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CHAPTER I 

STAND DESCRIPTION 

Location 

The stand selected for evaluation lies in the lower Holland Creek 

drainage about two miles west of the scarp face of the Swan Range, and 

about one and one-quarter miles south of Holland Lake (Figures 1 and 2). 

The legal description is: NE 1/4, section 10, township 19N, range 16W, 

P.M.M. Roughly rectangular in shape, the stand is 16 acres in size. The 

Owl Creek Loop Road borders the stand along its south perimeter. Adjoin­

ing along the north and east is a seed-tree cut and along the west, a 

clearcut. 

The stand is 2.8 miles east of state highway 208 and approximately 

25 miles north of Seeley Lake. With the exception of several small, 

private holdings, the land surrounding the stand is federally owned, 

and administered by the Swan Lake Ranger District. 

Topographic Features 

The stand is located along the lower slope of a long low ridge 

that inclines gently to the north from the Swan-Clearwater Divide. The 

elevation is 4320 feet. The slope averages 10% and ranges from 5 to 20%. 

Slope configuration is typically planar while the predominant aspect is 

north. 

An intermittent stream, a minor tributary of lower Holland Creek, 
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borders the stand to the west. The stream is usually dry by August as are 

most of the first order streams draining the Swan-Clearwater Divide. Dry 

summers and rapid water movement into the permeable till  mantle both con­

tribute to the lack of sustained stream flow. 

Stand History 

The stand was clearcut in 1965 and broadcast burned the following 

year. In the spring of 1967, crews employed by the Swan Lake Ranger 

District planted the site with 2-0 stock of western larch at a 6-feet 

square spacing. The si 1viculturalist presently in charge of regenera­

tion has no record of the seed source of the planting stock. 

Stand Statistics 

Stand statistics displayed in the following tables summarize meas­

urements taken in a systematic sample of the stand in September of 1980. 

Sixteen circular plots, 1/300 acre in size, were established along a 3.2 

chain square grid. At each plot, all trees were tallied by species. On 

each tree, height, diameter at breast height (dbh), and the previous 

5-year height increment were measured. Age and crown ratio were then 

estimated. 

I sampled the stand systematically rather than randomly because sys­

tematic sampling is not only quicker, but also insures adequate coverage 

in aggregated populations. Results from several empirical studies in­

dicate that systematic sampling is a more efficient estimator in aggre­

gated populations. Both Kattenberg (1978) and Payandeh and Ek (1971) 

reported that systematic sampling produced more precise estimates than 



simple random sampling when sampling intensities were held constant. 

TABLE 1 

DESCRIPTIVE STATISTICS 

Mean number of Coefficient of Standard error 95% confidence 
trees per acre variation (%) of the mean (%) limits (%) 

All trees 2934 64 16 2934 ± 34.8 

Trees 1" 1015 34 8.5 1015+18 

The precision of the estimate of the mean number of trees per acre 

is ± 34.8 percent of the 95 percent confidence level. If trees less than 

one inch dbh are ignored, the precision of the estimate is improved to 

± 18 percent at the 95 percent confidence level. 

Stand Structure 

The site, originally planted exclusively to larch, now supports a 

species mix (Table 2). A favorable seedbed and available seed from a 

variety of indigenous species have contributed to this stand's development 

as a mixed conifer stand. Ages range from 5 to 13 years. 

Western larch presently commands a sizable competitive advantage over 

Douglas fir and Engelmann spruce (Figure 3). These latter two species are 

confined to the suppressed crown class. The striking difference in height 

illustrated in Figure 3 between larch and these two more tolerant species 

is due to the differences in their respective juvenile growth rates as 
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TABLE 2 

TREES PER ACRE BY SPECIES AND AGE 

Species 

W.L. D.F. E.S. Total 

5 323 323 

6 77 462 185 724 

7 162 46 208 

8 

9 

10 384 123 69 486 

11 

12 

13 721 721 

Total 1182 1290 462 2934 

well as differences in age. Larch typically outgrows all competitors 

(Deitchman and Green, 1965). These differences in height growth rate are 

most pronounced during the seedling and sapling phase of development. 

Schmidt (1969) reports that between the ages of ten and fifteen, larch 

adds height increment at twice the rate of Douglas fir and at almost three 

times the rate of Engelmann spruce. Classification of species by diameter 

class closely parallels their distributions by crown class (Table 3). 



TABLE 3 

TREES PER ACRE BY SPECIES 

AND DIAMETER CLASS 

SPECIES 

W.L. D.F. E.S. Total 

.1-.9 167 1290 402 1919 

1-1.9 373 373 

2-2.9 296 296 

3-3.9 346 346 

Total 1182 1290 402 2934 
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Stand Density 

Sixty-five percent of the stem total is less than one inch average 

dbh (Table 3) and 3-5 feet tall (Figure 3). The remaining thirty-five 

percent, considerably larger, averages 15 feet in height. The degree 

to which stems in the lower sixty-five percent of the stand diameter 

distribution exerts competitive influence on trees comprising the upper 

thirty-five percent is probably negligible (Bella, 1971). The measure 

of stand density in the following discussion considers only those trees 

in the upper thirty-five percent of the diameter distribution. 

The crown competition factor (CCF) (Krajicek and others, 1961), a 

diameter based measure of relative density, is an index of the average 

level of crown competition between neighboring trees. Expressed as a 

percent, the CCF is the ratio of the growing space currently occupied by 

the tree of average diameter to the growing space available. At a CCF of 

100 percent, trees are on the average utilizing all of the available 

growing space. Stated another way, crowns of neighboring stems are just 

touching. Initiation of crown overlap does not necessarily coincide with 

competition among neighboring trees for light, water, and nutrients. 

The CCF of the upper thirty-five percent of the diameter distribution 

is 65 percent, which means that trees on the average are occupying 65 per­

cent of the growing space available. Trees in the stand are aggregated 

rather than uniformly distributed so the actual level of competition 

varies around this mean. Having ample space to grow, dominants and co-

domipants are averaging 1.5 feet of leader growth per year and maintaining 
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live crown ratios in excess of seventy-five percent. Height of the taller 

dominants exceeds 20 feet while the diameter of mean basal area is 2.7 

inches. 

The CCF is computed from an equation predicting crown width as a 

function of diameter and from the number of trees per acre by diameter 

class displayed in the stand table (Table 3). The equation is derived 

from data furnished by Schmidt (Schmidt, unpublished data, 1981) collected 

in larch sapling stands growing on medium quality sites. Individual data 

points represent the average of twenty observations. Averaging, which 

reduces the subsequent residual variation when the regression line is 

fitted to the data artificially reduces the standard error of the regres­

sion. Associated with this reduction is the accompanying inflation of 

the coefficient of determination. 

Crown width (feet) = .384 + 1.88 dbh (inches) 

n = 20 

2 each data point is the average r = .96 

of 20 observations sy/x = .32 

Coverage of Grasses, Forbs, and Shrubs 

A developed sod layer consisting of Calamagrostis rubeacens and 

Carex Rossii presently covers greater than 50% of the ground surface. 

CIintonia uniflora, Linnaea boreal is, and Jfyjrola secunda are present in 

small amounts. Their respective coverages are restricted to moist micro-

sites. Xerdphyllum tenax and Eplobium augustifolium are the only forbs 

present in any quantity. Their combined coverage is somewhere between 10 

and 15 percent. Shrubs, a minor component, cover less than 10 percent of 

the area. The four most frequently occurring shrub species are Vaccinium 



11 

qlobulare, S.ymphoricarpus albus, Shepherdia canadensis, and Amelanchier 

alnifolia. 

Has the coverage of grasses increased since the original old growth 

stand was harvested and the site broadcast burned? Lack of undisturbed 

old growth stands immediately adjacent prevents direct comparison between 

uncut and cutover sites. Antos (1980), in a study of successional 

patterns in grand fir habitat types, reports an increase in grass 

coverage from 5 percent in undisturbed stands to 30 percent following 

clearcutting and broadcast burning. 

Site Productivity 

The lack of suitable site trees rules out direct measurement of site 

index. Suitable site trees are defined as dominants and codominants free 

of damage and past suppression. An alternative approach for measuring site 

productivity is indirect estimation of site index using the habitat type 

classification (Pfister and others, 1977). According to Pfister, the 

stand is located within the Xerdphyllum tenax phase of the Abies lasio-

carpa-Clintonia uniflora (ABLA/CLUN/XETE) habitat type. Pfister reports 

a site index estimate of 63 for larch and a yield capability, predicted 

from site index, of 80 cubic feet per acre per year for this habitat type. 

Pfister's productivity estimates are generated from a very small sample; 

at each plot only a single site tree was measured for each species present. 

Pfister never intended the habitat type classification to be used for 

site stratification. Only when requested by the Forest Service to include 

productivity estimates, did he add site index statistics. Site index alone 

is not a reliable estimator of yield capability (Assman, 1970). Stands 

similar in age growing on the same sites often differ in stocking. 
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Seeking a more accurate estimator of site index, I measured six 

larch dominants and codominants in a 73 year old stand about one-half 

mile to the east but on similar terrain and within the same habitat type. 

The site index here, 59 on a 50 year base, is significantly lower than 

the figure reported by Pfister for the ABLA/CLUN/XETE habitat type. The 

direct estimate may be conservative since initial stand development can 

significantly reduce the site index for larch. Shrub competition and 

crowding during seedling and sapling stages of stand development both 

reduce larch height growth (Schmidt, 1969). Potential height increment, 

once forfeited, is never regained. 

General Vegetation Patterns in the Lower 

Holland Creek Drainage 

The forests growing in the lower Holland Creek drainage are presently 

dominated by serai species. Even-aged stands of lodgepole pine (Pinus 

contorta var. latifolia Engelm) that regenerated in the wake of the 

disastrous 1910 fire, presently cover much of the area north of the Swan-

Clearwater Divide. Western larch (Larix occidental is Nutt.) and Douglas-

fir (Pseudostsuga menziessii var. glauca Franco) are present in these 

stands as minor associates. Old growth stands, until recently, comprised 

a prominant timber type, but have been heavily cut during the past twenty 

years. Of those remaining, Douglas-fir and western larch, both long-lived 

serai dominants, as well as Engelmann spruce (Picea engelmannii Parry), 

are the major tree species. 

On most sites, subalpine fir (Abies lasiocarpa (Hook.) Nutt.) is the 

climatic climax. Douglas-fir and grand fir (Abies grandis (Dougl.) 
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Lindl.) are both present as minor associates in the subalpine fir climax 

community. Their respective distributions as climax species are restrict­

ed to warmer, more moist and warmer, drier sites. 

Within the subalpine fir series, the most common habitat types (H.T.) 

are the Abies lasiocarpa/Clintonia uniflora H.T., Abies lasiocarpa/ 

boreal is H.T. and Abies lasiocarpa/Xerbphyllum tenax H.T. These three 

habitat types grade into one another presumably along a gradient of de­

creasing soil moisture. At the dry end of this spectrum is the Pseudo-

stsuga menziessii/Linnea boreal is H.T. On sites in which grand fir 

potentially outcompetes subalpine fir, the Abies grandis/Clintonia uniflora 

H.T. is the most common habitat type. 

Fire History 

Fire has strongly influenced both the species composition and stand 

structure of the surrounding stand complex. Age class distributions in 

serai stands, ranging from highly even-aged to uneven-aged, indicate that 

fires of varying intensities have occurred. Fires of both moderate and \> 

high intensity have maintained serai species in dominant stand positions 

but each has created a distinctly different stand structure. 

High intensity stand-destroying fires create conditions favoring the 

immediate establishment and development of even-aged stands of western 

larch and lodgepole pine. The catastrophic fire of 1910 burned over 

acreages of timberland north of the Swan-Clearwater Divide leaving few 

survivors in the original overstory. A direct result of this fire is the 

densely stocked lodgepole pine forest that covers most of the land north 

of the divide. 
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Less intense burns killing only a portion of the trees in the 

overstory have created stands consisting of two different yet inter­

mingled age classes. Fire thinned the overstory, eliminated fuel 

buildings, and exposed mineral soil (Sneck, 1977). An even-aged lower 

story has developed from seed dispersed by thick barked survivors as well 

as from the serotinous cones of lodgepole pine. The resulting stands are 

similar in configuration to a successful seedtree or shelterwood cut in 

which the overstory has been left to grow. 

Wildlife 

I observed both mule deer (Odocoileus heminous) and white tail deer 

(Odocoileus virginianus) in the Owl Creek drainage during the late summer 

and early fall. In the same general area, I also observed pellet groups 

of elk (Cervus canadensis nelsoni). Browsing activity on shrubs growing 

within the stand appeared to be light. Lack of use was probably due to 

lack of hiding cover and the close proximity of the stand to a well 

traveled road. Pileated woodpeckers (Dryocopus pileatus) appeared 

occasionally while I was cruising old growth stands along the stream 

bottoms. 

Insects and Disease 

The only indication of any insect or disease infestation is past 

severance of terminal shoots on larch by western spruce budworm 

(Choristoneura occidentalis). Terminal shoots on most trees have been 

severed at least once, but severed shoots were replaced during the same 

growing season by upturned laterals. On the majority of trees, the forks 

have not persisted. As a result, overall crown form remains good and the 
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boles straight. Past defoliation and damage to terminal shoots has likely 

resulted in some loss in potential height growth. In a five year study 

of the effects of repeated attacks on form and growth of larch, Schmidt 

and Fell in (1973) reported average annual height growth losses of 27% on 

trees whose terminals had been severed. Infestations in mature stands 

have caused significant reductions in seed production (Shearer, 1980). 

Spruce budworm larvae feed on developing cones as well as buds and flowers 

(Fellin and Shearer, 1968). 

Larch casebearer (Coleophora laricella), first observed near St. 

Mary's, Idaho in 1957 (Denton, 1958), has since spread throughout almost 

the entire range of western larch in Montana (Denton, 1979). District 

foresters reported an outbreak during the sunnier of 1980 in the Lion 

Creek drainage about 25 miles north of Holland Lake. There is no sign 

of casebearer damage either in the stand or in the immediate vicinity. 

Mountain pine beetle (Dendroctonus ponderosae) is currently epidemic 

on the Glacier View District of the Flathead National Forest. As of 

1980, no outbreaks had been reported in the Seeley-Swan (U.S.D.A., 1981). 

The extensive stands of 65 year old lodgepole pine are likely to become 

prime targets if the present infestation on the North Fork of the «• 

Flathead spreads south into the Swan Valley. 

Lodgepole pine dwarf mistletoe (Arceuthobium americanum) is present 

in surrounding stands in very small amounts. Larch dwarf mistletoe 

(Arceuthobium larcis) may also be present but none was seen during a 

reconnaissance. 
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Geology and Soils 

The Swan Valley was formed by high angle block faulting of Precam-

brian rocks (Perry, 1962) and subsequently altered by glaciation (Alden, 

1953). The valley bottom is a depositional landscape constructed by the 

accumulation of drift transported by water and ice. A prominent deposi­

tional feature is the moraine of the Holland Creek glacier. 

The soils are gravelly loams that developed from parent materials 

consisting of volcanic ash over quartzite and argillite till. These 

soils are classified as loamy-skeletal, mixed andic cryocrepts and mapped 

in the Waldbillig series (U.S.D.A., 1980). 

Waldbillig soils developed on two distinctly different lithologies. 

The surface horizon developed from loess containing a sizable amount of 

volcanic ash. The underlying horizons developed from till. A profile 

description taken at a roadcut (Table 4) reflects the lithologic 

differences. The subsurface horizons are designated by the prefix II. 

TABLE 4 

HORIZON DEPTH 

Andic 0-9 

* IIA2 11-28 

IIA2B2 29-60 

The only significant differentiation within the profile is the abrupt 

boundary between the andic and IIA2 horizons. These two horizons differ 

greatly in texture, color, structure, and consistency. The andic is a 

light brown, gravelly loam having a weak, fine granular structure. The 

IIA2 is a pink to reddish brown gravelly, sandy loam massive in structure. 
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The andic is friable when moist and soft when dry, while the IIA2, also 

friable when wet, is hard and dry. The percentage of coarse fragments 

increases from roughly 30% of total volume in the andic to approximately 

60% in the IIA2B2. 

The andic horizon has a number of properties favorable to tree 

growth. It is typically low in bulk density, high in total porosity, 

and holds large amounts of water available for use by plants. Cullen and 

Montagne (1981) measured physical properties by horizon in quartzite tills 

overlain by volcanic ash. They sampled 18 undisturbed pedons at three 

locations in the Flathead and Kootenai National Forests. Their findings 

characterize the andic as much less dense, more permeable, and capable of 

retaining more water between -1/3 and -15 bars than underlying horizons. 

Average bulk density is .76 grams/cm3 in the andic and 1.77 grams/cm3 in 

the IIA2 and IIA+B. Total porosity, inversely related to bulk density, 

varies from 71 percent of total volume in the andic to 33 percent in the 

denser IIA2 and IIA+B. Water holding capacity, strongly related to 

macropore space, shows a similar trend. Water available for plants 

decreased from 32 percent by weight in the andic to 17.6 and 21.4 in the 

IIA2 and IFA+B respectively. The andic is a better medium for both 

rooting and water storage (Figure 4) than either the IIA2 or IIA+B. 

The andic horizon typically has a relatively high cation exchange 

capacity. Cullen and Montagne report average C.E.C. by horizon in 

quartzite tills. Values range from 17.07 meq./lOO grams in the andic 

to 4.97 and 8.79 meq./lOO grams in the IIA2 and IIA+B. Higher C.E.C. 

values in the andic reflect higher organic matter contents as well as 

the presence of allophane. An amorphous clay mineral weathered from 
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FIGURE 4 
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Soils formed in quartizite till are highly susceptible to compaction 

by logging equipment (Bates, 1981). In a study determining the relative 

susceptibilities of different textured soils to compaction, Raney and 

others (1955) found that medium textured soils compact to the highest 

densities. 

CIimate 

The climate of the Swan Valley is montane-continental and is strongly 

influenced by maritime air masses (Foggin, 1980). Moist air masses orig­

inating over the Pacific Ocean yield large amounts of precipitation as 

they are intercepted by the Mission and Swan Ranges. These moist air 

masses also moderate temperature extremes, especially during the winter. 

Seeley Lake, the nearest weather station, receives a yearly average 

of 22 inches of precipitation. Most of this falls during the winter and 

spring. June is wet but the remainder of the growing season is warm and 

dry. The main source of water for tree growth is from moisture stored 

in the soil at the beginning of the growing season. 

Martinsen (1981) measured soil moisture content in valley-bottom 

soils derived-from glacial till at a number of locations in the Swan 

Valley. Displayed in Figure 5 is a year long record of soil moisture 

fluctuation recorded at a site having a soil type and moisture regime 

similar to that in the study site. The soil was recharged to levels at 

or near field capacity by late fall of 1979. Moisture levels remained 

constant through April of the following year. The surface horizon began 

to dry out in May but was recharged by heavy rains in late May. During 



TABLE 5 

MONTHLY MEAN PRECIPITATION AND TEMPERATURE 

SEELEY LAKE (4042 FT. ELEVATION; 

27 YEARS OF RECORD) 

J F M A M J J A S O N D  

Precipitation 3.35 1.86 1.66 1.37 1.78 2.19 .96 1.14 1.39 1.35 2.2 2.96 
(inches) 

Temperature . 26.1 26.3 30.2 39.6 48.6 56.0 62.4 61.2 52.9 43.7 31.3 22.7 
(°F) 

Annual Precipitation: 22.2 

Annual Temperature: 41.3 

ro 
o 



this period, moisture levels in the subsurface horizons remained constant. 

The entire profile dried out between June and August as evaporative de­

mand exceeded soil recharge. Heavy rains in August and again in September 

temporarily recharged the andic and IIA2 horizons, but during the ensuing 

dry period, soil water potential declined to -15 bars. 

Although the fluctuations illustrated in Figure 5 are based on a 

single year's sampling at one site only, these are probably representa­

tive of yearly soil moisture trends on similar soil type-habitat types 

in the Swan Valley. Briefly, the results indicate that soils are at or 

near field capacity during the period between late fall and late spring. 

During the summer dry period, soil moisture drops to levels that are 

limiting to seedling growth (Dykestra, 1974, Lopushinsky and Klock, 

1974). The greatest water losses are from the surface horizon. 
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CHAPTER II 

MANAGEMENT OBJECTIVE 

The stand will be managed in the most economically efficient manner 

for timber production. Implementation of this objective must operate 

within the framework imposed by the following constraints. 

1) The stand will be harvested at the culmination of the soil 

expectation value. 

2) The minimum merchantable tree is at least 9 inches dbh and 

contains a sixteen foot log to an 8 inch diameter inside bark 

top. 

3) Any commercial entry must remove at least 3000 board feet per 

acre in trees 12 inches dbh and larger. 

4) The site must be regenerated to at least 300 uniformly distrib­

uted larch seedlings per acre within five years of final harvest. 

5) Harvesting activities will be scheduled to keep soil compaction 

to a minimum. 

23 



CHAPTER III 

DEVELOPMENT AND PRESENTATION OF ALTERNATIVES 

Gains From Stand Density Regulation 

The question posed is how should this stand be managed to achieve 

maximum value production while complying with the constraints. More 

specifically, what combination of release cutting and thinning, if any, 

will yield the greatest return on the investment? Managed stand yield 

tables are presently unavailable and normal yield tables (Schmidt et al., 

1976) are of little use in forcasting future yields under any regime ex­

cept one in which "normal" stocking is maintained. Properly designed 

growth and yield studies in larch stands have been undertaken only re­

cently. Consequently, published results describing the effect of stand 

density regulation on both tree and stand attributes are based on rela­

tively short response periods. The best information available is from 

two ongoing levels-of-growing stock studies (Schmidt, 1980, Seidal, 1977) 

but in both, results are from response periods of only 10 years. Despite 

the lack of long-term results, some general conclusions about the effect 

of stand density regulation on both tree and stand attributes may be 

summarized from the literature. 

Results reported by Schmidt (1980) from plots thinned to seven 

spacings ranging from 200 to 2720 trees per acre indicate that sapling 

stands are capable of a rapid transfer of the growth potential at the 

site from many trees per acre to a few. Ten year diameter increment of 

24 
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the largest 200 trees per acre increased from a mean of 1.9" at a stocking 

level of 2720 trees per acre to a mean of nearly 3" at a stocking level 

of 360 trees per acre. Height increment, less sensitive to stand density, 

was reduced only at the most dense stocking levels. 

In sapling stands ten to twenty years old, release to wide spacings 

concentrates the growth potential of the site to a relatively few indi­

viduals, but at the expense of total volume production. Schmidt (1980) 

reports that total periodic cubic-foot volume increment declines sharply 

in stands carrying less than 1000 stems per acre (Figure 6). Yet stocking 

levels above 1000 trees per acre produce little additional increment in 

stands between one and four inches dbh. Periodic cubic volume increment 

at 1000 stems per acre amounts to 86% of that at 2000 trees per acre and 

85% of that produced at 3000 trees per acre. Roughly the same amount of 

wood is produced over a broad range of stand densities but the portion 

potentially merchantable decreases with increasing density. As indicated 

in Figure 6, the threshold of full site utilization in ten to twenty year 

old larch sapling stands is between 1000 and 1500 trees per acre. This 

interval is the minimum stocking level required for maximization of total 

cubic-foot volume production in sapling stands. 

Response to stand density regulation in pole stands closely parallel 

those observed in sapling stands. Results from a levels-of-growing stock 

study established in 1966 (Seidal, 1977) in a 33 year old pole stand 

thinned to 5 densities ranging from 96 to 745 trees per acre indicate 

that diameter increment decreases with increasing stand density while 

per volume cubic volume increment increases. 
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Vigorous pole stands are capable of a rapid redistribution of the 

growth potential of the site following stocking reduction. Seidal reports 

periodic annual diameter increment on the lowest density is almost four 

times as great as that measured on the highest density plot. For the 

range of densities tested, height increment remains unaffected by stocking 

reduction. 

Total yield declines with increased spacing while the portion poten­

tially merchantable increases. Ten-year cubic-foot volume increment at 

96 trees per acre amounts to only one-half of that produced at 746 trees 

per acre. Yet the two-fold increase in total production is distributed 

among 8 times as many stems. Many of these will never reach merchantable 

size. In contrast, board-foot volume increment culminates at the widest 

spacing. This response reflects more rapid diameter growth moving trees 

into merchantable size classes. 

Response to release or thinning may be delayed if competition prior 

to treatment has significantly reduced the crown ratios of the competing 

stems. Work by Roe and Schmidt (1965) indicates that the response of the 

residuals is governed not only by the amount of increased growing space 

but also by the stand vigor prior to treatment. 

To summarize, close spacings yield the greatest total volume produc­

tion. Wide spacings stimulate diameter increment and shorten the rota­

tion length. Gains in individual tree production are offset by a delay 

in full site occupancy reducing total volume production. Merchantable 

volume production may either increase or decrease with increased growing 

space depending upon the merchantability standard. 

Results reported for western larch are in general agreement with 
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findings from spacing studies of several other western conifers. Barrett 

(1970) reports the effects of varying stand densities on diameter in­

crement and both total cubic-foot and board-foot volume production in a 

45 year old ponderosa pine (Pinus ponderosa Laus. var. ponderosa) stand. 

Total cubic-foot volume varies little over a wide range of initial den­

sities; production at 140 trees per acre is the same as that at 460 trees 

per acre. In contrast, board-foot volume production, strongly related to 

diameter increment, culminates at 140 trees per acre. Dahm's (1971) re­

port of 10 year results from a spacing trial in a 22 year old lodgepole 

pine (Pinus contorta Dougl.) stand in central Oregon agrees with Schmidt's 

(1980) results. Individual tree growth rates increase within limits as 

growing space is increased but with an accompanying loss in total volume 

increment. 

Alternatives 

The brief review of the literature demonstrates the considerable 

effects that the type and timing of intermediate treatments have on the 

size, quality, and timing of merchantable products. Current market con­

ditions favor a regime which maximizes individual tree volume increment. 

Stumpage value per unit volume of wood increases with increasing tree 

size. The value increase is a result of both a decrease in logging costs 

and an increase in product values. Jackson and McQuillan (1980) demon­

strates the price-size relationship in a function developed to estimate 

stumpage values on the Lolo National Forest. The trend in value differ­

ences between large and small trees is likely to continue. Forcasters 
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(Adams and Haynes, 1980) predict that the projected increase in real value 

of stumpage will exceed the projected increase in the real costs of pro­

duction by 40 percent. Yet will the value gain from increased product 

size offset the value loss from an accompanying reduction in total board-

foot volume production and to a greater extent, in total cubic foot volume 

production? Is the trade-off in terms of value between product size and 

total production measured in board-feet even significant? 

To illustrate the potential trade-offs associated with the selection 

of a regime maximizing value production, the relationship between stand 

density and total volume growth should be examined further. In sapling 

stands, (Figure 6) total volume increment increases with increasing stand 

density up to a maximum that remains roughly the same across a wide range 

of stand densities. A threshold beyond which there is little increase in 

production marks the point of full site utilization. The relationship 

between total volume increment and stand density in western larch sapling 

stands conforms with the hypothesis (Mar: Moller, 1954) that total volume 

growth varies little over a wide range of densities. 

Results from Schmidt (1980) indicate that in sapling stands in which 

the majority of trees are between 1 and 3 inches in diameter, full site 

utilization is achieved at approximately 1500 trees per acre. The initi­

ation of competition, resulting in a reduction in diamoter increment, 

occurs at stocking levels between 700 and 900 trees per acre. Between 

the onset of competition and the point of full occupancy, total production 

increases as diameter increment declines. Therefore if the intent is 

near maximum rates of diameter growth, stocking in sapling stands should 
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not exceed 700 to 900 trees per acre. If, on the other hand, the intent 

is to maximize total volume production, a sapling stand should carry at 

least 1500 trees per acre. Finally, if board-foot volume production is 

the goal, stocking should be maintained above the level permitting maximum 

diameter growth rates but below the one maximizing stand cubic-foot volume 

production. The exact level depends upon the merchantability standards. 

If the form of the curve describing the relationship between total 

volume production and density in sapling stands remains the same for all 

stages of stand development (Figure 7), then regimes maximizing diameter 

increment by maintaining stocking at level A do so at some sacrifice to 

stand volume production. If the goal is stand volume production, then 

stocking should be maintained at or near level B, the minimum stocking 

required for full site utilization. The values of levels of A and B in 

pole and sawtimber size stands are presently unknown. 

If the assumption is made that competition between trees begins 

when adjacent crowns just touch, stocking level A can be roughly ap­

proximated from an equation predicting crown area as a function of mean 

stand diameter. Table 6 displays estimates of stocking at crown closure 

for a range of average stand diameters. These estimates, generated by 

equations developed by Wycoff and Stage (1981) assume square spacing and 

uniform diameter growth rates. 

Following are six alternatives representing three different strategies 

for maximizing value production. 

Alternative #1: Achieving and maintaining near maximum growth rates for 

a portion of the rotation will yield the highest value returns. 
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Average Stand Diameter (inches) 

6 . 0  

7.2 

8.7 

10.0 

11.3 

12.5 

13.6 

14.6 

15.7 

Stocking at Density Level A 

(trees per acre) 

530 

382 

270 

198 

162 

137 

118 

105 

92 

CCF t  = .00724 DBH1*8182  for DBH^IO" 

CCF t  = .02 + .0148 BDH + .00338 DBH2  for DBH^ 10" 

DBH = average stand diameter 

CCF t  = crown area expressed as a percent of an acre 

ESTIMATION OF STOCKING 

LEVEL A 

Source: Wycoff and Stage, 1981 
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FIGURE 7 
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Clean to 300 stems/acre in 1982. Harvest at the culmination of the 

soil expectation value (S.E.V.). 

Alternative #1A: A single commercial thinning in addition to the scheduled 

cleaning will increase the S.E.V. by salvaging potential mortality 

and redistribute the growth potential of the site on to merchantable 

trees. 

Clean to 300 stems/acre in 1982. Reduce stand density to a crown 

competition factor of 80 at the earliest practicable time by com­

mercial thinning. Harvest at culmination of S.E.V. 

Alternative #2: Greater value production can be gained from earlier oc­

cupation of available growing space. A closer spacing after cleaning 

will allow the residuals to occupy and utilize the growing space 

more quickly. 
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Clean to 500 trees/acre in 1982. Harvest at culmination of the S.E.V. 

Alternative #2A: Schedule a commercial thinning in addition to the pro­

posed cleaning. 

Clean to 600 trees/acre in 1982. Commercially thin at earliest prac­

ticable time. Harvest at culmination of the S.E.V. 

Alternative #3: The four alternatives proposed so far utilize only a 

portion of the available growing space. Maximization of stand volume 

production will yield a greater return. Stand volume growth should 

be concentrated on the minimum number of trees required for full site 

utilization. 

Do nothing in 1982. Harvest at the culmination of the S.E.V. 

Alternative #3A: A commercial thinning will significantly increase the 

stand yield by salvaging potential mortality. 

Do nothing in 1982. Commerically thin at earliest practicable time. 

Reduce the stand density to a crown competition factor of 100. Har­

vest at culmination of S.E.V. 

Regeneration System 

Western larch stands of natural origin are typically even-aged or 

uneven-aged in structure. Almost always, natural stand establishment has 

followed wildfire. Uneven-aged stands, not to be confused with all aged 

stands, consist of two or more distinctly even-aged classes of inter­

mingling trees markedly different in age. 

Why is the age class distribution in western larch stands so pre­

dictable? Western larch, an early serai species, is the most highly in­
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tolerant conifer in the northern Rockies. Well adapted for a fire suc-

cessional role, the species produces large seed crops (Shearer, 1980) 

of small, wind disseminated seeds (Shearer, 1959) that germinate best on 

bare mineral soil (Roe, 1955). Highly intolerant of shade, larch achieves 

the most rapid juvenile growth in full sun in the absence of competing 

vegetation (Schmidt, 1969). 

Both clearcut and seed-tree regeneration systems mimic the patterns 

of natural stand establishment but the latter, insuring more uniform seed 

dispersal, increases the probability of successful natural regeneration. 

A two cut seed-tree system, consisting of an initial heavy regeneration 

cut followed in ten years by the seed-tree removal should produce suffi­

cient seed to regenerate the stand. If eight to ten uniformly distributed 

seed-trees per acre are left after the regeneration cutting, the chances 

are good that the stand will be regenerated to at least 300 uniformly 

distributed larch seedlings per acre. 

Economic Analysis 

The economic analysis uses the soil expectation value as a measure 

of the relative efficiencies of the alternatives over the longterm. The 

soil expectation value is the present value computed from receiving an 

infinite series of present net worth payments. The present net worth is 

the present value of all discounted costs and benefits. From an invest­

ment standpoint, the soil expectation value is a legitimate measure of 

profitability because it is influenced by the opportunity cost of capital 

as well as the costs incurred and revenues received. 

All management costs were estimated from empirical models developed 
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by Merzinich (1979) from Lolo National Forest cost data. Stumpage values 

were predicted from a model consisting of size, market, and method of 

logging variables developed by Merzenich (1981) from data obtained from 

39 timber sales on the Flathead National Forest. Stumpage estimates were 

then adjusted to reflect both anticipated increases in real value and in­

creased milling efficiency over time. All costs and revenues were ex­

pressed in 1980 dollars to eliminate the confounding effect of inflation 

on investment analysis. A discount rate of 4% was selected as the al­

ternate rate of return. 

Selection Procedure 

Potential production was simulated for each of the alternative silvi-

cultural strategies. Projected yields were then evaluated by investment 

analysis to determine their relative rankings in order of profitability. 

Finally the best financial strategy was selected as the preferred alter­

native. 

The growth prognosis model (Stage, 1973), the best projection system 

available, was selected for yield forcasting. Developed originally to 

update existing stand inventories in north Idaho and western Montana, the 

model relies on a single tree distance-independent modeling procedure 

(Munro, 1973) in which the individual tree is the fundamental modeling 

unit. Trees are grown as a function of easily measured tree and stand 

attributes as well as several site parameters. Stand characteristics 

are then calculated by summing updated tree statistics. The model out­

put, consisting of both tree and stand statistics, permits the analyst 
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to evaluate the effects of selected silvicultural strategies on in­

dividual tree attributes. 

As of yet, the model does not accurately project growth trends for 

small trees less than one inch dbh (A1 McQuillan - personal communication). 

To overcome this major limitation, I elected to remove all trees falling 

into this category from the stand inventory prior to the initial pro­

jections. 

The Selected Alternative 

Value estimates for each of the alternatives examined are presented 

in Table 7. Alternative 2A outperforms the five others. Following 

closely is alternative 1A. In both of these alternatives, the soil ex­

pectation value culminates just ten years after thinning (Table 9). 

The prediction that value production culminates almost immediately 

after a heavy thinning from above is a direct result of the substantial 

growth response predicted by the model immediately following thinning. 

In the simulation of the outcome of alternative 2A, the model predicts a 

basal area per acre increase of 21 percent from 2030 at the time of thin­

ning, to 2040, the year that the soil expectation value culminates. When 

one considers that prior to thinning the residuals occupied the mid to 

lower portion of the stand basal area distribution, the model output 

appears improbable. 

Actual growth responses from test stands heavily thinned from above 

to a stocking level close to that proposed in alternative 2A are signi­

ficantly less. Stand basal area increased by just 10% in the 10 years 
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TABLE 7 

MAXIMUM SOIL EXPECTATION VALUE 

($/acre) 

No Thinning Thinning 

Release to 300 t./a. $298.38 @ 55 yrs. $341.00 9 65 yrs. 

Release to 600 t./a. $318.00 @ 65 yrs. $357.00 <a 75 yrs. 

No release $205.50 @ 75 yrs. $237.00 9 95 yrs. 

TABLE 8 

MAXIMUM AVERAGE RATE OF 

VOLUME PRODUCTION 

(board-ft./acre/yr.) 

No Thinning Thinning 

Release to 300 t./a. 253.7 @ 105 yrs. 238 9 125 yrs. 

Release to 600 t./a. 282.3 9 115 yrs. 277 9 105 yrs. 

No release 272 @ 115 yrs. 286 @ 125 yrs. 

Minimum merchantable 

tree 9" dbh to 8" top. 
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TABLE 9 

SUMMARY OF ALTERNATIVES 

Alt. #1 1982 - Clean stand to 300 t./a. 

2020 - Harvest. 

Alt. #1A 1982 - Clean stand to 300 t./a. 

2020 - Commercial thin. 

2030 - Harvest. 

Alt. #2 1981 - Clean stand to 600 t./a. 

2030 - Harvest. 

Alt. #2A 1982 - Clean stand to 600 t./a. 

2030 - Commercial thin. 

2040 - Harvest. 

Alt. #3 1982 - No release. 

2040 - Harvest. 

Alt. #3A 1982 -

2040 -

2060 -

No release. 

Commercial thin. 

Harvest. 
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following high thinning in a 55 year old larch stand growing on a high 

quality site (site index 83 for base age 50), (Seidal, 1980). If the 

effect of site is adjusted for, the discrepency between the predicted 

and the actual is even greater. 

Evidently, the diameter increment equation in the prognosis model 

overpredicts basal area increment following heavy thinning from above. 

A tree's capacity to respond to increased growing space created by thin­

ning is dependent in part on the size of its assimilating crown surface 

area (Hatch et. a!., 1975). A rough approximation of crown surface area 

is the live crown ratio, an important variable in the diameter increment 

equation. Crown ratios predicted by the model just before thinning range 

between 45 and 55 percent of total height for trees occupying the lower 

one-half of the stand basal area distribution. In actual stands, the 

crown ratios of trees in the lower canopy are considerably less. Bias in 

the crown ratio prediction equation may have contributed to the improbably 

high stand basal-area growth following the simulated thinning. 

The cursory examination of model output versus real data has re­

vealed that the simulated differs markedly from the actual. Consequently, 

value estimates for the regimes which include a commercial thinning are 

highly questionable and will be disregarded. 

Of tho throe remaining options, alternative 2 outperforms both al­

ternatives 1 and 3 (Figure 8). The two alternatives that include early 

stocking control are more profitable than the no-release option. Board-

foot volume production is maximized by alternative 2 (Table 8). Al­

ternative 3, lowest in value production, outperforms alternative 1 in 
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board-foot volume production. When the criteria is value production, the 

ranking reverses. This reversal demonstrates that value production is 

influenced as much by both the opportunity cost of money and quality 

premiums as by physical yield. 

Alternative 2 is the selected option. Alternative 1, although nearly 

as profitable, allows far less flexibility in stand management after the 

initial, drastic cleaning. 



CHAPTER IV 

GUIDELINES FOR MINIMIZING SOIL COMPACTION 

Soil compaction is the reduction in soil macropore space brought 

about by downward pressure applied by logging equipment during harvesting 

activities. Some degree of compaction is an expected consequence of har­

vesting operations involving extensive use of machinery. Yet even mod­

erate increases in soil density may effect changes in soil physical pro­

perties that are inhibitive to optimal seedling growth. Accompanying any 

reduction in soil macropore space is an increase in bulk density as well 

as a reduction in the rate of water movement into and through the soil. 

On cutover land following tractor logging, Steinbrenner and Gessel (1955) 

reported a 2.4% increase in bulk density, a 35% loss in permeability, and 

a 10% reduction in soil macropore space. These changes adversely affect 

the seedling environment by restricting root penetration as well as re­

ducing soil aeration and soil water holding capacity. 

Reduction in seedling growth resulting from soil compaction during 

logging has been documented by a number of investigators. Hatchell and 

others (1979) examined the effects of soil compaction on seedling height 

growth in a cutover site regenerated naturally to loblolly pine (Pinus 

taeda L.). After three growing seasons, seedling height growth on both 

temporary and permanent skid trails was significantly less than that 

observed on undisturbed soil. Youngberg (1959) measured growth and sur­

vival two years after planting 2-0 Douglas-fir (Pseudotsuga menziesii 

42 
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(Mirb.) Franco) seedlings on sites representing various degrees of soil 

compaction. The average bulk densities ranged from .93 grams/cm in 

3 undisturbed soils to 1.03 and 1.65 grams/cm on berms and skid trails 

respectively. After two years, survival was adequate at all locations 

while seedling heights averaged 17.3, 13.6, and 10.0 cm on undisturbed 

areas, berms, and skid trails respectively. Froehlich (1976) measured 

growth of planted ponderosa pine (Pinus ponderosa Laus.) seventeen years 

after tractor logging on a sandy loam soil. He detected significant re­

duction in stem volume associated with minor increases in bulk density. 

Stem volume decreased by 20% at a soil density that exceeded .84 grams/ 

3 cm ,  the bulk density in undisturbed soil, by only \2%. 

The results of potting experiments demonstrate the inhabitory effect 

of high soil densities on root growth. Root penetration of Douglas-fir 

seedlings in sandy loams was restricted altogether in pots compacted to 

1.59 grams/cm .  For western hemlock (Tsuga heterophylla Ruf. Sarg.), the 

upper limit of penetration was at 1.45 grams/cm (Minore and others, 1961). 

Heilman (1981), reporting a higher threshold for Douglas-fir, estimated 

3 an upper limit of root penetration at 1.8 grams/cm . Reduction in root 

growth from compaction occurs well before the threshold of bulk density is 

reached. Foil and Ralston (1967) found that root weight and length both 

decreased linearly with increased levels of compaction at bulk densities 

3 above .9 grams/cm .  Heilman reported that root penetration of 35 to 40 

day old Douglas-fir seedlings declined with increasing bulk density be-

3 tween 1.37 and 1.77 grams/cm , the range of densities tested. 

Repeated passes by logging equipment quickly compacts soils to bulk 
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densities inhibiting seedling growth. Steinbrenner (1955) measured in-

creases in bulk density in a clay loam from .91 to 1.04 grams/cm after 

6 passes. Bates (1981) quantified the effect of repeated passes by both 

track machines and rubber-tired skidders on physical properties of a soil 

formed in volcanic ash over quartizite till. The trails were carried out 

at two soil moisture levels. In soils near field capacity, both machines 

significantly compacted the surface horizon after 4 passes. Bulk density 

3 was increased from .76 grams/cm in the control to .91 and 1.12 for the 

skidder and track machine, respectively. Compaction rates were less se­

vere on drier soils. After 4 passes by the skidder, bulk density in the 

surface horizon was not significantly different from that in undisturbed 

soil. The same number of passes by the track machine increased bulk den-

3 sity from .76 to .95 grams/cm .  No increase in density in subsurface hori­

zons was detected at either moisture level. Other studies have detected 

compaction in the surface hirizons after as few as two passes by heavy 

euqipment. (Froehlich, 1976, Mae, 1971). Bate's failure to detect com­

paction after one or two passes may be due in part to the large experi­

mental error within the treatments. 

During a tractor logging operation, damage to the logged area may be 

extensive. Dyrness (1965) estimates that up to two-thirds of the ground 

area is disturdod and 25'/, sevcrly compacted during tractor logging. In 

western Montana, soil recovery to precompacted condition is a slow process. 

Tackle (1962) found no improvement in infiltration rate from the first to 

the fifth year after logging in a heavily compacted silty clay loam. 

Kuennen and others (1979) report the persistence of the compacted con­

dition in areas logged 25 years previously. 
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Some compaction during logging is inevitable, but damage to soil can 

be minimized if harvesting activities are scheduled when the soil is dry. 

If scheduling activities to coincide with summer dry periods is not feasi­

ble, several other alternatives exist. Following are three alternatives 

which allow the sale forester some latitude in scheduling logging. 

1) Confine logging to July through September when the soil dries 

out to -15 bars. 

2) Log during January and February when the ground is frozen. 

3) If the stand is logged when soils are most susceptible to 

compaction, restrict as much as possible the equipment traffic 

to a network of permanent skid roads. Accept at least a 25% 

increase in bulk density in soils beneath these skid roads. 

Without site preparation, the probability of successfully regenerating 

the stand to larch is slim (Shearer, 1979). The optimal condition for 

seedling growth and survival is moist mineral soil exposed to full sun. 

This condition can be achieved by either mechanical scarification or 

broadcast burning. Use of mechanical scarification to achieve the silvi­

cultural objective risks soil compaction as well as displacement of the 

surface horizon. Broadcast burning has the capability of meeting the re­

generation requirements of larch with only a minimal amount of soil dis­

turbance. Work by Shearer (1975) demonstrates that a balance can be 

achieved between meeting the silvicultural objective and protecting the 

soil by use of broadcast burning. Shearer found that soil temperatures 

during burns in which duff thickness was reduced by 75% remained far be­

low levels required to do permanent demage to soil physical properties. 
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Peak temperatures of 196 and 124 degrees F. measured at one and three 

inches beneath the soil surface were far below levels required to induce 

water repellency (Debano and others, 1976) or cause irreversible demage 

to the clay complex (Ralston and Hatchell, 1971) yet not enough to kill 

root systems of potentially competing vegetation (Hare, 1960). The liter­

ature demonstrates broadcast burning can effectively expose mineral soil 

with no risk of compaction and only minimal risk of damage to soil physical 

properties. 

Prescription 

The stand will be cleaned to 600 trees per acre in 1982. A regener­

ation cut, the first of a two cut seed-tree harvest system, will be made 

in 2030. In 2031, the site will be broadcast burned prior seed dispersal. 

The seed trees will be removed in 2040. 

Possibility of a Regeneration Failure 

Regeneration failure is a very real possibility even on a relatively 

moist subalpine fir-clintonia habitat type in the Swan Valley. Natural 

regeneration is dependent upon a number of factors interacting to pro­

duce a favorable seedling environment during the critical period of seed­

ling germination and establishment. An adequate amount of seed must be 

disseminated onto mineral soil when temperature and moisture conditions 

are favorable. 

Any one of the number of variables essential to seedling establish­

ment may be unfavorable at the time of regeneration. Broadcast burning 

is not entirely predictable (Beaufait et al., 1977). Larch produces 
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good seed crops infrequently. Shearer (1959) estimates good seed crops 

occur in only one out of five years. Most land managers do not have the 

luxury of timing broadcast burning to coincide with good seed crops. 

Broadcast burning only temporarily suppresses competing vegetation. If 

regeneration is not prompt, a rapidly developing ground cover of competing 

vegetation may severely restrict seedling establishment. Pinegrass and 

blue huckleberry, both present in the prefire community, resprout vigor­

ously following fire (Miller, 1977). Pinegrass, adapted to withstand 

plant moisture stresses which are lethal to seedlings, effectively de­

pletes the rooting zone of soil moisture (Clark and McClean, 1965). 

As potentially detrimental to seedling establishment as the emergence 

of competing vegetation is prolonged exposure of mineral soil to rain-

splash. Rainsplash breaks down soil structure to produce a hard, imper­

vious soil surface. If the stand has not been regenerated within ten years 

of the regeneration cut, the site should be rescarified and planted. 



CHAPTER V 

IMPACT ASSESSMENT 

The Effect of Harvesting 

on the Forest Microenvironment 

Removal of essentially all the tree canopy during the regeneration 

cut will drastically increase the radiation load reaching the soil surface 

and significantly reduce transpiration loss. These changes will in turn 

influence both temperature and moisture levels at, and immediately below, 

the ground surface. In addition, harvesting will permit increased air 

movement near the ground. 

The increase in soil water content following harvesting will be most 

evident during the several years immediately following harvesting. Dif­

ferences between the pre and post logged stand will diminish as a rapidly 

developing herb and shrub community occupies the site. Newman and Schmidt 

(1980) monitored soil water status during the three year period following 

harvesting to evaluate the effects of four different regeneration systems 

on soil water content. In August of the second year following clearcut-

ting, the volume of soil water in the clearcut exceeded that measured in 

the adjacent uncut stand by 18%. Differences in soil water content, dimin­

ishing during the third and fourth years following harvesting, averaged 

11% over the entire study period. As the rapidly recovering herb and 

shrub component used more water, the magnitude of the differences declined. 

This trend will likely continue as ground vegetation expands to fully 

48 
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occupy the site. In a study of plant succession following clearcutting 

and fire in the northern Rockies, Stickney (1980) reported that herb and 

shrub stages reached full development between 4 and 6, and 6 and 9 years 

respectively after clearcutting on an Abies lasiocarpa/Clintonia habitat 

type. 

The gain in soil water following clearcutting on mesic sites is only 

temporary. The rapidly expanding cover of ground vegetation eventually 

utilizes most of the surplus created by canopy removal. 

A far more permanent and potentially hazardous consequence of canopy 

removal is the sharp increase in incoming solar radiation. Hungerford 

(1980) monitored changes in the forest microenvironment brought about by 

clearcutting a gently west to northwest slope in an Abies lasiocarpa/ 

Vaccinium caespitosum habitat type. The mean daily maximum radiation load 

received at the ground surface of a 15 acre clearcut exceeded by 80% the 

level recorded beneath the canopy of an adjacent uncut stand. Shearer 

(1976) has recorded daytime temperature maximums in excess of 125° F at the 

soil surface on north facing clearcuts. Temperatures in this range are 

approaching levels lethal to plant tissue. Accompanying large increases 

in daytime maximums are decreases in nighttime minimums. At Hungerford's 

study site, the number of frost free days during the 1978 growing season 

varied from 20 in the clearcut to 112 in the uncut stand. The severity 

of the temperature change reported by Hungerford is probably as much the 

result of differences in topographic position as increased rates of 

nighttime reradiation. 

Potentially more hazardous to seedling survival than lethal tempera­
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tures is the concomitant increase in transpirational demand immediately 

above the ground. Temperature, moisture, and wind act in concert to in­

fluence the absolute humidity deficit. 

The Effect of the Seed-Type 

System on Pollen Dissemination 

and Seed Production 

Critics of the seed-tree system maintain that reduction of the seed-

producing population to a few stems per acre is a disgenic practice that 

promotes inbreeding. In larch, male and female flowers, not segrated by 

crown position, develop together on the same branch. Will the removal 

of all but 8 to 10 seed producing trees per acre greatly reduce the pro­

portion of seed produced from outcrosses? Blake (silviculture lecture, 

1980) refutes charges that the seed-tree system is disgenic by pointing 

out that seedlings from outcrosses will easily outcompete poorly adapted 

albinos. 

The Effects of Harvesting and Burning 

on Nutrient Cycling 

Timber harvesting and broadcast burning temporarily disrupt nutrient 

cycling by removing merchantable biomass and drastically increasing rates 

of decomposition. Lossess incurred by removal of merchantable wood should 

be relatively minor. Only a small fraction of the site's nutrient capital 

is tied up in the main stem wood (Cole and others, 1967). Precipitation 

inputs alone during the following rotation are sufficient to replace 

losses from biomass removal by conventional harvesting (Stark, 1979). 
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Broadcasting burning is potentially a far greater drain on the nutrient 

capital. Burning oxidizes organic matter, bringing about its rapid miner­

alization into a soluble form. Debyle and Packer (1972) observed acceler­

ated rates of losses from the 0 horizon during the two years immediately 

following broadcast burning. Fire volatilized one-third of the total 

nitrogen. Leaching and overland flow significantly reduced concentrations 

of phosphorous, magnesium, and potassium in the ash-duff layer. A portion 

of these were leached into mineral soil, increasing both the pH and the 

percentage of exchangeable bases. In the third and fourth years following 

fire, nutrient losses subsided as the rapidly recovering herbaceous 

vegetation re-established nutrient cycling. 
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