feature of ecologically healthy and resilient mixed evergreen 

forests in the KS region is the prevalence of large, old trees that have survived numerous 

fires (Willis and Stuart 1994). Such trees represent the best potential for recruitment of 

structural characteristics that historically existed on the site. This is not to suggest that an 

arbitrary upper diameter limit should be imposed on tree cutting, but merely to illustrate 

the importance of large tree retention. 

Much of the preceding discussion also applies to Unit 2 of the study area, but its 

unique site characteristics merit qualification. The unit mostly occurs on a north-facing 

slope that historically was dominated by mature Douglas-fir except for an isolated pocket 
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of oak savannah on ultramafic soil near the unit center and a pine-dominated flat near its 

eastern boundary. Passive restoration, defined as cessation of practices that degrade 

ecological function (fire suppression), may be an appropriate restoration approach there 

(DellaSala et al. 2004). However, limited mechanical thinning and MIPF applications 

could be justified in the oak savannah, pine flat and at lower slope locations occupied by 

Douglas-fir with relatively flat terrain and stable soils. Perceived benefits of such 

operations, including training of inexperienced crews, must be weighed against the cost 

of active management in places that may self-restore if left alone. Thinning and burning 

would not be as appropriate on slopes >30% where botanical indicators of mesic 

conditions such as rare and sensitive clustered lady’s slipper orchid exist.   

 
Effectiveness criteria 
 

Stand density, structure and species composition all indicate how forest and 

woodland communities respond to environmental stress (USDI 1999). In Unit 1, seral 

conifers and hardwoods with tall canopies should dominate, and drought-tolerant shrubs 

should be present on the ground surface. Specifically, the following species would be 

expected to occur in an approximately descending order of relative abundance: 

• Sugar pine (Pinus lambertiana) 
• California black oak (Quercus kelloggii) 
• Ponderosa pine (P. ponderosa) 
• Whiteleaf manzanita (Arctostaphylos viscida) 
• Deer brush (Ceanothus integerrimus) 
• Douglas-fir (Pseudotsuga menziesii var. douglasii) 
• Pacific madrone (Arbutus menziesii) 
• Poison oak (Toxicodendron diversilobum)   
• California fescue (Festuca californica) 
• Blue wildrye (Elymus glaucus) 
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Stand density in Unit 1 should be more open than in the pre-treatment condition with an 

initial maximum relative density index of 0.5, and trending to lesser density over time to 

promote pine and oak regeneration (USDI 1999). Vertical stand structure ought to feature 

a mean canopy base height >3 m tall and minimal connectivity with surface vegetation. 

Dominant and co-dominant canopy layers should include gaps over a significant 

proportion (>25%) of the stand to promote sunlight penetration to the ground surface and 

growth of forbs and grasses. 

The amount, continuity and moisture content of fine surface fuels determine the 

rate at which wildland fire spreads and the intensity with which it releases heat energy 

(Rothermel 1983). Reference condition surface fuel loading is <5 kg/m² throughout Unit 

1 and, as above, canopy base height is >3 m tall resembling a Fuel Model 8 (Anderson 

1982). In this condition surface fuel moisture, ambient temperature and horizontal wind 

movement can support intensified flaming heat energy release potential and faster rates of 

fire spread compared to the pre-treatment condition, but stand replacement is less likely 

due to structural limitations on canopy fire initiation.   

In Unit 2, seral conifers and hardwoods with tall canopies also should dominate 

the stand, although understory plants should be more representative of mesic conditions 

on northerly slopes at slightly higher elevations than Unit 1. The following species would 

be expected to occur in an approximately descending order of relative abundance: 

• Douglas-fir (Pseudotsuga menziesii var. douglasii) 
• Poison oak (Toxicodendron diversilobum)   
• Canyon live oak (Quercus chrysolepis) 
• Creambrush oceanspray (Holodiscus discolor) 
• Hairy honeysuckle (Lonicera hispidula) 
• Creeping snowberry (Symphoricarpus albus) 
• Ponderosa pine (Pinus ponderosa) 
• California black oak (Q. kelloggii) 
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• Sugar pine (P. lambertiana) 
• California fescue (Festuca californica) 

 
Stand density in Unit 2 should be more open than in the pre-treatment condition with a 

maximum relative density index of 0.6, trending to lesser density over time (USDI 1999). 

Vertical stand structure ought to feature a mean canopy base height >2 m tall and 

minimal connectivity with surface vegetation. Dominant and co-dominant canopy layers 

should include gaps over a portion (>20%) of the unit, particularly in the central oak 

savannah and easterly pine flat, which should be more open (RD <0.4) than the steeper 

upslope and westerly portions dominated by Douglas-fir. 

Overall, reference conditions in the study area encompass a range of potential 

conditions in which land managers would be more comfortable using wildland fire to 

achieve restoration of adapted ecological processes (Franklin and Agee 2003). For 

reasons outlined above, it is not realistic or desirable to expect a single treatment or 

prescription to realize the reference condition (Brown et al. 2004). Instead, a series of 

light thinning treatments coupled with applications of MIPF to reduce surface fuel loads, 

fuel ladders and live tree density can support longer-term restoration. Monitoring is 

essential to verify effectiveness and inform assessment of follow-up treatments over time.  
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IV. MONITORING REPORT 

 

Introduction 

 Monitoring is a centrally important process in adaptive ecosystem management. 

Adaptive management embraces scientific uncertainty and learning by doing (Lee 1993). 

The key to learning is a well-defined monitoring strategy that provides a “feedback loop” 

through which management effects and means to improve practices can be described 

(Figure IV-1). Paradoxically, mistakes and failure often contribute the most to success in 

terms of learning from the effort. This emphasis on learning means that failures do not 

exist in the traditional sense (Lee 

1993).   

 The Northwest Forest Plan 

(USDA/USDI 1994b) established an 

Adaptive Management Area (AMA) 

in the Applegate River watershed of 

southwest Oregon with an objective 

of testing non-traditional forest 

practices that integrate ecological, 

economic, and social objectives. The 

inherently controversial nature of 

wildland management in the AMA 

(USDI 1999) creates an incentive for 

forestry practitioners to clearly 
Figure IV-1. Model of the adaptive feedback process in 
ecological restoration. Source: Keeley and Stephenson (2000). 
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document the results of their actions for public understanding. Indeed, the purpose of the 

AMA is to “provide a geographic focus for innovation and experimentation with the 

intent that such experience will be widely shared” (USDA/USDI 1994b: D-2).   

Wildland managers and forestry practitioners often forego monitoring that supports 

adaptive management. Some find themselves too busy with other essential duties to 

design and implement monitoring projects. Moreover, the perceived complexity of 

sampling designs necessary to obtain useful monitoring data can overwhelm or intimidate 

some workers. Perhaps the most important reason why credible monitoring projects 

rarely get implemented is a lack of standardized sampling methods and tools. Most 

organizations have not developed science-based sampling protocols to inventory pre- and 

post-activity conditions and document achievement of management goals. The major 

exception is the National Park Service (NPS), which has developed extensive guidelines 

for sampling ecosystem characteristics important to monitoring (USDI 2003). Others 

increasingly use the FIREMON fire effects monitoring system (Lutes 2006), which is 

designed to be flexible to users’ differing needs for rigor and repeatability. 

 This report describes an effectiveness monitoring strategy for the “Penny Stew” 

forest stewardship project undertaken by the Lomakatsi Restoration Project (LRP) on 

federal land in the Applegate AMA controlled by the U.S. Bureau of Land Management 

(BLM). It defines management goals and monitoring objectives, the methods used to 

monitor activity effects and evaluate data, and it provides feedback with initial treatment 

results and discussion. Specifically, it compares observed treatment effects with stated 

management goals, and it evaluates methodological efficacy for consideration in later 

monitoring efforts. The intent is to demonstrate a credible and repeatable strategy that the 
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LRP can adapt to learn by doing, refine its forest practices, and demonstrate its activity 

effects to interested parties. 

Furthermore, this analysis tests the efficacy of hybridized monitoring protocols 

that combine the permanent monitoring plot scheme of the NPS system (USDI 2003) 

with sampling methods and data analysis tools of the FIREMON system (Lutes 2006). 

This approach blends the most useful elements of each system into a streamlined protocol 

that can be implemented by practitioners with little formal education or training. Since 

complexity often is a decisive barrier to sustained monitoring, it is important to find ways 

to simplify the task without compromising defensibility.  

Resource availability imposes additional limitations on monitoring. Practitioners’ 

curiosity frequently exceeds their ability to fund the requisite sampling and analysis to 

address all conceivable avenues of inquiry. This analysis presents the minimum 

information needed to quantitatively address core management goals related to forest 

structure, composition, and fire hazard. Furthermore, it offers visual evidence of pre- and 

post-treatment conditions represented by permanent photo points to facilitate qualitative 

evaluation of changing conditions over time.  

 The Penny Stew contract divides the area of federal land included in the project 

(“study area”) into two units (Chapter II). This report documents the monitoring effort in 

Unit 1, where planned treatment activities were completed by the time of this writing. It 

does not address monitoring in Unit 2 because no results other than pre-treatment 

baseline data were available. This report should be viewed as iterative, as it is intended to 

be supplemented and updated as treatment activities and monitoring progress. 
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 Management goals for the Penny Stew project (Table IV-1) are based on the 

Scattered Apples Forest Management Project Environmental Assessment (USDI 1999) 

and Decision Record (USDI 2002), which govern activities in the study area. Those 

documents mandate thinning in the forest understory to reduce tree density and decrease 

competition for nutrients, water, and light among residual trees. Generally, only trees 

smaller than 30 centimeters (cm) in diameter at breast height (dbh) may be severed or 

removed. Trees larger than that size are to be retained except where retention may pose a 

safety hazard to field workers. Tree species favored for retention are described in the 

accompanying reference analysis (Chapter III). 

 Fire hazard reduction goals also drive the Penny Stew project. Hand piling and 

burning of pre-existing surface fuels and thinning slash are to remove 50 to 75% of 

downed woody fuels 3 to 15 cm in diameter over a period of 10 years (USDI 2002). Fuel 

particles outside this size range are to be left scattered so that they contact the ground 

surface. The treatment prescription should leave a more compact fuel bed that would 

slow rates of fire spread and shorten flame lengths. It also should decrease the time 

required for decomposition of downed woody debris remaining on the ground (USDI 

2002). 

 In addition to the goals described above, the LRP specified complementary goals. 

First, it seeks maintain effective soil cover and minimize erosion as a result of treatments. 

Second, the LRP desires to detect and discourage exotic species with potential to degrade 

ecological function such as cheat grass (Bromus tectorum) and yellow star thistle 

(Centaurea solstitialis). Finally, it strives to nudge forest density, structure, and 

composition to better resemble reference conditions (Chapter III) while embracing a 
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precautionary preference for conservative and incremental treatments that “do no harm” 

rather than pursuing more aggressive treatments that would impose reference conditions 

with a single treatment (Brown et al. 2004). It is thus expected that follow-up treatments 

and periodic maintenance will be required to attain management goals in the study area. 

This report does not address future treatments, which will require additional planning and 

assessment. However, it presents repeated measurements of selected indicators in 

permanent plots to inform consideration of maintenance or other follow-up treatments as 

needed (Figure IV-1).                                      
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Method 

Monitoring objectives 

 We identified site-specific management goals expressing target stand conditions 

(Table IV-1) based on the stated purpose and need for action (USDI 1999) and the results 

of reference analysis (Chapter III). We then defined monitoring objectives that identify 

measurable indicators of each management goal as well as the minimum detectable 

change (MDC), confidence level, and timeframe relevant to sampling design power 

analysis and evaluation of results (Table IV-2). 

Woodward and others (1999) suggest criteria for monitoring indicator selection 

emphasizing logical linkages to management goals, ease of field identification, sampling 

cost-effectiveness, importance to ecosystem function, and social appeal. Table IV-1 

shows the selected indicators relevant to management goals for the Penny Stew project. 

Those indicators meet the above criteria and fit the purpose of this analysis to 

demonstrate a streamlined protocol that is easy and efficient to implement.   

 Monitoring objectives (Table IV-2) specify a minimum detectable change (MDC) 

and a confidence level (generally 80%) for change detection in each indicator. The MDC 

and confidence level function as guidelines for sampling design power analysis (Figure 

IV-2) and evaluation of results. The iterative nature of monitoring objectives is a tenet of 

adaptive management (Elzinga et al. 1998). Monitoring objectives may change over time 

as new information emerges or if management goals shift.  
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Table IV-1.  Management goals, indicators and target conditions.

Management goal Indicator Target condition

Promote reference composition Species abundance Pine/oak stems >30% of all trees in 10 years
Douglas fir stems <40% of all trees in 10 years

Legacy vegetation Large (>50 cm dbh) trees and snags maintained over 10 years

Promote reference structure Tree density Relative density index <0.5 in 5 years, <0.4 in 10 years
Mature tree diameter Mean live tree diameter >30 cm dbh in 10 years
Mature tree basal area Basal area <20 m²/ha in 10 years

Promote fire resilience Surface fuel load Surface fuel load <6 kg/m² in 5 years, <4 kg/m² in 10 years
Live fuel density Sapling density <500 trees per hectare in 5 to 10 years
Mature tree diameter Mean live tree diameter >30 cm dbh in 10 years
Canopy base height Canopy base height >3 m tall in 5 to 10 years

Maintain effective soil cover Cover percent >80% average soil cover maintained over 10 years
Cover depth >3 cm average cover depth maintained over 10 years

Table IV-2.  Management indicators and monitoring objectives.

Management indicator Monitoring objective

Species abundance Detect with 80% confidence a 30% reduction of Douglas fir stems in 2 to 5 years

Tree density Detect with 80% confidence a 30% reduction of total stem density in 2 to 5 years, and 50% in 10 years
Mature tree diameter Detect with 80% confidence a 20% increase of mean live tree diameter in 2 to 5 years
Mature tree basal area Detect with 80% confidence a 20% reduction of mature tree basal area in 2 to 5 years 

Surface fuel load Detect with 80% confidence a 20% change of surface fuels in 2 years, and 50% in 5 to 10 years
Live fuel density Detect with 80% confidence a 50% reduction of sapling density in 2 years, and 80% in 5 to 10 years
Canopy base height Detect with 80% confidence a 20% increase of crown base height in 2 years, and 30% in 5 to 10 years

Cover percent Detect with 80% confidence a 20% reduction of soil cover in 2, 5 and 10 years
Cover depth Detect with 80% confidence a 20% reduction of cover depth in 2, 5 and 10 years
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Pilot sampling 

Pilot sampling helped to define appropriate sample size, which in turn refined 

monitoring objectives and power estimates. We established three 0.1 ha (1000 m²) plots 

(Figure IV-3) in Unit 1 and collected data on forest structure and surface fuel variables in 

the manner described below. We then calculated means and standard deviations of pilot 

sample attributes, and estimated the sample size needed to fulfill monitoring objectives 

with the desired power (α = 0.2, ß = 0.2) by entering those values into the following 

equation supplied by Lutes (2006):  

 

 
 

 
 
 
Where: 
 

• NRP is the number of required plots. 
• s is the estimated standard deviation of mean sample values. 
• Zα is the coefficient for the type-I error rate in Table IV-3 below. 
• Zß is the coefficient for the type-II error rate in Table IV-3 below. 
• MDC is the minimum detectable change in mean sample values among sampling 

events sought by the monitoring objectives.  
 
 
 

Table IV-3.  Coefficients of acceptable error rates used to determine sample size.  
      

False-change   Missed-change  
(type-I) error rate (α) Zα   (type-II) error rate (ß) Zß 

0.4  0.84  0.4  0.25 
0.2  1.28  0.2  0.84 
0.1  1.64  0.1  1.28 
0.05  1.96  0.05  1.64 
0.01   2.58   0.01   2.33 
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The equation shown above suggested that a relatively small sampling population (n=3) of 

0.1 ha plots would detect a 20 percent change of tree sapling density with 80 percent 

confidence, and a larger population (n=16) of 20 meter (m) planar intercept transects 

(Brown 1974) would detect a 10 percent change of surface fuel load with similar power.   

We cross-checked the sample size and power estimates above by entering pilot 

sampling values into NCSS/PASS software (Hintze 2004), which runs one-mean 

inequality tests with the same acceptable error rates, estimated standard deviations, and 

MDC parameters as above. The NCSS/PASS run indicated that doubling the sampling 

population (n=6) would better fulfill the monitoring objectives for tree density and a 

similar population as indicated by the FIREMON equation above (n=18) would suffice to 

detect change in surface fuels (Figure IV-2). Our calculations assumed that 0.1 ha plots 

would sample a finite population of 162 potential plot locations in the 16.2 ha unit, and 

that randomly directed planar intercept transects would sample an infinite population of 

surface fuels. Given the different sampling intensity estimates derived from the 

FIREMON equation and the NCSS/PASS computations, respectively, we implemented 

the greater intensity level suggested by the latter in an effort to generate more robust 

results. 
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Figure IV-2. Results of NCSS/PASS power analysis computations used to determine sample intensity. Pilot 
sampling data suggested that (a) that six 0.1 ha plots would detect a 20% reduction of tree density with 80% 
confidence (power = 0.80714), and (b) 18 planar intercept transects could detect a 10% change of surface 
fuel load with similar power (power = 0.80133).  

(a) Tree density 

(b) Surface fuel 
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Plot location and design 

 We established two parallel grid lines extending the length of Unit 1 (Map II-3) 

and marked origin points at fixed 150 m intervals along each line. We located plot anchor 

points at random distances and azimuths from each origin. We oriented the rectangular 

0.1 ha plots (Figure IV-3) with their 50 m sides perpendicular and 20 m sides parallel to 

magnetic north. We then established two sampling units overlaid on each other: 

ecosystem monitoring (EM) plots from the NPS fire monitoring protocol (USDI 2003) 

and Modified-Whittaker (MW) nested subplots (Stohlgren et al. 1995). Rectangular EM 

plots are effective for measuring forest density and structural properties, and MW 

subplots are useful for sampling understory vegetation data because it is collected at 

multiple scales (Bonham 1989). Since the plots are intended to be permanent, this design 

is more efficient to lay-out, measure, relocate, and repeat than circular variable-radius 

plots presented in the FIREMON literature (Lutes 2006).   

 

 

 

Figure IV-3.  0.1 ha (1000 m²) EM plot. Anchor point is at plot center. 20 m planar intercept transects 
(1A/1B, etc.) measure surface fuel load. Source: USDI (2003). 
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Sampling procedures 

Within each EM plot, we applied three FIREMON vegetation sampling methods: 

tree data (TD), fuel load (FL), and cover/frequency (CF) (Lutes 2006). In addition, we 

established permanent photo points according to FMH protocols (USDI 2003). 

 
Tree data 

In TD sampling we recorded the species, diameter at breast height (dbh), crown 

class, height, live crown percent, and crown base height of all live “mature” trees (>10 

cm dbh) throughout each plot. We recorded the species, dbh, height, and decay class of 

all dead mature trees at the same scale. We also recorded the species, dbh, height, and 

live crown percent of “sapling” and “seedling” trees (<10 cm dbh, differentiated by 

height) within randomly selected 0.025 ha (250 m²) subplots, the locations of which were 

recorded on field data forms for repeat measurements. Live crown percent expresses the 

percent of each tree bole that supports live vegetation based on the distance from the 

ground to the top of the live foliage. Crown base height expresses the height from ground 

to live crown base (i.e., height of the lowest live foliage). It does not express the height of 

dead materials, even though these also can affect vertical flame movement. The inclusion 

of live foliage and exclusion of dead material intends to limit subjectivity in field data 

collection.   

 
Fuel load 

 In FL sampling we placed four 20 m planar intercept transects after Brown (1974) 

at randomly chosen azimuths from points located at fixed 10 m intervals along the plot 

centerline (Figure IV-3). We counted fine wood particles in the 1-hour (<0.6 cm 
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diameter) and 10-hour (0.61 – 2.5 cm) fuel classes on a 2 m section of each transect, and 

we counted 100-hour (2.51 – 7.59 cm) fine fuels on a 4 m section. We counted 1000-hour 

(>7.6 cm) coarse fuels on a 15 m section. We also measured duff and litter depth at two 

points, as well as the percent and type of soil cover in five equally divided intervals 

(Table IV-4).  

 
Table IV-4.  Measurements on 20 m planar intercept transect. 

Variable  Sampling location  

Downed wood   
1-hour (<0.6 cm)  2 m to 4 m  (2 m total) 

10-hour (0.61 – 2.5 cm)  2 m to 4 m  (2 m total) 

100-hour (2.51 – 7.59 cm)  2 m to 6 m  (4 m total) 

1000-hour (>7.6 cm)  2 m to 17 m  (15 m total) 
    
Duff & litter depth 2 m, 5 m  

Soil cover  2 m, 4 m, 6 m, 8 m, 10 m 
 

Cover/frequency 

 We used the CF method to qualitatively estimate vegetation cover in each plot. 

We sampled vegetation cover in five MW quadrats, each one-square-meter (1 m²) in size, 

placed at fixed 5 m intervals along a 50 m transect beginning at either the 5 m or 15 m 

point along a 20 m baseline of the EM plot. In some cases, the transect location was 

subjectively placed to avoid FL planar intercept transects where overlap may have 

resulted in fuel bed trampling or other sampling bias. Within each quadrat we estimated 

the percentage of ground covered by individuals of each plant species based on a visual 

estimate of cover class suggested by Lutes (2006) (Table IV-5). The range of cover 

values are divided into broadly defined classes that minimize bias due to observer  
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error. Variation in cover estimates due 

to observer perception was further 

minimized by using visual aids for 

consistency and by standardizing 

estimates among observers in practice 

runs before data collection. The 

midpoint value of each cover class 

support numerical computations, though 

such analysis assumes that actual cover 

values are normally distributed around 

the midpoints, which cannot be verified by the data. We also noted the presence of other 

species observed outside the 1 m² quadrats at 10 m² and 100 m² scales. This method 

intends to document change in species cover and composition over time, but not to 

quantify statistically significant changes, due to the subjective nature of cover 

estimations. This report does not present monitoring results of CF sampling, as there 

were insufficient data to analyze at the time of this writing. Future iterations of this report 

will include CF data analysis.  

 
Photo points 

We established permanent photo points at the northeast and southwest corners 

(Q1 and Q3 – Figure IV-3) of each plot. At each photo point in every sampling event, we 

took digital photographs of the plot center. Unit and plot numbers, date, and sampling 

event were recorded in a log that matches site and time information with photo 

sequences.  

 
 
 
 
 
 
  Table IV-5.  Plant cover class codes. 

  Code                    Cover values 

   0                   Zero percent cover 

   0.5                   >0-1 percent cover 

   3                   >1-5 percent cover 

   10                   >5-15 percent cover 

   20                   >15-25 percent cover 

   30                   >25-35 percent cover 

   40                   >35-45 percent cover 

   50                   >45-55 percent cover 

   60                   >55-65 percent cover 

   70                   >65-75 percent cover 

   80                   >75-85 percent cover 

   90                   >85-95 percent cover 

   98                   >95 percent cover 
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Monitoring cycle 

 All plots in Unit 1 are to be sampled according to the following schedule: prior to 

the initial treatment (P1), after thinning but before slash clean-up (R1), within one year 

after slash treatment (R2), and again five years (R3) and 10 years (R4) after thinning. 

Any additional treatment beyond post-thinning slash disposal triggers a new monitoring 

cycle that follows the same schedule beginning at R1. In addition, one control plot 

outside the unit is to be measured prior to initial treatment (P1) and 10 years after 

treatment (R4). 

 
Data management and analysis 

We input the sample data to the TD, FL and CF database tables in the FIREMON 

software (JFiremon). We generated summary reports and performed a line-by-line 

comparison of database entries with field data forms to ensure data quality. We then 

applied the FIREMON Analysis Tool (FMAT) program to process TD and FL data. 

FMAT reports variable attributes for each plot and sampling event, mean values and 

standard deviations among samples, and percent change among events (Lutes 2006). We 

used its calculations of mature tree basal area (BA) and quadratic mean diameter (QMD) 

to determine relative stand density (RD) with the formula: RD = BA · QMD -0.5 (Curtis 

1982). 

FMAT-produced values for surface fuel load are subject to the assumptions 

discussed below. JFiremon calculates woody fuel biomass volume according to the 

equations presented in Brown (1974). Non-slash, composite values are used for quadratic 

mean diameter, non-horizontal correction, and specific gravity of fine (<7.6 cm diameter) 
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woody debris. Coarse (>7.6 cm) woody debris input to the database as decay class 1, 2 or 

3 are considered “sound” and assigned a specific gravity of 0.4. Decay class 4 or 5 

particles are considered “rotten” and assigned a specific gravity of 0.3. JFiremon also 

calculates duff and litter volume using bulk densities of 2.75 lbs/ft3
 and 5.5 lbs/ft3, 

respectively (Lutes 2006). The software automatically converts English values into 

metric, which this analysis reports.  

We exported FMAT attribute tables into MS Excel spreadsheets for further 

analysis. We applied Analyse-It software (http://www.analyse-it.com) in order to:  

• Verify FMAT outputs.  
• Determine normalcy of the dataset. 
• Determine confidence intervals around mean values. 
• Test for significance using paired t-tests with P values Bonferroni adjusted. 
• Visually represent sample means, variances, and confidence intervals.   

 
Finally, we subjected statistically non-significant results to post hoc power analysis using 

NCSS/PASS software (Hintze 2004). We solved for power and ß by inputting mean 

values of each monitoring variable, their standard deviation, the acceptable false change 

(type-I) error rate (α = 0.2), and MDC values specified in Table IV-2.  
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Results 

Forest Structure and Composition 

Before thinning, Douglas-fir was the most abundant tree species in total stems 

(58%), largely in the form of saplings (2258 stems/ha), although it was present in all size 

classes (Figure IV-4). The balance of tree stems consisted of Pacific madrone (11%), 

sugar pine (9%), canyon live oak (9%), ponderosa pine (7%), California black oak (6%), 

and incense cedar (<1%) (Figure IV-4). Among mature trees >10 cm dbh, Douglas-fir 

comprised the most basal area (44%) followed by madrone (27%), sugar pine (12%), 

ponderosa pine (8%), and black oak (6%) (Figure IV-5).  

Table IV-6 shows stand structure variables before and after thinning treatment. 

Thinning significantly increased mean live tree diameter by 24% from 23.9 cm dbh to 

29.9 cm dbh (p = 0.014) and canopy base height by 40% from 2.2 m to 3.1 m (p = 0.004). 

It also significantly reduced live tree density by 58% (p < 0.001) with the greatest effect 

on saplings (<10 cm dbh) of Douglas-fir (93% reduction) and madrone (94% reduction) 

(Figure IV-4). However, it decreased mature tree basal area just 14% below the pre-

thinning baseline (Figure IV-5). Thinning reduced mature Douglas-fir density by 84% 

and basal area by 19% by concentrating on smaller trees 10-30 cm dbh. It reduced density 

of madrone in the same class by 75% and basal area by 23% (Figures IV-4, 5).  

After thinning, Douglas-fir was evenly abundant in total stems (22%) with sugar 

pine (21%) and live oak (20%), although the latter were present only as seedlings. The 

relative abundance of ponderosa pine (16%) and black oak (14%) also increased above 

the baseline condition (Figure IV-4). Before and after thinning, conifers dominated the 
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upper size classes of mature trees (>30 cm dbh) and hardwood species co-dominated with 

conifers in smaller classes (Figure IV-4).  
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Table IV-6. Means (standard error) of stand structure variables.

Unit 1

Trees >10 cm dbh Pre-thinning Post-thinning % change
Mean live diameter (cm) 24  (1.9) 29.9  (3.2) 24
Mean dead diameter (cm) 26.3  (2.8) 28.2  (3.1) 7
Canopy base height (m) 2.2  (0.1) 3.1  (0.1) 40
Tree density (stems·ha) live 400  (92.6) 246.7  (64.3) -38
Tree density (stems·ha) dead 91.7  (18.7) 68.3  (18.5) -25
Basal area (m²·ha) 26.9  (6.2) 23  (5.7) -14
Relative density index 0.76 0.53 -30

Trees <10 cm dbh
Saplings >2.5 cm dbh (stems·ha) 2955  (394.5) 538.3  (76.2) -81
Seedlings <2.5 cm dbh (stems·ha) 1213  (295.5) 1113  (255) -8

Total stems·ha 4660  (476.2) 1967  (236) -58

Bold values indicate statistically significant change (p < 0.02).
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Figure IV-4. Tree density by species and size class before and after thinning in Unit 1. 
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Surface Fuel 

Mean surface fuel load was 7.41 kg/m² before thinning. Duff and litter comprised 

the bulk (65%) of surface fuels, and the remainder consisted of woody debris. Coarse 

wood particles >7.6 cm in diameter comprised 1.56 kg/m² (60%) of surface wood 

volume, with the balance in finer particles. Among fine wood particles, 100-hour fuels 

were most voluminous (66%) followed by 10-hour fuels (27%) and 1-hour fuels (7%).     

Table IV-7 compares treatment effects on surface fuel variables before thinning, 

after thinning but before slash treatment, and after pile burning slash treatment. Thinning 

added 2.01 kg/m² of woody debris to the ground, increasing total surface fuel load by 

27% (p = 0.004) above the pre-treatment baseline, mainly due to a significant (p = 0.004) 

pulse of coarse wood particles in the form of severed tree stems (Figure IV-6). Fine wood 

load also increased by 54% (p = 0.035) after thinning but before slash disposal.  

Slash disposal through pile burning reduced total surface fuel load to 7.44 kg/m², 

or slightly above (<1%) the pre-thinning baseline (ß = 0.196). Woody fuel volume, 

consisting mainly of coarse particles (1.91 kg/m²), remained 17% above the baseline after 

pile burning (Figure IV-6). Total fine particle volume also was 9% above the baseline. 

However, among fines, pile burning reduced 100-hour fuels to 10% below baseline levels 

(Table IV-7). Pile burning also reduced duff (-9%) and litter (-6%) below the baseline, 

but this was isolated to pile locations and did not occur throughout the treatment area. 
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Table IV-7. Means (standard error) of surface fuel loading. 

Unit 1

Pre-thinning Thin-only % change Thin-and-burn % change
Fine wood
1-hour 0.07  (0.01) 0.11  (0.01) 57 0.11  (0.01) 57
10-hour 0.28  (0.06) 0.58  (0.07) 107 0.40  (0.06) 43
100-hour 0.67  (0.08) 0.90  (0.13) 34 0.60  (0.06) -10
Total fine 1.02  (0.11) 1.59  (0.20) 54 1.11  (0.10) 9

 
Coarse wood
1000-hour sound 0.13  (0.13) 0.87  (0.18) 569 0.50  (0.27) 285
1000-hour rotten 1.43  (0.59) 2.14  (0.76) 50 1.41  (0.73) -1
Total coarse 1.56  (0.56) 3.01  (0.70) 93 1.91  (0.73) 22

All wood 2.58  (0.59) 4.59  (0.86) 78 3.02  (0.80) 17

Duff 3.79  (0.45) 3.79  (0.45) 0 3.45  (0.38) -9
Litter 1.03  (0.12) 1.03  (0.12) 0 0.97  (0.13) -6

Total fuel 7.41  (0.69) 9.41  (1.00) 27 7.44  (0.97) < 1

All values in in kg/m² 
1-hr, <0.6 cm. 10-hr, 0.6-2.5 cm. 100-hr, 2.5-7.6 cm. 1000-hr, >7.6 cm.
Bold values indicate statistically significant change (p  < 0.04).
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Figure IV-6. Surface fuel load by size class before thinning (pre), after thinning (thin), and after slash treatment (burn). 
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Discussion 

Forest structure and composition 

Thinning of mostly small trees (<20 cm dbh) significantly reduced stand density 

from 3443 to 853 stems/ha (Table IV-6). It retained all conifers >50 cm dbh and most 

hardwoods >20 cm dbh, leaving the dominant and co-dominant trees and snags of every 

species intact. Thinning also reduced the relative density (RD) of mature trees (0.53) to 

less than before (0.76), but did not meet the five-year target value (<0.5) (Table IV-1). 

The post-thinning RD is partly due to the high residual density of live Pacific madrone 

trees in the 10-30 cm dbh size class (105 stems/ha) (Figure IV-4).  

Pacific madrone’s drought tolerance, its affinity for maximum sunlight, and its 

ability to regenerate from seed as well as sprout after top-kill enabled it to successfully 

compete in the environmental conditions created by historical high-grade logging 

(Tappeiner et al. 1986). Madrone is widespread in lower elevation forest stands 

throughout the Applegate River watershed, but its preference for early-successional 

conditions without much overstory canopy shading (Franklin and Dyrness 1988) and its 

easily destroyed bark would render it less common in reference stands dominated by 

large conifers that endure frequent low severity fires (Main and Amaranthus 1996). 

Additional thinning of madrone stems <30 cm dbh in Unit 1 could hasten development of 

reference conditions by reducing mid-story canopy bulk density to benefit shade-

intolerant black oak, pines, shrubs, and grasses. It also would promote attainment of 

longer-term stand density management goals (Table IV-1). 

Retention of virtually all oaks and pines shifted stand composition toward 

reference conditions by increasing the relative abundance of those historically dominant 
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species (Figure IV-4). However, this initial treatment merely nudged stand structure and 

composition toward the reference rather than imposing it in one action, and thus largely 

avoided irreversible effects consistent with the prescription intent (Bey 2005). The 

growth rates of remaining trees may increase as a result of thinning, and tree vigor may 

be enhanced with less competition for light, water, and nutrients (USDI 1999). Larger 

trees may develop more quickly in upper canopy layers, increasing the likelihood that 

large coarse wood will exist over time. These changes favor long-term attainment of 

reference conditions but follow-up treatments that further reduce stand density and basal 

area, while also promoting oak and pine, may be necessary.  

 
Surface fuel and potential fire effects 

The results permit a clear distinction between thinning effects on surface fuel load 

and pile burning effects. The former significantly increased woody surface fuels in all 

timelag size classes while the latter brought woody fuel load nearer to, but not below, the 

pre-treatment baseline (Table IV-7, Figure IV-6). After slash treatment, comparison of 

multiple sampling events did not indicate a significant overall change in surface fuel load, 

with the sole exception of a significant increase in the volume of 1-hour fuels from 0.07 

to 0.11 kg/m² (p = 0.007). Our failure to detect more change in surface fuel load after 

slash disposal may represent type-II error, as our sampling design had relatively low 

power (0.8042), or it could indicate a true absence of post-treatment effect.   

 Thinning may have improved stand resilience to fire disturbance by increasing 

mature live tree mean diameter and canopy base height, in addition to its significant 

overall reduction of stem density (Table IV-4, Figure IV-4). Fire resistance of Douglas-fir 

increases with stem size as bark thickens and crown bases rise above the ground (Agee 
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1993). Trees selected for retention therefore could be more likely to survive heat stress 

from flaming combustion. Thinning also removed significant portions of sub-canopy 

Douglas-fir and Pacific madrone that low intensity fire otherwise would have killed 

(Figure IV-4). Removal of those trees reduced live fuel “ladders” that can facilitate flame 

movement from the ground surface into the canopies of dominant trees (Agee 1996, 

Figure IV-7).   

Omi and Martinson (2002) study eight areas burned by wildland fire and assess 

the effects of pre-fire fuel treatments on subsequent fire severity. In that study,   

height to live crown, the variable that determines crown fire initiation rather than 
propagation, had the strongest correlation to fire severity ... [W]e also found the more 
common stand descriptors of stand density and basal area to be important factors. But 
especially crucial are variables that determine tree resistance to fire damage, such as 
diameter and height (22). 

 
The investigators do not characterize surface fuel profiles that existed before the fires 

subjected to study, and the spatial scale of the events considered confounds replication. 

However, the authors claim their results can be extrapolated elsewhere. A key implication 

is that treating live fuels below dominant tree canopies and reducing small-diameter tree  

 
 
 

 

 

 
 

  

 

 

Figure IV-7. Forest stand structural elements that influence stand replacing wildland fire effects. 
Surface fuel loading and vertical height to live tree crowns exert the greatest influence on canopy 
fire initiation. Source: Agee (1996). 
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density can reduce the likelihood of stand replacing wildland fire (Figure IV-7). Indeed, 

research suggests that raising stand-scale canopy base height is a critical factor in 

disrupting canopy fire initiation (Carey and Schumann 2003, Graham et al. 2004).  

As discussed in Chapter III, canopy fire behavior depends on the density of 

canopy fuels as well as the availability of surface fuels to sustain convective heat transfer 

into the canopy (Scott and Reinhardt 2001, Figure IV-7). In order for active crown fire to 

spread independent of surface fireline intensity, rare combinations of topography and 

weather must be present, and even then, it usually affects only small areas before ceasing 

on its own (Van Wagner 1977). In Unit 1, flat terrain mitigates the risk of active canopy 

fire, and fuel treatments that effectively reduce surface fireline intensity can further 

diminish passive crown fire spread potential (Agee 1996). In contrast, steeper terrain 

>30% in portions of Unit 2 elevates active canopy fire risk, but that site hosts rare 

clustered lady’s slipper orchid, which associates with closed canopy forest. Canopy bulk 

density fuel reduction there could trade-off with biodiversity conservation objectives 

(USDA/USDI 1994b). Furthermore, investigations of fire severity patterns at stand and 

landscape scales in the KS region correlate low severity fire effects with closed canopy 

forest structure and high severity effects with conditions created by crown bulk density 

treatments (Odion et al. 2004, Raymond and Peterson 2005). 

Low thinning followed by slash disposal via pile burning facilitated attainment of 

some, but not all, management goals associated with fire resilience (Table IV-1). The 

remaining sapling density (538 stems/ha), mature live tree mean diameter, and canopy 

base height closely resemble the target values (Table IV-6). However, the surface fuel 

load (7.44 kg/m²) exceeds the target value by 24%, and indeed, it is more voluminous 
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than in the pre-treatment condition (Table IV-7). The amount, continuity, and moisture 

content of fine woody fuels strongly influence the rate at which fire spreads as well as the 

intensity of heat energy release at its flaming front (Rothermel 1983). Unless treated, this 

downed woody fuel burning in a relatively desiccated environment lacking horizontal 

wind breaks with potentially swifter mid-flame wind speeds may contribute to elevated 

fireline intensity and resultant severity of fire effects on vegetation and soil than is 

assumed in a reference condition. Latent duff accumulations, only minimally affected by 

initial treatments (Table IV-7), also could augment fire severity by prolonging the 

residence time of smoldering combustion in the soil (Harrington 2000). 

BLM assessments conducted in the Applegate River watershed affirm that 

increased woody surface fuel loads left after mechanical thinning operations produced 

faster rates of fire spread and longer flame lengths, resulting in intensified fire behavior 

and increased difficulty of control compared to an untreated condition (e.g., USDI 2005). 

Raymond and Peterson (2005) similarly observe that elevated woody fuel volumes left on 

the ground after mechanical thinning contributed to increased fire intensity and stand 

mortality in treated areas compared to untreated stands of mixed evergreen forest that 

burned in the 2002 Biscuit fire. Opportunities for further analysis to determine residual 

fire hazard in the study area and alternative ways to address it include modeling of 

potential fire behavior and effects using BehavePlus (Andrews 2005), Nexus (Scott 

1999), and the Fire and Fuels Extension to the Forest Vegetation Simulator (Ferguson 

2004). 
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Methodological efficacy 

 The hybridized data collection and analysis protocols used in this study generated 

useful data for evaluation of treatment effects, although certain advantages and 

disadvantages of the methods we used merit discussion. One key advantage of the 

permanent EM sampling plot design following FMH protocols (USDI 2003) was its 

allowance of dependent-variable statistical testing of data, which requires small sample 

sizes to accomplish the monitoring objectives (Table IV-2, Figure IV-2). In contrast, the 

temporary variable-radius plots suggested in FIREMON (Lutes 2006) would necessitate 

independent-variable testing and require larger sample sizes due to poor data correlation 

between sampling events (Zar 1996). Permanent plots are most appropriately used where 

a high degree of correlation links data collected at one location over time, particularly in 

this study, where monitoring is limited to features that are not prone to spatial movement 

(Elzinga et al. 1998). Use of permanent EM plots thus supported a core purpose of this 

monitoring project to maximize the simplicity and efficiency of data collection and 

analysis. 

 However, an important disadvantage of permanent plots is the ostensible need 

they create for two years’ worth of pilot data to determine an adequate sample size 

(Elzinga et al. 1998). The sample size equation we used requires input of standard 

deviations of the difference between mean values in two sampling events. As an 

alternative, we determined sample size using standard deviations of only the first-year 

pilot sample coupled with an arbitrary estimate of the correlation coefficient after the 

suggestion of Elzinga and colleagues (1998:354). The correlation coefficient we used 

(0.8) is conservative given that the scope of this analysis is limited to spatially fixed tree 
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density and fuel load variables. Calculating the sample size in this way maximized the 

value of first-year pilot data and enhanced project efficiency by sparing the LRP 

expenses associated with additional data collection and delayed treatments.  

 Our use of 0.1 ha (1000 m²) EM plots also disadvantaged sampling efficiency 

because the relatively small size of Unit 1 (~16.2 ha) forced us to reject many 

randomized plot locations and orientations per FMH protocol (USDI 2003). Otherwise, 

the plots would not have entirely fit within the treatment area. As a result, we randomly 

established anchor points, and then arbitrarily oriented plots parallel to magnetic north in 

order to maximize their distance from unit boundaries. Smaller plots can avoid such 

difficulty in a similarly sized treatment area. The “rapid assessment” plot design of 

Paintner (2003), for example, could better accommodate random location and orientation 

while sustaining the benefits of a permanent sampling unit, although its efficacy in 

measuring forest density and other structural properties is uncertain.  

The hybridized protocols introduced two additional inefficiencies that should be 

noted. First, shortcomings in the FIREMON software forced us to employ additional 

resources in the sampling design and data analysis stages. In particular, FMAT lacks a 

means to test statistical power and quantify potential for missed-change (type-II) error. 

Reporting of non-significant results is incomplete without post hoc power analysis that 

quantifies the probability of a statistical test failing to detect a true change (Elzinga et al. 

1998). Therefore, we used NCSS/PASS (Hintze 2004), an easy-to-use software package 

specifically developed for power analysis and sample size computation, to overcome this 

limitation.  
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Second, FMAT automatically applies a one-way ANOVA procedure to calculate 

variance for a single variable between two or more sampling events. This procedure tests 

the alternate hypothesis that at least one sample mean is different from the others. The 

software thus determines if differences exist among means, as well as which means differ 

(Lutes 2006). However, repeated measure ANOVA assumes sphericity of correlation 

among sampling events, which is not ideal for monitoring studies because data 

correlation may vary across sampling events (Zar 1996). This is particularly true of fuel 

load data sampled on planar intercept transects because small variations in protocol 

interpretation among sampling crews can introduce bias and skew the data. Permanent 

stakes and photo points at both ends of each transect minimize but do not eliminate these 

sources of bias. Elzinga and colleagues (1998) recommend using paired t-tests to 

compare data from multiple sampling events in permanent monitoring plots, provided 

that a Bonferroni adjustment is applied to the threshold P value (Glanz 1992), because 

the test remains valid even if the pair wise correlation is unknown (Snedecor and Cochran 

1980). Therefore, we applied Analyse-It (http://www.analyse-it.com) to run paired t-tests 

on the FMAT-generated data attribute tables instead of reporting ANOVA results.   

 This analysis has implications for development of FEAT-FIREMON Integrated 

(FFI) (Benson et al. 2006), a consolidated fire effects monitoring and data analysis tool 

designed as an “advanced alternative” to FIREMON (Lutes 2006) and the Fire Ecology 

Assessment Tool (FEAT). FMH sampling protocols (USDI 2003) work effectively with 

FIREMON database (JFiremon) and analysis (FMAT) software, as the latter are flexible 

to user approaches that differ from underlying technical literature. The degree to which 

FEAT shares the shortcomings we found in the data analysis capabilities of FIREMON 
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software is unknown. However, FFI could improve monitoring project efficiency by 

incorporating means to compute the statistical power of sampling designs as well as 

apply appropriate tests for significance to data sampled from either permanent or 

temporary plots.  
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V.  SYNTHESIS 

 

 Reference analysis (Chapter III) explains the significance of wildland fire to the 

adapted disturbance ecology of mixed evergreen forests in the Siskiyou Mountains. It 

hypothesizes that the study area historically experienced low and moderate severity fire 

effects associated with anthropogenic burning oriented to the production of food and 

other essential items of material culture. Noting the importance of ongoing climate 

change to region-scale fire regimes and its implications for restoration of fire-adapted 

forests, the analysis suggests reference conditions for ecological restoration in the study 

area comprising a range of potential stand structures and compositions that promote 

ecosystem resilience to inevitable fire disturbance. Perpetual exclusion of fire in the study 

area is neither desirable nor feasible, as it entrenches forest health decline and risks 

catastrophic loss of property and ecosystem function (USDI 1996, 1999, 2000). 

 Monitoring of initial treatment activities in Unit 1 (Chapter IV) demonstrates that 

mechanical thinning of small trees followed by slash disposal through pile burning 

nudged stand structure and composition toward reference conditions and somewhat 

improved stand resilience to fire. However, the treatments left significantly more mid-

sized stems of Pacific madrone (Figure IV-4) than would be present in a reference 

condition, and did not reduce pre-existing surface fuels (Table IV-7) that contribute to 

fireline intensity and severe fire effects (Agee 1996). Therefore, initial treatments did not 

accomplish all of the short-term management goals for the Penny Stew project, and 

further action including application of management-ignited prescribed fire (MIPF) is 

necessary to attain reference conditions in the study area, as discussed below. 

72



 
Fire hazard reduction demands fire use 

Mechanical thinning is more widely used, but management-ignited prescribed fire 

(MIPF) is the most effective means to calm subsequent fire behavior, particularly where 

activity fuels remain on the ground after thinning operations are completed (USDI 1998). 

Stephens (1998) compares 12 different fuel treatment combinations and concludes that 

MIPF used alone or in combination with low mechanical thinning is the most effective 

way to minimize fireline intensity in FARSITE-simulated wildfires. MIPF is so effective 

because flaming combustion consumes fine woody fuels, which offers unique advantages 

over other treatment methods that focus on larger, less flammable fuels (Deeming 1990). 

Indeed, van Wagtendonk (1996) compares effects of alternative fuel treatments and 

reports that low mechanical thinning and pile-and-burn slash treatments on flat ground 

yield similar fire behavior to low thinning without any slash treatment (i.e., more intense 

than no treatment) because pre-existing surface fuels remain unaffected. Therefore, 

effective fire hazard reduction in the study area may depend on the rate at which surface 

fuels are treated with MIPF.  

 
Ecological restoration demands fire process 

 Some researchers associate forest structural patterns with various fire regimes and 

recommend mechanical treatments to “mimic” effects of low- and moderate-severity fires 

(Arno and Fiedler 2005, Weatherspoon 1996). However, manipulations of forest structure 

alone do not replicate fire disturbance, particularly its thermal effects on seed 

germination and nutrient cycling (Agee 1993). Ecological restoration in the study area 

requires establishment of not only the reference forest structure and composition, but also 
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the disturbance processes needed to sustain reference structure and composition over time 

(McIver and Starr 2001).  Reliance on structural manipulations of forest vegetation and 

continued exclusion of wildland fire may perpetuate ecosystem degradation (Atzet 1996). 

 
Spatial pattern of fire use influences effects 

 Even if land managers use MIPF in the study area, its scale of use will fall short 

of restoring the functional role of fire process on the landscape (Martin 1997). MIPF 

operations usually are kept small to ensure control and generally are not done with 

landscape-scale restoration objectives in mind. Baker (1994) asserts that small-scale 

MIPF operations can intensify adverse cumulative effects on landscape structure caused 

by fire exclusion. Indeed, uncontrolled wildland fires offer distinct advantages for the 

restoration of landscape structures altered by fire suppression because no other option 

mimics the spatial patterning of historical fire effects (Baker 1989). Fire should be 

reintroduced at a landscape scale, thereby allowing natural ecological processes to shape 

ecosystem structure and composition over time (Hardy and Arno 1996). The most 

appropriate places to implement landscape-scale fire restoration include roadless areas 

and large blocks of lightly roaded areas where risks to human life and property are low 

(DellaSala and Frost 2001). In contrast, a sensible approach to stand-scale forest 

restoration in the study area, a rural-wildland interface zone, would prepare the site to 

support low severity wildland fire with applications of MIPF. 

 
Timing of fire use influences effects 

 Use of MIPF can restore some ecosystem processes that have been limited or 

rendered dormant by fire suppression (Arno 2000). MIPF has been used effectively in the 

74



restoration and maintenance of fire-adapted plant communities and wildlife habitat 

(Hardy and Arno 1996, McMahon and deCalesta 1990). However, as currently practiced, 

it probably cannot mimic all of the ecological functions of historical fires. Land managers 

in the Siskiyous typically ignite prescribed fires during the wet season to minimize smoke 

production and risk of escape (Chandler 2002). Wet season burning may negatively affect 

soil microorganisms by more efficiently conducting heat deeper into soil layers than 

would occur in the dry season (Agee 1993), although no experimental or monitoring data 

supports this speculation (Ryan 2003).  

Research shows that little soil heating occurs if soils are very moist at the time of 

burning and fireline intensity is low (DeBano et al. 1979). In this situation, hard-seeded 

chaparral plants may not receive sufficient heat shock to germinate, resulting in high seed 

mortality and low seedling emergence (Odion 2002). Thus, non-sprouting shrubs (e.g., 

Arctostaphylos viscida, Ceanothus integerrimus) may experience poor regeneration and 

seed bank depletion as a result of wet season burning. Those species are not likely to be 

resilient to such fire effects (Odion 2002). Burned areas with poor shrub regeneration are 

more prone to invasion by yellow star thistle (Centaurea solstitialis) and cheat grass 

(Bromus tectorum), among other exotic weeds and annual grasses. Fine fuels made by 

exotics can easily carry fire and enable reburns before shrubs can produce seed (Odion 

2002). In the worst-case, site conversion to a short-rotation (<5 years) fire regime fueled 

by exotic plants can eliminate native chaparral (Zedler et al. 1983).  

 
Guidelines for use of fire in the study area  

 As noted in the reference analysis (Chapter III), passive restoration, defined as 

cessation of practices that degrade ecological function (i.e., fire suppression) may be an 
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appropriate restoration paradigm for Unit 2 of the study area (DellaSala et al. 2004). 

However, if active management is considered, MIPF applications could be justified in the 

oak savannah near the unit center, the pine flats on its east flank, and at lower slope 

positions occupied by mature Douglas-fir where the terrain is relatively flat and soils are 

stable. In areas where fuel loading is too high to safely apply MIPF, limited mechanical 

thinning may help to actualize desired forest structure, and in turn hasten the use of MIPF 

in ways that more closely emulate historical ecological functions of fire (Brown 2000b). 

Manual fuel reduction treatments including pile-and-burn and ladder fuel pruning can 

effectively clear fine surface and ladder fuels and prepare a site for burning without 

significantly impacting soils or wildlife habitat (Graham et al. 2004). Such pre-treatments 

already have been accomplished in Unit 1. 

 Successful use of MIPF may require sequential applications before reference 

conditions are realized. Knowledgeable workers (e.g., Agee et al. 2000, Martinez 2004) 

recommend staggering burn treatments by several years because excessive frequency can 

deplete seed banks (discussed above) and simplify multi-layered habitats used by 

sensitive wildlife such as northern goshawk (DellaSala et al. 1995). Burns should be 

accomplished under conditions in which important structural elements of habitat, such as 

large and old trees and coarse wood, can be protected (Agee and Huff 1986). As always, 

periodic monitoring should follow MIPF treatments to determine whether restoration 

goals have been met and when such activities should cease.   
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