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Jiyan Du Master, September 2003 Mathematical Sciences

Estimating Classification Accuracy Using Probability o f Correct Classification Estimates

Chair; Brian Steele

The objective of classification problem is to determine a rule that will predict the 
group membership of an observation whose membership is unknown. An important 
second aspect o f the classification problem is assessing the accuracy o f classification 
rules. Here, we discuss several estimators of classifier accuracy.

These estimates include simple means of maximum posterior probability (MPP) 
estimators and calibrated versions thereof. Calibration functions are estimated by 
regressing cross validation (CV) outcomes on the MPP estimates. A simulation study was 
conducted to compare ordinary CV estimates and MPP-based estimates. In general, CV 
estimator and linear calibrated MPP estimator are better than the other two, and linear 
calibrated MPP estimator is best with respect to root mean square error (RMSE).
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1.Introduction

"Depending on the problem, the basic purpose o f a classification study can be 

either to produce an accurate classifier or to uncover the predictive structure of the 

problem. If  we are aiming at the latter, then we are trying to get an understanding of what 

variables or interactions o f variables drive the phenomenon— that is, to give simple 

characterizations o f the conditions that determine when an object is in one class rather 

than another. These two are not exclusive. Most often, in our experience, the goals will 

be both accurate prediction and understanding. Sometimes one or the other will have 

greater emphasis."(Breiman et al, 1984).

After we define a classification rule and use it to classify the observations, 

inevitably, some of the units will be incorrectly classified. So it is important to assess the 

accuracy. Accuracy assessment is the topic o f this paper.

In the following discussion, I will introduce several estimators of accuracy based 

on cross-validation. They are ordinary cross-validation estimator, maximum posterior 

probability (MPP) estimator and linear and logistic calibration o f MPP estimators.

A simulation study was conducted to compare such estimates. The key research 

question is, "Are the MPP-based estimates as good as the CV estimates?"

2. Classifiers

Suppose there is a population P  partitioned as c classes, groups, or subpopulations 

Gg,g = I,.", c. The objective is to determine a rule that will predict the group

membership o f an observation whose membership is unknown. First, we randomly select 

a sample X  = {xi,X2...,x„} from P. The sample is often called a training sample in 

recognition that the rule will be trained on these data. In addition, one or more variables



(usually called covariates) are measured on every observation in the sample. These 

covariates are assumed to differ among groups, and hence, have some predictive value 

for classification. An important second aspect o f the classification problem is assessing 

the accuracy o f the rule; that is, it is important to obtain an estimate that the rule will 

correctly classify a population unit.( Steele, 2003, unpublished notes).

The zth observation in % is a pair denoted by where t- is a covariate

vector and y.  is a group label identifying group membership. Let Xq = denote an

unclassified observation belonging to P. The covariate vector is observed but the 

group label yQ is unobserved..( Steele, 2003, unpublished notes).

In some cases, a researcher may have prior knowledge as to how likely it is that a 

randomly selected observation would come from each o f the two or more groups. The 

prior probability o f membership in a group is the probability that a randomly selected 

observation will be a member o f the group. After collecting the training sample and 

forming the rule, the probability o f group membership varies with the predictor variables 

(unless these variables are useless as predictors). The conditional probabilities o f group 

membership, given the predictor variables, are the posterior probabilities. The prior 

probability that Xq belongs to is denoted by = P{yQ = g)  whereas the posterior

probability o f membership in 0 ^  is P(yQ = g  Uo) •

A general approach to classification can be formulated by treating classifiers 

(classification rules) as estimators o f the probabilities o f group membership, i.e., o f 

P(yo -  S\^o)>S -  h ' c. The assignment o f group membership to Xq is the same for all



classifiers: assign X q to the group with the largest posterior probability. Let 7 ]  denote the 

classifier, the rule is

r}{x^) = argm axP(yo = g | r j .
g

The formulation o f this optimal rule is based on the criterion of minimizing the 

probability that an unclassified observation will be incorrectly classified by the rule, i.e., 

minimize P{rj{Xo) ^  y o ) .( Steele, 2003, unpublished notes)

2.1 Bayes rule

Definition 2.1. 77 is a Bayes rule if  for any other classifier tj\ P ( tj(x) ^  y ) ^  P(t]'(x) 9  ̂y ) . 

Then the Bayes misclassification rate is R q = P(7](x) ^  y ) .  It minimizes the probability 

o f misclassification.

Theorem 2.2 The Bayes rule 77 is defined as 77(^0) = a rg m a x f  = g  | ^o) (2.1); In each
g

group j , j  = l , . . . ,c , there is density function f j { x \ x  e G j , i.e. 

f(77(%) = y I y  = y ) = j  I  ̂  ̂ ,^fj {x)dx , the Bayes misclassification rate is

=1 -  |[m ax fj{x)7ij' \dx{12).

Proof:

P(77(x) = y )  = P{ri{x) = j \  y  = j ) P ( y  = J)

= = j \ y  = y K

= J [ Z >1 = J ^ f j



T ( 7;(%) = j )  is an indicator,'F(/7(x) = j )  =
1, i f  = j  

0 , i f  *  j

For a fixed value o fx

and equality is achieved if  ri{x) equals that j  for which f j { x ) 7tj  is a maximum. 

Therefore, the rule rj given in (2.1) has the property that for any other classifier rj\ 

P(t7’(x) = y) < P{r]{x) = y )=  j {x) j t j ]dx .

This shows that 77 is a Bayes rule and establishes (2.2) as the correct equation for the 

Bayes misclassification rate.

Although T] is called the Bayes rule, it is also recognizable as a maximum

likelihood rule: Classify x  as that j  for which f j  (x)Kj is maximum. Please note that (2.1) 

does not uniquely define rj on points x  such that max f j  {x)Kj is achieved by two or

more different f s .  In this situation, we can define 77 arbitrarily to be any one of the 

maximizingy’s or use other methods to break the ties.

In practice, neither the Kj nor the f j  (x) are known. The tTj can either be

estimated as the proportion o f class j  in training sample or their values supplied through 

other knowledge about the problem. There are several ways to estimate f .  (%).

2.2 L inear d iscrim inant classifier

Discriminant analysis assumes that all f j  (x) are multivariate normal densities

with common covariance matrix S  and different mean vectors {jâj} . Estimating S  and



the {fdj} in the usual way gives estimates f j { x )  o f the f j { x ) .  Randomly select a 

sample G as the training sample, in Gj , X j  = }, the estimates are

r=l My -  1 r=l

The pooled covariance matrix is £  =  . These are substituted into the

É K - 1)
v=i

Bayes optimal rule r}{Xo) = argmaxP(>»o = ^  Uo) = arg max fAx^)7 t  . (Breiman et al,
g g

1984).

2.3 ^-NN classifier

Nearest neighbor discriminant analysis is a nonparametric discriminant procedure. It is 

developed without any distribution assumption. It uses the distances between pairs of 

observation vectors.

For any new observation Xq , we can find the k nearest neighbors to Xq in the training 

sample. Classify Xq as class g  if  most o f the neighbors are in group g.

1 k
The ÂT-NN estimate o f Pj (%o)is {Xq) = — = J ) . ^ ( E )  is the indicator

function o f the event E. T (y , = j )  =
I ,  i f  y i  =  J

0 ,  i f  y , .  ^  j
. If  there is a tie, we can increase

the neighborhood size, and recompute the estimate of Pj^^ until the ties are broken 

(Steele Patterson and Redmond, 2003).



3.£stimators

After we construct a classification rule and use it to classify the units in a test 

sample, some o f the units will be incorrectly classified inevitably. So it is important to 

assess the accuracy.

3.1 Max posterior probability estimator

ThemS.l The probability that the rule correctly classifies the observation is equal to the 

max probability o f group membership.

Suppose Xq is a randomly selected observation, the probability that the rule is correct is 

= >'o)] = f [a rg m a x f(y , = g  U„) = J'o]
S

= = jW iy o  = y Uo)
>1

We define that all o f the indicator variables in this sum are 0 except the indicator of the 

group for which the probability o f membership, P{yQ = g  | fg ) ,  is maximal. For that

group, say group g * ,  P(yo = g* Uo) = rnaxP(yo = g  Uq) . Hence,
e

^ ( ' 7 ( ^ 0 )  =  > ”o ) ]  =  m a x P ( y o  =  g  I / o ) .
g

1 "
Repeat it n times, we get acc = — ̂ P [ ( t 7(x,.) = y, ) ] .

^ (=1

The limitation with this formula is that = P(yo = g  | ^o),g = is not

known and must be estimated with negligible bias. One approach is to use the plug-in 

estimator, i.e., compute P[7 (Xq) = y q] = maxP^(Xq) , where ^(X q) = Piy^  = g  | to) is an

estimate derived from the classifier. ( Steele, 2003, unpublished notes).

3.2 Ordinary k-fold cross validation estimator 

It can be described in the following manner:



Divide the data set into k  subsets o f as nearly equal size as possible. Remove the 

first subset from the data set, form a classification rule based on all o f the remaining data, 

use this rule to classify the first subset. Next, replace the first subset and remove the 

second subset from the data set, form a classification rule based on all o f the remaining 

data, use this rule to classify the second subset, and noting whether a particular 

observation in that subset would be correctly classified by a rule formed from all o f the 

remaining data.

^  .C V  i y ^ y i = y , ' )  ., p  -  — ----------------, n IS the sample size.
0. if yi Pi ”

3.3 Calibrating the Estimated Probabilities of Correct Classifîcation

It is important to recognize that there may be some bias when we use the plug in 

estimates instead o f the true probabilities. This is the reason that we calibrate the 

probability estimates.

Calibration is carried out by regressing the binary leave-one-out outcomes 

= y.],f = 1,...,«, on the leave-one-out probability estimates of correct

classification P{r}(x^) = y ,) to obtain a calibration coefficient. Linear and logistic

regression can be used to derive calibration functions from the training set. The 

calibration coefficient is used to calibrate the probability estimates according to the 

calibration function.

3.3.1 Linear calibration

To set up the calibration functions, let = y j  denote the estimated

probability that x. e is correctly classified by the holdout rj. , and



Oi = = yf], i  = denote the outcome of classifying x. by rf. . For e ,

the linear calibration function specifies that the calibrated ofP\ri^{x.) = y j  is

The coefficient is determined by minimizing V (0 ,- -  with respect to P  ;

= > 2 ^ ( 0 , A  = 0  

=> P  = Y j ^ i P i l H P ^

(Insert figure 1 here.)

y  nf"
So , « is the sample size.

n

3.3.2 Logistic calibration

Logistic regression is justified under the assumption that O., i = are independent 

Bernoulli random variables with expections = y j  ,i.e., O. ~ 5 ( p , ) .

Then, the logistic calibration model is

= 1^,] ^ - P i

Pi 1 -  Pi

where the calibration coefficient p  is computed by logistic regression (Steele Patterson 

and Redmond, 2003).

8



y  d 1°®
So = = —î— , n is the sample size.

n

4. Simulation design

The simulation design is the same as used by Steele and Patterson (2000). As they 

describe, "the simulated sets were randomly chosen, respectively, from the bivariate 

2 3
distributions — j , c r / j ) + - ^ ( / ^ 3 where

/ îi — (3,3), cr, =1.5,/ij2 = (7 ,7 ),/i2  — (4,6), (T2  — 2,//3 = (7.5,3.5), CJ3  =3."

The sample size is 10,000 which is large enough that we can regard it as an infinite 

population. Sample o f n ={ 100,200,300,400,600,1000} observations were drawn from 

this population o f 10,000 at random. A classification rule was constructed from each 

training sample.

The classifier was used to estimate the posterior probabilities o f group membership. An 

observation was assigned to the group that gave the largest posterior probability 

estimates.

Five-fold, ten-fold and n-fold cross validation were used in the calculation o f the post 

probability estimates. Four accuracy estimates were computed:

Ordinary Cross-Validation estimate = — V  Y(y, = y, )
n

Max Posterior Probability estimate= -
n

Linear calibration estimate = — V  MPFJ
n

Logistic calibration estimate = —]^{14-[(l -  MPP^ ) / MPP  ̂Ÿ  } '



This procedure was repeated 1,000 times, and the averages were computed. The entire 

population o f 10,000 observations was classified to get the true accuracy. Compare the 

true accuracy to the estimates, we use two measures of performance.

Yacq^-aœ,^ [V ia cq -a œ ^ Ÿ
Bias= -------------------and root mean square error RMSE=J— ------------------ .

1,000  ̂ V 1,000

Here acq  is the true accuracy and is the estimated accuracy for the Ath repetition.

The key research question is ," Are the MPP-based estimates as good as the CV 

estimates?"

5. Result and discussion

We use two classifiers to classify the observations, and use six sample sizes to 

make simulations. The following is the result about the changes of Bias and RMSE of 

these four estimators. We can find some tendency firom Figure 3 to Figure 14. In each 

figure, there are four lines, which represent the changes for the estimates fi’om each 

estimator with the increasing o f sample sizes.

Figure 3,4,5 show the Bias changes for LDA classifer for 3 different Cross-Validation. 

Figure 6,7,8 show the Rmse changes for LDA classifer for 3 different Cross-Validation. 

Figure 9,10,11 show the Bias changes for A:NN classifer for 3 different Cross-Validation. 

Figure 12,13,14 show the RMSE changes for A:NN classifer for 3 different Cross- 

Validation.

1. We get six true accuracy estimates for each classifier. With the increasing of the 

sample size, firom 100 to 1000, the true accuracy estimate increases too. The values 

increase fi*om 60.15 to 61.78 if we use LDA classifier and from 63.957 to 66.428 for k- 

NN classifier.

10



(Insert figure 2 here.)

From the plot, we can see ^-NN classifier always gets a higher accuracy than LDA 

classifer.

2 .Compare the bias.

First look at the results from LDA classifier. With the increase o f sample size from 100 to 

1000, the bias for CV and Linear calibration (LinC) estimates are very stable. MPP and 

Logistic calibration (LogC) estimates are not stable at all. Both of them increase with the 

increasing o f  the sample sizes.

Under the same sample size, the biases for CV and LinC are much smaller than the other 

two. And CV estimate is a little better than LinC estimate.

(Insert figure 3,4,5 here.)

We can get the similar result from k-NN  classifier.

(Insert figure 6,7,8 here.)

3.Compare the RMSE .

First look at the results from LDA classifier. With the increasing of the sample sizes from 

100 to 1000, the RMSE values for CV and LinC estimates decrease. The values for MPP 

and Logistic calibration (LogC) estimates are very stable. They don’t decrease with the 

sample size.

Under the same sample size, the RMSE values for CV and LinC estimates are much 

smaller than the other two. And LinC gets smaller RMSE than CV estimator.

(Insert figure 9,10,11 here.)

We can get the similar result from ^-NN classifier.

(Insert figure 12,13,14 here.)

11



4.In general, CV estimator and linear calibrated MPP estimator are better than the other 

two, and linear calibrated MPP estimator is best with respect to root mean square error.
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Appendix

Figure 1. Linear Regression
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Table 1. LDA Sample size = 100 True acc for population = 60.17

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 59.785 59.715 60.227 59.515 0.385 0.454 -0.057 0.655 5.695 3.838 5.199 5.346
10 60.027 59.501 60.467 59.512 0.143 0.669 -0.297 0.657 5.676 3.92 5.183 5.351
100 60.205 59.362 60.671 59.494 -0.035 0.808 -0.502 0.676 5.423 3.974 4.98 5.311

Table 2. LDA Sample size = 200 True acc for population = 61.18

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 61.285 58.837 61.727 59.31 -0.101 2.347 -0.543 1.874 3.965 3.677 3.632 4.253
10 61.292 58.732 61.772 59.249 -0.107 2.452 -0.588 1.936 3.859 3.768 3.539 4.286
200 61.43 58.653 61.888 59.219 -0.246 2.531 -0.703 1.965 3.811 3.824 3.526 4.292

Table 3. LDA Sample size = 300 True acc for population = 61.41

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 61.36 58.566 61.905 59.078 0.049 2.842 -0.497 2.331 2.898 3.61 2.668 3.74
10 61.515 58.491 62.043 59.056 -0.106 2.918 -0.634 2.352 2.89 3.663 2.667 3.742
300 61.53 58.426 62.077 59.006 -0.121 2.982 -0.669 2.403 2.855 3.719 2.651 3.777

Table 4. LDA Sample size = 400 True acc for population = 61.47

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 61.225 58.179 61.849 58.666 0.246 3.292 -0.378 2.805 2.459 3.796 2.282 3.757
10 61.312 58.121 61.925 58.643 0.159 3.35 -0.454 2.829 2.511 3.839 2.343 3.793
400 61.337 58.085 61.954 58.621 0.134 3.386 -0.483 2.85 2.562 3.874 2.369 3.818

Table 5. LDA Sample size = 600 True acc for population = 61.51

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 61.612 58.363 62.259 58.977 -0.098 3.15 -0.746 2.536 2.051 3.546 1.971 3.319
10 61.47 58.325 62.168 58.908 0.043 3.188 -0.654 2.606 1.986 3.582 1.91 3.357
600 61.663 58.302 62.327 58.939 -0.15 3.211 -0.813 2.575 2.052 3.601 1.996 3.344

Table 6. LDA Sample size = 1000 True acc for population = 61.87

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 61.833 57.752 62.31 58.359 0.036 4.118 -0.44 3.51 1.562 4.312 1.483 3.887
10 61.847 57.731 62.32 58.349 0.023 4.139 -0.45 3.52 1.671 4.336 1.583 3.924
1000 61.827 57.712 62.32 58.329 0.043 4.157 -0.45 3.54 1.626 4.352 1.542 3.934

14



Table 7. ;fc-NN Sample size = 100 True acc for population = 63.957

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 63.41 64.59 64.77 63.93 0.55 -0.63 -0.82 0.03 5.95 3.10 5.33 5.74
10 63.95 64.64 64.56 64.83 0.13 -0.56 -0.48 -0.75 5.39 2.89 4.70 5.58
100 63.91 64.49 63.92 65.28 0.03 -0.55 0.02 -1.34 5.54 2.96 4.67 6.00

Table 8. Â:-NN Sample size =  200 True acc for population = 65.201

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 64.90 67.34 65.56 67.90 0.30 -2.14 -0.36 -2.70 3.70 3.00 3.24 4.88
10 64.75 67.19 65.07 67.99 0.37 -2.06 0.06 -2.86 3.73 2.90 3.19 4.91
200 64.92 67.31 64.93 68.52 0.26 -2.13 0.24 -3.34 3.76 2.96 3.17 5.20

Table 9. A:-NN Sample size =  300 True acc for population = 65.494

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 65.16 68.31 65.66 69.12 0.33 -2.82 -0.17 -3.62 3.14 3.31 2.74 4.94
10 65.29 68.31 65.51 69.42 0.28 -2.73 0.06 -3.84 3.06 3.23 2.66 5.08
300 65.35 68.24 65.33 69.60 0.17 -2.72 0.19 -4.08 2.99 3.19 2.46 5.21

Table 10. A:-NN Sample size =  400 True acc for population = 65.778

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 65.3 68.73 65.64 69.72 0.48 -2.95 0.14 -3.94 2.79 3.31 2.38 4.93
10 65.53 68.78 65.64 70.02 0.24 -3.01 0.13-4.25 2.66 3.34 2.25 5.11
400 65.49 68.79 65.50 70.16 0.33 -2.96 0.33 -4.34 2.69 3.29 2.22 5.16

Table 11. /:-NN Sample size =  600 True acc for population = 66.097

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 65.70 69.38 65.92 70.61 0.40-3.28 0.18 -4.51 2.10 3.49 1.81 5.02
10 65.73 69.32 65.79 70.73 0.33 -3.26 0.27 -4.67 2.14 3.47 1.80 5.17
600 65.83 69.38 65.79 70.90 0.29-3 .26 0.33 -4.78 2.12 3.47 1.78 5.28

Table 12. J(:-NN Sample size = 1000 True acc for population = 66.428

Means Bias RMSE
k CV Max Post Linear Logistic CV Max Post Linear Logistic CV Max Post Linear Logistic
5 65.86 69.84 66.00 71.18 0.57 -3.41 0.43 -4.75 1.78 3.54 1.52 5.07
10 65.90 69.83 65.93 71.31 0.55 -3.38 0.52 -4.85 1.68 3.50 1.45 5.13
1000 65.75 69.76 65.75 71.23 0.66 -3.34 0.66 -4.82 1.83 3.47 1.56 5.15
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Figure 3. LDA Bias for 5-fold Cross-Validation.
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Figure 6. LDA RMSE for 5-fold Cross-Validation.
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Figure 9. A:-NN Bias for 5-fold Cross-Validation.
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Figure 12. ^-NN RMSE for 5-fold Cross-Validation.
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Figure 13. k-NN  RMSE for 10-fold Cross-Validation.
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Splus code :
-------

#Simulate.ssc Aug,2003
#This code is going to calculate
#true accuracy, the average Mean, Bias and Rmse for 
#Cross Validation, Max Posterior Prob,
#Linear Calibration, Logistic Calibration estimates 
#for k-fold with the population size n=10,000,
#sample size as samplesizes<-c(100,200,300,400,600,1000),
#for each size, repeat 1000 times by using Linear Discriminant 
#Classifier.
# =  = = = =  == ==
t <- options(width=120,digits=4,compact=le5,echo=F)
#Generate a sample with sample size as "n" from 3 populations 
GEN <- function(n){

r < runif(n,0,1)

1 <- as.integer(r<l/3) + 2*as.integer(r>l/3)*as.integer(r<2/3) + 
3*as.integer(r>2/3)

nvec <-
c(sum{as.integer(1==1)),sum(as.integer(1==2)),sum(as.integer(1==3)) )

group <- c(rep(l,nvec [1] ) ,rep(2,nvec[2] ) ,rep(3,nvec [3] ) ) 
z <- runif(nvec[1],0,1)<0.6
XI <-cbind(rnorm(nvec[1],7,1.5),rnorm(nvec[1],7,1.5))
X2 <- cbind(rnorm(nvec[1],3,1.5),rnorm(nvec[1],3,1.5))
X <- as.integer(z == F)*X1 + as.integer(z == T)*X2 
X <- rbind(X,cbind(rnorm(nvec[2],4,2),rnorm(nvec[2],6,2)))
X <- rbind(X,cbind(rnorm(nvec[3],7.5,3),rnorm(nvec[3],3.5,3)))
return(group,nvec,X)}

#Draw a sample with sample size as "samplesize” from "X" with sample 
size as "n"
Drawsample <- function(X,group,n,samplesize){ 

r < sample(1 :n, size=samplesize)
TrainingX <- X[r,]
TrainingGroup <- group[r] 
return(TrainingX,TrainingGroup)}

#Calculate the logistic coefficents 
LogCalCoeff<-function(y,xx){ 

ab <- 1
ylength <- length(y)
a < solve(t(xx)%*%(xx),t(xx)%*%log((y + 0.1}/(1.1 - y))) 
m <- 1/(1+exp(-xx%*%a)) 
w <- m*(1-m)

while(ab > lE-7){ 
aold < a
a <- a + solve(t(xx)%*%(w*xx),t(xx)%*%(y - m)) 
m <- 1/(1+exp(-xx%*%a)) 
w <- m*(1-m) 

ab <- abs(a-aold)} 
return(a) }
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#Classify Xtest by using Training Group
Classify <- function(TrainingGroup,TrainingX,Xtest){
#the sample size in Training Group 

Num <- length(TrainingGroup)
#the size in each Group in the Training Group

nvec <- c(sum(as.integer(TrainingGroup==l)),

sum(as.integer(TrainingGroup==2)),sum(as.integer(TrainingGroup==3))) 
#the probability for each group 

pvec <- nvec/Num

#calculate the mean and variance for each group
ml <- colMeans(TrainingX[TrainingGroup==l,]) 
si <- var(TrainingX[TrainingGroup==l,]) 
m2 <- colMeans(TrainingX[TrainingGroup==2,]) 
s2 <- var(TrainingX[TrainingGroup==2,]) 
m3 <- colMeans(TrainingX[TrainingGroup==3,]) 
s3 <- var(TrainingX[TrainingGroup==3,])

#calculate get the pooled variance matrix
s <- ((nvec[1]-1)*sl+(nvec[2]-1)*s2+(nvec[3]-1)*s3)/ (Num-3)

#calculate the probs for each observation for each group 
f1 < pvec[1]*dmvnorm(Xtest,mean=ml,cov=s) 
f2 <- pvec[2]*dmvnorm(Xtest,mean=m2,cov=s) 
f3 <- pvec[3]*dmvnorm(Xtest,mean=m3,cov=s) 
denom <- fl + f2 + f3 
posterior <- cbind(fl,f2,f3)/denom

#find the group with the largest prob
maxprob <- apply(posterior,MARGIN=1,FUN=max)
predgroup <- apply(posterior==maxprob,MARGIN=1,FUN=which)

return(maxprob,predgroup)}

#Population size 
n <- 10000
#Generate the random sample with sample size "n". ”n ” is large enough. 
We regard this sample as the whole population.

data <- GEN(n) 
group <- data$group 
nvec <- data$nvec 
X < data$X

#calculate by using the following sample sizes 
samplesizes <- c(100,200,300,400,600,1000)
#calculate 5-fold, 10-fold, samplesizes-fold cross validation, 
kfold <- c (5,10,0)
#For each sample size, repeat "nsamples” times to get the average value 
nsamples <- lOOO

MeansMatrix < matrix(0,length(samplesizes),12)
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BiasMatrix <- matrix(0,length{samplesizes),12)
RMSEMatrix <- matrix(0,length(samplesizes),12)

acc <- matrix(0,nsamples,13)
#Begin to calculate the 12 values with the "kone"th sample size 
for(kone in 1 :length(samplesizes)){

samplesize <- samplesizes[kone]
print(c("samplesize = ",samplesize),quote = F)

sq <- 1:samplesize
kfold[length(kfold)] <- samplesize
predgroupn2 <-rep(0,samplesize) 
maxprobn2 <-rep(0,samplesize)
for(i in 1 :nsamples){ 

ttcalculate the true accuracy
TrainingData <- DrawSample(X,group,n,samplesize)

TrainingGroup <- TrainingData$TrainingGroup 
TrainingX <- TrainingData$TrainingX

Results <- Classify(TrainingGroup, TrainingX , X) 
acc[i,1] <- 100*mean(Results$predgroup==group) 
print(c(dim(X)[1],"Sample size =",samplesize,"Sample =",i, 

"Acc = ",acc[i,1]),quote = F)
for(ktwo in 1 :length(kfold)){

if (ktwo == length(kfold)) index <- sq 
else index <-sample(rep(1:kfold[ktwo], 
samplesize/kfold[ktwo]), size=samplesize)

for(j in 1 :kfold[ktwo]){ 
if (ktwo == kfold[length(kfold)]) holdout <- j 
else holdout <- sq[index==j] 
heldin <- sq[index != j]

Y <- TrainingX[holdout,]
TrainingGroupnew <- TrainingGroup[heldin] 
TrainingXnew <- TrainingX[heldin,]

Results <-
Classify(TrainingGroupnew,TrainingXnew,Y)

}

maxprobn2[holdout] <- Results$maxprob 
predgroupn2[holdout] <- Results$predgroup

#calculate the cross-validation accuracy estimate
acc [i, (ktwo-1)*4+2] <- 100*mean(predgroupn2==TrainingGroup)

#calculate the max. posterior prob accuracy estimate
acc [i, (ktwo-1)*4+3] <- 100*mean(maxprobn2)

#calculate the linear and logistic calibration accuracy estimates
yy <- as.integer(predgroupn2 == TrainingGroup) 
bb <- sum(yy*maxprobn2)/sum(maxprobn2'^2)
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aa <- LogCalCoeff {yy,maxprobn2)
LogCalmaxprob <- 1/(1 + ((1 - maxprobn2)/maxprobn2)^aa)
acc [i, (ktwo-1)*4+4] <- bb*acc [i, (ktwo-1)*4+3] 
acc [i, (ktwo-1)*4+5] <- 100*mean(LogCalmaxprob)
}

}

#calculate the average value for Mean, Bias, Rmse 
MeansMatrix[kone,] < colMeans(acc[,2 :13] )
M <- mean(acc[, 1] )
BiasMatrix[kone,] <- colMeans(M - acc[,2:13])
RMSEMatrix [kone, ] <- sqrt (colMeans ( (M - acc [, 2 :13] ) ̂ 2̂) )

#print them out
print(c("Sample size = ",samplesizes[kone]),quote = F) 
print(c("True acc for pop'n = ",round(M,2)),quote=F)
PlotterMeans <-

rbind(MeansMatrix[kone,1:4],MeansMatrix[kone,5:8], 
MeansMatrix[kone,9 :12])

PlotterBias <-
rbind(BiasMatrix[kone,1:4],BiasMatrix[kone,5 : 8],
BiasMatrix[kone,9:12])

PlotterRMSE <-
rbind(RMSEMatrix[kone,1:4],RMSEMatrix[kone,5 : 8],
RMSEMatrix[kone,9:12])

cv <- c ("-fold",kfold[1 :(length(kfold)-1)],samplesizes[kone])

print("Means ", quote = F)
print(cbind(cv,rbind(c("CV","Max Post","Linear","Logistic"), 
round(PlotterMeans,dig=3))),quote=F)
print("Bias",quote = F)
print(cbind(cv,rbind(c("CV","Max Post","Linear","Logistic"), 
round(PlotterBias,dig=3))),quote=F)

print("RMSE",quote = F)
print(cbind(cv,rbind(c("CV","Max Post","Linear","Logistic"), 
round(PlotterRMSE,dig=3))),quote=F)
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Splus code :
# ---------
#Simulate.ssc Aug,2003
#This code is going to calculate
#true accuracy, the average Mean, Bias and Rmse for 
#Cross Validation, Max Posterior Prob,
#Linear Calibration, Logistic Calibration estimates
#for k-fold with the population size n=10,000,
ttsample size as samplesizes<-c(100,200,300,400,600,1000),
#for each size, repeat 1000 times by using kNN 
#Classifier.
^ -----------
t <- options(width=120,digits=4,compact=le5,echo=F)

#Generate a sample with sample size as "n" from 3 populations 
GEN <- function(n){

r <- runif(n,0,1)
1 <- as.integer(r<l/3) + 2*as.integer(r>l/3)*as.integer(r<2/3) + 

3*as.integer(r>2/3) 
nvec <-

c(sum(as.integer(1==1)),sum(as.integer(1==2)),sum(as.integer(1==3))) 
group < c (rep (1, nvec [1] ) , rep (2 , nvec [2] ) , rep (3 , nvec [3] ) )
z <- runif(nvec[1],0,1)<0.6
XI <-cbind(rnorm(nvec[1],7,1.5),rnorm(nvec[1],7,1.5))
X2 <- cbind(rnorm(nvectl],3,1.5),rnorm(nvec[1],3,1.5))
X <- as.integer(z == F)*X1 + as.integer(z == T)*X2
X <- rbind(X,cbind(rnorm(nvec[2],4,2),rnorm(nvec[2],6,2)))

X <- rbind(X,cbind(rnorm(nvec[3],7.5,3),rnorm(nvec[3],3.5,3))) 
return(group,nvec,X)}

#Draw a sample with sample size as "samplesize" from "X" with sample 
size as "n"
DrawSample <- function(X,group,n,samplesize) { 

r <- sample(l:n, size=samplesize)
TrainingX <- X[r,]
TrainingGroup <- group[r] 
return(TrainingX,TrainingGroup)}

#Calculate the logistic coefficents 
LogCalCoeff<-function(y,xx){ 

ab < - 1
ylength <- length(y)
a <- solve(t(xx)%*%(xx),t(xx)%*%log((y + 0.1)/(1.1 - y))) 
m <- 1/(1+exp(-xx%*%a)) 
w <- m*(1-m)

while(ab > lE-7){ 
aold <- a
a <- a + solve(t(xx)%*%(w*xx),t(xx)%*%(y - m)) 
m <- 1/(1+exp(-xx%*%a)) 
w <- m*(1-m)
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ab <- abs(a-aold)} 
return(a) }

ClassifykNN <- function(TrainingGroup,TrainingX,Xtest, Ind){ 
kNN<-10
Numtr<-dim (TrainingX) [1] 

if(Ind == 1) Num<-1 
else Num<-dim(Xtest) [1]

#get unique groups
labels<-unique(sort(TrainingGroup)) 
g<-length(labels) 
prob<-rep(0,g) 
posterior<-matrix(0,Num,g)
r<-l

#calculate distance between rth observation in the test sample and all 
the observations in training sample 

while(r<=Num){

if(Num ==1) tO<-Xtest 
else tO<-Xtest[r,]

M<-as.matrix(rep(1,Numtr))

M<-M%*%tO

D<-rowSums((TrainingX-M)^2) 
index<-sort.list(D)

#calculate how many observations belong to each group 
i<-l
while(g+l>i) {prob[i]<- 

sum(as.integer(TrainingGroup[index[1:kNN]]==labels[i]))
i<-i+l}

#break the ties by increasing the number of neighborhood 
kNNr <- kNN+1
while(sum(as.integer(prob==max(prob)))>1) {

i<-l
while(g+l>i) {prob[i]<- 

sum(as.integer(TrainingGroup[index[1:kNNr]]==labels[i]))
i<-i+l} 

kNNr <- kNNr + 1}

posterior [r,1:g]<-prob[1:g]/sum(prob) 

r<-r+l}
maxprob <- apply(posterior,MARGIN=1,FUN=max) 

predgroup <- 
apply(posterior==maxprob,MARGIN=1,FUN=which)

return(maxprob,predgroup)

#Population size
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n <- 10000
#Generate the random sample with sample size "n". "n" is large enough.
We regard this sample as the whole population.
data <- GEN(n)
group <- data$group
nvec <- data$nvec
X <- data$X

ttcalculate by using the following sample sizes 
samplesizes <- c (100,200,300,400^600,1000)

#calculate 5-fold, 10-fold, samplesizes-fold cross validation, 
kfold <- c (5,10,0)

#For each sample size, repeat "nsamples” times to get the average 
value.
nsamples < 1000

MeansMatrix <- matrix(0,length(samplesizes) , 12)
BiasMatrix <- matrix(0,length(samplesizes),12)
RMSEMatrix <- matrix(0,length(samplesizes),12)

acc <- matrix(0,nsamples, 13)
#Begin to calculate the 12 values with the ”kone”th sample size 
for(kone in 1 :length(samplesizes) ) {

samplesize <- samplesizes[kone]
print(c("samplesize = ”,samplesize),quote = F) 

sq <- 1:samplesize
kfold[length(kfold)] <- samplesize

predgroupn2<-rep(0,samplesize) 
maxprobn2<-rep(0,samplesize)

for(i in 1 :nsamples){
#calculate the true accuracy

TrainingData <- DrawSample(X,group,n,samplesize)

TrainingGroup <- TrainingData$TrainingGroup 
TrainingX <- TrainingData$TrainingX

Results <- ClassifykNN(TrainingGroup, TrainingX , X, 0) 
acc[i,1] <- 100*mean(Results$predgroup==group)

print(c(dim(X)[1],"Sample size =",samplesize,"Sample =",i, 
"Acc = ”,acc[i,1]),quote = F)

for(ktwo in 1 : length(kfold)){
Ind<-0

if (ktwo == length(kfold)) index <- sq 
else index <-

sample(rep(1;kfold[ktwo],samplesize/kfold[ktwo]), size=samplesize)
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for(j in 1 :kfold[ktwo]){ 
if (ktwo == length(kfold)) {

holdout <- j 
Ind<-l}
else holdout <- sq[index==j] 

heldin <- sq[index != j]

Y <- TrainingX[holdout,]
TrainingGroupnew < TrainingGroup[heldin] 
TrainingXnew <- TrainingX[heldin,]
Results <-

ClassifykNN(TrainingGroupnew,TrainingXnew,Y,Ind)

maxprobn2[holdout] <- Results$maxprob 
predgroupn2[holdout] <- Results$predgroup

}
ttcalculate the cross-validation accuracy estimate

acc [i, (ktwo-1)*4+2] <- 100*mean(predgroupn2==TrainingGroup) 
#calculate the max. posterior prob accuracy estimate

acc [i, (ktwo-1)*4+3] <- 100*mean(maxprobn2)
#calculate the linear calibration and logistic calibration accuracy 

estimate
yy <- as.integer(predgroupn2 == TrainingGroup) 
bb <- sum(yy*maxprobn2)/sum(maxprobn2*2)

aa <- LogCalCoeff(yy,maxprobn2)
LogCalmaxprob <- 1/(1+ ( (1 - maxprobn2)/maxprobn2)'̂ aa)
acc [i, (ktwo-1)*4+4] <- bb*acc [i, (ktwo-1)*4+3] 
acc [i, (ktwo-1)*4+5] <- 100*mean(LogCalmaxprob)
)

}
#calculate the average value for Mean, Bias, Rmse 

MeansMatrix[kone,] <- colMeans(acc[,2 :13])
M <- mean(acc [,1])
BiasMatrix[kone,] <- colMeans(M - acc [,2:13])
RMSEMatrix[kone,] <- sqrt(colMeans((M - acc [,2 :13])^2))

#print them out
print(c("Sample size = ",samplesizes[kone]),quote = F) 
print(c("True acc for pop'n = ",round(M,2)),quote=F)

PlotterMeans <-
rbind(MeansMatrix[kone,1:4],MeansMatrix[kone,5:8],MeansMatrix[kone,9:12 
])

PlotterBias <-
rbind(BiasMatrix[kone,1:4],BiasMatrix[kone,5:8],BiasMatrix[kone,9 :12]) 

PlotterRMSE <-
rbind(RMSEMatrix[kone,1:4],RMSEMatrix[kone,5:8],RMSEMatrix[kone ,9:12])

cv <- c ("-fold",kfold[1 :(length(kfold)-1)],samplesizes[kone] ) 
print("Means",quote = F) 
print(cbind(cv,rbind(c("CV","Max 

Post","Linear","Logistic"),round(PlotterMeans,dig=3))),quote=F) 
print("Bias",quote = F)
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print (cbind ( cv, rbind ( c {" C V , "Max 
Post”,"Linear”,"Logistic”),round(PlotterBias,dig=3)))/quote=F) 

print("RMSE”/quote = F) 
print(cbind(cv,rbind(c(”CV”,"Max 

Post","Linear","Logistic"),round(PlotterRMSE,dig=3))),quote=F)

28


	Estimating classification accuracy using probability of correct classification estimates
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.Zu91v

